
THREE-DIMENSIONAL COORDINATE SYSTEMS

To locate a point in a plane, two numbers are necessary. We know that any point 
in the plane can be represented as an ordered pair of real numbers, where is
the -coordinate and is the -coordinate. For this reason, a plane is called two-
dimensional. To locate a point in space, three numbers are required. We represent any
point in space by an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin)
and three directed lines through that are perpendicular to each other, called the
coordinate axes and labeled the -axis, -axis, and -axis. Usually we think of the 
- and -axes as being horizontal and the -axis as being vertical, and we draw the ori-

entation of the axes as in Figure 1. The direction of the -axis is determined by the
right-hand rule as illustrated in Figure 2: If you curl the fingers of your right hand
around the -axis in the direction of a counterclockwise rotation from the positive
-axis to the positive -axis, then your thumb points in the positive direction of the 
-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane con-
tains the - and -axes; the -plane contains the - and -axes. These three coordinate
planes divide space into eight parts, called octants. The first octant, in the fore-
ground, is determined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimen-
sional figures, you may find it helpful to do the following [see Figure 3(b)]. Look at
any bottom corner of a room and call the corner the origin. The wall on your left is in
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10.1

VECTORS AND THE
GEOMETRY OF SPACE

In this chapter we introduce vectors and coordinate systems for three-dimensional space.This will
be the setting for the study of functions of two variables in Chapter 11 because the graph of such
a function is a surface in space. In this chapter we will see that vectors provide particularly simple
descriptions of lines, planes, and curves.We will also use vector-valued functions to describe the
motion of objects through space. In particular, we will use them to derive Kepler’s laws of plane-
tary motion.
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the -plane, the wall on your right is in the -plane, and the floor is in the -plane.
The -axis runs along the intersection of the floor and the left wall. The -axis runs
along the intersection of the floor and the right wall. The -axis runs up from the floor
toward the ceiling along the intersection of the two walls. You are situated in the first
octant, and you can now imagine seven other rooms situated in the other seven octants
(three on the same floor and four on the floor below), all connected by the common
corner point .

Now if is any point in space, let be the (directed) distance from the -plane to
let be the distance from the -plane to and let be the distance from the 
-plane to . We represent the point by the ordered triple of real numbers

and we call , , and the coordinates of ; is the -coordinate, is the -coordi-
nate, and is the -coordinate. Thus to locate the point we can start at the ori-
gin and move units along the -axis, then units parallel to the -axis, and then

units parallel to the -axis as in Figure 4.
The point determines a rectangular box as in Figure 5. If we drop a per-

pendicular from to the -plane, we get a point with coordinates called
the projection of on the -plane. Similarly, and are the projec-
tions of on the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in
Figure 6.

The Cartesian product is the set of all or-
dered triples of real numbers and is denoted by . We have given a one-to-one cor-
respondence between points in space and ordered triples in . It is called
a three-dimensional rectangular coordinate system. Notice that, in terms of coor-
dinates, the first octant can be described as the set of points whose coordinates are all
positive.

In two-dimensional analytic geometry, the graph of an equation involving and 
is a curve in . In three-dimensional analytic geometry, an equation in , , and rep-
resents a surface in .

EXAMPLE 1 What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all
points in whose -coordinate is . This is the horizontal plane that is parallel to
the -plane and three units above it as in Figure 7(a).xy
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(b) The equation represents the set of all points in whose -coordinate 
is 5. This is the vertical plane that is parallel to the -plane and five units to the
right of it as in Figure 7(b). ■

NOTE When an equation is given, we must understand from the context whether it
represents a curve in or a surface in . In Example 1, represents a plane in

, but of course can also represent a line in if we are dealing with two-
dimensional analytic geometry. See Figure 7, parts (b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane,
is a plane parallel to the -plane, and is a plane parallel to the -plane.

In Figure 5, the faces of the rectangular box are formed by the three coordinate 
planes (the -plane), (the -plane), and (the -plane), and the
planes , , and .

EXAMPLE 2 Describe and sketch the surface in represented by the 
equation .

SOLUTION The equation represents the set of all points in whose - and -coor-
dinates are equal, that is, . This is a vertical plane that
intersects the -plane in the line , . The portion of this plane that lies in
the first octant is sketched in Figure 8. ■

The familiar formula for the distance between two points in a plane is easily
extended to the following three-dimensional formula.

DISTANCE FORMULA IN THREE DIMENSIONS The distance between the
points and is

To see why this formula is true, we construct a rectangular box as in Figure 9,
where and are opposite vertices and the faces of the box are parallel to the coor-
dinate planes. If and are the vertices of the box indicated in
the figure, then

� BP2 � � � z2 � z1 �� AB � � � y2 � y1 �� P1A � � � x2 � x1 �

B�x2, y2, z1�A�x2, y1, z1�
P2P1

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

P2�x2, y2, z2 �P1�x1, y1, z1�
� P1P2 �

z � 0y � xxy

�x, x, z� � x � �, z � ��

yx� 3

y � x
� 3V

z � cy � bx � a
xyz � 0xzy � 0yzx � 0

xyz � kxzy � k
yzx � kk

� 2y � 5� 3
y � 5� 3� 2

xz
y� 3y � 5

FIGURE 7 (c) y=5, a line in R@

0

y

5

x

(b) y=5, a plane in R#(a) z=3, a plane in R#

y

0

z

x 50

z

yx

3

SECTION 10.1 THREE-DIMENSIONAL COORDINATE SYSTEMS ■ 519

0
y

z

x

FIGURE 8
The plane y=x

FIGURE 9

0

z

y
x

P¡(⁄, ›, z¡)

A(¤, ›, z¡)

P™(¤, fi, z™)

B(¤, fi, z¡)



Because triangles and are both right-angled, two applications of the Pythag-
orean Theorem give

and

Combining these equations, we get

Therefore

EXAMPLE 3 The distance from the point to the point is

■

EXAMPLE 4 Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance
from is . (See Figure 10.) Thus is on the sphere if and only if .
Squaring both sides, we have or

■

The result of Example 4 is worth remembering.

EQUATION OF A SPHERE An equation of a sphere with center and
radius is

In particular, if the center is the origin , then an equation of the sphere is

EXAMPLE 5 Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere
if we complete squares:

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius . ■s8 � 2s2��2, 3, �1�
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EXAMPLE 6 What region in is represented by the following inequalities?

SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 
and at most 2. But we are also given that , so the points lie on or below the 

-plane. Thus the given inequalities represent the region that lies between (or on)
the spheres and and beneath (or on) the 

-plane. It is sketched in Figure 11. ■xy
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8. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f ) The -axis

9. Determine whether the points lie on straight line.
(a) , ,
(b) , ,

10. Find an equation of the sphere with center and
radius 5. Describe its intersection with each of the coordi-
nate planes.

Find an equation of the sphere that passes through the point 
and has center .

12. Find an equation of the sphere that passes through the ori-
gin and whose center is .

13–16 ■ Show that the equation represents a sphere, and find
its center and radius.

13.

14.

15.

16.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17. (a) Prove that the midpoint of the line segment from
to is

� x1 � x2

2
,

y1 � y2

2
,

z1 � z2

2 �
P2�x2, y2, z2 �P1�x1, y1, z1�

4x 2 � 4y2 � 4z2 � 8x � 16y � 1

x 2 � y 2 � z 2 � x � y � z

x 2 � y 2 � z 2 � 4x � 2y

x 2 � y 2 � z2 � 6x � 4y � 2z � 11

�1, 2, 3�

�3, 8, 1��4, 3, �1�
11.

�2, �6, 4�

F�3, 4, 2�E�1, �2, 4�D�0, �5, 5�
C�1, 3, 3�B�3, 7, �2�A�2, 4, 2�

zy
xxz
yzxy

�3, 7, �5�1. Suppose you start at the origin, move along the -axis a dis-
tance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points , , , and
on a single set of coordinate axes.

3. Which of the points , , and 
is closest to the -plane? Which point lies in 

the -plane?

4. What are the projections of the point (2, 3, 5) on the -, -,
and -planes? Draw a rectangular box with the origin and

as opposite vertices and with its faces parallel to
the coordinate planes. Label all vertices of the box. Find the
length of the diagonal of the box.

Describe and sketch the surface in represented by the
equation .

6. (a) What does the equation represent in ? What
does it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What
does represent? What does the pair of equations

, represent? In other words, describe the set
of points such that and . Illustrate
with a sketch.

7. Find the lengths of the sides of the triangle . Is it a
right triangle? Is it an isosceles triangle?
(a) , ,
(b) , , R�4, �5, 4�Q�4, 1, 1�P�2, �1, 0�
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(b) Find the lengths of the medians of the triangle with ver-
tices , , and .

18. Find an equation of a sphere if one of its diameters has end-
points and .

Find equations of the spheres with center that
touch (a) the -plane, (b) the -plane, (c) the -plane.

20. Find an equation of the largest sphere with center (5, 4, 9)
that is contained in the first octant.

21–30 ■ Describe in words the region of represented by the
equation or inequality.

21. 22.

23. 24.

26.

27. 28.

30.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

x 2 � y 2 � z 2 � 2zx 2 � z 2 
 929.

x � zx 2 � y 2 � z 2 
 3

z 2 � 10 
 z 
 625.

y � 0x � 3

x � 10y � �4

� 3

xzyzxy
�2, �3, 6�19.

�4, 3, 10��2, 1, 4�

C�4, 1, 5�B��2, 0, 5�A�1, 2, 3�
31–34 ■ Write inequalities to describe the region.

31. The half-space consisting of all points to the left of the 
-plane

32. The solid rectangular box in the first octant bounded by the
planes , , and 

The region consisting of all points between (but not on) 
the spheres of radius and centered at the origin, 
where

34. The solid upper hemisphere of the sphere of radius 2
centered at the origin

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Find an equation of the set of all points equidistant from the
points and . Describe the set.

36. Find the volume of the solid that lies inside both of the
spheres

and x 2 � y 2 � z2 � 4

x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

B�6, 2, �2�A��1, 5, 3�
35.

r � R
Rr

33.

z � 3y � 2x � 1

xz
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VECTORS

The term vector is used by scientists to indicate a quantity (such as displacement or
velocity or force) that has both magnitude and direction. A vector is often represented
by an arrow or a directed line segment. The length of the arrow represents the magni-
tude of the vector and the arrow points in the direction of the vector. We denote a 
vector by printing a letter in boldface or by putting an arrow above the letter 

For instance, suppose a particle moves along a line segment from point to point
. The corresponding displacement vector , shown in Figure 1, has initial point

(the tail) and terminal point (the tip) and we indicate this by writing AB
l

.
Notice that the vector CD

l
has the same length and the same direction as even

though it is in a different position. We say that and are equivalent (or equal) and
we write . The zero vector, denoted by 0, has length . It is the only vector with
no specific direction.

COMBINING VECTORS

Suppose a particle moves from , so its displacement vector is AB
l

. Then the par-
ticle changes direction and moves from , with displacement vector BC

l
as in

Figure 2. The combined effect of these displacements is that the particle has moved
from . The resulting displacement vector AC

l
is called the sum of AB

l
and BC
l

and
we write

AC
l

AB
l

BC
l

In general, if we start with vectors and , we first move so that its tail coincides
with the tip of and define the sum of and as follows.vuu

vvu

��

A to C

B to C
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vu

vu �
v �B
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DEFINITION OF VECTOR ADDITION If and are vectors positioned so the
initial point of is at the terminal point of , then the sum is the vector
from the initial point of to the terminal point of .

The definition of vector addition is illustrated in Figure 3. You can see why this defi-
nition is sometimes called the Triangle Law.

In Figure 4 we start with the same vectors and as in Figure 3 and draw another 
copy of with the same initial point as . Completing the parallelogram, we see that

. This also gives another way to construct the sum: If we place and
so they start at the same point, then lies along the diagonal of the parallelo-

gram with and as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors shown in Figure 5.

SOLUTION First we translate and place its tail at the tip of , being careful to
draw a copy of that has the same length and direction. Then we draw the vector

[see Figure 6(a)] starting at the initial point of and ending at the terminal
point of the copy of .

Alternatively, we could place so it starts where starts and construct by
the Parallelogram Law as in Figure 6(b).

■

It is possible to multiply a vector by a real number . (In this context we call the
real number a scalar to distinguish it from a vector.) For instance, we want to be
the same vector as , which has the same direction as but is twice as long. In
general, we multiply a vector by a scalar as follows.

DEFINITION OF SCALAR MULTIPLICATION If is a scalar and is a vector,
then the scalar multiple is the vector whose length is times the length
of and whose direction is the same as if and is opposite to if

. If or , then .cv � 0v � 0c � 0c � 0
vc � 0vv

� c �cv
vc

vv � v
2vc

c
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This definition is illustrated in Figure 7. We see that real numbers work like scal-
ing factors here; that’s why we call them scalars. Notice that two nonzero vectors 
are parallel if they are scalar multiples of one another. In particular, the vector

has the same length as but points in the opposite direction. We call it
the negative of .

By the difference of two vectors we mean

So we can construct by first drawing the negative of , , and then adding it
to by the Parallelogram Law as in Figure 8(a). Alternatively, since
the vector , when added to , gives . So we could construct as in Fig-
ure 8(b) by means of the Triangle Law.

EXAMPLE 2 If are the vectors shown in Figure 9, draw .

SOLUTION We first draw the vector pointing in the direction opposite to and
twice as long. We place it with its tail at the tip of and then use the Triangle Law
to draw as in Figure 10.

■

COMPONENTS

For some purposes it’s best to introduce a coordinate system and treat vectors alge-
braically. If we place the initial point of a vector at the origin of a rectangular coor-
dinate system, then the terminal point of has coordinates of the form or

, depending on whether our coordinate system is two- or three-dimensional
(see Figure 11). These coordinates are called the components of and we write

or

We use the notation for the ordered pair that refers to a vector so as not to
confuse it with the ordered pair that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector
OP
l

whose terminal point is . What they have in common is that the
terminal point is reached from the initial point by a displacement of three units to the
right and two upward. We can think of all these geometric vectors as representations
of the algebraic vector . The particular representation OP

l
from the origin

to the point is called the position vector of the point .PP�3, 2�
a � �3, 2 �

P�3, 2�� �3, 2 �

�a1, a2�
�a1, a2 �

a � �a1, a2, a3 �a � �a1, a2 �

a
�a1, a2, a3�

�a1, a2�a
a
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In three dimensions, the vector OP
l

is the position vector of the
point . (See Figure 13.) Let’s consider any other representation AB

l
of

, where the initial point is and the terminal point is . Then we
must have , , and and so ,

, and . Thus we have the following result.

Given the points and , the vector with represen-
tation AB

l
is

EXAMPLE 3 Find the vector represented by the directed line segment with initial
point ) and terminal point .

SOLUTION By (1), the vector corresponding to AB
l

is

■

The magnitude or length of the vector is the length of any of its representations
and is denoted by the symbol or . By using the distance formula to compute
the length of a segment , we obtain the following formulas.

The length of the two-dimensional vector is

The length of the three-dimensional vector is

How do we add vectors algebraically? Figure 14 shows that if and
, then the sum is , at least for the case where

the components are positive. In other words, to add algebraic vectors we add their
components. Similarly, to subtract vectors we subtract components. From the similar
triangles in Figure 15 we see that the components of are and . So to multi-
ply a vector by a scalar we multiply each component by that scalar.

ca2ca1ca

a � b � �a1 � b1, a2 � b2 �b � �b1, b2 �
a � �a1, a2 �

� a � � sa 2
1 � a 2

2 � a 2
3

a � �a1, a2, a3 �

� a � � sa 2
1 � a 2

2

a � �a1, a2 �

OP
� v �� v �

v

a � ��2 � 2, 1 � ��3�, 1 � 4 � � ��4, 4, �3 �

B��2, 1, 1�A�2, �3, 4
V
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x

y

O

P(3, 2)

FIGURE 13
Representations of a=ka¡, a™, a£l

O

z

y
x

position
vector of P

P(a¡, a™, a£)

A(x, y, z)

B(x+a¡, y+a™, z+a£)

SECTION 10.2 VECTORS ■ 525

FIGURE 14

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™

FIGURE 15

ca™

ca¡

ca
a™

a¡

a



If and , then

Similarly, for three-dimensional vectors,

EXAMPLE 4 If and , find and the vectors
, , , and .

SOLUTION

■

We denote by the set of all two-dimensional vectors and by the set of all
three-dimensional vectors. More generally, we will later need to consider the set of
all -dimensional vectors. An -dimensional vector is an ordered -tuple:

where are real numbers that are called the components of . Addition
and scalar multiplication are defined in terms of components just as for the cases

and .

PROPERTIES OF VECTORS If , , and are vectors in and and are
scalars, then

1. 2.

3. 4.

5. 6.

7. 8.

These eight properties of vectors can be readily verified either geometrically or
algebraically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the 

1a � a�cd �a � c�da�

�c � d �a � ca � dac�a � b� � ca � cb

a � ��a� � 0a � 0 � a

a � �b � c� � �a � b� � ca � b � b � a

dcVncba

n � 3n � 2

aa1, a2, . . . , an

a � �a1, a2, . . . , an �

nnn
Vn

V3V2

� �8, 0, 6 � � ��10, 5, 25 � � ��2, 5, 31 �

 2a � 5b � 2 �4, 0, 3 � � 5 ��2, 1, 5 �

 3b � 3 ��2, 1, 5 � � �3��2�, 3�1�, 3�5�� � ��6, 3, 15 �

� �4 � ��2�, 0 � 1, 3 � 5 � � �6, �1, �2 �

a � b � �4, 0, 3 � � ��2, 1, 5 �

� �4 � 2, 0 � 1, 3 � 5 � � �2, 1, 8 �

a � b � �4, 0, 3 � � ��2, 1, 5 �

� a � � s42 � 02 � 32 � s25 � 5

2a � 5b3ba � ba � b
� a �b � ��2, 1, 5 �a � �4, 0, 3 �V

c �a1, a2, a3 � � �ca1, ca2, ca3 �

�a1, a2, a3 � � �b1, b2, b3 � � �a1 � b1, a2 � b2, a3 � b3 �

�a1, a2, a3 � � �b1, b2, b3 � � �a1 � b1, a2 � b2, a3 � b3 �

ca � �ca1, ca2 �

a � b � �a1 � b1, a2 � b2 �a � b � �a1 � b1, a2 � b2 �

b � �b1, b2 �a � �a1, a2 �
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■ Vectors in dimensions are used to
list various quantities in an organized
way. For instance, the components of a
six-dimensional vector

might represent the prices of six differ-
ent ingredients required to make a partic-
ular product. Four-dimensional vectors

are used in relativity theory,
where the first three components specify
a position in space and the fourth repre-
sents time.

� x, y, z, t�

p � � p1, p2, p3, p4, p5, p6�

n



Parallelogram Law) or as follows for the case :

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ

l
is obtained either by first con-

structing a � b and then adding c or by adding a to the vector b � c.
Three vectors in play a special role. Let

These vectors , , and are called the standard basis vectors. They have length and
point in the directions of the positive -, -, and -axes. Similarly, in two dimensions
we define and . (See Figure 17.)

If , then we can write

Thus any vector in can be expressed in terms of , , and . For instance,

Similarly, in two dimensions, we can write

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLE 5 If and , express the vector in
terms of , , and .

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

■� 2 i � 4 j � 6k � 12 i � 21k � 14 i � 4 j � 15k

 2a � 3b � 2�i � 2 j � 3k� � 3�4 i � 7k�

kji
2a � 3bb � 4 i � 7 ka � i � 2 j � 3k

a � �a1, a2 � � a1 i � a2 j3

�1, �2, 6 � � i � 2 j � 6k

kjiV3

a � a1 i � a2 j � a3 k2

� a1 �1, 0, 0 � � a2 �0, 1, 0 � � a3 �0, 0, 1 �

a � �a1, a2, a3 � � �a1, 0, 0 � � �0, a2, 0 � � �0, 0, a3 �

a � �a1, a2, a3 �

FIGURE 17
Standard basis vectors in V™ and V£ (a)

0

y

x

j

(1, 0)
i

(0, 1)

(b)

z

x
y

j

i

k

j � �0, 1 �i � �1, 0 �
zyx

1kji

k � �0, 0, 1 �j � �0, 1, 0 �i � �1, 0, 0 �

V3

� b � a

� �b1 � a1, b2 � a2 � � �b1, b2 � � �a1, a2 �

a � b � �a1, a2 � � �b1, b2 � � �a1 � b1, a2 � b2 �

n � 2
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FIGURE 16

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c

FIGURE 18

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x
y



A unit vector is a vector whose length is 1. For instance, , , and are all unit vec-
tors. In general, if , then the unit vector that has the same direction as is

In order to verify this we let . Then and is a positive scalar, so 
has the same direction as . Also

EXAMPLE 6 Find the unit vector in the direction of the vector .

SOLUTION The given vector has length

so, by Equation 4, the unit vector with the same direction is

■

APPLICATIONS

Vectors are useful in many aspects of physics and engineering. In Section 10.9 we will
see how they describe the velocity and acceleration of objects moving in space. Here
we look at forces.

A force is represented by a vector because it has both a magnitude (measured in
pounds or newtons) and a direction. If several forces are acting on an object, the resul-
tant force experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the
tensions (forces) and in both wires and their magnitudes.

SOLUTION We first express and in terms of their horizontal and vertical com-
ponents. From Figure 20 we see that

The resultant of the tensions counterbalances the weight and so we must
have

Thus

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

� T1 � sin 50� � � T1� cos 50�

cos 32�
 sin 32� � 100

� T2 �
� T1 � sin 50� � � T2 � sin 32� � 100

�� T1 � cos 50� � � T2 � cos 32� � 0

(�� T1 � cos 50� � � T2 � cos 32�) i � (� T1 � sin 50� � � T2 � sin 32�) j � 100 j

T1 � T2 � �w � 100 j

wT1 � T2

T2 � � T2 � cos 32� i � � T2 � sin 32� j6

T1 � �� T1 � cos 50� i � � T1 � sin 50� j5

T2T1

T2T1

1
3 �2 i � j � 2k� � 2

3 i �
1
3 j �

2
3 k

� 2 i � j � 2k � � s22 � ��1�2 � ��2�2 � s9 � 3

2 i � j � 2k

� u � � � ca � � � c � � a � �
1

� a � � a � � 1

a
ucu � cac � 1�� a �

u �
1

� a � a �
a

� a �4

aa � 0
kji
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FIGURE 20

50°

w

T¡
50° 32°

32°

T™

FIGURE 19

100

T¡

50° 32°

T™



So the magnitudes of the tensions are

and

Substituting these values in (5) and (6), we obtain the tension vectors

■T2 	 55.05 i � 34.40 jT1 	 �55.05 i � 65.60 j

� T2 � � � T1 � cos 50�

cos 32�
	 64.91 lb

� T1 � �
100

sin 50� � tan 32� cos 50�
	 85.64 lb
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5–8 ■ Find a vector with representation given by the directed
line segment AB

l
. Draw AB

l
and the equivalent representation

starting at the origin.

5. , 6. ,

, 8. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9–12 ■ Find the sum of the given vectors and illustrate 
geometrically.

9. , 10. ,

11. , 12. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

13–16 ■ Find a � b, 2a � 3b, , and .

13. ,

14. ,

15. ,

16. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Find a unit vector with the same direction as .

18. Find a vector that has the same direction as but
has length 6.

If lies in the first quadrant and makes an angle with
the positive -axis and , find in component form.

20. If a child pulls a sled through the snow with a force of 50 N
exerted at an angle of above the horizontal, find the hor-
izontal and vertical components of the force.

Two forces and with magnitudes 10 lb and 12 lb act 
on an object at a point as shown in the figure. Find the 
resultant force acting at as well as its magnitude and its PF

P
F2F121.

38�

v� v � � 4x
��3v19.

��2, 4, 2 �

8 i � j � 4k17.

b � 2 j � ka � 2 i � 4 j � 4 k

b � �2 i � j � 5ka � i � 2 j � 3k

b � i � 2 ja � 4 i � j

b � ��3, �6 �a � �5, �12 �
� a � b �� a �

�0, 4, 0 ���1, 0, 2 ��0, 0, �3 ��0, 1, 2 �

�5, 7 ���2, �1 ���2, 4 ��3, �1 �

B�4, 2, 1�A�4, 0, �2�B�2, 3, �1�A�0, 3, 1�7.

B�5, 3�A��2, �2�B��2, 1�A�2, 3�

aName all the equal vectors in the parallelogram shown.

2. Write each combination of vectors as a single vector.

(a) PQ
l

QR
l

(b) RP
l

PS
l

(c) QS
l

PS
l

(d) RS
l

SP
l

PQ
l

3. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)

4. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f )

a b

b � 3a2a � b
�

1
2 b2a

a � ba � b

wvu

w � v � uv � w
u � vu � v

Q

R
S

P

���

��

B

E

A

D C

1.

EXERCISES10.2



direction. (Indicate the direction by finding the angle 
shown in the figure.)

22. Velocities have both direction and magnitude and thus are 
vectors. The magnitude of a velocity vector is called speed.
Suppose that a wind is blowing from the direction N W
at a speed of 50 km�h. (This means that the direction 
from which the wind blows is west of the northerly
direction.) A pilot is steering a plane in the direction N E
at an airspeed (speed in still air) of 250 km�h. The true
course, or track, of the plane is the direction of the resul-
tant of the velocity vectors of the plane and the wind. The
ground speed of the plane is the magnitude of the resultant.
Find the true course and the ground speed of the plane.

23. A woman walks due west on the deck of a ship at 3 mi�h.
The ship is moving north at a speed of 22 mi�h. Find the
speed and direction of the woman relative to the surface of
the water.

24. Ropes 3 m and 5 m in length are fastened to a holiday deco-
ration that is suspended over a town square. The decoration
has a mass of 5 kg. The ropes, fastened at different heights,
make angles of and with the horizontal. Find the
tension in each wire and the magnitude of each tension.

25. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with 

3 m 5 m
52°

40°

40�52�

60�
45�

45�

P
45°

¨
30°

F™F¡

F

� a mass of 0.8 kg is hung at the middle of the line, the mid-
point is pulled down 8 cm. Find the tension in each half of
the clothesline.

26. The tension T at each end of the chain has magnitude 25 N.
What is the weight of the chain?

(a) Draw the vectors , , and

(b) Show, by means of a sketch, that there are scalars and
such that .

(c) Use the sketch to estimate the values of and .
(d) Find the exact values of and .

28. Suppose that and are nonzero vectors that are not paral-
lel and is any vector in the plane determined by and .
Give a geometric argument to show that can be written as

for suitable scalars and Then give an argu-
ment using components.

If and , describe the set of all
points such that .

30. If , , and , describe the 
set of all points such that ,
where .

31. Figure 16 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case .

32. Prove Property 5 of vectors algebraically for the case .
Then use similar triangles to give a geometric proof.

Use vectors to prove that the line joining the midpoints of
two sides of a triangle is parallel to the third side and half
its length.

33.

n � 3

n � 2

k � � r1 � r2 �
� r � r1 � � � r � r2 � � k�x, y�

r2 � �x2, y2 �r1 � �x1, y1 �r � �x, y �

� r � r0 � � 1�x, y, z�
r0 � �x0, y0, z0 �r � �x, y, z �29.

t.sc � sa � tb
c

bac
ba

ts
ts

c � sa � tbt
s

c � �7, 1 � .
b � �2, �1 �a � �3, 2 �27.

37° 37°
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THE DOT PRODUCT

So far we have added two vectors and multiplied a vector by a scalar. The question
arises: Is it possible to multiply two vectors so that their product is a useful quantity?
One such product is the dot product, whose definition follows. Another is the cross
product, which is discussed in the next section.

10.3



DEFINITION If and , then the dot prod-
uct of and is the number given by

Thus to find the dot product of and we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the
dot product is sometimes called the scalar product (or inner product). Although
Definition 1 is given for three-dimensional vectors, the dot product of two-dimen-
sional vectors is defined in a similar fashion:

EXAMPLE 1

■

The dot product obeys many of the laws that hold for ordinary products of real
numbers. These are stated in the following theorem.

PROPERTIES OF THE DOT PRODUCT If , , and are vectors in and 
is a scalar, then

1. 2.

3. 4.

5.

These properties are easily proved using Definition 1. For instance, here are the
proofs of Properties 1 and 3:

1.

3.

The proofs of the remaining properties are left as exercises. ■

The dot product can be given a geometric interpretation in terms of the angle
between and , which is defined to be the angle between the representations of 

and that start at the origin, where . In other words, is the angle between
the line segments OA

l
and OB
l

in Figure 1. Note that if and are parallel vectors, then
or .

The formula in the following theorem is used by physicists as the definition of the
dot product.

� � �� � 0
ba

�0 
 � 
 �b
aba�

a � b

� a � b � a � c

� �a1b1 � a2b2 � a3b3� � �a1c1 � a2c2 � a3c3 �

� a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

� a1�b1 � c1� � a2�b2 � c2� � a3�b3 � c3�

a � �b � c� � �a1, a2, a3 � � �b1 � c1, b2 � c2, b3 � c3 �

a � a � a 2
1 � a 2

2 � a 2
3 � � a �2

0 � a � 0

�ca� � b � c�a � b� � a � �cb�a � �b � c� � a � b � a � c

a � b � b � aa � a � � a �2

cV3cba2

�i � 2 j � 3k� � �2 j � k� � 1�0� � 2�2� � ��3���1� � 7

��1, 7, 4 � � �6, 2, � 1
2 � � ��1��6� � 7�2� � 4(� 1

2 ) � 6

�2, 4 � � �3, �1 � � 2�3� � 4��1� � 2

V

�a1, a2 � � �b1, b2 � � a1b1 � a2b2

ba

a � b � a1b1 � a2b2 � a3b3

a � bba
b � �b1, b2, b3 �a � �a1, a2, a3 �1
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z

x y

a
¨

b
a-b
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THEOREM If is the angle between the vectors and , then

PROOF If we apply the Law of Cosines to triangle in Figure 1, we get

(Observe that the Law of Cosines still applies in the limiting cases when or 
, or or .) But , , and , so

Equation 4 becomes

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this
equation as follows:

Therefore, Equation 5 gives

Thus

or ■

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between
them is , find .

SOLUTION Using Theorem 3, we have

■

The formula in Theorem 3 also enables us to find the angle between two vectors.

COROLLARY If is the angle between the nonzero vectors and , then

EXAMPLE 3 Find the angle between the vectors and
.

SOLUTION Since

and

and since

we have, from Corollary 6,

cos � �
a � b

� a � � b � �
2

3s38

a � b � 2�5� � 2��3� � ��1��2� � 2

� b � � s52 � ��3�2 � 22 � s38� a � � s22 � 22 � ��1�2 � 3

b � �5, �3, 2 �
a � �2, 2, �1 �V

cos � �
a � b

� a � � b �

ba�6

a � b � � a � � b � cos���3� � 4 � 6 � 1
2 � 12

a � b��3

a � b � � a � � b � cos �

�2a � b � �2 � a � � b � cos �

� a �2 � 2a � b � � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �

� � a �2 � 2a � b � � b �2

� a � a � a � b � b � a � b � b� a � b �2 � �a � b� � �a � b�

� a � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �5

� AB � � � a � b �� OB � � � b �� OA � � � a �b � 0a � 0�
� � 0

� AB �2 � � OA �2 � � OB �2 � 2 � OA � � OB � cos �4

OAB

a � b � � a � � b � cos �

ba�3
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So the angle between and is

■

Two nonzero vectors and are called perpendicular or orthogonal if the angle
between them is . Then Theorem 3 gives

and conversely if , then , so . The zero vector is con-
sidered to be perpendicular to all vectors. Therefore, we have the following method
for determining whether two vectors are orthogonal.

Two vectors 

EXAMPLE 4 Show that is perpendicular to .

SOLUTION Since

these vectors are perpendicular by (7). ■

Because if and if , we see that
is positive for and negative for . We can think of as

measuring the extent to which a and b point in the same direction. The dot product
is positive if a and b point in the same general direction, 0 if they are perpendi-

cular, and negative if they point in generally opposite directions (see Figure 2). In the
extreme case where a and b point in exactly the same direction, we have , so

and

If a and b point in exactly opposite directions, then and so and
.

PROJECTIONS

Figure 3 shows representations PQ
l

and PR
l

of two vectors and with the same ini-
tial point . If is the foot of the perpendicular from to the line containing PQ

l
, then 

the vector with representation PS
l

is called the vector projection of onto and is 

FIGURE 3
Vector projections

Q

R

P
S

b
a

R

S
P

Q
a

proja b

b

proja b

ab

RSP
ba

a � b � �� a � � b �
cos � � �1� � �

a � b � � a � � b �
cos � � 1

� � 0

a � b

a � b� � ��2� � ��2a � b
��2 � � 
 �cos � � 00 
 � � ��2cos � � 0

�2 i � 2 j � k� � �5 i � 4 j � 2k� � 2�5� � 2��4� � ��1��2� � 0

5 i � 4 j � 2k2 i � 2 j � k

a and b are orthogonal if and only if a � b � 0.7

0� � ��2cos � � 0a � b � 0

a � b � � a � � b � cos���2� � 0

� � ��2
ba

�or 84��� � cos�1� 2

3s38 � 	 1.46

ba
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FIGURE 2

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨

Visual 10.3A shows an anima-
tion of Figure 2.

Visual 10.3B shows how 
Figure 3 changes when we 
vary and .ba



denoted by . (You can think of it as a shadow of ). The scalar projection of
onto (also called the component of along ) is defined to be numerically the

length of the vector projection, which is the number , where is the angle
between and . (See Figure 4.) This is denoted by . Observe that it is nega-
tive if .

The equation

shows that the dot product of and can be interpreted as the length of times the
scalar projection of onto . Since 

the component of along can be computed by taking the dot product of with the
unit vector in the direction of . To summarize: 

Scalar projection of onto :

Vector projection of onto :

Notice that the vector projection is the scalar projection times the unit vector in the
direction of a.

EXAMPLE 5 Find the scalar projection and vector projection of 
onto .

SOLUTION Since , the scalar projection of onto
is

The vector projection is this scalar projection times the unit vector in the direction
of :

■

One use of projections occurs in physics in calculating work. In Section 7.5 we
defined the work done by a constant force in moving an object through a distance
as , but this applies only when the force is directed along the line of motion
of the object. Suppose, however, that the constant force is a vector PR

l
pointing

in some other direction as in Figure 5. If the force moves the object from to , then
the displacement vector is PQ

l
. The work done by this force is defined to be the

product of the component of the force along and the distance moved:

W � (� F � cos �) � D �

D
D �

QP
F �

W � Fd
dF

proja b �
3

s14

a

� a � �
3

14
a � ��

3

7
,

9

14
,

3

14�
a

compa b �
a � b

� a � �
��2��1� � 3�1� � 1�2�

s14
�

3

s14

a
b� a � � s��2�2 � 32 � 12 � s14

a � ��2, 3, 1 �
b � �1, 1, 2 �V

proja b � �a � b

� a � � a

� a � �
a � b

� a �2 aab

compa b �
a � b

� a �ab

a
bab

� b � cos � �
a � b

� a � �
a

� a � � b

ab
aba

a � b � � a � � b � cos � � � a �(� b � cos �)

��2 � � 
 �
compa bba

�� b � cos �
abab

bproja b
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But then, from Theorem 3, we have

Thus the work done by a constant force is the dot product , where is the dis-
placement vector.

EXAMPLE 6 A crate is hauled 8 m up a ramp under a constant force of 200 N
applied at an angle of to the ramp. Find the work done.

SOLUTION If are the force and displacement vectors, as pictured in 
Figure 6, then the work done is

■

EXAMPLE 7 A force is given by a vector and moves a particle
from the point to the point . Find the work done.

SOLUTION The displacement vector is PQ
l

, so by Equation 8, the
work done is

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 J. ■

� 6 � 20 � 10 � 36

W � F � D � �3, 4, 5 � � �2, 5, 2 �

� �2, 5, 2 �D �

Q�4, 6, 2�P�2, 1, 0�
F � 3 i � 4 j � 5k

� �200��8� cos 25� 	 1450 N	m � 1450 J

W � F � D � � F � � D � cos 25�

F and D

25�

DF � DF

W � � F � � D � cos � � F � D8
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9–10 ■ If u is a unit vector, find and .

10.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

11. (a) Show that .
(b) Show that .

12. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, 
$1.50 for a hot dog, and $1 for a soft drink. If 
and , what is the meaning of the dot prod-
uct ?A � P

P � �2, 1.5, 1 �
A � �a, b, c �

cba

i � i � j � j � k � k � 1
i � j � j � k � k � i � 0

w

u

v

w

u v

9.

u � wu � v1. Which of the following expressions are meaningful? Which
are meaningless? Explain.
(a) (b)
(c) (d)
(e) (f )

2. Find the dot product of two vectors if their lengths are 6 
and and the angle between them is .

3–8 ■ Find .

3. , , the angle between and is 

4. ,

5. ,

6. ,

7. ,

8. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

b � 2 i � 4 j � 6ka � 4 j � 3k

b � 5 i � 9ka � i � 2 j � 3k

b � � t, �t, 5t�a � �s, 2s, 3s �

b � �6, �3, �8 �a � �4, 1, 1
4 �

b � �0.7, 1.2 �a � ��2, 3�

2��3ba� b � � 5� a � � 6

a � b

��41
3

� a � � �b � c�a � b � c
a � �b � c�� a � �b � c�
�a � b�c�a � b� � c
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from the point to the point . Find the work
done if the distance is measured in meters and the magnitude
of the force is measured in newtons.

32. Find the work done by a force of 20 lb acting in the direc-
tion N W in moving an object 4 ft due west.

33. A woman exerts a horizontal force of 25 lb on a crate as she
pushes it up a ramp that is 10 ft long and inclined at an
angle of above the horizontal. Find the work done on
the box.

34. A wagon is pulled a distance of 100 m along a horizontal
path by a constant force of 50 N. The handle of the wagon
is held at an angle of above the horizontal. How much
work is done?

Use a scalar projection to show that the distance from a
point to the line is

Use this formula to find the distance from the point 
to the line .

36. If , and ,
show that the vector equation repre-
sents a sphere, and find its center and radius.

Find the angle between a diagonal of a cube and one of its
edges.

38. Find the angle between a diagonal of a cube and a diagonal
of one of its faces.

39. A molecule of methane, , is structured with the four
hydrogen atoms at the vertices of a regular tetrahedron 
and the carbon atom at the centroid. The bond angle is the
angle formed by the H— C—H combination; it is the angle
between the lines that join the carbon atom to two of the
hydrogen atoms. Show that the bond angle is about .
Hint: Take the vertices of the tetrahedron to be the points

, , , and as shown in the 
figure. Then the centroid is .

40. If , where , , and are all nonzero 
vectors, show that bisects the angle between and .

41. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

bac
cbac � � a � b � � b � a

H

H
H

H

C

x

y

z

]( 1
2 , 1

2 , 1
2 )

�1, 1, 1��0, 0, 1��0, 1, 0��1, 0, 0�
[

109.5�

CH4

37.

�r � a� � �r � b� � 0
b � �b1, b2, b3 �r � �x, y, z � , a � �a1, a2, a3 �

3x � 4y � 5 � 0
��2, 3�

� ax1 � by1 � c �
sa 2 � b 2

ax � by � c � 0P1�x1, y1�
35.

30�

20�

50�

�4, 9, 15��2, 3, 0�13–15 ■ Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

13. ,

14. ,

,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

16. Find, correct to the nearest degree, the three angles of the
triangle with vertices , , and

.

17–18 ■ Determine whether the given vectors are orthogonal, 
parallel, or neither.

17. (a) ,
(b) ,
(c) ,
(d) ,

18. (a) ,
(b) ,
(c) ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

19. Use vectors to decide whether the triangle with vertices
, , and is right-

angled.

20. For what values of are the vectors and
orthogonal?

Find a unit vector that is orthogonal to both and .

22. Find two unit vectors that make an angle of with
.

23–26 ■ Find the scalar and vector projections of onto .

23. ,

24. ,

25. ,

26. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Show that the vector is orthogonal
to . (It is called an orthogonal projection of .)

28. For the vectors in Exercise 24, find and illustrate by
drawing the vectors , , , and .

If , find a vector such that .

30. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

31. A constant force with vector representation
moves an object along a straight lineF � 10 i � 18 j � 6k

proja b � projb a
comp a b � comp b a

ba

comp a b � 2ba � �3, 0, �1 �29.

orth a bproja bba
orth a b

ba
orth a b � b � proja b27.

b � i � j � ka � i � j � k

b � �1, 2, 3 �a � �3, 6, �2 �

b � ��4, 1 �a � �1, 2 �

b � �5, 0 �a � �3, �4 �

ab

v � �3, 4 �
60�

i � ki � j21.

�b, b2, b �
��6, b, 2 �b

R�6, �2, �5�Q�2, 0, �4�P�1, �3, �2�

v � ��b, a, 0 �u � �a, b, c �
v � 2 i � j � ku � i � j � 2k
v � �4, �12, �8 �u � ��3, 9, 6 �

b � �3 i � 9 j � 6ka � 2 i � 6 j � 4k
b � 3 i � 4 j � ka � �i � 2 j � 5k

b � ��3, 2 �a � �4, 6 �
b � �6, �8, 2 �a � ��5, 3, 7 �

F�1, 2, �1�
E��2, 4, 3�D�0, 1, 1�

b � i � 2 j � 3ka � j � k15.

b � �2, �1, 0 �a � �4, 0, 2 �

b � �s7 , 3 �a � ��8, 6 �
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