
VECTOR FUNCTIONS AND SPACE CURVES

In general, a function is a rule that assigns to each element in the domain an element
in the range. A vector-valued function, or vector function, is simply a function whose
domain is a set of real numbers and whose range is a set of vectors. We are most inter-
ested in vector functions whose values are three-dimensional vectors. This means
that for every number in the domain of there is a unique vector in denoted by

. If , , and are the components of the vector , then , , and are
real-valued functions called the component functions of and we can write

We use the letter to denote the independent variable because it represents time in
most applications of vector functions.

EXAMPLE 1 If

then the component functions are

By our usual convention, the domain of consists of all values of for which the
expression for is defined. The expressions , , and are all defined
when and . Therefore, the domain of is the interval . ■

The limit of a vector function is defined by taking the limits of its component
functions as follows.

If , then

provided the limits of the component functions exist.

Equivalently, we could have used an definition (see Exercise 68). Limits of vec-
tor functions obey the same rules as limits of real-valued functions (see Exercise 67).

EXAMPLE 2 Find , where .

SOLUTION According to Definition 1, the limit of r is the vector whose components
are the limits of the component functions of r:

(by Equation 1.4.5) ■� i � k
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■ If , this definition is
equivalent to saying that the length and
direction of the vector approach the
length and direction of the vector .L

r�t�

lim tla r�t� � L



A vector function is continuous at a if

In view of Definition 1, we see that is continuous at if and only if its component
functions , , and are continuous at .

There is a close connection between continuous vector functions and space curves.
Suppose that , , and are continuous real-valued functions on an interval . Then
the set of all points in space, where

and varies throughout the interval , is called a space curve. The equations in (2) are
called parametric equations of C and is called a parameter. We can think of as
being traced out by a moving particle whose position at time is . If
we now consider the vector function , then is the position
vector of the point on . Thus any continuous vector function 
defines a space curve that is traced out by the tip of the moving vector , as shown
in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

SOLUTION The corresponding parametric equations are

which we recognize from Equations 10.5.2 as parametric equations of a line passing
through the point and parallel to the vector . Alternatively, we
could observe that the function can be written as , where 
and , and this is the vector equation of a line as given by Equation 10.5.1.

■

Plane curves can also be represented in vector notation. For instance, the curve
given by the parametric equations and (see Example 1 in Sec-
tion 9.1) could also be described by the vector equation

where and .

EXAMPLE 4 Sketch the curve whose vector equation is

SOLUTION The parametric equations for this curve are

Since , the curve must lie on the circular cylinder
. The point lies directly above the point , which moves 

counterclockwise around the circle in the xy-plane. (See Example 2 
in Section 9.1.) Since , the curve spirals upward around the cylinder as 
increases. The curve, shown in Figure 2, is called a helix. ■
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FIGURE 1
C is traced out by the tip of a moving
position vector r(t).
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Visual 10.7A shows several
curves being traced out by
position vectors, including
those in Figures 1 and 2.
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The corkscrew shape of the helix in Example 4 is familiar from its occurrence in
coiled springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic
material of living cells). In 1953 James Watson and Francis Crick showed that the
structure of the DNA molecule is that of two linked, parallel helixes that are inter-
twined as in Figure 3.

In Examples 3 and 4 we were given vector equations of curves and asked for a geo-
metric description or sketch. In the next two examples we are given a geometric descrip-
tion of a curve and are asked to find parametric equations for the curve.

EXAMPLE 5 Find a vector equation and parametric equations for the line segment
that joins the point to the point .

SOLUTION In Section 10.5 we found a vector equation for the line segment that
joins the tip of the vector to the tip of the vector :

(See Equation 10.5.4.) Here we take and to obtain
a vector equation of the line segment from to :

or

The corresponding parametric equations are

■

EXAMPLE 6 Find a vector function that represents the curve of intersection of
the cylinder and the plane .

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure 6
shows the curve of intersection C, which is an ellipse.

FIGURE 5 FIGURE 6
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FIGURE 3

■ Figure 4 shows the line segment 
in Example 5.
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The projection of C onto the xy-plane is the circle . So we
know from Example 2 in Section 9.1 that we can write

From the equation of the plane, we have

So we can write parametric equations for C as

The corresponding vector equation is

This equation is called a parametrization of the curve C. The arrows in Figure 6
indicate the direction in which C is traced as the parameter t increases. ■

USING COMPUTERS TO DRAW SPACE CURVES

Space curves are inherently more difficult to draw by hand than plane curves; for an
accurate representation we need to use technology. For instance, Figure 7 shows a
computer-generated graph of the curve with parametric equations

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the
trefoil knot, with equations

is graphed in Figure 8. It wouldn’t be easy to plot either of these curves by hand.

Even when a computer is used to draw a space curve, optical illusions make it dif-
ficult to get a good impression of what the curve really looks like. (This is especially
true in Figure 8.) The next example shows how to cope with this problem.

EXAMPLE 7 Use a computer to draw the curve with vector equation 
This curve is called a twisted cubic.

SOLUTION We start by using the computer to plot the curve with parametric equa-
tions , , for . The result is shown in Figure 9(a), but
it’s hard to see the true nature of the curve from that graph alone. Most three-
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FIGURE 7 A toroidal spiral FIGURE 8 A trefoil knot
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dimensional computer graphing programs allow the user to enclose a curve or sur-
face in a box instead of displaying the coordinate axes. When we look at the same
curve in a box in Figure 9(b), we have a much clearer picture of the curve. We can
see that it climbs from a lower corner of the box to the upper corner nearest us, and
it twists as it climbs. We get an even better idea of the curve when we view it from
different vantage points. Part (c) shows the result of rotating the box to give another
viewpoint.

■

DERIVATIVES

The derivative of a vector function is defined in much the same way as for real-
valued functions:

if this limit exists. The geometric significance of this definition is shown in Figure 10.
If the points and have position vectors and , then PQ

l
represents the

vector , which can therefore be regarded as a secant vector. If ,
the scalar multiple has the same direction as .
As , it appears that this vector approaches a vector that lies on the tangent line.
For this reason, the vector is called the tangent vector to the curve defined by 
at the point , provided that exists and . The tangent line to at is
defined to be the line through parallel to the tangent vector . We will also have
occasion to consider the unit tangent vector, which is

(b) The tangent vector(a) The secant vector
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Views of the twisted cubic
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In Visual 10.7B you can rotate
the box in Figure 9 to see the
curve from any viewpoint.

Visual 10.7C shows an anima-
tion of Figure 10.



The following theorem gives us a convenient method for computing the derivative
of a vector function : just differentiate each component of .

THEOREM If , where ,
, and are differentiable functions, then

PROOF

■

EXAMPLE 8
(a) Find the derivative of .
(b) Find the unit tangent vector at the point where .

SOLUTION
(a) According to Theorem 4, we differentiate each component of r:

(b) Since and , the unit tangent vector at the point 
is

■

EXAMPLE 9 For the curve , find and sketch the position
vector and the tangent vector .

SOLUTION We have

The curve is a plane curve and elimination of the parameter from the equations
, gives , . In Figure 11 we draw the position vec-

tor starting at the origin and the tangent vector starting at the corre-
sponding point . ■�1, 1�
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EXAMPLE 10 Find parametric equations for the tangent line to the helix with
parametric equations

at the point .

SOLUTION The vector equation of the helix is , so

The parameter value corresponding to the point is , so the tan-
gent vector there is . The tangent line is the line through

parallel to the vector , so by Equations 10.5.2 its parametric
equations are

■

Just as for real-valued functions, the second derivative of a vector function r is the
derivative of , that is, . For instance, the second derivative of the function
in Example 10 is

A curve given by a vector function on an interval is called smooth if is
continuous and (except possibly at any endpoints of ). For instance, the
helix in Example 10 is smooth because is never 0.

EXAMPLE 11 Determine whether the semicubical parabola is
smooth.

SOLUTION Since

we have and, therefore, the curve is not smooth. The point that
corresponds to is (1, 0), and we see from the graph in Figure 13 that there is a
sharp corner, called a cusp, at (1, 0). Any curve with this type of behavior—an
abrupt change in direction—is not smooth. ■

A curve, such as the semicubical parabola, that is made up of a finite number of
smooth pieces is called piecewise smooth.
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■ The helix and the tangent line in
Example 10 are shown in Figure 12.
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FIGURE 13
The curve r(t)=k1+t # , t@l
is not smooth.

■ In Section 10.9 we will see how 
and can be interpreted as the veloc-
ity and acceleration vectors of a particle
moving through space with position
vector at time .tr�t�
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