Chapter 2

Conditional Expectation

Please see Hull’ sbook (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomia model: The initial stock price during the
period under study is denoted 5. At each time step, the stock price either goes up by a factor of «
or down by afactor of d. It will be useful to visualize tossing a coin at each time step, and say that

e the stock price moves up by a factor of « if the coin comes out heads (H), and

e down by afactor of 4 if it comes out tails (7).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

Q={HHH HHT,HTH HTT,THH,THH, THT, TTH, TTT}.

A typical sequence of © will be denoted w, and w ;. will denote the kth element in the sequence w.
We write Sy (w) to denote the stock price at “time” k (i.e. after k tosses) under the outcome w. Note
that Sy (w) dependsonly onwi,ws, ... ,wk. Thusin the 3-coin-toss example we write for instance,

S (w) 2 Si(w1, wa, ws) 2 Si(w1),

SZ(CJ) é 52(w17w21w3) é SZ(W17£J2).

Each S;, is arandom variable defined on the set 2. More precisely, let 7 = P (). Then F isa
o-algebraand (€2, F) isameasurable space. Each Sy is an F-measurable function Q— IR, that is,
Szt isafunction B—F where B isthe Borel o-algebraon R. We will see later that .S, isin fact
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Figure 2.1: A three coin period binomial model.

measurable under asub-o-algebraof F. Recall that the Borel o-algebra 5 isthe o-al gebra generated
by the open intervals of R. In this course we will always deal with subsets of R that belong to 5.

For any random variable X defined on a sample space 2 and any y < IR, we will use the notation:
(X <y} = {we %X () <y}

Thesets { X < y},{X > y}, {X = y}, etc, are defined similarly. Similarly for any subset B of IR,
we define A
{X eB}={weQX(w) € B}

Assumption 2.1 « > d > 0.

2.2 Information

Definition 2.1 (Sets determined by the first & tosses.) We say that aset A C Q is determined by
thefirst £ coin tossesif, knowing only the outcome of thefirst & tosses, we can decide whether the
outcome of all tossesisin A. In general we denote the collection of sets determined by the first &
tosseshy F . Itiseasy to check that 7, isac-agebra

Note that the random variable Sy, is F-measurable, foreach k = 1,2, ..., n.

Example 2.1 Inthe 3 coin-toss example, the collection 7 of sets determined by the first toss consists of:
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1 Ay 2 {HHH HHT,HTH,HITY},
2. Ay S {THH,THT.TTH,TTT},
3. ¢,

4. Q.

The collection F - of sets determined by the first two tosses consists of:

Apg B{HHH HHTY,

Agr 2 {HTH, HTTY},

Apg 2 {THH, THTY,

Apr 2 {TTH, TTTY,

The complements of the above sets,

Any union of the above sets (including the complements),
¢ and Q.

No o~ 0w NP

Definition 2.2 (Information carried by a random variable.) Let X be arandom variable Q— IR.
We say that aset A C Q2 is determined by the random variable X if, knowing only the value X (w)
of the random variable, we can decide whether or not w € A. Another way of saying thisisthat for
every y € IR, either X~1(y) C A or X~!(y) N A = ¢. The collection of susbets of 2 determined
by X isao-algebra, which we call the o-algebra generated by X', and denote by o (X).

If the random variable X takesfinitely many different values, then o (X') isgenerated by the collec-
tion of sets
(XX (@)|w € Q)

these sets are called the atoms of the o-algebra o (.X).
In general, if X isarandom variable Q— IR, then o (X') isgiven by

o(X)={X"Y(B); B¢ B}.
Example 2.2 (Sets determined by S») The o-algebra generated by S- consists of the following sets:

Agg ={HHH HHT} = {w € Q; S3(w) = u2S5; 1,
Apr = {TTH, TTT} = {52 = d*Sp},

Apgr UApg = {5 = udSp},

Complements of the above sets,

Any union of the above sets,

¢ = {52(w) € ¢},

Q={S:(w) € R}.

No o~ wbdPE
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample space 2. Let us define

e p € (0,1)isthe probability of H,

o g = (1 — p) isthe probability of 7T,

e the coin tosses are independent, so that, e.g., IP(H HT') = p?q, €tc.
o P(A) 2, P(w), VA C Q.

Definition 2.3 (Expectation.)

EXZ2 Y X(w)Pw).

wefd
If AC Qthen
A )1 ifweA
IA(“)—{ 0 ifwgA
and

E(I4X) = /AXdP = Y X(w)P(w).
WeA

We can think of IF/(14.X) asapartial averageof X over theset A.

2.3.1 Anexample

Let us estimate Sy, given S;. Denote the estimate by £(51]52). From elementary probability,
IF(S,]S2) isarandom variable Y whose value at w is defined by

Y(w) = E(5]52 = y),
wherey = Sz (w). Properties of IF(S,|S2):
e [F/(S51]S2) shoulddependonw, i.e., itisarandomvariable.
e If thevalue of .S; isknown, then the value of I2(.51].S2) should also be known. In particular,

- Ifwo=HHHorw = HHT,then S;(w) = u*So. If weknow that S(w) = u*Sy, then
even without knowing w, we know that S (w) = uSy. We define

- Ifw=TTT orw=TTH, then Sy(w) = d*Sy. If we know that S3(w) = d?Ss, then
even without knowing w, we know that S (w) = d.Sy. We define

IE2(S1]S2) (TTT) = IE(S1|S2)(TTH) = dS,.
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~Wfwe A= {HTH,HTT,THH,THT},then Sy(w) = udSop. If we know Sy(w) =
ud Sy, then we do not know whether S; = u.Sp or S; = dSy. We then take aweighted
average:
P(A) = p*q+ pq* +p*q+ pg* = 2pq.

Furthermore,
/A SudlP = p*quSo+ pqPuSe + p2qdSo + po?dSy
pa(u+ )5,

For w € A we define

_ fySdiP

Then
/E(Sl|52)d]P:/ SydIP.
A A

In conclusion, we can write
E(51]52)(w) = g(S2(w)),

where
S if 2 =S5y
g(z) = %(u +d)Sy ifz =wudS,
dSO if x = d250

In other words, IF(51].S2) israndom only through dependence on .S;. We also write
E(5:1]52 = z) = g(2),

where ¢ isthe function defined above.
Therandom variable IE'(,51|S2) has two fundamental properties:

o [F(S54]S2) iso(S2)-measurable.

e Forevery set A € o(S2),
/E(51|52)d1p - /SldP.
A A

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let (2, F, IP) beaprobability space, and let G beasub-o-algebraof 7. Let X bearandom variable
on (2, F, IP). Then I (X'|G) isdefined to be any random variable Y that satisfies:

() Y isG-measurable,



54

(b) For every set A € G, we have the“ partial averaging property”

/ YdP = / XdP,
A A

Existence. There is aways a random variable Y satisfying the above properties (provided that
IF|X| < 00), i.e., conditional expectations always exist.

Uniqueness. There can be more than one random variable Y satisfying the above properties, but if
Y’ isanother one, then Y = Y’ amost surely, i.e., IP{w € ;Y (w) = Y'(w)} = 1.

Notation 2.1 For random variables X, Y, it is standard notation to write
VAN
FE(X|Y)=FE(X|oY)).
Here are some useful ways to think about 12 ( X |G):

e A random experiment is performed, i.e., an element w of € is selected. The value of w is
partially but not fully revealed to us, and thus we cannot compute the exact value of X (w).
Based on what we know about w, we compute an estimate of X (w). Because this estimate
depends on the partial information we have about w, it dependson w, i.e., IE[X|Y](w) isa
function of w, athough the dependence on w is often not shown explicitly.

e If thes-algebra G containsfinitely many sets, therewill bea“smallest” set A in G containing
w, whichistheintersection of al setsin G containingw. Theway w ispartially revealed to us
isthat wearetolditisin A, but not told which element of A itis. We then define IE[ X |Y](w)
to be the average (with respect to IP) value of X over thisset A. Thus, for all w inthisset A,
IETX|Y](w) will be the same.

2.3.3 Further discussion of Partial Averaging
The partia averaging property is
/AE(X\g)dP: /AXdJP,VA €g. 3.1)
We can rewritethisas
F14.E(X|G)] = E[14.X]. (3.2
Notethat / 4 isaG-measurable random variable. In fact the following holds:

Lemma 3.10 If V isany G-measurable randomvariable, then provided IE|V.IE (X |G)| < oo,

E[V.E(X|0)] = E[V.X]. (3.3)
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Proof: To seethis, first use (3.2) and linearity of expectations to prove (3.3) when V' isasimple
G-measurable random variable, i.e., V isof theform V = 3>"}_, ¢x 14, , whereeach A;, isin G and
each ¢, is constant. Next consider the case that V' is a nonnegative G-measurable random variable,
but is not necessarily simple. Such a V' can be written as the limit of an increasing sequence
of simple random variables V,,; we write (3.3) for each V,, and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3) for V. Finadly, the general G-
measurable random variable V' can be written asthe difference of two nonnegative random-variables
V =Vt -V~ andsince (3.3) holdsfor V*+ and V'~ it must hold for V' as well. Williams calls
this argument the “ standard machine” (p. 56). [ |

Based on thislemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For every G-measurable random-variable V', we have

E[V.IE(X|0)] = E[V.X]. (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

@ E(E(X]G) = E(X).
Proof: Just take A inthe partial averaging property to be €2.

The conditional expectation of X isthusan unbiased estimator of the random variable X'.
(b) If X isG-measurable, then
F(X|G) = X.
Proof: The partial averaging property holdstrivially when Y isreplaced by X. And since X
isG-measurable, X satisfiesthe requirement (&) of a conditional expectation as well.
If the information content of G is sufficient to determine X, then the best estimate of X based
ongGis X itsdf.

(c) (Linearity)
(a1 X1 4 a2 X3|G) = a1 I(X4|G) + ax I (X2|G).

(d) (Positivity) If X > 0 amost surely, then
E(X|G) > 0.
Proof: Take A = {w € Q; IF(X|G)(w) < 0}. ThissetisinG since I (X |G) isG-measurable.
Partial averaging implies [, IF(X|G)dIP = [, XdIP. Theright-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unless IP(A) = 0. Therefore,
P(A) = 0.
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(h) (Jensen’sInequality) If ¢ : R— R isconvex and IE|¢(X )| < oo, then
E(6(X)|G) > ¢(IE(X]9)).
Recall the usual Jensen's Inequality: I56(X) > ¢(IE(X)).
(i) (Tower Property) If 7 isasub-o-algebraof G, then
E(E(X|G)H) = E(X|H).

H isasub-c-algebraof G meansthat G contains more information than 7. If we estimate X
based on the information in G, and then estimate the estimator based on the smaller amount
of information in H, then we get the same result asif we had estimated X directly based on
theinformationin 7.

(1) (Taking out what isknown) If 7 is G-measurable, then
FE(ZX\|G) = Z.IF(X|G).

When conditioning on G, the G-measurable random variable 7 acts like a constant.

Proof: Let Z be a G-measurable random variable. A random variable Y is IF(ZX|G) if and
only if

(@) Y isG-measurable;

() [,YdIP = [, ZXdIPYA € G.

TekeY = Z.IE(X|G). ThenY satisfies (a) (a product of G-measurable random variables is
G-measurable). Y also satisfies property (b), aswe can check below:
/ YdP = E(I.Y)
A

= E[ZF(X|G)]
E[142.X] (0)WithV = 1,7

/ ZXdIP.
A

(k) (Role of Independence) If # isindependent of o (o (X),G), then
E(X[o(G, 1)) = E(X|9).
In particular, if X isindependent of 7, then
FE(X|H) =E(X).

If H isindependent of X and G, then nothing is gained by including the information content
of H inthe estimation of X.
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2.3.5 Examples from the Binomial Model

Recall that 71 = {¢, Ay, A, Q}. Noticethat I(S2|F1) must be constant on A and Ar.
Now since I/(.S;|F1) must satisfy the partial averaging property,

FE(Sy|F)dP = | S,dIP,
AH AH
/ E(Sa|F)dP = [ SydPP.
AT AT
We compute
/A E(So|F)dP = P(Ay).JE(Ss] F1)(w)
H
= pE(Sﬂ]‘-l)(W),VW S AH
On the other hand,
SodIP = p*u?Sy + pqudSy.
Ag
Therefore,

IE(S2]|F1)(w) = pu®So + qud Sy, Vw € Ap.

We can also write

E(S9|F1)(w) pu*So + qudSo
(pu + gd)uSo

(pu+ qd)Si(w),Vw € Ag

Similarly,
FE(S2|F1)(w) = (pu+ qd)Si(w),Yw € Ar.

Thusin both cases we have
(S| F1) (@) = (pu+qd) Sy (), Vo € Q.
A similar argument one time step later showsthat
(53] F3) (w) = (pu+ qd)Sa(w).

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

B (S| F2)|F1] = El(pu+ qd)S2|Fo]
(pu + qd)IE(S3|F1) (linearity)
= (pu+qd)*S;.

Thisfinal expressionis I/ (53| F1).



