
DOUBLE INTEGRALS OVER RECTANGLES

In much the same way that our attempt to solve the area problem led to the definition
of a definite integral, we now seek to find the volume of a solid and in the process we
arrive at the definition of a double integral.

REVIEW OF THE DEFINITE INTEGRAL

First let’s recall the basic facts concerning definite integrals of functions of a single
variable. If is defined for , we start by dividing the interval into
n subintervals with length and we choose sample points 
in these subintervals. Then we form the Riemann sum

and take the limit of such sums as the largest of the lengths approaches to obtain the
definite integral of from to :

In the special case where , the Riemann sum can be interpreted as the sum of
the areas of the approximating rectangles in Figure 1, and represents the
area under the curve from to .

VOLUMES AND DOUBLE INTEGRALS

In a similar manner we consider a function of two variables defined on a closed rect-
angle

and we first suppose that . The graph of f is a surface with equation
. Let S be the solid that lies above R and under the graph of f, that is,

(See Figure 2.) Our goal is to find the volume of S.
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12.1

MULTIPLE INTEGRALS

In this chapter we extend the idea of a definite integral to double and triple integrals of functions
of two or three variables.These ideas are then used to compute volumes, surface areas, masses,
and centroids of more general regions than we were able to consider in Chapter 7. We will see
that polar coordinates are useful in computing double integrals over some types of regions. In a
similar way, we will introduce two new coordinate systems in three-dimensional space––cylindrical
coordinates and spherical coordinates––that greatly simplify the computation of triple integrals
over certain commonly occurring solid regions.
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The first step is to take a partition of into subrectangles. This is accomplished
by dividing the intervals and as follows:

By drawing lines parallel to the coordinate axes through these partition points as in
Figure 3, we form the subrectangles

for and . There are of these subrectangles, and they
cover . If we let and then the area of is

If we choose a sample point in each , then we can approximate the part
of S that lies above each by a thin rectangular box (or “column”) with base and
height as shown in Figure 4. (Compare with Figure 1.) The volume of this
box is the height of the box times the area of the base rectangle:

If we follow this procedure for all the rectangles and add the volumes of the corre-
sponding boxes, we get an approximation to the total volume of S:

(See Figure 5.) This double sum means that for each subrectangle we evaluate at the
chosen point and multiply by the area of the subrectangle, and then we add the results.
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Our intuition tells us that the approximation given in (3) becomes better as the sub-
rectangles become smaller. So if we denote by , the largest of the lengths
of all the subintervals, we would expect that

We use the expression in Equation 4 to define the volume of the solid that lies under
the graph of and above the rectangle . (It can be shown that this definition is con-
sistent with our formula for volume in Section 7.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding
volumes but in a variety of other situations as well—as we will see in Section 12.4 –
even when is not a positive function. So we make the following definition.

DEFINITION The double integral of over the rectangle is

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number 
there is a corresponding number such that

for all partitions of whose subinterval lengths are less than , and for any choice
of sample points in 

A function is called integrable if the limit in Definition 5 exists. It is shown in
courses on advanced calculus that all continuous functions are integrable. In fact, the
double integral of exists provided that is “not too discontinuous.” In particular, ff
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■ The meaning of the double limit in 
Equation 4 is that we can make the 
double sum as close as we like to the
number [for any choice of 
in ] by making the subrectangles 
sufficiently small.

Rij

�xij*, yij*�V

■ Notice the similarity between 
Definition 5 and the definition of a 
single integral in Equation 2.



if is bounded [that is, there is a constant such that for all 
in ], and is continuous there, except on a finite number of smooth curves, then 
is integrable over .

If we know that is integrable, we can choose the partitions to be regular, that
is, all the subrectangles have the same dimensions and therefore the same area:

. In this case we can simply let and . In addition, the sam-
ple point can be chosen to be any point in the subrectangle but if we
choose it to be the upper right-hand corner of [namely , see Figure 3], then
the expression for the double integral looks simpler:

By comparing Definitions 4 and 5, we see that a volume can be written as a double
integral:

If , then the volume of the solid that lies above the rectangle 
and below the surface is

The sum in Definition 5,

is called a double Riemann sum and is used as an approximation to the value of the 
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of
a single variable.] If happens to be a positive function, then the double Riemann sum 
represents the sum of volumes of columns, as in Figure 5, and is an approximation to
the volume under the graph of .

EXAMPLE 1 Estimate the volume of the solid that lies above the square
and below the elliptic paraboloid . Divide 

into four equal squares and choose the sample point to be the upper right corner
of each square . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
and the area of each square is 1. Approximating the vol-

ume by the Riemann sum with , we have

This is the volume of the approximating rectangular boxes shown in Figure 7. ■
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We get better approximations to the volume in Example 1 if we increase the num-
ber of squares. Figure 8 shows how the columns start to look more like the actual solid
and the corresponding approximations become more accurate when we use 16, 64, and
256 squares. In Example 7 we will be able to show that the exact volume is 48.

EXAMPLE 2 If , evaluate the integral

SOLUTION It would be very difficult to evaluate this integral directly from Defini-
tion 5 but, because , we can compute the integral by interpreting it as a
volume. If , then and , so the given double integral
represents the volume of the solid S that lies below the circular cylinder 
and above the rectangle R. (See Figure 9.) The volume of S is the area of a semicircle
with radius 1 times the length of the cylinder. Thus

■

THE MIDPOINT RULE

The methods that we used for approximating single integrals (the Midpoint Rule, the
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we
consider only the Midpoint Rule for double integrals. This means that we use a double
Riemann sum with a regular partition to approximate the double integral, where all the
subrectangles have area and the sample point in is chosen to be the
center of . In other words, is the midpoint of and is the mid-
point of .

MIDPOINT RULE FOR DOUBLE INTEGRALS
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EXAMPLE 3 Use the Midpoint Rule with to estimate the value of the
integral , where , .

SOLUTION In using the Midpoint Rule with , we evaluate
at the centers of the four subrectangles shown in Figure 10. So

, , , and . The area of each subrectangle is . Thus

Thus we have ■

NOTE In Example 5 we will see that the exact value of the double integral in
Example 3 is . (Remember that the interpretation of a double integral as a volume
is valid only when the integrand is a positive function. The integrand in Example 3
is not a positive function, so its integral is not a volume. In Examples 4 and 5 we will
discuss how to interpret integrals of functions that are not always positive in terms of
volumes.) If we keep dividing each subrectangle in Figure 10 into four smaller ones
with similar shape, we get the Midpoint Rule approximations displayed in the chart in
the margin. Notice how these approximations approach the exact value of the double
integral, .

ITERATED INTEGRALS

Recall that it is usually difficult to evaluate single integrals directly from the definition
of an integral, but the Evaluation Theorem (Part 2 of the Fundamental Theorem of
Calculus) provides a much easier method. The evaluation of double integrals from first
principles is even more difficult, but here we see how to express a double integral as
an iterated integral, which can then be evaluated by calculating two single integrals.

Suppose that is a function of two variables that is continuous on the rectangle
. We use the notation to mean that is held fixed and

is integrated with respect to from to . This procedure is called
partial integration with respect to . (Notice its similarity to partial differentiation.)
Now is a number that depends on the value of , so it defines a function
of :

If we now integrate the function with respect to from to , we get

The integral on the right side of Equation 7 is called an iterated integral. Usually the 
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brackets are omitted. Thus

means that we first integrate with respect to from to and then with respect to 
from to .

Similarly, the iterated integral

means that we first integrate with respect to (holding fixed) from to 
and then we integrate the resulting function of with respect to from to 
Notice that in both Equations 8 and 9 we work from the inside out.

EXAMPLE 4 Evaluate the iterated integrals.

(a) (b)

SOLUTION
(a) Regarding as a constant, we obtain

Thus the function in the preceding discussion is given by in this
example. We now integrate this function of from 0 to 3:

(b) Here we first integrate with respect to :

■

Notice that in Example 4 we obtained the same answer whether we integrated with
respect to or first. In general, it turns out (see Theorem 10) that the two iterated
integrals in Equations 8 and 9 are always equal; that is, the order of integration does
not matter. (This is similar to Clairaut’s Theorem on the equality of the mixed partial
derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).
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FUBINI’S THEOREM If is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discon-
tinuous only on a finite number of smooth curves, and the iterated integrals
exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can
at least give an intuitive indication of why it is true for the case where .
Recall that if is positive, then we can interpret the double integral as
the volume of the solid that lies above and under the surface . But
we have another formula that we used for volume in Chapter 7, namely,

where is the area of a cross-section of in the plane through perpendicular to
the -axis. From Figure 11 you can see that is the area under the curve whose
equation is , where is held constant and . Therefore

and we have

A similar argument, using cross-sections perpendicular to the -axis as in Figure 12,
shows that

EXAMPLE 5 Evaluate the double integral , where 
, . (Compare with Example 3)

SOLUTION 1 Fubini’s Theorem gives

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with
respect to first, we have
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■ Theorem 10 is named after the Italian 
mathematician Guido Fubini (1879–1943), 
who proved a very general version of this 
theorem in 1907. But the version for continu-
ous functions was known to the French mathe-
matician Augustin-Louis Cauchy almost a 
century earlier.
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EXAMPLE 6 Evaluate , where .

SOLUTION If we first integrate with respect to , we get

■

NOTE If we first integrate with respect to in Example 6, we get

but this order of integration is much more difficult than the method given in the exam-
ple because it involves integration by parts twice. Therefore, when we evaluate dou-
ble integrals it is wise to choose the order of integration that gives simpler integrals.

EXAMPLE 7 Find the volume of the solid that is bounded by the elliptic parab-
oloid , the planes and , and the three coordinate
planes.

SOLUTION We first observe that is the solid that lies under the surface
and above the square . (See Figure 15.) This

solid was considered in Example 1, but we are now in a position to evaluate the
double integral using Fubini’s Theorem. Therefore

■

In the special case where can be factored as the product of a function of 
only and a function of only, the double integral of can be written in a particularly
simple form. To be specific, suppose that and .
Then Fubini’s Theorem gives

In the inner integral is a constant, so is a constant and we can write

since is a constant. Therefore, in this case, the double integral of can be
written as the product of two single integrals:
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■ For a function that takes on both
positive and negative values,

is a difference of
volumes: , where is the 
volume above and below the graph 
of and is the volume below 
and above the graph. The fact that the
integral in Example 6 is means that
these two volumes and are equal.
(See Figure 14.)
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EXAMPLE 8 If , then, by Equation 11,

■

PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same man-
ner as in Section 5.2. We assume that all of the integrals exist. Properties 12 and 13
are referred to as the linearity of the integral.
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0
 sin x dx y��2

0
 cos y dy

R � �0, ��2 
 �0, ��2
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■ The function in
Example 8 is positive on , so the inte-
gral represents the volume of the solid
that lies above and below the graph of

shown in Figure 16.f
R

R
f �x, y� � sin x cos y

FIGURE 16

y
x

z

0

and choose the sample points to be lower
right corners.

(b) Use the Midpoint Rule to estimate the volume in 
part (a).

(c) Evaluate the double integral and compare your answer
with the estimates in parts (a) and (b).

A contour map is shown for a function on the square
. Use the Midpoint Rule with

to estimate the value of .

y

0

2

4

2 4 x

10

10

10 20

20

30

300 0

xxR f �x, y� dAm � n � 2
R � �0, 4 
 �0, 4

f5.

m � n � 2(a) Estimate the volume of the solid that lies below 
the surface and above the rectangle

, . Use a Riemann
sum with , , and a regular partition, and
take the sample point to be the upper right corner of
each square.

(b) Use the Midpoint Rule to estimate the volume of the
solid in part (a).

2. If , use a Riemann sum with ,
to estimate the value of . Take 

the sample points to be the upper left corners of the 
squares.

3. (a) Use a Riemann sum with to estimate the
value of , where .
Take the sample points to be lower left corners.

(b) Use the Midpoint Rule to estimate the integral in 
part (a).

(c) Evaluate the double integral and compare your answer
with the estimates in parts (a) and (b).

4. (a) Estimate the volume of the solid that lies below the 
surface and above the rectangle

. Use a Riemann sum with R � �0, 2 
 �0, 4
z � x � 2y 2

R � �0, � 
 �0, �xxR sin�x � y� dA
m � n � 2

xxR �y 2 � 2x 2� dAn � 2
m � 4R � ��1, 3 
 �0, 2

n � 2m � 3
0  y  4�R � 
�x, y� � 0  x  6

z � xy
1.

EXERCISES12.1

■ Double integrals behave this way
because the double sums that define
them behave this way.



26. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

27. Find the volume of the solid that lies under the plane
and above the rectangle

.

28. Find the volume of the solid that lies under the hyperbolic
paraboloid and above the square

.

Find the volume of the solid lying under the elliptic 
paraboloid and above the rectangle

.

30. Find the volume of the solid enclosed by the surface
and the planes , , , 

and .

31. Find the volume of the solid bounded by the surface
and the planes , , , , 

and .

32. Find the volume of the solid bounded by the elliptic parabo-
loid , the planes and ,
and the coordinate planes.

33. Find the volume of the solid in the first octant bounded by
the cylinder and the plane .

34. (a) Find the volume of the solid bounded by the surface
and the planes , , ,

, and .

; (b) Use a computer to draw the solid.

35. Use a computer algebra system to find the exact value of the
integral , where . Then use
the CAS to draw the solid whose volume is given by the
integral.

36. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate the
volume of this solid correct to four decimal places.

37–38 ■ The average value of a function over a rect-
angle is defined to be

(Compare with the definition for functions of one variable 
in Section 5.4.) Find the average value of over the given 
rectangle.

,
has vertices , , , 

38. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

R � �0, 4 
 �0, 1f �x, y� � e ysx � e y

�1, 0��1, 5���1, 5���1, 0�R
f �x, y� � x 2 y37.

f

fave �
1

A�R� yy
R

f �x, y� dA

R
f �x, y�

� y �  1
� x �  1z � 2 � x 2 � y 2z � e�x 2

cos�x 2 � y 2 �
CAS

R � �0, 1 
 �0, 1xxR x 5y 3e x y dA
CAS

z � 0y � 3
y � 0x � �2x � 2z � 6 � xy

x � 2z � 9 � y 2

y � 2x � 3z � 1 � �x � 1�2 � 4y 2

z � 0
y � 1y � 0x � 1x � 0z � xsx 2 � y

z � 0
y � �y � 0x � �1z � 1 � e x sin y

R � ��1, 1 
 ��2, 2
x 2�4 � y 2�9 � z � 1

29.

R � ��1, 1 
 �0, 2
z � 4 � x 2 � y 2

R � 
�x, y� � 0  x  1, �2  y  3�
3x � 2y � z � 12

R � �0, 1 
 �0, 1yy
R

x

1 � xy
dA6. A 20-ft-by-30-ft swimming pool is filled with water. The

depth is measured at 5-ft intervals, starting at one corner of
the pool, and the values are recorded in the table. Estimate
the volume of water in the pool.

7–9 ■ Evaluate the double integral by first identifying it as the
volume of a solid.

7.

8.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

10. The integral , where ,
represents the volume of a solid. Sketch the solid.

11–20 ■ Calculate the iterated integral.

12.

13. 14.

15. 16.

18.

19. 20.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

21–26 ■ Calculate the double integral.

,

22. ,

,

24. ,

25. , R � �0, 1 
 �0, 2yy
R

xye x2y dA

R � 
�x, y� � 0  x  1, 0  y  1�yy
R

1 � x 2

1 � y 2 dA

R � �0, ��6 
 �0, ��3yy
R

x sin�x � y� dA23.

R � 
�x, y� � 0  x  �, 0  y  ��2�

yy
R

 cos�x � 2y� dA

R � 
�x, y� � 0  x  1, �3  y  3�yy
R

xy 2

x 2 � 1
dA21.

y1

0
y1

0
xysx 2 � y 2 dy dxyln 2

0
yln 5

0
e 2x�y dx dy

y2

1
y1

0
�x � y��2 dx dyy4

1
y2

1
� x

y
�

y

x� dy dx17.

y1

0
y2

1

xe x

y
dy dxy2

0
y1

0
�2x � y�8 dx dy

y4

1
y2

0
(x � sy ) dx dyy2

0
y��2

0
x sin y dy dx

y4

2
y1

�1
�x 2 � y 2 � dy dxy3

1
y1

0
�1 � 4xy� dx dy11.

R � �0, 4 
 �0, 2xxR s9 � y 2 dA

xxR �4 � 2y� dA, R � �0, 1 
 �0, 19.

xxR �5 � x� dA, R � 
�x, y� � 0  x  5, 0  y  3�

xxR 3 dA, R � 
�x, y� � �2  x  2, 1  y  6�
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0 5 10 15 20 25 30

0 2 3 4 6 7 8 8

5 2 3 4 7 8 10 8

10 2 4 6 8 10 12 10

15 2 3 4 5 6 8 7

20 2 2 2 2 3 4 4




