本網站搜尋 | Web Mail   
成大 | 理學院 | 系圖書室 | 系友會   
首頁 | 連絡我們 | English Version
  

最新消息 | 演講 | 系所資訊 | 人物 | 學程 | 課程 | 資源 | 獎學金 | 研究 | 導師 | 招生 | 高中生專區

   2週內演講 | 學生演講 | 3月演講 | 2月演講 | 1月演講 | 12月演講 | 11月演講 | 10月演講 | 9月演講 | 演講日曆
 

 

2週內演講

Colloquium, Professor Jack Xin, University of California
Friday, February 23, 11:10—12:00 數學系3174
Title: Deepparticle: Learning Multiscale Pdes with Data Generated from Interacting Particle Methods
Abstract:Multiscale time dependent partial differential equations (PDE) are challenging to compute by traditional mesh based methods especially when their solutions develop large gradients or concentrations at unknown locations. Particle methods, based on microscopic aspects of the PDEs, are mesh free and self-adaptive, yet still expensive when a long time or a resolved computation is necessary. We present DeepParticle, an integrated deep learning, optimal transport (OT), and interacting particle (IP) approach, to speed up generation and prediction of PDE dynamics through two case studies on transport in fluid flows with chaotic streamlines: 1) large time front speeds of Fisher-Kolmogorov-Petrovsky-Piskunov equation (FKPP); 2) Keller-Segel (KS) chemotaxis system modeling bacteria evolution in the presence of a chemical attractant. Analysis of FKPP reduces the problem to a computation of principal eigenvalue of an advection-diffusion operator. A normalized Feynman-Kac representation makes possible a genetic IP algorithm to evolve the initial uniform particle distribution to a large time invariant measure from which to extract front speeds. The invariant measure is parameterized by a physical parameter (the Peclet number). We train a light weight deep neural network with local and global skip connections to learn this family of invariant measures. The training data come from IP computation in three dimensions at a few sample Peclet numbers. The training objective being minimized is a discrete Wasserstein distance in OT theory. The trained network predicts a more concentrated invariant measure at a larger Peclet number and also serves as a warm start to accelerate IP computation. The KS is formulated as a McKean-Vlasov equation (macroscopic limit) of a stochastic IP system. The DeepParticle framework extends and learns to generate various finite time bacterial aggregation patterns. Joint work with Zhongjian Wang (Nanyang Tech Univ, Singapore) and Zhiwen Zhang (University of Hong Kong).

Colloquium, 台灣大學數學系 劉子齊博士
Thursday, February 29, 16:10—17:00 數學系3174
Title: TBA
Abstract:TBA

Colloquium, 國家理論中心 Dr. Seonghyeon Jeong
Thursday, March 7, 16:10—17:00 數學系3174
Title: TBA
Abstract:TBA

   
 


首頁 | 最新消息 | 演講安排 | 系所資訊 | 人物 | 學程 | 課程 | 資源 | 獎學金 | 研究 | 導師 | 招生 | 高中生專區 | 網站地圖


國立成功大學數學系
70101 台南市大學路一號
電話︰(06) 2757575 轉 65100   傳真︰(06) 2743191
em65100[at]email.ncku.edu.tw