
PARAMETRIC CURVES

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form because C fails the Vertical Line Test.
But the x- and y-coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
parameter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter t does not nec-
essarily represent time and, in fact, we could use a letter other than t for the parame-
ter. But in many applications of parametric curves, t does denote time and therefore
we can interpret as the position of a particle at time t.

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter 
and we join them to produce a curve.
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9.1

PARAMETRIC EQUATIONS
AND POLAR COORDINATES

So far we have described plane curves by giving as a function of or as a function
of or by giving a relation between and that defines implicitly as a function of 

. In this chapter we discuss two new methods for describing curves.
Some curves, such as the cycloid, are best handled when both and are given in terms of a

third variable called a parameter . Other curves, such as the cardioid, have
their most convenient description when we use a new coordinate system, called the polar coordi-
nate system.
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A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parabola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that t
could be any real number. But sometimes we restrict t to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point 
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in
Figure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as 
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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Examples 2 and 3 show that different sets of parametric equations can represent the
same curve. Thus we distinguish between a curve, which is a set of points, and a para-
metric curve, in which the points are traced in a particular way.

EXAMPLE 4 Find parametric equations for the circle with center and radius .

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the
expressions for and by , we get , . You can verify that
these equations represent a circle with radius and center the origin traced counter-
clockwise. We now shift units in the -direction and units in the -direction and
obtain parametric equations of the circle (Figure 6) with center and radius :

■

EXAMPLE 5 Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the
parabola . But note also that, since , we have ,
so the parametric equations represent only the part of the parabola for which

. Since is periodic, the point moves back and
forth infinitely often along the parabola from to . (See Figure 7.) ■

GRAPHING DEVICES

Most graphing calculators and computer graphing programs can be used to graph
curves defined by parametric equations. In fact, it’s instructive to watch a parametric
curve being drawn by a graphing calculator because the points are plotted in order as
the corresponding parameter values increase.

EXAMPLE 6 Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 8. It would
be possible to solve the given equation for y as four functions of x
and graph them individually, but the parametric equations provide a much easier
method. ■

In general, if we need to graph an equation of the form , we can use the
parametric equations

Notice also that curves with equations (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations
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Graphing devices are particularly useful for sketching complicated curves. For
instance, the curves shown in Figures 9, 10, and 11 would be virtually impossible to
produce by hand.

THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle 
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore, the center of the circle is . Let the coordinates of be .
Then from Figure 13 we see that

Therefore, parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).�
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Although it is possible to eliminate the parameter from Equations 1, the result-
ing Cartesian equation in and is very complicated and not as convenient to work
with as the parametric equations. ■

One of the first people to study the cycloid was Galileo, who proposed that bridges
be built in the shape of cycloids and who tried to find the area under one arch of a
cycloid. Later this curve arose in connection with the brachistochrone problem: Find
the curve along which a particle will slide in the shortest time (under the influence of
gravity) from a point to a lower point not directly beneath . The Swiss math-
ematician John Bernoulli, who posed this problem in 1696, showed that among all
possible curves that join to , as in Figure 14, the particle will take the least time
sliding from to if the curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the sol-
ution to the tautochrone problem; that is, no matter where a particle is placed 
on an inverted cycloid, it takes the same time to slide to the bottom (see Figure 15).
Huygens proposed that pendulum clocks (which he invented) should swing in cycloi-
dal arcs because then the pendulum takes the same time to make a complete oscilla-
tion whether it swings through a wide or a small arc.
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15–18 ■ Describe the motion of a particle with position 
as varies in the given interval.
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19–21 ■ Use the graphs of and to sketch the
parametric curve , . Indicate with arrows the
direction in which the curve is traced as increases.
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���2 � � � ��2y � tan �x � sec �1–4 ■ Sketch the curve by using the parametric equations to
plot points. Indicate with an arrow the direction in which the
curve is traced as increases.
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5–8 ■

(a) Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the
curve is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of 
the curve.

5. , 6. ,

, 8. ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9–14 ■

(a) Eliminate the parameter to find a Cartesian equation of the
curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.
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(b) Use these parametric equations to graph the ellipse
when and b � 1, 2, 4, and 8.

(c) How does the shape of the ellipse change as b varies?

; 29–30 ■ Use a graphing calculator or computer to reproduce
the picture.

29. 30.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

31–32 ■ Compare the curves represented by the parametric
equations. How do they differ?

31. (a) ,
(b) ,
(c) ,

32. (a) ,
(b) ,
(c) ,

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

33. Derive Equations 1 for the case .

34. Let be a point at a distance from the center of a circle
of radius . The curve traced out by as the circle rolls
along a straight line is called a trochoid. (Think of the
motion of a point on a spoke of a bicycle wheel.) The
cycloid is the special case of a trochoid with . Using
the same parameter as for the cycloid and assuming the
line is the -axis and when is at one of its lowest
points, show that parametric equations of the trochoid are

Sketch the trochoid for the cases and .

If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point

in the figure, using the angle as the parameter. Then
eliminate the parameter and identify the curve.
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22. Match the parametric equations with the graphs labeled
I–VI. Give reasons for your choices. (Do not use a graphing
device.)
(a) ,
(b) ,

(c) ,
(d) ,
(e) ,
(f ) ,

; 23. Graph the curve .

; 24. Graph the curves and and find their
points of intersection correct to one decimal place.

(a) Show that the parametric equations

where , describe the line segment that joins
the points and .

(b) Find parametric equations to represent the line segment
from to .

; 26. Use a graphing device and the result of Exercise 25(a) to
draw the triangle with vertices , , and .

Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
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tance is assumed to be negligible, then its position after 
seconds is given by the parametric equations

where is the acceleration due to gravity ( m�s ).
(a) If a gun is fired with and m�s, when 

will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached
by the bullet?

; (b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other 
values of the angle to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; Investigate the family of curves defined by the parametric
equations , . How does the shape change
as increases? Illustrate by graphing several members of the
family.

; 40. The swallowtail catastrophe curves are defined by the
parametric equations , .
Graph several of these curves. What features do the curves
have in common? How do they change when increases?

; The curves with equations , are
called Lissajous figures. Investigate how these curves vary
when , , and vary. (Take to be a positive integer.)

; 42. Investigate the family of curves defined by the parametric
equations

How does the shape change as c changes? In particular, you
should identify the transitional values of c for which the
basic shape of the curve changes.
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36. A curve, called a witch of Maria Agnesi, consists of all

possible positions of the point in the figure. Show that
parametric equations for this curve can be written as 

Sketch the curve.

; 37. Suppose that the position of one particle at time is given
by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points?
In other words, are the particles ever at the same place
at the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

38. If a projectile is fired with an initial velocity of meters
per second at an angle above the horizontal and air resis-�
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CALCULUS WITH PARAMETRIC CURVES

Having seen how to represent curves by parametric equations, we now apply the meth-
ods of calculus to these parametric curves. In particular, we solve problems involving
tangents, areas, and arc length.

TANGENTS

Suppose and are differentiable functions and we want to find the tangent line at a
point on the parametric curve , where is also a differentiable func-
tion of . Then the Chain Rule gives
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