
Find the center of mass of a lamina in the shape of an
isosceles right triangle with equal sides of length if the
density at any point is proportional to the square of the dis-
tance from the vertex opposite the hypotenuse.

14. A lamina occupies the region inside the circle 
but outside the circle . Find the center of mass
if the density at any point is inversely proportional to its
distance from the origin.

15. Find the moments of inertia , , for the lamina of 
Exercise 7.

16. Find the moments of inertia , , for the lamina of 
Exercise 12.

17. Find the moments of inertia , , for the lamina of 
Exercise 9.

18. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the
blade is , is it more difficult to rotate the
blade about the -axis or the -axis?

19–20 ■ Use a computer algebra system to find the mass, 
center of mass, and moments of inertia of the lamina that 
occupies the region and has the given density function.

19. ;

20. is enclosed by the cardioid ;

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

21. A lamina with constant density occupies a
square with vertices , , , and . Find the
moments of inertia and and the radii of gyration and .

22. A lamina with constant density occupies the
region under the curve from to . Find
the moments of inertia and and the radii of gyration 
and .y
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��x, y� � �

yxIyIx
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r � 1 � cos �D

��x, y� � xyD � 
�x, y� � 0 
 y 
 sin x, 0 
 x 
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D

CAS

yx
��x, y� � 1 � 0.1x

I0IyIx
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x 2 � y 2 � 1
x 2 � y 2 � 2y

a
13.Electric charge is distributed over the rectangle 

, so that the charge density at 
is (measured in coulombs per

square meter). Find the total charge on the rectangle.

2. Electric charge is distributed over the disk 
so that the charge density at is

(measured in coulombs per
square meter). Find the total charge on the disk.

3–10 ■ Find the mass and center of mass of the lamina that 
occupies the region and has the given density function .

3. ;

4. ;

is the triangular region with vertices , , ;

6. is the triangular region with vertices , , ;

7. is bounded by , , , and ;

8. is bounded by , , and ;

9. is bounded by the parabola and the line
;

10. ;

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

11. A lamina occupies the part of the disk in the
first quadrant. Find its center of mass if the density at any
point is proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its dis-
tance from the origin.
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EXERCISES12.4

TRIPLE INTEGRALS

Just as we defined single integrals for functions of one variable and double integrals
for functions of two variables, so we can define triple integrals for functions of three
variables. Let’s first deal with the simplest case where is defined on a rectangular box:

The first step is to divide B into sub-boxes. We do this by dividing the interval 
into l subintervals with lengths , dividing into m sub-
intervals with lengths , and dividing into n subintervals with
lengths . The planes through the endpoints of these subintervals paral-�zk � zk � zk�1

�r, s
�yj � yj � yj�1

�c, d 
�xi � xi � xi�1�xi�1, xi

�a, b


B � 
�x, y, z� � a 
 x 
 b, c 
 y 
 d, r 
 z 
 s�1

f

12.5



lel to the coordinate planes divide the box into sub-boxes

which are shown in Figure 1. The sub-box has volume .
Then we form the triple Riemann sum

where the sample point is in . By analogy with the definition of a
double integral (12.1.5), we define the triple integral as the limit of the triple Riemann
sums in (2) as the sub-boxes shrink.

DEFINITION The triple integral of over the box is

if this limit exists.

Again, the triple integral always exists if is continuous. We can choose the sample
point to be any point in the sub-box, but if we choose it to be the point , and if
we choose sub-boxes with the same dimensions. so that , we get a simpler-
looking expression for the triple integral:

Just as for double integrals, the practical method for evaluating triple integrals is to
express them as iterated integrals as follows.

FUBINI’S THEOREM FOR TRIPLE INTEGRALS If is continuous on the
rectangular box , then

The iterated integral on the right side of Fubini’s Theorem means that we integrate
first with respect to (keeping and fixed), then we integrate with respect to (keep-
ing fixed), and finally we integrate with respect to . There are five other possible
orders in which we can integrate, all of which give the same value. For instance, if we
integrate with respect to , then , and then , we have
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FIGURE 1
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EXAMPLE 1 Evaluate the triple integral , where is the rectangular
box given by

SOLUTION We could use any of the six possible orders of integration. If we choose
to integrate with respect to , then , and then , we obtain

■

Now we define the triple integral over a general bounded region E in three-
dimensional space (a solid) by much the same procedure that we used for double inte-
grals (12.2.2). We enclose in a box of the type given by Equation 1. Then we
define a function so that it agrees with on but is 0 for points in that are out-
side . By definition,

This integral exists if is continuous and the boundary of is “reasonably smooth.”
The triple integral has essentially the same properties as the double integral (Proper-
ties 6 –9 in Section 12.2).

We restrict our attention to continuous functions and to certain simple types of
regions. A solid region is said to be of type 1 if it lies between the graphs of two
continuous functions of and , that is,

where is the projection of onto the -plane as shown in Figure 2. Notice that the
upper boundary of the solid is the surface with equation , while the
lower boundary is the surface .

By the same sort of argument that led to (12.2.3), it can be shown that if is a 
type 1 region given by Equation 5, then

The meaning of the inner integral on the right side of Equation 6 is that and are
held fixed, and therefore and are regarded as constants, while 
is integrated with respect to .

In particular, if the projection of onto the -plane is a type I plane region (as
in Figure 3), then

E � 
�x, y, z� � a 
 x 
 b, t1�x� 
 y 
 t2�x�, u1�x, y� 
 z 
 u2�x, y��

xyED
z

f �x, y, z�u2�x, y�u1�x, y�
yx

yyy
E

f �x, y, z� dV � yy
D

�yu2�x, y�

u1�x, y�
f �x, y, z� dz� dA6

E
z � u1�x, y�

z � u2�x, y�E
xyED

E � 
�x, y, z� � �x, y� � D, u1�x, y� 
 z 
 u2�x, y��5

yx
E

f

Ef

yyy
E

f �x, y, z� dV � yyy
B

F�x, y, z� dV

E
BEfF

BE

� y3

0

3z2

4
dz �

z3

4 �0

3

�
27

4
� y3

0
y2

�1

yz2

2
dy dz � y3

0
� y 2z2

4 �
y��1

y�2

dz

yyy
B

xyz2 dV � y3

0
y2

�1
y1

0
xyz2 dx dy dz � y3

0
y2

�1
� x 2yz2

2 �
x�0

x�1

dy dz

zyx

B � 
�x, y, z� � 0 
 x 
 1, �1 
 y 
 2, 0 
 z 
 3�

Bxxx
B

xyz2 dVV

SECTION 12.5 TRIPLE INTEGRALS ■ 695

FIGURE 2
A type 1 solid region
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and Equation 6 becomes

If, on the other hand, is a type II plane region (as in Figure 4), then

and Equation 6 becomes

EXAMPLE 2 Evaluate , where is the solid tetrahedron bounded by the
four planes , , , and .

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of 
the solid region (see Figure 5) and one of its projection on the -plane (see 
Figure 6). The lower boundary of the tetrahedron is the plane and the upper 
boundary is the plane (or ), so we use 
and in Formula 7. Notice that the planes and

intersect in the line (or ) in the -plane. So the projec-
tion of is the triangular region shown in Figure 6, and we have

This description of as a type 1 region enables us to evaluate the integral as 
follows:

■

A solid region is of type 2 if it is of the form

where, this time, is the projection of onto the -plane (see Figure 7). The back
surface is , the front surface is , and we have
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FIGURE 4
Another type 1 solid region
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Finally, a type 3 region is of the form

where is the projection of onto the -plane, is the left surface, and
is the right surface (see Figure 8). For this type of region we have

In each of Equations 10 and 11 there may be two possible expressions for the inte-
gral depending on whether is a type I or type II plane region (and corresponding to
Equations 7 and 8).

EXAMPLE 3 Evaluate , where is the region bounded by the
paraboloid and the plane .

SOLUTION The solid is shown in Figure 9. If we regard it as a type 1 region, then we
need to consider its projection onto the -plane, which is the parabolic region in
Figure 10. (The trace of in the plane is the parabola .)

From we obtain , so the lower boundary surface of 
is and the upper surface is . Therefore, the description
of as a type 1 region is

and so we obtain

Although this expression is correct, it is extremely difficult to evaluate. So let’s
instead consider as a type 3 region. As such, its projection onto the -plane is
the disk shown in Figure 11.

Then the left boundary of is the paraboloid and the right boundary
is the plane , so taking and in Equation 11, we u2�x, z� � 4u1�x, z� � x 2 � z2y � 4
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FIGURE 9
Region of integration
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FIGURE 8
A type 3 region
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have

Although this integral could be written as

it’s easier to convert to polar coordinates in the -plane: , .
This gives

■

APPLICATIONS OF TRIPLE INTEGRALS

Recall that if , then the single integral represents the area under the
curve from to , and if , then the double integral 
represents the volume under the surface and above . The corresponding
interpretation of a triple integral , where , is not very
useful because it would be the “hypervolume” of a four-dimensional object and, of
course, that is very difficult to visualize. (Remember that is just the domain of the
function ; the graph of lies in four-dimensional space.) Nonetheless, the triple inte-
gral can be interpreted in different ways in different physical situa-
tions, depending on the physical interpretations of , , and .

Let’s begin with the special case where for all points in . Then the
triple integral does represent the volume of :

For example, you can see this in the case of a type 1 region by putting 
in Formula 6:

and from Section 12.2 we know this represents the volume that lies between the sur-
faces and .

EXAMPLE 4 Use a triple integral to find the volume of the tetrahedron bounded
by the planes , , , and .z � 0x � 0x � 2yx � 2y � z � 2
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| The most difficult step in evaluating
a triple integral is setting up an expres-
sion for the region of integration (such as
Equation 9 in Example 2). Remember
that the limits of integration in the inner
integral contain at most two variables,
the limits of integration in the middle
integral contain at most one variable, and
the limits of integration in the outer inte-
gral must be constants.



SOLUTION The tetrahedron and its projection on the -plane are shown in
Figures 12 and 13. The lower boundary of is the plane and the upper
boundary is the plane , that is, . Therefore, we have

by the same calculation as in Example 4 in Section 12.2.
(Notice that it is not necessary to use triple integrals to compute volumes. They

simply give an alternative method for setting up the calculation.) ■

All the applications of double integrals in Section 12.4 can be immediately ex-
tended to triple integrals. For example, if the density function of a solid object that
occupies the region is , in units of mass per unit volume, at any given point

, then its mass is

and its moments about the three coordinate planes are

The center of mass is located at the point , where

If the density is constant, the center of mass of the solid is called the centroid of .
The moments of inertia about the three coordinate axes are

As in Section 12.4, the total electric charge on a solid object occupying a region
and having charge density is
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EXAMPLE 5 Find the center of mass of a solid of constant density that is
bounded by the parabolic cylinder and the planes , , and .

SOLUTION The solid and its projection onto the -plane are shown in Figure 14.
The lower and upper surfaces of are the planes and , so we describe 
as a type 1 region:

Then, if the density is , the mass is

Because of the symmetry of and about the -plane, we can immediately say
that and, therefore, . The other moments are

Therefore, the center of mass is
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3–6 ■ Evaluate the iterated integral.

3. 4.

5. 6.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

y1

0
yz

0
yy

0
ze�y2

dx dy dzy3

0
y1

0
ys1�z 2

0
ze y dx dz dy

y1

0
y2x

x
yy

0
 2xyz dz dy dxy1

0
yz

0
yx�z

0
 6xz dy dx dz

1. Evaluate the integral in Example 1, integrating first with
respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

E � 
�x, y, z� � �1 
 x 
 1, 0 
 y 
 2, 0 
 z 
 1�

xxxE �xz � y 3� dV

yxz

EXERCISES12.5



(b) Use a computer algebra system to approximate the inte-
gral in part (a) correct to the nearest integer. Compare
with the answer to part (a).

23–24 ■ Use the Midpoint Rule for triple integrals (Exer-
cise 22) to estimate the value of the integral. Divide into eight
sub-boxes of equal size.

23. , where

24. , where 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

25–26 ■ Sketch the solid whose volume is given by the iterated
integral.

26.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

27–30 ■ Express the integral as an iterated
integral in six different ways, where is the solid bounded by
the given surfaces.

27. , ,

28. , , ,

29. , ,

30.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

31. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

0

z

1

x

1 y

z=1-y

y=œ„x

y1

0
y1

sx
y1�y

0
f �x, y, z� dz dy dx

9x 2 � 4y 2 � z2 � 1

x 2 � 1 � yz � yz � 0

z � y � 2xy � 2x � 0z � 0

y � 6y � 0x 2 � z2 � 4

E
xxxE f �x, y, z� dV

y2

0
y2�y

0
y4�y 2

0
dx dz dy

y1

0
y1�x

0
y2�2z

0
dy dz dx25.

B � 
�x, y, z� � 0 
 x 
 4, 0 
 y 
 2, 0 
 z 
 1�
xxxB sin�xy 2z 3� dV

B � 
�x, y, z� � 0 
 x 
 4, 0 
 y 
 8, 0 
 z 
 4�

xxx
B

1

ln�1 � x � y � z�
dV

B

CAS7–16 ■ Evaluate the triple integral.

7. , where

8. , where

, where lies under the plane 
and above the region in the -plane bounded by the curves

, , and 

10. , where is bounded by the planes , ,
, and 

11. , where is the solid tetrahedron with vertices
, , , and 

12. , where is the solid tetrahedron with vertices
, , , and 

13. , where is bounded by the parabolic cylinder
and the planes , , and 

14. , where is bounded by the parabolic
cylinder and the planes , , and 

15. , where is bounded by the paraboloid
and the plane 

16. , where is bounded by the cylinder 
and the planes , , and in the first octant

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–20 ■ Use a triple integral to find the volume of the given
solid.

The tetrahedron enclosed by the coordinate planes and the
plane

18. The solid bounded by the cylinder and the planes
, and 

19. The solid enclosed by the cylinder and the
planes and 

20. The solid enclosed by the paraboloid and the
plane

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

(a) Express the volume of the wedge in the first octant that
is cut from the cylinder by the planes

and as a triple integral.
(b) Use either the Table of Integrals (on Reference

Pages 6 –10) or a computer algebra system to find the
exact value of the triple integral in part (a).

22. (a) In the Midpoint Rule for triple integrals we use a
triple Riemann sum to approximate a triple integral over
a box , where is evaluated at the center

of the box . Use the Midpoint Rule to esti-
mate , where is the cube
defined by , , . Divide

into eight cubes of equal size.B
0 
 z 
 40 
 y 
 40 
 x 
 4
BxxxB sx 2 � y 2 � z 2 dV

Bijk�xi, yj, zk �
f �x, y, z�B

CAS

x � 1y � x
y 2 � z2 � 1

21.

x � 16
x � y 2 � z 2

z � 1y � z � 5
x 2 � y 2 � 9

y � 9z � 4z � 0,
y � x 2

2x � y � z � 4
17.

z � 0y � 3xx � 0
y 2 � z2 � 9ExxxE z dV

x � 4x � 4y 2 � 4z2
ExxxE x dV

z � 0x � yx � zy � x 2
ExxxE �x � 2y� dV

x � �1x � 1z � 0z � 1 � y 2
ExxxE x 2e y dV

�0, 1, 1��1, 1, 0��0, 1, 0��0, 0, 0�
ExxxE xz dV

�0, 0, 3��0, 2, 0��1, 0, 0��0, 0, 0�
ExxxE xy dV

2x � 2y � z � 4z � 0
y � 0x � 0ExxxE y dV

x � 1y � 0y � sx
xy

z � 1 � x � yExxxE 6xy dV9.

E � 
�x, y, z� � 0 
 x 
 1, 0 
 y 
 x, x 
 z 
 2x�
xxxE yz cos�x 5 � dV

E � {�x, y, z� � 0 
 y 
 2, 0 
 x 
 s4 � y 2 , 0 
 z 
 y}
xxxE 2x dV
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