46. $\iint_{D} e^{x^2 + y^2} dA,$ *D* is the disk with center the origin and radius $\frac{1}{2}$

47. Prove Property 11.

48. In evaluating a double integral over a region *D*, a sum of iterated integrals was obtained as follows:

$$\iint_{D} f(x, y) \, dA = \int_{0}^{1} \int_{0}^{2y} f(x, y) \, dx \, dy + \int_{1}^{3} \int_{0}^{3-y} f(x, y) \, dx \, dy$$

Sketch the region *D* and express the double integral as an iterated integral with reversed order of integration.

- **49.** Evaluate $\iint_D (x^2 \tan x + y^3 + 4) dA$, where $D = \{(x, y) \mid x^2 + y^2 \le 2\}$. [*Hint:* Exploit the fact that *D* is symmetric with respect to both axes.]
- **50.** Use symmetry to evaluate $\iint_D (2 3x + 4y) dA$, where *D* is the region bounded by the square with vertices $(\pm 5, 0)$ and $(0, \pm 5)$.
- **51.** Compute $\iint_D \sqrt{1 x^2 y^2} \, dA$, where *D* is the disk $x^2 + y^2 \leq 1$, by first identifying the integral as the volume of a solid.
- **52.** Graph the solid bounded by the plane x + y + z = 1 and the paraboloid $z = 4 x^2 y^2$ and find its exact volume. (Use your CAS to do the graphing, to find the equations of the boundary curves of the region of integration, and to evaluate the double integral.)

12.3 DOUBLE INTEGRALS IN POLAR COORDINATES

• Polar coordinates were introduced in Section 9.3.

Suppose that we want to evaluate a double integral $\iint_R f(x, y) dA$, where *R* is one of the regions shown in Figure 1. In either case the description of *R* in terms of rectangular coordinates is rather complicated but *R* is easily described using polar coordinates.

y

y.

0

FIGURE 2

θ

x

Recall from Figure 2 that the polar coordinates (r, θ) of a point are related to the rectangular coordinates (x, y) by the equations

$$r^2 = x^2 + y^2$$
 $x = r \cos \theta$ $y = r \sin \theta$

The regions in Figure 1 are special cases of a polar rectangle

$$R = \{ (r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta \}$$

which is shown in Figure 3. In order to compute the double integral $\iint_R f(x, y) dA$, where *R* is a polar rectangle, we divide the interval [a, b] into *m* subintervals $[r_{i-1}, r_i]$ with lengths $\Delta r_i = r_i - r_{i-1}$ and we divide the interval $[\alpha, \beta]$ into *n* subintervals $[\theta_{j-1}, \theta_j]$ with lengths $\Delta \theta_j = \theta_j - \theta_{j-1}$. Then the circles $r = r_i$ and the rays $\theta = \theta_j$ divide the polar rectangle *R* into the small polar rectangles shown in Figure 4.

FIGURE 3 Polar rectangle

FIGURE 4 Dividing R into polar subrectangles

The "center" of the polar subrectangle

$$R_{ij} = \left\{ (r, \theta) \mid r_{i-1} \leq r \leq r_i, \, \theta_{j-1} \leq \theta \leq \theta_j \right\}$$

has polar coordinates

$$r_i^* = \frac{1}{2}(r_{i-1} + r_i)$$
 $\theta_i^* = \frac{1}{2}(\theta_{i-1} + \theta_i)$

We compute the area of R_{ij} using the fact that the area of a sector of a circle with radius r and central angle θ is $\frac{1}{2}r^2\theta$. Subtracting the areas of two such sectors, each of which has central angle $\Delta \theta_j$, we find that the area of R_{ij} is

$$\Delta A_{ij} = \frac{1}{2} r_i^2 \Delta \theta_j - \frac{1}{2} r_{i-1}^2 \Delta \theta_j = \frac{1}{2} (r_i^2 - r_{i-1}^2) \Delta \theta_j$$

= $\frac{1}{2} (r_i + r_{i-1}) (r_i - r_{i-1}) \Delta \theta_j = r_i^* \Delta r_i \Delta \theta_j$

Although we have defined the double integral $\iint_R f(x, y) dA$ in terms of ordinary rectangles, it can be shown that, for continuous functions f, we always obtain the same answer using polar rectangles. The rectangular coordinates of the center of R_{ij} are $(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*)$, so a typical Riemann sum is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) \Delta A_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) r_i^* \Delta r_i \Delta \theta_j$$

If we write $g(r, \theta) = rf(r \cos \theta, r \sin \theta)$, then the Riemann sum in Equation 1 can be written as

$$\sum_{i=1}^{m}\sum_{j=1}^{n}g(r_{i}^{*},\,\theta_{j}^{*})\,\Delta r_{i}\,\Delta\theta_{j}$$

which is a Riemann sum for the double integral

$$\int_{\alpha}^{\beta} \int_{a}^{b} g(r, \theta) \, dr \, d\theta$$

Therefore, we have

$$\iint_{R} f(x, y) dA = \lim_{\max \Delta r_{i}, \Delta \theta_{j} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}) \Delta A_{ij}$$
$$= \lim_{\max \Delta r_{i}, \Delta \theta_{j} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} g(r_{i}^{*}, \theta_{j}^{*}) \Delta r_{i} \Delta \theta_{j} = \int_{\alpha}^{\beta} \int_{a}^{b} g(r, \theta) dr d\theta$$
$$= \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr d\theta$$

2 CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If f is continuous on a polar rectangle *R* given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \leq \beta - \alpha \leq 2\pi$, then

$$\iint_{R} f(x, y) \, dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta$$

The formula in (2) says that we convert from rectangular to polar coordinates in a double integral by writing $x = r \cos \theta$ and $y = r \sin \theta$, using the appropriate limits of integration for r and θ , and replacing dA by r dr d θ . Be careful not to forget the additional factor r on the right side of Formula 2. A classical method for remembering this is shown in Figure 5, where the "infinitesimal" polar rectangle can be thought of as an ordinary rectangle with dimensions $r d\theta$ and dr and therefore has "area" $dA = r dr d\theta$.

EXAMPLE 1 Evaluate $\iint_R (3x + 4y^2) dA$, where *R* is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

SOLUTION The region *R* can be described as

$$R = \{(x, y) \mid y \ge 0, \ 1 \le x^2 + y^2 \le 4\}$$

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by $1 \le r \le 2, 0 \le \theta \le \pi$. Therefore, by Formula 2,

$$\iint_{R} (3x + 4y^{2}) dA = \int_{0}^{\pi} \int_{1}^{2} (3r \cos \theta + 4r^{2} \sin^{2} \theta) r dr d\theta$$

= $\int_{0}^{\pi} \int_{1}^{2} (3r^{2} \cos \theta + 4r^{3} \sin^{2} \theta) dr d\theta$
= $\int_{0}^{\pi} [r^{3} \cos \theta + r^{4} \sin^{2} \theta]_{r=1}^{r=2} d\theta = \int_{0}^{\pi} (7 \cos \theta + 15 \sin^{2} \theta) d\theta$
= $\int_{0}^{\pi} [7 \cos \theta + \frac{15}{2} (1 - \cos 2\theta)] d\theta$
= $7 \sin \theta + \frac{15\theta}{2} - \frac{15}{4} \sin 2\theta \Big]_{0}^{\pi} = \frac{15\pi}{2}$

2

FIGURE 5

$$\sin^2\theta = \frac{1}{2}\left(1 - \cos 2\theta\right)$$

as discussed in Section 6.2.

EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

SOLUTION If we put z = 0 in the equation of the paraboloid, we get $x^2 + y^2 = 1$. This means that the plane intersects the paraboloid in the circle $x^2 + y^2 = 1$, so the solid lies under the paraboloid and above the circular disk *D* given by $x^2 + y^2 \le 1$ [see Figures 6 and 1(a)]. In polar coordinates *D* is given by $0 \le r \le 1$, $0 \le \theta \le 2\pi$. Since $1 - x^2 - y^2 = 1 - r^2$, the volume is

$$V = \iint_{D} (1 - x^{2} - y^{2}) dA = \int_{0}^{2\pi} \int_{0}^{1} (1 - r^{2}) r dr d\theta$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} (r - r^{3}) dr = 2\pi \left[\frac{r^{2}}{2} - \frac{r^{4}}{4}\right]_{0}^{1} = \frac{\pi}{2}$$

If we had used rectangular coordinates instead of polar coordinates, then we would have obtained

$$V = \iint_{D} (1 - x^2 - y^2) dA = \int_{-1}^{1} \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} (1 - x^2 - y^2) dy dx$$

which is not easy to evaluate because it involves finding $\int (1 - x^2)^{3/2} dx$.

What we have done so far can be extended to the more complicated type of region shown in Figure 7. It's similar to the type II rectangular regions considered in Section 12.2. In fact, by combining Formula 2 in this section with Formula 12.2.5, we obtain the following formula.

3 If *f* is continuous on a polar region of the form

$$D = \left\{ (r, \theta) \mid \alpha \le \theta \le \beta, \ h_1(\theta) \le r \le h_2(\theta) \right\}$$
then
$$\iint_D f(x, y) \, dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta$$

D

 $r = h_1(\theta)$

 $\theta = \alpha$

 $\theta = \beta$

1

 $r = h_2(\theta)$

In particular, taking f(x, y) = 1, $h_1(\theta) = 0$, and $h_2(\theta) = h(\theta)$ in this formula, we see that the area of the region *D* bounded by $\theta = \alpha$, $\theta = \beta$, and $r = h(\theta)$ is

$$A(D) = \iint_{D} 1 \, dA = \int_{\alpha}^{\beta} \int_{0}^{h(\theta)} r \, dr \, d\theta$$
$$= \int_{\alpha}^{\beta} \left[\frac{r^2}{2} \right]_{0}^{h(\theta)} d\theta = \int_{\alpha}^{\beta} \frac{1}{2} [h(\theta)]^2 \, d\theta$$

and this agrees with Formula 9.4.3.

12.3 **EXERCISES**

I-4 • A region *R* is shown. Decide whether to use polar coordinates or rectangular coordinates and write $\iint_{P} f(x, y) dA$ as an iterated integral, where f is an arbitrary continuous function on R.

EXAMPLE 3 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 2x$.

SOLUTION The solid lies above the disk D whose boundary circle has equation $x^{2} + y^{2} = 2x$ or, after completing the square,

$$(x-1)^2 + y^2 = 1$$

(See Figures 8 and 9.) In polar coordinates we have $x^2 + y^2 = r^2$ and $x = r \cos \theta$, so the boundary circle becomes $r^2 = 2r \cos \theta$, or $r = 2 \cos \theta$. Thus the disk D is given by

$$D = \left\{ (r, \theta) \mid -\pi/2 \le \theta \le \pi/2, \ 0 \le r \le 2 \cos \theta \right\}$$

and, by Formula 3, we have

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^{4}}{4} \right]_{0}^{2\cos\theta} d\theta$$
$$= 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$
$$= 2 \int_{0}^{\pi/2} [1 + 2\cos 2\theta + \frac{1}{2}(1 + \cos 4\theta)] d\theta$$
$$= 2 [\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta]_{0}^{\pi/2} = 2 \left(\frac{3}{2} \right) \left(\frac{\pi}{2} \right) = \frac{3\pi}{2}$$

5–6 Sketch the region whose area is given by the integral and evaluate the integral.

5.
$$\int_{\pi}^{2\pi} \int_{4}^{7} r \, dr \, d\theta$$
 6.
$$\int_{0}^{\pi/2} \int_{0}^{4 \cos \theta} r \, dr \, d\theta$$

7–12 • Evaluate the given integral by changing to polar coordinates.

- 7. $\iint_D xy \, dA$, where D is the disk with center the origin and radius 3
- 8. $\iint_R (x + y) dA$, where R is the region that lies to the left of the y-axis between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- 9. $\iint_R \cos(x^2 + y^2) dA$, where *R* is the region that lies above the *x*-axis within the circle $x^2 + y^2 = 9$

10.
$$\iint_R \sqrt{4 - x^2 - y^2} \, dA$$
,
where $R = \{(x, y) \mid x^2 + y^2 \le 4, \ x \ge 0\}$

- $\iint_{R} \arctan(y/x) \, dA,$ where $R = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$
- **12.** $\iint_R y e^x dA$, where *R* is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$

13–19 Use polar coordinates to find the volume of the given solid.

- **13.** Under the cone $z = \sqrt{x^2 + y^2}$ and above the disk $x^2 + y^2 \le 4$
- **14.** Below the paraboloid $z = 18 2x^2 2y^2$ and above the *xy*-plane
- **15.** A sphere of radius *a*
- 16. Inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$
- 17. Above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$
- **18.** Bounded by the paraboloid $z = 1 + 2x^2 + 2y^2$ and the plane z = 7 in the first octant
- 19. Inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$
- **20.** (a) A cylindrical drill with radius r_1 is used to bore a hole through the center of a sphere of radius r_2 . Find the volume of the ring-shaped solid that remains.
 - (b) Express the volume in part (a) in terms of the height *h* of the ring. Notice that the volume depends only on *h*, not on r₁ or r₂.
- **21–22** Use a double integral to find the area of the region.
- **21.** One loop of the rose $r = \cos 3\theta$
- **22.** The region enclosed by the curve $r = 4 + 3 \cos \theta$

23–26 • Evaluate the iterated integral by converting to polar

coordinates.

- **23.** $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sin(x^{2} + y^{2}) \, dy \, dx$ **24.** $\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{0} x^{2}y \, dx \, dy$
- **25.** $\int_{0}^{1} \int_{y}^{\sqrt{2-y^{2}}} (x + y) \, dx \, dy$
- **26.** $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$
- **27.** A swimming pool is circular with a 40-ft diameter. The depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end. Find the volume of water in the pool.

- **28.** An agricultural sprinkler distributes water in a circular pattern of radius 100 ft. It supplies water to a depth of e^{-r} feet per hour at a distance of *r* feet from the sprinkler.
 - (a) What is the total amount of water supplied per hour to the region inside the circle of radius *R* centered at the sprinkler?
 - (b) Determine an expression for the average amount of water per hour per square foot supplied to the region inside the circle of radius *R*.
- 29. Use polar coordinates to combine the sum

$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xy \, dy \, dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy \, dy \, dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy \, dy \, dx$$

into one double integral. Then evaluate the double integral.

30. (a) We define the improper integral (over the entire plane \mathbb{R}^2)

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dy dx$$
$$= \lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} dA$$

where D_a is the disk with radius *a* and center the origin. Show that

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}\,dA=\pi$$

(b) An equivalent definition of the improper integral in part (a) is

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dA = \lim_{a \to \infty} \iint_{S_a} e^{-(x^2+y^2)} \, dA$$

where S_a is the square with vertices $(\pm a, \pm a)$. Use this to show that

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$

(c) Deduce that

(

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

(d) By making the change of variable $t = \sqrt{2}x$, show that

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}$$

(This is a fundamental result for probability and statistics.)

31. Use the result of Exercise 30 part (c) to evaluate the following integrals.

a)
$$\int_0^\infty x^2 e^{-x^2} dx$$
 (b) $\int_0^\infty \sqrt{x} e^{-x} dx$