12.6 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

FIGURE I

FIGURE 2
The cylindrical coordinates of a point

FIGURE 3

In plane geometry the polar coordinate system is used to give a convenient description of certain curves and regions. (See Section 9.3.) Figure 1 enables us to recall the connection between polar and Cartesian coordinates. If the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ), then, from the figure,

$$
\begin{array}{ll}
x=r \cos \theta & y=r \sin \theta \\
r^{2}=x^{2}+y^{2} & \tan \theta=\frac{y}{x}
\end{array}
$$

In three dimensions there is a coordinate system, called cylindrical coordinates, that is similar to polar coordinates and gives convenient descriptions of some commonly occurring surfaces and solids. As we will see, some triple integrals are much easier to evaluate in cylindrical coordinates.

CYLINDRICAL COORDINATES

In the cylindrical coordinate system, a point P in three-dimensional space is represented by the ordered triple (r, θ, z), where r and θ are polar coordinates of the projection of P onto the $x y$-plane and z is the directed distance from the $x y$-plane to P (see Figure 2).

To convert from cylindrical to rectangular coordinates, we use the equations

$$
\text { I } \quad x=r \cos \theta \quad y=r \sin \theta \quad z=z
$$

whereas to convert from rectangular to cylindrical coordinates, we use

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x} \quad z=z
$$

EXAMPLE I
(a) Plot the point with cylindrical coordinates $(2,2 \pi / 3,1)$ and find its rectangular coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates
(3, -3, -7).

SOLUTION

(a) The point with cylindrical coordinates $(2,2 \pi / 3,1)$ is plotted in Figure 3. From Equations 1, its rectangular coordinates are

$$
\begin{aligned}
& x=2 \cos \frac{2 \pi}{3}=2\left(-\frac{1}{2}\right)=-1 \\
& y=2 \sin \frac{2 \pi}{3}=2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3} \\
& z=1
\end{aligned}
$$

Thus the point is $(-1, \sqrt{3}, 1)$ in rectangular coordinates.

FIGURE 4

$r=c$, a cylinder

FIGURE 5

$z=r$, a cone

FIGURE 6
(b) From Equations 2 we have

$$
\begin{aligned}
r & =\sqrt{3^{2}+(-3)^{2}}=3 \sqrt{2} \\
\tan \theta & =\frac{-3}{3}=-1 \quad \text { so } \quad \theta=\frac{7 \pi}{4}+2 n \pi \\
z & =-7
\end{aligned}
$$

Therefore, one set of cylindrical coordinates is $(3 \sqrt{2}, 7 \pi / 4,-7)$. Another is $(3 \sqrt{2},-\pi / 4,-7)$. As with polar coordinates, there are infinitely many choices.

Cylindrical coordinates are useful in problems that involve symmetry about an axis, and the z-axis is chosen to coincide with this axis of symmetry. For instance, the axis of the circular cylinder with Cartesian equation $x^{2}+y^{2}=c^{2}$ is the z-axis. In cylindrical coordinates this cylinder has the very simple equation $r=c$. (See Figure 4.) This is the reason for the name "cylindrical" coordinates.

V EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is $z=r$.

SOLUTION The equation says that the z-value, or height, of each point on the surface is the same as r, the distance from the point to the z-axis. Because θ doesn't appear, it can vary. So any horizontal trace in the plane $z=k(k>0)$ is a circle of radius k. These traces suggest that the surface is a cone. This prediction can be confirmed by converting the equation into rectangular coordinates. From the first equation in (2) we have

$$
z^{2}=r^{2}=x^{2}+y^{2}
$$

We recognize the equation $z^{2}=x^{2}+y^{2}$ (by comparison with Table 1 in Section 10.6) as being a circular cone whose axis is the z-axis (see Figure 5).

EVALUATING TRIPLE INTEGRALS

WITH CYLINDRICAL COORDINATES

Suppose that E is a type 1 region whose projection D on the $x y$-plane is conveniently described in polar coordinates (see Figure 6). In particular, suppose that f is continuous and

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leqslant z \leqslant u_{2}(x, y)\right\}
$$

where D is given in polar coordinates by

$$
D=\left\{(r, \theta) \mid \alpha \leqslant \theta \leqslant \beta, h_{1}(\theta) \leqslant r \leqslant h_{2}(\theta)\right\}
$$

We know from Equation 12.5.6 that

3

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

But we also know how to evaluate double integrals in polar coordinates. In fact, com-

FIGURE 7
Volume element in cylindrical coordinates: $d V=r d z d r d \theta$

FIGURE 8

FIGURE 9
bining Equation 3 with Equation 12.3.3, we obtain

$$
4 \iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that we convert a triple integral from rectangular to cylindrical coordinates by writing $x=r \cos \theta, y=r \sin \theta$, leaving z as it is, using the appropriate limits of integration for z, r, and θ, and replacing $d V$ by $r d z d r d \theta$. (Figure 7 shows how to remember this.) It is worthwhile to use this formula when E is a solid region easily described in cylindrical coordinates, and especially when the function $f(x, y, z)$ involves the expression $x^{2}+y^{2}$.

V EXAMPLE 3 A solid E lies within the cylinder $x^{2}+y^{2}=1$, below the plane $z=4$, and above the paraboloid $z=1-x^{2}-y^{2}$. (See Figure 8.) The density at any point is proportional to its distance from the axis of the cylinder. Find the mass of E.

SOLUTION In cylindrical coordinates the cylinder is $r=1$ and the paraboloid is $z=1-r^{2}$, so we can write

$$
E=\left\{(r, \theta, z) \mid 0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant r \leqslant 1,1-r^{2} \leqslant z \leqslant 4\right\}
$$

Since the density at (x, y, z) is proportional to the distance from the z-axis, the density function is

$$
f(x, y, z)=K \sqrt{x^{2}+y^{2}}=K r
$$

where K is the proportionality constant. Therefore, from Formula 12.5.13, the mass of E is

$$
\begin{aligned}
m & =\iiint_{E} K \sqrt{x^{2}+y^{2}} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{1-r^{2}}^{4}(K r) r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} K r^{2}\left[4-\left(1-r^{2}\right)\right] d r d \theta=K \int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(3 r^{2}+r^{4}\right) d r \\
& =2 \pi K\left[r^{3}+\frac{r^{5}}{5}\right]_{0}^{1}=\frac{12 \pi K}{5}
\end{aligned}
$$

EXAMPLE 4 Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z d y d x$.
SOLUTION This iterated integral is a triple integral over the solid region

$$
E=\left\{(x, y, z) \mid-2 \leqslant x \leqslant 2,-\sqrt{4-x^{2}} \leqslant y \leqslant \sqrt{4-x^{2}}, \sqrt{x^{2}+y^{2}} \leqslant z \leqslant 2\right\}
$$

and the projection of E onto the $x y$-plane is the disk $x^{2}+y^{2} \leqslant 4$. The lower surface of E is the cone $z=\sqrt{x^{2}+y^{2}}$ and its upper surface is the plane $z=2$. (See Figure 9.) This region has a much simpler description in cylindrical coordinates:

$$
E=\{(r, \theta, z) \mid 0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant r \leqslant 2, r \leqslant z \leqslant 2\}
$$

Therefore, we have

$$
\begin{aligned}
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z d y d x & =\iiint_{E}\left(x^{2}+y^{2}\right) d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} r^{2} r d z d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{2} r^{3}(2-r) d r=2 \pi\left[\frac{1}{2} r^{4}-\frac{1}{5} r^{5}\right]_{0}^{2}=\frac{16}{5} \pi
\end{aligned}
$$

12.6 EXERCISES

I-2 = Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
I. (a) $(2, \pi / 4,1)$
(b) $(4,-\pi / 3,5)$
2. (a) $(1, \pi, e)$
(b) $(1,3 \pi / 2,2)$

3-4 - Change from rectangular to cylindrical coordinates.
3. (a) $(1,-1,4)$
(b) $(-1,-\sqrt{3}, 2)$
4. (a) $(3,3,-2)$
(b) $(3,4,5)$

5-6 - Describe in words the surface whose equation is given.
5. $r=3$
6. $\theta=\pi / 3$

7-8 = Identify the surface whose equation is given.
7. $z=r^{2}$
8. $r^{2}-2 z^{2}=4$
$9-10=$ Write the equations in cylindrical coordinates.
9. (a) $z=x^{2}+y^{2}$
(b) $x^{2}+y^{2}=2 y$
10. (a) $x^{2}+y^{2}+z^{2}=2$
(b) $z=x^{2}-y^{2}$

II-I2 - Sketch the solid described by the given inequalities.
II. $r^{2} \leqslant z \leqslant 2-r^{2}$
12. $0 \leqslant \theta \leqslant \pi / 2, \quad r \leqslant z \leqslant 2$
13. A cylindrical shell is 20 cm long, with inner radius 6 cm and outer radius 7 cm . Write inequalities that describe the shell in an appropriate coordinate system. Explain how you have positioned the coordinate system with respect to the shell.
14. Use a graphing device to draw the solid enclosed by the paraboloids $z=x^{2}+y^{2}$ and $z=5-x^{2}-y^{2}$.

15-16 = Sketch the solid whose volume is given by the integral and evaluate the integral.
15. $\int_{0}^{4} \int_{0}^{2 \pi} \int_{r}^{4} r d z d \theta d r$
16. $\int_{0}^{\pi / 2} \int_{0}^{2} \int_{0}^{9-r^{2}} r d z d r d \theta$

17-26 - Use cylindrical coordinates.
17. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$, where E is the region that lies inside the cylinder $x^{2}+y^{2}=16$ and between the planes $z=-5$ and $z=4$.
18. Evaluate $\iiint_{E}\left(x^{3}+x y^{2}\right) d V$, where E is the solid in the first octant that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.
19. Evaluate $\iiint_{E} e^{z} d V$, where E is enclosed by the paraboloid $z=1+x^{2}+y^{2}$, the cylinder $x^{2}+y^{2}=5$, and the $x y$-plane.
20. Evaluate $\iiint_{E} x d V$, where E is enclosed by the planes $z=0$ and $z=x+y+5$ and by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
21. Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
22. Find the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
23. (a) Find the volume of the region E bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=36-3 x^{2}-3 y^{2}$.
(b) Find the centroid of E (the center of mass in the case where the density is constant).
24. (a) Find the volume of the solid that the cylinder $r=a \cos \theta$ cuts out of the sphere of radius a centered at the origin.
(b) Illustrate the solid of part (a) by graphing the sphere and the cylinder on the same screen.
25. Find the mass and center of mass of the solid S bounded by the paraboloid $z=4 x^{2}+4 y^{2}$ and the plane $z=a(a>0)$ if S has constant density K.
26. Find the mass of a ball B given by $x^{2}+y^{2}+z^{2} \leqslant a^{2}$ if the density at any point is proportional to its distance from the z-axis.

27-28 - Evaluate the integral by changing to cylindrical coordinates.
27. $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z d z d x d y$
28. $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x$
29. When studying the formation of mountain ranges, geologists estimate the amount of work required to lift a mountain from sea level. Consider a mountain that is essentially in the shape of a right circular cone. Suppose that the
weight density of the material in the vicinity of a point P is $g(P)$ and the height is $h(P)$.
(a) Find a definite integral that represents the total work done in forming the mountain.
(b) Assume that Mount Fuji in Japan is in the shape of a right circular cone with radius $62,000 \mathrm{ft}$, height $12,400 \mathrm{ft}$, and density a constant $200 \mathrm{lb} / \mathrm{ft}^{3}$. How much work was done in forming Mount Fuji if the land was initially at sea level?

12.7 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

FIGURE I
The spherical coordinates of a point

FIGURE $2 \rho=c$, a sphere

Another useful coordinate system in three dimensions is the spherical coordinate system. It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

SPHERICAL COORDINATES

The spherical coordinates (ρ, θ, ϕ) of a point P in space are shown in Figure 1, where $\rho=|O P|$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and ϕ is the angle between the positive z-axis and the line segment $O P$. Note that

$$
\rho \geqslant 0 \quad 0 \leqslant \phi \leqslant \pi
$$

The spherical coordinate system is especially useful in problems where there is symmetry about a point, and the origin is placed at this point. For example, the sphere with center the origin and radius c has the simple equation $\rho=c$ (see Figure 2); this is the reason for the name "spherical" coordinates. The graph of the equation $\theta=c$ is a vertical half-plane (see Figure 3), and the equation $\phi=c$ represents a half-cone with the z-axis as its axis (see Figure 4).

FIGURE $3 \theta=c$, a half-plane

$0<c<\pi / 2$

$\pi / 2<c<\pi$

FIGURE $4 \phi=c$, a half-cone

