
Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .

Hint: Show that

36. (a) The function

was graphed in Figure 4. Show that and 
both exist but is not differentiable at .

[Hint: Use the result of Exercise 35.]
(b) Explain why and are not continuous at .�0, 0�fyfx

�0, 0�ffy�0, 0�
fx�0, 0�

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

lim
��x, �y�l �0, 0�

f �a � �x, b � �y� � f �a, b�

�a, b�f�a, b�
f35.32. Suppose you need to know an equation of the tangent plane

to a surface at the point . You don’t have an
equation for but you know that the curves

both lie on . Find an equation of the tangent plane at .

33–34 ■ Show that the function is differentiable by finding 
values of and that satisfy Definition 7.

34.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

f �x, y� � xy � 5y 2

f �x, y� � x 2 � y 233.

�2�1

PS

r2�u� � �1 � u2, 2u3 � 1, 2u � 1 �

r1�t� � �2 � 3t, 1 � t 2, 3 � 4t � t 2 �

S
P�2, 1, 3�S
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THE CHAIN RULE

Recall that the Chain Rule for functions of a single variable gives the rule for differ-
entiating a composite function: If and , where and are differen-
tiable functions, then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each
of them giving a rule for differentiating a composite function. The first version (The-
orem 2) deals with the case where and each of the variables and is, in
turn, a function of a variable . This means that is indirectly a function of ,

, and the Chain Rule gives a formula for differentiating as a function
of . We assume that is differentiable (Definition 11.4.7). Recall that this is the case
when and are continuous (Theorem 11.4.8).

THE CHAIN RULE (CASE 1) Suppose that is a differentiable
function of and , where and are both differentiable func-
tions of . Then is a differentiable function of and

PROOF A change of in produces changes of in and in . These, in
turn, produce a change of in , and from Definition 11.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this �0, 0�

�2�1��x, �y� l �0, 0��2 l 0�1 l 0

�z �
&f

&x
�x �

&f

&y
�y � �1 �x � �2 �y

z�z
y�yx�xt�t

dz

dt
�

&f

&x

dx

dt
�

&f

&y

dy

dt

tzt
y � h�t�x � t�t�yx

z � f �x, y�2

fyfx

ft
zz � f �t�t�, h�t��

tzt
yxz � f �x, y�

dy

dt
�

dy

dx

dx

dt
1

ty
tfx � t�t�y � f �x�

11.5



equation by , we have

If we now let , then because is differentiable
and therefore continuous. Similarly, . This, in turn, means that and

, so

■

Since we often write in place of , we can rewrite the Chain Rule in the
form

EXAMPLE 1 If , where and , find when
.

SOLUTION The Chain Rule gives

It’s not necessary to substitute the expressions for and in terms of . We simply
observe that when we have x � sin 0 � 0 and y � cos 0 � 1. Therefore,

■

The derivative in Example 1 can be interpreted as the rate of change of with
respect to as the point moves along the curve with parametric equations

, . (See Figure 1.) In particular, when , the point is
and is the rate of increase as we move along the curve through

. If, for instance, represents the temperature at the
point , then the composite function represents the tempera-
ture at points on and the derivative represents the rate at which the temper-
ature changes along .

EXAMPLE 2 The pressure (in kilopascals), volume (in liters), and tempera-
ture (in kelvins) of a mole of an ideal gas are related by the equation . PV � 8.31TT

VPV

C
dz�dtC

z � T �sin 2t, cos t��x, y�
z � T�x, y� � x 2y � 3xy 4�0, 1�

Cdz�dt � 6�0, 1�
�x, y�t � 0y � cos tx � sin 2t

C�x, y�t
z

dz

dt �
t�0

� �0 � 3��2 cos 0� � �0 � 0���sin 0� � 6

t � 0
tyx

� �2xy � 3y 4 ��2 cos 2t� � �x 2 � 12xy 3 ���sin t�

dz

dt
�

&z

&x

dx

dt
�

&z

&y

dy

dt

t � 0
dz�dty � cos tx � sin 2tz � x 2y � 3xy4

dz

dt
�

&z

&x

dx

dt
�

&z

&y

dy

dt

&f�&x&z�&x

�
&f

&x

dx

dt
�

&f

&y

dy

dt

�
&f

&x

dx

dt
�

&f

&y

dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

�
&f

&x
lim

�tl0

�x

�t
�

&f

&y
lim

�tl0

�y

�t
� lim

�tl0
�1 lim

�tl0

�x

�t
� lim

�tl0
�2 lim

�tl0

�y

�t

dz

dt
� lim

�tl0

�z

�t

�2 l 0
�1 l 0�yl 0

t�x � t�t � �t� � t�t�l 0�tl 0

�z

�t
�

&f

&x

�x

�t
�

&f

&y

�y

�t
� �1

�x

�t
� �2

�y

�t

�t
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■ Notice the similarity to the definition
of the differential:

dz �
&z

&x
dx �

&z

&y
dy

FIGURE 1
The curve x=sin 2t, y=cos t

x

(0, 1)
y



Find the rate at which the pressure is changing when the temperature is and
increasing at a rate of and the volume is 100 L and increasing at a rate of

.

SOLUTION If represents the time elapsed in seconds, then at the given instant we
have , , , . Since

the Chain Rule gives

The pressure is decreasing at a rate of about kPa�s. ■

We now consider the situation where but each of and is a function
of two variables and : , . Then is indirectly a function of 
and and we wish to find and . Recall that in computing we hold 
fixed and compute the ordinary derivative of with respect to . Therefore, we can
apply Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of
the Chain Rule.

THE CHAIN RULE (CASE 2) Suppose that is a differentiable
function of and , where and are differentiable func-
tions of s and t. Then

EXAMPLE 3 If , where and , find and .

SOLUTION Applying Case 2 of the Chain Rule, we get

■� 2ste st 2

sin�s 2t� � s 2est 2

cos�s 2t�

&z

&t
�

&z

&x

&x

&t
�

&z

&y

&y

&t
� �ex sin y��2st� � �ex cos y��s 2 �

� t 2est 2

sin�s 2t� � 2ste st 2

cos�s 2t�

&z

&s
�

&z

&x

&x

&s
�

&z

&y

&y

&s
� �ex sin y��t 2 � � �ex cos y��2st�

&z�&t&z�&sy � s 2tx � st 2z � ex sin y

&z

&t
�

&z

&x

&x

&t
�

&z

&y

&y

&t

&z

&s
�

&z

&x

&x

&s
�

&z

&y

&y

&s

y � h�s, t�x � t�s, t�yx
z � f �x, y�3

&z�&s

&z

&t
�

&z

&x

&x

&t
�

&z

&y

&y

&t

tz
s&z�&t&z�&t&z�&st
szy � h�s, t�x � t�s, t�ts

yxz � f �x, y�

0.042

�
8.31

100
�0.1� �

8.31�300�
1002 �0.2� � �0.04155

dP

dt
�

&P

&T

dT

dt
�

&P

&V

dV

dt
�

8.31

V

dT

dt
�

8.31T

V 2

dV

dt

P � 8.31
T

V

dV�dt � 0.2V � 100dT�dt � 0.1T � 300
t

0.2 L�s
0.1 K�s

300 K
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Case 2 of the Chain Rule contains three types of variables: and are indepen-
dent variables, and are called intermediate variables, and is the dependent vari-
able. Notice that Theorem 3 has one term for each intermediate variable and each of
these terms resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule it’s helpful to draw the tree diagram in Figure 2. We
draw branches from the dependent variable to the intermediate variables and to
indicate that is a function of and . Then we draw branches from and to the
independent variables and . On each branch we write the corresponding partial
derivative. To find we find the product of the partial derivatives along each path
from to and then add these products:

Similarly, we find by using the paths from to .
Now we consider the general situation in which a dependent variable is a func-

tion of intermediate variables , , each of which is, in turn, a function of 
independent variables , . Notice that there are terms, one for each interme-
diate variable. The proof is similar to that of Case 1.

THE CHAIN RULE (GENERAL VERSION) Suppose that is a differentiable
function of the variables , , and each is a differentiable func-
tion of the variables , , . Then is a function of , , and

for each , , .

EXAMPLE 4 Write out the Chain Rule for the case where and
, , , and .

SOLUTION We apply Theorem 4 with and . Figure 3 shows the tree
diagram. Although we haven’t written the derivatives on the branches, it’s under-
stood that if a branch leads from to , then the partial derivative for that branch is

. With the aid of the tree diagram we can now write the required expressions:

■

EXAMPLE 5 If , where , , and ,
find the value of when , , .

SOLUTION With the help of the tree diagram in Figure 4, we have

� �4x 3y��re t� � �x 4 � 2yz3 ��2rse�t� � �3y 2z2 ��r 2 sin t�

&u

&s
�

&u

&x

&x

&s
�

&u

&y

&y

&s
�

&u

&z

&z

&s

t � 0s � 1r � 2&u�&s
z � r 2s sin ty � rs 2e�tx � rse tu � x 4y � y 2z3V

&w

&v
�

&w

&x

&x

&v
�

&w

&y

&y

&v
�

&w

&z

&z

&v
�

&w

&t

&t

&v

&w

&u
�

&w

&x

&x

&u
�

&w

&y

&y

&u
�

&w

&z

&z

&u
�

&w

&t

&t

&u

&y�&u
uy

m � 2n � 4

t � t�u, v�z � z�u, v�y � y�u, v�x � x�u, v�
w � f �x, y, z, t�V

m. . . ,2i � 1

&u

&ti
�

&u

&x1

&x1

&ti
�

&u

&x2

&x2

&ti
� 	 	 	 �

&u

&xn

&xn

&ti

tm. . . ,t2t1utm. . . ,t2t1m
xjxn. . . ,x2x1n

u4

ntm. . . ,t1

mxn. . . ,x1n
u

tz&z�&t

&z

&s
�

&z

&x

&x

&s
�

&z

&y

&y

&s

sz
&z�&s

ts
yxyxz

yxz

zyx
ts
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FIGURE 2
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When , , and , we have , , and , so

■

EXAMPLE 6 If and is differentiable, show that 
satisfies the equation

SOLUTION Let and . Then and the Chain
Rule gives

Therefore

■

EXAMPLE 7 If has continuous second-order partial derivatives and
and , find (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

■� 2
&z

&x
� 4r 2 &2z

&x 2 � 8rs
&2z

&x &y
� 4s 2 &2z

&y 2

&2z

&r 2 � 2
&z

&x
� 2r�2r

&2z

&x 2 � 2s
&2z

&y &x� � 2s�2r
&2z

&x &y
� 2s

&2z

&y 2�

�
&2z

&x &y
�2r� �

&2z

&y 2 �2s�
&

&r � &z

&y� �
&

&x � &z

&y� &x

&r
�

&

&y � &z

&y� &y

&r

�
&2z

&x 2 �2r� �
&2z

&y &x
�2s�

&

&r � &z

&x� �
&

&x � &z

&x� &x

&r
�

&

&y � &z

&x� &y

&r

� 2
&z

&x
� 2r

&

&r � &z

&x� � 2s
&

&r � &z

&y�
&2z

&r 2 �
&

&r�2r
&z

&x
� 2s

&z

&y�
5

&z

&r
�

&z

&x

&x

&r
�

&z

&y

&y

&r
�

&z

&x
�2r� �

&z

&y
�2s�

&2z�&r 2&z�&ry � 2rsx � r 2 � s 2
z � f �x, y�

t
&t
&s

� s
&t
&t

� �2st
&f

&x
� 2st

&f

&y� � ��2st
&f

&x
� 2st

&f

&y� � 0

&t
&t

�
&f

&x

&x

&t
�

&f

&y

&y

&t
�

&f

&x
��2t� �

&f

&y
�2t�

&t
&s

�
&f

&x

&x

&s
�

&f

&y

&y

&s
�

&f

&x
�2s� �

&f

&y
��2s�

t�s, t� � f �x, y�y � t 2 � s 2x � s 2 � t 2

t
&t
&s

� s
&t
&t

� 0

tft�s, t� � f �s 2 � t 2, t 2 � s 2 �

&u

&s
� �64��2� � �16��4� � �0��0� � 192

z � 0y � 2x � 2t � 0s � 1r � 2
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IMPLICIT DIFFERENTIATION

The Chain Rule can be used to give a more complete description of the process of
implicit differentiation that was introduced in Sections 2.6 and 11.3. We suppose that
an equation of the form defines implicitly as a differentiable function of
, that is, , where for all in the domain of . If is differen-

tiable, we can apply Case 1 of the Chain Rule to differentiate both sides of the equa-
tion with respect to . Since both and are functions of , we obtain

But , so if we solve for and obtain

To derive this equation we assumed that defines implicitly as a func-
tion of . The Implicit Function Theorem, proved in advanced calculus, gives con-
ditions under which this assumption is valid. It states that if is defined on a disk
containing where , , and and are continuous on
the disk, then the equation defines as a function of near the point 
and the derivative of this function is given by Equation 6.

EXAMPLE 8 Find if .

SOLUTION The given equation can be written as

so Equation 6 gives

■

Now we suppose that is given implicitly as a function by an equation
of the form . This means that for all in the
domain of . If and are differentiable, then we can use the Chain Rule to differ-
entiate the equation as follows:

But
&

&x
�y� � 0and

&

&x
�x� � 1

&F

&x

&x

&x
�

&F

&y

&y

&x
�

&F

&z

&z

&x
� 0

F�x, y, z� � 0
fFf

�x, y�F�x, y, f �x, y�� � 0F�x, y, z� � 0
z � f �x, y�z

dy

dx
� �

Fx

Fy
� �

3x 2 � 6y

3y 2 � 6x
� �

x 2 � 2y

y 2 � 2x

F�x, y� � x 3 � y 3 � 6xy � 0

x 3 � y 3 � 6xyy�

�a, b�xyF�x, y� � 0
FyFxFy�a, b� � 0F�a, b� � 0�a, b�,

F
x

yF�x, y� � 0

dy

dx
� �

&F

&x

&F

&y

� �
Fx

Fy

6

dy�dx&F�&y � 0dx�dx � 1

&F

&x

dx

dx
�

&F

&y

dy

dx
� 0

xyxxF�x, y� � 0

FfxF�x, f �x�� � 0y � f �x�x
yF�x, y� � 0
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■ The solution to Example 8 should be
compared to the one in Example 2 in 
Section 2.6.



so this equation becomes

If , we solve for and obtain the first formula in Equations 7. The for-
mula for is obtained in a similar manner.

Again, a version of the Implicit Function Theorem gives conditions under which 
our assumption is valid. If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere,
then the equation defines as a function of and near the point

and this function is differentiable, with partial derivatives given by (7).

EXAMPLE 9 Find and if .

SOLUTION Let . Then, from Equations 7, we
have

■
&z

&y
� �

Fy

Fz
� �

3y 2 � 6xz

3z2 � 6xy
� �

y 2 � 2xz

z2 � 2xy

&z

&x
� �

Fx

Fz
� �

3x 2 � 6yz

3z2 � 6xy
� �

x 2 � 2yz

z2 � 2xy

F�x, y, z� � x 3 � y 3 � z3 � 6xyz � 1

x 3 � y 3 � z3 � 6xyz � 1
&z

&y

&z

&x

�a, b, c�
yxzF�x, y, z� � 0

FzFyFxFz�a, b, c� � 0F�a, b, c� � 0
�a, b, c�F

&z

&y
� �

&F

&y

&F

&z

&z

&x
� �

&F

&x

&F

&z

7

&z�&y
&z�&x&F�&z � 0

&F

&x
�

&F

&z

&z

&x
� 0
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■ The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 11.3.

9. If , where is differentiable, , ,
, , , , ,

and , find when .

10. Let , where are
differentiable, , , ,

, , , , and
. Find and .

11. Suppose is a differentiable function of and , and
. Use the table of values

to calculate tu�0, 0� and tv�0, 0�.
t�u, v� � f �e u � sin v, e u � cos v�

yxf

Wt�1, 0�Ws�1, 0�Fv�2, 3� � 10
Fu�2, 3� � �1vt�1, 0� � 4vs�1, 0� � 5v�1, 0� � 3

ut�1, 0� � 6us�1, 0� � �2u�1, 0� � 2
F, u, and vW�s, t� � F�u�s, t�, v�s, t��

t � 3dz�dtfy�2, 7� � �8
fx�2, 7� � 6h��3� � �4h�3� � 7t��3� � 5t�3� � 2

y � h�t�x � t�t�fz � f �x, y�1–4 ■ Use the Chain Rule to find or .

1. , ,

2. , ,

, , ,

4. , , ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5–8 ■ Use the Chain Rule to find and .

5. , ,

6. , ,

, ,

8. , ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

� � s � t� � 3s � tz � sin � tan �

� � ss 2 � t 2r � stz � e r cos �7.

y � 1 � se�tx � se tz � x�y

y � stx � s � tz � x 2 � xy � y 2

&z�&t&z�&s

z � e t cos ty � e t sin tx � e tw � xy � yz 2

z � 1 � 2ty � 1 � tx � t 2w � xe y�z3.

y � cos tx � sin tz � x ln�x � 2y�

y � stx � � tz � sin x cos y

dw�dtdz�dt

EXERCISES11.5
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6 3 2 5�1, 2�
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estimate that the average temperature is rising at a rate 
of 0.15°C�year and rainfall is decreasing at a rate of
0.1 cm�year. They also estimate that, at current production
levels, and .
(a) What is the significance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.

31. The speed of sound traveling through ocean water with
salinity 35 parts per thousand has been modeled by the
equation

where is the speed of sound (in meters per second), is
the temperature (in degrees Celsius), and is the depth
below the ocean surface (in meters). A scuba diver began a
leisurely dive into the ocean water; the diver’s depth and
surrounding water temperature over time are recorded in the
following graphs. Estimate the rate of change (with respect
to time) of the speed of sound through the ocean water
experienced by the diver 20 minutes into the dive. What are
the units?

32. The radius of a right circular cone is increasing at a rate of 
in�s while its height is decreasing at a rate of in�s.

At what rate is the volume of the cone changing when the
radius is 120 in. and the height is 140 in.?

The length �, width , and height of a box change with 
time. At a certain instant the dimensions are and 

m, and � and are increasing at a rate of 2 m�s
while is decreasing at a rate of 3 m�s. At that instant find
the rates at which the following quantities are changing.
(a) The volume (b) The surface area
(c) The length of a diagonal

34. The voltage in a simple electrical circuit is slowly
decreasing as the battery wears out. The resistance is
slowly increasing as the resistor heats up. Use Ohm’s Law,

, to find how the current is changing at the moment
when , A, V�s, and

.

35. The pressure of 1 mole of an ideal gas is increasing at a rate 
of kPa�s and the temperature is increasing at a rate of 

K�s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the 
temperature is K.

36. If a sound with frequency is produced by a source travel-
ing along a line with speed and an observer is traveling vs

fs

320

0.15
0.05

dR�dt � 0.03 ��s
dV�dt � �0.01I � 0.08R � 400 �
IV � IR

R
V

h
ww � h � 2

� � 1 m
hw33.

2.51.8

t
(min)

T

10
12

10 20 30 40

14
16

8

t
(min)

D

5
10

10 20 30 40

15
20

D
TC

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3 � 0.016D

dW�dt

&W�&R � 8&W�&T � �2

12. Suppose is a differentiable function of and , and
Use the table of values in

Exercise 11 to calculate and 

13–16 ■ Use a tree diagram to write out the Chain Rule for the
given case. Assume all functions are differentiable.

, where ,

14. , where , ,

15. ,
where , ,

16. , where ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–21 ■ Use the Chain Rule to find the indicated partial 
derivatives.

17. , , ;

, , when , , 

18. , , ;

, , when , , 

19. ,
, , ;

, when

20. , , , ;

, when

21. , , , ;

, , when

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

22–24 ■ Use Equation 6 to find .

22. 23.

24.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

25–28 ■ Use Equations 7 to find and .

25.

27. 28.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

The temperature at a point is , measured in
degrees Celsius. A bug crawls so that its position after 

seconds is given by , where 
and are measured in centimeters. The temperature func-
tion satisfies and . How fast is the
temperature rising on the bug’s path after 3 seconds?

30. Wheat production in a given year, , depends on the 
average temperature and the annual rainfall . ScientistsRT

W

Ty�2, 3� � 3Tx�2, 3� � 4
y

xx � s1 � t , y � 2 �
1
3 tt

T�x, y��x, y�29.

yz � ln�x � z�x � z � arctan�yz�

xyz � cos�x � y � z�26.x 2 � y 2 � z 2 � 3xyz

&z�&y&z�&x

sin x � cos y � sin x cos y

sxy � 1 � x 2yy 5 � x 2y 3 � 1 � ye x 2

dy�dx

p � 2, r � 3, � � 0
&u

&�

&u

&r

&u

&p

z � p � ry � pr sin �x � pr cos �u � x 2 � yz

u � 3, v � �1
&M

&v

&M

&u

z � u � vy � u � vx � 2uvM � xe y�z2

x � y � 1
&R

&y

&R

&x

w � 2xyv � 2x � yu � x � 2y
R � ln�u 2 � v 2 � w 2�

t � 0y � 2x � 1
&u

&t

&u

&y

&u

&x

s � x � y sin tr � y � x cos tu � sr 2 � s 2

w � 0v � 1u � 2
&z

&w

&z

&v

&z

&u

y � u � ve wx � uv 2 � w 3z � x 2 � xy 3

t � t�w, x, y, z�s � s�w, x, y, z�u � f �s, t�

r � r�x, y, z�q � q�x, y, z�p � p�x, y, z�
v � f � p, q, r�

z � z�t, u�y � y�t, u�x � x�t, u�w � f �x, y, z�

y � y�r, s, t�x � x�r, s, t�u � f �x, y�13.

ts�1, 2�.tr�1, 2�
t�r, s� � f �2r � s, s 2 � 4r�.

yxf
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is a solution of the wave equation

[Hint: Let , .]

42. If , where and , show
that

43. If , where , , find .
(Compare with Example 7.)

44. If , where , , find 
(a) , (b) , and (c) .

45. If , where , , show that 

46. Suppose , where and .
(a) Show that

(b) Find a similar formula for .

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

47. Suppose that the equation implicitly defines
each of the three variables , , and as functions of the
other two: , , . If is dif-
ferentiable and , , and are all nonzero, show that

&z

&x

&x

&y

&y

&z
� �1

FzFyFx

Fx � h�y, z�y � t�x, z�z � f �x, y�
zyx

F�x, y, z� � 0

&2z�&s &t

  �
&z

&x

&2x

&t 2 �
&z

&y

&2 y

&t 2

&2z

&t 2 �
&2z

&x 2 �&x

&t �2

� 2
&2z

&x &y

&x

&t

&y

&t
�

&2z

&y 2 �&y

&t �2

y � h�s, t�x � t�s, t�z � f �x, y�

&2z

&x 2 �
&2z

&y 2 �
&2z

&r 2 �
1

r 2

&2z

&� 2 �
1

r

&z

&r

y � r sin �x � r cos �z � f �x, y�

&2z�&r &�&z�&�&z�&r
y � r sin �x � r cos �z � f �x, y�

&2z�&r &sy � 2rsx � r 2 � s 2z � f �x, y�

&2u

&x 2 �
&2u

&y 2 � e�2s�&2u

&s 2 �
&2u

&t 2�
y � e s sin tx � e s cos tu � f �x, y�

v � x � atu � x � at

&2z

&t 2 � a 2 &2z

&x 2

with speed along the same line from the opposite direc-
tion toward the source, then the frequency of the sound
heard by the observer is

where is the speed of sound, about . (This is the
Doppler effect.) Suppose that, at a particular moment, you
are in a train traveling at and accelerating at

. A train is approaching you from the opposite
direction on the other track at , accelerating at

, and sounds its whistle, which has a frequency of
460 Hz. At that instant, what is the perceived frequency that
you hear and how fast is it changing?

37–40 ■ Assume that all the given functions are differentiable.

If , where and , (a) find
and and (b) show that

38. If , where and , show
that

If , show that .

40. If , where and , show that

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

41–46 ■ Assume that all the given functions have continuous 
second-order partial derivatives.

41. Show that any function of the form

z � f �x � at� � t�x � at�

� &z

&x�2

� � &z

&y�2

�
&z

&s

&z

&t

y � s � tx � s � tz � f �x, y�

&z

&x
�

&z

&y
� 0z � f �x � y�39.

�&u

&x�2

� �&u

&y�2

� e�2s��&u

&s�2

� �&u

&t �2�
y � e s sin tx � e s cos tu � f �x, y�

� &z

&x�2

� � &z

&y�2

� �&z

&r�2

�
1

r 2 � &z

&�
�2

&z�&�&z�&r
y � r sin �x � r cos �z � f �x, y�37.

1.4 m�s2
40 m�s

1.2 m�s2
34 m�s

332 m�sc

fo � � c � vo

c � vs
� fs

vo
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Recall that if , then the partial derivatives and are defined as

and represent the rates of change of in the - and -directions, that is, in the direc-
tions of the unit vectors and .ji

yxz

fy�x0, y0 � � lim
hl0

f �x0, y0 � h� � f �x0, y0 �
h

fx�x0, y0 � � lim
hl0

f �x0 � h, y0 � � f �x0, y0 �
h

1

fyfxz � f �x, y�

11.6




