
PARTIAL DERIVATIVES

If is a function of two variables and , suppose we let only vary while keeping
fixed, say , where is a constant. Then we are really considering a function of

a single variable , namely, . If has a derivative at , then we call it the
partial derivative of with respect to x at and denote it by . Thus

By the definition of a derivative, we have

and so Equation 1 becomes

Similarly, the partial derivative of with respect to y at , denoted by ,
is obtained by keeping fixed and finding the ordinary derivative at of the
function :

If we now let the point vary in Equations 2 and 3, and become functions
of two variables.

If is a function of two variables, its partial derivatives are the functions
and defined by

There are many alternative notations for partial derivatives. For instance, instead of 
we can write or (to indicate differentiation with respect to the first variable)

or . But here can’t be interpreted as a ratio of differentials.&f�&x&f�&x
D1 ff1fx

fy�x, y� � lim
hl0

f �x, y � h� � f �x, y�
h

fx�x, y� � lim
hl0

f �x � h, y� � f �x, y�
h

fyfx

f4

fyfx�a, b�

fy�a, b� � lim
hl0

f �a, b � h� � f �a, b�
h

3

G�y� � f �a, y�
b�x � a�x
fy�a, b��a, b�f

fx�a, b� � lim
hl0

f �a � h, b� � f �a, b�
h

2

t��a� � lim
hl0

t�a � h� � t�a�
h

t�x� � f �x, b�wherefx�a, b� � t��a�1

fx�a, b��a, b�f
att�x� � f �x, b�x

by � by
xyxf
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NOTATIONS FOR PARTIAL DERIVATIVES If , we write

To compute partial derivatives, all we have to do is remember from Equation 1 that 
the partial derivative with respect to is just the ordinary derivative of the function 
of a single variable that we get by keeping fixed. Thus we have the following rule.

RULE FOR FINDING PARTIAL DERIVATIVES OF z �

1. To find , regard as a constant and differentiate with respect to .

2. To find , regard as a constant and differentiate with respect to .

EXAMPLE 1 If , find and .

SOLUTION Holding constant and differentiating with respect to , we get

and so

Holding constant and differentiating with respect to , we get

■

INTERPRETATIONS OF PARTIAL DERIVATIVES

To give a geometric interpretation of partial derivatives, we recall that the equation
represents a surface (the graph of ). If , then the point

lies on . By fixing , we are restricting our attention to the curve in
which the vertical plane intersects S. (In other words, is the trace of in the
plane .) Likewise, the vertical plane intersects in a curve . Both of the
curves and pass through the point . (See Figure 1.)

Notice that the curve is the graph of the function , so the slope 
of its tangent at is . The curve is the graph of the function

, so the slope of its tangent at is .
Thus the partial derivatives and can be interpreted geometrically as

the slopes of the tangent lines at to the traces and of in the planes
and .

Partial derivatives can also be interpreted as rates of change. If , then
represents the rate of change of with respect to when is fixed. Similarly,
represents the rate of change of with respect to when is fixed.xyz&z�&y

yxz&z�&x
z � f �x, y�

x � ay � b
SC2C1P�a, b, c�

fy �a, b�fx�a, b�
G��b� � fy�a, b�PT2G�y� � f �a, y�
C2t��a� � fx�a, b�PT1

t�x� � f �x, b�C1

PC2C1

C2Sx � ay � b
SC1y � b

C1y � bSP�a, b, c�
f �a, b� � cfSz � f �x, y�

fy�2, 1� � 3 � 22 � 12 � 4 � 1 � 8

fy�x, y� � 3x 2y 2 � 4y

yx

fx�2, 1� � 3 � 22 � 2 � 2 � 13 � 16

fx�x, y� � 3x 2 � 2xy 3

xy

fy�2, 1�fx�2, 1�f �x, y� � x 3 � x 2y 3 � 2y 2

yf �x, y�xfy

xf �x, y�yfx

f �x, y�

y
tx

fy�x, y� � fy �
&f

&y
�

&

&y
f �x, y� �

&z

&y
� f2 � D2 f � Dy f

fx�x, y� � fx �
&f

&x
�

&

&x
f �x, y� �

&z

&x
� f1 � D1 f � Dx f
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FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡  and C™.
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EXAMPLE 2 If , find and and interpret these
numbers as slopes.

SOLUTION We have

The graph of is the paraboloid and the vertical plane 
intersects it in the parabola , . (As in the preceding discussion, we
label it in Figure 2.) The slope of the tangent line to this parabola at the point

is . Similarly, the curve in which the plane intersects
the paraboloid is the parabola , , and the slope of the tangent line
at is . (See Figure 3.) ■

EXAMPLE 3 If , calculate and .

SOLUTION Using the Chain Rule for functions of one variable, we have

■

EXAMPLE 4 Find and if is defined implicitly as a function of 
and by the equation

SOLUTION To find , we differentiate implicitly with respect to , being careful
to treat as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

■
&z

&y
� �

y 2 � 2xz

z 2 � 2xy

y
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� �

x 2 � 2yz
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3x 2 � 3z2 &z
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&x
� 0

y
x&z�&x

x 3 � y 3 � z3 � 6xyz � 1

y
xz&z�&y&z�&xV

&f

&y
� cos� x

1 � y� �
&

&y � x

1 � y� � �cos� x

1 � y� �
x

�1 � y�2

&f

&x
� cos� x

1 � y� �
&

&x � x

1 � y� � cos� x

1 � y� �
1

1 � y

&f

&y

&f

&x
f �x, y� � sin� x

1 � y�V

fy�1, 1� � �4�1, 1, 1�
x � 1z � 3 � 2y 2

x � 1C2fx�1, 1� � �2�1, 1, 1�
C1

y � 1z � 2 � x 2
y � 1z � 4 � x 2 � 2y 2f

fy�1, 1� � �4fx�1, 1� � �2

fy�x, y� � �4yfx�x, y� � �2x

fy�1, 1�fx�1, 1�f �x, y� � 4 � x 2 � 2y 2
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FIGURE 2
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■ Some computer algebra systems can
plot surfaces defined by implicit equa-
tions in three variables. Figure 4 shows
such a plot of the surface defined by the
equation in Example 4.



FUNCTIONS OF MORE THAN TWO VARIABLES

Partial derivatives can also be defined for functions of three or more variables. For
example, if is a function of three variables , , and , then its partial derivative with
respect to is defined as

and it is found by regarding and as constants and differentiating with
respect to . If , then can be interpreted as the rate of change
of with respect to x when y and are held fixed. But we can’t interpret it geometri-
cally because the graph of f lies in four-dimensional space.

In general, if is a function of variables, , its partial deriva-
tive with respect to the ith variable is

and we also write

EXAMPLE 5 Find , , and if .

SOLUTION Holding and constant and differentiating with respect to , we have

Similarly, ■

HIGHER DERIVATIVES

If is a function of two variables, then its partial derivatives and are also func-
tions of two variables, so we can consider their partial derivatives , , ,
and , which are called the second partial derivatives of . If , we use
the following notation:

Thus the notation (or ) means that we first differentiate with respect to 
and then with respect to , whereas in computing the order is reversed.fyxy

x&2f�&y &xfx y

� fy �y � fyy � f22 �
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fyfxf
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exy

z
andfy � xex y ln z
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xzy

f �x, y, z� � ex y ln zfzfyfx

&u

&xi
�

&f

&xi
� fxi � fi � Di f

&u

&xi
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hl0

f �x1, . . . , xi�1, xi � h, xi�1, . . . , xn � � f �x1, . . . , xi , . . . , xn�
h

xi
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zw
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EXAMPLE 6 Find the second partial derivatives of

SOLUTION In Example 1 we found that

Therefore

■

Notice that in Example 6. This is not just a coincidence. It turns out that
the mixed partial derivatives and are equal for most functions that one meets in
practice. The following theorem, which was discovered by the French mathematician
Alexis Clairaut (1713–1765), gives conditions under which we can assert that 
The proof is given in Appendix B.

CLAIRAUT’S THEOREM Suppose is defined on a disk that contains the
point . If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be defined. For instance,

and using Clairaut’s Theorem it can be shown that if these functions
are continuous.

EXAMPLE 7 Calculate if .

SOLUTION

■

PARTIAL DIFFERENTIAL EQUATIONS

Partial derivatives occur in partial differential equations that express certain physical
laws. For instance, the partial differential equation

&2u

&x 2 �
&2u

&y 2 � 0

fxx yz � �9 cos�3x � yz� � 9yz sin�3x � yz�

fxx y � �9z cos�3x � yz�

fxx � �9 sin�3x � yz�

fx � 3 cos�3x � yz�

f �x, y, z� � sin�3x � yz�fxx yzV

fx yy � fyx y � fyyx

fx yy � � fx y�y �
&

&y � &2f

&y &x� �
&3f

&y 2 &x

fx y�a, b� � fyx�a, b�

Dfyxfx y�a, b�
Df

fx y � fyx.

fyxfx y

fx y � fyx

fyy �
&

&y
�3x 2y 2 � 4y� � 6x 2y � 4fyx �

&

&x
�3x 2y 2 � 4y� � 6xy 2

fxy �
&

&y
�3x 2 � 2xy 3 � � 6xy 2fxx �

&

&x
�3x 2 � 2xy 3 � � 6x � 2y 3

fy�x, y� � 3x 2y 2 � 4yfx�x, y� � 3x 2 � 2xy 3

f �x, y� � x 3 � x 2y 3 � 2y 2
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■ Alexis Clairaut was a child prodigy in 
mathematics, having read l’Hospital’s
textbook on calculus when he was ten and
presented a paper on geometry to the French
Academy of Sciences when he was 13. At the
age of 18, Clairaut published Recherches sur
les courbes à double courbure, which was the
first systematic treatise on three-dimensional
analytic geometry and included the calculus
of space curves.



is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa-
tion are called harmonic functions and play a role in problems of heat conduction,
fluid flow, and electric potential.

EXAMPLE 8 Show that the function is a solution of Laplace’s 
equation.

SOLUTION

Therefore, satisfies Laplace’s equation. ■

The wave equation

describes the motion of a waveform, which could be an ocean wave, a sound wave, a
light wave, or a wave traveling along a vibrating string. For instance, if repre-
sents the displacement of a vibrating violin string at time and at a distance from
one end of the string (as in Figure 5), then satisfies the wave equation. Here the
constant depends on the density of the string and on the tension in the string.

EXAMPLE 9 Verify that the function satisfies the wave 
equation.

SOLUTION

So satisfies the wave equation. ■u

utt � �a 2 sin�x � at� � a 2uxxut � �a cos�x � at�

uxx � �sin�x � at�ux � cos�x � at�

u�x, t� � sin�x � at�

a
u�x, t�

xt
u�x, t�

&2u

&t 2 � a2 &2u

&x 2

u

uxx � uyy � ex sin y � ex sin y � 0

uyy � �ex sin yuxx � ex sin y

uy � ex cos yux � ex sin y

u�x, y� � ex sin y
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FIGURE 5

u(x, t)

x

2. A contour map is given for a function . Use it to estimate
and .
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fy�2, 1�fx�2, 1�
fThe temperature at a location in the Northern Hemisphere

depends on the longitude , latitude , and time , so we can
write . Let’s measure time in hours from the
beginning of January.
(a) What are the meanings of the partial derivatives 

, and ?
(b) Honolulu has longitude and latitude . Sup-

pose that at 9:00 AM on January 1 the wind is blowing
hot air to the northeast, so the air to the west and south
is warm and the air to the north and east is cooler.
Would you expect , and

to be positive or negative? Explain.ft�158, 21, 9�
fx�158, 21, 9�, fy�158, 21, 9�

21� N158� W
&T�&t&T�&y

&T�&x,

T � f �x, y, t�
tyx

T1.
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32. ;

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

33–34 ■ Use the definition of partial derivatives as limits (4) to
find and .

33. 34.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 35–36 ■ Find and and graph , , and with domains and
viewpoints that enable you to see the relationships between
them.

35. 36.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

37–40 ■ Use implicit differentiation to find and .

37. 38.

39. 40.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

41–42 ■ Find and .

41. (a) (b)

(a) (b)
(c)

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

43–48 ■ Find all the second partial derivatives.

43. 44.

45. 46.

47. 48.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

49–50 ■ Verify that the conclusion of Clairaut’s Theorem holds,
that is, .

49. 50.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

51–56 ■ Find the indicated partial derivative.

51. ; ,

52. ; ,

53. ; ,

54. ; ,

55. ;

56. ;

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

&6u

&x &y 2 &z 3u � x a y bz c

& 3u

&r 2 &�
u � e r� sin �

frstfrssf �r, s, t� � r ln�rs 2t 3�

fyzzfxy zf �x, y, z� � cos�4x � 3y � 2z�

ftxxftt tf �x, t� � x 2e�ct

fyyyfxxyf �x, y� � 3xy 4 � x 3y 2

u � x 4y 2 � 2xy 5u � x sin�x � 2y�

ux y � uyx

v � sx � y 2u � e�s sin t

z � y tan 2xz � x��x � y�

f �x, y� � ln�3x � 5y�f �x, y� � x 4 � 3x 2y 3

z � f �x�y�
z � f �xy�z � f �x�t�y�42.

z � f �x � y�z � f �x� � t�y�

&z�&y&z�&x

sin�xyz� � x � 2y � 3zx � z � arctan�yz�

yz � ln�x � z�x 2 � y 2 � z 2 � 3xyz

&z�&y&z�&x

f �x, y� � xe�x 2�y 2

f �x, y� � x 2 � y 2 � x 2 y

fyfxffyfx

f �x, y� �
x

x � y 2f �x, y� � xy 2 � x 3y

fy�x, y�fx�x, y�

fv�2, 0, 3�f �u, v, w� � w tan�uv�3–4 ■ Determine the signs of the partial derivatives for the
function whose graph is shown.

(a) (b)

4. (a) (b)
(c) (d)

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5. If , find and and
interpret these numbers as slopes. Illustrate with either
hand-drawn sketches or computer plots.

6. If , find and and
interpret these numbers as slopes. Illustrate with either
hand-drawn sketches or computer plots.

7–28 ■ Find the first partial derivatives of the function.

7.

8.

9. 10.

12.

13. 14.

15. 16.

17. 18.

19. 20.

22.

23. 24.

25. 26.

27.

28.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

29–32 ■ Find the indicated partial derivatives.

29. ;

30. ;

31. ; fz�3, 2, 1�f �x, y, z� � x��y � z�

fy��6, 4�f �x, y� � sin�2x � 3y�

fx�3, 4�f �x, y� � sx 2 � y 2

u � sin�x1 � 2x2 � 	 	 	 � nxn �

u � sx 2
1 � x 2

2 � 	 	 	 � x 2
n

f �x, y, z, t� �
xy 2

t � 2z
f �x, y, z, t� � xyz 2 tan�yt�

u � x y�zu � xe�t sin �

w � sr 2 � s 2 � t 2w � ln�x � 2y � 3z�21.

f �x, y, z� � x 2e yzf �x, y, z� � xy 2z3 � 3yz

f �x, y� � yx

y
 cos�t 2 � dtu � te w�t

f �x, t� � arctan(xst )f �r, s� � r ln�r 2 � s 2�

f �s, t� � st 2��s 2 � t 2 �w � sin � cos �

f �x, y� � x yf �x, y� �
x � y

x � y
11.

z � y ln xz � xe 3y

f �x, y� � x 5 � 3x 3y 2 � 3xy 4

f �x, y� � 3x � 2y 4

fy�1, 0�fx�1, 0�f �x, y� � s4 � x 2 � 4y 2

fy�1, 2�fx�1, 2�f �x, y� � 16 � 4x 2 � y 2

fyy��1, 2�fxx��1, 2�
fy��1, 2�fx��1, 2�

fy�1, 2�fx�1, 2�3.

1 2x

y

z

f
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67. For the ideal gas of Exercise 66, show that

68. The wind-chill index is a measure of how cold it feels in
windy weather. It is modeled by the function

where is the temperature and is the wind speed
. When and , by how

much would you expect the apparent temperature to drop if
the actual temperature decreases by ? What if the wind
speed increases by ?

69. The kinetic energy of a body with mass and velocity is
. Show that

If , , are the sides of a triangle and , , are the
opposite angles, find , , by implicit 
differentiation of the Law of Cosines.

You are told that there is a function whose partial deriva-
tives are and . Should
you believe it?

; 72. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tan-

gent line to this parabola at the point . Use a com-
puter to graph the paraboloid, the parabola, and the tangent
line on the same screen.

73. The ellipsoid intersects the plane
in an ellipse. Find parametric equations for the

tangent line to this ellipse at the point .

74. In a study of frost penetration it was found that the tempera-
ture at time (measured in days) at a depth (measured
in feet) can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical significance?
(b) Find . What is its physical significance?
(c) Show that satisfies the heat equation for a

certain constant .

; (d) If , , and , use a computer to
graph .

(e) What is the physical significance of the term in the
expression ?

75. Use Clairaut’s Theorem to show that if the third-order par-
tial derivatives of are continuous, then

fx yy � fyx y � fyyx

f

sin��t � �x�
��x

T�x, t�
T1 � 10T0 � 0� � 0.2

k
Tt � kTxxT

&T�&t
&T�&x

�� � 2��365

T�x, t� � T0 � T1e��x sin��t � �x�

xtT

�1, 2, 2�
y � 2

4x 2 � 2y 2 � z2 � 16

�1, 2, �4�
x � 1

z � 6 � x � x 2 � 2y 2

fy�x, y� � 3x � yfx�x, y� � x � 4y
f71.

&A�&c&A�&b&A�&a
CBAcba70.

&K

&m

&2K

&v2 � K

K � 1
2 mv2

vm

1 km�h
1�C

v � 30 km�hT � �15�C�km�h�
v��C�T

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

T
&P

&T

&V

&T
� mR

57. Verify that the function is a solution of the
heat conduction equation .

58. Determine whether each of the following functions is a
solution of Laplace’s equation .
(a)
(b)
(c)
(d)
(e)
(f )

59. Verify that the function is a 
solution of the three-dimensional Laplace equation

.

60. Show that each of the following functions is a solution of
the wave equation .
(a)
(b)
(c)
(d)

61. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 60.

62. If , where , 
show that

63. Show that the function is a solution of the 
equation

64. The temperature at a point on a flat metal plate is
given by , where is measured
in C and in meters. Find the rate of change of temper-
ature with respect to distance at the point in 
(a) the -direction and (b) the -direction.

The total resistance produced by three conductors with
resistances , , connected in a parallel electrical cir-
cuit is given by the formula

Find .

66. The gas law for a fixed mass of an ideal gas at absolute
temperature , pressure , and volume is ,
where is the gas constant. Show that

&P

&V

&V

&T

&T

&P
� �1

R
PV � mRTVPT

m

&R�&R1

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

R65.

yx
�2, 1�

x, y�
TT�x, y� � 60��1 � x 2 � y 2 �

�x, y�

&3z

&x 3 �
&3z

&y 3 � x
&3z

&x &y 2 � y
&3z

&x 2 &y

z � xe y � ye x

&2u

&x 2
1

�
&2u

&x 2
2

� 	 	 	 �
&2u

&x 2
n

� u

a 2
1 � a 2

2 � 	 	 	 � a 2
n � 1u � e a1x1�a2 x2�			�an xn

u�x, t� � f �x � at� � t�x � at�

tf

u � sin�x � at� � ln�x � at�
u � �x � at�6 � �x � at�6
u � t��a 2t 2 � x 2 �
u � sin�kx� sin�akt�

ut t � a 2uxx

uxx � u yy � uzz � 0

u � 1�sx 2 � y 2 � z 2

u � e�x cos y � e�y cos x
u � sin x cosh y � cos x sinh y
u � ln sx 2 � y 2

u � x 3 � 3xy 2
u � x 2 � y 2
u � x 2 � y 2

uxx � uyy � 0

ut � �2uxx

u � e��2k2 t sin kx
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79. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s

Theorem? Use graphs of and to illustrate your
answer.

fyxfxy

CAS

fyx�0, 0� � 1fxy�0, 0� � �1
fy�0, 0�fx�0, 0�

�x, y� � �0, 0�fy�x, y�fx�x, y�
f

f �x, y� � �
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

76. (a) How many th-order partial derivatives does a function
of two variables have?

(b) If these partial derivatives are all continuous, how many
of them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

77. If , find .
[Hint: Instead of finding first, note that it’s easier to 
use Equation 1 or Equation 2.]

78. If , find .fx�0, 0�f �x, y� � s3 x 3 � y 3

fx�x, y�
fx�1, 0�f �x, y� � x�x 2 � y 2 ��3�2e sin�x 2y�

n
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TANGENT PLANES AND LINEAR APPROXIMATIONS

One of the most important ideas in single-variable calculus is that as we zoom in
toward a point on the graph of a differentiable function, the graph becomes indistin-
guishable from its tangent line and we can approximate the function by a linear func-
tion. (See Section 2.8.) Here we develop similar ideas in three dimensions. As we
zoom in toward a point on a surface that is the graph of a differentiable function of
two variables, the surface looks more and more like a plane (its tangent plane) and we
can approximate the function by a linear function of two variables. We also extend the
idea of a differential to functions of two or more variables.

TANGENT PLANES

Suppose a surface has equation , where has continuous first partial
derivatives, and let be a point on . As in the preceding section, let and

be the curves obtained by intersecting the vertical planes and with
the surface . Then the point lies on both and . Let and be the tangent
lines to the curves and at the point . Then the tangent plane to the surface 
at the point is defined to be the plane that contains both tangent lines and . (See
Figure 1.)

We will see in Section 11.6 that if is any other curve that lies on the surface 
and passes through , then its tangent line at also lies in the tangent plane. There-
fore, you can think of the tangent plane to at as consisting of all possible tangent
lines at to curves that lie on and pass through . The tangent plane at is the plane
that most closely approximates the surface near the point .

We know from Equation 10.5.7 that any plane passing through the point 
has an equation of the form

By dividing this equation by and letting and , we can write
it in the form

If Equation 1 represents the tangent plane at , then its intersection with the plane P

z � z0 � a�x � x0� � b�y � y0 �1

b � �B�Ca � �A�CC

A�x � x0 � � B�y � y0 � � C�z � z0 � � 0

P�x0, y0, z0 �
PS

PPSP
PS

PP
SC

T2T1P
SPC2C1

T2T1C2C1PS
x � x0y � y0C2

C1SP�x0, y0, z0 �
fz � f �x, y�S

11.4

z

FIGURE 1
The tangent plane contains the
tangent lines T¡TT and T™TT .
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