76. (a) How many n th-order partial derivatives does a function of two variables have?
(b) If these partial derivatives are all continuous, how many of them can be distinct?
(c) Answer the question in part (a) for a function of three variables.
77. If $f(x, y)=x\left(x^{2}+y^{2}\right)^{-3 / 2} e^{\sin \left(x^{2} y\right)}$, find $f_{x}(1,0)$.
[Hint: Instead of finding $f_{x}(x, y)$ first, note that it's easier to use Equation 1 or Equation 2.]

CAS
79. Let

$$
f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Use a computer to graph f.
(b) Find $f_{x}(x, y)$ and $f_{y}(x, y)$ when $(x, y) \neq(0,0)$.
(c) Find $f_{x}(0,0)$ and $f_{y}(0,0)$ using Equations 2 and 3.
(d) Show that $f_{x y}(0,0)=-1$ and $f_{y x}(0,0)=1$.
(e) Does the result of part (d) contradict Clairaut's Theorem? Use graphs of $f_{x y}$ and $f_{y x}$ to illustrate your answer.
78. If $f(x, y)=\sqrt[3]{x^{3}+y^{3}}$, find $f_{x}(0,0)$.

11.4 TANGENT PLANES AND LINEAR APPROXIMATIONS

FIGURE I
The tangent plane contains the tangent lines T_{1} and T_{2}.

One of the most important ideas in single-variable calculus is that as we zoom in toward a point on the graph of a differentiable function, the graph becomes indistinguishable from its tangent line and we can approximate the function by a linear function. (See Section 2.8.) Here we develop similar ideas in three dimensions. As we zoom in toward a point on a surface that is the graph of a differentiable function of two variables, the surface looks more and more like a plane (its tangent plane) and we can approximate the function by a linear function of two variables. We also extend the idea of a differential to functions of two or more variables.

TANGENT PLANES

Suppose a surface S has equation $z=f(x, y)$, where f has continuous first partial derivatives, and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S. As in the preceding section, let C_{1} and C_{2} be the curves obtained by intersecting the vertical planes $y=y_{0}$ and $x=x_{0}$ with the surface S. Then the point P lies on both C_{1} and C_{2}. Let T_{1} and T_{2} be the tangent lines to the curves C_{1} and C_{2} at the point P. Then the tangent plane to the surface S at the point P is defined to be the plane that contains both tangent lines T_{1} and T_{2}. (See Figure 1.)

We will see in Section 11.6 that if C is any other curve that lies on the surface S and passes through P, then its tangent line at P also lies in the tangent plane. Therefore, you can think of the tangent plane to S at P as consisting of all possible tangent lines at P to curves that lie on S and pass through P. The tangent plane at P is the plane that most closely approximates the surface S near the point P.

We know from Equation 10.5 .7 that any plane passing through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ has an equation of the form

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

By dividing this equation by C and letting $a=-A / C$ and $b=-B / C$, we can write it in the form

I

$$
z-z_{0}=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)
$$

If Equation 1 represents the tangent plane at P, then its intersection with the plane

- Note the similarity between the equation of a tangent plane and the equation of a tangent line:

$$
y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

$y=y_{0}$ must be the tangent line T_{1}. Setting $y=y_{0}$ in Equation 1 gives

$$
z-z_{0}=a\left(x-x_{0}\right) \quad y=y_{0}
$$

and we recognize these as the equations (in point-slope form) of a line with slope a. But from Section 11.3 we know that the slope of the tangent T_{1} is $f_{x}\left(x_{0}, y_{0}\right)$. Therefore, $a=f_{x}\left(x_{0}, y_{0}\right)$.

Similarly, putting $x=x_{0}$ in Equation 1, we get $z-z_{0}=b\left(y-y_{0}\right)$, which must represent the tangent line T_{2}, so $b=f_{y}\left(x_{0}, y_{0}\right)$.

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

V EXAMPLE II Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.

SOLUTION Let $f(x, y)=2 x^{2}+y^{2}$. Then

$$
\begin{array}{ll}
f_{x}(x, y)=4 x & f_{y}(x, y)=2 y \\
f_{x}(1,1)=4 & f_{y}(1,1)=2
\end{array}
$$

Then (2) gives the equation of the tangent plane at $(1,1,3)$ as
or

$$
\begin{aligned}
z-3 & =4(x-1)+2(y-1) \\
z & =4 x+2 y-3
\end{aligned}
$$

Figure 2(a) shows the elliptic paraboloid and its tangent plane at $(1,1,3)$ that we found in Example 1. In parts (b) and (c) we zoom in toward the point $(1,1,3)$ by restricting the domain of the function $f(x, y)=2 x^{2}+y^{2}$. Notice that the more we zoom in, the flatter the graph appears and the more it resembles its tangent plane.

FIGURE 2 The elliptic paraboloid $z=2 x^{2}+y^{2}$ appears to coincide with its tangent plane as we zoom in toward ($1,1,3$).

FIGURE 3
Zooming in toward (1, 1) on a contour map of $f(x, y)=2 x^{2}+y^{2}$

LINEAR APPROXIMATIONS

In Example 1 we found that an equation of the tangent plane to the graph of the function $f(x, y)=2 x^{2}+y^{2}$ at the point $(1,1,3)$ is $z=4 x+2 y-3$. Therefore, in view of the visual evidence in Figures 2 and 3, the linear function of two variables

$$
L(x, y)=4 x+2 y-3
$$

is a good approximation to $f(x, y)$ when (x, y) is near $(1,1)$. The function L is called the linearization of f at $(1,1)$ and the approximation

$$
f(x, y) \approx 4 x+2 y-3
$$

is called the linear approximation or tangent plane approximation of f at $(1,1)$.
For instance, at the point $(1.1,0.95)$ the linear approximation gives

$$
f(1.1,0.95) \approx 4(1.1)+2(0.95)-3=3.3
$$

which is quite close to the true value of $f(1.1,0.95)=2(1.1)^{2}+(0.95)^{2}=3.3225$. But if we take a point farther away from $(1,1)$, such as $(2,3)$, we no longer get a good approximation. In fact, $L(2,3)=11$ whereas $f(2,3)=17$.

In general, we know from (2) that an equation of the tangent plane to the graph of a function f of two variables at the point $(a, b, f(a, b))$ is

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

if f_{x} and f_{y} are continuous. The linear function whose graph is this tangent plane, namely
3

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is called the linearization of f at (a, b) and the approximation
4

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is called the linear approximation or the tangent plane approximation of f at (a, b).

FIGURE 4
$f(x, y)=\frac{x y}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$, $f(0,0)=0$

We have defined tangent planes for surfaces $z=f(x, y)$, where f has continuous first partial derivatives. What happens if f_{x} and f_{y} are not continuous? Figure 4 pictures such a function; its equation is

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

You can verify (see Exercise 36) that its partial derivatives exist at the origin and, in fact, $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$, but f_{x} and f_{y} are not continuous. The linear approximation would be $f(x, y) \approx 0$, but $f(x, y)=\frac{1}{2}$ at all points on the line $y=x$. So a function of two variables can behave badly even though both of its partial derivatives exist. To rule out such behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, $y=f(x)$, if x changes from a to $a+\Delta x$, we defined the increment of y as

$$
\Delta y=f(a+\Delta x)-f(a)
$$

In Chapter 2 we showed that if f is differentiable at a, then
5

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x \quad \text { where } \varepsilon \rightarrow 0 \text { as } \Delta x \rightarrow 0
$$

Now consider a function of two variables, $z=f(x, y)$, and suppose x changes from a to $a+\Delta x$ and y changes from b to $b+\Delta y$. Then the corresponding increment of z is

6

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)
$$

Thus the increment Δz represents the change in the value of f when (x, y) changes from (a, b) to $(a+\Delta x, b+\Delta y)$. By analogy with (5) we define the differentiability of a function of two variables as follows.

7 DEFINITION If $z=f(x, y)$, then f is differentiable at (a, b) if Δz can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Definition 7 says that a differentiable function is one for which the linear approximation (4) is a good approximation when (x, y) is near (a, b). In other words, the tangent plane approximates the graph of f well near the point of tangency.

It's sometimes hard to use Definition 7 directly to check the differentiability of a function, but the following theorem provides a convenient sufficient condition for differentiability.

8 THEOREM If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

- Figure 5 shows the graphs of the function f and its linearization L in Example 2.

FIGURE 5

FIGURE 6
∇ EXAMPLE 2 Show that $f(x, y)=x e^{x y}$ is differentiable at $(1,0)$ and find its linearization there. Then use it to approximate $f(1.1,-0.1)$.

SOLUTION The partial derivatives are

$$
\begin{array}{ll}
f_{x}(x, y)=e^{x y}+x y e^{x y} & f_{y}(x, y)=x^{2} e^{x y} \\
f_{x}(1,0)=1 & f_{y}(1,0)=1
\end{array}
$$

Both f_{x} and f_{y} are continuous functions, so f is differentiable by Theorem 8. The linearization is

$$
\begin{aligned}
L(x, y) & =f(1,0)+f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0) \\
& =1+1(x-1)+1 \cdot y=x+y
\end{aligned}
$$

The corresponding linear approximation is
so

$$
\begin{aligned}
x e^{x y} & \approx x+y \\
f(1.1,-0.1) & \approx 1.1-0.1=1
\end{aligned}
$$

Compare this with the actual value of $f(1.1,-0.1)=1.1 e^{-0.11} \approx 0.98542$.

DIFFERENTIALS

For a differentiable function of one variable, $y=f(x)$, we define the differential $d x$ to be an independent variable; that is, $d x$ can be given the value of any real number. The differential of y is then defined as

$$
\begin{equation*}
d y=f^{\prime}(x) d x \tag{9}
\end{equation*}
$$

(See Section 2.8.) Figure 6 shows the relationship between the increment Δy and the differential $d y: \Delta y$ represents the change in height of the curve $y=f(x)$ and $d y$ represents the change in height of the tangent line when x changes by an amount $d x=\Delta x$.

For a differentiable function of two variables, $z=f(x, y)$, we define the differentials $d x$ and $d y$ to be independent variables; that is, they can be given any values. Then the differential $d z$, also called the total differential, is defined by

10

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

(Compare with Equation 9.) Sometimes the notation $d f$ is used in place of $d z$.
If we take $d x=\Delta x=x-a$ and $d y=\Delta y=y-b$ in Equation 10, then the differential of z is

$$
d z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

So, in the notation of differentials, the linear approximation (4) can be written as

$$
f(x, y) \approx f(a, b)+d z
$$

- In Example 3, $d z$ is close to Δz because the tangent plane is a good approximation to the surface $z=x^{2}+3 x y-y^{2}$ near ($2,3,13$). (See Figure 8.)

FIGURE 8

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric interpretation of the differential $d z$ and the increment $\Delta z: d z$ represents the change in height of the tangent plane, whereas Δz represents the change in height of the surface $z=f(x, y)$ when (x, y) changes from (a, b) to $(a+\Delta x, b+\Delta y)$.

$z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$

V EXAMPLE 3
(a) If $z=f(x, y)=x^{2}+3 x y-y^{2}$, find the differential $d z$.
(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96 , compare the values of Δz and $d z$.

SOLUTION

(a) Definition 10 gives

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=(2 x+3 y) d x+(3 x-2 y) d y
$$

(b) Putting $x=2, d x=\Delta x=0.05, y=3$, and $d y=\Delta y=-0.04$, we get

$$
\begin{aligned}
d z & =[2(2)+3(3)] 0.05+[3(2)-2(3)](-0.04) \\
& =0.65
\end{aligned}
$$

The increment of z is

$$
\begin{aligned}
\Delta z & =f(2.05,2.96)-f(2,3) \\
& =\left[(2.05)^{2}+3(2.05)(2.96)-(2.96)^{2}\right]-\left[2^{2}+3(2)(3)-3^{2}\right] \\
& =0.6449
\end{aligned}
$$

Notice that $\Delta z \approx d z$ but $d z$ is easier to compute.

EXAMPLE 4 The base radius and height of a right circular cone are measured as 10 cm and 25 cm , respectively, with a possible error in measurement of as much as 0.1 cm in each. Use differentials to estimate the maximum error in the calculated volume of the cone.

SOLUTION The volume V of a cone with base radius r and height h is $V=\pi r^{2} h / 3$. So the differential of V is

$$
d V=\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h=\frac{2 \pi r h}{3} d r+\frac{\pi r^{2}}{3} d h
$$

Since each error is at most 0.1 cm , we have $|\Delta r| \leqslant 0.1,|\Delta h| \leqslant 0.1$. To find the largest error in the volume we take the largest error in the measurement of r and of h. Therefore, we take $d r=0.1$ and $d h=0.1$ along with $r=10, h=25$. This gives

$$
d V=\frac{500 \pi}{3}(0.1)+\frac{100 \pi}{3}(0.1)=20 \pi
$$

Thus the maximum error in the calculated volume is about $20 \pi \mathrm{~cm}^{3} \approx 63 \mathrm{~cm}^{3}$.

FUNCTIONS OF THREE OR MORE VARIABLES

Linear approximations, differentiability, and differentials can be defined in a similar manner for functions of more than two variables. A differentiable function is defined by an expression similar to the one in Definition 7. For such functions the linear approximation is

$$
f(x, y, z) \approx f(a, b, c)+f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)
$$

and the linearization $L(x, y, z)$ is the right side of this expression.
If $w=f(x, y, z)$, then the increment of w is

$$
\Delta w=f(x+\Delta x, y+\Delta y, z+\Delta z)-f(x, y, z)
$$

The differential $d w$ is defined in terms of the differentials $d x, d y$, and $d z$ of the independent variables by

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z
$$

EXAMPLE 5 The dimensions of a rectangular box are measured to be $75 \mathrm{~cm}, 60 \mathrm{~cm}$, and 40 cm , and each measurement is correct to within 0.2 cm . Use differentials to estimate the largest possible error when the volume of the box is calculated from these measurements.

SOLUTION If the dimensions of the box are x, y, and z, its volume is $V=x y z$ and so

$$
d V=\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial z} d z=y z d x+x z d y+x y d z
$$

We are given that $|\Delta x| \leqslant 0.2,|\Delta y| \leqslant 0.2$, and $|\Delta z| \leqslant 0.2$. To find the largest error in the volume, we therefore use $d x=0.2, d y=0.2$, and $d z=0.2$ together with $x=75, y=60$, and $z=40$:

$$
\Delta V \approx d V=(60)(40)(0.2)+(75)(40)(0.2)+(75)(60)(0.2)=1980
$$

Thus an error of only 0.2 cm in measuring each dimension could lead to an error of as much as $1980 \mathrm{~cm}^{3}$ in the calculated volume! This may seem like a large error, but it's only about 1% of the volume of the box.

I-6 = Find an equation of the tangent plane to the given surface at the specified point.

```
I. \(z=4 x^{2}-y^{2}+2 y, \quad(-1,2,4)\)
2. \(z=9 x^{2}+y^{2}+6 x-3 y+5, \quad(1,2,18)\)
3. \(z=\sqrt{4-x^{2}-2 y^{2}},(1,-1,1)\)
4. \(z=y \ln x, \quad(1,4,0)\)
5. \(z=y \cos (x-y), \quad(2,2,2)\)
6. \(z=e^{x^{2}-y^{2}}, \quad(1,-1,1)\)
```

7-8 = Graph the surface and the tangent plane at the given point. (Choose the domain and viewpoint so that you get a good view of both the surface and the tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable.
7. $z=x^{2}+x y+3 y^{2}, \quad(1,1,5)$
8. $z=\arctan \left(x y^{2}\right), \quad(1,1, \pi / 4)$

CAS 9-10 = Draw the graph of f and its tangent plane at the given point. (Use your computer algebra system both to compute the partial derivatives and to graph the surface and its tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable.
9. $f(x, y)=\frac{x y \sin (x-y)}{1+x^{2}+y^{2}}, \quad(1,1,0)$
10. $f(x, y)=e^{-x y / 10}(\sqrt{x}+\sqrt{y}+\sqrt{x y}), \quad\left(1,1,3 e^{-0.1}\right)$

11-14 - Explain why the function is differentiable at the given point. Then find the linearization $L(x, y)$ of the function at that point.
II. $f(x, y)=x \sqrt{y},(1,4)$
12. $f(x, y)=x / y,(6,3)$
13. $f(x, y)=\tan ^{-1}(x+2 y),(1,0)$
14. $f(x, y)=\sqrt{x+e^{4 y}},(3,0)$
15. Find the linear approximation of the function $f(x, y)=\sqrt{20-x^{2}-7 y^{2}}$ at $(2,1)$ and use it to approximate $f(1.95,1.08)$.
16. Find the linear approximation of the function $f(x, y)=\ln (x-3 y)$ at $(7,2)$ and use it to approximate $f(6.9,2.06)$. Illustrate by graphing f and the tangent plane.
17. Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(3,2,6)$ and use it to approximate the number $\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}}$.

18-22 - Find the differential of the function.
18. $v=y \cos x y$

19. $z=x^{3} \ln \left(y^{2}\right)$

20. $u=e^{-t} \sin (s+2 t)$
21. $R=\alpha \beta^{2} \cos \gamma$
22. $w=x y e^{x z}$
23. If $z=5 x^{2}+y^{2}$ and (x, y) changes from $(1,2)$ to $(1.05,2.1)$, compare the values of Δz and $d z$.
24. If $z=x^{2}-x y+3 y^{2}$ and (x, y) changes from $(3,-1)$ to (2.96, -0.95), compare the values of Δz and $d z$.
25. The length and width of a rectangle are measured as 30 cm and 24 cm , respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.
26. The dimensions of a closed rectangular box are measured as $80 \mathrm{~cm}, 60 \mathrm{~cm}$, and 50 cm , respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.
27. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height 12 cm if the tin is 0.04 cm thick.
28. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick.
29. A model for the surface area of a human body is given by $S=0.1091 w^{0.425} h^{0.725}$, where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet. If the errors in measurement of w and h are at most 2%, use differentials to estimate the maximum percentage error in the calculated surface area.
30. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation $P V=8.31 T$, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K .
31. If R is the total resistance of three resistors, connected in parallel, with resistances R_{1}, R_{2}, R_{3}, then

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

If the resistances are measured in ohms as $R_{1}=25 \Omega$, $R_{2}=40 \Omega$, and $R_{3}=50 \Omega$, with a possible error of 0.5% in each case, estimate the maximum error in the calculated value of R.
32. Suppose you need to know an equation of the tangent plane to a surface S at the point $P(2,1,3)$. You don't have an equation for S but you know that the curves

$$
\begin{aligned}
& \mathbf{r}_{1}(t)=\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle \\
& \mathbf{r}_{2}(u)=\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle
\end{aligned}
$$

both lie on S. Find an equation of the tangent plane at P.
33-34 - Show that the function is differentiable by finding values of ε_{1} and ε_{2} that satisfy Definition 7 .
33. $f(x, y)=x^{2}+y^{2}$
34. $f(x, y)=x y-5 y^{2}$
35. Prove that if f is a function of two variables that is differentiable at (a, b), then f is continuous at (a, b).
Hint: Show that

$$
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} f(a+\Delta x, b+\Delta y)=f(a, b)
$$

36. (a) The function

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

was graphed in Figure 4 . Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist but f is not differentiable at $(0,0)$. [Hint: Use the result of Exercise 35.]
(b) Explain why f_{x} and f_{y} are not continuous at (0,0).

11.5 THE CHAIN RULE

Recall that the Chain Rule for functions of a single variable gives the rule for differentiating a composite function: If $y=f(x)$ and $x=g(t)$, where f and g are differentiable functions, then y is indirectly a differentiable function of t and
I

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

For functions of more than one variable, the Chain Rule has several versions, each of them giving a rule for differentiating a composite function. The first version (Theorem 2) deals with the case where $z=f(x, y)$ and each of the variables x and y is, in turn, a function of a variable t. This means that z is indirectly a function of t, $z=f(g(t), h(t))$, and the Chain Rule gives a formula for differentiating z as a function of t. We assume that f is differentiable (Definition 11.4.7). Recall that this is the case when f_{x} and f_{y} are continuous (Theorem 11.4.8).

2 THE CHAIN RULE (CASE I) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

PROOF A change of Δt in t produces changes of Δx in x and Δy in y. These, in turn, produce a change of Δz in z, and from Definition 11.4.7 we have

$$
\Delta z=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where $\varepsilon_{1} \rightarrow 0$ and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$. [If the functions ε_{1} and ε_{2} are not defined at $(0,0)$, we can define them to be 0 there.] Dividing both sides of this

