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tive x-axis passes through the point where the prime merid-
ian (the meridian through Greenwich, England) intersects
the equator. Then the latitude of P is & = 90° — ¢° and the
longitude is B = 360° — 0°. Find the great-circle distance
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from Los Angeles (lat. 34.06° N, long. 118.25° W) to Mont-

réal (lat. 45.50° N, long. 73.60° W). Take the radius of the
Earth to be 3960 mi. (A great circle is the circle of inter-

section of a sphere and a plane through the center of the 41

sphere.)

The surfaces p = 1 + % sin m# sin n¢ have been used as
models for tumors. The “bumpy sphere” with m = 6 and
n = 5 is shown. Use a computer algebra system to find the

volume it encloses.
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40. Show that

f ff ff VX yEF 2 e ) dxdy dz = 2

(The improper triple integral is defined as the limit of a
triple integral over a solid sphere as the radius of the sphere
increases indefinitely.)

. (a) Use cylindrical coordinates to show that the volume of

the solid bounded above by the sphere > + z* = a* and
below by the cone z = rcot ¢ (or ¢ = ¢y), where
0< o< m/2,is

2ma’

Vv
3

(I — cos o)

(b) Deduce that the volume of the spherical wedge given by
PLSPpsSp OSO<0y 1< P=< s

3 3
AV = %(COS b1 — cos ¢p2)(0, — 6y)

(c) Use the Mean Value Theorem to show that the volume
in part (b) can be written as

AV = p*sind ApAGAP

where p lies between p; and p,, ¢ lies between ¢, and
(]52, Ap = P2 — Pi1, AO = 92 - 01, and A(f) = (]52 - (bl.

CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

In one-dimensional calculus we often use a change of variable (a substitution) to sim-
plify an integral. By reversing the roles of x and u, we can write the Substitution Rule

(5.5.6) as
b d
o (700 dx = [* 79 g/ w) du
where x = g(u) and a = g(c), b = g(d). Another way of writing Formula 1 is as
follows:
i [/ ) dx = [ Fxtu) 2
a c dlxt

A change of variables can also be useful in double integrals. We have already seen
one example of this: conversion to polar coordinates. The new variables r and 6 are
related to the old variables x and y by the equations

X = rcosf

y=rsinf

and the change of variables formula (12.3.2) can be written as

ﬂf(x, y)dA = ﬁf(rcos 6, rsin 0) r dr d6

where S is the region in the r6-plane that corresponds to the region R in the xy-plane.
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FIGURE |
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FIGURE 2

More generally, we consider a change of variables that is given by a transforma-
tion 7' from the uv-plane to the xy-plane:

T(u,v) = (x,y)
where x and y are related to u and » by the equations
3] x=gu,0) y=hlun0)

or, as we sometimes write,
x = x(u, v) y = y(u, v)

We usually assume that T is a C' transformation, which means that g and & have con-
tinuous first-order partial derivatives.

A transformation 7 is really just a function whose domain and range are both sub-
sets of R2 If T(uy, v1) = (x1, y1), then the point (x;, y,) is called the image of the point
(1, v1). If no two points have the same image, T is called one-to-one. Figure 1 shows
the effect of a transformation 7" on a region § in the uv-plane. T transforms S into a
region R in the xy-plane called the image of S, consisting of the images of all points
inS.

v y
T
> R
-1
< 5
(1 1)
0 u 0 X

If T is a one-to-one transformation, then it has an inverse transformation 7'
from the xy-plane to the uv-plane and it may be possible to solve Equations 3 for u
and v in terms of x and y:

u= G(x,y) v=H(x,y)

7 EXAMPLE | A transformation is defined by the equations
xX=u"—v y = 2uv
Find the image of the square S = {(u,v) |0 <u <1, 0<v <1}

SOLUTION The transformation maps the boundary of § into the boundary of the
image. So we begin by finding the images of the sides of S. The first side, S|, is
given by v = 0 (0 < u < 1). (See Figure 2.) From the given equations we have
x=u%y=0,and so 0 < x < 1. Thus S, is mapped into the line segment from
(0, 0) to (1, 0) in the xy-plane. The second side, S, isu = 1 (0 < » < 1) and, put-
ting u = 1 in the given equations, we get

x=1—-2>  y=2

Eliminating v, we obtain

a x=1-2 o0=x=<1



FIGURE 4

FIGURE 3
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which is part of a parabola. Similarly, S5 is given by v = 1 (0 < u < 1), whose
image is the parabolic arc

a x = yj -1 -1=x=<0
Finally, Ss is given by u = 0 (0 < v < 1) whose image is x = —v?, y = 0, that is,

—1 =< x = 0. (Notice that as we move around the square in the counterclockwise
direction, we also move around the parabolic region in the counterclockwise direc-
tion.) The image of S is the region R (shown in Figure 2) bounded by the x-axis and
the parabolas given by Equations 4 and 5. |

Now let’s see how a change of variables affects a double integral. We start with a
small rectangle S in the uv-plane whose lower left corner is the point (uo, v9) and
whose dimensions are Au and Aw. (See Figure 3.)

v y
u=u,
/ T (i, 0)
Av S T
e (X0, Yo)
(g, Uo) Au \
0=10y I (1, v0)
0 u 0 X

The image of S is a region R in the xy-plane, one of whose boundary points is
(x0, o) = T(uo, vo). The vector

r(u, v) = g(u, v)i + h(u, v)j

is the position vector of the image of the point (u, v). The equation of the lower side
of S'is v = vy, whose image curve is given by the vector function r(u, vo). The tangent
vector at (xo, yo) to this image curve is

i L_Ox. 0y,
r, = gu(l/lo, 1}0)1 + hu(uo, 1)0).] = al + a.]

Similarly, the tangent vector at (xo, yo) to the image curve of the left side of S (namely,
U = up) is

. . Ox .
r, = go(tto, v0)i + hy(uo, v0)j = P + ]

We can approximate the image region R = T(S) by a parallelogram determined by the
secant vectors

a=r(u + Au, v9) — r(uo, vo) b = r(u, vo + Av) — r(uo, vo)

shown in Figure 4. But

r(uo + Au, 1)0) - I'(I/t(), l]())

Au—0 AM

r, =
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and so r(uo + Au, vo) — r(up, vo) = Aur,
Similarly r(uo, vo + Av) — r(ug, vo) = Avr,
This means that we can approximate R by a parallelogram determined by the vec-

tors Au r, and Av r,. (See Figure 5.) Therefore, we can approximate the area of R by
the area of this parallelogram, which, from Section 10.4, is

FIGURE 5

a |(Aur,) X (Avr,)| = |r, X r,|AuAv
Computing the cross product, we obtain

i

ox  dy Jx  Ox
dx dy — — —
— — 0 ou Ju du Jv
r, Xr,=|ou ou = k = k
ox  dy Jdy dy
dx  dy -— - -_—
— — 0 v v ou v
dv  Jv

The determinant that arises in this calculation is called the Jacobian of the transforma-
tion and is given a special notation.

DEFINITION The Jacobian of the transformation 7' given by x = g(u, v)

= The Jacobian is named after the German and y = h(u 1)) is

mathematician Carl Gustav Jacob Jacobi

(1804-1851). Although the French mathemati- Ix  Ox
cian Cauchy first used these special determi- -
nants involving partial derivatives, Jacobi M — ou dv - ﬂ&_y _ % G_y
developed them into a method for evaluating (u, v) Jdy dy ou v Jv du
multiple integrals. 5 E

With this notation we can use Equation 6 to give an approximation to the area AA
of R:

a(x, y)

AA =
[ (u, v)

Au Av

where the Jacobian is evaluated at (uo, vo).
Next we divide a region S in the uv-plane into rectangles S;; and call their images
in the xy-plane R;;. (See Figure 6.)

v y

Av

(u, v))

FIGURE 6
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FIGURE 7
The polar coordinate transformation
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Applying the approximation (8) to each R;;, we approximate the double integral of
f over R as follows:

] £ 3) da

I

U
T M

éf(xi, yj) AA

m n

E Ef(g (i, v7), h(ui, v;))

i=1 j=1

a(x, y)
a(u, v)

where the Jacobian is evaluated at (u;, v;). Notice that this double sum is a Riemann
sum for the integral

AuAv

ZZ

a(x, y)
a(u, v)

f F(glu, v), hw, ) du do

The foregoing argument suggests that the following theorem is true. (A full proof
is given in books on advanced calculus.)

E] CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that T is a C'
transformation whose Jacobian is nonzero and that maps a region S in the uv-
plane onto a region R in the xy-plane. Suppose that f is continuous on R and
that R and S are type I or type II plane regions. Suppose also that 7" is one-to-
one, except perhaps on the boundary of S. Then

A(x, y)

3r. 0) du dv

j [ e y)an = j [ Ot ), 3, )| 2520

Theorem 9 says that we change from an integral in x and y to an integral in u and
v by expressing x and y in terms of «# and » and writing

Alx, y)

dA = 3r. 0)

du dv

Notice the similarity between Theorem 9 and the one-dimensional formula in Equa-
tion 2. Instead of the derivative dx/du, we have the absolute value of the Jacobian, that

As a first illustration of Theorem 9, we show that the formula for integration in
polar coordinates is just a special case. Here the transformation 7 from the r6-plane
to the xy-plane is given by

x=g(r,0) = rcos@ y = h(r,0) = rsin 6

and the geometry of the transformation is shown in Figure 7. T’ maps an ordinary rect-
angle in the r6-plane to a polar rectangle in the xy-plane. The Jacobian of T is

Jdx  ox
ax,y) ar a0
ar, ) dy  dy

o 90

cos —rsinf ) -
= =rcos O+ rsin‘f=r=>0

sin 6 7 cos 0
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Thus Theorem 9 gives

J f(x,y)dxdy = j f(rcos 6, rsin 0)

R

a(x, y)
a(r, 9)

dr do

N

— jﬁ fbf(rcos 0, rsin0) rdr do

which is the same as Formula 12.3.2.

7 EXAMPLE 2 Use the change of variables x = u® — v?, y = 2uw to evaluate the
integral JJR y dA, where R is the region bounded by the x-axis and the parabolas

y?=4 —4xand y* =4 + 4x,y = 0.

SOLUTION The region R is pictured in Figure 2 (on page 714). In Example 1 we
discovered that T(S) = R, where S is the square [0, 1] X [0, 1]. Indeed, the reason
for making the change of variables to evaluate the integral is that S is a much sim-

pler region than R. First we need to compute the Jacobian:

o ax
ax, y) _|u dv | _ 2u —2v W 4 4> 0
d(u, v) ady ay 20 2u
du  Jv
Therefore, by Theorem 9,
ﬂydA = H 2uv A% y) dA = jlfl Quv)4(u* + v*) du dv
. g d(u, v) 0 Jo

=8 fol Ll W + w?) dudv =8 jol [%u“v + %uzv3]:1 dv

= j‘ol Qv + 4v®)dv = [1)2 + 04](1) =2

NOTE Example 2 was not a very difficult problem to solve because we were given
a suitable change of variables. If we are not supplied with a transformation, then the
first step is to think of an appropriate change of variables. If f(x, y) is difficult to inte-
grate, then the form of f(x, y) may suggest a transformation. If the region of integra-
tion R is awkward, then the transformation should be chosen so that the corresponding

region S in the uv-plane has a convenient description.

EXAMPLE 3 Evaluate the integral ([, e“"”“ dA, where R is the trapezoidal

region with vertices (1, 0), (2, 0), (0, —2), and (0, —1).

SOLUTION Since it isn’t easy to integrate ¢ ™) we make a change of variables

suggested by the form of this function:

These equations define a transformation 7' from the xy-plane to the uv-plane.
Theorem 9 talks about a transformation 7 from the uv-plane to the xy-plane. It is

u=x-+y vV=X—Yy



FIGURE 8

SECTION 12.8 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS = 719

obtained by solving Equations 10 for x and y:

m x=3u+v)  y=30u—0)
The Jacobian of T is

o o

ox,y) |ou v

au,v) dy  dy
ou v

B —= b=
B—= b=

To find the region S in the uv-plane corresponding to R, we note that the sides of R
lie on the lines

y=20 x—y=2 x=0 x—y=1
and, from either Equations 10 or Equations 11, the image lines in the uv-plane are
u=v v=2 u=-v v=1

Thus the region § is the trapezoidal region with vertices (1, 1), (2, 2), (=2, 2), and
(=1, 1) shown in Figure 8. Since

S={(u,v)|1sus2, —vsusv}

Theorem 9 gives
a(x, y)

f f o) gA — f f e/
d(u, v)
R N

= 1T e ) dudo =& [ et 7 o

du dv

— e~ e do =3 — ) "

TRIPLE INTEGRALS

There is a similar change of variables formula for triple integrals. Let T be a transfor-
mation that maps a region S in uvw-space onto a region R in xyz-space by means of
the equations

x = g(u, v, w) y = h(u, v, w) z = k(u, v, w)

The Jacobian of 7T is the following 3 X 3 determinant:

ox ax ox
du Jdv Jw

dx,y,2) | dy dy ay

= a(u, v, w) “lou o ow
dz 0dz 0z

u w ow
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Under hypotheses similar to those in Theorem 9, we have the following formula for
triple integrals:

@ (][ ey av

A y.2)

du dv dw
a( 7 ’ )

= Hff(x(u v, w), y(u, v, w), z(u, v, w)) |-

1 EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in
spherical coordinates.

SOLUTION Here the change of variables is given by
X = psin¢ cos 6 y = psin¢ sin 6 z = pcos ¢
We compute the Jacobian as follows:

sin¢ cos § —psin¢gsin @ pcos p cos b
sin ¢ sin 6 psin ¢ cos § pcos ¢ sin O
cos ¢ 0 —psin ¢

I, y,2)
a(p, 6, ¢)

—psin¢ sin @ pcos ¢ cos O
psin¢g cos @ pcos ¢ sin 6

sin ¢p cos 6 —psin ¢ sin 6
= cos ¢

— psin ¢

sin¢ sin @  psin ¢ cos 6
= cos ¢ (—p*sin ¢ cos ¢ sin*§ — p*sin ¢ cos ¢ cos?)
— psin ¢ (psin® cos’ + psin’ep sin’0)
= —p*sin ¢ cos’p — p*sin ¢ sin’p = —p*sin ¢
Since 0 < ¢ < 7, we have sin ¢ = 0. Therefore

a(x, v, z)

= | —p*sinp| = p*sin
3o, 0. ) | —p*sing| = p’sin¢

and Formula 13 gives
ﬂ S, y,2)dV = fﬁf(p sin ¢ cos 6, p sin ¢ sin 6, p cos ¢) p”sin ¢ dp dO dd
R 5

which is equivalent to Formula 12.7.3. [ |
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12.8 | EXERCISES

|=6 = Find the Jacobian of the transformation.

I.x=u+4v, y=3u—20

2. x=u’—v% y=u*+10v’

u-+o u—v
4. x=asinB, y=acosf
5. x=uv, y=ovw, z=uw

- + +o+
6.x:elAﬂ, y=elll/’ Z=euvw

7-10 = Find the image of the set S under the given
transformation.

7.S={u) | 0<su<3 0<v<2}
x:2u+31),y:u—v

8. S is the square bounded by the linesu = 0, u = 1, v = 0,
v=1; x=uv, y=u(l +2?)

9. S is the triangular region with vertices (0, 0), (1, 1), (0, 1);
x=u, y=v

10. Sis the disk given by u®> + v>* < 1; x=au, y= b

I1-16 = Use the given transformation to evaluate the integral.

1. ff, (x — 3y) dA, where R is the triangular region with
vertices (0,0), (2,1),and (1,2); x=2u+v, y=u + 2v

12. ff, (4x + 8y) dA, where R is the parallelogram with
vertices (—1, 3), (1, —=3), (3, —1), and (1, 5);
x=1u+0v), y=10v—3u)

13. [[,x*dA, where R is the region bounded by the ellipse
Ox? + 4y? =36; x=2u, y=23v

14. [[, (x* — xy + y*)dA, where R is the region bounded
by the ellipse x* — xy + y> = 2;

x=V2u—2/30, y=2u+2/3v

I5. ([, xy dA, where R is the region in the first quadrant
bounded by the lines y = x and y = 3x and the hyperbolas
xy=1lxy=3;, x=u/v, y=v

/716 ([, y>dA, where R is the region bounded by the curves

xy=1Lxy=2xy*=1,xy>=2; u=xy, v=xy~.
Ilustrate by using a graphing calculator or computer to
draw R.

17. (a) Evaluate [[[, dV, where E is the solid enclosed by the
ellipsoid x*/a* + y?/b* + z*/c* = 1. Use the transfor-
mation x = au, y = bv, z = cw.

(b) The Earth is not a perfect sphere; rotation has resulted
in flattening at the poles. So the shape can be approxi-
mated by an ellipsoid with @ = b = 6378 km and
¢ = 6356 km. Use part (a) to estimate the volume of the
Earth.

18. Evaluate [[[, x”y dV, where E is the solid of Exercise 17(a).

19-23 = Evaluate the integral by making an appropriate change
of variables.

-2
19. H );7)) dA, where R is the parallelogram enclosed by
X -y
R

the lines x — 2y =0, x — 2y =4,3x —y =1, and
3x—y=28

20. (], (x + y)e* " dA, where R is the rectangle enclosed by
thelinesx —y=0,x —y=2,x +y=0,andx + y=3

- X
21. ﬂ cos(y ) dA, where R is the trapezoidal region
; y+x

with vertices (1, 0), (2, 0), (0, 2), and (0, 1)

22. ([, sin(9x> + 4y*)dA, where R is the region in the first
quadrant bounded by the ellipse 9x* + 4y* = 1

23. ([, e*™dA, where R is given by the inequality
lx| + |yl =<1

24. Let f be continuous on [0, 1] and let R be the triangular
region with vertices (0, 0), (1, 0), and (0, 1). Show that

ﬂf(x + y)dA = J: uf(u) du

R





