
46. ,

is the disk with center the origin and radius 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

47. Prove Property 11.

In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

D

yy
D

f �x, y� dA � y1

0
y2y

0
f �x, y� dx dy � y3

1
y3�y

0
f �x, y� dx dy

D48.

1
2D

yy
D

ex2�y 2

dA 49. Evaluate , where
[Hint: Exploit the fact that 

is symmetric with respect to both axes.]

50. Use symmetry to evaluate , where 
is the region bounded by the square with vertices 
and .

51. Compute , where is the disk
, by first identifying the integral as the volume 

of a solid.

52. Graph the solid bounded by the plane and
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
the boundary curves of the region of integration, and to
evaluate the double integral.)

z � 4 � x 2 � y 2
x � y � z � 1CAS

x 2 � y 2 
 1
Dxx

D s1 � x 2 � y 2 dA

�0, �5�
��5, 0�

DxxD �2 � 3x � 4y� dA

D
D � 
�x, y� � x 2 � y 2 
 2�.

xx
D

�x 2 tan x � y 3 � 4� dA
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DOUBLE INTEGRALS IN POLAR COORDINATES

Suppose that we want to evaluate a double integral , where is one of
the regions shown in Figure 1. In either case the description of in terms of rectan-
gular coordinates is rather complicated but is easily described using polar coordinates.

Recall from Figure 2 that the polar coordinates of a point are related to the rect-
angular coordinates by the equations

The regions in Figure 1 are special cases of a polar rectangle

which is shown in Figure 3. In order to compute the double integral ,
where is a polar rectangle, we divide the interval into subintervals 
with lengths and we divide the interval into subintervals

with lengths . Then the circles and the rays 
divide the polar rectangle R into the small polar rectangles shown in Figure 4.

� � � jr � ri�� j � � j � � j�1��j�1, �j

n��, �
�ri � ri � ri�1

�ri�1, ri
m�a, b
R
xx

R
f �x, y� dA

R � 
�r, �� � a 
 r 
 b, � 
 � 
 ��

y � r sin �x � r cos �r 2 � x 2 � y 2

�x, y�
�r, ��

FIGURE 1

x0

y

R

≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨)  | 1¯r¯2, 0¯¨¯πd

R
R

RxxR f �x, y� dA

12.3

■ Polar coordinates were introduced in
Section 9.3.

O

y

x
¨

x

y
r

P(r, ¨)=P(x, y)

FIGURE 2



The “center” of the polar subrectangle

has polar coordinates

We compute the area of using the fact that the area of a sector of a circle with radius
and central angle is . Subtracting the areas of two such sectors, each of which

has central angle , we find that the area of is

Although we have defined the double integral in terms of ordinary
rectangles, it can be shown that, for continuous functions , we always obtain the 
same answer using polar rectangles. The rectangular coordinates of the center of 
are , so a typical Riemann sum is

If we write , then the Riemann sum in Equation 1 can be
written as

which is a Riemann sum for the double integral

y�
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a
t�r, �� dr d�
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f
xxR f �x, y� dA
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FIGURE 3 Polar rectangle
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FIGURE 4 Dividing R into polar subrectangles
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Therefore, we have

CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If is contin-
uous on a polar rectangle given by , , where

, then

The formula in (2) says that we convert from rectangular to polar coordinates in a 
double integral by writing and , using the appropriate limits of 

| integration for and , and replacing by . Be careful not to forget the addi-
tional factor r on the right side of Formula 2. A classical method for remembering this
is shown in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an
ordinary rectangle with dimensions and and therefore has “area” 

EXAMPLE 1 Evaluate , where is the region in the upper half-
plane bounded by the circles and .

SOLUTION The region can be described as

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by
, . Therefore, by Formula 2,
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O
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FIGURE 5

■ Here we use the trigonometric identity

as discussed in Section 6.2.

sin2� � 1
2 �1 � cos 2��



EXAMPLE 2 Find the volume of the solid bounded by the plane and the
paraboloid .

SOLUTION If we put in the equation of the paraboloid, we get .
This means that the plane intersects the paraboloid in the circle , so the
solid lies under the paraboloid and above the circular disk given by 
[see Figures 6 and 1(a)]. In polar coordinates is given by , .
Since , the volume is

If we had used rectangular coordinates instead of polar coordinates, then we would
have obtained

which is not easy to evaluate because it involves finding . ■

What we have done so far can be extended to the more complicated type of region
shown in Figure 7. It’s similar to the type II rectangular regions considered in Sec-
tion 12.2. In fact, by combining Formula 2 in this section with Formula 12.2.5, we
obtain the following formula.

If is continuous on a polar region of the form

then

In particular, taking , , and in this formula, we
see that the area of the region bounded by , , and is

and this agrees with Formula 9.4.3.
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EXAMPLE 3 Find the volume of the solid that lies under the paraboloid
, above the -plane, and inside the cylinder .

SOLUTION The solid lies above the disk whose boundary circle has equation
or, after completing the square,

(See Figures 8 and 9.) In polar coordinates we have and ,
so the boundary circle becomes , or . Thus the disk is
given by

and, by Formula 3, we have
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FIGURE 8
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FIGURE 9
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5–6 ■ Sketch the region whose area is given by the integral and
evaluate the integral.

5. 6.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

7–12 ■ Evaluate the given integral by changing to polar 
coordinates.

7. ,
where is the disk with center the origin and radius 3

8. , where is the region that lies to the left of
the -axis between the circles and

9. , where is the region that lies above
the -axis within the circle 

10. ,
where

,
where

12. , where is the region in the first quadrant
enclosed by the circle 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

x 2 � y 2 � 25
Rxx
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yex dA
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0
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�
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4
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1–4 ■ A region is shown. Decide whether to use polar coor-
dinates or rectangular coordinates and write 
as an iterated integral, where is an arbitrary continuous func-
tion on .

2.

3. 4.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
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28. An agricultural sprinkler distributes water in a circular pat-
tern of radius 100 ft. It supplies water to a depth of feet
per hour at a distance of feet from the sprinkler.
(a) What is the total amount of water supplied per hour to 

the region inside the circle of radius centered at the 
sprinkler?

(b) Determine an expression for the average amount of
water per hour per square foot supplied to the region
inside the circle of radius .

Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

30. (a) We define the improper integral (over the entire plane 

where is the disk with radius and center the origin.
Show that

(b) An equivalent definition of the improper integral in
part (a) is

where is the square with vertices . Use this
to show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and 
statistics.)

31. Use the result of Exercise 30 part (c) to evaluate the follow-
ing integrals.
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29.

R

R
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e�r

13–19 ■ Use polar coordinates to find the volume of the given
solid.

13. Under the cone and above the disk

14. Below the paraboloid and above the
-plane

15. A sphere of radius 

16. Inside the sphere and outside the 
cylinder

Above the cone and below the sphere

18. Bounded by the paraboloid and the
plane in the first octant

19. Inside both the cylinder and the ellipsoid

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

20. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the vol-
ume of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height 
of the ring. Notice that the volume depends only on ,
not on or .

21–22 ■ Use a double integral to find the area of the region.

One loop of the rose 

22. The region enclosed by the curve 
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

23–26 ■ Evaluate the iterated integral by converting to polar 
coordinates.

23.

24.

25.

26.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

27. A swimming pool is circular with a 40-ft diameter. The
depth is constant along east-west lines and increases
linearly from 2 ft at the south end to 7 ft at the north end.
Find the volume of water in the pool.
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