
TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

In plane geometry the polar coordinate system is used to give a convenient description
of certain curves and regions. (See Section 9.3.) Figure 1 enables us to recall the con-
nection between polar and Cartesian coordinates. If the point has Cartesian coordi-
nates and polar coordinates , then, from the figure,

In three dimensions there is a coordinate system, called cylindrical coordinates, that
is similar to polar coordinates and gives convenient descriptions of some commonly
occurring surfaces and solids. As we will see, some triple integrals are much easier to
evaluate in cylindrical coordinates.

CYLINDRICAL COORDINATES

In the cylindrical coordinate system, a point in three-dimensional space is repre-
sented by the ordered triple , where and are polar coordinates of the pro-
jection of onto the -plane and is the directed distance from the -plane to (see
Figure 2).

To convert from cylindrical to rectangular coordinates, we use the equations

whereas to convert from rectangular to cylindrical coordinates, we use

EXAMPLE 1
(a) Plot the point with cylindrical coordinates and find its rectangular 
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates

.

SOLUTION
(a) The point with cylindrical coordinates is plotted in Figure 3. From
Equations 1, its rectangular coordinates are

Thus the point is in rectangular coordinates.(�1, s3 , 1)
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(b) From Equations 2 we have

so

Therefore, one set of cylindrical coordinates is . Another is
. As with polar coordinates, there are infinitely many choices. ■

Cylindrical coordinates are useful in problems that involve symmetry about an
axis, and the -axis is chosen to coincide with this axis of symmetry. For instance, the
axis of the circular cylinder with Cartesian equation is the -axis. In
cylindrical coordinates this cylinder has the very simple equation . (See Figure 4.)
This is the reason for the name “cylindrical” coordinates.

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates 
is .

SOLUTION The equation says that the -value, or height, of each point on the sur-
face is the same as r, the distance from the point to the -axis. Because doesn’t
appear, it can vary. So any horizontal trace in the plane is a circle of
radius k. These traces suggest that the surface is a cone. This prediction can be con-
firmed by converting the equation into rectangular coordinates. From the first equa-
tion in (2) we have

We recognize the equation (by comparison with Table 1 in Section 10.6)
as being a circular cone whose axis is the -axis (see Figure 5). ■

EVALUATING TRIPLE INTEGRALS 
WITH CYLINDRICAL COORDINATES

Suppose that is a type 1 region whose projection on the -plane is conveniently
described in polar coordinates (see Figure 6). In particular, suppose that is continu-
ous and

where is given in polar coordinates by

We know from Equation 12.5.6 that

But we also know how to evaluate double integrals in polar coordinates. In fact, com-
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bining Equation 3 with Equation 12.3.3, we obtain

Formula 4 is the formula for triple integration in cylindrical coordinates. It says
that we convert a triple integral from rectangular to cylindrical coordinates by writing

, , leaving as it is, using the appropriate limits of integration
for , , and , and replacing by . (Figure 7 shows how to remember this.)
It is worthwhile to use this formula when is a solid region easily described in cylin-
drical coordinates, and especially when the function involves the expression

.

EXAMPLE 3 A solid lies within the cylinder , below the plane
, and above the paraboloid . (See Figure 8.) The density at

any point is proportional to its distance from the axis of the cylinder. Find the mass
of .

SOLUTION In cylindrical coordinates the cylinder is and the paraboloid is
, so we can write

Since the density at is proportional to the distance from the -axis, the den-
sity function is

where is the proportionality constant. Therefore, from Formula 12.5.13, the mass
of is

■

EXAMPLE 4 Evaluate .

SOLUTION This iterated integral is a triple integral over the solid region 

and the projection of onto the -plane is the disk . The lower surface
of is the cone and its upper surface is the plane . (See Fig-
ure 9.) This region has a much simpler description in cylindrical coordinates:
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15–16 ■ Sketch the solid whose volume is given by the integral
and evaluate the integral.

15. 16.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–26 ■ Use cylindrical coordinates.

Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

18. Evaluate , where is the solid in the first
octant that lies beneath the paraboloid .

19. Evaluate , where is enclosed by the paraboloid
, the cylinder , and the 

-plane.

20. Evaluate , where is enclosed by the planes 
and and by the cylinders and

.

Evaluate , where is the solid that lies within 
the cylinder , above the plane , and below
the cone .

22. Find the volume of the solid that lies within both the cylin-
der and the sphere .

23. (a) Find the volume of the region bounded by the parabo-
loids and .

(b) Find the centroid of (the center of mass in the case
where the density is constant).

24. (a) Find the volume of the solid that the cylinder
cuts out of the sphere of radius centered at

the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere and
the cylinder on the same screen.

25. Find the mass and center of mass of the solid bounded by
the paraboloid and the plane 
if has constant density .KS
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1–2 ■ Plot the point whose cylindrical coordinates are given.
Then find the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

3–4 ■ Change from rectangular to cylindrical coordinates.

(a) (b)

4. (a) (b)
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5–6 ■ Describe in words the surface whose equation is given.

5. 6.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

7–8 ■ Identify the surface whose equation is given.

7. 8.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9–10 ■ Write the equations in cylindrical coordinates.

9. (a) (b)

10. (a) (b)
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

11–12 ■ Sketch the solid described by the given inequalities.

11.

12. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

13. A cylindrical shell is 20 cm long, with inner radius 6 cm
and outer radius 7 cm. Write inequalities that describe the
shell in an appropriate coordinate system. Explain how you
have positioned the coordinate system with respect to the
shell.

; 14. Use a graphing device to draw the solid enclosed by the
paraboloids and .z � 5 � x 2 � y 2z � x 2 � y 2
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weight density of the material in the vicinity of a point is
and the height is .

(a) Find a definite integral that represents the total work
done in forming the mountain.

(b) Assume that Mount Fuji in Japan is in the shape of 
a right circular cone with radius 62,000 ft, height
12,400 ft, and density a constant 200 lb�ft . How much
work was done in forming Mount Fuji if the land was
initially at sea level?

P
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P26. Find the mass of a ball given by if the

density at any point is proportional to its distance from the 
-axis.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

27–28 ■ Evaluate the integral by changing to cylindrical 
coordinates.

27.

28.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

29. When studying the formation of mountain ranges, geolo-
gists estimate the amount of work required to lift a moun-
tain from sea level. Consider a mountain that is essentially
in the shape of a right circular cone. Suppose that the 
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TRIPLE INTEGRALS IN SPHERICAL COORDINATES

Another useful coordinate system in three dimensions is the spherical coordinate sys-
tem. It simplifies the evaluation of triple integrals over regions bounded by spheres or
cones.

SPHERICAL COORDINATES

The spherical coordinates of a point in space are shown in Figure 1,
where is the distance from the origin to , is the same angle as in cylin-
drical coordinates, and is the angle between the positive -axis and the line segment

. Note that

The spherical coordinate system is especially useful in problems where there is sym-
metry about a point, and the origin is placed at this point. For example, the sphere with
center the origin and radius has the simple equation (see Figure 2); this is the
reason for the name “spherical” coordinates. The graph of the equation is a ver-
tical half-plane (see Figure 3), and the equation represents a half-cone with the
-axis as its axis (see Figure 4).
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FIGURE 1
The spherical coordinates of a point
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