
POLAR COORDINATES

A coordinate system represents a point in the plane by an ordered pair of numbers
called coordinates. Usually we use Cartesian coordinates, which are directed distances
from two perpendicular axes. Here we describe a coordinate system introduced by
Newton, called the polar coordinate system, which is more convenient for many 
purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled .
Then we draw a ray (half-line) starting at called the polar axis. This axis is usually
drawn horizontally to the right and corresponds to the positive -axis in Cartesian
coordinates.

If is any other point in the plane, let be the distance from to and let be
the angle (usually measured in radians) between the polar axis and the line as in
Figure 1. Then the point is represented by the ordered pair and , are called
polar coordinates of . We use the convention that an angle is positive if measured
in the counterclockwise direction from the polar axis and negative in the clockwise
direction. If , then and we agree that represents the pole for any
value of .

We extend the meaning of polar coordinates to the case in which is nega-
tive by agreeing that, as in Figure 2, the points and lie on the same line
through and at the same distance from , but on opposite sides of . If ,
the point lies in the same quadrant as ; if , it lies in the quadrant on the
opposite side of the pole. Notice that represents the same point as .

EXAMPLE 1 Plot the points whose polar coordinates are given.
(a) (b) (c) (d)

SOLUTION The points are plotted in Figure 3. In part (d) the point is
located three units from the pole in the fourth quadrant because the angle is in
the second quadrant and is negative.

■

In the Cartesian coordinate system every point has only one representation, but in
the polar coordinate system each point has many representations. For instance, the
point in Example 1(a) could be written as or or

. (See Figure 4.)
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In fact, since a complete counterclockwise rotation is given by an angle 2 , the
point represented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5,

in which the pole corresponds to the origin and the polar axis coincides with the pos-
itive -axis. If the point has Cartesian coordinates and polar coordinates ,
then, from the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case
where and , these equations are valid for all values of and 
(See the general definition of and in Appendix A.)

Equations 1 allow us to find the Cartesian coordinates of a point when the polar
coordinates are known. To find and when and are known, we use the equations

which can be deduced from Equations 1 or simply read from Figure 5.

EXAMPLE 2 Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore, the point is in Cartesian coordinates. ■

EXAMPLE 3 Represent the point with Cartesian coordinates in terms of
polar coordinates.

SOLUTION If we choose to be positive, then Equations 2 give
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Since the point lies in the fourth quadrant, we can choose or
. Thus one possible answer is ; another is . ■

NOTE Equations 2 do not uniquely determine when and are given because, 
as increases through the interval , each value of occurs twice.
Therefore, in converting from Cartesian to polar coordinates, it’s not good enough just
to find and that satisfy Equations 2. As in Example 3, we must choose so that
the point lies in the correct quadrant.

POLAR CURVES

The graph of a polar equation , or more generally , consists of
all points that have at least one polar representation whose coordinates satisfy
the equation.

EXAMPLE 4 What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the
distance from the point to the pole, the curve represents the circle with center

and radius . In general, the equation represents a circle with center and
radius . (See Figure 6.) ■

EXAMPLE 5 Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is
1 radian. It is the straight line that passes through and makes an angle of 1 radian
with the polar axis (see Figure 7). Notice that the points on the line with 
are in the first quadrant, whereas those with are in the third quadrant.

■

EXAMPLE 6
(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which
appears to be a circle. We have used only values of between 0 and , since if we
let increase beyond , we obtain the same points again.��
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(b) To convert the given equation into a Cartesian equation we use Equations 1 
and 2. From we have , so the equation 
becomes , which gives

or

Completing the square, we obtain

which is an equation of a circle with center and radius 1. ■

EXAMPLE 7 Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up

one unit. This enables us to read at a glance the values of that correspond to
increasing values of . For instance, we see that as increases from 0 to , (the
distance from ) increases from 1 to 2, so we sketch the corresponding part of the
polar curve in Figure 11(a). As increases from to , Figure 10 shows that
decreases from 2 to 1, so we sketch the next part of the curve as in Figure 11(b). As 

increases from to , decreases from 1 to 0 as shown in part (c). Finally, 
as increases from to , increases from 0 to 1 as shown in part (d). If 
we let increase beyond or decrease beyond 0, we would simply retrace our
path. Putting together the parts of the curve from Figure 11(a)–(d), we sketch the
complete curve in part (e). It is called a cardioid because it’s shaped like a heart.

(a) (b) (c) (d) (e)

FIGURE 11 Stages in sketching the cardioid r=1+sin ¨
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EXAMPLE 8 Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian
coordinates in Figure 12. As increases from 0 to , Figure 12 shows that 
decreases from 1 to 0 and so we draw the corresponding portion of the polar curve
in Figure 13 (indicated by !). As increases from to , goes from 0 to .
This means that the distance from increases from 0 to 1, but instead of being in
the first quadrant this portion of the polar curve (indicated by @) lies on the opposite
side of the pole in the third quadrant. The remainder of the curve is drawn in a simi-
lar fashion, with the arrows and numbers indicating the order in which the portions
are traced out. The resulting curve has four loops and is called a four-leaved rose.

■

TANGENTS TO POLAR CURVES

To find a tangent line to a polar curve we regard as a parameter and write
its parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 9.2.1) and
the Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where 

(provided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3

simplifies to

For instance, in Example 8 we found that when or .
This means that the lines and (or and ) are tangent
lines to at the origin.r � cos 2�
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Module 9.3 helps you see how
polar curves are traced out by
showing animations similar to
Figures 10–13.
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EXAMPLE 9
(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore, there are horizontal tangents at the points , , 
and vertical tangents at and . When , both and

are 0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus there is a vertical tangent line at the pole (see Figure 14). ■

NOTE Instead of having to remember Equation 3, we could employ the method
used to derive it. For instance, in Example 9 we could have written
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3–4 ■ Plot the point whose polar coordinates are given. Then
find the Cartesian coordinates of the point.

3. (a) (b) (c)

4. (a) (b) (c)

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

��2, �5��6��4, 3���2, 2��3�

��1, ��3�(2s2 , 3��4)�3, ��2�

1–2 ■ Plot the point whose polar coordinates are given. Then
find two other pairs of polar coordinates of this point, one with

and one with .

1. (a) (b) (c)

2. (a) (b) (c)
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
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r � 0r � 0

EXERCISES9.3

Then we have

which is equivalent to our previous expression.

GRAPHING POLAR CURVES WITH GRAPHING DEVICES

Although it’s useful to be able to sketch simple polar curves by hand, we need to use
a graphing calculator or computer when we are faced with a curve as complicated as
the one shown in Figure 15.

Some graphing devices have commands that enable us to graph polar curves 
directly. With other machines we need to convert to parametric equations first. In this
case we take the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

EXAMPLE 10 Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar
graphing command. In this case we need to work with the corresponding parametric
equations, which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer 
is , then

and so we require that be an even multiple of . This will first occur when
. Therefore, we will graph the entire curve if we specify that .

Switching from to , we have the equations

and Figure 16 shows the resulting curve. Notice that this rose has 16 loops. ■
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34.

35. 36.

37. 38.

39. 40.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

41–42 ■ The figure shows the graph of as a function of in
Cartesian coordinates. Use it to sketch the corresponding polar
curve.

42.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

43. Show that the polar curve (called a
conchoid) has the line as a vertical asymptote by
showing that . Use this fact to help sketch the
conchoid.

44. Sketch the curve .

45. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show
also that the curve lies entirely within the vertical strip

. Use these facts to help sketch the cissoid.

46. Match the polar equations with the graphs labeled I–VI.
Give reasons for your choices. (Don’t use a graphing
device.)
(a) (b)
(c) (d)
(e) (f )

47–50 ■ Find the slope of the tangent line to the given polar
curve at the point specified by the value of .

47. , 48. , � � ��3r � 2 � sin �� � ��6r � 2 sin �

�

I II

IV V VI

III

r � 1�s�r � 1 � 4 cos 5�
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41.

�r

r � 1 � 2 cos���2�r � 1 � 2 cos 2�

r 2� � 1r � 2 cos�3��2�

r 2 � sin 2�r 2 � 4 cos 2�

r � sin 5�r � 2 cos 4�33.5–6 ■ The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where and

.
(ii) Find polar coordinates of the point, where and

.

5. (a) (b)

6. (a) (b)
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

7–12 ■ Sketch the region in the plane consisting of points
whose polar coordinates satisfy the given conditions.

7.

8. ,

9. ,

10. ,

,

12. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

13–16 ■ Identify the curve by finding a Cartesian equation for
the curve.

14.

15. 16.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–20 ■ Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

20.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

21–22 ■ For each of the described curves, decide if the curve
would be more easily given by a polar equation or a Cartesian
equation. Then write an equation for the curve.

21. (a) A line through the origin that makes an angle of 
with the positive -axis

(b) A vertical line through the point 

22. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

23–40 ■ Sketch the curve with the given polar equation.

23. 24.

25. 26.

27. , 28.

, 30. ,
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r � 1 � 3 cos �� � 0r � 2�1 � sin ��

r � �3 cos �r � sin �

r 2 � 3r � 2 � 0� � ���6

�2, 3�

�3, 3�
x

��6

x 2 � y 2 � 1x 2 � y 2 � 2cx19.

x � y � 9x � �y 2

r � tan � sec �r � csc �

r � 2 sin � � 2 cos �r � 3 sin �13.

��4 
 � 
 3��4�1 
 r 
 1

5��3 
 � 
 7��32 � r � 311.

3��4 � � � 5��42 � r 
 5

���2 
 � � ��60 
 r � 4

��3 
 � 
 2��3r � 0

1 
 r 
 2

��2, 3�(�1, �s3 )
(2s3 , �2)�1, 1�

0 
 � � 2�
r � 0�r, ��

0 
 � � 2�
r � 0�r, ��

SECTION 9.3 POLAR COORDINATES ■ 503



; 65. A family of curves has polar equations

Investigate how the graph changes as the number changes.
In particular, you should identify the transitional values of 
for which the basic shape of the curve changes.

; 66. The astronomer Giovanni Cassini (1625–1712) studied the
family of curves with polar equations

where and are positive real numbers. These curves are
called the ovals of Cassini even though they are oval
shaped only for certain values of and . (Cassini thought
that these curves might represent planetary orbits better than
Kepler’s ellipses.) Investigate the variety of shapes that
these curves may have. In particular, how are and 
related to each other when the curve splits into two parts?

67. Let be any point (except the origin) on the curve .
If is the angle between the tangent line at and the radial
line , show that

[Hint: Observe that in the figure.]

68. (a) Use Exercise 67 to show that the angle between the tan-
gent line and the radial line is at every point
on the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property
that the angle between the radial line and the tangent
line is a constant must be of the form , where 
and are constants.k
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, 50. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

51–54 ■ Find the points on the given curve where the tangent
line is horizontal or vertical.

52.

53. 54.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Show that the polar equation , where
, represents a circle, and find its center and radius.

56. Show that the curves and intersect
at right angles.

; 57–60 ■ Use a graphing device to graph the polar curve.
Choose the parameter interval to make sure that you produce
the entire curve.

57. (butterfly curve)

58.

59. 60.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 61. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

; 62. Use a graph to estimate the -coordinate of the highest
points on the curve . Then use calculus to find the
exact value.

; 63. (a) Investigate the family of curves defined by the polar
equations , where is a positive integer. How
is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by
?

; 64. A family of curves is given by the equations
, where is a real number and is a posi-

tive integer. How does the graph change as increases?
How does it change as changes? Illustrate by graphing
enough members of the family to support your conclusions.

c
n

ncr � 1 � c sin n�

r � � sin n� �

n
nr � sin n�

r � sin 2�
y

r � f ���
r � f �� � ��

r � 1 � sin �r � 1 � sin�� � ��3�
r � 1 � sin�� � ��6�

r � cos���2� � cos���3�r � 2 � 5 sin���6�

r � sin2�4�� � cos�4��

r � e sin � � 2 cos�4��

r � a cos �r � a sin �

ab � 0
r � a sin � � b cos �55.

r 2 � sin 2�r � 1 � cos �

r � e �r � 3 cos �51.

� � ��6r � sin 3�� � �r � 1��49.
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AREAS AND LENGTHS IN POLAR COORDINATES

In this section we develop the formula for the area of a region whose boundary is
given by a polar equation. We need to use the formula for the area of a sector of a 
circle

where, as in Figure 1, is the radius and is the radian measure of the central angle. �r

A � 1
2 r 2�1

9.4

¨

r

FIGURE 1




