Symplectic Construction of Moduli Spaces

Eugene Z. Xia
X is a compact Kähler manifold of (complex) dimension k with form ω.
G a (complex) reductive group with algebra \mathfrak{g}. $K \subseteq G$ a real (compact) form with algebra \mathfrak{k}.
B a non-degenerate $\operatorname{Ad}(G)$-invariant (resp. $\operatorname{Ad}(K)$ invariant) bi-linear form on \mathfrak{g} (resp. \mathfrak{k}).
$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .($ Example: $\mathfrak{s l}(n, \mathbb{C})=\mathfrak{s u}(n) \oplus \mathfrak{p}$.
Example: If \mathfrak{g} is semi-simple, then B is the Killing form.

The Betti moduli \mathcal{M}_{B} :
Assume $\pi=\pi_{1}(X)$ is finitely generated with n generators and finitely many relations.
$\operatorname{Hom}\left(\pi_{1}, G\right)$ is an affine algebraic variety over \mathbb{C}, in fact a subvariety of G^{n}.

There is an algebraic adjoint G-action on $\operatorname{Hom}\left(\pi_{1}, G\right)$,
$G \times \operatorname{Hom}\left(\pi_{1}, G\right) \longrightarrow \operatorname{Hom}\left(\pi_{1}, G\right)$
$(g, \rho) \mapsto \operatorname{Ad}(g)(\rho)$

Categorical quotient:

$\operatorname{Hom}\left(\pi_{1}, G\right)$ is an affine variety, so is defined by a ring R.

Hence the $\operatorname{Ad}(G)$-action on $\operatorname{Hom}\left(\pi_{1}, G\right)$ induces a G action on R. Denote by R^{G} the invariant subring.

The Betti moduli

$$
\mathcal{M}_{B}(G)=\operatorname{Hom}\left(\pi_{1}, G\right) / G
$$

is the variety defined by R^{G}.

Geometric explanation:

The orbits $\operatorname{Ad}(G)$-action may not be closed in $\operatorname{Hom}\left(\pi_{1}, G\right)$.
This implies that the geometric quotient of the $\operatorname{Ad}(G)$ action may not be Hausdorff.

Must identify each orbit with the orbits in its closure.
$\mathcal{M}_{B}(G)$ parameterizes the reductive representations.
Remark: $\mathcal{M}_{B}(G)$ has a variety structure coming from the variety structure on G.

Example: X a compact Riemann surface of genus g.
$G=\mathbb{C}^{\times}$.
Set $[A, B]=A B A^{-1} B^{-1}$
$\pi_{1}=\left\langle A_{i}, B_{i}, 1 \leq i \leq g \mid \prod_{i=1}^{g}\left[A_{i}, B_{i}\right]\right\rangle$
$\operatorname{Hom}\left(\pi_{1}, \mathbb{C}^{\times}\right) \cong\left(\mathbb{C}^{\times}\right)^{2 g}$.
$\mathcal{M}_{B}\left(\mathbb{C}^{\times}\right) \cong\left(\mathbb{C}^{\times}\right)^{2 g}$.

Example: $G=\operatorname{SL}(2, \mathbb{C})$.
$\operatorname{Hom}\left(\pi_{1}, G\right) \cong$
$\left\{a_{i}, b_{i}: 1 \leq i \leq g, \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=e \in G\right\}$.
Consider the representation ρ corresponding to
$a_{i}, b_{i}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \quad 1 \leq i \leq g$.
The G-orbit of ρ is not closed because it does not contain the trivial representation.

Symplectic structures

$\rho \in \operatorname{Hom}(\pi, G)$ together with the $\operatorname{Ad}(G)$-action on \mathfrak{g} defines a π-module structure on \mathfrak{g}.

The tangent space at $[\rho] \in \mathcal{M}_{B}(G)$ is $\mathrm{H}^{1}\left(\pi, \operatorname{Ad}_{\rho} \mathfrak{g}\right)$.
Suppose X is a compact Riemann surface.
Then there is a symplectic structure $\Omega_{\mathbb{J}}$ on $\mathcal{M}_{B}(G)$: $\mathrm{H}^{1}\left(\pi, \operatorname{Ad}_{\rho} \mathfrak{g}\right) \times \mathrm{H}^{1}\left(\pi, \operatorname{Ad}_{\rho} \mathfrak{g}\right) \longrightarrow \mathrm{H}^{2}(\pi, \mathbb{C}) \cong \mathbb{C}$.
$\mathcal{M}_{B}(K)$ is symplectic while $\mathcal{M}_{B}(G)$ is complex symplectic, i.e. $\mathcal{M}_{B}(G)$ has two symplectic structures.

The de Rham construction
We begin with bilinear forms
$\Omega\left(\eta_{1}, \eta_{2}\right)=\int_{X} B\left(\eta_{1}, \eta_{2}\right) \omega^{i}$.
Notice that multiplication on the form is the wedge.
For each $\eta \in \Omega^{1}(\mathfrak{g})$, the curvature is
$F(\eta)=d \eta+\frac{1}{2}[\eta, \eta]$.
$\Omega^{2}(\mathfrak{g})$ is canonically duel to $\Omega^{0}(\mathfrak{g})$:
$\Omega^{0}(\mathfrak{g}) \times \Omega^{2}(\mathfrak{g}) \longrightarrow \mathbb{C}, \quad(\eta, w)=\int_{X} B(\eta, w) \omega^{k-1}$.

Complex symplectic quotient
There is a (gauge) action $\Omega^{0}(G) \times \Omega^{1}(\mathfrak{g}) \longrightarrow \Omega^{1}(\mathfrak{g}),(g, \eta) \mapsto(d g) g^{-1}+\operatorname{Ad}(g)(\eta)$.

Define the (moment) map by curvature $\mu: \Omega^{1}(\mathfrak{g}) \longrightarrow \Omega^{2}(\mathfrak{g}) \cong \Omega^{0}(\mathfrak{g}), \quad \mu(\eta)=F(\eta)$.

The de Rham moduli $\mathcal{M}_{d R} \cong \mu^{-1}(0) / / \Omega^{0}(G)$.
$\mathcal{M}_{d R}$ acquires a natural symplectic form $\Omega_{\mathbb{J}}$ from the reduction.

Suppose that $\rho \in \operatorname{Hom}(\pi, G)$ is a representation.
Let $\tilde{d}: \Omega^{0}(\tilde{X}, \mathfrak{g}) \longrightarrow \Omega^{1}(\tilde{X}, \mathfrak{g})$,
be the exterior derivative operator.
Form the ρ-twisted bundle $\tilde{X} \times_{\operatorname{Ad}(\rho)} \mathfrak{g}$.
\tilde{d} descents to a flat connection $d+\eta$ on X, where $\eta \in \Omega^{1}(\mathfrak{g})$.

This defines $\mathcal{M}_{B} \xrightarrow{\curvearrowleft} \mathcal{M}_{d R}$.

Example: $G=\mathbb{C}$. (a not so great example)
This is simply the de Rham cohomology:
Gauge group is $\Omega^{0}(\mathbb{C})$ and $\mu(A)=d A$
$0 \longrightarrow \Omega^{0}(\mathbb{C}) \xrightarrow{d} \Omega^{1}(\mathbb{C}) \xrightarrow{d} \Omega^{2}(\mathbb{C}) \cdots$.
$\mathcal{M}_{d R} \cong \mathrm{H}_{d R}^{1}\left(\Omega^{\bullet}(\mathbb{C})\right)$.
Suppose X is a Riemann surface of genus g.
Then $\mathcal{M}_{d R} \cong(\mathbb{C})^{2 g}$.

Example: $G=\mathbb{C}^{\times}$and $G=\operatorname{SL}(2, \mathbb{C})$.
Gauge group is $\Omega^{0}\left(\mathbb{C}^{\times}\right)$and $\mu(A)=d A$.
$\Omega^{0}\left(\mathbb{C}^{\times}\right) \xrightarrow{d \log } \Omega^{1}(\mathbb{C}) \xrightarrow{d} \Omega^{2}(\mathbb{C}) \longrightarrow \cdots$
$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{\text { exp }} \mathbb{C}^{\times} \longrightarrow 0$
$\cdots \rightarrow \mathrm{H}^{1}(\mathbb{Z}) \rightarrow \mathrm{H}^{1}(\mathbb{C}) \rightarrow \mathrm{H}^{1}\left(\mathbb{C}^{\times}\right) \rightarrow \mathrm{H}^{2}(\mathbb{Z}) \rightarrow \cdots$
$\mathcal{M}_{d R} \cong \mathrm{H}^{1}\left(\mathbb{C}^{\times}\right)^{0} \cong \mathrm{H}^{1}(\mathbb{C}) / \operatorname{im}\left(\mathrm{H}^{1}(\mathbb{Z})\right)$.
Suppose X is a Riemann surface of genus g.
Then $\mathcal{M}_{d R} \cong\left(\mathbb{C}^{\times}\right)^{2 g}$.

The Dolbeault construction

Let h be the Hermitian metric $h(X, Y)=B(X, \bar{Y})$.
Let $K \subset G$ be the compact form preserving h.
The Kähler metric on X together with h defines a Hermitian metric h_{j} on $\Omega^{j}(\mathfrak{g})$:
$h_{j}\left(\eta_{1}, \eta_{2}\right)=\int_{X} h\left(\eta_{1}, \eta_{2}\right) \omega^{k}$.
For $A \in \Omega^{1}(\mathfrak{k})$, let
$D_{A}: \Omega^{0}(\mathfrak{g}) \longrightarrow \Omega^{1}(\mathfrak{g}), \quad D_{A}(f)=d f+[A, f]$.
Let $D_{A}^{*}: \Omega^{1}(\mathfrak{g}) \longrightarrow \Omega^{0}(\mathfrak{g}), h_{0}\left(D_{A}^{*} \eta, f\right)=h_{1}\left(\eta, D_{A} f\right)$.

HyperKähler structure on $\Omega^{1}(\mathfrak{g}) \cong \mathfrak{g} \otimes \Omega^{1}(X)$
$\mathbb{I}=i \otimes 1, \quad \mathbb{J}=\tau \otimes j, \quad \mathbb{K}=\mathbb{I} \mathbb{J}$, where
j is the complex structure on X,
$\tau: \mathfrak{g} \longrightarrow \mathfrak{g}$ is the adjoint with respect to B.
The Riemannian metric from h is compatible with $\mathbb{I}, \mathbb{J}, \mathbb{K}$. Together, they form a HyperKähler structure on $\Omega^{1}(\mathfrak{g})$.

The following action is symplectic with respect to $\Omega_{\mathbb{I}}, \Omega_{\mathbb{J}}, \Omega_{\mathbb{K}}:$
$\Omega^{0}(K) \times \Omega^{1}(\mathfrak{g}) \longrightarrow \Omega^{1}(\mathfrak{g}),(g, \eta) \mapsto(d g) g^{-1}+\operatorname{Ad}(g)(\eta)$.

HyperKähler reduction

$\eta \in \Omega^{1}(\mathfrak{g}), \eta=A+\Psi$, where $A \in \Omega^{1}(\mathfrak{k}), \Psi \in \Omega^{1}(\mathfrak{p})$

The action is also Hamiltonian with respect to the three symplectic structures, resulting in the HyperKähler quotient \mathcal{M} with moment maps

$$
\left\{\begin{array}{l}
\mu_{\mathbb{I}}(\eta)=D_{A}^{*} \Psi \\
\mu_{\mathbb{I}}(\eta)=\operatorname{Im}(F(\eta)) \\
\mu_{\mathbb{K}}(\eta)=\operatorname{Re}(F(\eta))
\end{array}\right.
$$

The smooth part of $\mathcal{M}_{D o l} \cong \Omega^{1}(\mathfrak{g}) / / / \Omega^{0}(K)$ has a HyperKähler structure.

The twister space.
Let $a \in S^{2} \subset \mathbb{R}^{3}$. Then
$a_{1} \mathbb{I}+a_{2} \mathbb{J}+a_{3} \mathbb{K}$ is a complex structure on \mathcal{M} compatible with g.

This gives a family of Kähler structures on \mathcal{M}, parameterized by S^{2}.

All these structures are isomorphic to each other, except \mathbb{J}.

The Abelian case (Hodge Theory):
X a compact Riemann surface, $G=\mathbb{C}$
(Bad example)
Fix the trivial Hermitian metric h on $X \times \mathbb{C}$.
$0 \longrightarrow \Omega^{0}(\mathbb{C}) \xrightarrow{d} \Omega^{1}(\mathbb{C}) \xrightarrow{d} \Omega^{2}(\mathbb{C}) \cdots$.
$\eta \in \Omega^{1}(\mathbb{C}), \eta=0+\Psi, \Psi \in \Omega^{1}(\mathbb{C})$

$$
d A=d \Psi=0, \quad d^{*} \Psi=0
$$

$\Psi \in \mathcal{H}^{1}(\mathbb{C})$ is harmonic.
X a compact Riemann surface, $G=\mathbb{C}^{\times}$:
$\eta \in \Omega^{1}(\mathbb{C}), \eta=A+\Psi, A \in \Omega^{1}(i \mathbb{R}), \Psi \in \Omega^{1}(\mathbb{R})$

$$
d A=d \Psi=0, \quad d^{*} \Psi=0
$$

$d A=0 \Rightarrow A$ is closed.
$d \Psi=0, \quad d^{*} \Psi=0 \Rightarrow \Psi$ is harmonic.
$0 \longrightarrow \Omega^{0}(\mathrm{U}(1)) \xrightarrow{\text { dlog }} Z^{1}(i \mathbb{R}) \times \mathcal{H}^{1}(\mathbb{R}) \xrightarrow{d} \Omega^{2}(\mathbb{C}) \cdots$.
The complex structure \mathbb{J} gives the complex structure on $\mathcal{M}_{\text {Dol }}=T^{*} \operatorname{Jac}(X)$.

Real forms:
If $K \subset G$ is a real form, then \mathbb{I} and $\Omega_{\mathbb{I}}$ disappear, but \mathbb{J} and $\Omega_{\mathbb{J}}$ still exist. Hence $\mathcal{M}_{D o l}(K)$ is a Kähler quotient with respect to \mathbb{J}.

Example: $K=\mathrm{U}(1), \mathcal{M}_{\text {Dol }}(K) \cong \operatorname{Jac}(X)$.
Example: $K=\mathbb{R}^{\times}, \mathcal{M}_{\text {Dol }}(K)=\mathbb{J}_{2}(X) \times \mathrm{H}^{0}\left(\boldsymbol{\Omega}^{1}\right)$, where $\boldsymbol{\Omega}^{1}$ is the sheaf of holomorphic 1 -forms on X.

The complex structure \mathbb{J} depends on the complex structure of X.

The symplectic structure $\Omega_{\mathbb{J}}$ depends on the symplectic structure ω on X only.

In general, there are more symplectomorphisms than there are complex automorphisms.

Example: If X is a compact Riemann surface, then the space of complex automorphism is finite when $g>1$. By the \mathcal{M}_{B} construction, $\Omega_{\mathbb{J}}$ is topological.

Dynamics of the mapping class group: X a Riemann surface of genus $g>0$.
$M C G=\operatorname{Homeo}(X) / \operatorname{Homeo}(X)_{0}$.
There are actions
$\operatorname{Homeo}(X) \times \pi \longrightarrow \pi$.
$M C G \times \pi \longrightarrow \pi$.
$M C G \times \operatorname{Hom}(\pi, G) \longrightarrow \operatorname{Hom}(\pi, G)$
$M C G \times \mathcal{M}_{B} \longrightarrow \mathcal{M}_{B}$.

Hamiltonian actions on \mathcal{M}_{B}
Let X be of genus $g>1$ and $\gamma \subset X$ a based simple closed curve.
$\operatorname{Tr}_{\gamma}: \mathcal{M}_{B} \longrightarrow \mathbb{C}, \quad \operatorname{Tr}_{\gamma}([\rho])=\operatorname{Tr}(\rho(\gamma))$.
There are $3 g-3$ mutually non-intersecting simple closed curves.

There is a $\left(\mathbb{C}^{\times}\right)^{3 g-3}$-action on $\mathcal{M}_{B}(G)$.

Suppose $K \subset G$ is a compact form.
Then $\mathcal{M}_{B}(K)$ is compact.
There is a $\mathrm{U}(1)^{3 g-3}$-action on $\mathcal{M}_{B}(K)$.
If $K=\operatorname{SU}(2)$, then $\mathcal{M}_{B}(K)$ is integrable.
X is a (punctured) torus; $K=\operatorname{SU}(2)$.
$\pi=\langle A, B \mid[A, B]\rangle$
\mathcal{M}_{B} is defined by $x^{2}+y^{2}+z^{2}-x y z-2$.
$k=x^{2}+y^{2}+z^{2}-x y z-2$ is the boundary trace function.

