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PARTIAL DERIVATIVES

If f is a function of two variables x and y, suppose we let only x vary while keeping
y fixed, say y = b, where b is a constant. Then we are really considering a function of
a single variable x, namely, g(x) = f(x, b). If g has a derivative at a, then we call it the
partial derivative of f with respect to x at (a, b) and denote it by f,(a, b). Thus

[ 1 fila,b) =g'(a)  where  g(x) = f(x, b)

By the definition of a derivative, we have

gla + h) — g(a)

o = im £

and so Equation 1 becomes

fla + h,b) — f(a, b)
h

a fda, b) = lim

Similarly, the partial derivative of f with respect to y at (a, b), denoted by f,(a, b),
is obtained by keeping x fixed (x = a) and finding the ordinary derivative at b of the
function G(y) = f(a, y):

fla,b + h) — f(a, b)
h

3] fila. b) = lim

If we now let the point (a, b) vary in Equations 2 and 3, f; and f, become functions
of two variables.

3 If 7 is a function of two variables, its partial derivatives are the functions
/. and f, defined by

G+ hy) = fxy)
h

filx,y) = lim

f,y +h) — flx,y)
h

filx,y) = lim

There are many alternative notations for partial derivatives. For instance, instead of
f. we can write f; or D, f (to indicate differentiation with respect to the first variable)
or 9f/dx. But here df/dx can’t be interpreted as a ratio of differentials.
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FIGURE |
The partial derivatives of f at (a, b) are
the slopes of the tangents to C; and C,.

NOTATIONS FOR PARTIAL DERIVATIVES If z = f(x, y), we write

faen =fi= L L) = i = Dif= Dy
X ox ox

pe) ==L Ly = E = = D=y
y  dy dy

To compute partial derivatives, all we have to do is remember from Equation 1 that
the partial derivative with respect to x is just the ordinary derivative of the function g
of a single variable that we get by keeping y fixed. Thus we have the following rule.

RULE FOR FINDING PARTIAL DERIVATIVES OF z = f(x, y)
I. To find f,, regard y as a constant and differentiate f(x, y) with respect to x.
2. To find f,, regard x as a constant and differentiate f(x, y) with respect to y.

EXAMPLE | If f(x,y) = x> + x?y® — 2y?, find £.(2, 1) and £,(2, 1).

SOLUTION Holding y constant and differentiating with respect to x, we get
filx,y) = 3x* + 2xy*

and so 2, 1)=3:22+2:2-1°=16

Holding x constant and differentiating with respect to y, we get
filey) = 3x?y? = dy

2, 1)=3-22-12—4-1=38 =

INTERPRETATIONS OF PARTIAL DERIVATIVES

To give a geometric interpretation of partial derivatives, we recall that the equation
z = f(x, y) represents a surface S (the graph of f). If f(a, b) = ¢, then the point
P(a, b, ¢) lies on S. By fixing y = b, we are restricting our attention to the curve C; in
which the vertical plane y = b intersects S. (In other words, C; is the trace of S in the
plane y = b.) Likewise, the vertical plane x = a intersects S in a curve C,. Both of the
curves C, and C; pass through the point P. (See Figure 1.)

Notice that the curve C, is the graph of the function g(x) = f(x, b), so the slope
of its tangent T at P is g'(a) = fi(a, b). The curve C; is the graph of the function
G(y) = f(a, y), so the slope of its tangent T> at P is G'(b) = f,(a, b).

Thus the partial derivatives f(a, b) and f,(a, b) can be interpreted geometrically as
the slopes of the tangent lines at P(a, b, ¢) to the traces C; and C, of S in the planes
y=band x = a.

Partial derivatives can also be interpreted as rates of change. If z = f(x, y), then
dz/dx represents the rate of change of z with respect to x when y is fixed. Similarly,
dz/dy represents the rate of change of z with respect to y when x is fixed.



X

FIGURE 3

= Some computer algebra systems can
plot surfaces defined by implicit equa-
tions in three variables. Figure 4 shows
such a plot of the surface defined by the
equation in Example 4.

FIGURE 4
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EXAMPLE 2 If f(x,y) = 4 — x* — 2y find £(1, 1) and £,(1, 1) and interpret these
numbers as slopes.

SOLUTION We have

filx,y) = —2x filx,y) = —4y
£, 1) =2 £(1,1) = —4

The graph of f is the paraboloid z = 4 — x* — 2y? and the vertical plane y = 1
intersects it in the parabola z = 2 — x?, y = 1. (As in the preceding discussion, we
label it C, in Figure 2.) The slope of the tangent line to this parabola at the point

(1, 1, 1) is fi(1, 1) = —2. Similarly, the curve C, in which the plane x = 1 intersects
the paraboloid is the parabola z = 3 — 2y?, x = 1, and the slope of the tangent line
at (1,1, 1) is f,(1, 1) = —4. (See Figure 3.) [ |

X J J
, calculate —f and —f
+y 0x dy

SOLUTION Using the Chain Rule for functions of one variable, we have

of X ad X by 1
—— = cos c— = cos .

ax 1+y ax \ 1 +y 1+y 1+y
of X ad X by X

—— =cos C = —cos . 3 u
ady 1 +y dy \1 +y 1 +y (1 +y

1 EXAMPLE 4 Find dz/dx and dz/dy if z is defined implicitly as a function of x
and y by the equation

K4 EXAMPLE 3 If f(x,y) = sin<1

Xy 4+ 2+ 6xyz=1

SOLUTION To find dz/dx, we differentiate implicitly with respect to x, being careful
to treat y as a constant:

d d
3%+ 32— 4 6yz + 6xy—z =0
0x 0x

Solving this equation for dz/dx, we obtain

9z x*+2yz
ox 2% + 2xy

Similarly, implicit differentiation with respect to y gives

9z ¥+ 2xz -
dy z% 4+ 2xy
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FUNCTIONS OF MORE THAN TWO VARIABLES

Partial derivatives can also be defined for functions of three or more variables. For
example, if f is a function of three variables x, y, and z, then its partial derivative with
respect to x is defined as

f(X+ h,y,Z) _f(x,y,Z)
h

filx,y,2) = lim

and it is found by regarding y and z as constants and differentiating f(x, y, z) with
respect to x. If w = f(x, y, z), then f, = dw/dx can be interpreted as the rate of change
of w with respect to x when y and z are held fixed. But we can’t interpret it geometri-
cally because the graph of f lies in four-dimensional space.

In general, if u is a function of n variables, u = f(xi, x2, ..., x,), its partial deriva-
tive with respect to the ith variable x; is

ﬂ: lim f(X|,...,X[71,X,' + h,xi+],-~~,xn) —f(xl,...,x,-,...,x,,)
dx;  h—0 h

and we also write

Mg —f=Dyf

0x; 0x;
EXAMPLE 5 Find f., f, and f.if f(x,y,z) = ¢“In z.
SOLUTION Holding y and z constant and differentiating with respect to x, we have

fi=yeInz

Similarly, fi=xeInz and L= [ |

HIGHER DERIVATIVES

If f is a function of two variables, then its partial derivatives f; and f; are also func-
tions of two variables, so we can consider their partial derivatives (f.)s, (fv)y, (fi)ss
and (f;)y, which are called the second partial derivatives of f. If z = f(x, y), we use
the following notation:

(fV)x :f;cx :fn = i <8—f> = 3_2f = 9’z

ox \ dx x> ox2

Thus the notation f;, (or 4*f/dy dx) means that we first differentiate with respect to x
and then with respect to y, whereas in computing f;. the order is reversed.



= Alexis Clairaut was a child prodigy in
mathematics, having read I'Hospital’s
textbook on calculus when he was ten and
presented a paper on geometry to the French
Academy of Sciences when he was 13. At the
age of 18, Clairaut published Recherches sur
les courbes a double courbure, which was the
first systematic treatise on three-dimensional
analytic geometry and included the calculus
of space curves.
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EXAMPLE 6 Find the second partial derivatives of
fly) = x4y — 2y
SOLUTION In Example 1 we found that

filx,y) = 3x% + 2xy° filxy) =3x%y* — 4y

Therefore

J J
fuo=— (Bx? + 2xy%) = 6x + 2y° foo = — (Bx* + 2xy?) = 6xy?
ox dy

J J
fuo = —(Bx?y? — 4y) = 6x)° fo=—0@xy —4y) =6x’y —4 W
ax ady

Notice that f,, = f;, in Example 6. This is not just a coincidence. It turns out that
the mixed partial derivatives f,, and f;, are equal for most functions that one meets in
practice. The following theorem, which was discovered by the French mathematician
Alexis Clairaut (1713-1765), gives conditions under which we can assert that f;, = f,..
The proof is given in Appendix B.

CLAIRAUT’S THEOREM Suppose f is defined on a disk D that contains the
point (a, b). If the functions f;, and f,, are both continuous on D, then

fola, b) = fiu(a, b)

Partial derivatives of order 3 or higher can also be defined. For instance,

If N __of
Jdy 0x

J
Sy = (ﬁo)v = g < = 8y28x

and using Clairaut’s Theorem it can be shown that f;,, = fi», = f;,x if these functions
are continuous.

1 EXAMPLE 7 Calculate fi,,. if f(x,y, z) = sin(3x + yz).
SOLUTION f. = 3cos(3x + yz)

Sfoo = —9sin(3x + yz)

Sy = —9zcos(3x + yz)

Sery: = —9cos(3x + yz) + 9yzsin(3x + yz) [ |

PARTIAL DIFFERENTIAL EQUATIONS

Partial derivatives occur in partial differential equations that express certain physical
laws. For instance, the partial differential equation

Pu  u

p——— 0
ox? ay?
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is called Laplace’s equation after Pierre Laplace (1749—1827). Solutions of this equa-
tion are called harmonic functions and play a role in problems of heat conduction,
fluid flow, and electric potential.

EXAMPLE 8 Show that the function u(x, y) = e*sin y is a solution of Laplace’s
equation.

SOLUTION u, = e'siny uy, = e*cosy
Uy =e'siny Uy, = —e’siny
Uy + Uy =e"siny —e*siny =10
Therefore, u satisfies Laplace’s equation. [ |
The wave equation

Fu_ L u

a1’
describes the motion of a waveform, which could be an ocean wave, a sound wave, a
light wave, or a wave traveling along a vibrating string. For instance, if u(x, t) repre-
sents the displacement of a vibrating violin string at time 7 and at a distance x from

}‘7 X 4’{
one end of the string (as in Figure 5), then u(x, t) satisfies the wave equation. Here the
FIGURE 5 constant a depends on the density of the string and on the tension in the string.
EXAMPLE 9 Verify that the function u(x, 1) = sin(x — at) satisfies the wave
equation.
SOLUTION u, = cos(x — at) u, = —sin(x — at)
u, = —acos(x — at) u, = —a*sin(x — at) = a’uy
So u satisfies the wave equation. [ |
11.3 | EXERCISES
I. The temperature T at a location in the Northern Hemisphere 2. A contour map is given for a function f. Use it to estimate
depends on the longitude x, latitude y, and time #, so we can f(2,1) and £(2, 1).

write T = f(x, y, t). Let’s measure time in hours from the

beginning of January.

(a) What are the meanings of the partial derivatives 97/dx, =1
aT/ay, and aT/at?

(b) Honolulu has longitude 158° W and latitude 21° N . Sup- 107
pose that at 9:00 AM on January 1 the wind is blowing / 7 |12
hot air to the northeast, so the air to the west and south / 4/7 / 16
is warm and the air to the north and east is cooler. / ; /
Would you expect £,(158, 21, 9), £,(158, 21, 9), and // / [ / /
(158, 21, 9) to be positive or negative? Explain.

A/ABIREY

0
> 6| 8

14

3 18
J

4\’—‘




3-4 = Determine the signs of the partial derivatives for the

function f whose graph is shown.

S
SO SIS

N
\\\\ \\“
T
3 (@ £(1.2) (b) £(1.2)
4. () £i(—1,2) ) £(=1,2)
© ful=1,2) @ £,(~1,2)

5. If f(x,y) = 16 — 4x* — y2 find £.(1, 2) and £,(1, 2) and
interpret these numbers as slopes. Illustrate with either

hand-drawn sketches or computer plots.

6. If f(x,y) = /4 — x> — 4y? find f.(1,0) and f,(1, 0) and

interpret these numbers as slopes. Illustrate with either

hand-drawn sketches or computer plots.
7-28 = Find the first partial derivatives of the function.

7. f(x,y) = 3x — 2y*
8. f(x,y) =x° + 3x%? + 3xy*

9. z = xe¥ 10. z=ylnx
1. f(x,y) A A 12. f(x,y) = x"
x+y
13. w = sin « cos B 14. (s, 1) = st?/(s* + t?)
I5. f(r,s) = rIn(r* + 5?) 16. f(x, 1) = arctan(xy/7)
17. u = te"" 18. f(x,y) = fx cos(t?) dt
y

19. f(x,y,2) = xy’z® + 3yz 20. f(x,y,z) = x%”

21. w=1In(x + 2y + 3z2) 22, w=+r2+ s2+ 2

23. u = xe 'sin 0 24, y=x""

25. f(x,y,z, 1) = xyz*tan(yt)  26. f(x,y,z 1) =

27. u=Jx2+x2+ - + x2

28. u = sin(x; + 2x, + - -+ + nx,)

29-32 = Find the indicated partial derivatives.
29. flxy) =Va2+ % £G.4)

30. f(x,y) = sin(2x + 3y); f,(—6,4)

3. f(xy,2)=x/(y +2); £GB,2,1)

xy?
t+ 2z
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32, f(u, v, w) = wtan(uv); f,(2,0,3)
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33-34 = Use the definition of partial derivatives as limits (4) to

find f(x, y) and f,(x, y).

X
33. f(x,y) =xy* — x'y 34. f(x,y) = 5
x+y

them.
35. f(x,y) =x*+ y? + x%y

36. f(x,y) =xe ¥

¥ 35-36 = Find f, and fyand graph f, f,, and f, with domains and
viewpoints that enable you to see the relationships between

37-40 = Use implicit differentiation to find dz/dx and 9z/dy.

37. x? + y? + 22 = 3xyz 38. yz=In(x + z2)
39. x — z = arctan(yz)

41-42 = Find 9z/dx and dz/dy.

41, (@) z = f(x) + g(y) (b) z=f(x+y)

42. (a) z = f(x)g(y) (b) z=f(xy)
(©) z=f(x/y)

43-48 = Find all the second partial derivatives.
43. f(x,y) = x* — 3x%?*

45. z =x/(x +y) 46. z = ytan 2x

48. v = Jx + 2

47. u = e ’sint

44. f(x,y) = In(3x + 5y)

40. sin(xyz) = x + 2y + 3z

49-50 = Verify that the conclusion of Clairaut’s Theorem holds,

that is, u,y, = uy,.

5

49. u = xsin(x + 2y) 50. u = x*y* — 2xy

51-56 = Find the indicated partial derivative.
51 f(x,y) = 3xy* + x4 furs fonr

52. f(x,t) = x%  fur fior

53. f(x,y,2) = cos(dx + 3y + 22);  fiyss fro
54. f(r,s,t) = rin(rs’t®); fier fout

. d3u
55. u=¢""sinf; —5—
Jar- o0
56 ab_c aﬁu
.u=x"y"z¢
YIS axayrer
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57.

58.

59.

60.

6l.

62.

63.

64.

65.

66.
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Verify that the function u = ¢ ¥Isin kx is a solution of the
heat conduction equation u, = o’y

Determine whether each of the following functions is a

solution of Laplace’s equation u,, + u,, = 0.
(@) u=x*+y*
(b) u =x* — y?

(©) u=x>+ 3xy*

(d) u =1In+/x2+ y?
(e) u = sinx coshy + cos x sinhy

f)u=e"cosy —e’cosx

Verify that the function u = 1/4/x? + y2 + z? isa
solution of the three-dimensional Laplace equation
Uxx + Uyy + u.. = 0.

Show that each of the following functions is a solution of
the wave equation u,, = a’u,,.

(a) u = sin(kx) sin(akt)

) u =t/(a’* — x*)
©u=(x—a)®+ (x + a0’
(d) u = sin(x — at) + In(x + ar)

If f and g are twice differentiable functions of a single vari-
able, show that the function

ulx, 1) = f(x + at) + g(x — ar)

is a solution of the wave equation given in Exercise 60.

fu= em/\'ﬁraz)(z*“'*anxn, where a% + a% 4+ oo+ a% =1,
show that
Pu  u ’u
Sttt F—F=u
0xi x5 0x;

Show that the function z = xe” + ye* is a solution of the
equation
>z Pz >z

=x—
ax® ay? ax 9y

9%z

+ [
Y x>y

The temperature at a point (x, y) on a flat metal plate is
given by T(x,y) = 60/(1 + x> + y?), where T is measured
in °C and x, y in meters. Find the rate of change of temper-
ature with respect to distance at the point (2, 1) in

(a) the x-direction and (b) the y-direction.

The total resistance R produced by three conductors with
resistances R, R», R; connected in a parallel electrical cir-
cuit is given by the formula

1 1 1 1

_— = — 4 — 4 —
R Rl Rz R3

Find 9R/0R,.

The gas law for a fixed mass m of an ideal gas at absolute
temperature 7, pressure P, and volume V is PV = mRT,
where R is the gas constant. Show that

9P 9V oT

av aT oP

67.

68.

69.

70.

71.

72,

73.

74.

75.

For the ideal gas of Exercise 66, show that

P v _

=m
aT oT

The wind-chill index is a measure of how cold it feels in
windy weather. It is modeled by the function

W= 13.12 + 0.6215T — 11.37v"'® + 0.3965T»"'¢

where T is the temperature (°C) and v is the wind speed
(km/h). When T'= —15°C and v = 30 km/h, by how
much would you expect the apparent temperature to drop if
the actual temperature decreases by 1°C? What if the wind
speed increases by 1 km/h?

The kinetic energy of a body with mass m and velocity v is
K = Ymv’. Show that

K K _
om v*

If a, b, c are the sides of a triangle and A, B, C are the
opposite angles, find dA/da, dA/db, dA/dc by implicit
differentiation of the Law of Cosines.

You are told that there is a function f whose partial deriva-
tives are f,(x,y) = x + 4y and f,(x, y) = 3x — y. Should
you believe it?

The paraboloid z = 6 — x — x* — 2y? intersects the plane
x = 1 in a parabola. Find parametric equations for the tan-
gent line to this parabola at the point (1, 2, —4). Use a com-
puter to graph the paraboloid, the parabola, and the tangent
line on the same screen.

The ellipsoid 4x* + 2y* + z* = 16 intersects the plane
y = 2 in an ellipse. Find parametric equations for the
tangent line to this ellipse at the point (1, 2, 2).

In a study of frost penetration it was found that the tempera-
ture 7 at time ¢ (measured in days) at a depth x (measured
in feet) can be modeled by the function

T(x, 1) = Ty + Tre ™ sin(wt — Ax)

where w = 277/365 and A is a positive constant.

(a) Find 9T/0x. What is its physical significance?

(b) Find 97/0t. What is its physical significance?

(c) Show that T satisfies the heat equation 7, = kT, for a
certain constant .

(d)IfA=02,T, =0, and 7, = 10, use a computer to
graph T(x, ).

(e) What is the physical significance of the term —Ax in the
expression sin(wt — Ax)?

Use Clairaut’s Theorem to show that if the third-order par-
tial derivatives of f are continuous, then

Sevy = foxy = Fomx
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76. (a) How many nth-order partial derivatives does a function 79. Let
of two variables have? Xy —xy?
(b) If these partial derivatives are all continuous, how many flx,y) =14 x>+y? if (x,y) # (0,0)
of them can be distinct? 0 if (x,y) = (0,0)

(c) Answer the question in part (a) for a function of three

variables. A (a) Use a computer to graph f.
(b) Find f.(x, y) and f,(x, y) when (x, y) # (0, 0).
77. If f(x,y) = x(x? + y2)’3/2e“"(“2~"), find £.(1, 0). (c) Find f,(0, 0) and f,(0, 0) using Equations 2 and 3.
[Hint: Instead of finding fi(x, y) first, note that it’s easier to (d) Show that f,,(0,0) = —1 and f,.(0,0) = 1.

use Equation 1 or Equation 2.]

78. If f(x,y) = /x3 + y3, find £:(0, 0).

CAS (e) Does the result of part (d) contradict Clairaut’s
Theorem? Use graphs of f,, and f,, to illustrate your
answer.

11.4 | TANGENT PLANES AND LINEAR APPROXIMATIONS

FIGURE 1

The tangent plane contains the
tangent lines T; and 7.

One of the most important ideas in single-variable calculus is that as we zoom in
toward a point on the graph of a differentiable function, the graph becomes indistin-
guishable from its tangent line and we can approximate the function by a linear func-
tion. (See Section 2.8.) Here we develop similar ideas in three dimensions. As we
zoom in toward a point on a surface that is the graph of a differentiable function of
two variables, the surface looks more and more like a plane (its tangent plane) and we
can approximate the function by a linear function of two variables. We also extend the
idea of a differential to functions of two or more variables.

TANGENT PLANES

Suppose a surface S has equation z = f(x, y), where f has continuous first partial
derivatives, and let P(xo, yo, zo) be a point on S. As in the preceding section, let C, and
C, be the curves obtained by intersecting the vertical planes y = y, and x = xo with
the surface S. Then the point P lies on both C, and C.. Let T, and T, be the tangent
lines to the curves C; and C; at the point P. Then the tangent plane to the surface §
at the point P is defined to be the plane that contains both tangent lines 7 and 7>. (See
Figure 1.)

We will see in Section 11.6 that if C is any other curve that lies on the surface §
and passes through P, then its tangent line at P also lies in the tangent plane. There-
fore, you can think of the tangent plane to S at P as consisting of all possible tangent
lines at P to curves that lie on S and pass through P. The tangent plane at P is the plane
that most closely approximates the surface S near the point P.

We know from Equation 10.5.7 that any plane passing through the point P(xo, yo, Zo)
has an equation of the form

Alx — x0) + B(y —yo) + C(z — 20) = 0

By dividing this equation by C and letting « = —A/C and b = —B/C, we can write
it in the form

[ 1| z —z0=alx — xo) + b(y — y)

If Equation 1 represents the tangent plane at P, then its intersection with the plane





