
DIFFERENTIATION RULES

The next theorem shows that the differentiation formulas for real-valued functions
have their counterparts for vector-valued functions.

THEOREM Suppose and are differentiable vector functions, is a
scalar, and is a real-valued function. Then

1.

2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from Definition 3 or by using Theorem
4 and the corresponding differentiation formulas for real-valued functions. The proof of
Formula 4 follows; the remaining proofs are left as exercises.

PROOF OF FORMULA 4 Let

Then

so the Product Rule for scalar functions gives

■

EXAMPLE 12 Show that if (a constant), then is orthogonal to 
for all .

SOLUTION Since

r�t� � r�t� � � r�t� �2 � c 2

t
r�t�r��t�� r�t� � � cV

� u��t� � v�t� � u�t� � v��t�

� �
3

i�1
f �i �t�ti�t� � �

3

i�1
fi�t�t�i�t�

� �
3

i�1
� f �i �t�ti�t� � fi�t�t�i�t�


d

dt
�u�t� � v�t�
 �

d

dt �
3

i�1
fi�t�ti�t� � �

3

i�1

d

dt
� fi�t�ti�t�


u�t� � v�t� � f1�t�t1�t� � f2�t�t2�t� � f3�t�t3�t� � �
3

i�1
fi�t�ti�t�

v�t� � � t1�t�, t2�t�, t3�t��u�t� � � f1�t�, f2�t�, f3�t��

d

dt
�u� f �t��
 � f ��t�u�� f �t��

d

dt
�u�t� 
 v�t�
 � u��t� 
 v�t� � u�t� 
 v��t�

d

dt
�u�t� � v�t�
 � u��t� � v�t� � u�t� � v��t�

d

dt
� f �t�u�t�
 � f ��t�u�t� � f �t�u��t�

d

dt
�cu�t�
 � cu��t�

d

dt
�u�t� � v�t�
 � u��t� � v��t�

f
cvu5
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and is a constant, Formula 4 of Theorem 5 gives

Thus , which says that is orthogonal to .
Geometrically, this result says that if a curve lies on a sphere with center the origin,

then the tangent vector is always perpendicular to the position vector . ■

INTEGRALS

The definite integral of a continuous vector function can be defined in much the
same way as for real-valued functions except that the integral is a vector. But then we
can express the integral of in terms of the integrals of its component functions , ,
and as follows. (We use the notation of Chapter 5.)

and so

This means that we can evaluate an integral of a vector function by integrating each
component function.

We can extend the Fundamental Theorem of Calculus to continuous vector func-
tions as follows:

where is an antiderivative of , that is, . We use the notation for
indefinite integrals (antiderivatives).

EXAMPLE 13 If , then

where is a vector constant of integration, and

■y��2

0
r�t� dt � [2 sin t i � cos t j � t 2 k]0

��2
� 2 i � j �

� 2

4
k

C

� 2 sin t i � cos t j � t 2 k � C

y r�t� dt � �y 2 cos t dt� i � �y sin t dt� j � �y 2t dt� k

r�t� � 2 cos t i � sin t j � 2t k

x r�t� dtR��t� � r�t�rR

yb

a
r�t� dt � R�t�]b

a � R�b� � R�a�

yb

a
r�t� dt � �yb

a
f �t� dt� i � �yb

a
t�t� dt� j � �yb

a
h�t� dt� k

� lim
nl�

���
n

i�1
f �t*i � �t� i � ��

n

i�1
t�t*i � �t� j � ��

n

i�1
h�t*i � �t� k�

yb

a
r�t� dt � lim

nl�
�
n

i�1
r�t*i � �t

h
tfr

r�t�

r�t�r��t�

r�t�r��t�r��t� � r�t� � 0

0 �
d

dt
�r�t� � r�t�
 � r��t� � r�t� � r�t� � r��t� � 2r��t� � r�t�

c 2
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Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.

24. Show that the curve with parametric equations ,
, is the curve of intersection of the

surfaces and . Use this fact to help
sketch the curve.

25. At what points does the curve inter-
sect the paraboloid ?

; 26. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies
on a sphere.

27. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

28–30 ■ Find a vector function that represents the curve of
intersection of the two surfaces.

28. The cylinder and the surface 

The cone and the plane 

30. The paraboloid and the parabolic cylinder

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; Try to sketch by hand the curve of intersection of the circu-
lar cylinder and the parabolic cylinder .
Then find parametric equations for this curve and use these
equations and a computer to graph the curve.

z � x 2x 2 � y 2 � 4
31.

y � x 2
z � 4x 2 � y 2

z � 1 � yz � sx 2 � y 229.

z � xyx 2 � y 2 � 4

z � 1 � t 3y � 1 � 3t
x � t 2

z � 0.5 cos 10t

y � s1 � 0.25 cos 2 10t  sin t

x � s1 � 0.25 cos 2 10t  cos t

z � x 2 � y 2
r�t� � t i � �2t � t 2� k

x 2 � y 2 � 1z � x 2
z � sin2ty � cos t

x � sin t

z2 � x 2 � y 2z � ty � t sin t
x � t cos t23.

III IV

V VI z

x y

z

x y

z

x
y

z

x y

1–2 ■ Find the domain of the vector function.

1.

2.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

3–4 ■ Find the limit.

3. 4.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5–12 ■ Sketch the curve with the given vector equation.
Indicate with an arrow the direction in which increases.

5. 6.

7. 8.

9. 10.

12.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

13–16 ■ Find a vector equation and parametric equations for
the line segment that joins to .

13. ,

14. ,

15. ,

16. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–22 ■ Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

, ,

18. , ,

, ,

20. , ,

21. , ,

22. , ,

I II z

x y

z

x y

z � ln ty � sin tx � cos t

z � sin 5ty � sin tx � cos t

z � e�ty � e�t sin 10tx � e�t cos 10t

z � t 2y � 1��1 � t 2 �x � t19.

z � e�ty � t 2x � t

z � sin 4ty � tx � cos 4t17.

Q�6, �1, 2�P��2, 4, 0�

Q�4, 1, 7�P�1, �1, 2�

Q�2, 3, 1�P�1, 0, 1�

Q�1, 2, 3�P�0, 0, 0�

QP

r�t� � cos t i � cos t j � sin t k

r�t� � t 2 i � t 4 j � t 6 k11.

r�t� � t 2 i � t j � 2kr�t� � �1, cos t, 2 sin t�

r�t� � �1 � t, 3t, �t�r�t� � � t, cos 2t, sin 2t �

r�t� � � t 3, t 2 �r�t� � �sin t, t�

t

lim
tl�

�arctan t, e�2t,
ln t

t �lim
tl0�

�cos t, sin t, t ln t�

r�t� �
t � 2

t � 2
i � sin t j � ln�9 � t2� k

r�t� � �t2, st � 1, s5 � t �

EXERCISES10.7
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55. The curves and
intersect at the origin. Find their angle of intersection
correct to the nearest degree.

56. At what point do the curves and
intersect? Find their angle of

intersection correct to the nearest degree.

57–62 ■ Evaluate the integral.

57.

58.

59.

60.

61.

62.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

63. Find if and .

64. Find if and .

65. If two objects travel through space along two different
curves, it’s often important to know whether they will col-
lide. (Will a missile hit its moving target? Will two aircraft
collide?) The curves might intersect, but we need to know
whether the objects are in the same position at the same
time. Suppose the trajectories of two particles are given by
the vector functions

for .  Do the particles collide?

66. Two particles travel along the space curves

Do the particles collide? Do their paths intersect?

67. Suppose and are vector functions that possess limits as
and let be a constant. Prove the following prop-

erties of limits.

(a)

(b)

(c)

(d)

68. Show that if and only if for every 
there is a number such that whenever

.

69. Prove Formula 1 of Theorem 5.

0 � � t � a � � �
� r�t� � b � � �� � 0

� � 0lim tl a r�t� � b

lim
tla

�u�t� 
 v�t�
 � lim
tla

u�t� 
 lim
tl a

v�t�

lim
tla

�u�t� � v�t�
 � lim
tla

u�t� � lim
tl a

v�t�

lim
tla

cu�t� � c lim
tl a

u�t�

lim
tla

�u�t� � v�t�
 � lim
tla

u�t� � lim
tl a

v�t�

ct l a
vu

r2 �t� � �1 � 2t, 1 � 6t, 1 � 14t �r1 �t� � � t, t 2, t 3 �

t � 0

r2 �t� � �4t � 3, t 2, 5t � 6 �r1 �t� � � t 2, 7t � 12, t 2 �

r�0� � i � j � kr��t� � t i � e t j � te t kr�t�

r�1� � i � jr��t� � 2t i � 3t 2 j � st kr�t�

y �cos � t i � sin � t j � t k� dt

y �e t i � 2t j � ln t k� dt

y2

1
(t 2 i � tst � 1 j � t sin �t k) dt

y��2

0
�3 sin 2t cos t i � 3 sin t cos 2t j � 2 sin t cos t k� dt

y1

0
� 4

1 � t 2 j �
2t

1 � t 2 k� dt

y1

0
�16t3 i � 9t2 j � 25t 4 k� dt

r2�s� � �3 � s, s � 2, s 2 �
r1�t� � � t, 1 � t, 3 � t 2 �

r2�t� � �sin t, sin 2t, t �r1�t� � � t, t 2, t 3 �; 32. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations for 
this curve and use these equations and a computer to graph 
the curve.

33–38 ■

(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector 

for the given value of .

,

34. ,

35. ,

36. ,

37. ,

38. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

39–44 ■ Find the derivative of the vector function.

39. 40.

41.

42.

44.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

45–46 ■ Find the unit tangent vector at the point with the
given value of the parameter .

,

46. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

47. If , find and 

48. If , find , , and 

49–52 ■ Find parametric equations for the tangent line to the
curve with the given parametric equations at the specified point.

49. ; (1, 1, 1)

50. ;

, , ;

52. , , ;
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Determine whether the curve is smooth.
(a) (b)
(c)

54. (a) Find the point of intersection of the tangent lines to the
curve at the points
where and .

; (b) Illustrate by graphing the curve and both tangent lines.
t � 0.5t � 0

r�t� � �sin � t, 2 sin � t, cos � t �

r�t� � �cos3t, sin3t �
r�t� � � t 3 � t, t 4, t 5 �r�t� � � t 3, t 4, t 5 �

53.

�0, 2, 1�z � t 2y � 2stx � ln t

�1, 0, 1�z � e�ty � e�t sin tx � e�t cos t51.

��1, 1, 1�x � t 2 � 1, y � t 2 � 1, z � t � 1

x � t 5, y � t 4, z � t 3

r��t� � r��t�.r��0�T�0�r�t� � �e 2 t, e�2 t, te 2 t�

r��t� 
 r��t�.r��t�, T�1�, r��t�,r�t� � � t, t 2, t 3 �

t � ��4r�t� � 2 sin t i � 2 cos t j � tan t k

t � 0r�t� � cos t i � 3t j � 2 sin 2t k45.

t
T�t�

r�t� � t a 
 �b � t c�

r�t� � a � t b � t 2 c43.

r�t� � at cos 3t i � b sin3t j � c cos 3t k

r�t� � et 2

i � j � ln�1 � 3t� k

r�t� � �cos 3t, t, sin 3t�r�t� � �t 2, 1 � t, st �

t � ��6r�t� � �1 � cos t� i � �2 � sin t� j

t � 0r�t� � e t i � e 3 t j

t � 0r�t� � e t i � e �t j

t � ��4r�t� � sin t i � 2 cos t j

t � 1r�t� � �1 � t, st �
t � �1r�t� � � t � 2, t 2 � 1 �33.

t
r��t�r�t�

r��t�

x 2 � 4y 2 � 4z2 � 16
y � x 2
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ARC LENGTH AND CURVATURE

In Section 9.2 we defined the length of a plane curve with parametric equations ,
, , as the limit of lengths of inscribed polygons and, for the case

where and are continuous, we arrived at the formula

The length of a space curve is defined in exactly the same way (see Figure 1). 
Suppose that the curve has the vector equation , , or,
equivalently, the parametric equations , , , where , , and 
are continuous. If the curve is traversed exactly once as increases from to , then
it can be shown that its length is

Notice that both of the arc length formulas (1) and (2) can be put into the more
compact form

because, for plane curves ,

whereas, for space curves ,

� r��t� � � � f ��t� i � t��t� j � h��t� k � � s� f ��t�
2 � �t��t�
2 � �h��t�
2

r�t� � f �t� i � t�t� j � h�t� k

� r��t� � � � f ��t� i � t��t� j � � s� f ��t�
2 � �t��t�
2

r�t� � f �t� i � t�t� j

L � yb

a
� r��t� � dt3

� yb

a
��dx

dt �2

� �dy

dt �2

� �dz

dt �2

dt

L � yb

a
s� f ��t�
2 � �t��t�
2 � �h��t�
2 dt2

bat
h�t�f �z � h�t�y � t�t�x � f �t�

a 
 t 
 br�t� � � f �t�, t�t�, h�t��

L � yb

a
s� f ��t�
2 � �t��t�
2 dt � yb

a
��dx

dt �2

� �dy

dt �2

dt1

t�f �
a 
 t 
 by � t�t�

x � f �t�

10.8

76. Find an expression for .

If , show that .

[Hint: ]

78. If a curve has the property that the position vector is
always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

79. If , show that

u��t� � r�t� � �r��t� 
 r��t�


u�t� � r�t� � �r��t� 
 r��t�


r��t�
r�t�

� r�t� �2 � r�t� � r�t�

d

dt � r�t� � �
1

� r�t� � r�t� � r��t�r�t� � 077.

d

dt
�u�t� � �v�t� 
 w�t��


70. Prove Formula 3 of Theorem 5.

71. Prove Formula 5 of Theorem 5.

72. Prove Formula 6 of Theorem 5.

73. If and
find .

74. If and are the vector functions in Exercise 73, find
.

75. Show that if is a vector function such that exists, then

d

dt
�r�t� 
 r��t�
 � r�t� 
 r��t�

r�r

�d�dt� �u�t� 
 v�t�

vu

�d�dt� �u�t� � v�t�
v�t� � t i � cos t j � sin t k,
u�t� � i � 2t 2 j � 3t 3 k
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EXAMPLE 1 Find the length of the arc of the circular helix with vector equation
from the point to the point .

SOLUTION Since , we have

The arc from to is described by the parameter interval
and so, from Formula 3, we have

■

A single curve can be represented by more than one vector function. For in-
stance, the twisted cubic

could also be represented by the function

where the connection between the parameters and is given by . We say that
Equations 4 and 5 are parametrizations of the curve . If we were to use Equation 3
to compute the length of using Equations 4 and 5, we would get the same answer.
In general, it can be shown that when Equation 3 is used to compute the length of any
piecewise-smooth curve, the arc length is independent of the parametrization that is
used.

Now we suppose that is a piecewise-smooth curve given by a vector function
, , and is traversed exactly once as increases

from to . We define its arc length function by

Thus is the length of the part of between and . (See Figure 3.) If we 
differentiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Cal-
culus, we obtain

It is often useful to parametrize a curve with respect to arc length because arc
length arises naturally from the shape of the curve and does not depend on a particu-
lar coordinate system. If a curve is already given in terms of a parameter and 
is the arc length function given by Equation 6, then we may be able to solve for as a
function of : Then the curve can be reparametrized in terms of by substi-
tuting for : . Thus if s � 3 for instance, is the position vector of the
point 3 units of length along the curve from its starting point.

EXAMPLE 2 Reparametrize the helix with respect to
arc length measured from in the direction of increasing .

SOLUTION The initial point corresponds to the parameter value . t � 0�1, 0, 0�

t�1, 0, 0�
r�t� � cos t i � sin t j � t k

r�t�3��r � r�t�s��t
st � t�s�.s

t
s�t�tr�t�

ds

dt
� � r��t� �7

r�t�r�a�Cs�t�

s�t� � yt

a
� r��u� � du � yt

a
�� dx

du�2

� � dy

du�2

� � dz

du�2

du6

sba
tCa 
 t 
 br�t� � f �t� i � t�t�j � h�t�k

C

C
C

t � euut

0 
 u 
 ln 2r2�u� � �eu, e 2u, e 3u �5

1 
 t 
 2r1�t� � � t, t 2, t 3 �4

C

L � y2�

0
� r��t� � dt � y2�

0
s2 dt � 2s2�

0 
 t 
 2�
�1, 0, 2���1, 0, 0�

� r��t� � � s��sin t�2 � cos2t � 1 � s2

r��t� � �sin t i � cos t j � k

�1, 0, 2���1, 0, 0�r�t� � cos t i � sin t j � t k
V■ Figure 2 shows the arc of the 

helix whose length is computed in
Example 1.

FIGURE 2

(1, 0, 2π)

z

x y

(1, 0, 0)

■ Piecewise-smooth curves were intro-
duced on page 565.

FIGURE 3

z

0

x y

C

r(t)
r(a)

s(t)



From Example 1 we have

and so

Therefore, and the required reparametrization is obtained by substituting
for :

■

CURVATURE

If is a smooth curve defined by the vector function , then . Recall that the
unit tangent vector is given by

and indicates the direction of the curve. From Figure 4 you can see that changes
direction very slowly when is fairly straight, but it changes direction more quickly
when bends or twists more sharply.

The curvature of at a given point is a measure of how quickly the curve changes
direction at that point. Specifically, we define it to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length. (We use arc length so that
the curvature will be independent of the parametrization.)

DEFINITION The curvature of a curve is

where is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter 
instead of , so we use the Chain Rule (Theorem 10.7.5, Formula 6) to write

But from Equation 7, so

EXAMPLE 3 Show that the curvature of a circle of radius is .

SOLUTION We can take the circle to have center the origin, and then a parametriza-
tion is

r�t� � a cos t i � a sin t j

1�aaV

$�t� � � T��t� �
� r��t� �9

ds�dt � � r��t� �

$ � � dT
ds � � � dT�dt

ds�dt �and
dT
dt

�
dT
ds

ds

dt

s
t

T

$ � � dT
ds �

8

C
C

C
T�t�

T�t� �
r��t�

� r��t� �

T�t�
r��t� � 0rC

r�t�s�� � cos(s�s2 ) i � sin(s�s2 ) j � (s�s2 ) k
t

t � s�s2

s � s�t� � yt

0
� r��u� � du � yt

0
s2 du � s2 t

ds

dt
� � r��t� � � s2
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FIGURE 4
Unit tangent vectors at equally spaced
points on C

z

0

x y
C

Visual 10.8A shows animated
unit tangent vectors, like those
in Figure 4, for a variety of
plane curves and space curves.
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Therefore

so

and

This gives , so using Equation 9, we have

■

The result of Example 3 shows that small circles have large curvature and large cir-
cles have small curvature, in accordance with our intuition. We can see directly from
the definition of curvature that the curvature of a straight line is always 0 because the
tangent vector is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula
given by the following theorem is often more convenient to apply.

THEOREM The curvature of the curve given by the vector function is

PROOF Since and , we have

so the Product Rule (Theorem 10.7.5, Formula 3) gives

Using the fact that (see Example 2 in Section 10.4), we have

Now for all , so and are orthogonal by Example 12 in Section 10.7.
Therefore, by Theorem 10.4.6,

Thus

and ■$ � � T� �
� r� � � � r� 
 r� �

� r� �3

� T� � � � r� 
 r� �
�ds�dt�2 � � r� 
 r� �

� r� �2

� r� 
 r� � � �ds

dt�2

� T 
 T� � � �ds

dt�2

� T � � T� � � �ds

dt�2

� T� �

T�Tt� T�t� � � 1

r� 
 r� � �ds

dt�2

�T 
 T��

T 
 T � 0
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EXAMPLE 4 Find the curvature of the twisted cubic at a general
point and at .

SOLUTION We first compute the required ingredients:

Theorem 10 then gives

At the origin, where , the curvature is . ■

For the special case of a plane curve with equation , we choose as the
parameter and write . Then and .
Since and , we have . We also have

and so, by Theorem 10,

EXAMPLE 5 Find the curvature of the parabola at the points , , 
and .

SOLUTION Since and , Formula 11 gives

The curvature at is . At it is . At it
is . Observe from the expression for or the graph of in
Figure 5 that as . This corresponds to the fact that the parabola
appears to become flatter as . ■

THE NORMAL AND BINORMAL VECTORS

At a given point on a smooth space curve , there are many vectors that are orthog-
onal to the unit tangent vector . We single out one by observing that, because

for all , we have by Example 12 in Section 10.7, so T��t�T�t� � T��t� � 0t� T�t� � � 1
T�t�

r�t�

xl ��
xl ��$�x�l 0
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3�211
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2

r��x� 
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r��x� � f ��x� jr��x� � i � f ��x� jr�x� � x i � f �x� j
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$�0� � 2t � 0
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FIGURE 5
The parabola y=≈ and its
curvature function
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