DIFFERENTIATION RULES

The next theorem shows that the differentiation formulas for real-valued functions have their counterparts for vector-valued functions.

5 THEOREM Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then
I. $\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
2. $\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$
4. $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
5. $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
6. $\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t)) \quad$ (Chain Rule)

This theorem can be proved either directly from Definition 3 or by using Theorem 4 and the corresponding differentiation formulas for real-valued functions. The proof of Formula 4 follows; the remaining proofs are left as exercises.

PROOF OF FORMULA 4 Let

$$
\mathbf{u}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle \quad \mathbf{v}(t)=\left\langle g_{1}(t), g_{2}(t), g_{3}(t)\right\rangle
$$

Then

$$
\mathbf{u}(t) \cdot \mathbf{v}(t)=f_{1}(t) g_{1}(t)+f_{2}(t) g_{2}(t)+f_{3}(t) g_{3}(t)=\sum_{i=1}^{3} f_{i}(t) g_{i}(t)
$$

so the Product Rule for scalar functions gives

$$
\begin{aligned}
\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)] & =\frac{d}{d t} \sum_{i=1}^{3} f_{i}(t) g_{i}(t)=\sum_{i=1}^{3} \frac{d}{d t}\left[f_{i}(t) g_{i}(t)\right] \\
& =\sum_{i=1}^{3}\left[f_{i}^{\prime}(t) g_{i}(t)+f_{i}(t) g_{i}^{\prime}(t)\right] \\
& =\sum_{i=1}^{3} f_{i}^{\prime}(t) g_{i}(t)+\sum_{i=1}^{3} f_{i}(t) g_{i}^{\prime}(t) \\
& =\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)
\end{aligned}
$$

V EXAMPLE I2 Show that if $|\mathbf{r}(t)|=c$ (a constant), then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

SOLUTION Since

$$
\mathbf{r}(t) \cdot \mathbf{r}(t)=|\mathbf{r}(t)|^{2}=c^{2}
$$

and c^{2} is a constant, Formula 4 of Theorem 5 gives

$$
0=\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{r}(t)]=\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=2 \mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)
$$

Thus $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)=0$, which says that $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$.
Geometrically, this result says that if a curve lies on a sphere with center the origin, then the tangent vector $\mathbf{r}^{\prime}(t)$ is always perpendicular to the position vector $\mathbf{r}(t)$.

INTEGRALS

The definite integral of a continuous vector function $\mathbf{r}(t)$ can be defined in much the same way as for real-valued functions except that the integral is a vector. But then we can express the integral of \mathbf{r} in terms of the integrals of its component functions f, g, and h as follows. (We use the notation of Chapter 5.)

$$
\begin{aligned}
\int_{a}^{b} \mathbf{r}(t) d t & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbf{r}\left(t_{i}^{*}\right) \Delta t \\
& =\lim _{n \rightarrow \infty}\left[\left(\sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t\right) \mathbf{i}+\left(\sum_{i=1}^{n} g\left(t_{i}^{*}\right) \Delta t\right) \mathbf{j}+\left(\sum_{i=1}^{n} h\left(t_{i}^{*}\right) \Delta t\right) \mathbf{k}\right]
\end{aligned}
$$

and so

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}
$$

This means that we can evaluate an integral of a vector function by integrating each component function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions as follows:

$$
\left.\int_{a}^{b} \mathbf{r}(t) d t=\mathbf{R}(t)\right]_{a}^{b}=\mathbf{R}(b)-\mathbf{R}(a)
$$

where \mathbf{R} is an antiderivative of \mathbf{r}, that is, $\mathbf{R}^{\prime}(t)=\mathbf{r}(t)$. We use the notation $\int \mathbf{r}(t) d t$ for indefinite integrals (antiderivatives).

EXAMPLE I3 If $\mathbf{r}(t)=2 \cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$, then

$$
\begin{aligned}
\int \mathbf{r}(t) d t & =\left(\int 2 \cos t d t\right) \mathbf{i}+\left(\int \sin t d t\right) \mathbf{j}+\left(\int 2 t d t\right) \mathbf{k} \\
& =2 \sin t \mathbf{i}-\cos t \mathbf{j}+t^{2} \mathbf{k}+\mathbf{C}
\end{aligned}
$$

where \mathbf{C} is a vector constant of integration, and

$$
\int_{0}^{\pi / 2} \mathbf{r}(t) d t=\left[2 \sin t \mathbf{i}-\cos t \mathbf{j}+t^{2} \mathbf{k}\right]_{0}^{\pi / 2}=2 \mathbf{i}+\mathbf{j}+\frac{\pi^{2}}{4} \mathbf{k}
$$

10.7

I-2 - Find the domain of the vector function.
I. $\mathbf{r}(t)=\left\langle t^{2}, \sqrt{t-1}, \sqrt{5-t}\right\rangle$
2. $\mathbf{r}(t)=\frac{t-2}{t+2} \mathbf{i}+\sin t \mathbf{j}+\ln \left(9-t^{2}\right) \mathbf{k}$

3-4 - Find the limit.
3. $\lim _{t \rightarrow 0^{+}}\langle\cos t, \sin t, t \ln t\rangle$
4. $\lim _{t \rightarrow \infty}\left\langle\arctan t, e^{-2 t}, \frac{\ln t}{t}\right\rangle$

5-12 - Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases.
5. $\mathbf{r}(t)=\langle\sin t, t\rangle$
6. $\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle$
7. $\mathbf{r}(t)=\langle t, \cos 2 t, \sin 2 t\rangle$
8. $\mathbf{r}(t)=\langle 1+t, 3 t,-t\rangle$
9. $\mathbf{r}(t)=\langle 1, \cos t, 2 \sin t\rangle$
10. $\mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}+2 \mathbf{k}$
II. $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{4} \mathbf{j}+t^{6} \mathbf{k}$
12. $\mathbf{r}(t)=\cos t \mathbf{i}-\cos t \mathbf{j}+\sin t \mathbf{k}$

13-16 - Find a vector equation and parametric equations for the line segment that joins P to Q.
13. $P(0,0,0), Q(1,2,3)$
14. $P(1,0,1), \quad Q(2,3,1)$
15. $P(1,-1,2), \quad Q(4,1,7)$
16. $P(-2,4,0), \quad Q(6,-1,2)$

17-22 - Match the parametric equations with the graphs (labeled I-VI). Give reasons for your choices.
17. $x=\cos 4 t, \quad y=t, \quad z=\sin 4 t$
18. $x=t, \quad y=t^{2}, \quad z=e^{-t}$
19. $x=t, \quad y=1 /\left(1+t^{2}\right), \quad z=t^{2}$
20. $x=e^{-t} \cos 10 t, \quad y=e^{-t} \sin 10 t, \quad z=e^{-t}$
21. $x=\cos t, \quad y=\sin t, \quad z=\sin 5 t$
22. $x=\cos t, \quad y=\sin t, \quad z=\ln t$

23. Show that the curve with parametric equations $x=t \cos t$, $y=t \sin t, z=t$ lies on the cone $z^{2}=x^{2}+y^{2}$, and use this fact to help sketch the curve.
24. Show that the curve with parametric equations $x=\sin t$, $y=\cos t, z=\sin ^{2} t$ is the curve of intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$. Use this fact to help sketch the curve.
25. At what points does the curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$?
26. Graph the curve with parametric equations

$$
\begin{aligned}
& x=\sqrt{1-0.25 \cos ^{2} 10 t} \cos t \\
& y=\sqrt{1-0.25 \cos ^{2} 10 t} \sin t \\
& z=0.5 \cos 10 t
\end{aligned}
$$

Explain the appearance of the graph by showing that it lies on a sphere.
27. Show that the curve with parametric equations $x=t^{2}$, $y=1-3 t, z=1+t^{3}$ passes through the points $(1,4,0)$ and $(9,-8,28)$ but not through the point $(4,7,-6)$.

28-30 - Find a vector function that represents the curve of intersection of the two surfaces.
28. The cylinder $x^{2}+y^{2}=4$ and the surface $z=x y$
29. The cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=1+y$
30. The paraboloid $z=4 x^{2}+y^{2}$ and the parabolic cylinder $y=x^{2}$
31. Try to sketch by hand the curve of intersection of the circular cylinder $x^{2}+y^{2}=4$ and the parabolic cylinder $z=x^{2}$. Then find parametric equations for this curve and use these equations and a computer to graph the curve.
32. Try to sketch by hand the curve of intersection of the parabolic cylinder $y=x^{2}$ and the top half of the ellipsoid $x^{2}+4 y^{2}+4 z^{2}=16$. Then find parametric equations for this curve and use these equations and a computer to graph the curve.

33-38 =
(a) Sketch the plane curve with the given vector equation.
(b) Find $\mathbf{r}^{\prime}(t)$.
(c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the given value of t.
33. $\mathbf{r}(t)=\left\langle t-2, t^{2}+1\right\rangle, \quad t=-1$
34. $\mathbf{r}(t)=\langle 1+t, \sqrt{t}\rangle, \quad t=1$
35. $\mathbf{r}(t)=\sin t \mathbf{i}+2 \cos t \mathbf{j}, \quad t=\pi / 4$
36. $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}, \quad t=0$
37. $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{3 t} \mathbf{j}, \quad t=0$
38. $\mathbf{r}(t)=(1+\cos t) \mathbf{i}+(2+\sin t) \mathbf{j}, \quad t=\pi / 6$

39-44 - Find the derivative of the vector function.
39. $\mathbf{r}(t)=\left\langle t^{2}, 1-t, \sqrt{t}\right\rangle \quad$ 40. $\mathbf{r}(t)=\langle\cos 3 t, t, \sin 3 t\rangle$
41. $\mathbf{r}(t)=e^{t^{2}} \mathbf{i}-\mathbf{j}+\ln (1+3 t) \mathbf{k}$
42. $\mathbf{r}(t)=a t \cos 3 t \mathbf{i}+b \sin ^{3} t \mathbf{j}+c \cos ^{3} t \mathbf{k}$
43. $\mathbf{r}(t)=\mathbf{a}+t \mathbf{b}+t^{2} \mathbf{c}$
44. $\mathbf{r}(t)=t \mathbf{a} \times(\mathbf{b}+t \mathbf{c})$

45-46 - Find the unit tangent vector $\mathbf{T}(t)$ at the point with the given value of the parameter t.
45. $\mathbf{r}(t)=\cos t \mathbf{i}+3 t \mathbf{j}+2 \sin 2 t \mathbf{k}, \quad t=0$
46. $\mathbf{r}(t)=2 \sin t \mathbf{i}+2 \cos t \mathbf{j}+\tan t \mathbf{k}, \quad t=\pi / 4$
47. If $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, find $\mathbf{r}^{\prime}(t), \mathbf{T}(1), \mathbf{r}^{\prime \prime}(t)$, and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$.
48. If $\mathbf{r}(t)=\left\langle e^{2 t}, e^{-2 t}, t e^{2 t}\right\rangle$, find $\mathbf{T}(0), \mathbf{r}^{\prime \prime}(0)$, and $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$.

49-52 - Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
49. $x=t^{5}, \quad y=t^{4}, \quad z=t^{3} ; \quad(1,1,1)$
50. $x=t^{2}-1, \quad y=t^{2}+1, \quad z=t+1 ; \quad(-1,1,1)$
51. $x=e^{-t} \cos t, \quad y=e^{-t} \sin t, \quad z=e^{-t} ; \quad(1,0,1)$
52. $x=\ln t, \quad y=2 \sqrt{t}, \quad z=t^{2} ; \quad(0,2,1)$
53. Determine whether the curve is smooth.
(a) $\mathbf{r}(t)=\left\langle t^{3}, t^{4}, t^{5}\right\rangle$
(b) $\mathbf{r}(t)=\left\langle t^{3}+t, t^{4}, t^{5}\right\rangle$
(c) $\mathbf{r}(t)=\left\langle\cos ^{3} t, \sin ^{3} t\right\rangle$
54. (a) Find the point of intersection of the tangent lines to the curve $\mathbf{r}(t)=\langle\sin \pi t, 2 \sin \pi t, \cos \pi t\rangle$ at the points where $t=0$ and $t=0.5$.
(b) Illustrate by graphing the curve and both tangent lines.
55. The curves $\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{r}_{2}(t)=\langle\sin t, \sin 2 t, t\rangle$ intersect at the origin. Find their angle of intersection correct to the nearest degree.
56. At what point do the curves $\mathbf{r}_{1}(t)=\left\langle t, 1-t, 3+t^{2}\right\rangle$ and $\mathbf{r}_{2}(s)=\left\langle 3-s, s-2, s^{2}\right\rangle$ intersect? Find their angle of intersection correct to the nearest degree.

57-62 - Evaluate the integral.
57. $\int_{0}^{1}\left(16 t^{3} \mathbf{i}-9 t^{2} \mathbf{j}+25 t^{4} \mathbf{k}\right) d t$
58. $\int_{0}^{1}\left(\frac{4}{1+t^{2}} \mathbf{j}+\frac{2 t}{1+t^{2}} \mathbf{k}\right) d t$
59. $\int_{0}^{\pi / 2}\left(3 \sin ^{2} t \cos t \mathbf{i}+3 \sin t \cos ^{2} t \mathbf{j}+2 \sin t \cos t \mathbf{k}\right) d t$
60. $\int_{1}^{2}\left(t^{2} \mathbf{i}+t \sqrt{t-1} \mathbf{j}+t \sin \pi t \mathbf{k}\right) d t$

6I. $\int\left(e^{t} \mathbf{i}+2 t \mathbf{j}+\ln t \mathbf{k}\right) d t$
62. $\int(\cos \pi t \mathbf{i}+\sin \pi t \mathbf{j}+t \mathbf{k}) d t$
63. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}+\sqrt{t} \mathbf{k}$ and $\mathbf{r}(1)=\mathbf{i}+\mathbf{j}$.
64. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=t \mathbf{i}+e^{t} \mathbf{j}+t e^{t} \mathbf{k}$ and $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
65. If two objects travel through space along two different curves, it's often important to know whether they will collide. (Will a missile hit its moving target? Will two aircraft collide?) The curves might intersect, but we need to know whether the objects are in the same position at the same time. Suppose the trajectories of two particles are given by the vector functions
$\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad \mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle$
for $t \geqslant 0$. Do the particles collide?
66. Two particles travel along the space curves
$\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad \mathbf{r}_{2}(t)=\langle 1+2 t, 1+6 t, 1+14 t\rangle$
Do the particles collide? Do their paths intersect?
67. Suppose \mathbf{u} and \mathbf{v} are vector functions that possess limits as $t \rightarrow a$ and let c be a constant. Prove the following properties of limits.
(a) $\lim _{t \rightarrow a}[\mathbf{u}(t)+\mathbf{v}(t)]=\lim _{t \rightarrow a} \mathbf{u}(t)+\lim _{t \rightarrow a} \mathbf{v}(t)$
(b) $\lim _{t \rightarrow a} c \mathbf{u}(t)=c \lim _{t \rightarrow a} \mathbf{u}(t)$
(c) $\lim _{t \rightarrow a}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\lim _{t \rightarrow a} \mathbf{u}(t) \cdot \lim _{t \rightarrow a} \mathbf{v}(t)$
(d) $\lim _{t \rightarrow a}[\mathbf{u}(t) \times \mathbf{v}(t)]=\lim _{t \rightarrow a} \mathbf{u}(t) \times \lim _{t \rightarrow a} \mathbf{v}(t)$
68. Show that $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{b}$ if and only if for every $\varepsilon>0$ there is a number $\delta>0$ such that $|\mathbf{r}(t)-\mathbf{b}|<\varepsilon$ whenever $0<|t-a|<\delta$.
69. Prove Formula 1 of Theorem 5.
70. Prove Formula 3 of Theorem 5.

7I. Prove Formula 5 of Theorem 5.
72. Prove Formula 6 of Theorem 5.
73. If $\mathbf{u}(t)=\mathbf{i}-2 t^{2} \mathbf{j}+3 t^{3} \mathbf{k}$ and $\mathbf{v}(t)=t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k}$, find $(d / d t)[\mathbf{u}(t) \cdot \mathbf{v}(t)]$.
74. If \mathbf{u} and \mathbf{v} are the vector functions in Exercise 73, find $(d / d t)[\mathbf{u}(t) \times \mathbf{v}(t)]$.
75. Show that if \mathbf{r} is a vector function such that $\mathbf{r}^{\prime \prime}$ exists, then

$$
\frac{d}{d t}\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t)
$$

76. Find an expression for $\frac{d}{d t}[\mathbf{u}(t) \cdot(\mathbf{v}(t) \times \mathbf{w}(t))]$.
77. If $\mathbf{r}(t) \neq \mathbf{0}$, show that $\frac{d}{d t}|\mathbf{r}(t)|=\frac{1}{|\mathbf{r}(t)|} \mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)$.
$\left[\right.$ Hint: $\left.|\mathbf{r}(t)|^{2}=\mathbf{r}(t) \cdot \mathbf{r}(t)\right]$
78. If a curve has the property that the position vector $\mathbf{r}(t)$ is always perpendicular to the tangent vector $\mathbf{r}^{\prime}(t)$, show that the curve lies on a sphere with center the origin.
79. If $\mathbf{u}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]$, show that

$$
\mathbf{u}^{\prime}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime \prime}(t)\right]
$$

10.8 ARC LENGTH AND CURVATURE

FIGURE I
The length of a space curve is the limit of lengths of inscribed polygons.

In Section 9.2 we defined the length of a plane curve with parametric equations $x=f(t)$, $y=g(t), a \leqslant t \leqslant b$, as the limit of lengths of inscribed polygons and, for the case where f^{\prime} and g^{\prime} are continuous, we arrived at the formula
I

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose that the curve has the vector equation $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle, a \leqslant t \leqslant b$, or, equivalently, the parametric equations $x=f(t), y=g(t), z=h(t)$, where f^{\prime}, g^{\prime}, and h^{\prime} are continuous. If the curve is traversed exactly once as t increases from a to b, then it can be shown that its length is

2

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

Notice that both of the arc length formulas (1) and (2) can be put into the more compact form

3

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

because, for plane curves $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$,

$$
\left|\mathbf{r}^{\prime}(t)\right|=\left|f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}\right|=\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}
$$

whereas, for space curves $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$,

$$
\left|\mathbf{r}^{\prime}(t)\right|=\left|f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}\right|=\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}}
$$

- Figure 2 shows the arc of the helix whose length is computed in Example 1.

FIGURE 2

- Piecewise-smooth curves were introduced on page 565.

FIGURE 3

EXAMPLE I Find the length of the arc of the circular helix with vector equation $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ from the point $(1,0,0)$ to the point $(1,0,2 \pi)$.

SOLUTION Since $\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k}$, we have

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(-\sin t)^{2}+\cos ^{2} t+1}=\sqrt{2}
$$

The arc from $(1,0,0)$ to $(1,0,2 \pi)$ is described by the parameter interval $0 \leqslant t \leqslant 2 \pi$ and so, from Formula 3, we have

$$
L=\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} \sqrt{2} d t=2 \sqrt{2} \pi
$$

A single curve C can be represented by more than one vector function. For instance, the twisted cubic

4

$$
\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad 1 \leqslant t \leqslant 2
$$

could also be represented by the function
5

$$
\mathbf{r}_{2}(u)=\left\langle e^{u}, e^{2 u}, e^{3 u}\right\rangle \quad 0 \leqslant u \leqslant \ln 2
$$

where the connection between the parameters t and u is given by $t=e^{u}$. We say that Equations 4 and 5 are parametrizations of the curve C. If we were to use Equation 3 to compute the length of C using Equations 4 and 5, we would get the same answer. In general, it can be shown that when Equation 3 is used to compute the length of any piecewise-smooth curve, the arc length is independent of the parametrization that is used.

Now we suppose that C is a piecewise-smooth curve given by a vector function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}, a \leqslant t \leqslant b$, and C is traversed exactly once as t increases from a to b. We define its arc length function s by

6

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{a}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}+\left(\frac{d z}{d u}\right)^{2}} d u
$$

Thus $s(t)$ is the length of the part of C between $\mathbf{r}(a)$ and $\mathbf{r}(t)$. (See Figure 3.) If we differentiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Calculus, we obtain

7

$$
\frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|
$$

It is often useful to parametrize a curve with respect to arc length because arc length arises naturally from the shape of the curve and does not depend on a particular coordinate system. If a curve $\mathbf{r}(t)$ is already given in terms of a parameter t and $s(t)$ is the arc length function given by Equation 6, then we may be able to solve for t as a function of $s: t=t(s)$. Then the curve can be reparametrized in terms of s by substituting for $t: \mathbf{r}=\mathbf{r}(t(s))$. Thus if $s=3$ for instance, $\mathbf{r}(t(3))$ is the position vector of the point 3 units of length along the curve from its starting point.

EXAMPLE 2 Reparametrize the helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ with respect to arc length measured from $(1,0,0)$ in the direction of increasing t.

SOLUTION The initial point $(1,0,0)$ corresponds to the parameter value $t=0$.

FIGURE 4
Unit tangent vectors at equally spaced points on C

Visual I0.8A shows animated unit tangent vectors, like those in Figure 4, for a variety of plane curves and space curves.

From Example 1 we have

$$
\frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{2}
$$

and so

$$
s=s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{0}^{t} \sqrt{2} d u=\sqrt{2} t
$$

Therefore, $t=s / \sqrt{2}$ and the required reparametrization is obtained by substituting for t :

$$
\mathbf{r}(t(s))=\cos (s / \sqrt{2}) \mathbf{i}+\sin (s / \sqrt{2}) \mathbf{j}+(s / \sqrt{2}) \mathbf{k}
$$

CURVATURE

If C is a smooth curve defined by the vector function \mathbf{r}, then $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$. Recall that the unit tangent vector $\mathbf{T}(t)$ is given by

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

and indicates the direction of the curve. From Figure 4 you can see that $\mathbf{T}(t)$ changes direction very slowly when C is fairly straight, but it changes direction more quickly when C bends or twists more sharply.

The curvature of C at a given point is a measure of how quickly the curve changes direction at that point. Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector with respect to arc length. (We use arc length so that the curvature will be independent of the parametrization.)

8 DEFINITION The curvature of a curve is

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|
$$

where \mathbf{T} is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter t instead of s, so we use the Chain Rule (Theorem 10.7.5, Formula 6) to write

$$
\frac{d \mathbf{T}}{d t}=\frac{d \mathbf{T}}{d s} \frac{d s}{d t} \quad \text { and } \quad \kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\left|\frac{d \mathbf{T} / d t}{d s / d t}\right|
$$

But $d s / d t=\left|\mathbf{r}^{\prime}(t)\right|$ from Equation 7, so

9

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

V EXAMPLE 3 Show that the curvature of a circle of radius a is $1 / a$.
SOLUTION We can take the circle to have center the origin, and then a parametrization is

$$
\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}
$$

Therefore

$$
\mathbf{r}^{\prime}(t)=-a \sin t \mathbf{i}+a \cos t \mathbf{j} \quad \text { and } \quad\left|\mathbf{r}^{\prime}(t)\right|=a
$$

so

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=-\sin t \mathbf{i}+\cos t \mathbf{j}
$$

and

$$
\mathbf{T}^{\prime}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j}
$$

This gives $\left|\mathbf{T}^{\prime}(t)\right|=1$, so using Equation 9, we have

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{1}{a}
$$

The result of Example 3 shows that small circles have large curvature and large circles have small curvature, in accordance with our intuition. We can see directly from the definition of curvature that the curvature of a straight line is always 0 because the tangent vector is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula given by the following theorem is often more convenient to apply.

10 THEOREM The curvature of the curve given by the vector function \mathbf{r} is

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

PROOF Since $\mathbf{T}=\mathbf{r}^{\prime} /\left|\mathbf{r}^{\prime}\right|$ and $\left|\mathbf{r}^{\prime}\right|=d s / d t$, we have

$$
\mathbf{r}^{\prime}=\left|\mathbf{r}^{\prime}\right| \mathbf{T}=\frac{d s}{d t} \mathbf{T}
$$

so the Product Rule (Theorem 10.7.5, Formula 3) gives

$$
\mathbf{r}^{\prime \prime}=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t} \mathbf{T}^{\prime}
$$

Using the fact that $\mathbf{T} \times \mathbf{T}=\mathbf{0}$ (see Example 2 in Section 10.4), we have

$$
\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}=\left(\frac{d s}{d t}\right)^{2}\left(\mathbf{T} \times \mathbf{T}^{\prime}\right)
$$

Now $|\mathbf{T}(t)|=1$ for all t, so \mathbf{T} and \mathbf{T}^{\prime} are orthogonal by Example 12 in Section 10.7. Therefore, by Theorem 10.4.6,

Thus

$$
\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|=\left(\frac{d s}{d t}\right)^{2}\left|\mathbf{T} \times \mathbf{T}^{\prime}\right|=\left(\frac{d s}{d t}\right)^{2}|\mathbf{T}|\left|\mathbf{T}^{\prime}\right|=\left(\frac{d s}{d t}\right)^{2}\left|\mathbf{T}^{\prime}\right|
$$

$$
\left|\mathbf{T}^{\prime}\right|=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{(d s / d t)^{2}}=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{2}}
$$

and

$$
\kappa=\frac{\left|\mathbf{T}^{\prime}\right|}{\left|\mathbf{r}^{\prime}\right|}=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}
$$

