- **23**. The part of the disk $x^2 + y^2 \le a^2$ in the first quadrant
- **24.** The region under the curve $y = \sin x$ from x = 0 to $x = \pi$

CAS 25–26 Use a computer algebra system to find the mass, center of mass, and moments of inertia of the lamina that occupies the region D and has the given density function.

- **25.** *D* is enclosed by the right loop of the four-leaved rose $r = \cos 2\theta$; $\rho(x, y) = x^2 + y^2$
- **26.** $D = \{(x, y) \mid 0 \le y \le xe^{-x}, 0 \le x \le 2\}; \rho(x, y) = x^2y^2$
- **27**. The joint density function for a pair of random variables *X* and *Y* is

$$f(x, y) = \begin{cases} Cx(1+y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the value of the constant C.
- (b) Find $P(X \le 1, Y \le 1)$.
- (c) Find $P(X + Y \le 1)$.
- 28. (a) Verify that

$$f(x, y) = \begin{cases} 4xy & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

is a joint density function.

(b) If *X* and *Y* are random variables whose joint density function is the function *f* in part (a), find

(i)
$$P(X \ge \frac{1}{2})$$
 (ii) $P(X \ge \frac{1}{2}, Y \le \frac{1}{2})$

- (c) Find the expected values of *X* and *Y*.
- **29.** Suppose *X* and *Y* are random variables with joint density function

$$f(x, y) = \begin{cases} 0.1e^{-(0.5x+0.2y)} & \text{if } x \ge 0, \ y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- (a) Verify that f is indeed a joint density function.
- (b) Find the following probabilities.
 - (i) $P(Y \ge 1)$ (ii) $P(X \le 2, Y \le 4)$
- (c) Find the expected values of *X* and *Y*.
- **30.** (a) A lamp has two bulbs of a type with an average lifetime of 1000 hours. Assuming that we can model the probability of failure of these bulbs by an exponential density function with mean $\mu = 1000$, find the probability that both of the lamp's bulbs fail within 1000 hours.

15.6 Surface Area

In Section 16.6 we will deal with areas of more general surfaces, called parametric surfaces, and so this section need not be covered if that later section will be covered.

In this section we apply double integrals to the problem of computing the area of a surface. In Section 8.2 we found the area of a very special type of surface—a surface of revolution—by the methods of single-variable calculus. Here we compute the area of a surface with equation z = f(x, y), the graph of a function of two variables.

Let *S* be a surface with equation z = f(x, y), where *f* has continuous partial derivatives. For simplicity in deriving the surface area formula, we assume that $f(x, y) \ge 0$ and the

- (b) Another lamp has just one bulb of the same type as in part (a). If one bulb burns out and is replaced by a bulb of the same type, find the probability that the two bulbs fail within a total of 1000 hours.
- **CAS 31.** Suppose that *X* and *Y* are independent random variables, where *X* is normally distributed with mean 45 and standard deviation 0.5 and *Y* is normally distributed with mean 20 and standard deviation 0.1.

(a) Find $P(40 \le X \le 50, 20 \le Y \le 25)$.

- (b) Find $P(4(X 45)^2 + 100(Y 20)^2 \le 2)$.
- **32.** Xavier and Yolanda both have classes that end at noon and they agree to meet every day after class. They arrive at the coffee shop independently. Xavier's arrival time is *X* and Yolanda's arrival time is *Y*, where *X* and *Y* are measured in minutes after noon. The individual density functions are

$$f_1(x) = \begin{cases} e^{-x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases} \quad f_2(y) = \begin{cases} \frac{1}{50}y & \text{if } 0 \le y \le 10\\ 0 & \text{otherwise} \end{cases}$$

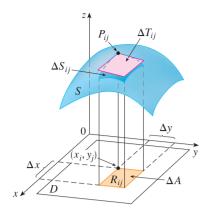
(Xavier arrives sometime after noon and is more likely to arrive promptly than late. Yolanda always arrives by 12:10 PM and is more likely to arrive late than promptly.) After Yolanda arrives, she'll wait for up to half an hour for Xavier, but he won't wait for her. Find the probability that they meet.

33. When studying the spread of an epidemic, we assume that the probability that an infected individual will spread the disease to an uninfected individual is a function of the distance between them. Consider a circular city of radius 10 miles in which the population is uniformly distributed. For an uninfected individual at a fixed point $A(x_0, y_0)$, assume that the probability function is given by

$$f(P) = \frac{1}{20} [20 - d(P, A)]$$

where d(P, A) denotes the distance between points P and A.

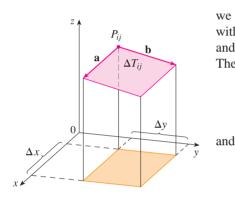
- (a) Suppose the exposure of a person to the disease is the sum of the probabilities of catching the disease from all members of the population. Assume that the infected people are uniformly distributed throughout the city, with *k* infected individuals per square mile. Find a double integral that represents the exposure of a person residing at *A*.
- (b) Evaluate the integral for the case in which *A* is the center of the city and for the case in which *A* is located on the edge of the city. Where would you prefer to live?



domain *D* of *f* is a rectangle. We divide *D* into small rectangles R_{ij} with area $\Delta A = \Delta x \Delta y$. If (x_i, y_j) is the corner of R_{ij} closest to the origin, let $P_{ij}(x_i, y_j, f(x_i, y_j))$ be the point on *S* directly above it (see Figure 1). The tangent plane to *S* at P_{ij} is an approximation to *S* near P_{ij} . So the area ΔT_{ij} of the part of this tangent plane (a parallelogram) that lies directly above R_{ij} is an approximation to the area ΔS_{ij} of the part of *S* that lies directly above R_{ij} . Thus the sum $\Sigma\Sigma \Delta T_{ij}$ is an approximation to the total area of *S*, and this approximation appears to improve as the number of rectangles increases. Therefore we define the **surface area** of *S* to be

$$A(S) = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \Delta T_{ij}$$

FIGURE 1



To find a formula that is more convenient than Equation 1 for computational purposes, we let **a** and **b** be the vectors that start at P_{ij} and lie along the sides of the parallelogram with area ΔT_{ij} . (See Figure 2.) Then $\Delta T_{ij} = |\mathbf{a} \times \mathbf{b}|$. Recall from Section 14.3 that $f_x(x_i, y_j)$ and $f_y(x_i, y_j)$ are the slopes of the tangent lines through P_{ij} in the directions of **a** and **b**. Therefore

$$\mathbf{a} = \Delta x \,\mathbf{i} + f_x(x_i, y_j) \,\Delta x \,\mathbf{k}$$
$$\mathbf{b} = \Delta y \,\mathbf{j} + f_y(x_i, y_j) \,\Delta y \,\mathbf{k}$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Delta x & 0 & f_x(x_i, y_j) \Delta x \\ 0 & \Delta y & f_y(x_i, y_j) \Delta y \end{vmatrix}$$
$$= -f_x(x_i, y_j) \Delta x \Delta y \mathbf{i} - f_y(x_i, y_j) \Delta x \Delta y \mathbf{j} + \Delta x \Delta y \mathbf{k}$$
$$= [-f_x(x_i, y_j) \mathbf{i} - f_y(x_i, y_j) \mathbf{j} + \mathbf{k}] \Delta A$$

Thus

1

$$\Delta T_{ij} = |\mathbf{a} \times \mathbf{b}| = \sqrt{[f_x(x_i, y_j)]^2 + [f_y(x_i, y_j)]^2 + 1} \Delta A$$

From Definition 1 we then have

$$A(S) = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \Delta T_{ij}$$

=
$$\lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \sqrt{[f_x(x_i, y_j)]^2 + [f_y(x_i, y_j)]^2 + 1} \Delta A$$

and by the definition of a double integral we get the following formula.

2 The area of the surface with equation z = f(x, y), $(x, y) \in D$, where f_x and f_y are continuous, is

$$A(S) = \iint_{D} \sqrt{[f_{x}(x, y)]^{2} + [f_{y}(x, y)]^{2} + 1} \, dA$$

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We will verify in Section 16.6 that this formula is consistent with our previous formula for the area of a surface of revolution. If we use the alternative notation for partial derivatives, we can rewrite Formula 2 as follows:

3
$$A(s) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dA$$

Notice the similarity between the surface area formula in Equation 3 and the arc length formula from Section 8.1:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

EXAMPLE 1 Find the surface area of the part of the surface $z = x^2 + 2y$ that lies above the triangular region *T* in the *xy*-plane with vertices (0, 0), (1, 0), and (1, 1).

SOLUTION The region *T* is shown in Figure 3 and is described by

$$T = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le x\}$$

Using Formula 2 with $f(x, y) = x^2 + 2y$, we get

$$A = \iint_{T} \sqrt{(2x)^2 + (2)^2 + 1} \, dA = \int_{0}^{1} \int_{0}^{x} \sqrt{4x^2 + 5} \, dy \, dx$$
$$= \int_{0}^{1} x \sqrt{4x^2 + 5} \, dx = \frac{1}{8} \cdot \frac{2}{3} (4x^2 + 5)^{3/2} \Big]_{0}^{1} = \frac{1}{12} (27 - 5\sqrt{5})$$

Figure 4 shows the portion of the surface whose area we have just computed.

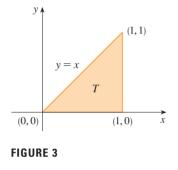
EXAMPLE 2 Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

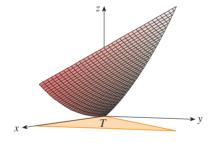
SOLUTION The plane intersects the paraboloid in the circle $x^2 + y^2 = 9$, z = 9. Therefore the given surface lies above the disk *D* with center the origin and radius 3. (See Figure 5.) Using Formula 3, we have

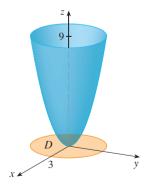
$$A = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dA = \iint_{D} \sqrt{1 + (2x)^2 + (2y)^2} \, dA$$
$$= \iint_{D} \sqrt{1 + 4(x^2 + y^2)} \, dA$$

Converting to polar coordinates, we obtain

$$A = \int_0^{2\pi} \int_0^3 \sqrt{1 + 4r^2} r \, dr \, d\theta = \int_0^{2\pi} d\theta \int_0^3 \frac{1}{8} \sqrt{1 + 4r^2} \, (8r) \, dr$$
$$= 2\pi \left(\frac{1}{8}\right)_3^2 (1 + 4r^2)^{3/2} \Big]_0^3 = \frac{\pi}{6} \left(37\sqrt{37} - 1\right)$$







Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

15.6 Exercises

- 1–12 Find the area of the surface.
- 1. The part of the plane z = 2 + 3x + 4y that lies above the rectangle $[0, 5] \times [1, 4]$
- 2. The part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$
- **3.** The part of the plane 3x + 2y + z = 6 that lies in the first octant
- 4. The part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0, 0), (0, 1), and (2, 1)
- 5. The part of the cylinder $y^2 + z^2 = 9$ that lies above the rectangle with vertices (0, 0), (4, 0), (0, 2), and (4, 2)
- 6. The part of the paraboloid $z = 4 x^2 y^2$ that lies above the *xy*-plane
- 7. The part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- 8. The surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), \ 0 \le x \le 1, \ 0 \le y \le 1$
- 9. The part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$
- **10.** The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the plane z = 1
- **11.** The part of the sphere $x^2 + y^2 + z^2 = a^2$ that lies within the cylinder $x^2 + y^2 = ax$ and above the *xy*-plane
- 12. The part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$

13–14 Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral.

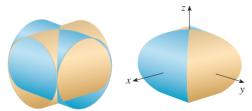
- **13.** The part of the surface $z = e^{-x^2 y^2}$ that lies above the disk $x^2 + y^2 \le 4$
- 14. The part of the surface $z = cos(x^2 + y^2)$ that lies inside the cylinder $x^2 + y^2 = 1$
- 15. (a) Use the Midpoint Rule for double integrals (see Section 15.1) with four squares to estimate the surface area of the portion of the paraboloid z = x² + y² that lies above the square [0, 1] × [0, 1].
- CAS (b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).

- (a) Use the Midpoint Rule for double integrals with m = n = 2 to estimate the area of the surface z = xy + x² + y², 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.
- (b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).
- CAS 17. Find the exact area of the surface $z = 1 + 2x + 3y + 4y^2$, $1 \le x \le 4, 0 \le y \le 1$.
- CAS **18.** Find the exact area of the surface

 $z = 1 + x + y + x^{2}$ $-2 \le x \le 1$ $-1 \le y \le 1$

Illustrate by graphing the surface.

- **19.** Find, to four decimal places, the area of the part of the surface $z = 1 + x^2y^2$ that lies above the disk $x^2 + y^2 \le 1$.
- **CAS** 20. Find, to four decimal places, the area of the part of the surface $z = (1 + x^2)/(1 + y^2)$ that lies above the square $|x| + |y| \le 1$. Illustrate by graphing this part of the surface.
 - **21.** Show that the area of the part of the plane z = ax + by + cthat projects onto a region *D* in the *xy*-plane with area A(D)is $\sqrt{a^2 + b^2 + 1} A(D)$.
 - **22.** If you attempt to use Formula 2 to find the area of the top half of the sphere $x^2 + y^2 + z^2 = a^2$, you have a slight problem because the double integral is improper. In fact, the integrand has an infinite discontinuity at every point of the boundary circle $x^2 + y^2 = a^2$. However, the integral can be computed as the limit of the integral over the disk $x^2 + y^2 \le t^2$ as $t \to a^-$. Use this method to show that the area of a sphere of radius *a* is $4\pi a^2$.
 - **23.** Find the area of the finite part of the paraboloid $y = x^2 + z^2$ cut off by the plane y = 25. [*Hint:* Project the surface onto the *xz*-plane.]
 - **24.** The figure shows the surface created when the cylinder $y^2 + z^2 = 1$ intersects the cylinder $x^2 + z^2 = 1$. Find the area of this surface.



CAS Computer algebra system required

1. Homework Hints available at stewartcalculus.com

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.