Symplectic Construction of Moduli Spaces

Eugene Z. Xia

X is a compact Kähler manifold of (complex) dimension k with form ω .

G a (complex) reductive group with algebra \mathfrak{g} . $K \subseteq G$ a real (compact) form with algebra \mathfrak{k} .

B a non-degenerate $\operatorname{Ad}(G)$ -invariant (resp. $\operatorname{Ad}(K)$ invariant) bi-linear form on \mathfrak{g} (resp. \mathfrak{k}).

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}.$ (Example: $\mathfrak{sl}(n, \mathbb{C}) = \mathfrak{su}(n) \oplus \mathfrak{p}.$)

Example: If \mathfrak{g} is semi-simple, then B is the Killing form.

The Betti moduli \mathcal{M}_B :

Assume $\pi = \pi_1(X)$ is finitely generated with *n* generators and finitely many relations.

 $\operatorname{Hom}(\pi_1, G)$ is an affine algebraic variety over \mathbb{C} , in fact a subvariety of G^n .

There is an algebraic adjoint G-action on $\operatorname{Hom}(\pi_1, G)$,

 $G \times \operatorname{Hom}(\pi_1, G) \longrightarrow \operatorname{Hom}(\pi_1, G)$

 $(g,\rho)\mapsto \mathrm{Ad}(g)(\rho)$

Categorical quotient:

 $\operatorname{Hom}(\pi_1, G)$ is an affine variety, so is defined by a ring R.

Hence the $\operatorname{Ad}(G)$ -action on $\operatorname{Hom}(\pi_1, G)$ induces a G-action on R. Denote by R^G the invariant subring.

The Betti moduli

 $\mathcal{M}_B(G) = \operatorname{Hom}(\pi_1, G)/G$

is the variety defined by R^G .

Geometric explanation:

The orbits Ad(G)-action may not be closed in $Hom(\pi_1, G)$.

This implies that the geometric quotient of the $\mathrm{Ad}(G)$ -action may not be Hausdorff.

Must identify each orbit with the orbits in its closure.

 $\mathcal{M}_B(G)$ parameterizes the reductive representations.

Remark: $\mathcal{M}_B(G)$ has a variety structure coming from the variety structure on G. Example: X a compact Riemann surface of genus g.

$$G = \mathbb{C}^{\times}.$$

Set $[A, B] = ABA^{-1}B^{-1}$
 $\pi_1 = \langle A_i, B_i, 1 \le i \le g \mid \prod_{i=1}^g [A_i, B_i] \rangle$
Hom $(\pi_1, \mathbb{C}^{\times}) \cong (\mathbb{C}^{\times})^{2g}.$
 $\mathcal{M}_B(\mathbb{C}^{\times}) \cong (\mathbb{C}^{\times})^{2g}.$

Example: $G = SL(2, \mathbb{C})$.

Hom
$$(\pi_1, G) \cong$$

 $\{a_i, b_i : 1 \le i \le g, \prod_{i=1}^g [a_i, b_i] = e \in G\}.$

Consider the representation ρ corresponding to

$$a_i, b_i = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad 1 \le i \le g.$$

The G-orbit of ρ is not closed because it does not contain the trivial representation.

Symplectic structures

 $\rho \in \operatorname{Hom}(\pi, G)$ together with the $\operatorname{Ad}(G)$ -action on \mathfrak{g} defines a π -module structure on \mathfrak{g} .

The tangent space at $[\rho] \in \mathcal{M}_B(G)$ is $\mathrm{H}^1(\pi, \mathrm{Ad}_{\rho}\mathfrak{g})$.

Suppose X is a compact Riemann surface.

Then there is a symplectic structure $\Omega_{\mathbb{J}}$ on $\mathcal{M}_B(G)$: $\mathrm{H}^1(\pi, \mathrm{Ad}_{\rho}\mathfrak{g}) \times \mathrm{H}^1(\pi, \mathrm{Ad}_{\rho}\mathfrak{g}) \longrightarrow \mathrm{H}^2(\pi, \mathbb{C}) \cong \mathbb{C}.$

 $\mathcal{M}_B(K)$ is symplectic while $\mathcal{M}_B(G)$ is complex symplectic, i.e. $\mathcal{M}_B(G)$ has two symplectic structures.

The de Rham construction We begin with bilinear forms $\Omega(\eta_1, \eta_2) = \int_X B(\eta_1, \eta_2) \omega^i.$

Notice that multiplication on the form is the wedge.

For each $\eta \in \Omega^1(\mathfrak{g})$, the curvature is $F(\eta) = d\eta + \frac{1}{2}[\eta, \eta].$

$$\begin{array}{l} \Omega^2(\mathfrak{g}) \text{ is canonically duel to } \Omega^0(\mathfrak{g}):\\ \Omega^0(\mathfrak{g}) \times \Omega^2(\mathfrak{g}) \longrightarrow \mathbb{C}, \quad (\eta, w) = \int_X B(\eta, w) \omega^{k-1}. \end{array}$$

Complex symplectic quotient

There is a (gauge) action $\Omega^0(G) \times \Omega^1(\mathfrak{g}) \longrightarrow \Omega^1(\mathfrak{g}), \ (g,\eta) \mapsto (dg)g^{-1} + \mathrm{Ad}(g)(\eta).$

Define the (moment) map by curvature $\mu: \Omega^1(\mathfrak{g}) \longrightarrow \Omega^2(\mathfrak{g}) \cong \Omega^0(\mathfrak{g}), \quad \mu(\eta) = F(\eta).$

The de Rham moduli $\mathcal{M}_{dR} \cong \mu^{-1}(0) / \Omega^0(G)$.

 \mathcal{M}_{dR} acquires a natural symplectic form $\Omega_{\mathbb{J}}$ from the reduction.

Suppose that $\rho \in \operatorname{Hom}(\pi, G)$ is a representation.

Let $\tilde{d} : \Omega^0(\tilde{X}, \mathfrak{g}) \longrightarrow \Omega^1(\tilde{X}, \mathfrak{g})$, be the exterior derivative operator.

Form the ρ -twisted bundle $\tilde{X} \times_{\mathrm{Ad}(\rho)} \mathfrak{g}$.

 \tilde{d} descents to a flat connection $d + \eta$ on X, where $\eta \in \Omega^1(\mathfrak{g})$.

This defines $\mathcal{M}_B \xrightarrow{\simeq} \mathcal{M}_{dR}$.

Example: $G = \mathbb{C}$. (a not so great example) This is simply the de Rham cohomology: Gauge group is $\Omega^0(\mathbb{C})$ and $\mu(A) = dA$ $0 \longrightarrow \Omega^0(\mathbb{C}) \xrightarrow{d} \Omega^1(\mathbb{C}) \xrightarrow{d} \Omega^2(\mathbb{C}) \cdots$. $\mathcal{M}_{dR} \cong \mathrm{H}^1_{dR}(\Omega^{\bullet}(\mathbb{C})).$

Suppose X is a Riemann surface of genus g.

Then $\mathcal{M}_{dR} \cong (\mathbb{C})^{2g}$.

Example:
$$G = \mathbb{C}^{\times}$$
 and $G = \mathrm{SL}(2, \mathbb{C})$.
Gauge group is $\Omega^{0}(\mathbb{C}^{\times})$ and $\mu(A) = dA$.
 $\Omega^{0}(\mathbb{C}^{\times}) \xrightarrow{d \log} \Omega^{1}(\mathbb{C}) \xrightarrow{d} \Omega^{2}(\mathbb{C}) \longrightarrow \cdots$
 $0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{exp} \mathbb{C}^{\times} \longrightarrow 0$
 $\cdots \longrightarrow \mathrm{H}^{1}(\mathbb{Z}) \longrightarrow \mathrm{H}^{1}(\mathbb{C}) \longrightarrow \mathrm{H}^{1}(\mathbb{C}^{\times}) \longrightarrow \mathrm{H}^{2}(\mathbb{Z}) \longrightarrow \cdots$
 $\mathcal{M}_{dR} \cong \mathrm{H}^{1}(\mathbb{C}^{\times})^{0} \cong \mathrm{H}^{1}(\mathbb{C}) / \mathrm{im}(\mathrm{H}^{1}(\mathbb{Z})).$
Suppose X is a Riemann surface of genus g.

Then $\mathcal{M}_{dR} \cong (\mathbb{C}^{\times})^{2g}$.

The Dolbeault construction

Let h be the Hermitian metric $h(X, Y) = B(X, \overline{Y})$.

Let $K \subset G$ be the compact form preserving h.

The Kähler metric on X together with h defines a Hermitian metric h_j on $\Omega^j(\mathfrak{g})$:

$$h_{j}(\eta_{1},\eta_{2}) = \int_{X} h(\eta_{1},\eta_{2})\omega^{k}.$$

For $A \in \Omega^{1}(\mathfrak{k})$, let
 $D_{A}: \Omega^{0}(\mathfrak{g}) \longrightarrow \Omega^{1}(\mathfrak{g}), \quad D_{A}(f) = df + [A, f].$
Let $D_{A}^{*}: \Omega^{1}(\mathfrak{g}) \longrightarrow \Omega^{0}(\mathfrak{g}), \quad h_{0}(D_{A}^{*}\eta, f) = h_{1}(\eta, D_{A}f).$

HyperKähler structure on $\Omega^1(\mathfrak{g}) \cong \mathfrak{g} \otimes \Omega^1(X)$

 $\mathbb{I} = i \otimes 1, \quad \mathbb{J} = \tau \otimes j, \quad \mathbb{K} = \mathbb{I}\mathbb{J}, \text{ where} \\ j \text{ is the complex structure on } X, \\ \tau : \mathfrak{g} \longrightarrow \mathfrak{g} \text{ is the adjoint with respect to } B.$

The Riemannian metric from h is compatible with I, J, K. Together, they form a HyperKähler structure on $\Omega^1(\mathfrak{g})$.

The following action is symplectic with respect to $\Omega_{\mathbb{I}}, \ \Omega_{\mathbb{J}}, \ \Omega_{\mathbb{K}}$: $\Omega^{0}(K) \times \Omega^{1}(\mathfrak{g}) \longrightarrow \Omega^{1}(\mathfrak{g}), \ (g,\eta) \mapsto (dg)g^{-1} + \mathrm{Ad}(g)(\eta).$ HyperKähler reduction

$$\eta \in \Omega^1(\mathfrak{g}), \ \eta = A + \Psi,$$

where $A \in \Omega^1(\mathfrak{k}), \ \Psi \in \Omega^1(\mathfrak{p})$

The action is also Hamiltonian with respect to the three symplectic structures, resulting in the HyperKähler quotient \mathcal{M} with moment maps

$$\begin{cases} \mu_{\mathbb{I}}(\eta) &= D_A^* \Psi\\ \mu_{\mathbb{J}}(\eta) &= \operatorname{Im}(F(\eta))\\ \mu_{\mathbb{K}}(\eta) &= \operatorname{Re}(F(\eta)) \end{cases}$$

The smooth part of $\mathcal{M}_{Dol} \cong \Omega^1(\mathfrak{g}) / / \Omega^0(K)$ has a HyperKähler structure.

The twister space.

Let $a \in S^2 \subset \mathbb{R}^3$. Then

 $a_1 \mathbb{I} + a_2 \mathbb{J} + a_3 \mathbb{K}$ is a complex structure on \mathcal{M} compatible with g.

This gives a family of Kähler structures on \mathcal{M} , parameterized by S^2 .

All these structures are isomorphic to each other, except $\mathbb{J}.$

The Abelian case (Hodge Theory):

X a compact Riemann surface, $G=\mathbb{C}$ (Bad example)

Fix the trivial Hermitian metric h on $X \times \mathbb{C}$.

 $0 \longrightarrow \Omega^{0}(\mathbb{C}) \xrightarrow{d} \Omega^{1}(\mathbb{C}) \xrightarrow{d} \Omega^{2}(\mathbb{C}) \cdots$ $\eta \in \Omega^{1}(\mathbb{C}), \ \eta = 0 + \Psi, \ \Psi \in \Omega^{1}(\mathbb{C})$ $dA = d\Psi = 0, \ d^{*}\Psi = 0.$

 $\Psi \in \mathcal{H}^1(\mathbb{C})$ is harmonic.

X a compact Riemann surface, $G = \mathbb{C}^{\times}$:

 $\eta\in\Omega^1(\mathbb{C}),\ \eta=A+\Psi,\ A\in\Omega^1(i\mathbb{R}),\ \Psi\in\Omega^1(\mathbb{R})$

$$dA = d\Psi = 0, \quad d^*\Psi = 0.$$

 $dA = 0 \Rightarrow A$ is closed.

 $d\Psi = 0, \quad d^*\Psi = 0 \Rightarrow \Psi \text{ is harmonic.}$

$$0 \longrightarrow \Omega^0(\mathrm{U}(1)) \xrightarrow{dlog} Z^1(i\mathbb{R}) \times \mathcal{H}^1(\mathbb{R}) \xrightarrow{d} \Omega^2(\mathbb{C}) \cdots$$

The complex structure \mathbb{J} gives the complex structure on $\mathcal{M}_{Dol} = T^* Jac(X)$. Real forms:

If $K \subset G$ is a real form, then \mathbb{I} and $\Omega_{\mathbb{I}}$ disappear, but \mathbb{J} and $\Omega_{\mathbb{J}}$ still exist. Hence $\mathcal{M}_{Dol}(K)$ is a Kähler quotient with respect to \mathbb{J} .

Example: $K = U(1), \mathcal{M}_{Dol}(K) \cong Jac(X).$

Example: $K = \mathbb{R}^{\times}$, $\mathcal{M}_{Dol}(K) = \mathbb{J}_2(X) \times \mathrm{H}^0(\mathbf{\Omega}^1)$, where $\mathbf{\Omega}^1$ is the sheaf of holomorphic 1-forms on X. The complex structure \mathbb{J} depends on the complex structure of X.

The symplectic structure $\Omega_{\mathbb{J}}$ depends on the symplectic structure ω on X only.

In general, there are more symplectomorphisms than there are complex automorphisms.

Example: If X is a compact Riemann surface, then the space of complex automorphism is finite when g > 1. By the \mathcal{M}_B construction, $\Omega_{\mathbb{J}}$ is topological. Dynamics of the mapping class group: X a Riemann surface of genus g > 0.

 $MCG = Homeo(X)/Homeo(X)_0.$

There are actions

 $Homeo(X) \times \pi \longrightarrow \pi.$

 $MCG \times \pi \longrightarrow \pi$.

 $MCG \times \operatorname{Hom}(\pi, G) \longrightarrow \operatorname{Hom}(\pi, G)$

 $MCG \times \mathcal{M}_B \longrightarrow \mathcal{M}_B.$

Hamiltonian actions on \mathcal{M}_B

Let X be of genus g > 1 and $\gamma \subset X$ a based simple closed curve.

 $\operatorname{Tr}_{\gamma} : \mathcal{M}_B \longrightarrow \mathbb{C}, \quad \operatorname{Tr}_{\gamma}([\rho]) = \operatorname{Tr}(\rho(\gamma)).$

There are 3g - 3 mutually non-intersecting simple closed curves.

There is a $(\mathbb{C}^{\times})^{3g-3}$ -action on $\mathcal{M}_B(G)$.

Suppose $K \subset G$ is a compact form.

Then $\mathcal{M}_B(K)$ is compact.

There is a $\mathrm{U}(1)^{3g-3}$ -action on $\mathcal{M}_B(K)$.

If K = SU(2), then $\mathcal{M}_B(K)$ is integrable.

X is a (punctured) torus; K = SU(2).

 $\pi = \langle A, B | [A, B] \rangle$

 \mathcal{M}_B is defined by $x^2 + y^2 + z^2 - xyz - 2$.

 $k = x^2 + y^2 + z^2 - xyz - 2$ is the boundary trace function.

