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1 Geometrization problem of contact 3-manifolds

1.1 Geometrization problem of 3-manifolds via Hamil-
ton Ricci flow

e Decomposition of 3-manifolds: Assume that M is closed and orientable.

1. Cutting along Spheres (The Sphere Decomposition) : Connected
sum decomposition of M into prime pieces.

(a) (Kneser, 1929; Milnor, 1962) Every M has a prime decompo-
sition

M 22 M4t 4 M,

and

M = (i b B (Lafe L) #(#1S7 x 5.

where M, are prime and K;, L; are irreducible. m(L;) <
00, m1(K;) = oo and K(m,1).
(b) Moreover
L; = %;/G;

is a finite quotient of a homotopy 3-sphere.

M = (K # K # (50 G #5, /G )#(#15° x §Y).



2. Clutting along the incompressible tori (Torus Decomposition) :

(a) (Jaco-Shalen, 1979; Johannson, 1979) M is closed, orientable,
irreducible

3{T?}( if any) : finite disjoint incompressible tori
such that

M\ U T} = Seifert fiber space or torus-irreducible.

e Geometrization Conjecture:

1.

Thurston; Topology : Every closed irreducible 3-manifold
has either geometric structure or its simple pieces have geomet-
ric structure. More precisely, there is a finite collection of dis-
joint, embedded 2-spheres and incompressible 2-tori such that af-
ter cutting M?3 along these surfaces and capping the boundary
2-spheres by 3-balls, the interior of each component of the result-
ing 3-manifold admits a complete locally homogeneous metric.

Structure of Three Dimensional Manifolds

M= (Kl#---#Kp)#(xl/Gl#---#Zq/Gq)#(#qSQ X Sl)-

(a) The Poincare Conjecture (X1/G1#...#%,/G,) ::three dimen-
sional space where every closed loop can be shrunk to a point;
the space is conjecture to be the three-sphere. If M is a
homotopic 3-sphere, then it is diffeomorphic to the sphere
5% Equivalently, if M is closed simply-connected, then M=S®.

(b) The space-form problem .

(c) Seifert spaces and their quotients.

(d) Hyperbolic Conjecture (K;#...#K,).

o The Flow method :

1.

Riemannian geometry aspects: Existence of a " best possible "

metric on closed 3-manifolds. Generically, one must allow the
optimal metric to have degenerate region. Then the topology
decomposition suggests that " The degeneration should be via
the pinching off 2-spheres (sphere decomposition) and collapse of
graph manifolds along the circles and tori (torus decomposition)
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2. Hamilton Ricci flow : A solution (M3,g(t)), t € [0,T) to the
Ricci Flow (RF)

0
—qg = —2Rec.
8tg Re

3. Hamilton and Perelman : Every closed irreducible 3-manifold has
either geometric structure or it splits along disjoint incompressible
tori as

(Sg/Gl#-'-#Sg/Gq>#<Mthic/c U Mthin);

where M;p;. is a disjoint union of hyperbolic manifolds, and M;;,is
a graph manifold, a manifold obtained by gluing along boundary
tori of geometric 3-manifolds which are not modeled on H?3.

1.2 Geometrization problem of contact 3-manifolds

e Overview :

1. The CR analogue of Thurston’s geometrization conjecture on con-
tact 3-manifolds.

2. Classify tight contact structures on all closed irreducible 3-manifolds.

(a) Do all hyperbolic manifolds admit a tight contact structure ?

(b) Which Seifert fibred spaces admit a tight contact structure ?

(¢) Do all rational homology spheres admit a tight contact struc-
ture ?

3. A tight contact structure «<» geometry of the underlying 3-manifold
e Overtwisted or Tight Contact Struction for a contact 3-manifold :

1. The characteristic foliation X of ¥ in M : For a generic surface
3} C M, the intersection {NT'Y is a line field except at finite many
points where ¢ N TY = £ = TX. Consider the integral curve for
the intersection £ N 1%, we get a characteristic foliation ¥, of X
with singularities.

2. An embedded disk D?* C M is called an overtwisted disk for £ <
TD? = ¢ along dD? < D; contains a closed circle leaf.
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3. £ is overtwisted contact structure if M contains an overtwisted
disk. Otherwise is called tight contact structure.

e Existence

1. Contact Topology on 3-manifolds :

(a)
(b)

There is a contact sphere decomposition (1929, 1962).

Is there a contact JSJ(Jaco-Shalen-Johannson, 1979) decom-
position?

M\ U T?:Seifert fiber space or torus-irreducible.

Eliashberg, Giroux, Honda, Lisca, Gompf; Contact structure
: Existence and classify tight contact structures on all closed
irreducible 3-manifolds.

tight 2 symplectic fillable 2 Stein fillable

and
tight 2 embedded CR structure.

( Kamishima and Tsuboi, 1991) : If M admits a CR structure
with vanishing torsion, then it is a Seifert manifold. Classi-
fied a spherical CR structure with vanishing torsion.

(Chang-Chiu-Wu, 2009) : spherical CR structure with pos-
itive Webster scalar curvature and vanishing torsion —> 3
constant Tanaka-Webster curvature and vanishing torsion.

(Lisca, 2007) M : closed oriented Serfert fiber 3-manifold.
Then either M is orientation-preserving diffeomorphism to
M, for some n > 1 or M carries a positive tight contact
structure

i. S3(T,,) : oriented 3-manifold obtained by performing ra-
tional r-surgery along torus knot 7,, C S . By Kirby
calculus :

1 n 1

53 T, 0 =M - ;
penpn1(Tppni1) ( p pon+1" pn+1)+1

)
. M, : p:2,T:2n—1,M1:M(—%,§,%)'
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iii. Method : Heegaard Floer theory and contact Ozsvath-
Szabé invariant

(g) QcCs?

M =Q/T

= CR spherical

= symplectic fillable (ounds the symplectic orbifold C H?/T")
= tight

e (lassification

1. (Eliashberg): Any tight contact structure on S® is isotopic to the
standard one

2. Any diffeomorphism of S? can extend to a diffeomorphism of 4-ball
D* by holomorphic fillable

3. 5% R? St x 52
4. (Giroux) Any tight contact structure on 7% is contactomorphism

to one of
¢, = ker(cos(nfy)dfs + sin(nb;)dbs)

5. (Giroux, Honda): S* x D% T? x [0, 1], L(p,q) and T*-bundle over
Sl

6. (Honda) : S'-bundle over closed surfaces

2 Pseudohermitian 3-manifold

e Let M be a closed 3-manifold with an oriented contact structure &.
There always exists a global contact form #, obtained by patching to-
gether local ones with a partition of unity. The characteristic vector
field of 6 is the unique vector field T such that (7)) = 1 and L0 =0
or df(T,-) = 0. A CR-structure compatible with £ is a smooth endo-
morphism J : £ — £ such that J? = —identity. A pseudohermitian
structure compatible with ¢ is a C'R-structure J compatible with &
together with a global contact form 6.



e Given a pseudohermitian structure (J,6), we can choose a complex
vector field Z;, an eigenvector of J with eigenvalue 7, and a complex
I-form ' such that {0,60',0'} is dual to {T,Z;, Z1}. It follows that
df = ihy710* A 6" for some nonzero real function hyz. If hy1 is positive,
we call such a pseudohermitian structure (J,6) positive, and we can
choose a Z; (hence #') such that h;; = 1. That is to say

do = i0* N0 .

e We'll always assume our pseudohermitian structure (J,6) is positive
and h;; = 1 throughout the paper. The pseudohermitian connection
of (J,0) is the connection V¥" on TM®C' (and extended to tensors)

given by

VU7 = wi'®2y, VI 2y = wi'®Z;, VT = 0

in which the 1-form w;! is uniquely determined by the following equation

with a normalization condition:

do* = 0*Awit + AONG (1)
wll + CU1I = U.
The coefficient A'; is called the (pseudohermitian) torsion. Since hy; =

1, A;1 = hgAly = Ay, And Ay is just the complex conjugate of Aji.
Differentiating w;! gives

duwrt = WO NG + 2iIm(Ay; 10" N)

where W is the Tanaka-Webster curvature.

e We can define the covariant differentiations with respect to the pseudo-
hermitian connection. For instance, f1 = Z1f, fi1 = ZiZ1f—w1'(Z1) 21 f
for a (smooth) function f. We define the subgradient operator V, and
the sublaplacian operator A; by



Viof = f121 + fa1Z3,
Ayf = fa1+ f11,

respectively. Moreover we first define the Levi metric h on ker 6 by

hX,Y) =di(X,JY).

3 CR Geometric Evolution Equations

e References :

1. .

(with J.-H. Cheng) The Harnack Estimate for the Yamabe Flow
on C'R Manifolds of Dimension 3, Annals of Global Analysis and
Geometry Vol. 21, No. 2 (2002), 111-121.

( with H.-L. Chiu and C.-T. Wu ) The Li-Yau-Hamilton inequality
for Yamabe flow on a closed CR 3-manifold, Transactions of AMS,
Vol 362 (2010), 1681-1698.

( with C.-Q. Hu and C.-T. Wu) Li-Yau-Hamilton Inequality for
Yamabe Flow on CR 3-Manifolds with Tanaka-Webster Curvature
of Change Sign, submitted, 2009.

( with J.-H. Cheng and C.-T. Wu ) The Cartan Flow in a Closed
Pseudohermitian 3-Manifold with Vanishing Torsion, in prepara-
tion.

( with J.-H. Cheng and C.-T. Wu) The Entropy Formulas and its
Monotonicity Properties under Coupled Torsion Flow in a Closed
Pseudohermitian 3-Manifold, in preparation.

3.1 The Cartan Flow

e Existence of a spherical CR structure :

1. Definition : We call a CR structure J spherical if Cartan curva-

ture tensor ()q; vanishes identically. Here
1

1 21
Qu = 6W11 + §WA11 — Ay — gA

11,11°
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Note that (M, J, 0) is called a spherical pseudohermitian 3-manifold
if J is a spherical structure. We observe that the spherical struc-
ture is CR invariant.

2. A closed spherical pseudohermitian 3-manifold (M, J, 0) is locally
CR equivalent to the standard pseudohermitian 3-sphere (53, J (9)

3. The Cartan flow :

8J —QQJ @)

(a) 1. Problem : Existence of spherical CR structure if A;; = 07.

ii. Problem : All hyperbolic manifolds admit a spherical CR
structure?

(a) Chang-Cheng-Wu : The long-time existence and asymptotic
convergence problrm.

(b) Congjecture : A closed spherical CR 3-manifold with positive
Tanaka-Webster curvature is CR equivalent to

(S3 /Gt #5% |Gy #(#15% x 1),

(c) In case of a closed Riemannian 3-manifold with positive scalar
curvature. As a consequence of Perelman’s result on Ricci
flow, M is isomorphic to

(S?)G#...#5% /G )#(#,5% x SY).

3.2 The CR Yamabe Flow

e (lassification of a closed spherical CR 3-manifold with positive Tanaka-
Webster curvature :

1. Given a contact 3-manifold (M, J,0), we define the Webster met-
ric gx = df+X\"20%. W : the Tanaka-Webster curvature. R : scalar
curvature of g, :

R = AW — 2X\% |Ag1|* — 2172

and if the pseudohermitian torsion A;; is vanishing, then

oW — 2\ 2 0 0
(R}) = 0 2W —2)7 0
0 0 2\ 2



2. The CR Yamabe Flow :

(a) i

il.

iil.

iv.

vi.

Ay =0, then W > 0 = Rf‘j > 0 for some A. Then in
case of normalize Ricc flow (NRF) if g (0) has positive
Ricci curvature, then the NRF has a solution for a long
time and the solution converges to a constant curvature
metric. In particular, M has geometric structure. That is

M = (S?/G1#..#5%/G,).

(Chang-Chiu-Wu, 2009) : spherical CRstructure with positive Webster scalar c:
and vanishing torsion =—> 3 constant Tanaka-Webster

curvature and vanishing torsion.(W = C' > 0 and |Agi|” =

0. It is spherical).

8t0(t) = —2(W — T)@(t).

Conjecture : A closed spherical CR 3-manifold with pos-
itive Tanaka-Webster curvature is CR equivalent to

(S3 /G 453 /G ) (752 x S)?

Problem : the formation of singularity in a closed spherical
CR 3-manifold with positive Tanaka-Webster curvature :

Problem : Spherical and W > 0 : The CR Yamabe flow

(Yes : Riemannian Yamabe flow, Ye).

Harnack-type estimates for the CR Yamabe flow in a

closed spherical CR 3-manifold with positive Webster scalar curvatur
and vanishing torsion : Chang-Cheng (2002), Chang-Chiu-

Wu (2009).

Hamilton-Perelman program :

3.3 The Torsion Flow
e 1. (a) The CR Einstein-Hilbert Action

i/ W60Nd0 = —2/ | Azz|* OAdH — 2/ (W — W)20Ad0
dt M M M

The negative gradient flow :

{ atj(t) - —QJAJﬁ e



(b) The torsion flow :

i.

ii.

If W > |Asz|* > 0, then R is positive for some A. As a
consequence of Perelman’s result

M = (S%/Gi#..#S% |G ) #(F#,.9% x Sh).

Problem : (M, J,0) with positive Tanaka-Webster curva-
ture and
W > ‘Aii’Q > 0.

Is the torsion flow
(9tJ(t) == ZJAJ’Q,

converges to a CR structure with vanishing torsion?

The coupled torsion flow : The CR analogue of the coupled
Ricci flow

{ 8tJ(t) =2F ; 6t9(t) = —2,&(15)9(,5)
Orp(t) = —20pp + V" =W

(c) The torsion flow for the geometrization problem of contact
3-manifold :

i.

We proposed to deform any fixed CR structure under the
torsion flow on a three dimensional space which shall
break up the space eventually. It should lead to the con-
tact topological decomposition according to (¢97). The
asymptoic state (singularity formation) of the torsion flow
is expected to be broken up into pieces which will either
collapse or produce metrics which satisfy the spherical CR
structure with vanishing torsion. However, the deforma-
tion will encounter singularities. The major question is to
find a way to describe all possible singularities.
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