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1 Geometrization problem of contact 3-manifolds

1.1 Geometrization problem of 3-manifolds via Hamil-
ton Ricci �ow

� Decomposition of 3-manifolds: Assume thatM is closed and orientable.

1. Cutting along Spheres (The Sphere Decomposition) : Connected
sum decomposition of M into prime pieces.

(a) (Kneser, 1929; Milnor, 1962) Every M has a prime decompo-
sition

M �= M1#:::#Mk;

and

M �= (K1#:::#Kp)#(L1#:::#Lq)#(#
r
1S

2 � S1):

where Mi are prime and Ki; Li are irreducible. �1(Li) <
1; �1(Ki) =1 and K(�; 1):

(b) Moreover
Li = �i=Gi

is a �nite quotient of a homotopy 3-sphere.

M �= (K1#:::#Kp)#(�1=G1#:::#�q=Gq)#(#
r
1S

2 � S1):
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2. Cutting along the incompressible tori (Torus Decomposition) :

(a) (Jaco-Shalen, 1979; Johannson, 1979)M is closed, orientable,
irreducible

9fT 2i g( if any) : �nite disjoint incompressible tori

such that

Mn [ T 2i = Seifert �ber space or torus-irreducible.

� Geometrization Conjecture:

1. Thurston; Topology : Every closed irreducible 3-manifold
has either geometric structure or its simple pieces have geomet-
ric structure. More precisely, there is a �nite collection of dis-
joint, embedded 2-spheres and incompressible 2-tori such that af-
ter cutting M3 along these surfaces and capping the boundary
2-spheres by 3-balls, the interior of each component of the result-
ing 3-manifold admits a complete locally homogeneous metric.

2. Structure of Three Dimensional Manifolds

M �= (K1#:::#Kp)#(�1=G1#:::#�q=Gq)#(#
r
1S

2 � S1):

(a) The Poincare Conjecture (�1=G1#:::#�q=Gq) ::three dimen-
sional space where every closed loop can be shrunk to a point;
the space is conjecture to be the three-sphere. If M is a
homotopic 3-sphere, then it is di¤eomorphic to the sphere
S 3.Equivalently, if M is closed simply-connected, then M=S3.

(b) The space-form problem .
(c) Seifert spaces and their quotients.
(d) Hyperbolic Conjecture (K1#:::#Kp).

� The Flow method :

1. Riemannian geometry aspects: Existence of a " best possible "
metric on closed 3-manifolds. Generically, one must allow the
optimal metric to have degenerate region. Then the topology
decomposition suggests that " The degeneration should be via
the pinching o¤ 2-spheres (sphere decomposition) and collapse of
graph manifolds along the circles and tori (torus decomposition)
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2. Hamilton Ricci �ow : A solution (M3; g (t)) ; t 2 [0; T ) to the
Ricci Flow (RF)

@

@t
g = �2Rc:

3. Hamilton and Perelman : Every closed irreducible 3-manifold has
either geometric structure or it splits along disjoint incompressible
tori as

(S3=G1#:::#S
3=Gq)#(Mthick [Mthin),

whereMthick is a disjoint union of hyperbolic manifolds, andMthinis
a graph manifold, a manifold obtained by gluing along boundary
tori of geometric 3-manifolds which are not modeled on H3:

�

1.2 Geometrization problem of contact 3-manifolds

� Overview :

1. The CR analogue of Thurston�s geometrization conjecture on con-
tact 3-manifolds.

2. Classify tight contact structures on all closed irreducible 3-manifolds.

(a) Do all hyperbolic manifolds admit a tight contact structure ?
(b) Which Seifert �bred spaces admit a tight contact structure ?
(c) Do all rational homology spheres admit a tight contact struc-

ture ?

3. A tight contact structure$ geometry of the underlying 3-manifold

� Overtwisted or Tight Contact Struction for a contact 3-manifold :

1. The characteristic foliation �� of � in M : For a generic surface
� �M , the intersection �\T� is a line �eld except at �nite many
points where � \ T� = � = T�: Consider the integral curve for
the intersection � \ T�; we get a characteristic foliation �� of �
with singularities.

2. An embedded disk D2 �M is called an overtwisted disk for � ,
TD2 = � along @D2 , D� contains a closed circle leaf.
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3. � is overtwisted contact structure if M contains an overtwisted
disk. Otherwise is called tight contact structure.

� Existence

1. Contact Topology on 3-manifolds :

(a) There is a contact sphere decomposition (1929, 1962).
(b) Is there a contact JSJ(Jaco-Shalen-Johannson, 1979) decom-

position?

Mn [ T2i=Seifert �ber space or torus-irreducible.

(c) Eliashberg, Giroux, Honda, Lisca, Gompf; Contact structure
: Existence and classify tight contact structures on all closed
irreducible 3-manifolds.

tight % symplectic �llable % Stein �llable

and
tight % embedded CR structure:

(d) ( Kamishima and Tsuboi, 1991) : IfM admits a CR structure
with vanishing torsion, then it is a Seifert manifold. Classi-
�ed a spherical CR structure with vanishing torsion.

(e) (Chang-Chiu-Wu, 2009) : spherical CR structure with pos-
itive Webster scalar curvature and vanishing torsion =) 9
constant Tanaka-Webster curvature and vanishing torsion.

(f) (Lisca, 2007) M : closed oriented Serfert �ber 3-manifold.
Then either M is orientation-preserving di¤eomorphism to
Mn for some n � 1 or M carries a positive tight contact
structure

i. S3r (Tp;q) : oriented 3-manifold obtained by performing ra-
tional r-surgery along torus knot Tp;q � S3 . By Kirby
calculus :

S3p2n�pn�1(Tp;pn+1) =M(�
1

p
;

n

pn+ 1
;

1

p(n+ 1) + 1
)

ii. Mn : p = 2; r = 2n� 1;M1 =M(�1
2
; 1
3
; 1
5
):
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iii. Method : Heegaard Floer theory and contact Ozsváth-
Szabó invariant

(g) 
 � S3

M = 
=�
) CR spherical
) symplectic �llable (ounds the symplectic orbifold CH2=�)
) tight

� Classi�cation

1. (Eliashberg): Any tight contact structure on S3 is isotopic to the
standard one

2. Any di¤eomorphism of S3 can extend to a di¤eomorphism of 4-ball
D4 by holomorphic �llable

3. S3; R3; S1 � S2

4. (Giroux) Any tight contact structure on T 3 is contactomorphism
to one of

�n = ker(cos(n�1)d�2 + sin(n�1)d�3)

5. (Giroux, Honda): S1�D2; T 2� [0; 1]; L(p; q) and T 2-bundle over
S1

6. (Honda) : S1-bundle over closed surfaces

�

2 Pseudohermitian 3-manifold

� Let M be a closed 3-manifold with an oriented contact structure �.
There always exists a global contact form �, obtained by patching to-
gether local ones with a partition of unity. The characteristic vector
�eld of � is the unique vector �eld T such that �(T ) = 1 and LT � = 0
or d�(T; �) = 0. A CR-structure compatible with � is a smooth endo-
morphism J : � ! � such that J2 = �identity. A pseudohermitian
structure compatible with � is a CR-structure J compatible with �
together with a global contact form �.
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� Given a pseudohermitian structure (J; �), we can choose a complex
vector �eld Z1, an eigenvector of J with eigenvalue i, and a complex
1-form �1 such that f�; �1; ��1g is dual to fT; Z1; Z�1g. It follows that
d� = ih1�1�

1 ^ ��1 for some nonzero real function h1�1. If h1�1 is positive,
we call such a pseudohermitian structure (J; �) positive, and we can
choose a Z1 (hence �

1) such that h1�1 = 1. That is to say

d� = i�1^��1:

� We�ll always assume our pseudohermitian structure (J; �) is positive
and h1�1 = 1 throughout the paper. The pseudohermitian connection
of (J; �) is the connection r :h: on TM
C (and extended to tensors)
given by

r :h:Z1 = !1
1
Z1;r :h:Z�1 = !�1

�1
Z�1;r :h:T = 0

in which the 1-form !1
1 is uniquely determined by the following equation

with a normalization condition:

d�1 = �1^!11 + A1�1�^�
�1 (1)

!1
1 + !�1

�1 = 0:

The coe¢ cient A1�1 is called the (pseudohermitian) torsion. Since h1�1 =
1, A�1�1 = h1�1A

1
�1 = A1�1. And A11 is just the complex conjugate of A�1�1.

Di¤erentiating !11 gives

d!1
1 = W�1^��1 + 2iIm(A11;�1�1^�)

where W is the Tanaka-Webster curvature.

� We can de�ne the covariant di¤erentiations with respect to the pseudo-
hermitian connection. For instance, f;1 = Z1f , f1�1 = Z�1Z1f�!11(Z�1)Z1f
for a (smooth) function f . We de�ne the subgradient operator rb and
the sublaplacian operator �b by
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rbf = f;�1Z1 + f;1Z�1;

�bf = f;1�1 + f;�11;

respectively. Moreover we �rst de�ne the Levi metric h on ker � by

h(X;Y ) = d�(X; JY ):

3 CR Geometric Evolution Equations

� References :
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4. ( with J.-H. Cheng and C.-T. Wu ) The Cartan Flow in a Closed
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3.1 The Cartan Flow

� Existence of a spherical CR structure :

1. De�nition : We call a CR structure J spherical if Cartan curva-
ture tensor Q11 vanishes identically. Here

Q11 =
1

6
W11 +

i

2
WA11 � A11;0 �

2i

3
A
11;

_
11
:
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Note that (M;J; �) is called a spherical pseudohermitian 3-manifold
if J is a spherical structure. We observe that the spherical struc-
ture is CR invariant.

2. A closed spherical pseudohermitian 3-manifold (M;J; �) is locally
CR equivalent to the standard pseudohermitian 3-sphere (S3; bJ;b�):

3. The Cartan �ow :
@J

@t
= 2QJ : (2)

(a) i. Problem : Existence of spherical CR structure if A11 = 0?:
ii. Problem : All hyperbolic manifolds admit a spherical CR
structure?

(a) Chang-Cheng-Wu : The long-time existence and asymptotic
convergence problrm.

(b) Conjecture : A closed spherical CR 3-manifold with positive
Tanaka-Webster curvature is CR equivalent to

(S3=G1#:::#S
3=Gq)#(#

r
1S

2 � S1):

(c) In case of a closed Riemannian 3-manifold with positive scalar
curvature. As a consequence of Perelman�s result on Ricci
�ow, M is isomorphic to

(S3=G1#:::#S
3=Gq)#(#

r
1S

2 � S1):

3.2 The CR Yamabe Flow

� Classi�cation of a closed spherical CR 3-manifold with positive Tanaka-
Webster curvature :

1. Given a contact 3-manifold (M;J; �); we de�ne the Webster met-
ric g� = d�+�

�2�2.W : the Tanaka-Webster curvature. R : scalar
curvature of g� :

R� = 4W � 2�2 jA�1�1j2 � 2��2

and if the pseudohermitian torsion A11 is vanishing, then

�
R�ij
�
=

0@2W � 2��2 0 0
0 2W � 2��2 0
0 0 2��2

1A :
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2. The CR Yamabe Flow :

(a) i. A11 = 0; then W > 0 =) R�ij > 0 for some �. Then in
case of normalize Ricc �ow (NRF) if g (0) has positive
Ricci curvature, then the NRF has a solution for a long
time and the solution converges to a constant curvature
metric. In particular,M has geometric structure. That is

M = (S3=G1#:::#S
3=Gq):

ii. (Chang-Chiu-Wu, 2009) : spherical CRstructure with positive Webster scalar curvature
and vanishing torsion =) 9 constant Tanaka-Webster
curvature and vanishing torsion.(W = C > 0 and jA�1�1j2 =
0: It is spherical).

@t�(t) = �2(W � r)�(t):

iii. Conjecture : A closed spherical CR 3-manifold with pos-
itive Tanaka-Webster curvature is CR equivalent to

(S3=G1#:::#S
3=Gq)#(#

r
1S

2 � S1)?

iv. Problem : the formation of singularity in a closed spherical
CR 3-manifold with positive Tanaka-Webster curvature :
Problem : Spherical and W > 0 : The CR Yamabe �ow
(Yes : Riemannian Yamabe �ow, Ye).

v. Harnack-type estimates for the CR Yamabe �ow in a
closed spherical CR 3-manifoldwith positive Webster scalar curvatur
and vanishing torsion : Chang-Cheng (2002), Chang-Chiu-
Wu (2009).

vi. Hamilton-Perelman program :

3.3 The Torsion Flow

� 1. (a) The CR Einstein-Hilbert Action

d

dt

Z
M

WJ;��^d� = �2
Z
M

jA�1�1j2 �^d� � 2
Z
M

(W �cW )2�^d�
The negative gradient �ow :�

@tJ(t) = �2JAJ;�
@t�(t) = �2(W �cW )�(t):
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(b) The torsion �ow :

i. If W > jA�1�1j2 � 0; then R� is positive for some �. As a
consequence of Perelman�s result

M = (S3=G1#:::#S
3=Gq)#(#

r
1S

2 � S1):

Problem : (M;J; �) with positive Tanaka-Webster curva-
ture and

W > jA�1�1j2 � 0:
Is the torsion �ow

@tJ(t) = 2JAJ;�;

converges to a CR structure with vanishing torsion?
ii. The coupled torsion �ow : The CR analogue of the coupled
Ricci �ow�

@tJ(t) = 2E ; @t�(t) = �2�(t)�(t)
@t'(t) = �2�b'+ jrb'j2 �W

:

(c) The torsion �ow for the geometrization problem of contact
3-manifold :

i. We proposed to deform any �xed CR structure under the
torsion �ow on a three dimensional space which shall
break up the space eventually. It should lead to the con-
tact topological decomposition according to (???). The
asymptoic state (singularity formation) of the torsion �ow
is expected to be broken up into pieces which will either
collapse or produce metrics which satisfy the spherical CR
structure with vanishing torsion. However, the deforma-
tion will encounter singularities. The major question is to
�nd a way to describe all possible singularities.
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