
is a solution of the wave equation

[Hint: Let , .]

42. If , where and , show
that

43. If , where , , find .
(Compare with Example 7.)

44. If , where , , find 
(a) , (b) , and (c) .

45. If , where , , show that 

46. Suppose , where and .
(a) Show that

(b) Find a similar formula for .

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

47. Suppose that the equation implicitly defines
each of the three variables , , and as functions of the
other two: , , . If is dif-
ferentiable and , , and are all nonzero, show that
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zyx
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&z

&y

&2 y
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&2z
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&t �2

� 2
&2z

&x &y
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&t
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&2z

&y 2 �&y

&t �2

y � h�s, t�x � t�s, t�z � f �x, y�

&2z

&x 2 �
&2z

&y 2 �
&2z

&r 2 �
1

r 2

&2z

&� 2 �
1

r

&z

&r

y � r sin �x � r cos �z � f �x, y�

&2z�&r &�&z�&�&z�&r
y � r sin �x � r cos �z � f �x, y�

&2z�&r &sy � 2rsx � r 2 � s 2z � f �x, y�

&2u

&x 2 �
&2u

&y 2 � e�2s�&2u

&s 2 �
&2u

&t 2�
y � e s sin tx � e s cos tu � f �x, y�

v � x � atu � x � at

&2z

&t 2 � a 2 &2z

&x 2

with speed along the same line from the opposite direc-
tion toward the source, then the frequency of the sound
heard by the observer is

where is the speed of sound, about . (This is the
Doppler effect.) Suppose that, at a particular moment, you
are in a train traveling at and accelerating at

. A train is approaching you from the opposite
direction on the other track at , accelerating at

, and sounds its whistle, which has a frequency of
460 Hz. At that instant, what is the perceived frequency that
you hear and how fast is it changing?

37–40 ■ Assume that all the given functions are differentiable.

If , where and , (a) find
and and (b) show that

38. If , where and , show
that

If , show that .

40. If , where and , show that

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

41–46 ■ Assume that all the given functions have continuous 
second-order partial derivatives.

41. Show that any function of the form

z � f �x � at� � t�x � at�

� &z

&x�2

� � &z

&y�2

�
&z

&s

&z

&t

y � s � tx � s � tz � f �x, y�

&z

&x
�

&z

&y
� 0z � f �x � y�39.

�&u

&x�2

� �&u

&y�2

� e�2s��&u

&s�2

� �&u

&t �2�
y � e s sin tx � e s cos tu � f �x, y�

� &z

&x�2

� � &z

&y�2

� �&z

&r�2

�
1

r 2 � &z

&�
�2

&z�&�&z�&r
y � r sin �x � r cos �z � f �x, y�37.

1.4 m�s2
40 m�s

1.2 m�s2
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332 m�sc

fo � � c � vo

c � vs
� fs

vo
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DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

Recall that if , then the partial derivatives and are defined as

and represent the rates of change of in the - and -directions, that is, in the direc-
tions of the unit vectors and .ji

yxz

fy�x0, y0 � � lim
hl0

f �x0, y0 � h� � f �x0, y0 �
h

fx�x0, y0 � � lim
hl0

f �x0 � h, y0 � � f �x0, y0 �
h

1

fyfxz � f �x, y�

11.6



Suppose that we now wish to find the rate of change of at in the direction
of an arbitrary unit vector . (See Figure 1.) To do this we consider the sur-
face with equation (the graph of ) and we let . Then the
point lies on . The vertical plane that passes through in the direction
of intersects in a curve . (See Figure 2.) The slope of the tangent line to at
the point is the rate of change of in the direction of .

If is another point on and , are the projections of , on the
-plane, then the vector P�BQ� is parallel to and so

P�BQ�

for some scalar . Therefore, , , so ,
, and

If we take the limit as , we obtain the rate of change of (with respect to dis-
tance) in the direction of , which is called the directional derivative of in the direc-
tion of .

DEFINITION The directional derivative of at in the direction of
a unit vector is

if this limit exists.

Du f �x0, y0 � � lim
hl 0

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

u � �a, b �
�x0, y0 �f2

u
fu

zhl 0

�z

h
�

z � z0

h
�

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

y � y0 � hb
x � x0 � hay � y0 � hbx � x0 � hah

� hu � �ha, hb �

uxy
QPQ�P�CQ�x, y, z�

FIGURE 2
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FIGURE 1
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Visual 11.6A animates Figure 2
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By comparing Definition 2 with Equations (1), we see that if , then
and if , then . In other words, the partial derivatives

of with respect to and are just special cases of the directional derivative.
When we compute the directional derivative of a function defined by a formula, we

generally use the following theorem.

THEOREM If is a differentiable function of and , then has a direc-
tional derivative in the direction of any unit vector and

PROOF If we define a function of the single variable by

then by the definition of a derivative we have

On the other hand, we can write , where , ,
so the Chain Rule (Theorem 11.5.2) gives

If we now put , then , , and

Comparing Equations 4 and 5, we see that

■■

If the unit vector makes an angle with the positive -axis (as in Figure 1), then
we can write and the formula in Theorem 3 becomes

EXAMPLE 1 Find the directional derivative if 
and is the unit vector given by angle . What is ?

SOLUTION Formula 6 gives

Therefore

■Du f �1, 2� � 1
2 [3s3 �1�2 � 3�1� � (8 � 3s3 )�2�] �

13 � 3s3

2

� 1
2 [3s3 x 2 � 3x � (8 � 3s3 )y]

� �3x 2 � 3y�
s3

2
� ��3x � 8y� 1

2Du f �x, y� � fx�x, y� cos 
�

6
� fy�x, y� sin 

�

6

Du f �1, 2�� � ��6u
f �x, y� � x 3 � 3xy � 4y 2Du f �x, y�

Du f �x, y� � fx�x, y� cos � � fy�x, y� sin �6

u � �cos �, sin � �
x�u

Du f �x0, y0 � � fx�x0, y0 �a � fy�x0, y0 �b

t��0� � fx�x0, y0 �a � fy�x0, y0 �b5

y � y0x � x0h � 0

t��h� �
&f

&x

dx

dh
�

&f

&y

dy

dh
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h
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ht
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fyxf3

yxf
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■ The directional derivative 
in Example 1 represents the rate of 
change of in the direction of . This is
the slope of the tangent line to the 
curve of intersection of the surface

and the vertical 
plane through in the direction 
of shown in Figure 3.u
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z � x 3 � 3xy � 4y2
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THE GRADIENT VECTOR

Notice from Theorem 3 that the directional derivative can be written as the dot prod-
uct of two vectors:

The first vector in this dot product occurs not only in computing directional deriv-
atives but in many other contexts as well. So we give it a special name (the gradient
of ) and a special notation (grad or , which is read “del ”).

DEFINITION If is a function of two variables and , then the gradient
of is the vector function defined by

EXAMPLE 2 If , then

and ■

With this notation for the gradient vector, we can rewrite the expression (7) for the
directional derivative as

This expresses the directional derivative in the direction of as the scalar projection
of the gradient vector onto .

EXAMPLE 3 Find the directional derivative of the function 
at the point in the direction of the vector .

SOLUTION We first compute the gradient vector at :

Note that is not a unit vector, but since , the unit vector in the direction
of is

u �
v

� v � �
2

s29
i �

5

s29
j

v
� v � � s29v

( f �2, �1� � �4 i � 8 j

( f �x, y� � 2xy 3 i � �3x 2y 2 � 4� j
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v � 2 i � 5 j�2, �1�
f �x, y� � x 2y 3 � 4yV

u
u
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&x
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&y
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( ff
yxf8

f( fff
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Therefore, by Equation 9, we have

■

FUNCTIONS OF THREE VARIABLES

For functions of three variables we can define directional derivatives in a similar man-
ner. Again can be interpreted as the rate of change of the function in the
direction of a unit vector .

DEFINITION The directional derivative of at in the direction
of a unit vector is

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

where if and if . This is reasonable since
the vector equation of the line through in the direction of the vector is given by

(Equation 10.5.1) and so represents the value of at a point
on this line.

If is differentiable and , then the same method that was used
to prove Theorem 3 can be used to show that

For a function of three variables, the gradient vector, denoted by or
grad , is

or, for short,
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&x
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■ The gradient vector in
Example 3 is shown in Figure 4 with
initial point . Also shown is the
vector that gives the direction of the
directional derivative. Both of these 
vectors are superimposed on a contour
plot of the graph of .f
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Then, just as with functions of two variables, Formula 12 for the directional derivative
can be rewritten as

EXAMPLE 4 If , (a) find the gradient of and (b) find the
directional derivative of at in the direction of .

SOLUTION
(a) The gradient of is 

(b) At we have . The unit vector in the direction of
is

Therefore, Equation 14 gives

■

MAXIMIZING THE DIRECTIONAL DERIVATIVE

Suppose we have a function of two or three variables and we consider all possible
directional derivatives of at a given point. These give the rates of change of in all
possible directions. We can then ask the questions: In which of these directions does

change fastest and what is the maximum rate of change? The answers are provided
by the following theorem.

THEOREM Suppose is a differentiable function of two or three variables.
The maximum value of the directional derivative is and it
occurs when has the same direction as the gradient vector .

PROOF From Equation 9 or 14 we have

where is the angle between and . The maximum value of is 1 and this
occurs when . Therefore, the maximum value of is and it occurs
when , that is, when has the same direction as . ■( fu� � 0
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Visual 11.6B provides visual
confirmation of Theorem 15.



EXAMPLE 5
(a) If , find the rate of change of at the point in the direction
from to .
(b) In what direction does have the maximum rate of change? What is this maxi-
mum rate of change?

SOLUTION
(a) We first compute the gradient vector:

The unit vector in the direction of is , so the rate of
change of in the direction from to is

(b) According to Theorem 15, increases fastest in the direction of the gradient
vector . The maximum rate of change is

■

EXAMPLE 6 Suppose that the temperature at a point in space is given by
, where is measured in degrees Celsius and 

, , in meters. In which direction does the temperature increase fastest at the point
? What is the maximum rate of increase?

SOLUTION The gradient of is

At the point the gradient vector is

By Theorem 15 the temperature increases fastest in the direction of the gradient
vector or, equivalently, in the direction of

or the unit vector . The maximum rate of
increase is the length of the gradient vector:

Therefore, the maximum rate of increase of temperature is . ■5s41�8 	 4�C�m
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■ At the function in Example 5
increases fastest in the direction of the
gradient vector .
Notice from Figure 5 that this vector
appears to be perpendicular to the level
curve through . Figure 6 shows the
graph of and the gradient vector.f
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TANGENT PLANES TO LEVEL SURFACES

Suppose is a surface with equation , that is, it is a level surface of a
function of three variables, and let be a point on . Let be any curve
that lies on the surface and passes through the point . Recall from Section 10.7 that
the curve is described by a continuous vector function . Let

be the parameter value corresponding to ; that is, . Since lies
on , any point must satisfy the equation of , that is,

If , , and are differentiable functions of and is also differentiable, then we can
use the Chain Rule to differentiate both sides of Equation 16 as follows:

But, since and , Equation 17 can be writ-
ten in terms of a dot product as

In particular, when we have , so

Equation 18 says that the gradient vector at , , is perpendicular to the 
tangent vector to any curve on that passes through . (See Figure 7.) If

, it is therefore natural to define the tangent plane to the level sur-
face at as the plane that passes through and has normal
vector . Using the standard equation of a plane (Equation 10.5.7), we can
write the equation of this tangent plane as

The normal line to at is the line passing through and perpendicular to the
tangent plane. The direction of the normal line is therefore given by the gradient vec-
tor and so, by Equation 10.5.3, its symmetric equations are

In the special case in which the equation of a surface is of the form 
(that is, is the graph of a function of two variables), we can rewrite the equation
as

F�x, y, z� � f �x, y� � z � 0

fS
z � f �x, y�S
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20
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and regard as a level surface (with ) of . Then

so Equation 19 becomes

which is equivalent to Equation 11.4.2. Thus our new, more general, definition of a tan-
gent plane is consistent with the definition that was given for the special case of Sec-
tion 11.4.

EXAMPLE 7 Find the equations of the tangent plane and normal line at the point
to the ellipsoid

SOLUTION The ellipsoid is the level surface (with ) of the function

Therefore, we have

Then Equation 19 gives the equation of the tangent plane at as

which simplifies to .
By Equation 20, symmetric equations of the normal line are

■

SIGNIFICANCE OF THE GRADIENT VECTOR

We now summarize the ways in which the gradient vector is significant. We first con-
sider a function of three variables and a point in its domain. On the one
hand, we know from Theorem 15 that the gradient vector gives the direc-
tion of fastest increase of . On the other hand, we know that is orthog-( f �x0, y0, z0 �f
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P�x0, y0, z0 �f
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Fx�x0, y0, z0 � � fx�x0, y0 �

Fk � 0S
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■ Figure 8 shows the ellipsoid, tangent
plane, and normal line in Example 7.

FIGURE 8
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20 2 0 �2
y x

z



7–11 ■ Find the directional derivative of the function at the
given point in the direction of the vector .

, ,

8. , ,

9. , ,

10. , ,

11. , ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

12. Use the figure to estimate .

y

x0

(2, 2)

±f(2, 2)

u

Du f �2, 2�

v � 2 j � k�1, 1, 2�t�x, y, z� � �x � 2y � 3z�3�2

v � �1, 2, 3 ��4, 1, 1�f �x, y, z� � x��y � z�

v � i � j�2, 0�t�s, t� � s 2e t

v � ��1, 2 ��2, 1�f �x, y� � ln�x 2 � y 2�

v � �4, �3 ��3, 4�f �x, y� � 1 � 2xsy7.

v
1–2 ■ Find the directional derivative of at the given point in
the direction indicated by the angle .

1. , ,

2. , ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

3–6 ■

(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

3. , ,

4. , ,

5. , ,

6. , ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

u � � 2
7 , 3

7 , 6
7 �P�1, 3, 1�f �x, y, z� � sx � yz

u � � 2
3 , �

2
3 , 1

3 �P�3, 0, 2�f �x, y, z� � xe 2 yz

u � ��4
5 , 3

5 �P�1, �3�f �x, y� � y ln x

u � � 5
13 , 12

13 �P�1, 2�f �x, y� � 5xy 2 � 4x 3y

u
Pf

P
f

� � ��3�2, 0�f �x, y� � x sin�xy�

� � ���6�4, 1�f �x, y� � s5x � 4y

�
f

onal to the level surface of through . (Refer to Figure 7.) These two properties
are quite compatible intuitively because as we move away from on the level surface 

, the value of does not change at all. So it seems reasonable that if we move in the
perpendicular direction, we get the maximum increase.

In like manner we consider a function of two variables and a point in
its domain. Again the gradient vector gives the direction of fastest increase
of . Also, by considerations similar to our discussion of tangent planes, it can be
shown that is perpendicular to the level curve that passes
through . Again this is intuitively plausible because the values of remain constant
as we move along the curve. (See Figure 9.)

If we consider a topographical map of a hill and let represent the height
above sea level at a point with coordinates , then a curve of steepest ascent can
be drawn as in Figure 10 by making it perpendicular to all of the contour lines. This
phenomenon can also be noticed in Figure 11 in Section 11.1, where Lonesome Creek
follows a curve of steepest descent.

�x, y�
f �x, y�

y

0 x

P(x¸, y¸)

level curve
f(x, y)=k

±f(x¸, y¸)

300
200

100

curve of
steepest
ascent

FIGURE 9 FIGURE 10

fP
f �x, y� � k( f �x0, y0 �

f
( f �x0, y0 �

P�x0, y0 �f

fS
P

PfS
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(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

26. Suppose you are climbing a hill whose shape is given by the
equation , where , , and
are measured in meters, and you are standing at a point with
coordinates . The positive -axis points east
and the positive -axis points north.
(a) If you walk due south, will you start to ascend or

descend? At what rate?
(b) If you walk northwest, will you start to ascend or

descend? At what rate?
(c) In which direction is the slope largest? What is the rate

of ascent in that direction? At what angle above the hor-
izontal does the path in that direction begin?

27. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in
the direction of the vector is 3 and the directional deriv-
ative at in the direction of is 26. Find the directional
derivative of at in the direction of the vector .

28. For the given contour map draw the curves of steepest
ascent starting at and at .

29. Show that the operation of taking the gradient of a function
has the given property. Assume that and are differen-
tiable functions of and and , are constants.
(a)

(b)

(c) (d)

30. Sketch the gradient vector for the function 
whose level curves are shown. Explain how you chose the
direction and length of this vector.

20

2

4

6

4 6 x

y

_1
0

1 3 5

_3

_5
(4, 6)

f( f �4, 6�

(un � nu n�1 (u(�u

v� �
v (u � u (v

v 2

(�uv� � u (v � v (u

(�au � bv� � a (u � b (v
bayx

vu

60 50
40

30
20

Q

P

QP

AD
l

Af
AC
l

A
AB
l

AfD�6, 15�C�1, 7�
B�3, 3�A�1, 3�

f

y
x�60, 40, 966�

zyxz � 1000 � 0.005x 2 � 0.01y 2

P
PVFind the directional derivative of at

in the direction of .

14. Find the directional derivative of 
at in the direction of the origin.

15–18 ■ Find the maximum rate of change of at the given
point and the direction in which it occurs.

15. ,

16. ,

17. ,

18. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

(a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient 
vector, that is, in the direction of .

(b) Use the result of part (a) to find the direction in which
the function decreases fastest at
the point .

20. Find the directions in which the directional derivative of
at the point (1, 0) has the value 1.

Find all points at which the direction of fastest change of
the function is .

22. Near a buoy, the depth of a lake at the point with coordi-
nates is , where , , and

are measured in meters. A fisherman in a small boat starts
at the point and moves toward the buoy, which is
located at . Is the water under the boat getting deeper
or shallower when he departs? Explain.

23. The temperature in a metal ball is inversely proportional
to the distance from the center of the ball, which we take to
be the origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of great-

est increase in temperature is given by a vector that
points toward the origin.

24. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

Suppose that over a certain region of space the electrical
potential is given by .
(a) Find the rate of change of the potential at in

the direction of the vector .v � i � j � k
P�3, 4, 5�

V�x, y, z� � 5x 2 � 3xy � xyzV
25.

P
P

�3, �3, 3�P�2, �1, 2�

zyx�CT

T�x, y, z� � 200e�x 2�3y 2�9z 2

�x, y, z�

�2, 1, 3�
�1, 2, 2�T

120��1, 2, 2�

T

�0, 0�
�80, 60�

z
yxz � 200 � 0.02x 2 � 0.001y 3�x, y�

i � jf �x, y� � x 2 � y 2 � 2x � 4y
21.

f �x, y� � x 2 � sin xy

�2, �3�
f �x, y� � x 4y � x 2 y 3

�( f �x�
x

f19.

��5, 1, 1�f �x, y, z� � tan�x � 2y � 3z�

�1, �2, �3�f �x, y, z� � ln�xy 2z 3�

�0, 0�f �p, q� � qe�p � pe�q

�2, 4�f �x, y� � y 2�x

f

P�2, 1, 3�
f �x, y, z� � x 2 � y 2 � z 2

Q�5, 4�
P�2, 8�f �x, y� � sxy13.
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31–34 ■ Find equations of (a) the tangent plane and (b) the nor-
mal line to the given surface at the specified point.

31. ,

32. ,

,

34. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 35–36 ■ Use a computer to graph the surface, the tangent plane,
and the normal line on the same screen. Choose the domain
carefully so that you avoid extraneous vertical planes. Choose
the viewpoint so that you get a good view of all three objects.

35. ,

36. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

37. If , find the gradient vector and
use it to find the tangent line to the level curve 
at the point . Sketch the level curve, the tangent line,
and the gradient vector.

38. If , find the gradient vector and
use it to find the tangent line to the level curve 
at the point . Sketch the level curve, the tangent line,
and the gradient vector.

39. Show that the equation of the tangent plane to the ellipsoid
at the point can be 

written as

40. Find the points on the ellipsoid where
the tangent plane is parallel to the plane .

41. Find the points on the hyperboloid 
where the normal line is parallel to the line that joins the
points and .

42. Show that the ellipsoid and the sphere
are tangent to

each other at the point . (This means that they have
a common tangent plane at the point.)

�1, 1, 2�
x 2 � y 2 � z2 � 8x � 6y � 8z � 24 � 0

3x 2 � 2y 2 � z2 � 9

�5, 3, 6��3, �1, 0�

x 2 � y 2 � 2z2 � 1

3x � y � 3z � 1
x 2 � 2y 2 � 3z2 � 1

xx0

a 2 �
yy0

b 2 �
zz0

c 2 � 1

�x0, y0, z0 �x 2�a 2 � y 2�b 2 � z2�c 2 � 1

�3, �1�
t�x, y� � 2

(t�3, �1�t�x, y� � x � y 2

�2, 1�
f �x, y� � 8
( f �2, 1�f �x, y� � x 2 � 4y 2

�1, 2, 3�xyz � 6

�1, 1, 1�xy � yz � zx � 3

�0, 0, 1�yz � ln�x � z�

�1, 0, 0�z � 1 � xe y cos z33.

�1 � �, 1, 1�x � z � 4 arctan�yz�

�2, 1, �1�x 2 � 2y 2 � z 2 � yz � 2

Show that the sum of the -, -, and -intercepts of any 
tangent plane to the surface is a 
constant.

44. Show that every normal line to the sphere
passes through the center of the sphere.

45. Find parametric equations for the tangent line to the curve
of intersection of the paraboloid and the ellip-
soid at the point .

46. (a) The plane intersects the cylinder
in an ellipse. Find parametric equations for

the tangent line to this ellipse at the point .

; (b) Graph the cylinder, the plane, and the tangent line on
the same screen.

47. (a) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations 
and are orthogonal at a point where

and if and only if

at

(b) Use part (a) to show that the surfaces and
are orthogonal at every point of

intersection. Can you see why this is true without using
calculus?

48. (a) Show that the function is continuous and
the partial derivatives and exist at the origin but the
directional derivatives in all other directions do not
exist.

; (b) Graph near the origin and comment on how the graph
confirms part (a).

Suppose that the directional derivatives of are known 
at a given point in two nonparallel directions given by unit 
vectors and . Is it possible to find at this point? If so,
how would you do it?

50. Show that if is differentiable at 
then

[Hint: Use Definition 11.4.7 directly.]

lim
xl x 0

f �x� � f �x0 � � ( f �x0 � � �x � x0 �

� x � x0 � � 0

x0 � �x0, y0 �,z � f �x, y�

( fvu

f �x, y�49.

f

fyfx

f �x, y� � s3 xy

x 2 � y 2 � z2 � r 2
z2 � x 2 � y 2

PFx Gx � FyGy � FzGz � 0

(G � 0(F � 0
PG�x, y, z� � 0

F�x, y, z� � 0

�1, 2, 1�
x 2 � y 2 � 5

y � z � 3

��1, 1, 2�4x 2 � y 2 � z2 � 9
z � x 2 � y 2

x 2 � y 2 � z2 � r 2

sx � sy � sz � sc
zyx43.
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MAXIMUM AND MINIMUM VALUES

As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding max-
imum and minimum values. In this section we see how to use partial derivatives to
locate maxima and minima of functions of two variables. In particular, in Example 5
we will see how to maximize the volume of a box without a lid if we have a fixed
amount of cardboard to work with.
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