I. (a) Find an equation of the sphere that passes through the point $(6,-2,3)$ and has center $(-1,2,1)$.
(b) Find the curve in which this sphere intersects the $y z$-plane.
(c) Find the center and radius of the sphere

$$
x^{2}+y^{2}+z^{2}-8 x+2 y+6 z+1=0
$$

2. Copy the vectors in the figure and use them to draw each of the following vectors.
(a) $\mathbf{a}+\mathbf{b}$
(b) $\mathbf{a}-\mathbf{b}$
(c) $-\frac{1}{2} \mathbf{a}$
(d) $2 \mathbf{a}+\mathbf{b}$

3. If \mathbf{u} and \mathbf{v} are the vectors shown in the figure, find $\mathbf{u} \cdot \mathbf{v}$ and $|\mathbf{u} \times \mathbf{v}|$. Is $\mathbf{u} \times \mathbf{v}$ directed into the page or out of it?

4. Calculate the given quantity if
$\mathbf{a}=\mathbf{i}+\mathbf{j}-2 \mathbf{k}$

$$
\mathbf{b}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}
$$

$$
\mathbf{c}=\mathbf{j}-5 \mathbf{k}
$$

(a) $2 \mathbf{a}+3 \mathbf{b}$
(b) $|\mathbf{b}|$
(c) $\mathbf{a} \cdot \mathbf{b}$
(d) $\mathbf{a} \times \mathbf{b}$
(e) $|\mathbf{b} \times \mathbf{c}|$
(f) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
(g) $\mathbf{c} \times \mathbf{c}$
(h) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$
(i) $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$
(j) $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$
(k) The angle between \mathbf{a} and \mathbf{b} (correct to the nearest degree)
5. Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.
6. Find two unit vectors that are orthogonal to both $\mathbf{j}+2 \mathbf{k}$ and $\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$.
7. Suppose that $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=2$. Find
(a) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
(b) $\mathbf{u} \cdot(\mathbf{w} \times \mathbf{v})$
(c) $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{w})$
(d) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}$
8. Show that if \mathbf{a}, \mathbf{b}, and \mathbf{c} are in V_{3}, then

$$
(\mathbf{a} \times \mathbf{b}) \cdot[(\mathbf{b} \times \mathbf{c}) \times(\mathbf{c} \times \mathbf{a})]=[\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})]^{2}
$$

9. Find the acute angle between two diagonals of a cube.
10. Given the points $A(1,0,1), B(2,3,0), C(-1,1,4)$, and $D(0,3,2)$, find the volume of the parallelepiped with adjacent edges $A B, A C$, and $A D$.
II. (a) Find a vector perpendicular to the plane through the points $A(1,0,0), B(2,0,-1)$, and $C(1,4,3)$.
(b) Find the area of triangle $A B C$.
11. A constant force $\mathbf{F}=3 \mathbf{i}+5 \mathbf{j}+10 \mathbf{k}$ moves an object along the line segment from $(1,0,2)$ to $(5,3,8)$. Find the work done if the distance is measured in meters and the force in newtons.
12. A boat is pulled onto shore using two ropes, as shown in the diagram. If a force of 255 N is needed, find the magnitude of the force in each rope.

13. Find the magnitude of the torque about P if a $50-\mathrm{N}$ force is applied as shown.

15-17 - Find parametric equations for the line.
15. The line through $(4,-1,2)$ and $(1,1,5)$
16. The line through $(1,0,-1)$ and parallel to the line $\frac{1}{3}(x-4)=\frac{1}{2} y=z+2$
17. The line through $(-2,2,4)$ and perpendicular to the plane $2 x-y+5 z=12$

18-20 $=$ Find an equation of the plane.
18. The plane through $(2,1,0)$ and parallel to $x+4 y-3 z=1$
19. The plane through $(3,-1,1),(4,0,2)$, and $(6,3,1)$
20. The plane through $(1,2,-2)$ that contains the line $x=2 t$, $y=3-t, z=1+3 t$
21. Find the point in which the line with parametric equations $x=2-t, y=1+3 t, z=4 t$ intersects the plane $2 x-y+z=2$.
22. Find the distance from the origin to the line $x=1+t$, $y=2-t, z=-1+2 t$.
23. Determine whether the lines given by the symmetric equations

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}
$$

and

$$
\frac{x+1}{6}=\frac{y-3}{-1}=\frac{z+5}{2}
$$

are parallel, skew, or intersecting.
24. (a) Show that the planes $x+y-z=1$ and $2 x-3 y+4 z=5$ are neither parallel nor perpendicular.
(b) Find, correct to the nearest degree, the angle between these planes.
25. Find the distance between the planes $3 x+y-4 z=2$ and $3 x+y-4 z=24$.

26-34 - Identify and sketch the graph of each surface.
26. $x=3$
27. $x=z$
28. $y=z^{2}$
29. $x^{2}=y^{2}+4 z^{2}$
30. $4 x-y+2 z=4$
31. $-4 x^{2}+y^{2}-4 z^{2}=4$
32. $y^{2}+z^{2}=1+x^{2}$
33. $4 x^{2}+4 y^{2}-8 y+z^{2}=0$
34. $x=y^{2}+z^{2}-2 y-4 z+5$
35. An ellipsoid is created by rotating the ellipse $4 x^{2}+y^{2}=16$ about the x-axis. Find an equation of the ellipsoid.
36. A surface consists of all points P such that the distance from P to the plane $y=1$ is twice the distance from P to the point $(0,-1,0)$. Find an equation for this surface and identify it.
37. (a) Sketch the curve with vector function

$$
\mathbf{r}(t)=t \mathbf{i}+\cos \pi t \mathbf{j}+\sin \pi t \mathbf{k} \quad t \geqslant 0
$$

(b) Find $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$.
38. Let $\mathbf{r}(t)=\left\langle\sqrt{2-t},\left(e^{t}-1\right) / t, \ln (t+1)\right\rangle$.
(a) Find the domain of \mathbf{r}.
(b) Find $\lim _{t \rightarrow 0} \mathbf{r}(t)$.
(c) Find $\mathbf{r}^{\prime}(t)$.
39. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=16$ and the plane $x+z=5$.
40. Find parametric equations for the tangent line to the curve $x=2 \sin t, y=2 \sin 2 t, z=2 \sin 3 t$ at the point $(1, \sqrt{3}, 2)$. Graph the curve and the tangent line on a common screen.
41. If $\mathbf{r}(t)=t^{2} \mathbf{i}+t \cos \pi t \mathbf{j}+\sin \pi t \mathbf{k}$, evaluate $\int_{0}^{1} \mathbf{r}(t) d t$.
42. Let C be the curve with equations $x=2-t^{3}, y=2 t-1$, $z=\ln t$. Find (a) the point where C intersects the $x z$-plane,
(b) parametric equations of the tangent line at $(1,1,0)$, and
(c) an equation of the normal plane to C at $(1,1,0)$.
43. Use Simpson's Rule with $n=6$ to estimate the length of the arc of the curve with equations $x=t^{2}, y=t^{3}, z=t^{4}$, $0 \leqslant t \leqslant 3$.
44. Find the length of the curve $\mathbf{r}(t)=\left\langle 2 t^{3 / 2}, \cos 2 t, \sin 2 t\right\rangle$, $0 \leqslant t \leqslant 1$.
45. The helix $\mathbf{r}_{1}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ intersects the curve $\mathbf{r}_{2}(t)=(1+t) \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ at the point $(1,0,0)$. Find the angle of intersection of these curves.
46. Reparametrize the curve $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{t} \sin t \mathbf{j}+e^{t} \cos t \mathbf{k}$ with respect to arc length measured from the point $(1,0,1)$ in the direction of increasing t.
47. For the curve given by $\mathbf{r}(t)=\left\langle\frac{1}{3} t^{3}, \frac{1}{2} t^{2}, t\right\rangle$, find (a) the unit tangent vector, (b) the unit normal vector, and (c) the curvature.
48. Find the curvature of the ellipse $x=3 \cos t, y=4 \sin t$ at the points $(3,0)$ and $(0,4)$.
49. Find the curvature of the curve $y=x^{4}$ at the point $(1,1)$.
50. Find an equation of the osculating circle of the curve $y=x^{4}-x^{2}$ at the origin. Graph both the curve and its osculating circle.
51. A particle moves with position function $\mathbf{r}(t)=t \ln t \mathbf{i}+t \mathbf{j}+e^{-t} \mathbf{k}$. Find the velocity, speed, and acceleration of the particle.
52. A particle starts at the origin with initial velocity $\mathbf{i}-\mathbf{j}+3 \mathbf{k}$. Its acceleration is $\mathbf{a}(t)=6 t \mathbf{i}+12 t^{2} \mathbf{j}-6 t \mathbf{k}$. Find its position function.
53. An athlete throws a shot at an angle of 45° to the horizontal at an initial speed of $43 \mathrm{ft} / \mathrm{s}$. It leaves his hand 7 ft above the ground.
(a) Where is the shot 2 seconds later?
(b) How high does the shot go?
(c) Where does the shot land?
54. Find the tangential and normal components of the acceleration vector of a particle with position function

$$
\mathbf{r}(t)=t \mathbf{i}+2 t \mathbf{j}+t^{2} \mathbf{k}
$$

55. Find the curvature of the curve with parametric equations

$$
x=\int_{0}^{t} \sin \left(\frac{1}{2} \pi \theta^{2}\right) d \theta \quad y=\int_{0}^{t} \cos \left(\frac{1}{2} \pi \theta^{2}\right) d \theta
$$

