tive x-axis passes through the point where the prime meridian (the meridian through Greenwich, England) intersects the equator. Then the latitude of P is $\alpha=90^{\circ}-\phi^{\circ}$ and the longitude is $\beta=360^{\circ}-\theta^{\circ}$. Find the great-circle distance from Los Angeles (lat. $34.06^{\circ} \mathrm{N}$, long. $118.25^{\circ} \mathrm{W}$) to Montréal (lat. $45.50^{\circ} \mathrm{N}$, long. $73.60^{\circ} \mathrm{W}$). Take the radius of the Earth to be 3960 mi . (A great circle is the circle of intersection of a sphere and a plane through the center of the sphere.)
39. The surfaces $\rho=1+\frac{1}{5} \sin m \theta \sin n \phi$ have been used as models for tumors. The "bumpy sphere" with $m=6$ and $n=5$ is shown. Use a computer algebra system to find the volume it encloses.

40. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z=2 \pi
$$

(The improper triple integral is defined as the limit of a triple integral over a solid sphere as the radius of the sphere increases indefinitely.)
4I. (a) Use cylindrical coordinates to show that the volume of the solid bounded above by the sphere $r^{2}+z^{2}=a^{2}$ and below by the cone $z=r \cot \phi_{0}$ (or $\phi=\phi_{0}$), where $0<\phi_{0}<\pi / 2$, is

$$
V=\frac{2 \pi a^{3}}{3}\left(1-\cos \phi_{0}\right)
$$

(b) Deduce that the volume of the spherical wedge given by $\rho_{1} \leqslant \rho \leqslant \rho_{2}, \theta_{1} \leqslant \theta \leqslant \theta_{2}, \phi_{1} \leqslant \phi \leqslant \phi_{2}$ is

$$
\Delta V=\frac{\rho_{2}^{3}-\rho_{1}^{3}}{3}\left(\cos \phi_{1}-\cos \phi_{2}\right)\left(\theta_{2}-\theta_{1}\right)
$$

(c) Use the Mean Value Theorem to show that the volume in part (b) can be written as

$$
\Delta V=\tilde{\rho}^{2} \sin \tilde{\phi} \Delta \rho \Delta \theta \Delta \phi
$$

where $\tilde{\rho}$ lies between ρ_{1} and $\rho_{2}, \tilde{\phi}$ lies between ϕ_{1} and $\phi_{2}, \Delta \rho=\rho_{2}-\rho_{1}, \Delta \theta=\theta_{2}-\theta_{1}$, and $\Delta \phi=\phi_{2}-\phi_{1}$.

12.8 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

In one-dimensional calculus we often use a change of variable (a substitution) to simplify an integral. By reversing the roles of x and u, we can write the Substitution Rule (5.5.6) as

I

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u
$$

where $x=g(u)$ and $a=g(c), b=g(d)$. Another way of writing Formula 1 is as follows:

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(x(u)) \frac{d x}{d u} d u
$$

A change of variables can also be useful in double integrals. We have already seen one example of this: conversion to polar coordinates. The new variables r and θ are related to the old variables x and y by the equations

$$
x=r \cos \theta \quad y=r \sin \theta
$$

and the change of variables formula (12.3.2) can be written as

$$
\iint_{R} f(x, y) d A=\iint_{S} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

where S is the region in the $r \theta$-plane that corresponds to the region R in the $x y$-plane.

FIGURE I
More generally, we consider a change of variables that is given by a transformation T from the $u v$-plane to the $x y$-plane:

$$
T(u, v)=(x, y)
$$

where x and y are related to u and v by the equations

$$
3 \quad x=g(u, v) \quad y=h(u, v)
$$

or, as we sometimes write,

$$
x=x(u, v) \quad y=y(u, v)
$$

We usually assume that T is a \boldsymbol{C}^{1} transformation, which means that g and h have continuous first-order partial derivatives.

A transformation T is really just a function whose domain and range are both subsets of \mathbb{R}^{2}. If $T\left(u_{1}, v_{1}\right)=\left(x_{1}, y_{1}\right)$, then the point $\left(x_{1}, y_{1}\right)$ is called the image of the point $\left(u_{1}, v_{1}\right)$. If no two points have the same image, T is called one-to-one. Figure 1 shows the effect of a transformation T on a region S in the $u v$-plane. T transforms S into a region R in the $x y$-plane called the image of S, consisting of the images of all points in S.

FIGURE 2

If T is a one-to-one transformation, then it has an inverse transformation T^{-1} from the $x y$-plane to the $u v$-plane and it may be possible to solve Equations 3 for u and v in terms of x and y :

$$
u=G(x, y) \quad v=H(x, y)
$$

V EXAMPLE I A transformation is defined by the equations

$$
x=u^{2}-v^{2} \quad y=2 u v
$$

Find the image of the square $S=\{(u, v) \mid 0 \leqslant u \leqslant 1,0 \leqslant v \leqslant 1\}$.
SOLUTION The transformation maps the boundary of S into the boundary of the image. So we begin by finding the images of the sides of S. The first side, S_{1}, is given by $v=0(0 \leqslant u \leqslant 1)$. (See Figure 2.) From the given equations we have $x=u^{2}, y=0$, and so $0 \leqslant x \leqslant 1$. Thus S_{1} is mapped into the line segment from $(0,0)$ to $(1,0)$ in the $x y$-plane. The second side, S_{2}, is $u=1(0 \leqslant v \leqslant 1)$ and, putting $u=1$ in the given equations, we get

$$
x=1-v^{2} \quad y=2 v
$$

Eliminating v, we obtain
4

$$
x=1-\frac{y^{2}}{4} \quad 0 \leqslant x \leqslant 1
$$

which is part of a parabola. Similarly, S_{3} is given by $v=1(0 \leqslant u \leqslant 1)$, whose image is the parabolic arc

5

$$
x=\frac{y^{2}}{4}-1 \quad-1 \leqslant x \leqslant 0
$$

Finally, S_{4} is given by $u=0(0 \leqslant v \leqslant 1)$ whose image is $x=-v^{2}, y=0$, that is, $-1 \leqslant x \leqslant 0$. (Notice that as we move around the square in the counterclockwise direction, we also move around the parabolic region in the counterclockwise direction.) The image of S is the region R (shown in Figure 2) bounded by the x-axis and the parabolas given by Equations 4 and 5 .

Now let's see how a change of variables affects a double integral. We start with a small rectangle S in the $u v$-plane whose lower left corner is the point $\left(u_{0}, v_{0}\right)$ and whose dimensions are Δu and Δv. (See Figure 3.)

FIGURE 3

The image of S is a region R in the $x y$-plane, one of whose boundary points is $\left(x_{0}, y_{0}\right)=T\left(u_{0}, v_{0}\right)$. The vector

$$
\mathbf{r}(u, v)=g(u, v) \mathbf{i}+h(u, v) \mathbf{j}
$$

is the position vector of the image of the point (u, v). The equation of the lower side of S is $v=v_{0}$, whose image curve is given by the vector function $\mathbf{r}\left(u, v_{0}\right)$. The tangent vector at $\left(x_{0}, y_{0}\right)$ to this image curve is

$$
\mathbf{r}_{u}=g_{u}\left(u_{0}, v_{0}\right) \mathbf{i}+h_{u}\left(u_{0}, v_{0}\right) \mathbf{j}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}
$$

Similarly, the tangent vector at $\left(x_{0}, y_{0}\right)$ to the image curve of the left side of S (namely, $\left.u=u_{0}\right)$ is

$$
\mathbf{r}_{v}=g_{v}\left(u_{0}, v_{0}\right) \mathbf{i}+h_{v}\left(u_{0}, v_{0}\right) \mathbf{j}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}
$$

We can approximate the image region $R=T(S)$ by a parallelogram determined by the secant vectors

$$
\mathbf{a}=\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \quad \mathbf{b}=\mathbf{r}\left(u_{0}, v_{0}+\Delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right)
$$

shown in Figure 4. But

$$
\mathbf{r}_{u}=\lim _{\Delta u \rightarrow 0} \frac{\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right)}{\Delta u}
$$

FIGURE 5

- The Jacobian is named after the German mathematician Carl Gustav Jacob Jacobi (1804-1851). Although the French mathematician Cauchy first used these special determinants involving partial derivatives, Jacobi developed them into a method for evaluating multiple integrals.
and so

$$
\begin{array}{r}
\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \approx \Delta u \mathbf{r}_{u} \\
\mathbf{r}\left(u_{0}, v_{0}+\Delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \approx \Delta v \mathbf{r}_{v}
\end{array}
$$

Similarly

This means that we can approximate R by a parallelogram determined by the vectors $\Delta u \mathbf{r}_{u}$ and $\Delta v \mathbf{r}_{v}$. (See Figure 5.) Therefore, we can approximate the area of R by the area of this parallelogram, which, from Section 10.4, is

6

$$
\left|\left(\Delta u \mathbf{r}_{u}\right) \times\left(\Delta v \mathbf{r}_{v}\right)\right|=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v
$$

Computing the cross product, we obtain

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0
\end{array}\right|=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right| \mathbf{k}=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \mathbf{k}
$$

The determinant that arises in this calculation is called the Jacobian of the transformation and is given a special notation.

7 DEFINITION The Jacobian of the transformation T given by $x=g(u, v)$ and $y=h(u, v)$ is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

With this notation we can use Equation 6 to give an approximation to the area ΔA of R :

8

$$
\Delta A \approx\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v
$$

where the Jacobian is evaluated at $\left(u_{0}, v_{0}\right)$.
Next we divide a region S in the $u v$-plane into rectangles $S_{i j}$ and call their images in the $x y$-plane $R_{i j}$. (See Figure 6.)

Applying the approximation (8) to each $R_{i j}$, we approximate the double integral of f over R as follows:

$$
\begin{aligned}
\iint_{R} f(x, y) d A & \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right) \Delta A \\
& \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(g\left(u_{i}, v_{j}\right), h\left(u_{i}, v_{j}\right)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v
\end{aligned}
$$

where the Jacobian is evaluated at $\left(u_{i}, v_{j}\right)$. Notice that this double sum is a Riemann sum for the integral

$$
\iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

The foregoing argument suggests that the following theorem is true. (A full proof is given in books on advanced calculus.)

CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that T is a C^{1} transformation whose Jacobian is nonzero and that maps a region S in the $u v$ plane onto a region R in the $x y$-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-toone, except perhaps on the boundary of S. Then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Theorem 9 says that we change from an integral in x and y to an integral in u and v by expressing x and y in terms of u and v and writing

$$
d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Notice the similarity between Theorem 9 and the one-dimensional formula in Equation 2. Instead of the derivative $d x / d u$, we have the absolute value of the Jacobian, that is, $|\partial(x, y) / \partial(u, v)|$.

As a first illustration of Theorem 9, we show that the formula for integration in polar coordinates is just a special case. Here the transformation T from the $r \theta$-plane to the $x y$-plane is given by

$$
x=g(r, \theta)=r \cos \theta \quad y=h(r, \theta)=r \sin \theta
$$

and the geometry of the transformation is shown in Figure 7. T maps an ordinary rectangle in the $r \theta$-plane to a polar rectangle in the $x y$-plane. The Jacobian of T is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r>0
$$

Thus Theorem 9 gives

$$
\begin{aligned}
\iint_{R} f(x, y) d x d y & =\iint_{S} f(r \cos \theta, r \sin \theta)\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta \\
& =\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

which is the same as Formula 12.3.2.

V EXAMPLE 2 Use the change of variables $x=u^{2}-v^{2}, y=2 u v$ to evaluate the integral $\iint_{R} y d A$, where R is the region bounded by the x-axis and the parabolas $y^{2}=4-4 x$ and $y^{2}=4+4 x, y \geqslant 0$.
SOLUTION The region R is pictured in Figure 2 (on page 714). In Example 1 we discovered that $T(S)=R$, where S is the square $[0,1] \times[0,1]$. Indeed, the reason for making the change of variables to evaluate the integral is that S is a much simpler region than R. First we need to compute the Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{rr}
2 u & -2 v \\
2 v & 2 u
\end{array}\right|=4 u^{2}+4 v^{2}>0
$$

Therefore, by Theorem 9,

$$
\begin{aligned}
\iint_{R} y d A & =\iint_{S} 2 u v\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A=\int_{0}^{1} \int_{0}^{1}(2 u v) 4\left(u^{2}+v^{2}\right) d u d v \\
& =8 \int_{0}^{1} \int_{0}^{1}\left(u^{3} v+u v^{3}\right) d u d v=8 \int_{0}^{1}\left[\frac{1}{4} u^{4} v+\frac{1}{2} u^{2} v^{3}\right]_{u=0}^{u=1} d v \\
& =\int_{0}^{1}\left(2 v+4 v^{3}\right) d v=\left[v^{2}+v^{4}\right]_{0}^{1}=2
\end{aligned}
$$

NOTE Example 2 was not a very difficult problem to solve because we were given a suitable change of variables. If we are not supplied with a transformation, then the first step is to think of an appropriate change of variables. If $f(x, y)$ is difficult to integrate, then the form of $f(x, y)$ may suggest a transformation. If the region of integration R is awkward, then the transformation should be chosen so that the corresponding region S in the $u v$-plane has a convenient description.

EXAMPLE 3 Evaluate the integral $\iint_{R} e^{(x+y) /(x-y)} d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,-2)$, and $(0,-1)$.
SOLUTION Since it isn't easy to integrate $e^{(x+y) /(x-y)}$, we make a change of variables suggested by the form of this function:

$$
\begin{equation*}
u=x+y \quad v=x-y \tag{10}
\end{equation*}
$$

These equations define a transformation T^{-1} from the $x y$-plane to the $u v$-plane. Theorem 9 talks about a transformation T from the $u v$-plane to the $x y$-plane. It is
obtained by solving Equations 10 for x and y :

$$
\text { II } \quad x=\frac{1}{2}(u+v) \quad y=\frac{1}{2}(u-v)
$$

The Jacobian of T is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2}
$$

To find the region S in the $u v$-plane corresponding to R, we note that the sides of R lie on the lines

$$
y=0 \quad x-y=2 \quad x=0 \quad x-y=1
$$

and, from either Equations 10 or Equations 11, the image lines in the $u v$-plane are

$$
u=v \quad v=2 \quad u=-v \quad v=1
$$

Thus the region S is the trapezoidal region with vertices $(1,1),(2,2),(-2,2)$, and $(-1,1)$ shown in Figure 8. Since

$$
S=\{(u, v) \mid 1 \leqslant v \leqslant 2,-v \leqslant u \leqslant v\}
$$

Theorem 9 gives

$$
\begin{aligned}
\iint_{R} e^{(x+y) /(x-y)} d A & =\iint_{S} e^{u / v}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \\
& =\int_{1}^{2} \int_{-v}^{v} e^{u / v}\left(\frac{1}{2}\right) d u d v=\frac{1}{2} \int_{1}^{2}\left[v e^{u / v}\right]_{u=-v}^{u=v} d v \\
& =\frac{1}{2} \int_{1}^{2}\left(e-e^{-1}\right) v d v=\frac{3}{4}\left(e-e^{-1}\right)
\end{aligned}
$$

TRIPLE INTEGRALS

There is a similar change of variables formula for triple integrals. Let T be a transformation that maps a region S in $u v w$-space onto a region R in $x y z$-space by means of the equations

$$
x=g(u, v, w) \quad y=h(u, v, w) \quad z=k(u, v, w)
$$

The Jacobian of T is the following 3×3 determinant:

12

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Under hypotheses similar to those in Theorem 9, we have the following formula for triple integrals:
[13 $\iint_{R} f(x, y, z) d V$

$$
=\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

(V EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical coordinates.
sOLUTION Here the change of variables is given by

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi
$$

We compute the Jacobian as follows:

$$
\begin{aligned}
\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}= & \left|\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\cos \phi & 0 & -\rho \sin \phi
\end{array}\right| \\
= & \cos \phi\left|\begin{array}{cc}
-\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta
\end{array}\right|-\rho \sin \phi\left|\begin{array}{cc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta
\end{array}\right| \\
= & \cos \phi\left(-\rho^{2} \sin \phi \cos \phi \sin ^{2} \theta-\rho^{2} \sin \phi \cos \phi \cos ^{2} \theta\right) \\
& \quad-\rho \sin \phi\left(\rho \sin ^{2} \phi \cos ^{2} \theta+\rho \sin ^{2} \phi \sin ^{2} \theta\right) \\
= & -\rho^{2} \sin \phi \cos ^{2} \phi-\rho^{2} \sin \phi \sin ^{2} \phi=-\rho^{2} \sin \phi
\end{aligned}
$$

Since $0 \leqslant \phi \leqslant \pi$, we have $\sin \phi \geqslant 0$. Therefore

$$
\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}\right|=\left|-\rho^{2} \sin \phi\right|=\rho^{2} \sin \phi
$$

and Formula 13 gives

$$
\iiint_{R} f(x, y, z) d V=\iiint_{S} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

which is equivalent to Formula 12.7.3.

12.8 EXERCISES

I-6 - Find the Jacobian of the transformation.
I. $x=u+4 v, \quad y=3 u-2 v$
2. $x=u^{2}-v^{2}, \quad y=u^{2}+v^{2}$
3. $x=\frac{u}{u+v}, \quad y=\frac{v}{u-v}$
4. $x=\alpha \sin \beta, \quad y=\alpha \cos \beta$
5. $x=u v, \quad y=v w, \quad z=u w$
6. $x=e^{u-v}, \quad y=e^{u+v}, \quad z=e^{u+v+w}$
$7-10=$ Find the image of the set S under the given transformation.
7. $S=\{(u, v) \mid 0 \leqslant u \leqslant 3,0 \leqslant v \leqslant 2\}$; $x=2 u+3 v, y=u-v$
8. S is the square bounded by the lines $u=0, u=1, v=0$, $v=1 ; \quad x=v, y=u\left(1+v^{2}\right)$
9. S is the triangular region with vertices $(0,0),(1,1),(0,1)$; $x=u^{2}, y=v$
10. S is the disk given by $u^{2}+v^{2} \leqslant 1 ; \quad x=a u, y=b v$

11-16 = Use the given transformation to evaluate the integral.
II. $\iint_{R}(x-3 y) d A$, where R is the triangular region with vertices $(0,0),(2,1)$, and $(1,2) ; \quad x=2 u+v, y=u+2 v$
12. $\iint_{R}(4 x+8 y) d A$, where R is the parallelogram with vertices $(-1,3),(1,-3),(3,-1)$, and $(1,5)$; $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$
13. $\iint_{R} x^{2} d A$, where R is the region bounded by the ellipse $9 x^{2}+4 y^{2}=36 ; \quad x=2 u, y=3 v$
14. $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$, where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$; $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$
15. $\iint_{R} x y d A$, where R is the region in the first quadrant bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1, x y=3 ; \quad x=u / v, y=v$
16. $\iint_{R} y^{2} d A$, where R is the region bounded by the curves $x y=1, x y=2, x y^{2}=1, x y^{2}=2 ; \quad u=x y, v=x y^{2}$. Illustrate by using a graphing calculator or computer to draw R.
17. (a) Evaluate $\iiint_{E} d V$, where E is the solid enclosed by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$. Use the transformation $x=a u, y=b v, z=c w$.
(b) The Earth is not a perfect sphere; rotation has resulted in flattening at the poles. So the shape can be approximated by an ellipsoid with $a=b=6378 \mathrm{~km}$ and $c=6356 \mathrm{~km}$. Use part (a) to estimate the volume of the Earth.
18. Evaluate $\iiint_{E} x^{2} y d V$, where E is the solid of Exercise 17(a).

19-23 - Evaluate the integral by making an appropriate change of variables.
19. $\iint_{R} \frac{x-2 y}{3 x-y} d A$, where R is the parallelogram enclosed by the lines $x-2 y=0, x-2 y=4,3 x-y=1$, and $3 x-y=8$
20. $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where R is the rectangle enclosed by the lines $x-y=0, x-y=2, x+y=0$, and $x+y=3$
21. $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,2)$, and $(0,1)$
22. $\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A$, where R is the region in the first quadrant bounded by the ellipse $9 x^{2}+4 y^{2}=1$
23. $\iint_{R} e^{x+y} d A$, where R is given by the inequality
$|x|+|y| \leqslant 1$
24. Let f be continuous on $[0,1]$ and let R be the triangular region with vertices $(0,0),(1,0)$, and $(0,1)$. Show that

$$
\iint_{R} f(x+y) d A=\int_{0}^{1} u f(u) d u
$$

