EXERCISES

- (a) Find an equation of the sphere that passes through the point (6, -2, 3) and has center (-1, 2, 1).
 - (b) Find the curve in which this sphere intersects the *yz*-plane.
 - (c) Find the center and radius of the sphere

 $x^2 + y^2 + z^2 - 8x + 2y + 6z + 1 = 0$

2. Copy the vectors in the figure and use them to draw each of the following vectors.

3. If u and v are the vectors shown in the figure, find u ⋅ v and |u × v|. Is u × v directed into the page or out of it?

4. Calculate the given quantity if

$\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$	$\mathbf{b} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	$\mathbf{c} = \mathbf{j} - 5\mathbf{k}$
--	---	---

(a)	2 a	+	3 h	(h`)	h	
(a)	2 a		50	(υ,	,	0	I 1

- (c) $\mathbf{a} \cdot \mathbf{b}$ (d) $\mathbf{a} \times \mathbf{b}$
- (e) $|\mathbf{b} \times \mathbf{c}|$ (f) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$
- (g) $\mathbf{c} \times \mathbf{c}$ (h) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$
- (i) $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$ (j) $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$
- (k) The angle between a and b (correct to the nearest degree)
- **5.** Find the values of *x* such that the vectors $\langle 3, 2, x \rangle$ and $\langle 2x, 4, x \rangle$ are orthogonal.
- 6. Find two unit vectors that are orthogonal to both $\mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$.
- 7. Suppose that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 2$. Find (a) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ (b) $\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})$ (c) $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{w})$ (d) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}$
- **8.** Show that if \mathbf{a} , \mathbf{b} , and \mathbf{c} are in V_3 , then

$$[\mathbf{a} \times \mathbf{b}) \cdot [(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})] = [\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})]^2$$

- 9. Find the acute angle between two diagonals of a cube.
- **10.** Given the points A(1, 0, 1), B(2, 3, 0), C(-1, 1, 4), and D(0, 3, 2), find the volume of the parallelepiped with adjacent edges AB, AC, and AD.

- (a) Find a vector perpendicular to the plane through the points A(1, 0, 0), B(2, 0, -1), and C(1, 4, 3).
 (b) Find the area of triangle ABC.
- 12. A constant force F = 3i + 5j + 10k moves an object along the line segment from (1, 0, 2) to (5, 3, 8). Find the work done if the distance is measured in meters and the force in newtons.
- **13.** A boat is pulled onto shore using two ropes, as shown in the diagram. If a force of 255 N is needed, find the magnitude of the force in each rope.

14. Find the magnitude of the torque about *P* if a 50-N force is applied as shown.

- **I5–I7** Find parametric equations for the line.
- **15.** The line through (4, -1, 2) and (1, 1, 5)
- 16. The line through (1, 0, -1) and parallel to the line $\frac{1}{3}(x 4) = \frac{1}{2}y = z + 2$
- **17.** The line through (-2, 2, 4) and perpendicular to the plane 2x y + 5z = 12

and the second second second

18–20 Find an equation of the plane.

- **18.** The plane through (2, 1, 0) and parallel to x + 4y 3z = 1
- **19.** The plane through (3, -1, 1), (4, 0, 2), and (6, 3, 1)
- **20.** The plane through (1, 2, -2) that contains the line x = 2t, y = 3 - t, z = 1 + 3t

. . .

- **21.** Find the point in which the line with parametric equations x = 2 t, y = 1 + 3t, z = 4t intersects the plane 2x y + z = 2.
- **22.** Find the distance from the origin to the line x = 1 + t, y = 2 t, z = -1 + 2t.