Advanced Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

WEN-CHING LIEN Advanced Calculus (I)

・ロン ・四 ・ ・ ヨン ・ ヨン

3.1 Two-Sided Limits

Definition

Let $a \in \mathbf{R}$, Let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then f(x) is said to *converge* to L, as x *approaches a*, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I and a) such that

$$0 < |x - a| < \delta$$
 implies $|f(x) - L| < \epsilon$.

In this case we write

 $L = \lim_{x \to a} f(x)$

and call L the limit of f(x) as x approaches a.

3.1 Two-Sided Limits

Definition

Let $a \in \mathbf{R}$, Let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then f(x) is said to *converge* to L, *as* x *approaches a*, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I and a) such that

$$0 < |\mathbf{x} - \mathbf{a}| < \delta$$
 implies $|f(\mathbf{x}) - L| < \epsilon$.

In this case we write

 $L = \lim_{x \to a} f(x)$

and call L the limit of f(x) as x approaches a.

E.

3.1 Two-Sided Limits

Definition

Let $a \in \mathbf{R}$, Let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then f(x) is said to *converge* to L, *as* x *approaches a*, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I and a) such that

$$0 < |\mathbf{x} - \mathbf{a}| < \delta$$
 implies $|f(\mathbf{x}) - L| < \epsilon$.

In this case we write

$$L = \lim_{x \to a} f(x)$$

and call *L* the *limit* of f(x) as x approaches a.

1. f(x) = 3, $\lim_{x \to 1} f(x) = ?$ 2. f(x) = 3x, $\lim_{x \to 1} f(x) = ?$ 3. $f(x) = x^2$, $\lim_{x \to 1} f(x) = ?$ 4. $f(x) = \sqrt{x}$, $\lim_{x \to 1} f(x) = ?$

WEN-CHING LIEN Advanced Calculus (I)

・ロト ・回ト ・ヨト ・ヨト

1. f(x) = 3, $\lim_{x \to 1} f(x) = ?$ 2. f(x) = 3x, $\lim_{x \to 1} f(x) = ?$ 3. $f(x) = x^2$, $\lim_{x \to 1} f(x) = ?$ 4. $f(x) = \sqrt{x}$, $\lim_{x \to 1} f(x) = ?$

WEN-CHING LIEN Advanced Calculus (I)

・ロ・・ (日・・ (日・・ 日・)

1.
$$f(x) = 3$$
, $\lim_{x \to 1} f(x) =$?
2. $f(x) = 3x$, $\lim_{x \to 1} f(x) =$?
3. $f(x) = x^2$, $\lim_{x \to 1} f(x) =$?
4. $f(x) = \sqrt{x}$, $\lim_{x \to 1} f(x) =$?

WEN-CHING LIEN Advanced Calculus (I)

1.
$$f(x) = 3$$
, $\lim_{x \to 1} f(x) = ?$
2. $f(x) = 3x$, $\lim_{x \to 1} f(x) = ?$
3. $f(x) = x^2$, $\lim_{x \to 1} f(x) = ?$
4. $f(x) = \sqrt{x}$, $\lim_{x \to 1} f(x) = ?$

WEN-CHING LIEN Advanced Calculus (I)

1.
$$f(x) = 3$$
, $\lim_{x \to 1} f(x) = ?$
2. $f(x) = 3x$, $\lim_{x \to 1} f(x) = ?$
3. $f(x) = x^2$, $\lim_{x \to 1} f(x) = ?$
4. $f(x) = \sqrt{x}$, $\lim_{x \to 1} f(x) = ?$

Remark:

Let $a \in \mathbf{R}$, let I be an open interval that contains a, and let f,g be real functions defined everywhere on I except possibly at a. If f(x) = g(x) for all $x \in I \setminus \{a\}$ and $f(x) \to L$ as $x \to a$, then g(x) also has a limit as $x \to a$, and

 $\lim_{x\to a} g(x) = \lim_{x\to a} f(x).$

・ロ・・ (日・・ (日・・ 日・)

Remark:

Let $a \in \mathbf{R}$, let I be an open interval that contains a, and let f,g be real functions defined everywhere on I except possibly at a. If f(x) = g(x) for all $x \in I \setminus \{a\}$ and $f(x) \to L$ as $x \to a$, then g(x) also has a limit as $x \to a$, and

$$\lim_{x\to a}g(x)=\lim_{x\to a}f(x).$$

(D) (A) (A) (A)

$g(x) = \frac{x^3 + x^2 - x - 1}{x^2 - 1}, \lim_{x \to 1} g(x) = ?$

WEN-CHING LIEN Advanced Calculus (I)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < ♡

$$g(x) = \frac{x^3 + x^2 - x - 1}{x^2 - 1}, \lim_{x \to 1} g(x) = ?$$

WEN-CHING LIEN Advanced Calculus (I)

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Theorem (Sequential Characterization of Limits)

Let $a \in \mathbf{R}$, let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then

 $L = \lim_{x \to a} f(x)$

exists if and only if $f(x_n) \to L$ as $n \to \infty$ for every sequence $x_n \in I \setminus \{a\}$ that converges to a as $n \to \infty$.

・ロ・・ (日・・ ほ・・ (日・)

Theorem (Sequential Characterization of Limits)

Let $a \in \mathbf{R}$, let I be an open interval that contains a, and let f be a real function defined everywhere on I except possibly at a. Then

 $L=\lim_{x\to a}f(x)$

exists if and only if $f(x_n) \to L$ as $n \to \infty$ for every sequence $x_n \in I \setminus \{a\}$ that converges to a as $n \to \infty$.

Prove that

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

has no limit as $x \rightarrow 0$.

Prove that

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

has no limit as $x \rightarrow 0$.

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n := rac{2}{(4n+1)\pi}$$
 and $b_n := rac{2}{(4n+3)\pi}, n \in \mathbb{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbf{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of $f(\mathbf{x})$, as $x \to 0$, cannot exist. \Box

ヘロン ヘヨン ヘヨン ヘ

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbb{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

(ロ) (同) (E) (E)

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

▲□→ < □→ < □→</p>

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

▲□→ < □→ < □→</p>

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

・ロット (四) (日) (日) (日)

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

(ロ) (同) (目) (E) (E)

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbb{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

By examing the graph of y = f(x) (see Figure 3.1), we are led to consider two extremes:

$$a_n:=rac{2}{(4n+1)\pi}$$
 and $b_n:=rac{2}{(4n+3)\pi},$ $n\in \mathbf{N}.$

Clearly, both a_n and b_n converge to 0 as $n \to \infty$. On the other hand, Since $f(a_n) = 1$ and $f(b_n) = -1$ for all $n \in \mathbf{N}$, $f(a_n) \to 1$ and $f(b_n) \to -1$ as $n \to \infty$. Thus by Theorem 3.6, the limit of f(x), as $x \to 0$, cannot exist. \Box

・ロ・・ (日・・ ほ・・ (日・)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. If f(x) and g(x) converge as x approaches a, then so do (f + g)(x), (fg)(x), $(\alpha f)(x)$, and (f/g)(x) (when the limit of g(x) is nonzero). In fact,

 $\lim_{x \to a} (f + g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$ $\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x),$ $\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x),$

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. approaches a, then so do (f + g)(x), (fg)(x), $(\alpha f)(x)$, and (f/g)(x) (when the limit of g(x) is nonzero). In fact,

 $\lim_{x \to a} (f + g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$ $\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x),$ $\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x),$

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. If f(x) and g(x) converge as x approaches a, then so do (f + g)(x), (fg)(x), $(\alpha f)(x)$, and (f/g)(x) (when the limit of g(x) is nonzero). In fact,

 $\lim_{x \to a} (f + g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$ $\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x),$ $\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x),$

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. If f(x) and g(x) converge as x approaches a, then so do (f + g)(x), (fg)(x), $(\alpha f)(x)$, and (f/g)(x) (when the limit of g(x) is nonzero). In fact,

$$\lim_{x \to a} (f + g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$
$$\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x),$$
$$\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x),$$

$$\lim_{x\to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}.$$

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. If f(x) and g(x) converge as x approaches a, then so do (f + g)(x), (fg)(x), $(\alpha f)(x)$, and (f/g)(x) (when the limit of g(x) is nonzero). In fact,

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$
$$\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x),$$
$$\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x),$$

$$\lim_{x\to a}\left(\frac{f}{g}\right)(x)=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}.$$

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g,h are real functions defined everywhere on I except possibly at a.

(i) If $g(x) \le h(x) \le f(x)$ for all $x \in I \setminus \{a\}$, and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L,$ then the limit of h(x) exists, as $x \to a$, and $\lim_{x \to a} h(x) = L.$

・ロ・・ (日・・ (日・・ (日・)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g,h are real functions defined everywhere on I except possibly at a.

(i) If $g(x) \le h(x) \le f(x)$ for all $x \in I \setminus \{a\}$, and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L,$ then the limit of h(x) exists, as $x \to a$, and $\lim_{x \to a} h(x) = L.$

・ロン ・四 ・ ・ ヨン ・ ヨン

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g,h are real functions defined everywhere on I except possibly at a.

(i) If $g(x) \le h(x) \le f(x)$ for all $x \in I \setminus \{a\}$, and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L,$ then the limit of h(x) exists, as $x \to a$, and $\lim_{x \to a} h(x) = L.$

・ロン ・四 ・ ・ ヨン ・ ヨン

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g,h are real functions defined everywhere on I except possibly at a.

(i)

If $g(x) \le h(x) \le f(x)$ for all $x \in I \setminus \{a\}$, and

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = L,$$

then the limit of h(x) exists, as $x \rightarrow a$, and

$$\lim_{x\to a}h(x)=L.$$

(ロ) (同) (E) (E)

Theorem (ii) If $|g(x)| \le M$ for all $x \in I \setminus \{a\}$ and $f(x) \to 0$ as $x \to a$, then $\lim_{x \to a} f(x)g(x) = 0.$

WEN-CHING LIEN Advanced Calculus (I)

(ii)

If $|g(x)| \le M$ for all $x \in I \setminus \{a\}$ and $f(x) \to 0$ as $x \to a$, then

 $\lim_{x\to a} f(x)g(x) = 0.$

WEN-CHING LIEN Advanced Calculus (I)

(ii)

 $\begin{array}{l} \textit{If } |g(x)| \leq \textit{M for all } x \in \textit{I} \setminus \{a\} \textit{ and } f(x) \rightarrow 0 \textit{ as } x \rightarrow \textit{a,} \\ \textit{then} \\ & \lim_{x \rightarrow a} f(x)g(x) = 0. \end{array}$

Theorem (Comparison Theorem For Functions)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. If f and g have a limit as x approaches a and

$$f(\mathbf{x}) \leq g(\mathbf{x}), \quad \mathbf{x} \in I \setminus \{\mathbf{a}\},$$

then

 $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x).$

WEN-CHING LIEN Advanced Calculus (I)

Theorem (Comparison Theorem For Functions)

Suppose that $a \in \mathbf{R}$, that I is an open interval that contains a, and that f,g are real functions defined everywhere on I except possibly at a. If f and g have a limit as x approaches a and

$$f(\mathbf{x}) \leq g(\mathbf{x}), \quad \mathbf{x} \in I \setminus \{\mathbf{a}\},$$

then

$$\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x).$$

(ロ) (同) (E) (E) (E)

For each function f define the positive part of f by

$$f^+(x) = \frac{|f(x)| + f(x)}{2}, \quad x \in Dom(f),$$

and the negative part by

$$f^{-}(x) = \frac{|f(x)| - f(x)}{2}, \quad x \in Dom(f).$$

ヘロン 人間 とくほど 人間と

For each function f define the positive part of f by

$$f^+(x)=rac{|f(x)|+f(x)}{2}, \quad x\in \textit{Dom}(f),$$

and the negative part by

$$f^-(x)=rac{|f(x)|-f(x)|}{2}, \quad x\in \textit{Dom}(f).$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Prove that $f^+(x) \ge 0$, $f^-(x) \ge 0$, $f(x) = f^+(x) - f^-(x)$, and $|f(x)| = f^+(x) + f^-(x)$ hold for all $x \in Dom(f)$. (Compare with Exercise 1,p.11.) (b)

Prove that if *L*

```
exists, then f^+(x) \to L^+ and f^-(x) \to L^- as x \to a.
```

・ロト ・回ト ・ヨト ・ヨト

Prove that $f^+(x) \ge 0$, $f^-(x) \ge 0$, $f(x) = f^+(x) - f^-(x)$, and $|f(x)| = f^+(x) + f^-(x)$ hold for all $x \in Dom(f)$. (Compare with Exercise 1,p.11.)

(b)

Prove that if

$L = \lim_{x \to a} f(x)$

exists, then $f^+(x)
ightarrow L^+$ and $f^-(x)
ightarrow L^-$ as x
ightarrow a

・ロット (四)・ (日)・ (日)・

크

Prove that $f^+(x) \ge 0$, $f^-(x) \ge 0$, $f(x) = f^+(x) - f^-(x)$, and $|f(x)| = f^+(x) + f^-(x)$ hold for all $x \in Dom(f)$. (Compare with Exercise 1,p.11.)

(b)

Prove that if $L = \lim_{x \to a} f(x)$ exists, then $f^+(x) \to L^+$ and $f^-(x) \to L^-$ as $x \to a$.

・ロン ・四 ・ ・ ヨン ・ ヨン

크

Prove that $f^+(x) \ge 0$, $f^-(x) \ge 0$, $f(x) = f^+(x) - f^-(x)$, and $|f(x)| = f^+(x) + f^-(x)$ hold for all $x \in Dom(f)$. (Compare with Exercise 1,p.11.) (b)

Prove that if

$$L = \lim_{x \to a} f(x)$$

exists, then $f^+(x) \to L^+$ and $f^-(x) \to L^-$ as $x \to a$.

・ロト (日) (日) (日) (日) (日) (日)

Let f,g be real functions, and for each $x \in Dom(f) \cap Dom(g)$ define $(f \lor g)(x) := \max\{f(x), g(x)\}$ and $(f \lor g)(x) := \min\{f(x), g(x)\}$.

WEN-CHING LIEN Advanced Calculus (I)

・ロン ・四 ・ ・ ヨン ・ ヨン

Let f,g be real functions, and for each $x \in Dom(f) \cap Dom(g)$ define $(f \lor g)(x) := \max\{f(x), g(x)\}$ and $(f \lor g)(x) := \min\{f(x), g(x)\}$.

・ロト (日) (日) (日) (日) (日) (日)

Prove that

$$(f \lor g)(x) = \frac{(f+g)(x) + |(f-g)(x)|}{2}$$

and

$$(f \wedge g)(x) = \frac{(f+g)(x) - |(f-g)(x)|}{2}$$

for all $x \in Dom(f) \cap Dom(g)$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Prove that

$$(f \lor g)(x) = \frac{(f+g)(x) + |(f-g)(x)|}{2}$$

and

$$(f \wedge g)(x) = rac{(f+g)(x) - |(f-g)(x)|}{2}$$

for all $x \in Dom(f) \cap Dom(g)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < ♡

(b)

Prove that if

$L = \lim_{x \to a} f(x)$ and $M = \lim_{x \to a} g(x)$ exist, then $(f \lor g)(x) \to L \lor M$ and $(f \land g)(x) \to L \land M$ and $(f \land g)(x) \to L \land M$ and $(f \to g)(x) \to M$

(b)

Prove that if

$$L = \lim_{x \to a} f(x) \text{ and } M = \lim_{x \to a} g(x)$$

exist, then $(f \lor g)(x) \to L \lor M$ and $(f \land g)(x) \to L \land M$ as $x \to a$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Thank you.

WEN-CHING LIEN Advanced Calculus (I)