EXTERNAL DIRECT SUM AND INTERNAL DIRECT SUM OF VECTOR SPACES

1. Direct Sum of Vector Spaces

Let V and W be vector spaces over a field F. On the cartesian product

$$
V \times W=\{(v, w): v \in V, w \in W\}
$$

of V and W, we define the addition and the scalar multiplication of elements as follows. Let (v, w) and $\left(v_{1}, w_{1}\right)$ and $\left(v_{2}, w_{2}\right)$ be elements of $V \times W$ and $a \in F$. We define

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right), \quad a \cdot(v, w)=(a v, a w)
$$

Lemma 1.1. $(V \times W,+, \cdot)$ forms a vector space over F and is denoted by $V \oplus_{e} W$.
Proof. This is left to the reader as an exercise.
Definition 1.1. The vector space $V \oplus_{e} W$ over F defined above is called the external direct sum of V and W.

Let Z be a vector space over F and X and Y be vector subspaces of Z. Suppose that X and Y satisfy the following properties:
(1) for each $z \in Z$, there exist $x \in X$ and $y \in Y$ such that $z=x+y$;
(2) $X \cap Y=\{0\}$.

In this case, we write $Z=X \oplus_{i} Y$ and say that Z is the internal direct sum of vector subspaces X and Y.

Theorem 1.1. Let X and Y be vector subspaces of a vector space Z over F such that Z is the internal direct sum of X and Y, i.e. $Z=X \oplus_{i} Y$. Then there is a linear isomorphism from Z onto $X \oplus_{e} Y$, i.e. $X \oplus_{i} Y$ is isomorphic to $X \oplus_{e} Y$.

Proof. Define $f: X \oplus_{e} Y \rightarrow Z$ by $f(x, y)=x+y$. Then f is a linear map. (Readers need to check). Since Z is the internal direct sum of X and Y, for any $z \in Z$, there exist $x \in X$ and $y \in Y$ such that $z=x+y$. Hence $f(x, y)=z$. This proves that f is surjective. To show that f is injective, we check that $\operatorname{ker} f=\{(0,0)\}$. Let $(x, y) \in \operatorname{ker} f$. Then $f(x, y)=x+y=0$. We see that $x=-y$ in Z. Therefore $x=-y \in X \cap Y=\{0\}$ (Z is the internal direct sum of X and Y.) We find $x=y=0$. Hence $(x, y)=(0,0)$. We conclude that $f: X \oplus_{e} Y \rightarrow Z$ is a linear isomorphism.

Since $X \oplus_{i} Y$ is isomorphic to $X \oplus_{e} Y$, if $X \cap Y=\{0\}$, we do not distinguish $X \oplus_{i} Y$ and $X \oplus_{e} Y$ when $X \cap Y=\{0\}$ and X, Y are vector subspaces of Z. We use the notation $X \oplus Y$ for both of them when $X \cap Y=\{0\}$. We call $X \oplus Y$ the direct sum of X and Y for simplicity.

