
79. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s

Theorem? Use graphs of and to illustrate your
answer.

fyxfxy

CAS

fyx�0, 0� � 1fxy�0, 0� � �1
fy�0, 0�fx�0, 0�

�x, y� � �0, 0�fy�x, y�fx�x, y�
f

f �x, y� � �
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

76. (a) How many th-order partial derivatives does a function
of two variables have?

(b) If these partial derivatives are all continuous, how many
of them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

77. If , find .
[Hint: Instead of finding first, note that it’s easier to 
use Equation 1 or Equation 2.]

78. If , find .fx�0, 0�f �x, y� � s3 x 3 � y 3

fx�x, y�
fx�1, 0�f �x, y� � x�x 2 � y 2 ��3�2e sin�x 2y�

n
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TANGENT PLANES AND LINEAR APPROXIMATIONS

One of the most important ideas in single-variable calculus is that as we zoom in
toward a point on the graph of a differentiable function, the graph becomes indistin-
guishable from its tangent line and we can approximate the function by a linear func-
tion. (See Section 2.8.) Here we develop similar ideas in three dimensions. As we
zoom in toward a point on a surface that is the graph of a differentiable function of
two variables, the surface looks more and more like a plane (its tangent plane) and we
can approximate the function by a linear function of two variables. We also extend the
idea of a differential to functions of two or more variables.

TANGENT PLANES

Suppose a surface has equation , where has continuous first partial
derivatives, and let be a point on . As in the preceding section, let and

be the curves obtained by intersecting the vertical planes and with
the surface . Then the point lies on both and . Let and be the tangent
lines to the curves and at the point . Then the tangent plane to the surface 
at the point is defined to be the plane that contains both tangent lines and . (See
Figure 1.)

We will see in Section 11.6 that if is any other curve that lies on the surface 
and passes through , then its tangent line at also lies in the tangent plane. There-
fore, you can think of the tangent plane to at as consisting of all possible tangent
lines at to curves that lie on and pass through . The tangent plane at is the plane
that most closely approximates the surface near the point .

We know from Equation 10.5.7 that any plane passing through the point 
has an equation of the form

By dividing this equation by and letting and , we can write
it in the form

If Equation 1 represents the tangent plane at , then its intersection with the plane P

z � z0 � a�x � x0� � b�y � y0 �1

b � �B�Ca � �A�CC

A�x � x0 � � B�y � y0 � � C�z � z0 � � 0

P�x0, y0, z0 �
PS

PPSP
PS

PP
SC

T2T1P
SPC2C1

T2T1C2C1PS
x � x0y � y0C2

C1SP�x0, y0, z0 �
fz � f �x, y�S

11.4

z

FIGURE 1
The tangent plane contains the
tangent lines T¡TT and T™TT .

y

x



must be the tangent line . Setting in Equation 1 gives

and we recognize these as the equations (in point-slope form) of a line with slope . 
But from Section 11.3 we know that the slope of the tangent is . Therefore,

.
Similarly, putting in Equation 1, we get , which must

represent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent
plane to the surface at the point is

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid at
the point .

SOLUTION Let . Then

Then (2) gives the equation of the tangent plane at as

or ■

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by
restricting the domain of the function . Notice that the more we
zoom in, the flatter the graph appears and the more it resembles its tangent plane.

FIGURE 2 The elliptic paraboloid z=2≈+¥ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).

(c)

2
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0

2
1

0

40
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0

_20
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x

(b)

2
0

_2

2
0

_2

40

20

0

_20

y

z

x

(a)

40

20

0

_20

y

z

4
2

0
_2

_4

x
4

2
0

_2
_4

f �x, y� � 2x 2 � y 2

z � 4x � 2y � 3

z � 3 � 4�x � 1� � 2�y � 1�

�1, 1, 3�

fx�1, 1� � 4 fy�1, 1� � 2

fx�x, y� � 4x fy�x, y� � 2y

f �x, y� � 2x 2 � y 2

�1, 1, 3�
z � 2x 2 � y 2V

z � z0 � fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 �

P�x0, y0, z0 �z � f �x, y�
f2

b � fy�x0, y0 �T2

z � z0 � b�y � y0 �x � x0

a � fx�x0, y0 �
fx�x0, y0 �T1

a

y � y0z � z0 � a�x � x0 �

y � y0T1y � y0
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■ Note the similarity between the equa-
tion of a tangent plane and the equation
of a tangent line:

y � y0 � f ��x0 ��x � x0 �

Visual 11.4 shows an animation
of Figure 2.



In Figure 3 we corroborate this impression by zooming in toward the point (1, 1)
on a contour map of the function . Notice that the more we zoom
in, the more the level curves look like equally spaced parallel lines, which is charac-
teristic of a plane.

LINEAR APPROXIMATIONS

In Example 1 we found that an equation of the tangent plane to the graph of the func-
tion at the point (1, 1, 3) is . Therefore, in view
of the visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near (1, 1). The function L is called
the linearization of f at (1, 1) and the approximation

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of .
But if we take a point farther away from (1, 1), such as (2, 3), we no longer get a good
approximation. In fact, whereas .

In general, we know from (2) that an equation of the tangent plane to the graph of
a function f of two variables at the point is

if and are continuous. The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximation of at �a, b�.f

f �x, y� 	 f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�4

�a, b�

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�3

fyfx

z � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b, f �a, b��

f �2, 3� � 17L�2, 3� � 11

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

f �1.1, 0.95� 	 4�1.1� � 2�0.95� � 3 � 3.3

f �x, y� 	 4x � 2y � 3

�x, y�f �x, y�

L�x, y� � 4x � 2y � 3

z � 4x � 2y � 3f �x, y� � 2x 2 � y 2

FIGURE 3
Zooming in toward (1, 1)
on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f �x, y� � 2x 2 � y 2
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We have defined tangent planes for surfaces , where has continuous
first partial derivatives. What happens if and are not continuous? Figure 4 pic-
tures such a function; its equation is

You can verify (see Exercise 36) that its partial derivatives exist at the origin and, in
fact, and , but and are not continuous. The linear approx-
imation would be , but at all points on the line . So a
function of two variables can behave badly even though both of its partial derivatives
exist. To rule out such behavior, we formulate the idea of a differentiable function of
two variables.

Recall that for a function of one variable, , if x changes from a to
we defined the increment of as

In Chapter 2 we showed that if is differentiable at a, then

Now consider a function of two variables, , and suppose x changes from
a to and y changes from b to . Then the corresponding increment of

is

Thus the increment represents the change in the value of when changes
from to . By analogy with (5) we define the differentiability
of a function of two variables as follows.

DEFINITION If , then is differentiable at if can be
expressed in the form

where and as .

Definition 7 says that a differentiable function is one for which the linear approxi-
mation (4) is a good approximation when is near . In other words, the tan-
gent plane approximates the graph of f well near the point of tangency.

It’s sometimes hard to use Definition 7 directly to check the differentiability of 
a function, but the following theorem provides a convenient sufficient condition for
differentiability.

THEOREM If the partial derivatives and exist near and are con-
tinuous at , then is differentiable at .�a, b�f�a, b�

�a, b�fyfx8

�a, b��x, y�

��x, �y�l �0, 0��2 l 0�1

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�z�a, b�fz � f �x, y�7

�a � �x, b � �y��a, b�
�x, y�f�z

�z � f �a � �x, b � �y� � f �a, b�6

z
b � �ya � �x

z � f �x, y�

where �l 0  as �xl 0�y � f ��a� �x � � �x5

f

�y � f �a � �x� � f �a�

y
a � �x,y � f �x�

y � xf �x, y� � 1
2f �x, y� 	 0

fyfxfy�0, 0� � 0fx�0, 0� � 0

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fyfx

fz � f �x, y�
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z y

x

xy
≈+¥  if (x, y)≠(0, 0),

f(0, 0)=0

FIGURE 4

f(x, y)=

■ This is Equation 2.5.5.

■ Theorem 8 is proved in Appendix B.



EXAMPLE 2 Show that is differentiable at (1, 0) and find its lin-
earization there. Then use it to approximate .

SOLUTION The partial derivatives are

Both and are continuous functions, so is differentiable by Theorem 8. The
linearization is

The corresponding linear approximation is

so

Compare this with the actual value of . ■

DIFFERENTIALS

For a differentiable function of one variable, , we define the differential dx to
be an independent variable; that is, dx can be given the value of any real number. The
differential of is then defined as

(See Section 2.8.) Figure 6 shows the relationship between the increment and the
differential : represents the change in height of the curve and rep-
resents the change in height of the tangent line when changes by an amount 

For a differentiable function of two variables, , we define the differen-
tials and to be independent variables; that is, they can be given any values. Then
the differential , also called the total differential, is defined by

(Compare with Equation 9.) Sometimes the notation is used in place of .
If we take and in Equation 10, then the dif-

ferential of is

So, in the notation of differentials, the linear approximation (4) can be written as

f �x, y� 	 f �a, b� � dz

dz � fx�a, b��x � a� � fy�a, b��y � b�
z

dy � �y � y � bdx � �x � x � a
dzd f

dz � fx�x, y� dx � fy�x, y� dy �
&z

&x
dx �

&z

&y
dy10

dz
dydx

z � f �x, y�
dx � �x.x

dyy � f �x��ydy
�y

dy � f ��x� dx9

y

y � f �x�

f �1.1, �0.1� � 1.1e�0.11 	 0.98542

f �1.1, �0.1� 	 1.1 � 0.1 � 1

xexy 	 x � y

� 1 � 1�x � 1� � 1 � y � x � y

L�x, y� � f �1, 0� � fx�1, 0��x � 1� � fy�1, 0��y � 0�

ffyfx

fy�1, 0� � 1fx�1, 0� � 1

fy�x, y� � x 2exyfx�x, y� � exy � xyexy

f �1.1, �0.1�
f �x, y� � xexyV
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FIGURE 5

1
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4

2

0

yx

z

1
0

■ Figure 5 shows the graphs of the
function and its linearization in
Example 2.

Lf

xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

FIGURE 6

tangent line
y=f(a)+fª(a)(x-a)



Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric
interpretation of the differential and the increment : represents the change in
height of the tangent plane, whereas represents the change in height of the surface

when changes from to .

EXAMPLE 3
(a) If , find the differential .
(b) If changes from 2 to and changes from 3 to , compare the values 
of and .

SOLUTION
(a) Definition 10 gives

(b) Putting , , , and , we get

The increment of is

Notice that but is easier to compute. ■

EXAMPLE 4 The base radius and height of a right circular cone are measured as
10 cm and 25 cm, respectively, with a possible error in measurement of as much as

cm in each. Use differentials to estimate the maximum error in the calculated
volume of the cone.
0.1

dz�z 	 dz

� 0.6449

� ��2.05�2 � 3�2.05��2.96� � �2.96�2 
 � �22 � 3�2��3� � 32 


�z � f �2.05, 2.96� � f �2, 3�

z

� 0.65

dz � �2�2� � 3�3�
0.05 � �3�2� � 2�3�
��0.04�

dy � �y � �0.04y � 3dx � �x � 0.05x � 2

dz �
&z

&x
dx �

&z

&y
dy � �2x � 3y� dx � �3x � 2y� dy

dz�z
2.96y2.05x
dzz � f �x, y� � x 2 � 3xy � y 2

V

y

x

z

Îx=
dx

0

{a,{{ b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy
tangent plane

z-f(a, b)=fxff (a, b)(x-a)+fyf (a, b)(y-b)

surface z=f(x, y)

dz
Îz

FIGURE 7

�a � �x, b � �y��a, b��x, y�z � f �x, y�
�z

dz�zdz

622 ■ CHAPTER 11 PARTIAL DERIVATIVES

FIGURE 8

60

0

5 3 1 2
x y

z 20

4

40

24
_20

0
0

■ In Example 3, is close to because
the tangent plane is a good approximation
to the surface near

. (See Figure 8.)�2, 3, 13�
z � x 2 � 3xy � y 2

�zdz



SOLUTION The volume of a cone with base radius and height is .
So the differential of is

Since each error is at most cm, we have , . To find the
largest error in the volume we take the largest error in the measurement of and of
. Therefore, we take and along with , . This gives

Thus the maximum error in the calculated volume is about cm cm . ■

FUNCTIONS OF THREE OR MORE VARIABLES

Linear approximations, differentiability, and differentials can be defined in a similar
manner for functions of more than two variables. A differentiable function is defined
by an expression similar to the one in Definition 7. For such functions the linear
approximation is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is defined in terms of the differentials , , and of the inde-
pendent variables by

EXAMPLE 5 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within cm. Use differentials to
estimate the largest possible error when the volume of the box is calculated from
these measurements.

SOLUTION If the dimensions of the box are , , and , its volume is and so

We are given that , , and . To find the largest error
in the volume, we therefore use , , and together with

, , and :

Thus an error of only cm in measuring each dimension could lead to an error of
as much as 1980 cm in the calculated volume! This may seem like a large error, but
it’s only about 1% of the volume of the box. ■

3
0.2

�V 	 dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2� � 1980

z � 40y � 60x � 75
dz � 0.2dy � 0.2dx � 0.2

� �z � 
 0.2� �y � 
 0.2� �x � 
 0.2

dV �
&V

&x
dx �

&V

&y
dy �

&V

&z
dz � yz dx � xz dy � xy dz

V � xyzzyx

0.2

dw �
&w

&x
dx �

&w

&y
dy �

&w

&z
dz

dzdydxdw

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

ww � f �x, y, z�
L�x, y, z�

f �x, y, z� 	 f �a, b, c� � fx�a, b, c��x � a� � fy�a, b, c��y � b� � fz�a, b, c��z � c�

33 	 6320�

dV �
500�

3
�0.1� �

100�

3
�0.1� � 20�

h � 25r � 10dh � 0.1dr � 0.1h
r

� �h � 
 0.1� �r � 
 0.10.1

dV �
&V

&r
dr �

&V

&h
dh �

2�rh

3
dr �

�r 2

3
dh

V
V � �r 2h�3hrV
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18–22 ■ Find the differential of the function.

18.

19. 20.

21. 22.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

If and changes from to 
compare the values of and .

24. If and changes from to
, compare the values of and .

25. The length and width of a rectangle are measured as 30 cm
and 24 cm, respectively, with an error in measurement of at
most cm in each. Use differentials to estimate the maxi-
mum error in the calculated area of the rectangle.

26. The dimensions of a closed rectangular box are measured as
80 cm, 60 cm, and 50 cm, respectively, with a possible error 
of cm in each dimension. Use differentials to estimate
the maximum error in calculating the surface area of the box.

Use differentials to estimate the amount of tin in a closed
tin can with diameter 8 cm and height 12 cm if the tin is

cm thick.

28. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if
the metal in the top and bottom is cm thick and the
metal in the sides is cm thick.

29. A model for the surface area of a human body is given by
, where is the weight (in pounds), 

is the height (in inches), and is measured in square feet.
If the errors in measurement of and are at most 2%, use
differentials to estimate the maximum percentage error in
the calculated surface area.

30. The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation , where is
measured in kilopascals, in liters, and in kelvins. Use
differentials to find the approximate change in the pressure
if the volume increases from 12 L to 12.3 L and the temper-
ature decreases from 310 K to 305 K.

31. If is the total resistance of three resistors, connected in
parallel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated
value of .R

0.5%R3 � 50 �R2 � 40 �
R1 � 25 �

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

R

TV
PPV � 8.31T

hw
Sh

wS � 0.1091w 0.425h 0.725

0.05
0.1

0.04

27.

0.2

0.1

dz�z�2.96, �0.95�
�3, �1��x, y�z � x 2 � xy � 3y 2

dz�z
�1.05, 2.1�,�1, 2��x, y�z � 5x 2 � y 223.

w � xye xzR � �� 2 cos '

u � e�t sin�s � 2t�z � x 3 ln�y 2�

v � y cos xy

1–6 ■ Find an equation of the tangent plane to the given
surface at the specified point.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 7–8 ■ Graph the surface and the tangent plane at the given
point. (Choose the domain and viewpoint so that you get a 
good view of both the surface and the tangent plane.) Then
zoom in until the surface and the tangent plane become 
indistinguishable.

7. ,

8. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9–10 ■ Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become 
indistinguishable.

9.

10.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

11–14 ■ Explain why the function is differentiable at the given
point. Then find the linearization of the function at 
that point.

,

12. ,

13. ,

14. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

15. Find the linear approximation of the function
at and use it to approxi-

mate .

; 16. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

Find the linear approximation of the function
at and use it to

approximate the number .s�3.02� 2 � �1.97� 2 � �5.99� 2

�3, 2, 6�f �x, y, z� � sx 2 � y 2 � z 2

17.

ff �6.9, 2.06�
�7, 2�f �x, y� � ln�x � 3y�

f �1.95, 1.08�
�2, 1�f �x, y� � s20 � x 2 � 7y 2

�3, 0�f �x, y� � sx � e 4y

�1, 0�f �x, y� � tan�1�x � 2y�

�6, 3�f �x, y� � x�y

�1, 4�f �x, y� � xsy11.

L�x, y�

f �x, y� � e�xy�10 (sx � sy � sxy ),  �1, 1, 3e�0.1�

f �x, y� �
xy sin�x � y�
1 � x 2 � y 2 ,  �1, 1, 0�

fCAS

�1, 1, ��4�z � arctan�xy 2�

�1, 1, 5�z � x 2 � xy � 3y 2

�1, �1, 1�z � ex2�y2

�2, 2, 2�z � y cos�x � y�

�1, 4, 0�z � y ln x

�1, �1, 1�z � s4 � x 2 � 2y 2

�1, 2, 18�z � 9x 2 � y 2 � 6x � 3y � 5

��1, 2, 4�z � 4x 2 � y 2 � 2y
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Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .

Hint: Show that

36. (a) The function

was graphed in Figure 4. Show that and 
both exist but is not differentiable at .

[Hint: Use the result of Exercise 35.]
(b) Explain why and are not continuous at .�0, 0�fyfx

�0, 0�ffy�0, 0�
fx�0, 0�

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

lim
��x, �y�l �0, 0�

f �a � �x, b � �y� � f �a, b�

�a, b�f�a, b�
f35.32. Suppose you need to know an equation of the tangent plane

to a surface at the point . You don’t have an
equation for but you know that the curves

both lie on . Find an equation of the tangent plane at .

33–34 ■ Show that the function is differentiable by finding 
values of and that satisfy Definition 7.

34.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

f �x, y� � xy � 5y 2

f �x, y� � x 2 � y 233.

�2�1

PS

r2�u� � �1 � u2, 2u3 � 1, 2u � 1 �

r1�t� � �2 � 3t, 1 � t 2, 3 � 4t � t 2 �

S
P�2, 1, 3�S
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THE CHAIN RULE

Recall that the Chain Rule for functions of a single variable gives the rule for differ-
entiating a composite function: If and , where and are differen-
tiable functions, then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each
of them giving a rule for differentiating a composite function. The first version (The-
orem 2) deals with the case where and each of the variables and is, in
turn, a function of a variable . This means that is indirectly a function of ,

, and the Chain Rule gives a formula for differentiating as a function
of . We assume that is differentiable (Definition 11.4.7). Recall that this is the case
when and are continuous (Theorem 11.4.8).

THE CHAIN RULE (CASE 1) Suppose that is a differentiable
function of and , where and are both differentiable func-
tions of . Then is a differentiable function of and

PROOF A change of in produces changes of in and in . These, in
turn, produce a change of in , and from Definition 11.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this �0, 0�

�2�1��x, �y� l �0, 0��2 l 0�1 l 0

�z �
&f

&x
�x �

&f

&y
�y � �1 �x � �2 �y

z�z
y�yx�xt�t

dz

dt
�

&f

&x

dx

dt
�

&f

&y

dy

dt

tzt
y � h�t�x � t�t�yx

z � f �x, y�2

fyfx

ft
zz � f �t�t�, h�t��

tzt
yxz � f �x, y�

dy

dt
�

dy

dx

dx

dt
1

ty
tfx � t�t�y � f �x�
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