
Look at the hills and valleys in the graph of shown in Figure 1. There are two
points where has a local maximum, that is, where is larger than nearby
values of . The larger of these two values is the absolute maximum. Likewise,

has two local minima, where is smaller than nearby values. The smaller of
these two values is the absolute minimum.

DEFINITION A function of two variables has a local maximum at if
when is near . [This means that 

for all points in some disk with center .] The number is
called a local maximum value. If when is near ,
then is a local minimum value.

If the inequalities in Definition 1 hold for all points in the domain of , then
has an absolute maximum (or absolute minimum) at .

THEOREM If has a local maximum or minimum at and the first-
order partial derivatives of exist there, then and .

PROOF Let . If has a local maximum (or minimum) at , then 
has a local maximum (or minimum) at , so by Fermat’s Theorem (see

Theorem 4.1.4). But (see Equation 11.3.1) and so .
Similarly, by applying Fermat’s Theorem to the function , we obtain

. ■

If we put and in the equation of a tangent plane (Equation
11.4.2), we get . Thus the geometric interpretation of Theorem 2 is that if the
graph of has a tangent plane at a local maximum or minimum, then the tangent plane
must be horizontal.

A point is called a critical point (or stationary point) of if and
, or if one of these partial derivatives does not exist. Theorem 2 says that

if has a local maximum or minimum at , then is a critical point of .
However, as in single-variable calculus, not all critical points give rise to maxima or
minima. At a critical point, a function could have a local maximum or a local mini-
mum or neither.

EXAMPLE 1 Let . Then

These partial derivatives are equal to 0 when and , so the only critical
point is . By completing the square, we find that

Since and , we have for all values of and .
Therefore, is a local minimum, and in fact it is the absolute minimum 
of . This can be confirmed geometrically from the graph of which is the elliptic
paraboloid with vertex shown in Figure 2. ■�1, 3, 4�
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EXAMPLE 2 Find the extreme values of .

SOLUTION Since and , the only critical point is . Notice that 
for points on the -axis we have , so (if ). However,
for points on the -axis we have , so (if ). Thus every
disk with center contains points where takes positive values as well as
points where takes negative values. Therefore, can’t be an extreme
value for , so has no extreme value. ■

Example 2 illustrates the fact that a function need not have a maximum or mini-
mum value at a critical point. Figure 3 shows how this is possible. The graph of is
the hyperbolic paraboloid , which has a horizontal tangent plane ( )
at the origin. You can see that is a maximum in the direction of the -axis
but a minimum in the direction of the -axis. Near the origin the graph has the shape
of a saddle and so is called a saddle point of .

We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test, which is proved in Appendix B, is analogous to the
Second Derivative Test for functions of one variable.

SECOND DERIVATIVES TEST Suppose the second partial derivatives of 
are continuous on a disk with center , and suppose that and

[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

NOTE 1 In case (c) the point is called a saddle point of and the graph of
crosses its tangent plane at .

NOTE 2 If , the test gives no information: could have a local maximum or
local minimum at , or could be a saddle point of .

NOTE 3 To remember the formula for it’s helpful to write it as a determinant:

EXAMPLE 3 Find the local maximum and minimum values and saddle points of
.

SOLUTION We first locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

To solve these equations we substitute from the first equation into the second
one. This gives
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so there are three real roots: , , . The three critical points are , , 
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test
that the origin is a saddle point; that is, has no local maximum or minimum at

. Since and , we see from case (a) 
of the test that is a local minimum. Similarly, we have

and , so is also a
local minimum.

The graph of is shown in Figure 4. ■

EXAMPLE 4 Find the shortest distance from the point to the plane
.

SOLUTION The distance from any point to the point is

but if lies on the plane , then and so we
have . We can minimize by minimizing the
simpler expression

By solving the equations

we find that the only critical point is . Since , , and , we
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■ A contour map of the function in
Example 3 is shown in Figure 5. The
level curves near and 
are oval in shape and indicate that as 
we move away from or 
in any direction the values of are
increasing. The level curves near ,
on the other hand, resemble hyperbolas.
They reveal that as we move away from
the origin (where the value of is ),
the values of decrease in some direc-
tions but increase in other directions.
Thus, the contour map suggests the
presence of the minima and saddle point
that we found in Example 3.
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In Module 11.7 you can use
contour maps to estimate the
locations of critical points.

■ Example 4 could also be solved using
vectors. Compare with the methods of
Section 10.5.



Test has a local minimum at . Intuitively, we can see that this local minimum
is actually an absolute minimum because there must be a point on the given plane
that is closest to . If and , then

The shortest distance from to the plane is . ■

EXAMPLE 5 A rectangular box without a lid is to be made from 12 m of card-
board. Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be , , and , as
shown in Figure 6. Then the volume of the box is

We can express as a function of just two variables and by using the fact that
the area of the four sides and the bottom of the box is

Solving this equation for , we get , so the expression for
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so
we must solve the equations

These imply that and so . (Note that and must both be positive in
this problem.) If we put in either equation we get , which gives

, , and .
We could use the Second Derivatives Test to show that this gives a local maxi-

mum of , or we could simply argue from the physical nature of this problem that
there must be an absolute maximum volume, which has to occur at a critical point 
of , so it must occur when , , . Then , so the
maximum volume of the box is 4 m . ■

ABSOLUTE MAXIMUM AND MINIMUM VALUES

For a function of one variable the Extreme Value Theorem says that if is continu-
ous on a closed interval , then has an absolute minimum value and an absolute
maximum value. According to the Closed Interval Method in Section 4.1, we found
these by evaluating not only at the critical numbers but also at the endpoints and .baf
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There is a similar situation for functions of two variables. Just as a closed interval
contains its endpoints, a closed set in is one that contains all its boundary points.
[A boundary point of D is a point such that every disk with center con-
tains points in D and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set
because it contains all of its boundary points (which are the points on the circle

). But if even one point on the boundary curve were omitted, the set would
not be closed. (See Figure 7.)

A bounded set in is one that is contained within some disk. In other words, it
is finite in extent. Then, in terms of closed and bounded sets, we can state the follow-
ing counterpart of the Extreme Value Theorem in two dimensions.

EXTREME VALUE THEOREM FOR FUNCTIONS OF TWO VARIABLES If is
continuous on a closed, bounded set in , then attains an absolute maxi-
mum value and an absolute minimum value at some points

and in .

To find the extreme values guaranteed by Theorem 4, we note that, by Theorem 2,
if has an extreme value at , then is either a critical point of or a
boundary point of . Thus we have the following extension of the Closed Interval
Method.

To find the absolute maximum and minimum values of a continuous func-
tion on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

EXAMPLE 6 Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTION Since is a polynomial, it is continuous on the closed, bounded rect-
angle , so Theorem 4 tells us there is both an absolute maximum and an absolute
minimum. According to step 1 in (5), we first find the critical points. These occur
when

so the only critical point is , and the value of there is .
In step 2 we look at the values of on the boundary of , which consists of the

four line segments , , , shown in Figure 8. On we have and
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This is an increasing function of , so its minimum value is and its
maximum value is . On we have and

This is a decreasing function of , so its maximum value is and its mini-
mum value is . On we have and

By the methods of Chapter 4, or simply by observing that , we
see that the minimum value of this function is and the maximum value
is . Finally, on we have and

with maximum value and minimum value . Thus, on the
boundary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point
and conclude that the absolute maximum value of on is and the
absolute minimum value is . Figure 9 shows the graph of . ■ff �0, 0� � f �2, 2� � 0
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graphing software, graph the function with a domain and view-
point that reveal all the important aspects of the function.

3.

4.

5.

6.

7.

8.

10.

11.

12.

13.

14.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 15–18 ■ Use a graph and/or level curves to estimate the local 
maximum and minimum values and saddle point(s) of the func-
tion. Then use calculus to find these values precisely.

15.

16. f �x, y� � xye�x2�y2

f �x, y� � 3x 2 y � y 3 � 3x 2 � 3y 2 � 2

f �x, y� � x 2ye�x2�y2

f �x, y� � �x 2 � y 2�e y2�x2

f �x, y� � �2x � x 2 ��2y � y 2 �

f �x, y� � x sin y

f �x, y� � x 2 � y 2 �
1

x 2 y 2

f �x, y� � e x cos y9.

f �x, y� � 2x 3 � xy 2 � 5x 2 � y 2

f �x, y� � �1 � xy��x � y�

f �x, y� � e 4y�x2�y2

f �x, y� � x 4 � y 4 � 4xy � 2

f �x, y� � x 3y � 12x 2 � 8y

f �x, y� � 9 � 2x � 4y � x 2 � 4y 2

Suppose (1, 1) is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?
(a)

(b)

2. Use the level curves in the figure to predict the location of
the critical points of and
whether has a saddle point or a local maximum or mini-
mum at each of those points. Explain your reasoning. Then
use the Second Derivatives Test to confirm your predictions.

3–14 ■ Find the local maximum and minimum values and 
saddle point(s) of the function. If you have three-dimensional 
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computer to produce a graph with a carefully chosen
domain and viewpoint to see how this is possible.

31. Find the shortest distance from the point to the 
plane .

32. Find the point on the plane that is closest to
the point .

Find the points on the cone that are closest to
the point .

34. Find the points on the surface that are closest
to the origin.

Find three positive numbers whose sum is 100 and whose 
product is a maximum.

36. Find three positive numbers , , and whose sum is 100
such that is a maximum.

37. Find the volume of the largest rectangular box with edges 
parallel to the axes that can be inscribed in the ellipsoid 

38. Solve the problem in Exercise 37 for a general ellipsoid 

39. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

40. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

41. Find the dimensions of a rectangular box of maximum vol-
ume such that the sum of the lengths of its 12 edges is a
constant .

42. The base of an aquarium with given volume is made of
slate and the sides are made of glass. If slate costs five times
as much (per unit area) as glass, find the dimensions of the
aquarium that minimize the cost of the materials.

A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

44. A rectangular building is being designed to minimize 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the floor at a rate of per day,

and the roof at a rate of per day. Each wall must
be at least 30 m long, the height must be at least 4 m, and
the volume must be exactly .
(a) Find and sketch the domain of the heat loss as a

function of the lengths of the sides.
(b) Find the dimensions that minimize heat loss. (Check

both the critical points and the points on the boundary
of the domain.)

4000 m3

5 units�m2
1 unit�m28 units�m2

10 units�m2

3.
43.

V

c

2

x � 2y � 3z � 6

x 2

a2 �
y 2

b 2 �
z2

c 2 � 1

9x 2 � 36y 2 � 4z2 � 36

x ay bzc
zyx

35.

y 2 � 9 � xz

�4, 2, 0�
z 2 � x 2 � y 233.

�1, 2, 3�
x � y � z � 4

x � y � z � 1
�2, 1, �1�

17. ,
,

18. ,
,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 19–22 ■ Use a graphing device (or Newton’s method or a
rootfinder) to find the critical points of correct to three
decimal places. Then classify the critical points and find the
highest or lowest points on the graph.

19.

20.

21.

22.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

23–28 ■ Find the absolute maximum and minimum values of 
on the set .

23. , is the closed triangular region
with vertices , , and 

24. , is the closed triangular
region with vertices , , and 

,

26. ,

27. ,

28. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 29. For functions of one variable it is impossible for a con-
tinuous function to have two local maxima and no local
minimum. But for functions of two variables such functions
exist. Show that the function

has only two critical points, but has local maxima at both 
of them. Then use a computer to produce a graph with a
carefully chosen domain and viewpoint to see how this is
possible.

; 30. If a function of one variable is continuous on an interval
and has only one critical number, then a local maximum has
to be an absolute maximum. But this is not true for functions
of two variables. Show that the function

has exactly one critical point, and that has a local maxi-
mum there that is not an absolute maximum. Then use a 
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f
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(c) Could you design a building with even less heat loss 
if the restrictions on the lengths of the walls were
removed?

45. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

46. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or
BO), O (OO), and AB. The Hardy-Weinberg Law states that
the proportion of individuals in a population who carry two
different alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that 
is at most .

47. Suppose that a scientist has reason to believe that two quan-
tities and are related linearly, that is, , at
least approximately, for some values of and . The scien-
tist performs an experiment and collects data in the form of
points , , , and then plots these
points. The points don’t lie exactly on a straight line, so the
scientist wants to find constants and so that the line

“fits” the points as well as possible. (See the
figure.)
y � mx � b

bm

. . . , �xn, yn ��x2, y2 ��x1, y1�

bm
y � mx � byx

2
3

Pp � q � r � 1
rqp

P � 2pq � 2pr � 2rq

L

Let be the vertical deviation of the
point from the line. The method of least squares
determines and so as to minimize , the sum of
the squares of these deviations. Show that, according to this
method, the line of best fit is obtained when

Thus the line is found by solving these two equations in the
two unknowns and .

48. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.�1, 2, 3�

bm

m �
n

i�1
xi

2 � b �
n

i�1
xi � �

n

i�1
xi yi

m �
n

i�1
xi � bn � �

n

i�1
yi

�n
i�1 di

2bm
�xi, yi�
di � yi � �mxi � b�

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0
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LAGRANGE MULTIPLIERS

In Example 5 in Section 11.7 we maximized a volume function subject to the
constraint , which expressed the side condition that the surface
area was 12 m . In this section we present Lagrange’s method for maximizing or min-
imizing a general function subject to a constraint (or side condition) of the
form .

It’s easier to explain the geometric basis of Lagrange’s method for functions of two
variables. So we start by trying to find the extreme values of subject to a con-
straint of the form . In other words, we seek the extreme values of 
when the point is restricted to lie on the level curve . Figure 1 shows
this curve together with several level curves of . These have the equations
where , , , , . To maximize subject to is to find the
largest value of such that the level curve intersects . It appears
from Figure 1 that this happens when these curves just touch each other, that is, when
they have a common tangent line. (Otherwise, the value of c could be increased fur-
ther.) This means that the normal lines at the point where they touch are iden-
tical. So the gradient vectors are parallel; that is, for some
scalar .

This kind of argument also applies to the problem of finding the extreme values of
subject to the constraint . Thus the point is restricted to

lie on the level surface with equation . Instead of the level curves in
Figure 1, we consider the level surfaces and argue that if the maximum
value of is , then the level surface is tangent to the
level surface and so the corresponding gradient vectors are parallel.t�x, y, z� � k

f �x, y, z� � cf �x0, y0, z0 � � cf
f �x, y, z� � c
t�x, y, z� � kS

�x, y, z�t�x, y, z� � kf �x, y, z�

�
( f �x0, y0 � � � (t�x0, y0 �
�x0, y0 �

t�x, y� � kf �x, y� � cc
t�x, y� � kf �x, y�111098c � 7

f �x, y� � c,f
t�x, y� � k�x, y�

f �x, y�t�x, y� � k
f �x, y�

t�x, y, z� � k
f �x, y, z�

2
2xz � 2yz � xy � 12

V � xyz
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f(x, y)=10
f(x, y)=9
f(x, y)=8
f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

Visual 11.8 animates Figure 1
for both level curves and level
surfaces.




