
If is a constant function, , and 
, show that 

40. If , show that

41. Use your CAS to compute the iterated integrals 

y1

0
y1

0

x � y

�x � y�3 dx dyandy1

0
y1

0

x � y

�x � y�3 dy dx

CAS

0  xx
R
 sin�x � y� dA  1.R � �0, 1 
 �0, 1

xx
R

k dA � k�b � a��d � c�.R � �a, b 
 �c, d
f �x, y� � kf39. Do the answers contradict Fubini’s Theorem? Explain what

is happening.

42. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that .txy � tyx � f �x, y�c � y � da � x � b

t�x, y� � y x

a
yy

c
f �s, t� dt ds

�a, b 
 �c, d f �x, y�
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DOUBLE INTEGRALS OVER GENERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles
but also over regions of more general shape, such as the one illustrated in Figure 1.
We suppose that is a bounded region, which means that can be enclosed in a rect-
angular region as in Figure 2. Then we define a new function with domain by

If the double integral of F exists over R, then we define the double integral of over 
D by

Definition 2 makes sense because R is a rectangle and so has been
previously defined in Section 12.1. The procedure that we have used is reasonable
because the values of are 0 when lies outside and so they contribute
nothing to the integral. This means that it doesn’t matter what rectangle we use as
long as it contains .

In the case where we can still interpret as the volume of
the solid that lies above and under the surface (the graph of ). You can
see that this is reasonable by comparing the graphs of and in Figures 3 and 4 and
remembering that is the volume under the graph of .Fxx

R
F�x, y� dA

Ff
fz � f �x, y�D

xx
D

f �x, y� dAf �x, y� � 0
D

R
D�x, y�F�x, y�

xxR F�x, y� dA

where F is given by Equation 1yy
D

f �x, y� dA � yy
R

F�x, y� dA2

f

F�x, y� � �0

f �x, y� if

if

�x, y� is in D

�x, y� is in R but not in D
1

RFR
DD

D
f

12.2

y

0

z

x
D

graph of f

FIGURE 3

FIGURE 1

0

y

x

D

FIGURE 4

y

0

z

x
D

graph of F

y

0 x

D
R

FIGURE 2



Figure 4 also shows that is likely to have discontinuities at the boundary points
of Nonetheless, if is continuous on and the boundary curve of is “well
behaved” (in a sense outside the scope of this book), then it can be shown that

exists and therefore exists. In particular, this is the case for
the following types of regions.

A plane region is said to be of type I if it lies between the graphs of two con-
tinuous functions of , that is,

where and are continuous on . Some examples of type I regions are shown
in Figure 5.

In order to evaluate when is a region of type I, we choose a rect-
angle that contains , as in Figure 6, and we let be the function
given by Equation 1; that is, agrees with on and is outside . Then, by
Fubini’s Theorem,

Observe that if or because then lies outside .
Therefore

because when . Thus we have the following for-
mula that enables us to evaluate the double integral as an iterated integral.

If is continuous on a type I region D such that

then

The integral on the right side of (3) is an iterated integral that is similar to the ones
we considered in the preceding section, except that in the inner integral we regard 
as being constant not only in but also in the limits of integration, and t2�x�.t1�x�f �x, y�

x

yy
D

f �x, y� dA � yb

a
yt2�x�

t1�x�
f �x, y� dy dx

D � 
�x, y� � a  x  b, t1�x�  y  t2�x��
f3

t1�x�  y  t2�x�F�x, y� � f �x, y�

yd

c
F�x, y� dy � yt2�x�

t1�x�
F�x, y� dy � yt2�x�

t1�x�
f �x, y� dy

D�x, y�y � t2�x�y � t1�x�F�x, y� � 0

yy
D

f �x, y� dA � yy
R

F�x, y� dA � yb

a
yd

c
F�x, y� dy dx

D0FDfF
FDR � �a, b 
 �c, d 

Dxx
D

f �x, y� dA

FIGURE 5 Some type I regions

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D
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xba

D
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We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing (3), we can show that

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so .
We note that the region , sketched in Figure 8, is a type I region but not a type II
region and we can write

Since the lower boundary is and the upper boundary is , Equa-
tion 3 gives

■

NOTE When we set up a double integral as in Example 1, it is essential to draw a
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary , which gives the lower limit in the integral, and 
the arrow ends at the upper boundary , which gives the upper limit of inte-
gration. For a type II region the arrow is drawn horizontally from the left boundary to
the right boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid 
and above the region in the -plane bounded by the line and the parabola

.

SOLUTION 1 From Figure 9 we see that is a type I region and

D � 
�x, y� � 0  x  2, x 2  y  2x�

D

y � x 2
y � 2xxyD

z � x 2 � y 2

y � t2�x�
y � t1�x�

� �3
x 5

5
�

x 4

4
� 2

x 3

3
�

x 2

2
� x�

�1

1

�
32

15

� y1

�1
��3x 4 � x 3 � 2x 2 � x � 1� dx

� y1

�1
�x�1 � x 2 � � �1 � x 2 �2 � x�2x 2 � � �2x 2 �2  dx

� y1

�1
[xy � y 2]y�2x2

y�1�x2

dxyy
D

�x � 2y� dA � y1

�1
y1�x2

2x2
�x � 2y� dy dx

y � 1 � x 2y � 2x 2

D � 
�x, y� � �1  x  1, 2x 2  y  1 � x 2�

D
x � �1x 2 � 12x 2 � 1 � x 2

y � 1 � x 2y � 2x 2
Dxx

D
�x � 2y� dAV

yy
D

f �x, y� dA � yd

c
yh2� y�

h1� y�
f �x, y� dx dy5

h2h1

D � 
�x, y� � c  y  d, h1�y�  x  h2�y��4
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FIGURE 7
Some type II regions
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Therefore, the volume under and above is

SOLUTION 2 From Figure 10 we see that can also be written as a type II region:

Therefore, another expression for is

■

EXAMPLE 3 Evaluate where is the region bounded by the line
and the parabola .

SOLUTION The region is shown in Figure 12. Again is both type I and type II,
but the description of as a type I region is more complicated because the lower
boundary consists of two parts. Therefore, we prefer to express as a type II
region:

(5, 4)

0

y

x_3

y=x-1

(_1, _2)
y=_œ„„„„„2x+6

y=œ„„„„„2x+6

(a) D as a type I region (b) D as a type II region

x=       -3¥
2

(5, 4)

x=y+1

(_1, _2)

0

y

x

_2

FIGURE 12

D � 
(x, y) � �2  y  4, 1
2 y2 � 3  x  y � 1�

D
D

DD

y 2 � 2x � 6y � x � 1
Dxx

D
xy dA,V

� 2
15 y 5�2 �

2
7 y 7�2 �

13
96 y 4 ]0

4 � 216
35

� y4

0
� x 3

3
� y 2x�

x� 1
2 y

x�sy

dy � y4

0
� y 3�2

3
� y 5�2 �

y 3

24
�

y 3

2 � dy

V � yy
D

�x 2 � y 2 � dA � y4

0
ysy

1
2 y

�x 2 � y 2 � dx dy

V

D � 
�x, y� � 0  y  4, 1
2 y  x  sy �

D

� y2

0
��

x 6

3
� x 4 �

14x 3

3 � dx � �
x 7

21
�

x 5

5
�

7x 4

6 �
0

2

�
216

35

� y2

0
�x 2y �

y 3

3 �y�x2

y�2x

dx � y2

0
�x 2�2x� �

�2x�3

3
� x 2x 2 �

�x 2 �3

3 � dx

V � yy
D

�x 2 � y 2 � dA � y2

0
y2x

x2
�x 2 � y 2 � dy dx

Dz � x 2 � y 2
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FIGURE 10
D as a type II region
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Then (5) gives

If we had expressed as a type I region using Figure 12(a), then we would have
obtained

but this would have involved more work than the other method. ■

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes
, , , and .

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the
three-dimensional solid and another of the plane region over which it lies. 
Figure 13 shows the tetrahedron bounded by the coordinate planes , ,
the vertical plane , and the plane . Since the plane

intersects the -plane (whose equation is ) in the line
, we see that lies above the triangular region in the -plane

bounded by the lines , , and . (See Figure 14.)
The plane can be written as , so the required

volume lies under the graph of the function and above

Therefore

■

EXAMPLE 5 Evaluate the iterated integral .

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task 
of first evaluating . But it’s impossible to do so in finite terms since x sin�y 2 � dy

x10 x1x  sin�y 2 � dy dxV

� y1

0
�x 2 � 2x � 1� dx �

x 3

3
� x 2 � x�

0

1

�
1

3

� y1

0
�2 � x � x�1 �

x

2� � �1 �
x

2�2

� x �
x 2

2
�

x 2

4 � dx

� y1

0
[2y � xy � y 2]y�x�2

y�1�x�2

dx

V � yy
D

�2 � x � 2y� dA � y1

0
y1�x�2

x�2
�2 � x � 2y� dy dx

D � 
�x, y� � 0  x  1, x�2  y  1 � x�2�

z � 2 � x � 2y
z � 2 � x � 2yx � 2y � z � 2

x � 0x � 2y � 2x � 2y
xyDTx � 2y � 2

z � 0xyx � 2y � z � 2
x � 2y � z � 2x � 2y

z � 0x � 0T
D

z � 0x � 0x � 2yx � 2y � z � 2

yy
D

xy dA � y�1

�3
ys2x�6

�s2x�6
xy dy dx � y5

�1
ys2x�6

x�1
xy dy dx

D

�
1

2 ��
y 6

24
� y 4 � 2

y 3

3
� 4y 2�

�2

4

� 36

� 1
2 y4

�2
��

y 5

4
� 4y 3 � 2y 2 � 8y� dy

� 1
2 y4

�2
y[�y � 1�2 � ( 1

2 y2 � 3)2] dy

yy
D

xy dA � y4

�2
yy�1

1
2 y2�3

xy dx dy � y4

�2
� x 2

2
y�

x�1
2 y2�3

x�y�1

dy
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is not an elementary function. (See the end of Section 6.4.) So we must
change the order of integration. This is accomplished by first expressing the given
iterated integral as a double integral. Using (3) backward, we have

where

We sketch this region in Figure 15. Then from Figure 16 we see that an alterna-
tive description of is

This enables us to use (5) to express the double integral as an iterated integral in the
reverse order:

■

PROPERTIES OF DOUBLE INTEGRALS

We assume that all of the following integrals exist. The first three properties of double
integrals over a region follow immediately from Definition 2 and Properties 12, 13,
and 14 in Section 12.1.

If for all in , then 

The next property of double integrals is similar to the property of single integrals
given by the equation .

If , where and don’t overlap except perhaps on their bound-
aries (see Figure 17), then

yy
D

f �x, y� dA � yy
D1

f �x, y� dA � yy
D2

f �x, y� dA9

D2D1D � D1 � D2

xba f �x� dx � xca f �x� dx � xbc f �x� dx

yy
D

f �x, y� dA � yy
D

t�x, y� dA8

D�x, y�f �x, y� � t�x, y�

yy
D

c f �x, y� dA � c yy
D

f �x, y� dA7

yy
D

� f �x, y� � t�x, y� dA � yy
D

f �x, y� dA � yy
D

t�x, y� dA6

D

� 1
2 �1 � cos 1�

� y1

0
y sin�y 2 � dy � �

1
2 cos�y 2 �]0

1

� y1

0
yy

0
 sin�y 2 � dx dy � y1

0
[x sin�y 2 �]x�0

x�y
dy

y1

0
y1

x
 sin�y 2 � dy dx � yy

D

 sin�y 2 � dA

D � 
�x, y� � 0  y  1, 0  x  y�
D

D

D � 
�x, y� � 0  x  1, x  y  1�

y1

0
y1

x
 sin�y 2 � dy dx � yy

D

 sin�y 2 � dA

x sin�y 2 � dy
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7–16 ■ Evaluate the double integral.

7.

8.

9. yy
D

2y

x 2 � 1
dA, D � {�x, y� � 0  x  1, 0  y  sx }

yy
D

4y

x 3 � 2
dA, D � 
�x, y� � 1  x  2, 0  y  2x�

yy
D

x 3y 2 dA, D � 
�x, y� � 0  x  2, �x  y  x�

1–6 ■ Evaluate the iterated integral.

1. 2.

3. 4.

6.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

y1

0
yv

0
s1 � v 2 du dvy��2

0
ycos �

0
e sin � dr d�5.

y1

0
y2�x

x
�x 2 � y� dy dxy1

0
ye y

y
sx dx dy

y2

1
y2

y
xy dx dyy1

0
yx2

0
�x � 2y� dy dx

Property 9 can be used to evaluate double integrals over regions that are neither
type I nor type II but can be expressed as a union of regions of type I or type II. Fig-
ure 18 illustrates this procedure. (See Exercises 43 and 44.)

The next property of integrals says that if we integrate the constant function
over a region , we get the area of :

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is and
whose height is 1 has volume , but we know that we can also write
its volume as .

Finally, we can combine Properties 7, 8, and 10 to prove the following property.
(See Exercise 47.)

If for all in , then

EXAMPLE 6 Use Property 11 to estimate the integral , where is the
disk with center the origin and radius 2.

SOLUTION Since and , we have
and therefore

Thus, using , , and in Property 11, we obtain

■
4�

e
 yy

D

e sin x cos y dA  4�e

A�D� � � �2�2M � em � e�1 � 1�e

e�1  e sin x cos y  e 1 � e

�1  sin x cos y  1
�1  cos y  1�1  sin x  1

Dxx
D

e sin x cos y dA

mA�D�  yy
D

f �x, y� dA  MA�D�

D�x, y�m  f �x, y�  M11

xx
D
 1 dA

A�D� � 1 � A�D�
D

yy
D

 1 dA � A�D�10

DDf �x, y� � 1

D
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FIGURE 18
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29–30 ■ Use a computer algebra system to find the exact 
volume of the solid.

29. Enclosed by 

30. Enclosed by 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

31–36 ■ Sketch the region of integration and change the order
of integration.

31. 32.

33. 34.

36.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

37–42 ■ Evaluate the integral by reversing the order of 
integration.

38.

39.

40.

41.

42.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

43–44 ■ Express as a union of regions of type I or type II
and evaluate the integral.

44.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

45–46 ■ Use Property 11 to estimate the value of the integral.

45. , D � �0, 1 
 �0, 1yy
D

sx 3 � y 3 dA

x0

y

y=_1

x=_1

x=1

x=¥

y=1+≈

D0

1

_1

_1 1

D
(1, 1)

x

y

yy
D

xy dAyy
D

x 2 dA43.

D

y8

0
y2

sy3
ex4

dx dy

y1

0
y��2

arcsin y
 cos x s1 � cos2x dx dy

y1

0
y1

x2
x 3 sin�y 3 � dy dx

y3

0
y9

y2
y cos�x 2 � dx dy

y1

0
y1

sy
sx 3 � 1 dx dyy1

0
y3

3y
e x2

dx dy37.

y1

0
y��4

arctan x
f �x, y� dy dxy2

1
yln x

0
f �x, y� dy dx35.

y3

0
ys9�y

0
f �x, y� dx dyy3

0
ys9�y 2

�s9�y 2
f �x, y� dx dy

y1

0
y4

4x
f �x, y� dy dxy4

0
ysx

0
f �x, y� dy dx

z � x 2 � y 2 and z � 2y

z � 1 � x 2 � y 2 and z � 0

CAS10.

, is bounded by , ,

12. , is bounded by 

13. ,

is the triangular region with vertices (0, 2), (1, 1), 

14.

is bounded by the circle with center the origin and radius 2

16. is the triangular region with vertices ,

, and 
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–26 ■ Find the volume of the given solid.

17. Under the plane and above the region
bounded by and 

18. Under the surface and above the region
bounded by and 

Under the surface and above the triangle with
vertices , , and 

20. Enclosed by the paraboloid and the planes
, , , 

21. Bounded by the planes , , , and

22. Bounded by the planes , , , and 

23. Enclosed by the cylinders , and the planes 
,

24. Bounded by the cylinder and the planes 
, in the first octant

25. Bounded by the cylinder and the planes ,
, in the first octant

26. Bounded by the cylinders and
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

27–28 ■ Find the volume of the solid by subtracting two 
volumes.

27. The solid enclosed by the parabolic cylinders ,
and the planes ,

28. The solid enclosed by the parabolic cylinder and the
planes , 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

z � 2 � yz � 3y
y � x 2

2x � 2y � z � 10 � 0
x � y � z � 2y � x 2 � 1

y � 1 � x 2

y 2 � z2 � r 2x 2 � y 2 � r 2

z � 0x � 0
y � zx 2 � y 2 � 1

z � 0x � 0
x � 2y,y 2 � z2 � 4

y � 4z � 0
y � x 2z � x 2

z � 0x � y � 2y � xz � x

x � y � z � 1
z � 0y � 0x � 0

z � 0y � xy � 1x � 0
z � x 2 � 3y 2

�1, 2��4, 1��1, 1�
z � xy19.

x � y 3x � y 2
z � 2x � y 2

y � x 4y � x
x � 2y � z � 0

�0, 3��1, 2�

�0, 0�yy
D

 2xy dA, D

D

yy
D

�2x � y� dA,15.

yy
D

xy 2 dA, D is enclosed by x � 0 and x � s1 � y 2

�3, 2�D

yy
D

y 3 dA

y � sx  and y � x 2Dyy
D

�x � y� dA

x � 1y � x 2y � 0Dyy
D

x cos y dA11.

yy
D

e y2

dA, D � 
�x, y� � 0  y  1, 0  x  y�
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46. ,

is the disk with center the origin and radius 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

47. Prove Property 11.

In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

D

yy
D

f �x, y� dA � y1

0
y2y

0
f �x, y� dx dy � y3

1
y3�y

0
f �x, y� dx dy

D48.

1
2D

yy
D

ex2�y 2

dA 49. Evaluate , where
[Hint: Exploit the fact that 

is symmetric with respect to both axes.]

50. Use symmetry to evaluate , where 
is the region bounded by the square with vertices 
and .

51. Compute , where is the disk
, by first identifying the integral as the volume 

of a solid.

52. Graph the solid bounded by the plane and
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
the boundary curves of the region of integration, and to
evaluate the double integral.)

z � 4 � x 2 � y 2
x � y � z � 1CAS

x 2 � y 2  1
Dxx

D s1 � x 2 � y 2 dA

�0, �5�
��5, 0�

DxxD �2 � 3x � 4y� dA

D
D � 
�x, y� � x 2 � y 2  2�.

xx
D

�x 2 tan x � y 3 � 4� dA
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DOUBLE INTEGRALS IN POLAR COORDINATES

Suppose that we want to evaluate a double integral , where is one of
the regions shown in Figure 1. In either case the description of in terms of rectan-
gular coordinates is rather complicated but is easily described using polar coordinates.

Recall from Figure 2 that the polar coordinates of a point are related to the rect-
angular coordinates by the equations

The regions in Figure 1 are special cases of a polar rectangle

which is shown in Figure 3. In order to compute the double integral ,
where is a polar rectangle, we divide the interval into subintervals 
with lengths and we divide the interval into subintervals

with lengths . Then the circles and the rays 
divide the polar rectangle R into the small polar rectangles shown in Figure 4.

� � � jr � ri�� j � � j � � j�1��j�1, �j
n��, ��ri � ri � ri�1

�ri�1, rim�a, bR
xx

R
f �x, y� dA

R � 
�r, �� � a  r  b, �  �  ��

y � r sin �x � r cos �r 2 � x 2 � y 2

�x, y�
�r, ��

FIGURE 1
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R
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(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨)  | 1¯r¯2, 0¯¨¯πd

R
R

RxxR f �x, y� dA

12.3

■ Polar coordinates were introduced in
Section 9.3.

O

y

x
¨

x

y
r

P(r, ¨)=P(x, y)

FIGURE 2




