- (b) Use the formula in part (a) to find the distance from the point *P*(1, 1, 1) to the line through *Q*(0, 6, 8) and *R*(−1, 4, 7).
- 40. (a) Let P be a point not on the plane that passes through the points Q, R, and S. Show that the distance d from P to the plane is

$$d = \frac{|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|}{|\mathbf{a} \times \mathbf{b}|}$$

where $\mathbf{a} = \overrightarrow{QR}$, $\mathbf{b} = \overrightarrow{QS}$, and $\mathbf{c} = \overrightarrow{QP}$.

- (b) Use the formula in part (a) to find the distance from the point *P*(2, 1, 4) to the plane through the points *Q*(1, 0, 0), *R*(0, 2, 0), and *S*(0, 0, 3).
- **41.** Prove that $(\mathbf{a} \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2(\mathbf{a} \times \mathbf{b})$.
- 42. Prove Property 6 of Theorem 8, that is,

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

43. Use Exercise 42 to prove that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$$

44. Prove that

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = \begin{vmatrix} \mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{d} & \mathbf{b} \cdot \mathbf{d} \end{vmatrix}$$

- **45.** Suppose that $\mathbf{a} \neq \mathbf{0}$.
 - (a) If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$, does it follow that $\mathbf{b} = \mathbf{c}$?
 - (b) If $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b} = \mathbf{c}$?
 - (c) If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$ and $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b} = \mathbf{c}$?

$$\mathbf{k}_{1} = \frac{\mathbf{v}_{2} \times \mathbf{v}_{3}}{\mathbf{v}_{1} \cdot (\mathbf{v}_{2} \times \mathbf{v}_{3})}$$
$$\mathbf{k}_{2} = \frac{\mathbf{v}_{3} \times \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot (\mathbf{v}_{2} \times \mathbf{v}_{3})}$$
$$\mathbf{k}_{3} = \frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{\mathbf{v}_{1} \cdot (\mathbf{v}_{2} \times \mathbf{v}_{3})}$$

(These vectors occur in the study of crystallography. Vectors of the form $n_1\mathbf{v}_1 + n_2\mathbf{v}_2 + n_3\mathbf{v}_3$, where each n_i is an integer, form a *lattice* for a crystal. Vectors written similarly in terms of \mathbf{k}_1 , \mathbf{k}_2 , and \mathbf{k}_3 form the *reciprocal lattice*.) (a) Show that \mathbf{k}_i is perpendicular to \mathbf{v}_i if $i \neq j$.

- (b) Show that $\mathbf{k}_i \cdot \mathbf{v}_i = 1$ for i = 1, 2, 3.
- (c) Show that $\mathbf{k}_1 \cdot (\mathbf{k}_2 \times \mathbf{k}_3) = \frac{1}{\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)}$.

10.5 EQUATIONS OF LINES AND PLANES

FIGURE I

A line in the *xy*-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given. The equation of the line can then be written using the point-slope form.

Likewise, a line *L* in three-dimensional space is determined when we know a point $P_0(x_0, y_0, z_0)$ on *L* and the direction of *L*. In three dimensions the direction of a line is conveniently described by a vector, so we let **v** be a vector parallel to *L*. Let P(x, y, z) be an arbitrary point on *L* and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and *P* (that is, they have representations $\overrightarrow{OP_0}$ and \overrightarrow{OP}). If **a** is the vector with representation $\overrightarrow{P_0P}$, as in Figure 1, then the Triangle Law for vector addition gives $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}$. But, since **a** and **v** are parallel vectors, there is a scalar *t* such that $\mathbf{a} = t\mathbf{v}$. Thus

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

which is a **vector equation** of *L*. Each value of the **parameter** *t* gives the position vector **r** of a point on *L*. In other words, as *t* varies, the line is traced out by the tip of the vector **r**. As Figure 2 indicates, positive values of *t* correspond to points on *L* that lie on one side of P_0 , whereas negative values of *t* correspond to points that lie on the other side of P_0 .

If the vector **v** that gives the direction of the line *L* is written in component form as $\mathbf{v} = \langle a, b, c \rangle$, then we have $t\mathbf{v} = \langle ta, tb, tc \rangle$. We can also write $\mathbf{r} = \langle x, y, z \rangle$ and

 $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, so the vector equation (1) becomes

$$\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$$

Two vectors are equal if and only if corresponding components are equal. Therefore, we have the three scalar equations:

 $z_0 + ct$

$$x = x_0 + at \qquad y = y_0 + bt \qquad z =$$

where $t \in \mathbb{R}$. These equations are called **parametric equations** of the line *L* through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$. Each value of the parameter *t* gives a point (x, y, z) on *L*.

EXAMPLE I

2

(a) Find a vector equation and parametric equations for the line that passes through the point (5, 1, 3) and is parallel to the vector $\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$.

(b) Find two other points on the line.

SOLUTION

or

(a) Here $\mathbf{r}_0 = \langle 5, 1, 3 \rangle = 5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$, so the vector equation (1) becomes

$$r = (5i + j + 3k) + t(i + 4j - 2k)$$

$$\mathbf{r} = (5 + t)\mathbf{i} + (1 + 4t)\mathbf{j} + (3 - 2t)\mathbf{k}$$

Parametric equations are

$$x = 5 + t$$
 $y = 1 + 4t$ $z = 3 - 2t$

(b) Choosing the parameter value t = 1 gives x = 6, y = 5, and z = 1, so (6, 5, 1) is a point on the line. Similarly, t = -1 gives the point (4, -3, 5).

The vector equation and parametric equations of a line are not unique. If we change the point or the parameter or choose a different parallel vector, then the equations change. For instance, if, instead of (5, 1, 3), we choose the point (6, 5, 1) in Example 1, then the parametric equations of the line become

$$x = 6 + t$$
 $y = 5 + 4t$ $z = 1 - 2t$

Or, if we stay with the point (5, 1, 3) but choose the parallel vector $2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}$, we arrive at the equations

$$x = 5 + 2t$$
 $y = 1 + 8t$ $z = 3 - 4t$

In general, if a vector $\mathbf{v} = \langle a, b, c \rangle$ is used to describe the direction of a line *L*, then the numbers *a*, *b*, and *c* are called **direction numbers** of *L*. Since any vector parallel to **v** could also be used, we see that any three numbers proportional to *a*, *b*, and *c* could also be used as a set of direction numbers for *L*.

Another way of describing a line L is to eliminate the parameter t from Equations 2. If none of a, b, or c is 0, we can solve each of these equations for t, equate the results,

and obtain

3
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

These equations are called **symmetric equations** of *L*. Notice that the numbers *a*, *b*, and *c* that appear in the denominators of Equations 3 are direction numbers of *L*, that is, components of a vector parallel to *L*. If one of *a*, *b*, or *c* is 0, we can still eliminate *t*. For instance, if a = 0, we could write the equations of *L* as

$$x = x_0 \qquad \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

This means that *L* lies in the vertical plane $x = x_0$.

EXAMPLE 2

(a) Find parametric equations and symmetric equations of the line that passes through the points A(2, 4, -3) and B(3, -1, 1).
(b) At what point does this line intersect the *xy*-plane?

SOLUTION

(a) We are not explicitly given a vector parallel to the line, but observe that the vector **v** with representation \overrightarrow{AB} is parallel to the line and

$$\mathbf{v} = \langle 3 - 2, -1 - 4, 1 - (-3) \rangle = \langle 1, -5, 4 \rangle$$

Thus direction numbers are a = 1, b = -5, and c = 4. Taking the point (2, 4, -3) as P_0 , we see that parametric equations (2) are

$$x = 2 + t$$
 $y = 4 - 5t$ $z = -3 + 4t$

and symmetric equations (3) are

$$\frac{x-2}{1} = \frac{y-4}{-5} = \frac{z+3}{4}$$

(b) The line intersects the *xy*-plane when z = 0, so we put z = 0 in the symmetric equations and obtain

$$\frac{x-2}{1} = \frac{y-4}{-5} = \frac{3}{4}$$

This gives $x = \frac{11}{4}$ and $y = \frac{1}{4}$, so the line intersects the *xy*-plane at the point $(\frac{11}{4}, \frac{1}{4}, 0)$.

In general, the procedure of Example 2 shows that direction numbers of the line *L* through the points $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$ are $x_1 - x_0, y_1 - y_0$, and $z_1 - z_0$ and so symmetric equations of *L* are

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

A

Figure 4 shows the line L in

FIGURE 4

Often, we need a description, not of an entire line, but of just a line segment. How, for instance, could we describe the line segment *AB* in Example 2? If we put t = 0 in the parametric equations in Example 2(a), we get the point (2, 4, -3) and if we put t = 1 we get (3, -1, 1). So the line segment *AB* is described by the parametric equations

x = 2 + t y = 4 - 5t z = -3 + 4t $0 \le t \le 1$

or by the corresponding vector equation

$$\mathbf{r}(t) = \langle 2 + t, 4 - 5t, -3 + 4t \rangle$$
 0 ≤ t ≤ 1

In general, we know from Equation 1 that the vector equation of a line through the (tip of the) vector \mathbf{r}_0 in the direction of a vector \mathbf{v} is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$. If the line also passes through (the tip of) \mathbf{r}_1 , then we can take $\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0$ and so its vector equation is

$$\mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1$$

The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the parameter interval $0 \le t \le 1$.

4 The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the vector equation

 $\mathbf{r}(t) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$

V EXAMPLE 3 Show that the lines L_1 and L_2 with parametric equations

x = 1 + t y = -2 + 3t z = 4 - tx = 2s y = 3 + s z = -3 + 4s

are **skew lines**; that is, they do not intersect and are not parallel (and therefore do not lie in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors $\langle 1, 3, -1 \rangle$ and $\langle 2, 1, 4 \rangle$ are not parallel. (Their components are not proportional.) If L_1 and L_2 had a point of intersection, there would be values of t and s such that

$$1 + t = 2s$$

-2 + 3t = 3 + s
4 - t = -3 + 4.

But if we solve the first two equations, we get $t = \frac{11}{5}$ and $s = \frac{8}{5}$, and these values don't satisfy the third equation. Therefore, there are no values of *t* and *s* that satisfy the three equations, so L_1 and L_2 do not intersect. Thus L_1 and L_2 are skew lines.

PLANES

Although a line in space is determined by a point and a direction, a plane in space is more difficult to describe. A single vector parallel to a plane is not enough to convey the "direction" of the plane, but a vector perpendicular to the plane does completely specify its direction. Thus a plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector **n** that is orthogonal to the plane. This orthogonal vector **n** is

 L_2

10

-5

FIGURE 6

called a **normal vector**. Let P(x, y, z) be an arbitrary point in the plane, and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and P. Then the vector $\mathbf{r} - \mathbf{r}_0$ is represented by $\overrightarrow{P_0P}$. (See Figure 6.) The normal vector \mathbf{n} is orthogonal to every vector in the given plane. In particular, \mathbf{n} is orthogonal to $\mathbf{r} - \mathbf{r}_0$ and so we have

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

which can be rewritten as

5

6

Either Equation 5 or Equation 6 is called a **vector equation of the plane**.

To obtain a scalar equation for the plane, we write $\mathbf{n} = \langle a, b, c \rangle$, $\mathbf{r} = \langle x, y, z \rangle$, and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$. Then the vector equation (5) becomes

 $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

or

or

7

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Equation 7 is the scalar equation of the plane through $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$.

V EXAMPLE 4 Find an equation of the plane through the point (2, 4, -1) with normal vector $\mathbf{n} = \langle 2, 3, 4 \rangle$. Find the intercepts and sketch the plane.

SOLUTION Putting a = 2, b = 3, c = 4, $x_0 = 2$, $y_0 = 4$, and $z_0 = -1$ in Equation 7, we see that an equation of the plane is

$$2(x - 2) + 3(y - 4) + 4(z + 1) = 0$$
$$2x + 3y + 4z = 12$$

To find the *x*-intercept we set y = z = 0 in this equation and obtain x = 6. Similarly, the *y*-intercept is 4 and the *z*-intercept is 3. This enables us to sketch the portion of the plane that lies in the first octant (see Figure 7).

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation of a plane as

ax + by + cz + d = 0

where $d = -(ax_0 + by_0 + cz_0)$. Equation 8 is called a **linear equation** in *x*, *y*, and *z*. Conversely, it can be shown that if *a*, *b*, and *c* are not all 0, then the linear equation (8) represents a plane with normal vector $\langle a, b, c \rangle$. (See Exercise 55.)

Figure 8 shows the portion of the plane in Example 5 that is enclosed by triangle PQR.

Another way to find the line of intersection is to solve the equations of the planes for two of the variables in terms of the third, which can be taken as the parameter.

EXAMPLE 5 Find an equation of the plane that passes through the points P(1, 3, 2), Q(3, -1, 6), and R(5, 2, 0).

SOLUTION The vectors **a** and **b** corresponding to \overrightarrow{PQ} and \overrightarrow{PR} are

$$\mathbf{a} = \langle 2, -4, 4 \rangle$$
 $\mathbf{b} = \langle 4, -1, -2 \rangle$

Since both **a** and **b** lie in the plane, their cross product $\mathbf{a} \times \mathbf{b}$ is orthogonal to the plane and can be taken as the normal vector. Thus

$$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & 4 \\ 4 & -1 & -2 \end{vmatrix} = 12\,\mathbf{i} + 20\,\mathbf{j} + 14\,\mathbf{k}$$

With the point P(1, 3, 2) and the normal vector **n**, an equation of the plane is

or
$$12(x-1) + 20(y-3) + 14(z-2) = 0$$
$$6x + 10y + 7z = 50$$

Two planes are **parallel** if their normal vectors are parallel. For instance, the planes x + 2y - 3z = 4 and 2x + 4y - 6z = 3 are parallel because their normal vectors are $\mathbf{n}_1 = \langle 1, 2, -3 \rangle$ and $\mathbf{n}_2 = \langle 2, 4, -6 \rangle$ and $\mathbf{n}_2 = 2\mathbf{n}_1$. If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors (see angle θ in Figure 9).

V EXAMPLE 6

- (a) Find the angle between the planes x + y + z = 1 and x 2y + 3z = 1.
- (b) Find symmetric equations for the line of intersection L of these two planes.

SOLUTION

(a) The normal vectors of these planes are

$$\mathbf{n}_1 = \langle 1, 1, 1 \rangle \qquad \mathbf{n}_2 = \langle 1, -2, 3 \rangle$$

and so, if θ is the angle between the planes,

$$\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} = \frac{1(1) + 1(-2) + 1(3)}{\sqrt{1 + 1 + 1}\sqrt{1 + 4 + 9}} = \frac{2}{\sqrt{42}}$$
$$\theta = \cos^{-1} \left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}$$

(b) We first need to find a point on L. For instance, we can find the point where the line intersects the xy-plane by setting z = 0 in the equations of both planes. This gives the equations x + y = 1 and x - 2y = 1, whose solution is x = 1, y = 0. So the point (1, 0, 0) lies on L.

Now we observe that, since L lies in both planes, it is perpendicular to both of the normal vectors. Thus a vector \mathbf{v} parallel to L is given by the cross product

$$\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -2 & 3 \end{vmatrix} = 5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$$

and so the symmetric equations of L can be written as

$$\frac{x-1}{5} = \frac{y}{-2} = \frac{z}{-3}$$

EXAMPLE 7 Find a formula for the distance *D* from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0.

SOLUTION Let $P_0(x_0, y_0, z_0)$ be any point in the given plane and let **b** be the vector corresponding to $\overline{P_0P_1}$. Then

$$\mathbf{b} = \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$$

From Figure 11 you can see that the distance *D* from P_1 to the plane is equal to the absolute value of the scalar projection of **b** onto the normal vector $\mathbf{n} = \langle a, b, c \rangle$. (See Section 10.3.) Thus

$$D = |\operatorname{comp}_{\mathbf{n}} \mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|} = \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$
$$= \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

Since P_0 lies in the plane, its coordinates satisfy the equation of the plane and so we have $ax_0 + by_0 + cz_0 + d = 0$. Thus the formula for *D* can be written as

EXAMPLE 8 Find the distance between the parallel planes 10x + 2y - 2z = 5and 5x + y - z = 1.

SOLUTION First we note that the planes are parallel because their normal vectors $\langle 10, 2, -2 \rangle$ and $\langle 5, 1, -1 \rangle$ are parallel. To find the distance *D* between the planes, we choose any point on one plane and calculate its distance to the other plane. In particular, if we put y = z = 0 in the equation of the first plane, we get 10x = 5 and so $(\frac{1}{2}, 0, 0)$ is a point in this plane. By Formula 9, the distance between $(\frac{1}{2}, 0, 0)$ and the plane 5x + y - z - 1 = 0 is

$$D = \frac{\left|5\left(\frac{1}{2}\right) + 1(0) - 1(0) - 1\right|}{\sqrt{5^2 + 1^2 + (-1)^2}} = \frac{\frac{3}{2}}{3\sqrt{3}} = \frac{\sqrt{3}}{6}$$

So the distance between the planes is $\sqrt{3}/6$.

10.5 EXERCISES

- I. Determine whether each statement is true or false.
 - (a) Two lines parallel to a third line are parallel.
 - (b) Two lines perpendicular to a third line are parallel.
 - (c) Two planes parallel to a third plane are parallel.
 - (d) Two planes perpendicular to a third plane are parallel.
 - (e) Two lines parallel to a plane are parallel.

- (f) Two lines perpendicular to a plane are parallel.
- (g) Two planes parallel to a line are parallel.
- (h) Two planes perpendicular to a line are parallel.
- (i) Two planes either intersect or are parallel.
- (j) Two lines either intersect or are parallel.
- (k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

- 2. The line through the point (1, 0, -3) and parallel to the vector $2\mathbf{i} 4\mathbf{j} + 5\mathbf{k}$
- The line through the point (-2, 4, 10) and parallel to the vector (3, 1, -8)
- 4. The line through the origin and parallel to the line x = 2t, y = 1 - t, z = 4 + 3t
- 5. The line through the point (1, 0, 6) and perpendicular to the plane x + 3y + z = 5
-

6–10 • Find parametric equations and symmetric equations for the line.

- **6.** The line through the points (6, 1, -3) and (2, 4, 5)
- **7.** The line through the points $(0, \frac{1}{2}, 1)$ and (2, 1, -3)
- 8. The line through (2, 1, 0) and perpendicular to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$
- 9. The line through (1, -1, 1) and parallel to the line $x + 2 = \frac{1}{2}y = z 3$
- **10.** The line of intersection of the planes x + y + z = 1and x + z = 0
-
- **II.** Is the line through (-4, -6, 1) and (-2, 0 -3) parallel to the line through (10, 18, 4) and (5, 3, 14)?
- 12. Is the line through (4, 1, -1) and (2, 5, 3) perpendicular to the line through (-3, 2, 0) and (5, 1, 4)?
- 13. (a) Find symmetric equations for the line that passes through the point (0, 2, -1) and is parallel to the line with parametric equations x = 1 + 2t, y = 3t, z = 5 - 7t.
 - (b) Find the points in which the required line in part (a) intersects the coordinate planes.
- 14. (a) Find parametric equations for the line through (5, 1, 0) that is perpendicular to the plane 2x y + z = 1.
 - (b) In what points does this line intersect the coordinate planes?
- **15.** Find a vector equation for the line segment from (2, -1, 4) to (4, 6, 1).
- **16.** Find parametric equations for the line segment from (10, 3, 1) to (5, 6, -3).

17–20 Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection.

17. L_1 : x = -6t, y = 1 + 9t, z = -3t L_2 : x = 1 + 2s, y = 4 - 3s, z = s

18.
$$L_1: x = 1 + 2t, y = 3t, z = 2 - t$$

 $L_2: x = -1 + s, y = 4 + s, z = 1 + 3s$
19. $L_1: \frac{x}{1} = \frac{y - 1}{2} = \frac{z - 2}{3}$
 $L_2: \frac{x - 3}{-4} = \frac{y - 2}{-3} = \frac{z - 1}{2}$
20. $L_1: \frac{x - 1}{2} = \frac{y - 3}{2} = \frac{z - 2}{-1}$
 $L_2: \frac{x - 2}{1} = \frac{y - 6}{-1} = \frac{z + 2}{3}$

21–30 Find an equation of the plane.

- **21.** The plane through the point (6, 3, 2) and perpendicular to the vector $\langle -2, 1, 5 \rangle$
- **22.** The plane through the point (4, 0, -3) and with normal vector $\mathbf{j} + 2\mathbf{k}$
- **23.** The plane through the origin and parallel to the plane 2x y + 3z = 1
- **24.** The plane that contains the line x = 3 + 2t, y = t, z = 8 - t and is parallel to the plane 2x + 4y + 8z = 17
- **25.** The plane through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0)
- **26.** The plane through the origin and the points (2, -4, 6) and (5, 1, 3)
- **27.** The plane that passes through the point (6, 0, -2) and contains the line x = 4 2t, y = 3 + 5t, z = 7 + 4t
- **28.** The plane that passes through the point (1, -1, 1) and contains the line with symmetric equations x = 2y = 3z
- **29.** The plane that passes through the point (-1, 2, 1) and contains the line of intersection of the planes x + y z = 2 and 2x y + 3z = 1
- **30.** The plane that passes through the line of intersection of the planes x z = 1 and y + 2z = 3 and is perpendicular to the plane x + y 2z = 1

.

- **31.** Find the point at which the line x = 3 t, y = 2 + t, z = 5t intersects the plane x y + 2z = 9.
- **32.** Where does the line through (1, 0, 1) and (4, -2, 2) intersect the plane x + y + z = 6?

33–36 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.

33. x + y + z = 1, x - y + z = 1 **34.** 2x - 3y + 4z = 5, x + 6y + 4z = 3 **35.** x = 4y - 2z, 8y = 1 + 2x + 4z**36.** x + 2y + 2z = 1, 2x - y + 2z = 1

- 37. (a) Find symmetric equations for the line of intersection of the planes x + y z = 2 and 3x 4y + 5z = 6.
 (b) Find the angle between these planes.
- **38.** Find an equation for the plane consisting of all points that are equidistant from the points (-4, 2, 1) and (2, -4, 3).
- **39.** Find an equation of the plane with *x*-intercept *a*, *y*-intercept *b*, and *z*-intercept *c*.
- **40.** (a) Find the point at which the given lines intersect:

$$\mathbf{r} = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$$
$$\mathbf{r} = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$$

- (b) Find an equation of the plane that contains these lines.
- **41.** Find parametric equations for the line through the point (0, 1, 2) that is parallel to the plane x + y + z = 2 and perpendicular to the line x = 1 + t, y = 1 t, z = 2t.
- 42. Find parametric equations for the line through the point (0, 1, 2) that is perpendicular to the line x = 1 + t, y = 1 t, z = 2t and intersects this line.
- **43.** Which of the following four planes are parallel? Are any of them identical?

 $P_1:$ 4x - 2y + 6z = 3 $P_2:$ 4x - 2y - 2z = 6 $P_3:$ -6x + 3y - 9z = 5 $P_4:$ z = 2x - y - 3

44. Which of the following four lines are parallel? Are any of them identical?

$$L_{1}: x = 1 + t, \quad y = t, \quad z = 2 - 5t$$

$$L_{2}: x + 1 = y - 2 = 1 - z$$

$$L_{3}: x = 1 + t, \quad y = 4 + t, \quad z = 1 - t$$

$$L_{4}: \mathbf{r} = \langle 2, 1, -3 \rangle + t \langle 2, 2, -10 \rangle$$

45–46 Use the formula in Exercise 39 in Section 10.4 to find the distance from the point to the given line.

45. (1, 2, 3); x = 2 + t, y = 2 - 3t, z = 5t

46.
$$(1, 0, -1); x = 5 - t, y = 3t, z = 1 + 2t$$

47–48 Find the distance from the point to the given plane.

47. (2, 8, 5),
$$x - 2y - 2z = 1$$

48. (3, -2, 7), $4x - 6y + z = 5$

49–50 Find the distance between the given parallel planes.

49. z = x + 2y + 1, 3x + 6y - 3z = 4**50.** 3x + 6y - 9z = 4, x + 2y - 3z = 1

.

51. Show that the distance between the parallel planes
$$ax + by + cz + d_1 = 0$$
 and $ax + by + cz + d_2 = 0$ is

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

- **52.** Find equations of the planes that are parallel to the plane x + 2y 2z = 1 and two units away from it.
- **53.** Show that the lines with symmetric equations x = y = z and x + 1 = y/2 = z/3 are skew, and find the distance between these lines. [*Hint:* The skew lines lie in parallel planes.]
- 54. Find the distance between the skew lines with parametric equations x = 1 + t, y = 1 + 6t, z = 2t, and x = 1 + 2s, y = 5 + 15s, z = -2 + 6s.
- **55.** If *a*, *b*, and *c* are not all 0, show that the equation ax + by + cz + d = 0 represents a plane and $\langle a, b, c \rangle$ is a normal vector to the plane.

Hint: Suppose $a \neq 0$ and rewrite the equation in the form

$$a\left(x+\frac{d}{a}\right)+b(y-0)+c(z-0)=0$$

56. Give a geometric description of each family of planes.

(a) x + y + z = c(b) x + y + cz = 1(c) $y \cos \theta + z \sin \theta = 1$

10.6 CYLINDERS AND QUADRIC SURFACES

We have already looked at two special types of surfaces—planes (in Section 10.5) and spheres (in Section 10.1). Here we investigate two other types of surfaces—cylinders and quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called **traces** (or cross-sections) of the surface.

CYLINDERS

A **cylinder** is a surface that consists of all lines (called **rulings**) that are parallel to a given line and pass through a given plane curve.

SOLUTION Notice that the equation of the graph, $z = x^2$, doesn't involve y. This means that any vertical plane with equation y = k (parallel to the *xz*-plane) intersects the graph in a curve with equation $z = x^2$. So these vertical traces are parabolas. Figure 1 shows how the graph is formed by taking the parabola $z = x^2$ in the *xz*-plane and moving it in the direction of the *y*-axis. The graph is a surface, called a **parabolic cylinder**, made up of infinitely many shifted copies of the same parabola. Here the rulings of the cylinder are parallel to the *y*-axis.

We noticed that the variable y is missing from the equation of the cylinder in Example 1. This is typical of a surface whose rulings are parallel to one of the coordinate axes. If one of the variables x, y, or z is missing from the equation of a surface, then the surface is a cylinder.

EXAMPLE 2 Identify and sketch the surfaces. (a) $x^2 + y^2 = 1$ (b) $y^2 + z^2 = 1$

SOLUTION

(a) Since z is missing and the equations $x^2 + y^2 = 1$, z = k represent a circle with radius 1 in the plane z = k, the surface $x^2 + y^2 = 1$ is a circular cylinder whose axis is the z-axis (see Figure 2). Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the x-axis (see Figure 3). It is obtained by taking the circle $y^2 + z^2 = 1$, x = 0 in the yz-plane and moving it parallel to the x-axis.

 \oslash

NOTE When you are dealing with surfaces, it is important to recognize that an equation like $x^2 + y^2 = 1$ represents a cylinder and not a circle. The trace of the cylinder $x^2 + y^2 = 1$ in the *xy*-plane is the circle with equations $x^2 + y^2 = 1$, z = 0.

QUADRIC SURFACES

A **quadric surface** is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

FIGURE I The surface $z = x^2$ is a parabolic cylinder.

where A, B, C, ..., J are constants, but by translation and rotation it can be brought into one of the two standard forms

$$Ax^{2} + By^{2} + Cz^{2} + J = 0$$
 or $Ax^{2} + By^{2} + Iz = 0$

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane. (See Section 9.5 for a review of conic sections.)

EXAMPLE 3 Use traces to sketch the quadric surface with equation

$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

SOLUTION By substituting z = 0, we find that the trace in the *xy*-plane is $x^2 + y^2/9 = 1$, which we recognize as an equation of an ellipse. In general, the horizontal trace in the plane z = k is

$$x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4} \qquad z = k$$

which is an ellipse, provided that $k^2 < 4$, that is, -2 < k < 2. Similarly, the vertical traces are also ellipses:

Figure 4 shows how drawing some traces indicates the shape of the surface. It's called an **ellipsoid** because all of its traces are ellipses. Notice that it is symmetric with respect to each coordinate plane; this is a reflection of the fact that its equation involves only even powers of x, y, and z.

EXAMPLE 4 Use traces to sketch the surface $z = 4x^2 + y^2$.

SOLUTION If we put x = 0, we get $z = y^2$, so the *yz*-plane intersects the surface in a parabola. If we put x = k (a constant), we get $z = y^2 + 4k^2$. This means that if we slice the graph with any plane parallel to the *yz*-plane, we obtain a parabola that opens upward. Similarly, if y = k, the trace is $z = 4x^2 + k^2$, which is again a parabola that opens upward. If we put z = k, we get the horizontal traces $4x^2 + y^2 = k$, which we recognize as a family of ellipses. Knowing the shapes of the traces, we can sketch the graph in Figure 5. Because of the elliptical and parabolic traces, the quadric surface $z = 4x^2 + y^2$ is called an **elliptic paraboloid**.

FIGURE 4 The ellipsoid $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$

FIGURE 5

The surface $z = 4x^2 + y^2$ is an elliptic paraboloid. Horizontal traces are ellipses; vertical traces are parabolas.

V EXAMPLE 5 Sketch the surface $z = y^2 - x^2$.

SOLUTION The traces in the vertical planes x = k are the parabolas $z = y^2 - k^2$, which open upward. The traces in y = k are the parabolas $z = -x^2 + k^2$, which open downward. The horizontal traces are $y^2 - x^2 = k$, a family of hyperbolas. We draw the families of traces in Figure 6, and we show how the traces appear when placed in their correct planes in Figure 7.

x

FIGURE 6

Vertical traces are parabolas; horizontal traces are hyperbolas. All traces are labeled with the value of *k*.

Traces in x = k are $z = y^2 - k^2$

Traces in x = k

Traces in y = k are $z = -x^2 + k^2$

-1

FIGURE 7

Traces moved to their correct planes

In Module 10.6A you can investigate how traces determine the shape of a surface. In Figure 8 we fit together the traces from Figure 7 to form the surface $z = y^2 - x^2$, a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles that of a saddle. This surface will be investigated further in Section 12.7 when we discuss saddle points.

EXAMPLE 6 Sketch the surface $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$.

SOLUTION The trace in any horizontal plane z = k is the ellipse

$$\frac{x^2}{4} + y^2 = 1 + \frac{k^2}{4} \qquad z = k$$

FIGURE 9

In Module 10.6B you can see how changing a, b, and c in Table 1 affects the shape of the quadric surface. but the traces in the xz- and yz-planes are the hyperbolas

$$\frac{x^2}{4} - \frac{z^2}{4} = 1$$
 $y = 0$ and $y^2 - \frac{z^2}{4} = 1$ $x = 0$

This surface is called a **hyperboloid of one sheet** and is sketched in Figure 9.

The idea of using traces to draw a surface is employed in three-dimensional graphing software for computers. In most such software, traces in the vertical planes x = kand y = k are drawn for equally spaced values of k, and parts of the graph are eliminated using hidden line removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces in standard form. All surfaces are symmetric with respect to the *z*-axis. If a quadric surface is symmetric about a different axis, its equation changes accordingly.

 TABLE I
 Graphs of Quadric Surfaces

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes x = k and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

EXAMPLE 7 Classify the quadric surface
$$x^2 + 2z^2 - 6x - y + 10 = 0$$

SOLUTION By completing the square we rewrite the equation as

$$y - 1 = (x - 3)^2 + 2z^2$$

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid. Here, however, the axis of the paraboloid is parallel to the *y*-axis, and it has been shifted so that its vertex is the point (3, 1, 0). The traces in the plane y = k(k > 1) are the ellipses

$$(x-3)^2 + 2z^2 = k - 1$$
 $y = k$

The trace in the *xy*-plane is the parabola with equation $y = 1 + (x - 3)^2$, z = 0. The paraboloid is sketched in Figure 10.

10.6 EXERCISES

- (a) What does the equation y = x² represent as a curve in ℝ²?
 - (b) What does it represent as a surface in \mathbb{R}^3 ?
 - (c) What does the equation $z = y^2$ represent?
- (a) Sketch the graph of y = e^x as a curve in R².
 (b) Sketch the graph of y = e^x as a surface in R³.
 (c) Describe and sketch the surface z = e^y.
 - (c) Describe and sketch the surface $z = e^{z}$.

3–8 Describe and sketch the surface.

- **3.** $y^2 + 4z^2 = 4$ **4.** $z = 4 x^2$ **5.** $x y^2 = 0$ **6.** yz = 4**7.** $z = \cos x$ **8.** $x^2 y^2 = 1$
- 9. (a) Find and identify the traces of the quadric surface x² + y² z² = 1 and explain why the graph looks like the graph of the hyperboloid of one sheet in Table 1.
 - (b) If we change the equation in part (a) to $x^2 y^2 + z^2 = 1$, how is the graph affected?
 - (c) What if we change the equation in part (a) to $x^2 + y^2 + 2y z^2 = 0$?
- 10. (a) Find and identify the traces of the quadric surface $-x^2 y^2 + z^2 = 1$ and explain why the graph looks like the graph of the hyperboloid of two sheets in Table 1.
 - (b) If the equation in part (a) is changed to $x^2 y^2 z^2 = 1$, what happens to the graph? Sketch the new graph.

11–20 Find the traces of the given surface in the planes x = k, y = k, z = k. Then identify the surface and sketch it.

11.
$$4x^2 + 9y^2 + 36z^2 = 36$$

12. $4y = x^2 + z^2$
13. $y^2 = x^2 + z^2$
14. $z = x^2 - y^2$
15. $-x^2 + 4y^2 - z^2 = 4$
16. $25y^2 + z^2 = 100 + 4x^2$

$17. \ x^2 + 4z^2 - y = 0$	18. $x^2 + 4y^2 + z^2 = 4$
19. $y = z^2 - x^2$	20. $16x^2 = y^2 + 4z^2$

21–28 Reduce the equation to one of the standard forms, classify the surface, and sketch it.

- **21.** $z^2 = 4x^2 + 9y^2 + 36$ **22.** $x^2 = 2y^2 + 3z^2$ **23.** $x = 2y^2 + 3z^2$ **24.** $4x - y^2 + 4z^2 = 0$ **25.** $4x^2 + y^2 + 4z^2 - 4y - 24z + 36 = 0$ **26.** $4y^2 + z^2 - x - 16y - 4z + 20 = 0$ **27.** $x^2 - y^2 + z^2 - 4x - 2y - 2z + 4 = 0$ **28.** $x^2 - y^2 + z^2 - 2x + 2y + 4z + 2 = 0$ **29.** Sketch the region bounded by the surfaces $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 = 1$ for $1 \le z \le 2$.
- **30.** Sketch the region bounded by the paraboloids $z = x^2 + y^2$ and $z = 2 x^2 y^2$.
- 31. Find an equation for the surface consisting of all points that are equidistant from the point (-1, 0, 0) and the plane x = 1. Identify the surface.
- **32.** Find an equation for the surface consisting of all points *P* for which the distance from *P* to the *x*-axis is twice the distance from *P* to the *yz*-plane. Identify the surface.
- **33.** Graph the surfaces $z = x^2 + y^2$ and $z = 1 y^2$ on a common screen using the domain $|x| \le 1.2$, $|y| \le 1.2$ and observe the curve of intersection of these surfaces. Show that the projection of this curve onto the *xy*-plane is an ellipse.
 - **34.** Show that the curve of intersection of the surfaces $x^2 + 2y^2 z^2 + 3x = 1$ and $2x^2 + 4y^2 2z^2 5y = 0$ lies in a plane.