Triple Integrals in Spherical Coordinates

Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is the spherical coordinate system.

It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

Spherical Coordinates

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in space are shown in Figure 1, where $\rho=|O P|$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and ϕ is the angle between the positive z-axis and the line segment $O P$.

The spherical coordinates of a point

Spherical Coordinates

Note that

$$
\rho \geq 0 \quad 0 \leq \phi \leq \pi
$$

The spherical coordinate system is especially useful in problems where there is symmetry about a point, and the origin is placed at this point.

Spherical Coordinates

For example, the sphere with center the origin and radius c has the simple equation $\rho=c$ (see Figure 2); this is the reason for the name "spherical" coordinates.

$\rho=c$, a sphere
Figure 2

Spherical Coordinates

The graph of the equation $\theta=c$ is a vertical half-plane (see Figure 3), and the equation $\phi=c$ represents a half-cone with the z-axis as its axis (see Figure 4).

$\theta=c$, a half-plane

$$
0<c<\pi / 2
$$

$\phi=c$, a half-cone
Figure 4

Spherical Coordinates

The relationship between rectangular and spherical coordinates can be seen from Figure 5.

From triangles $O P Q$ and $O P P^{\prime}$ we have

$$
z=\rho \cos \phi \quad r=\rho \sin \phi
$$

Figure 5

Spherical Coordinates

But $x=r \cos \theta$ and $y=r \sin \theta$, so to convert from spherical to rectangular coordinates, we use the equations

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi
$$

Also, the distance formula shows that

2

$$
\rho^{2}=x^{2}+y^{2}+z^{2}
$$

We use this equation in converting from rectangular to spherical coordinates.

Example 1

The point $(2, \pi / 4, \pi / 3)$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.

Solution:

We plot the point in Figure 6.

Figure 6

Example 1 - Solution

From Equations 1 we have

$$
\begin{aligned}
& =2 \sin \frac{\pi}{3} \cos \frac{\pi}{4}=2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)=\sqrt{\frac{3}{2}} \\
& y=\rho \sin \phi \sin \theta=2 \sin \frac{\pi}{3} \sin \frac{\pi}{4}=2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)=\sqrt{\frac{3}{2}} \\
& z=\rho \cos \phi=2 \cos \frac{\pi}{3}=2\left(\frac{1}{2}\right)=1
\end{aligned}
$$

Thus the point $(2, \pi / 4, \pi / 3)$ is $(\sqrt{3 / 2}, \sqrt{3 / 2}, 1)$ in rectangular coordinates.

Evaluating Triple Integrals with Spherical Coordinates

Evaluating Triple Integrals with Spherical Coordinates

In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge

$$
E=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}
$$

where $a \geq 0$ and $\beta-\alpha \leq 2 \pi$, and $d-c \leq \pi$. Although we defined triple integrals by dividing solids into small boxes, it can be shown that dividing a solid into small spherical wedges always gives the same result.

So we divide E into smaller spherical wedges $E_{i j k}$ by means of equally spaced spheres $\rho=\rho_{i}$, half-planes $\theta=\theta_{j}$, and half-cones $\phi=\phi_{k}$.

Evaluating Triple Integrals with Spherical Coordinates

Figure 7 shows that $E_{i j k}$ is approximately a rectangular box with dimensions $\Delta \rho, \rho_{i} \Delta \phi$ (arc of a circle with radius ρ_{i}, angle $\left.\Delta \phi\right)$, and $\rho_{i} \sin \phi_{k} \Delta \theta(\operatorname{arc}$ of a circle with radius $\rho_{i} \sin \phi_{k}$, angle $\Delta \theta$).

Figure 7

Evaluating Triple Integrals with Spherical Coordinates

So an approximation to the volume of $E_{i j k}$ is given by

$$
\Delta V_{i j k} \approx(\Delta \rho)\left(\rho_{i} \Delta \phi\right)\left(\rho_{i} \sin \phi_{k} \Delta \theta\right)=\rho_{i}^{2} \sin \phi_{k} \Delta \rho \Delta \theta \Delta \phi
$$

In fact, it can be shown, with the aid of the Mean Value Theorem, that the volume of $E_{i j k}$ is given exactly by

$$
\Delta V_{i j k}=\tilde{\rho}_{i}^{2} \sin \widetilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi
$$

where $\left(\tilde{\rho}_{i}, \tilde{\theta}_{j}, \widetilde{\phi}_{k}\right)$ is some point in $E_{i j k}$.

Evaluating Triple Integrals with Spherical Coordinates

Let $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right)$ be the rectangular coordinates of this point. Then

$$
\begin{aligned}
& \iiint_{F} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k} \\
& =\lim _{l, n, n \rightarrow \infty} \sum_{i=1}^{k} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\tilde{\rho}_{i} \sin \tilde{\phi}_{k} \cos \tilde{j}_{j}, \tilde{\rho}_{i} \sin \tilde{\phi}_{k} \sin \tilde{\theta}_{j}, \tilde{\rho}_{i} \cos \tilde{\phi}_{k}\right) \tilde{\rho}_{i}^{2} \sin \tilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi
\end{aligned}
$$

Evaluating Triple Integrals with Spherical Coordinates

But this sum is a Riemann sum for the function
$F(\rho, \theta, \phi)=f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi$

Consequently, we have arrived at the following formula for triple integration in spherical coordinates.

$$
\begin{aligned}
& 3 \iiint_{E} f(x, y, z) d V \\
& \quad=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

where E is a spherical wedge given by

$$
E=\{(\rho, \theta, \phi) \mid a \leqslant \rho \leqslant b, \alpha \leqslant \theta \leqslant \beta, c \leqslant \phi \leqslant d\}
$$

Evaluating Triple Integrals with Spherical Coordinates

Formula 3 says that we convert a triple integral from rectangular coordinates to spherical coordinates by writing

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi
$$

using the appropriate limits of integration, and replacing $d v$ by $\rho^{2} \sin \phi d \rho d \theta d \phi$.

Evaluating Triple Integrals with Spherical Coordinates

This is illustrated in Figure 8.

Volume element in spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \theta d \phi$

Figure 8

Evaluating Triple Integrals with Spherical Coordinates

This formula can be extended to include more general spherical regions such as

$$
\mathrm{E}=\left\{(\rho, \theta, \phi) \mid \alpha \leq \theta \leq \beta, c \leq \phi \leq d, g_{1}(\theta, \phi) \leq \rho \leq g_{2}(\theta, \phi)\right\}
$$

In this case the formula is the same as in (3) except that the limits of integration for ρ are $g_{1}(\theta, \phi)$ and $g_{2}(\theta, \phi)$.

Usually, spherical coordinates are used in triple integrals when surfaces such as cones and spheres form the boundary of the region of integration.

Example 4

Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$. (See Figure 9.)

Figure 9

Example 4 - Solution

Notice that the sphere passes through the origin and has center ($0,0, \frac{1}{2}$). We write the equation of the sphere in spherical coordinates as

$$
\rho^{2}=\rho \cos \phi \quad \text { or } \quad \rho=\cos \phi
$$

The equation of the cone can be written as

$$
\begin{aligned}
\rho \cos \phi & =\sqrt{\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta} \\
& =\rho \sin \phi
\end{aligned}
$$

Example 4 - Solution

This gives $\sin \phi=\cos \phi$, or $\phi=\pi / 4$. Therefore the description of the solid E in spherical coordinates is

$$
\mathrm{E}=\{(\rho, \theta, \phi) \mid 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 4,0 \leq \rho \leq \cos \phi\}
$$

Example 4 - Solution

Figure 11 shows how E is swept out if we integrate first with respect to ρ, then ϕ, and then θ.

ρ varies from 0 to $\cos \phi$ while ϕ and θ are constant.

ϕ varies from 0 to $\pi / 4$ while θ is constant.

θ varies from 0 to 2π.

Figure 11

Example 4 - Solution

The volume of E is

$$
\begin{aligned}
V(E) & =\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 4} \sin \phi\left[\frac{\rho^{3}}{3}\right]_{\rho=0}^{\rho=\cos \phi} d \phi \\
& =\frac{2 \pi}{3} \int_{0}^{\pi / 4} \sin \phi \cos ^{3} \phi d \phi=\frac{2 \pi}{3}\left[-\frac{\cos ^{4} \phi}{4}\right]_{0}^{\pi / 4}=\frac{\pi}{8}
\end{aligned}
$$

