
Chapter 2

Conditional Expectation

Please see Hull’s book (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denoted S�. At each time step, the stock price either goes up by a factor of u
or down by a factor of d. It will be useful to visualize tossing a coin at each time step, and say that

� the stock price moves up by a factor of u if the coin comes out heads (H), and

� down by a factor of d if it comes out tails (T ).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

� � fHHH�HHT�HTH�HTT� THH�THH� THT� TTH� TTTg�

A typical sequence of � will be denoted �, and �k will denote the kth element in the sequence �.
We write Sk��� to denote the stock price at “time” k (i.e. after k tosses) under the outcome �. Note
that Sk��� depends only on ��� ��� � � � � �k. Thus in the 3-coin-toss example we write for instance,

S����
�
� S����� ��� ���

�
� S������

S����
�
� S����� ��� ���

�
� S����� ����

Each Sk is a random variable defined on the set �. More precisely, let F � P���. Then F is a
�-algebra and ���F� is a measurable space. Each Sk is an F -measurable function ��IR, that is,
S��
k

is a function B�F where B is the Borel �-algebra on IR. We will see later that Sk is in fact
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Figure 2.1: A three coin period binomial model.

measurable under a sub-�-algebra ofF . Recall that the Borel �-algebra B is the �-algebra generated
by the open intervals of IR. In this course we will always deal with subsets of IR that belong to B.

For any random variable X defined on a sample space � and any y � IR, we will use the notation:

fX � yg
�
� f� � ��X��� � yg�

The sets fX � yg� fX � yg� fX � yg� etc, are defined similarly. Similarly for any subset B of IR,
we define

fX � Bg
�
� f� � ��X��� � Bg�

Assumption 2.1 u � d � �.

2.2 Information

Definition 2.1 (Sets determined by the first k tosses.) We say that a set A � � is determined by
the first k coin tosses if, knowing only the outcome of the first k tosses, we can decide whether the
outcome of all tosses is in A. In general we denote the collection of sets determined by the first k
tosses by Fk. It is easy to check that F k is a �-algebra.

Note that the random variable Sk is Fk-measurable, for each k � �� �� � � � � n.

Example 2.1 In the 3 coin-toss example, the collection F� of sets determined by the first toss consists of:
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1. AH
�
� fHHH�HHT�HTH�HTTg,

2. AT
�

� fTHH� THT� TTH� TTTg,

3. �,

4. �.

The collection F� of sets determined by the first two tosses consists of:

1. AHH
�

� fHHH�HHTg,

2. AHT
�

� fHTH�HTTg,

3. ATH
�
� fTHH� THTg,

4. ATT
�
� fTTH� TTTg,

5. The complements of the above sets,

6. Any union of the above sets (including the complements),

7. � and �.

Definition 2.2 (Information carried by a random variable.) LetX be a random variable ��IR.
We say that a set A � � is determined by the random variable X if, knowing only the valueX���
of the random variable, we can decide whether or not � � A. Another way of saying this is that for
every y � IR, either X���y� � A or X���y� � A � �. The collection of susbets of � determined
by X is a �-algebra, which we call the �-algebra generated byX , and denote by ��X�.

If the random variableX takes finitely many different values, then ��X� is generated by the collec-
tion of sets

fX���X����j� � �g�

these sets are called the atoms of the �-algebra ��X�.

In general, if X is a random variable ��IR, then ��X� is given by

��X� � fX���B��B � Bg�

Example 2.2 (Sets determined by S�) The �-algebra generated by S� consists of the following sets:

1. AHH � fHHH�HHTg � f� � ��S���� � u�S�g,

2. ATT � fTTH� TTTg � fS� � d�S�g�

3. AHT �ATH � fS� � udS�g�

4. Complements of the above sets,

5. Any union of the above sets,

6. � � fS���� � �g,

7. � � fS���� � IRg.
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample space �. Let us define

� p � ��� �� is the probability of H ,

� q
�
� ��� p� is the probability of T ,

� the coin tosses are independent, so that, e.g., IP �HHT � � p�q� etc.

� IP �A�
�
�
P
��A IP ���, �A � �.

Definition 2.3 (Expectation.)

IEX
�
�
X
���

X���IP ����

If A � � then

IA���
�
�

�
� if � � A

� if � �� A

and
IE�IAX� �

Z
A

XdIP �
X
��A

X���IP ����

We can think of IE�IAX� as a partial average of X over the set A.

2.3.1 An example

Let us estimate S�, given S�. Denote the estimate by IE�S�jS��. From elementary probability,
IE�S�jS�� is a random variable Y whose value at � is defined by

Y ��� � IE�S�jS� � y��

where y � S����. Properties of IE�S�jS��:

� IE�S�jS�� should depend on �, i.e., it is a random variable.

� If the value of S� is known, then the value of IE�S�jS�� should also be known. In particular,

– If � � HHH or � � HHT , then S���� � u�S�. If we know that S���� � u�S�, then
even without knowing �, we know that S���� � uS�. We define

IE�S�jS���HHH� � IE�S�jS���HHT � � uS��

– If � � TTT or � � TTH , then S���� � d�S�. If we know that S���� � d�S�, then
even without knowing �, we know that S���� � dS�. We define

IE�S�jS���TTT � � IE�S�jS���TTH� � dS��
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– If � � A � fHTH�HTT�THH� THTg, then S���� � udS�. If we know S���� �
udS�, then we do not know whether S� � uS� or S� � dS�. We then take a weighted
average:

IP �A� � p�q � pq� � p�q � pq� � �pq�

Furthermore,
Z
A

S�dIP � p�quS� � pq�uS� � p�qdS� � pq�dS�

� pq�u� d�S�

For � � A we define

IE�S�jS����� �

R
A
S�dIP

IP �A�
� �

�
�u� d�S��

Then Z
A

IE�S�jS��dIP �
Z
A

S�dIP�

In conclusion, we can write
IE�S�jS����� � g�S������

where

g�x� �

���
��

uS� if x � u�S�
�

�
�u� d�S� if x � udS�

dS� if x � d�S�

In other words, IE�S�jS�� is random only through dependence on S�. We also write

IE�S�jS� � x� � g�x��

where g is the function defined above.

The random variable IE�S�jS�� has two fundamental properties:

� IE�S�jS�� is ��S��-measurable.

� For every set A � ��S��, Z
A

IE�S�jS��dIP �

Z
A

S�dIP�

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let ���F � IP � be a probability space, and let G be a sub-�-algebra ofF . LetX be a random variable
on ���F � IP �. Then IE�X jG� is defined to be any random variable Y that satisfies:

(a) Y is G-measurable,
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(b) For every set A � G, we have the “partial averaging property”

Z
A

Y dIP �
Z
A

XdIP�

Existence. There is always a random variable Y satisfying the above properties (provided that
IEjX j ��), i.e., conditional expectations always exist.

Uniqueness. There can be more than one random variable Y satisfying the above properties, but if
Y � is another one, then Y � Y � almost surely, i.e., IPf� � �� Y ��� � Y ����g � ��

Notation 2.1 For random variables X� Y , it is standard notation to write

IE�X jY �
�
� IE�X j��Y ���

Here are some useful ways to think about IE�X jG�:

� A random experiment is performed, i.e., an element � of � is selected. The value of � is
partially but not fully revealed to us, and thus we cannot compute the exact value of X���.
Based on what we know about �, we compute an estimate of X���. Because this estimate
depends on the partial information we have about �, it depends on �, i.e., IE�X jY ���� is a
function of �, although the dependence on � is often not shown explicitly.

� If the �-algebra G contains finitely many sets, there will be a “smallest” set A in G containing
�, which is the intersection of all sets in G containing �. The way � is partially revealed to us
is that we are told it is in A, but not told which element of A it is. We then define IE�X jY ����
to be the average (with respect to IP ) value of X over this set A. Thus, for all � in this set A,
IE�X jY ���� will be the same.

2.3.3 Further discussion of Partial Averaging

The partial averaging property is

Z
A

IE�X jG�dIP �
Z
A

XdIP� �A � G� (3.1)

We can rewrite this as

IE�IA�IE�X jG�� � IE�IA�X �� (3.2)

Note that IA is a G-measurable random variable. In fact the following holds:

Lemma 3.10 If V is any G-measurable random variable, then provided IEjV�IE�XjG�j ��,

IE�V�IE�XjG�� � IE�V�X �� (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) when V is a simple
G-measurable random variable, i.e., V is of the form V �

P
n

k�� ckIAK , where each Ak is in G and
each ck is constant. Next consider the case that V is a nonnegative G-measurable random variable,
but is not necessarily simple. Such a V can be written as the limit of an increasing sequence
of simple random variables Vn; we write (3.3) for each Vn and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3) for V . Finally, the general G-
measurable random variable V can be written as the difference of two nonnegative random-variables
V � V � � V �, and since (3.3) holds for V � and V � it must hold for V as well. Williams calls
this argument the “standard machine” (p. 56).

Based on this lemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For every G-measurable random-variable V , we have

IE�V�IE�X jG�� � IE�V�X �� (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

(a) IE�IE�X jG�� � IE�X��
Proof: Just take A in the partial averaging property to be �.

The conditional expectation of X is thus an unbiased estimator of the random variable X .

(b) If X is G-measurable, then
IE�X jG� � X�

Proof: The partial averaging property holds trivially when Y is replaced by X . And since X
is G-measurable, X satisfies the requirement (a) of a conditional expectation as well.

If the information content of G is sufficient to determine X , then the best estimate of X based
on G is X itself.

(c) (Linearity)
IE�a�X� � a�X�jG� � a�IE�X�jG� � a�IE�X�jG��

(d) (Positivity) If X � � almost surely, then

IE�X jG� � ��

Proof: TakeA � f� � �� IE�X jG���� � �g. This set is inG since IE�X jG� isG-measurable.
Partial averaging implies

R
A
IE�X jG�dIP �

R
A
XdIP . The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unless IP �A� � �. Therefore,
IP �A� � �.
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(h) (Jensen’s Inequality) If � � R�R is convex and IEj��X�j��, then

IE���X�jG� � ��IE�X jG���

Recall the usual Jensen’s Inequality: IE��X� � ��IE�X���

(i) (Tower Property) If H is a sub-�-algebra of G, then

IE�IE�X jG�jH� � IE�X jH��

H is a sub-�-algebra of G means that G contains more information thanH. If we estimate X
based on the information in G, and then estimate the estimator based on the smaller amount
of information in H, then we get the same result as if we had estimated X directly based on
the information inH.

(j) (Taking out what is known) If Z is G-measurable, then

IE�ZX jG� � Z�IE�X jG��

When conditioning on G, the G-measurable random variable Z acts like a constant.

Proof: Let Z be a G-measurable random variable. A random variable Y is IE�ZX jG� if and
only if

(a) Y is G-measurable;

(b)
R
A
Y dIP �

R
A
ZXdIP� �A � G.

Take Y � Z�IE�X jG�. Then Y satisfies (a) (a product of G-measurable random variables is
G-measurable). Y also satisfies property (b), as we can check below:

Z
A

Y dIP � IE�IA�Y �

� IE�IAZIE�X jG��

� IE�IAZ�X � ((b’) with V � IAZ

�
Z
A

ZXdIP�

(k) (Role of Independence) IfH is independent of ����X��G�, then

IE�X j��G�H�� � IE�X jG��

In particular, if X is independent ofH, then

IE�X jH� � IE�X��

If H is independent of X and G, then nothing is gained by including the information content
ofH in the estimation of X .
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2.3.5 Examples from the Binomial Model

Recall that F� � f��AH� AT ��g. Notice that IE�S�jF�� must be constant on AH and AT .

Now since IE�S�jF�� must satisfy the partial averaging property,
Z
AH

IE�S�jF��dIP �

Z
AH

S�dIP�

Z
AT

IE�S�jF��dIP �

Z
AT

S�dIP�

We compute
Z
AH

IE�S�jF��dIP � IP �AH ��IE�S�jF�����

� pIE�S�jF������ �� � AH �

On the other hand, Z
AH

S�dIP � p�u�S� � pqudS��

Therefore,
IE�S�jF����� � pu�S� � qudS�� �� � AH �

We can also write

IE�S�jF����� � pu�S� � qudS�

� �pu� qd�uS�

� �pu� qd�S����� �� � AH

Similarly,
IE�S�jF����� � �pu� qd�S����� �� � AT �

Thus in both cases we have

IE�S�jF����� � �pu� qd�S����� �� � ��

A similar argument one time step later shows that

IE�S�jF����� � �pu� qd�S�����

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

IE�IE�S�jF��jF�� � IE��pu� qd�S�jF��

� �pu� qd�IE�S�jF�� (linearity)

� �pu� qd��S��

This final expression is IE�S�jF��.


