Advanced Calculus (I)

Wen-Ching Lien

Department of Mathematics
National Cheng Kung University

3.1 Two-Sided Limits

Definition

> Let $a \in R$, Let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then $f(x)$ is said to converge to L. as x approaches a, if and only if for every $\epsilon>0$ there is a δ (which in general depends on $\epsilon, \mathrm{f}, \mathrm{I}$ and a) such that $0<|x-a|<\delta$ implies $|f(x)-L|$

In this case we write

and call L the limit of $f(x)$ as x approaches a.

3.1 Two-Sided Limits

Definition

Let $a \in \mathbf{R}$, Let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then $f(x)$ is said to converge to L , as x approaches a, if and only if for every $\epsilon>0$ there is a $\delta>0$ (which in general depends on ϵ, f, I and a) such that

$$
0<|x-a|<\delta \text { implies }|f(x)-L|<\epsilon .
$$

In this case we write
and call L the limit of $f(x)$ as x approaches a.

3.1 Two-Sided Limits

Definition

Let $a \in \mathbf{R}$, Let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then $f(x)$ is said to converge to L , as x approaches a, if and only if for every $\epsilon>0$ there is a $\delta>0$ (which in general depends on $\epsilon, \mathrm{f}, \mathrm{I}$ and a) such that

$$
0<|x-a|<\delta \text { implies }|f(x)-L|<\epsilon .
$$

In this case we write

$$
L=\lim _{x \rightarrow a} f(x)
$$

and call L the limit of $f(x)$ as x approaches a.

Example:

Example:

1. $f(x)=3, \lim _{x \rightarrow 1} f(x)=$?

Example:

1. $f(x)=3, \lim _{x \rightarrow 1} f(x)=$?
2. $f(x)=3 x, \lim _{x \rightarrow 1} f(x)=$?

Example:

1. $f(x)=3, \lim f(x)=$?
2. $f(x)=3 x, \lim _{x \rightarrow 1} f(x)=$?
3. $f(x)=x^{2}, \lim _{x \rightarrow 1} f(x)=$?

Example:

1. $f(x)=3, \lim _{x \rightarrow 1} f(x)=$?
2. $f(x)=3 x, \lim _{x \rightarrow 1} f(x)=$?
3. $f(x)=x^{2}, \lim _{x \rightarrow 1} f(x)=$?
4. $f(x)=\sqrt{x}, \lim _{x \rightarrow 1} f(x)=$?

Remark:

Remark:

Let $a \in \mathbf{R}$, let I be an open interval that contains a , and let f, g be real functions defined everywhere on I except possibly at a. If $f(x)=g(x)$ for all $x \in I \backslash\{a\}$ and $f(x) \rightarrow L$ as $x \rightarrow a$, then $g(x)$ also has a limit as $x \rightarrow a$, and

$$
\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} f(x) .
$$

Example:

Example:

$$
g(x)=\frac{x^{3}+x^{2}-x-1}{x^{2}-1}, \lim _{x \rightarrow 1} g(x)=?
$$

Theorem (Sequential Characterization of Limits)
 Let $a \in R$, let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then

exists if and only if $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$ for every sequence $x_{n} \in I \backslash\{a\}$ that converges to a as $n \rightarrow \propto$.

Theorem (Sequential Characterization of Limits)

Let $\boldsymbol{a} \in \boldsymbol{R}$, let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then

$$
L=\lim _{x \rightarrow a} f(x)
$$

exists if and only if $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$ for every sequence $x_{n} \in I \backslash\{a\}$ that converges to a as $n \rightarrow \infty$.

Example:

Prove that

Example:

Prove that

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

has no limit as $x \rightarrow 0$.

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1),

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly,

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly, both a_{n} and b_{n} converge to 0 as $n \rightarrow \infty$.

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly, both a_{n} and b_{n} converge to 0 as $n \rightarrow \infty$. On the other hand,

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly, both a_{n} and b_{n} converge to 0 as $n \rightarrow \infty$. On the other hand, Since $f\left(a_{n}\right)=1$ and $f\left(b_{n}\right)=-1$ for all $n \in \mathbf{N}$,

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly, both a_{n} and b_{n} converge to 0 as $n \rightarrow \infty$. On the other hand, Since $f\left(a_{n}\right)=1$ and $f\left(b_{n}\right)=-1$ for all $n \in \mathbf{N}$, $f\left(a_{n}\right) \rightarrow 1$ and $f\left(b_{n}\right) \rightarrow-1$ as $n \rightarrow \infty$.

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly, both a_{n} and b_{n} converge to 0 as $n \rightarrow \infty$. On the other hand, Since $f\left(a_{n}\right)=1$ and $f\left(b_{n}\right)=-1$ for all $n \in \mathbf{N}$, $f\left(a_{n}\right) \rightarrow 1$ and $f\left(b_{n}\right) \rightarrow-1$ as $n \rightarrow \infty$. Thus by Theorem 3.6,

Proof:

By examing the graph of $y=f(x)$ (see Figure 3.1), we are led to consider two extremes:

$$
a_{n}:=\frac{2}{(4 n+1) \pi} \text { and } b_{n}:=\frac{2}{(4 n+3) \pi}, \quad n \in \mathbf{N} .
$$

Clearly, both a_{n} and b_{n} converge to 0 as $n \rightarrow \infty$. On the other hand, Since $f\left(a_{n}\right)=1$ and $f\left(b_{n}\right)=-1$ for all $n \in \mathbf{N}$, $f\left(a_{n}\right) \rightarrow 1$ and $f\left(b_{n}\right) \rightarrow-1$ as $n \rightarrow \infty$. Thus by Theorem 3.6, the limit of $\mathrm{f}(\mathrm{x})$, as $x \rightarrow 0$, cannot exist. \square

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a. If $f(x)$ and $g(x)$ converge as x approaches a, then so do $(f+g)(x),(f g)(x),(\alpha f)(x)$, and $(f / g)(x)$ (when the limit of $g(x)$ is nonzero).

Theorem

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a.

Theorem

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a. If $f(x)$ and $g(x)$ converge as x approaches a, then so do $(f+g)(x),(f g)(x),(\alpha f)(x)$, and $(f / g)(x)$ (when the limit of $g(x)$ is nonzero).

Theorem

Suppose that $a \in \mathbf{R}$, that l is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a. If $f(x)$ and $g(x)$ converge as x approaches a, then so do $(f+g)(x),(f g)(x),(\alpha f)(x)$, and $(f / g)(x)$ (when the limit of $g(x)$ is nonzero). In fact,

$$
\begin{gathered}
\lim _{x \rightarrow a}(f+g)(x)=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x), \\
\lim _{x \rightarrow a}(\alpha f)(x)=\alpha \lim _{x \rightarrow a} f(x), \\
\lim _{x \rightarrow a}(f g)(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x),
\end{gathered}
$$

Theorem

Suppose that $a \in \mathbf{R}$, that l is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a. If $f(x)$ and $g(x)$ converge as x approaches a, then so do $(f+g)(x),(f g)(x),(\alpha f)(x)$, and $(f / g)(x)$ (when the limit of $g(x)$ is nonzero). In fact,

$$
\begin{gathered}
\lim _{x \rightarrow a}(f+g)(x)=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x), \\
\lim _{x \rightarrow a}(\alpha f)(x)=\alpha \lim _{x \rightarrow a} f(x), \\
\lim _{x \rightarrow a}(f g)(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x),
\end{gathered}
$$

and (when the limit of $g(x)$ is nonzero)

$$
\lim _{x \rightarrow a}\left(\frac{f}{g}\right)(x)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} .
$$

Theorem (Squeeze Theorem For Functions)

Suppose that $a \in R$, that I is an open interval that contains a, and that f, g,h are real functions defined evervwhere on I excent nossibly at a.

Theorem (Squeeze Theorem For Functions)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g, h are real functions defined everywhere on I except possibly at a.

Theorem (Squeeze Theorem For Functions)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g, h are real functions defined everywhere on I except possibly at a.
(i)

Theorem (Squeeze Theorem For Functions)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g, h are real functions defined everywhere on I except possibly at a.
(i)

If $g(x) \leq h(x) \leq f(x)$ for all $x \in I \backslash\{a\}$, and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L,
$$

then the limit of $h(x)$ exists, as $x \rightarrow a$, and

$$
\lim _{x \rightarrow a} h(x)=L .
$$

Theorem

If $|g(x)| \leq M$ for all $x \in I \backslash\{a\}$ and $f(x) \rightarrow 0$ as $x \rightarrow a$, then

Theorem
(ii)

If $|g(x)| \leq M$ for all $x \in I \backslash\{a\}$ and $f(x) \rightarrow 0$ as $x \rightarrow a$, then

Theorem

(ii)

If $|g(x)| \leq M$ for all $x \in I \backslash\{a\}$ and $f(x) \rightarrow 0$ as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} f(x) g(x)=0
$$

Theorem (Comparison Theorem For Functions)
 Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a. If f and g have a limit as x approaches a and

then

Theorem (Comparison Theorem For Functions)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f, g are real functions defined everywhere on I except possibly at a. If f and g have a limit as x approaches a and

$$
f(x) \leq g(x), \quad x \in I \backslash\{a\}
$$

then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) .
$$

Example:

For each function f define the positive part of f by

and the negative part by

Example:

For each function f define the positive part of f by

$$
f^{+}(x)=\frac{|f(x)|+f(x)}{2}, \quad x \in \operatorname{Dom}(f)
$$

and the negative part by

$$
f^{-}(x)=\frac{|f(x)|-f(x)}{2}, \quad x \in \operatorname{Dom}(f) .
$$

(a)

Prove that $f^{+}(x) \geq 0, f^{-}(x) \geq 0, f(x)=f^{+}(x)-f^{-}(x)$, and $|f(x)|=f^{+}(x)+f^{-}(x)$ hold for all $x \in \operatorname{Dom}(f)$. (Compare with Exercise 1,p.11.)
(a)

Prove that $f^{+}(x) \geq 0, f^{-}(x) \geq 0, f(x)=f^{+}(x)-f^{-}(x)$, and $|f(x)|=f^{+}(x)+f^{-}(x)$ hold for all $x \in \operatorname{Dom}(f)$. (Compare with Exercise 1,p.11.)
(a)

Prove that $f^{+}(x) \geq 0, f^{-}(x) \geq 0, f(x)=f^{+}(x)-f^{-}(x)$, and $|f(x)|=f^{+}(x)+f^{-}(x)$ hold for all $x \in \operatorname{Dom}(f)$. (Compare with Exercise 1,p.11.)
(b)
(a)

Prove that $f^{+}(x) \geq 0, f^{-}(x) \geq 0, f(x)=f^{+}(x)-f^{-}(x)$, and $|f(x)|=f^{+}(x)+f^{-}(x)$ hold for all $x \in \operatorname{Dom}(f)$. (Compare with Exercise 1,p.11.)
(b)

Prove that if

$$
L=\lim _{x \rightarrow a} f(x)
$$

exists, then $f^{+}(x) \rightarrow L^{+}$and $f^{-}(x) \rightarrow L^{-}$as $x \rightarrow a$.

Example:

Let f, g be real functions, and for each

Example:

Let f, g be real functions, and for each $x \in \operatorname{Dom}(f) \cap \operatorname{Dom}(g)$ define $(f \vee g)(x):=\max \{f(x), g(x)\}$ and $(f \vee g)(x):=\min \{f(x), g(x)\}$.
(a)

Prove that

for all $x \in \operatorname{Dom}(f) \cap \operatorname{Dom}(g)$.
(a)

Prove that

$$
(f \vee g)(x)=\frac{(f+g)(x)+|(f-g)(x)|}{2}
$$

and

$$
(f \wedge g)(x)=\frac{(f+g)(x)-|(f-g)(x)|}{2}
$$

for all $x \in \operatorname{Dom}(f) \cap \operatorname{Dom}(g)$.
(b)

Prove that if

(b)

Prove that if

$$
L=\lim _{x \rightarrow a} f(x) \text { and } M=\lim _{x \rightarrow a} g(x)
$$

exist, then $(f \vee g)(x) \rightarrow L \vee M$ and $(f \wedge g)(x) \rightarrow L \wedge M$ as $x \rightarrow a$.

Thank you.

