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1.1 Notation

• R: real number

• C: complex number

• F: field

■ Complex numbers and complex function

For a complex number z ∈ C, z = a + bi for some a, b ∈ R and

|z|2 = zz̄ = (a + bi)(a − bi) = a2 + b2.

Suppose that f : D ⊆ Rn → C is a complex valued function. Then

f (x) = f1(x) + i f2(x)

for some real-valued functions f1, f2 : D ⊆ Rn → R.∫
D

f (x) dx =
∫

D
f1(x) dx + i

∫
D

f2(x) dx∫
D

∣∣ f (x)
∣∣p dx =

∫
D

∣∣ f (x) f̄ (x)
∣∣p/2 dx, 1 ≤ p < ∞.

Note. ∣∣∣∫
D

f (x) dx
∣∣∣ ≤ ∫

D

∣∣ f (x)
∣∣ dx (Check!).

1
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1.2 Vector Spaces
Definition 1.2.1. A vector space (linear space) V over the scalar field F (R or C) is a set of
points (or vectors) on which are defined operations of “vectors addition” + : V × V → V and
“scalar multiplication” · : F × V → V such that

(i) v + w = w + v ∀ v,w ∈ V

(ii) (v + w) + u = v + (w + u) ∀ u, v,w ∈ V

(iii) ∃0 ∈ V such that v + 0 = v ∀v ∈ V

(iv) ∀v ∈ V ∃w ∈ V such that v + w = 0

(v) λ · (v + w) = λ · v + λ · w ∀λ ∈ F and v,w ∈ V

(vi) (λ + µ) · v = λ · v + µ · v ∀λ, µ ∈ F and v ∈ V

(vii) (λ • µ) · v = λ · (µ · v) ∀λ, µ ∈ F and v ∈ V (Note: “•” is the scalar multipication of the
field F.)

(viii) 1 · v = v ∀v ∈ V (Note: “1” is the multiplication identity of the field F.)

Example 1.2.2. Let S , ∅ and denote F (S ) = { f : S → F} the collection of all functions from
S to F. Then F (S ) is a vector space over F
Example 1.2.3. Let B be a nonempty subset in a vector space V .

S pan(B) =
{

v ∈ V
∣∣ v can be expressed as a finite linear combination of elements in B

}
.

That is, for every v ∈ S pan(B), ∃λ1, . . . , λn ∈ F and v1, . . . , vn ∈ B such that v = λ1v1+ · · ·+λnvn.
Exercise. Prove that S pan(B) is a vector space.
Example 1.2.4. Let S =

{
p1, . . . , pn

}
and f ∈ F (S ). Define φ : F (S )→ Fn by

φ( f ) =
(

f (p1), . . . , f (pn)
)
.

Check that φ is an linear isomorphism. That is, φ is linear and bijective.
We will discuss more general cases of vector spaces of functions in Chapter 3.

o Basis
Definition 1.2.5.

(a) Let V be a vector space and B be a subset of V . We call B a Hamel basis for V if B is
linearly independent in V and V = S pan(B)

(b) dimV = the number of the elements of B.

Theorem 1.2.6. Every nonempty vector space has a Hamel basis.

Proof. (Skip) by Zorn’s Lemma. □

Example 1.2.7. Define C
(
[0, 1]

)
=
{

f : [0, 1] → R
∣∣ f is continuous on [0, 1]

}
. Prove that the

basis of C
(
[0, 1]

)
is uncountable.
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In this chapter, we will review some abstract concept of metric spaces.

2.1 Point-Set Topology of Metric Spaces
Definition 2.1.1. A “metric space” (M, d) is a set M associated with a function d : M ×M → R
such that

(1) d(x, y) ≥ 0 ∀x, y ∈ M;

(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) = d(y, x) ∀x, y ∈ M;

(4) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ M (Triangle Inequality)

Example 2.1.2. Let M = Rn and x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn.

(i) For 1 ≤ p < ∞, define dp : Rn × Rn → R by

dp(x, y) =
Ä n∑

k=1

|xk − yk|p
ä 1

p
.

Then (Rn, dp) is a metric space.

3
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(ii) Define d∞ : Rn × Rn → R by

d∞(x, y) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}.

Then (Rn, d∞) is a metric space.

Note. For the cases p = 1, 2,∞, the triangle inequality is easy to check. We will prove other
cases until Chapter 3.

Definition 2.1.3. Let (M, d) be a metric space.

(1) For x ∈ M and r > 0, the set B(x, r) = {y ∈ M
∣∣ d(x, y) < r} is called r-ball centered at x.

(2) A set U ⊆ M is said “open” (in M) if for every point x ∈ U there exists r > 0 such that
B(x, r) ⊆ U.

Note. (i) Every r-ball is open. (ii) ∅ and M are open.

(3) Let A ⊆ M be a subset. A point x ∈ A is called an “interior point of A” if there exists r > 0
such that B(x, r) ⊆ A. The “interior of A” is the collection of all interior points of A, and is
denoted by Å.
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Note. Å is the largest open set contained in A. That is, Å =
⋃

G:open
G⊆A

G.

(4) A set A ⊆ M is said to be “closed” if Ac is open. (Note: ∅ and M are closed.)

(5) Let A ⊆ M. A point x ∈ M is called an “accumulation point of A” if for every r > 0, then

B(x, r) ∩
(
A\{x}

)
, ∅.

The collection of all accumulation points of A is denoted by A′ and is called the “derived
set of A”.

Note. In some books, an accumulation point is also called a “cluster point of A”.

(6) Let A ⊆ M. A point x ∈ A is called an“isolated point of A” if there is r > 0 such that
B(x, r) ∩ A = {x}.
Note. If x ∈ A and x is not an accumulation point of A, then x is an isolated point of A.

(7) A point x ∈ M is called a “limit point of A” if for every r > 0, the open ball B(x, r) contains
a point in A. That is,

B(x, r) ∩ A , ∅.

(8) Let A ⊆ M. The “closure of A” is the set Ā = A ∪ A′.

Note. Ā is the smallest closed set containing A. That is, Ā =
⋂

F:closed
A⊆F

F.

(9) Let B ⊆ A ⊆ M. B is said a “dense subset of A” if B ⊆ A ⊆ B̄.

(10) A metric space is “separable” if it has a countable dense subset.

(11) Let A ⊆ M. The “boundary of A” is the set ∂A = Ā ∩ Ac.

■ Some results of metric spaces

(a) Any union of open sets is open. An intersection of finitely many open sets is open.

(b) Any intersection of closed sets is closed. A finite union of closed sets is closed.

(c) A is open in M if and only if every point in A is an interior point of A
if and only if A = Å
if and only if Ac is closed.

(d) A is closed in M if and only if every limit point of A is a point of A
if and only if A′ ⊆ A
if and only if A = Ā.

(e) x ∈ ∂A if and only if for every r > 0, B(x, r) ∩ A , ∅ and B(x, r) ∩ Ac , ∅.

(f) ∂A is closed and ∂A = ∂(Ac).
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2.2 Convergence and Completeness

Definition 2.2.1. Let (M, d) be a metric space and {xn}∞n=1 ⊆ M be a sequence.

(1) We say that {xn}∞n=1 “converges (in M)” if there exists a point x ∈ M satisfying for every
ε > 0 there is N ∈ N such that if n ≥ N

d(xn, x) < ε.

Denoted by lim
n→∞

xn = x.

(2) A sequence is said to be a “Cauchy sequence” if for every ε > 0, there is N ∈ N such that
for m, n ≥ N,

d(xm, xn) < ε.

(3) A metric space (M, d) is said to be “complete” if every Cauchy sequence in M converges
(in M).

(4) A set A ⊆ M (or a sequence {xn}∞n=1 ⊆ M) is said to be “bounded” if there is a point x0 ∈ M
and R > 0 such that

A ⊆ B(x0,R)
(
or xn ∈ B(x0,R) ∀n ∈ N

)
.

■ Some results of convergence and completeness

Let {xn}∞n=1 be a sequence in a metric space (M, d).

(a) If {xn}∞n=1 converges, then {xn}∞n=1 is a Cauchy sequence.

Note. In general, the converse is false. But if M is complete, then the converse is true.

(b) {xn}∞n=1 converges to x ∈ M if and only if every open neighborhood of x contains all but
finitely many of the terms of {xn}∞n=1.

(c) (Uniqueness) If lim
n→∞

xn = x1 and lim
n→∞

xn = x2, then x1 = x2.

(d) If {xn}∞n=1 converges, then {xn}∞n=1 is bounded.

(e) If A ⊆ M and x is a limit point of A, then there exists a sequence {xn}∞n=1 ⊆ A such that
lim
n→∞

xn = x.

(f) {xn}∞n=1 converges to x if and only if every subsequence {xnk}∞k=1 of {xn}∞n=1 converges to x.

(g) If {xn}∞n=1 is Cauchy and a subsequence {xnk}∞k=1 of {xn}∞n=1 converges to x, then {xn}∞n=1 con-
verges to x.

(h) A closed subset of a complete metric space is complete.

(i) If A ⊆ M is a dense subset and every Cauchy sequence in A converges in M, then (M, d) is
complete.
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2.3 Compactness

Definition 2.3.1. Let (M, d) be a metric space and K ⊆ M.

(1) K is “compact” if every open cover has a finite subcover.

(2) K is “sequentially compact” if every sequence in K has a convergent subsequence (in K).

(3) K is “totally bounded” if for each r > 0, there is a finite number of r-balls such that the
union of those r-balls covers K.

(4) Let {Aα} be a collection of subsets in M. We say that {Aα} has “finite intersection property”
if the intersection of every finite subcollection of {Aα} is nonempty.

(5) A subset A of a metric space (M, d) is “precompact” if Ā is compact.

■ Some results of compactness

Let (M, d) be a metric space and K ⊆ M be compact.

(a) A compact set is closed and bounded.

Note. In general, the converse if false.

(b) A closed subset of a compact set is compact.

(c) Finite intersection property Let {Kα} be a collection of compact sets in M. Suppose that

{Kα} has the finite intersection property. Then
⋂
α

Kα , ∅.

In fact, M is compact if and only if every collection of closed sets having the finite inter-
section property has nonempty intersection.

(d) Heine-Borel Theorem In a metric space (M, d),
K is compact if and only if K is sequentially compact

if and only if K is totally bounded and complete

Each of the above statement implies that K is closed and bounded.

Note. In general, the coverse is false. But if M = Rn with the usual metric, then the converse
is true.

(e) A totally bounded set is separable.

(f) Bolzano-Weierstrass Theorem Every bounded sequence in Rn has a convergenet subse-
quence.

2.4 Connectedness and Path-connectedness

Definition 2.4.1. Let (M, d) be a metric space and A ⊆ M.



8 CHAPTER 2. METRIC SPACES

(1) We say that A is “disconnected” if there are two nonempty open setsU andV such that

(i) A ∩U ∩V = ∅

(ii) A ∩U , ∅

(iii) A ∩V , ∅

(iv) A ⊆ U ∪V

On the other hand, A is “connected” if no such separation exists.

(2) We say that A is “path-connected” if for any two points x, y ∈ A, there is a path contained
in A which joining x and y.

■ Some results of connectedness and path-connectedness

Let (M, d) be a metric space and A ⊆ M.

(a) A is disconnected in M if and only if there are two nonempty set A1 and A2 such that

(i) A = A1 ∪ A2

(ii) A1 ∩ Ā2 = Ā1 ∩ A2 = ∅.

(b) If A is path-connected then A is connected.
Note. The converse if false.

(c) A ⊆ R is connected if and only if x, y ∈ A and x < z < y then z ∈ A.

(d) If A is connected if and only if A contains only two subsets (∅ and A itself) which are both
open and closed relative to A.

2.5 Continuity
Definition 2.5.1. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A→ N be a map.

(1) For a given point x0 ∈ A′ and b ∈ N. We say that “b is the limit of f at x0” if for every
ε > 0, there is δ > 0 such that if for every x ∈ A and d(x, x0) < δ then

ρ
(

f (x), b
)
< ε.

Denoted by lim
x→x0

f (x) = b.
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(2) For a given point x0 ∈ A, f is said to be “continuous” at x0 if either x0 ∈ A − A′ or

lim
x→x0

f (x) = f (x0).

(3) f is said to be “continuous on A” if f is continuous at each point of A.

(4) f is said “uniformly continuous on A” if for any ε > 0 there is δ = δ(ε) > 0 such that if
x, y ∈ A and d(x, y) < δ, then

ρ
(

f (x), f (y)
)
< ε.

■ Some results of continuity

Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A→ N be a continuous map. Then

(a) f is continouos on A if and only if for every open set V ⊆ N, f −1(V) ⊆ A is open relative
to A; that is f −1(V) = U ∩ A for some U open in M

if and only if for every closed set E ⊆ N, f −1(E) ⊆ A is closed relative
to A; that is , f −1(E) = F ∩ A for some F closed in M.

(b) f is uniformly continuous on A if and only if for any two sequence {xn}∞n=1, {yn}∞n=1 ⊆ A, if
lim
n→∞

d(xn, yn) = 0, then lim
n→∞

ρ
(

f (xn), f (yn)
)
= 0.

(c) Suppose that f : A→ N is uniformly continuous. If {xn}∞n=1 ⊆ A is a Cauchy sequence, then{
f (xn)

}∞
n=1 is also a Cauchy sequence.

(d) If K ⊆ A is compact, then f (K) is compact in (N, ρ).

(e) If K is compact and f : K → R is continuous, then f attains its maximum and minimum.

(f) If K is compact and f : K → N is continuous, then f is uniformly continuous on K.

(g) If A is connected, then f (A) is connected in (N, ρ).

(h) If A is path-connected, then f (A) is path-connected in (N, ρ).

(i) (Intermediate Value Theorem) If f : A → R is continuous, a, b ∈ A and C ⊆ A is a path
joining a and b. Suppose that f (a) < f (b). Then for every number L between f (a) and
f (b), there is a point p ∈ C such that f (p) = L.

2.6 Embedding
Informally speaking, the embedding is given by some injective and structure-preserving map
f : M → N.

Definition 2.6.1. Let (M, d) and (N, ρ) be two metric spaces.

(1) f : M → N is said to be an “embedding” if f : M → f (M) is a homeomorphism. That
is, f : M → f (M) is bijective, continuous and the inverse function f −1 : f (M) → M is
continuous. Denote f : M ↪→ N.
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(2) If there is an embedding map from M to N, we say that “M is embedded in N”.

Example 2.6.2.

(i) Let (M, d) be a metric space and A ⊆ M. Then A is (automatically) embedded in M
(A ↪→ M). Consider id : A ↪→ M.

(ii) N ↪→ Z ↪→ Q ↪→ R.

(iii)
(
[0, 1], | · |

)
↪→

(
[2, 5], 2| · |

)
.

Remark. If (M, d) and (N, ρ) are homeomorphic (that is, there exists a homeomorphism f :
M → N), then f preserves the topology preperties. But f does not preserve the distance
(metric).

Definition 2.6.3. Let (M, d) and (N, ρ) be two metric spaces. A map φ : M → N satisfies

ρ
(
φ(x), φ(y)

)
= d(x, y) for every x, y ∈ M

is called an “isometry” or an “isometric embedding” of M into N”.

Note. An isometry is metric preserving or distance preserving.

Example 2.6.4. (1) idQ : Q→ R is an isometry

(2) If A ⊆ B ⊆ M, idA : A→ B is an isometry.

Remark. (1) An isometry is one-to-one and continuous.

(2) An isometry is an embedding map.

Definition 2.6.5. (1) An isometry which is onto is called a “isomorphism”.

(2) Two metric spaces (M, d) and (N, ρ) are “isomorphic” if there is an isomorphism φ : M →
N.

Example 2.6.6. φ : C→ R2 defined by φ(x + iy) = (x, y) is an isomorphism.

2.7 Completion of Metric Spaces

Observation:
(
Q, | · |Q

)
is an incomplete metric space and

(
R, | · |R

)
is complete.

(1) idQ :
(
Q, | · |Q

)
→ (R, | · |R) is isometry.

(2) idQ
(
Q
)
⊆ R is a dense subset of

(
R, | · |R

)
.

Question: How about a general metric space? If (M, d) is a metric space, is there some metric
space (M∗, d∗) such that

(1) (M∗, d∗) is complete,

(2) there is an isometric embedding φ : (M, d)→ (M∗, d∗), and
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(3) φ(M) ⊆ M∗ is a dense subset in d∗?

Definition 2.7.1. Let (M, d) be a metric space. A metric space (M∗, d∗) is called the “comple-
tion” of (M, d) if

(1) there is an isometric embedding φ : M → M∗,

(2) φ(M) ⊆ M∗ is a dense subset in M∗, and

(3) (M∗, d∗) is complete.

Question: Does every metric space have a completion? If yes, is the completion unique?

Observation:

Theorem 2.7.2. Every metric space has a completion. The completion is unique up to isomor-
phism.

Note. If (M, d) is complete, then (M, d) itself is a completion of (M, d). Hence, we assume that
(M, d) is incomplete.

Thought: There may have two problems:

(1) We don’t know what the “(imaginary) limit point” is since it may not be an element in M.

(2) How to define d∗ since d is only defined on M but not on M∗ which is usually a larger set
than M.

Sketch the proof: (Cantor’s construction)
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(i) We want to put the “(imaginary) limit point” in M∗. How to give an appropriate name?

• Suppose {an}∞n=1 ⊆ M is a Cauchy sequence, why don’t we name the (imaginary) limit
point “{an}∞n=1”. Note that {an}∞n=1 is a Cauchy sequence in (M, d).

(ii) If there is another sequence {bn}∞n=1 approaching this point, can we also name it {bn}?
•We have lim

n→∞
d(an, bn) = 0. In order the give an appropriate name to the limit point, we

use the “equivalent class” to name it, say
[
{an}∞n=1

]
. More precisely, let

N = the collection of all Cauchy sequences in (M, d) =
¶
{an}∞n=1

∣∣∣ {an} is Cauchy in M
©

and define
M∗ = N

/
∼=
¶[
{an}∞n=1

] ∣∣∣ {an}∞n=1 is Cauchy in M
©
.

where ∼ is a relation which satisfies {an}∞n=1 ∼ {bn}∞n=1 whenever lim
n→∞

d(an, bn) = 0.

(iii) How about those points themselves are in M?

•We can still use the Cauchy sequence to name them. That is, if x0 ∈ M, we can name x0

as
[
{an}∞n=1

]
where an = x0 for every n ∈ N.

(iv) How to define a metric on M∗?

• Consider P =
[
{pn}∞n=1

]
, Q =

[
{qn}∞n=1

]
∈ M∗. (Notice that pn, qn ∈ M for every n ∈ N.

We need to use the known metric d on M to define an expected metric d∗ on M∗). Define
d∗ : M∗ × M∗ → R by

d∗(P,Q) = d(pn, qn).

Check: d∗ is well-defined and is a metric on M∗.

(v) Define an isometry φ : M → M∗

• For x ∈ M we define

φ(x) =
[
{xn}∞n=1

]
where lim

n→∞
xn = x

(Ex: choosing xn = x for every n ∈ N).
Check: φ preseves the distance.
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(vi) Is φ(M) dense in M∗ under d∗?

• Given P =
[
{pn}∞n=1

]
∈ M∗ and ε > 0, to find an element Q ∈ φ(M) such that d∗(P,Q) <

ε. Since {pn}∞n=1 is Cauchy in M, there exists N ∈ N such that for every m, n ≥ N,

d(pn, pm) < ε.

Define Q =
[
{qn}∞n=1

]
where q1 = q2 = · · · = pN . Then Q = φ(pN) ∈ M∗ and

d∗(P,Q) = lim
n→∞

d(pn, qn) ≤ lim sup
n→∞

d(pn, pN) < ε.

(vii) Is (M∗, d∗) complete?

• Since φ(M) is dense in M∗, it suffices to show that every Cauchy sequence in φ(M)
converges in (M∗, d∗).

Let {Pn}∞n=1 ⊆ φ(M) be Cauchy in (M∗, d∗). For every n ∈ N, we can choose a constant
sequence {p(n)

k }∞k=1 ⊆ M such that Pn =
[
{p(n)

k }∞k=1

]
where p(n)

1 = p(n)
2 = · · · = p(n)

k = · · ·
∈M

for

every k ∈ N. Moreover, for ε > 0, there exists N ∈ N such that if m, n ≥ N,

d∗(Pn, Pm) <
ε

2
.

• (To construct a Cauchy sequence {qn}∞n=1) in (M, d) such that {Pn}∞n=1 converges to Q =[
{qn}∞n=1

]
in (M∗, d∗) ). Define qk = p(k)

1 for k ∈ N.

(a) If m, n ≥ N,
d(qn, qm) = lim

k→∞
d(p(n)

k , p(m)
k ) = d∗(Pn, Pm) <

ε

2
.

Hence, {qk}∞k=1 is Cauchy in M.
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(b) Let Q =
[
{qk}∞k=1

]
∈ M∗. For n ≥ N,

d∗(Pn,Q) = lim
k→∞

d(p(n)
k , qk) = lim

k→∞
d(qn, qk) <

ε

2
.

Therefore, {Pn}∞n=1 converges to P in (M∗, d∗).

(viii) Is (M∗, d∗) unique under isomorphism?

Suppose that (M∗1, d
∗
1) are (M∗2, d

∗
2) are two completion of (M, d). Then there are isometric

embeddings φ1 : M → M∗1 and φ2 : M → M∗2.
(
To find an isomorphism ψ : (M∗1, d

∗
1) →

(M∗2, d
∗
2)
)
.

For X ∈ M∗1, there exists {xn}∞n=1 ⊆ M such that φ1(xn) → X (in (M∗1, d
∗
1)) since φ1(M) is

dense in (M∗1, d
∗
1). Moreover, {xn}∞n=1 is Cauchy in (M, d) since d(xn, xm) = d∗(φ1(xn), φ1(xm)).

On the other hand, since φ2 is an isometric embedding, {φ2(xn)}∞n=1 is Cauchy in (M∗2, d
∗
2).

Then φ2(xn)→ Y ∈ M∗2. We define a map ψ : M∗1 → M∗2 by

ψ(X) = Y.

Check: ψ is an isomorphsim.

2.8 Pointwise and Uniform Convergence
Definition 2.8.1. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk : A → N be
functions for k = 1, 2, . . ..

(1) { fk}∞k=1 is said to “converge pointwise” to f if for ε > 0 and for every x ∈ A, there is
K = K(x, ε) ∈ N such that if k ≥ K

ρ
(

fk(x), f (x)
)
< ε.

Write fk → f pointwise (p.w.)

(2) { fk}∞k=1 is said to “converge uniformly” to f if for ε > 0 and for every x ∈ A, there is
K = K(ε) ∈ N such that if k ≥ K

ρ
(

fk(x), f (x)
)
< ε.

Write fk → f uniformly
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(3) { fk}∞k=1 is said to be “pointwise bounded on A” if there exists a finite valued function φ(x)
defined on A such that

| fk(x)| < φ(x) ∀k ∈ N, x ∈ A.

(4) { fk}∞k=1 is said to be “uniformly bounded on A” if there exists a number M > 0 such that

| fk(x)| < M ∀k ∈ N, x ∈ A.

(5) A family B functions defined on A is said to be “equicontinuous on A” if for every ε > 0,
there is δ > 0 such that if d(x, y) < δ then

ρ
(

f (x), f (y)
)
< ε ∀k ∈ N, x, y ∈ A and f ∈ B.

■ Some results of convergence of sequence of functions

Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk, f : A → N be functions for
k = 1, 2, . . .. Then

(a) If { fk}∞k=1 converges uniformly to f then { fk}∞k=1 converges pointwise to f .

(b) Let { fk}∞k=1 be a sequence of continuous functions. If { fk}∞k=1 converges uniformly to f , then
f is continuous.

(c) Let I ⊆ R. Let fk : I → R be sequence of differentiable functions and g : I → R be a
function. Suppose that { fk(a)}∞k=1 converges for some a ∈ I and { f ′k }∞k=1 converges uniformly
to g on I. Then

(i) { fk}∞k=1 converges uniformly to some differentiable function f on I.

(ii) f ′(x) = g(x) ∀x ∈ I.

(d) Let fk : [a, b] → R be a sequence of Riemann integrable functions. Suppose that { fk}∞k=1
converges uniformly to f on [a, b]. Then f is Riemann integrable on [a, b] and∫ b

a
f (x) dx =

∫ b

a
lim
k→∞

fk(x) dx = lim
k→∞

∫ b

a
fk(x) dx.

(e) Let K ⊆ M be compact and fk : K → F be continuous and converge uniformly. Then { fk}∞k=1
is equicontinuous on K.

(f) (Arzelá-Ascoli) Let K ⊆ M be compact and fk : K → F. If { fk}∞k=1 is pointwise bounded
and equicontinuous on K, then

(i) { fk}∞k=1 is uniformly bounded on K.

(ii) { fk}∞k=1 contains a uniformly convergent subsequence.

■ Space of continuous functions

Let (M, d) be a metric space and F be a field. (In this class, we consider F = R or C.) We collect
all real-valued continuous functions defined on M.

C(M,R) = C(M) :=
{

f : M → R
∣∣ f is continuous on M

}
.
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Define the addition operator “⊕ : C(M) × C(M) → C(M)” and the scalar multiplicaton “� :
R × C(M)→ C(M)” by(

f ⊕ g
)
(x) = f (x) + g(x) ∀ f , g ∈ C(M)(

λ � f
)
(x) = λ · f (x) ∀λ ∈ R and f ∈ C(M).

Note. Students should realized that ⊕ and � are operations on the space C(M) and + and · are
the usual addition and the scalar multiplication on R.
Example 2.8.2.

(i) Check that
Ä
C(M),⊕,�

ä
is a vector space over R.

(ii) Define Cb(M) :=
{

f ∈ C(M)
∣∣ sup

x∈M
| f (x)| < ∞

}
. Check that

Ä
Cb(M),⊕,�

ä
is a subspace

of C(M).

For the converience, the vector space
Ä
Cb(M),⊕,�

ä
is abbreivated to Cb(M). We will define

a metric d on Cb(M) by

d( f , g) = sup
x∈M

∣∣ f (x) − g(x)
∣∣ ∀ f , g ∈ Cb(M).

Example 2.8.3. Check that
Ä
Cb(M), d

ä
is a metric space.

Question: Can we use d as a metric on C(M)?
Example 2.8.4.

(i) Let { fn}∞n=1 be a sequence in
Ä
Cb(M), d

ä
. Prove thtat fn → f if and only if fn(x) converges

to f (x) uniformly on M.

(ii) By using the result(c), prove that
Ä
Cb(M), d

ä
is complete.

2.9 Interchange of Limiting Operations
We have learned some exchangeability of limiting processes. The uniform convergence of a
sequences of functions will bring some properties to the limit function, such as continuity, dif-
ferentiability, integrability. We can further discuss some results which borrow the concepts of
uniform convergence.

Recall:

(a) A uniform limit of continuous functions is continuous. That is, let { fk}∞k=1 be a sequence of
continuous function. If { fk}∞k=1 converges uniformly to f , then f is continuous.

lim
x→a

Ä
lim
k→∞

fk(x)
ä
= lim

k→∞

Ä
lim
x→a

fk(x)
ä
.

(b) A uniform limit of integrable functions is integrable. That is, let fk : [a, b] → R be a
sequence of integrable functions. If { fk}∞k=1 converges uniformly to f on [a, b], then f is
integrable on [a, b] and ∫ Ä

lim
k→∞

fk(x)
ä

dx = lim
k→∞

Ä∫ b

a
fk(x) dx

ä
.
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(c) A sequence of differentiable functions which converges at one point and has uniformly
convergent derivatives is differentiable. That is, let { fk}∞k=1 be a sequence of differentiable
functions. If { fk(a)}∞k=1 converges and { f ′k (x)}∞k=1 converges uniformly to g, then { fk}∞k=1 con-
verges uniformly to f and f ′(x) = g(x).

d
dx

Ä
lim
k→∞

fk(x)
ä
= lim

k→∞

Ä d
dx

fk(x)
ä
.

(d) (Term-by-term differentiation and integartion of series) Let { fk}∞k=1 be a sequence of funtions

and define sn(x) =
n∑

k=1

fk(x).

• Suppose that {sn}∞n=1 satisfies the condition of Part(b). Then∫ b

a

∞∑
k=1

fk(x) dx =
∞∑

k=1

∫ b

a
fk(x) dx.

• Suppose that {sn}∞n=1 satisfies the condition of Part(c). Then

d
dx

î ∞∑
k=1

fk(x)
ó
=

∞∑
k=1

d
dx

fk(x).

• Suppose that a power series
∞∑

k=0

ck(x − c)k converges on (α, β). For every interval [a, b] ⊂

(α, β), the above two results hold.

o Interchange of Differentiation and Integration

Theorem 2.9.1. (Fundamental Theorem of Calculus) If f is continuous and
d f
dx

is integrable
on [a, b] and a < x < b then

d
dx

∫ x

a
f (t) dt = f (x) = f (a) +

∫ x

a
f ′(t)
d f
dx (t)

dt.

Consider the two variables function f (x, y). We are interested in the “differentiation under
the integral sign”

d
dy

Ä∫ b

a
f (x, y) dx

ä ??
=

∫ b

a

∂ f
∂y

f (x, y) dx.

Example 2.9.2. Let f (x, y) = (2x+y3)2. Then
∂ f
∂y

(x, y) = 6y2(2x + y3) and
∫ 1

0
f (x, y) dx =

4
3
+ 2y3 + y6.

We have

d
dy

∫ 1

0
f (x, y) dx = 6y2 + 6y5 =

∫ 1

0
6y2(2x + y3) dx =

∫ 1

0

∂ f
∂y

(x, y) dx.
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Question: Is this result true for every two variables function?

■ Counterexample for exchanging the order of differentiation and integration

Let f (x, y) =

 y3

x2 e−y2/x if x > 0

0 if x = 0
be continuous in x and in y, but discontinuous at (0, 0).

Define

F(y) =
∫ 1

0
f (x, y) dx = ye−y2

for every y ∈ R

and

d
dy

F(y) = e−y2
(1 − 2y2) for every y ∈ R.

For y , 0, ∫ 1

0

∂ f
∂y

(x, y) dx =
∫ 1

0
e−y2/x(3y2

x2 −
2y4

x3

)
dx = e−y2

(1 − 2y2).

But
∂ f
∂y

(x, 0) = 0 for every x ≥ 0. Then

∫ 1

0

∂ f
∂y

(x, 0) dx = 0

and we have

F′(0) = 1 , 0 =
∫ 1

0

∂ f
∂y

(x, 0) dx.

Example 2.9.3. (See Zheng’s lecture note) For x ≥ 0, we define

f (x, y) =

 y if 0 ≤ y ≤
√

x
2
√

x − y if
√

x ≤ y ≤ 2
√

x
0 if y ≥ 2

√
x

and let f (x, y) = − f (−x, y) if x < 0 and f (x,−y) = f (x, y) if y < 0. (Notice that f is odd in x
and even in y.)
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Then f is continuous on R2 and
d f
dx

(0, y) = 0 for all y ∈ R since

f (x, y) = 0 if |x| < y2

4
or if y = 0.

For |x| < 1
4

, we define F(x) =
∫ 1

−1
f (x, y)dy. Then if x ≥ 0,

F(x) = 2
∫ 1

0
f (x, y) dy = 2

î∫ √
x

0
y dy +

∫ 2
√

x

√
x

(2
√

x − y) dy
ó

= 2
îy2

2

∣∣∣y=√x

y=0
+ 2
√

x
(
2
√

x −
√

x
)
− y2

2

∣∣∣y=2
√

x

y=
√

x
= 2x.

If x < 0,

F(x) = −2
î∫ √

−x

0
y dy +

∫ 2
√
−x

√
−x

(
2
√
−x − y

)
dy
ó

= −2
îy2

2

∣∣∣y=√−x

y=0
+ 2
√
−x

(
2
√
−x −

√
−x

)
− y2

2

∣∣∣y=2
√
−x

y=
√
−x

ó
= 2x.

Therefore, F(x) = 2x for all |x| < 1
4

and then F′(x) = 2 , 0 =
∫ 1

−1

∂ f
∂x

(0, y) dy.

o Differentiation under the Integral Sign

Let f (x, y) be a function defined on [a, b] × [c, d]. Define φ(y) =
∫ b

a
f (x, y) dx.

Theorem 2.9.4. If f is continuous on [a, b] × [c, d], then φ is continuous on [c, d].
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Proof. Since f is continuous on [a, b] × [c, d], it is bounded and uniformly continuous. For
given ε > 0, there exists δ > 0 such that if |(x1, y1)− (x2, y2)| < δ, then | f (x1, y1)− f (x2, y2)| < ε.
Then for y1, y2 ∈ [c, d] and |y1 − y2| < δ,∣∣φ(y1) − φ(y2)

∣∣ ≤ ∫ b

a

∣∣ f (x, y1) − f (x, y2)
∣∣ dx < ε(b − a).

Therefore, φ is (uniformly) continuous on [c, d]. □

Theorem 2.9.5. Suppose that f and
∂ f
∂y

are continuous on [a, b]×[c, d]. Then φ is differentiable

and
d
dy
φ(y) =

∫ b

a

∂ f
∂y

(x, y) dx

holds.

Proof. Fix y ∈ (c, d) and y + h ∈ (c, d) for small h ∈ R. Consider∣∣∣φ(y + h) − φ(y)
h

−
∫ b

a

∂ f
∂y

(x, y) dx
∣∣∣ = ∣∣∣∫ b

a

Ä f (x, y + h) − f (x, y)
h

− ∂ f
∂y

(x, y)
ä

dx
∣∣∣.

By the Mean Value Theorem,

f (x, y + h) − f (x, y)
h

=
∂ f
∂y

(x, cx,h)

for some cx,h between y and y + h. Then∣∣∣φ(y + h) − φ(y)
h

−
∫ b

a

∂ f
∂y

(x, y) dx
∣∣∣ = ∣∣∣∫ b

a

Ä∂ f
∂y

(x, cx,h) − ∂ f
∂y

(x, y)
ä

dx
∣∣∣.

Since
∂ f
∂y

is continuous on [a, b] × [c, d], it is uniformly continuous. Given ε > 0, there exists

δ > 0 such that if |(x1, y1) − (x2, y2)| < δ, then
∣∣∣∂ f
∂y

(x1, y1) − ∂ f
∂y

(x2, y2)
∣∣∣ < ε.

Taking |h| ≤ δ, we obtain |(x, cx,h) − (x, y)| < δ and thus∣∣∣φ(y + h) − φ(y)
h

−
∫ b

a

∂ f
∂y

(x, y) dx
∣∣∣ ≤ ∫ b

a

∣∣∣∂ f
∂y

(x, cx,h) − ∂ f
∂y

(x, y)
∣∣∣ dx

< (b − a)ε.

This shows that φ is differentiable at y and
dφ
dy

(y) =
∫ b

a

∂ f
∂y

(x, y) dx.

The proof when y = c or y = d is similar. □

Example 2.9.6. *Let f (t, x) =
sin tx

t
. Then

∂ f
∂x

(t, x) = cos tx. Let

g(x) =
∫ 2

1

sin tx
t

dt,

*Refer to Serge Lang, Undergraduate Analysis, p235



2.9. INTERCHANGE OF LIMITING OPERATIONS 21

then

g′(x) =
∫ 2

1
cos tx dt.

Check: Integrating directly the expression for g′ to check that it is indeed the derivative of g.

(i) Consider x as lying in any closed bounded interval [−c, c] with c > 0. Then g is differen-
tiable everywhere.

(ii) The trick can be used when x is lying in some infinite interval. The same result holds since
the differentiability preperty is local. We can restrict f (t, x) to values of x lying in a closed
bounded interval to test differentiability of g.

Actually, if we define

f (t, x) =

{ sin tx
t

if t , 0,

x if t = 0,

then f is continuous. We have the same result about differentiating under the integral:

d
dx

∫ 2

0

sin tx
t

dt =
∫ 2

0
cos tx dt.

Theorem 2.9.7. Let f (t, x) : [a, b] × [c, d]→ R be a continuous map. Then

(1) the maps

x 7→
∫ b

a
f (t, x) dt and t 7→

∫ d

c
f (t, x) dx

are continuous, and

(2) ∫ d

c

ï∫ b

a
f (t, x) dt

ò
dx =

∫ b

a

ï∫ d

c
f (t, x) dx

ò
dt.

Proof. (1) Let φ(x) =
∫ b

a
f (t, x) dt. Then

φ(x + h) − φ(x) =
∫ b

a

[
f (t, x + h) − f (t, x)

]
dt.

Since f is uniformly continuous on [a, b]× [c, d], for given ε > 0 as |h| is sufficiently small,

|φ(x + h) − φ(x)| < ε

and thus φ is continuous.

(2) Let

ψ(t, x) =
∫ x

c
f (t, u) du.
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Then
∂ψ

∂x
= f (t, x). Since f is continuous on [a, b] × [c, d], it is bounded and uniformly

continuous. That is, there exists K > 0 such that f is bounded by K and for ε > 0, there
exists δ > 0 such that∣∣ f (t, x) − f (s, y)

∣∣ < ε whenever |(t, x) − (s, y)| < δ.

Therefore, if (t, x), (t0, x0) ∈ [a, b] × [c, d] and
∣∣(t, x) − (t0, x0)

∣∣ < min(δ, ε),∣∣∣ψ(t, x) − ψ(t0, x0)
∣∣∣ = ∣∣∣∫ x

c
f (t, u) du −

∫ x0

c
f (t0, u) du

∣∣∣
≤
∫ x0

c

∣∣ f (t, u) − f (t0, u)
∣∣ du +

∫ x

x0

∣∣ f (t, u)
∣∣ du

≤ ε(d − c) + εK.

This proves that ψ is continuous on [a, b] × [c, d].

Applying Theorem 2.9.4 to ψ and
∂ψ

∂x
= f , let

g(x) =
∫ b

a
ψ(t, x) dt.

Then

g′(x) =
∫ b

a

∂ψ

∂x
(t, x) dt =

∫ b

a
f (t, x) dt,

and

g(d) − g(c) =
∫ d

c
g′(x) dx =

∫ d

c

ï∫ b

a
f (t, x) dt

ò
dx.

On the other hand,

g(d) − g(c) =
∫ b

a
ψ(t, d) dt −

∫ b

a
ψ(t, c) dt =

∫ b

a

ï∫ d

c
f (t, x) dx

ò
dt.

The theorem is proved. □

■ Improper Integral

There are similar results for improper integrals, but they require some form of uniformity.

Assume that f is defined on [a,∞) × [c, d] and set φ(y) =
∫ ∞

a
f (x, y) dx. The function φ(y)

makes sense if the improper integral
∫ ∞

a
f (x, y) dx is well-defined for each y.

Recall ∫ ∞

a
f (x, y) dx = lim

b→∞

∫ b

a
f (x, y) dx.

Definition 2.9.8. We say that the improper integral∫ ∞

a
f (x, y) dx
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is “uniformly converges” if for ε > 0 there exists B > 0 such that∣∣∣∫ ∞

a
f (x, y) dx −

∫ b

a
f (x.y) dx

∣∣∣ < ε
for every y ∈ [c, d] and whenever b > B.

Note. If
∫ ∞

a
f (x, y) dx is uniformly convergent, for ε > 0 there exists B > 0 such that

∣∣∣∫ b′

b
f (x, y) dx

∣∣∣ < ε
for every y ∈ [c, d] whenever b, b′ > B.

Remark. Uniform convergence of an improper integral may be studied parallel to the uniform
convergence of sequences of functions (or infinite series). Let

φn(y) =
∫ n

a
f (x, y) dx,

then the improper integral converges uniformly if and only if the sequence of function {φn}∞n=N
for some N ≥ a converges uniformly when f (x, y) ≥ 0. When f changes sign, the equivalence
does not always hold.

Recall: (M-Test) Let fn : X → R be a sequence of functions defined on X. Assume that there
are constants Mn for n = 1, 2, · · · such that

(i) | fn(x)| ≤ Mn holds for every x ∈ X and every n ∈ N, and

(ii)
∞∑

n=1

Mn < ∞ holds.

Then there series
∞∑

n=1

fn(x)

converges absolutely and uniformly on X.

Theorem 2.9.9. Suppose that | f (x, y)| ≤ h(x) and h(x) is improper integrable on [a,∞). Then∫ ∞

a
f (x, y) dx converges uniformly and absolutely.

Proof. (Exercise) □

Theorem 2.9.10. Let f be continuous on [a,∞)×[c, d]. Then φ(y) =
∫ ∞

a
f (x, y) dx is continuous

on [c, d] if the improper integral
∫ ∞

a
f (x, y) dx converges uniformly.

Proof. By Theorem 2.9.4, the function

φn(y) =
∫ n

a
f (x, y) dx
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is continuous on [c, d] for every n.

Since
∫ ∞

a
f (x, y) dx, for ε > 0, there exists B > 0 such that

|φn(y) − φm(y)| =
∣∣∣∫ n

m
f (x, y) dx

∣∣∣ < ε for every n,m ≥ B.

Hence, {φn}∞n=1is a Cauchy sequence in sup-norm and then it uniformly converges to a continu-
ous function φ(y). □

Theorem 2.9.11. Let f and
∂ f
∂y

be continuous on [a,∞) × [c, d]. Suppose that the improper

integrals
∫ ∞

a
f (x, y) dx and

∫ ∞

a

∂ f
∂y

(x, y) dx are uniformly convergent. Then φ is differentiable,

and
dφ
dy

(y) =
∫ ∞

a

∂ f
∂y

(x, y) dx

holds.

Proof. To prove that for y0 ∈ [c, d],∣∣∣φ(y) − φ(y0)
y − y0

−
∫ ∞

a

∂ f
∂y

(x, y0) dx
∣∣∣→ 0 as y→ y0.

By Theorem 2.9.4, the function

φn(y) =
∫ n

a
f (x, y) dx

is continuous on [c, d] for every n. Applying the Mean Value Theorem to φn − φm,[
φy(y) − φm(y)

]
−
[
φn(y0) − φm(y0)

]
= (y − y0)

[
φ′n(z) − φ′m(z)

]
for some z between y and y0. According to Theorem 2.9.5 and uniform convergence of

∫ ∞

a

∂ f
∂y

(x, y) dx,

for every z ∈ [c, d],

|φ′n(z) − φ′m(z)| =
∣∣∣∫ n

m

∂ f
∂y

(x, z) dx
∣∣∣→ 0

as n,m→ 0 (independent of z). This shows that for given ε > 0, there exists B > 0 such that∣∣∣φn(y) − φn(y0)
y − y0

− φm(y) − φm(y0)
y − y0

∣∣∣ < ε whenever m, n ≥ B.

Let m→ ∞, ∣∣∣φn(y) − φn(y0)
y − y0

− φ(y) − φ(y0)
y − y0

∣∣∣ < ε whenever n ≥ B.
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By the triangle inequality,∣∣∣φ(y) − φ(y0)
y − y0

−
∫ ∞

a

∂ f
∂y

(x, y0) dx
∣∣∣

≤
∣∣∣φ(y) − φ(y0)

y − y0
− φn(y) − φn(y0)

y − y0

∣∣∣ + ∣∣∣φn(y) − φn(y0)
y − y0

−
∫ n

a

∂ f
∂y

(x, y0) dx
∣∣∣

+

∣∣∣∫ n

a

∂ f
∂y

(x, y0) dx −
∫ ∞

a

∂ f
∂y

(x, y0) dx
∣∣∣.

Fix a large n ≥ B such that ∣∣∣∫ ∞

n

∂ f
∂y

(x, y0) dx
∣∣∣ < ε

and by Theorem 2.9.5, we can also find δ > 0 such that∣∣∣φn(y) − φn(y0)
y − y0

−
∫ n

a

∂ f
∂y

(x, y0) dx
∣∣∣ < ε whenever |y − y0| < δ.

Putting things together, we conclude∣∣∣φ(y) − φ(y0)
y − y0

−
∫ ∞

a

∂ f
∂y

(x, y0) dx
∣∣∣ < 4ε.

□

Remark. We can weaken the hypothesis of “uniform convergence” of
∫ ∞

a
f (x, y) dx and

∫ ∞

a

∂ f
∂y

(x, y) dx.

Suppose that there are integrable functions g, h : [a,∞)→ R such that∣∣ f (x, y)
∣∣ ≤ g(x) for every (x, y) ∈ [a,∞) × [c, d]

and ∣∣∣∂ f
∂y

(x, y)
∣∣∣ ≤ h(x) for every (x, y) ∈ [a,∞) × [c, d].

Then the above theorem still holds.

Example 2.9.12. Let f : [0,∞) × (0,∞)→ R be defined by

f (x, y) =

{ e−xy − e−x

x
if x , 0

−y + 1 if x = 0

and define
F(y) =

∫ ∞

0
f (x, y) dx.

Then f is continuous on [0,∞) × (0,∞) and

∂ f
∂y

(x, y) =
ß
−e−xy if x , 0
−1 if x = 0 = −e−xy for every x ∈ [0,∞).

is continuous on [0,∞) × (0,∞).
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For a > 0, let g(x) = −e−ax. Then g is integrable over [0,∞) and∣∣∣∂ f
∂y

(x, y)
∣∣∣ ≤ g(x) for every (x, y) ∈ (0,∞) × [a,∞).

We have

F′(y) =
∫ ∞

0

∂ f
∂y

(x, y) dx =
∫ ∞

0
−e−xy dx = −1

y
for every y ∈ (a,∞).

Since a > 0 is arbitrary, F′(y) = −1
y

for every y ∈ (0,∞). Therefore, F(y) = − ln y +C.

To find C, consider

f (x, y) =

{ e−xy − e−x

x
if x , 0

−y + 1 if x = 0

For y > 1, let hx(y) = e−xy. Then
hx(y) − hx(1)

x
= f (x, y) = h′x(ξ)(y − 1) = e−ξx(−y + 1). for

some ξ = ξ(x, y) ∈ (1, y). We obtain

f (x, y) < 0 when y > 1 and f (x, y) increases as y↘ 1.

For fixed y > 1,

∣∣F(y)
∣∣ = ∣∣∣∫ ∞

0
f (x, y) dx

∣∣∣ = ∣∣∣∫ ∞

0
e−ξx(−y + 1) dx

∣∣∣ = |y − 1|
∣∣∣∫ ∞

0
e−ξx dx

∣∣∣
(ξ = ξ(x, y) > 1) ≤ |y − 1|

∣∣∣∫ ∞

0
e−x dx

∣∣∣
<∞

→ 0 as y↘ 1.

Hence, C = lim
y↘1

F(y) = 0 and

− ln y =
∫ ∞

0

e−xy − e−x

x
dx.

o Applications:

Consider the Laplace equation
uxx + uyy = 0

on the disk D =
{

(x, y)
∣∣ x2 + y2 < 1

}
. Expressed in polar coordinate, the Laplace equation is

transformed to
urr +

ur

r
+

uθθ
r2 = 0, for (r, θ) ∈ [0, 1) × [0, 2π].

Notice that u = u(r, θ) is periodic in θ for r ∈ [0, 1) since u is continuous in D in Euclidean
coordinate.
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Observe that the Laplace equation is rotationally invariant. That is, for any solution u(r, θ),
the function v(r, θ) = u(r, θ + θ0) is a solution for each θ0. Moreover, the Laplace equation is

linear. We have
n∑

j=1

c ju(r, θ + θ j) is also a solution. In limit form, the function

ũ(r, θ) =
∫ 2π

0
g(α)u(r, θ + α) dα

should also be a solution for any continuous g. Define f (r, θ, α) = g(α)u(r, θ+α). The functions

f ,
∂ f
∂θ
,
∂2 f
∂θ2 ,

∂ f
∂r
,
∂2 f
∂r2 , are continuous in [0, d]× [0, 2π], d < 1. From Theorem 2.9.4, the function

ũ is also harmonic.

In fact, taking the special harmonic function to be

u(r, θ) =
1

1 − r cos θ + r2 ,

we can show that every harmonic function in D which is continuous in
{

(x, y)
∣∣ x2 + y2 ≤ 1

}
asises in these ways.

2.10 Arzelá-Ascoli Theorem
Definition 2.10.1. Let (M, d) be a metric space and A ⊆ M be a subset. Asubset B ⊆ Cb(A;R)
is said to be “equicontinuous” if for every ε > 0, there exists δ > 0 such that

| f (x1) − f (x2)| < ε

whenever d(x1, x2) < δ, x1, x2 ∈ A and f ∈ B.

Theorem 2.10.2. (Arzelá-Ascoli Theorem) Let (M, d) be a metric space, and K ⊆ M be a
compact set. Assume that B ⊆ C(K;R) is equicontinuous and pointwise bounded on K. Then
every sequence in B has a uniformly convergent subsequence.

o Applications

Theorem 2.10.3. (Cauchy-Peano Theorem) Let D ⊆ R2 be open, (t0, x0) ∈ D and f (t, x) : D→
R be a continuous function. For the ordinary differential equation,

(I.V.P)
ß

x′(t) = f
(
t, x(t)

)
x(t0) = x0.

there exists a solution in a neighborhood of t0.

Proof. Let f be continuous on Q =
{

(t, x) ∈ R2
∣∣ |x − x0| ≤ K and |t − t0| ≤ T

}
⊆ D. Consider

the Fundamental Theorem of Calculus. The function φ is a solution of the IVP if and only if it
satisfies the equation

φ(t) = x0 +

∫ t

t0
f
(

s, φ(s)
)

ds.
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Let
M = max

(t,x)∈Q

∣∣ f (t, x)
∣∣ and T1 = min

{
T,K/M

}
.

Define

xn(t) =


x0 for t0 ≤ t ≤ t0 +

T1

n
,

x0 +

∫ t− T1
n

t0
f
(

s, xn(s)
)

ds for t0 +
T1

n
≤ t ≤ t0 + T1.

對於方程

(I.V.P)
ß

x′(t) = f
(
t
)

x(t0) = x0.

由微積分基本定理可得

x(t) = x0 +

∫ t

t0
f (s) ds

直觀來看，在每個時間 t 時定義的 x(t)為前一瞬間的位置 x(t − 4t)增加 f (t)4t。即
f (t)可以反映此瞬間該往哪個方向、以多大速度增加。
但當 f = f

(
t, x(t)

)
，雖然想以同樣思路決定每一時間下的位置，但變數中有 x(t)

本身。因此改變定義方式為用前
T1

n
時間下的 f 值當成此瞬間該移動的方向大小。

即第一時間段 [t0, t0 +
T1

n
]強迫定成 x0，此後的時間下都可回溯前

T1

n
的 f 值。最後，

當 n→ ∞，回溯時間 T1

n
→ 0,越接近真實狀況。証明

{
xn(t)

}
會均勻收斂至 x(t)。

(1)
{

xn(t)
}∞

n=1 is uniformly bounded on [t0, t0 + T1].

For t ∈ [t0, t0 + T1],

∣∣xn(t) − x0
∣∣ = ∣∣∣∫ t− T1

n

t0
f
(

s, xn(s)
)

ds
∣∣∣ ≤ ∫ t− t1

n

t0
M ds ≤

∫ t0+T1

t0
M ds = MT1 ≤ K.

(2)
{

xn(t)
}∞

n=1 is equicontinuous.
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For t1, t2 ∈ [t0, t0 + T1],

∣∣xn(t1)−xn(t2)
∣∣ =



0 if t1, t2 ∈ [t0, t0 +
T1

n
],∣∣∣∫ t2−

T1
n

t0
f
(

s, xn(s)
)

ds
∣∣∣ if t1 ∈ [t0, t0 +

T1

n
], t2 ∈ (t0 +

T1

n
, t0 + T1],∣∣∣∫ t1−

T1
n

t0
f
(

s, xn(s)
)

ds
∣∣∣ if t1 ∈ (t0 +

T1

n
, t0 + T1], t2 ∈ (t0, t0 +

T1

n
],∣∣∣∫ t2−

T2
n

t1−
T1
n

f
(

s, xn(s)
)

ds
∣∣∣ if t1, t2 ∈ [t0 +

T1

n
, t0 + T1].

Hence, ∣∣xn(t1) − xn(t2)
∣∣ ≤ M|t1 − t2| for every t1, t2 ∈ [t0, t0 + T1], n ∈ N.

By Arzelá-Ascoli theorem, there exists a subsequence
{

xnk

}∞
k=1 converges to a continuous

function x(t) on [t0, t0 + T1]. Then

xnk(t) = x0 +

∫ t− T1
nk

t0
f
(

s, xnk(s)
)

ds.

Since f is uniformly continuous on Q,
¶

f
(

s, xnk(s)
)©∞

k=1
is uniformly convergent to f

(
s, x(s)

)
.

Then

x(t) = lim
k→∞

xnk(t) = x0 + lim
k→∞

î∫ t

t0
f
(

s, xnk(s)
)

ds −
∫ t

t− T1
nk

f
(

s, xnk(s)
)

dx
ó

= x0 +

∫ t

t0
f
(

s, x(s)
)

ds − lim
k→∞

∫ t

t− T1
nk

f
(

s, xnk(s)
)

ds

Since the third term

lim
k→∞

∣∣∣∫ t

t− T1
nk

f
(

s, xnk(s)
)

ds
∣∣∣ ≤ T1

nk
· M → 0 as k → ∞,

x(t) = x0 +

∫ t

t0
f
(

s, x(s)
)

ds.

Hence, x(t) is a solution of I.V.P. □

Remark. The solution x(t) is not necessarily unique. In addition, if f (t, x) is Lipschitz in x,
then the solution is unique.

Example 2.10.4. Let f (t, x) = 5x4/5 on R × (−1, 1). Considerß
x′(t) = 5x4/5

x(0) = 0

Then x1(t) ≡ 0 and x2(t) = t5 are two solutions.
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2.11 Contraction Mappings
■ Contraction Mapping Principle

Definition 2.11.1. Let (M, d) be a metric space, and Φ : M → M be a mapping. Φ is said to be
a “contraction mapping” if there exists a constant k ∈ [0, 1) such that

d
(
Φ(x),Φ(y)

)
≤ kd(x, y) ∀x, y ∈ M.

Remark. A contraction mapping must be (uniformly) continuous. (Exercise)
Definition 2.11.2. Let (M, d) be a metric space, and Φ : M → M be a mapping. A point x0 ∈ M
is called a “fixed point” for Φ if Φ(x0) = x0.

Theorem 2.11.3. (Contraction Mapping Principle) Let (M, d) be a complete metric space, and
Φ : M → M be a contraction mapping. Then Φ has a unique fixed point.

Remark. The Contraction Mapping Principle is also called the “Banach fixed point theorem”.

■ Application of Contraction Mapping Principle:

We have learned that the contraction mapping principle can apply for Newton’s method. In
Section 2.10, we discuss the existence of solutions of differential equations by using Arzelá-
Ascoli Theorem. In the present section, we will reconsider the topic by using the Contraction
Mapping Principle.

Let D ⊆ R2 be open. Consider the set of continuous functions on D,

Cb
(
D;R

)
=
{

f : D→ R
∣∣ f is continuous and bounded on D.

}
.

We have known that Cb
(
D;R

)
is a vector space. Define the “sup-norm” on Cb

(
D;R

)
by

‖ f ‖ = sup
(t,x)∈D

| f (t, x)| for every f ∈ Cb
(
D;R

)
.

Recall that, in Section 2.8, we define a metric, d, on Cb
(
D;R

)
by

d( f , g) = sup
(t,x)∈D

| f (t, x) − g(t, x)| for f , g ∈ Cb(D;R).

Then
d( f , g) = ‖ f − g‖.

Let (t0, x0) ∈ D and f (t, x) : D→ R be continuous on D and Lipschitz in x. That is, there exists
L > 0 such that

sup
(t,x),(t,y)∈D

x,y

∣∣ f (t, x) − f (t, y)
∣∣

|x − y| < L.

Theorem 2.11.4. For the ordinary differential equation,

(I.V.P)
ß

x′(t) = f
(
t, x(t)

)
x(t0) = x0.

there exists a unique solution in a neighborhood of t0.
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Proof. Since D is open and (t0, x0) ∈ D, there exists K,T > 0 such that the set QK,T =
{

(t, x) ∈
R2

∣∣ |x − x0| ≤ K and |t − t0| ≤ T
}
⊆ D.

Fix K and the number 0 < T1 ≤ T will be determined later. Consider the set of continuous
functions RT1 := Cb

(
[t0 − T1, t0 + T1];R

)
and the norm

‖g − h‖ = max
t∈[t0−T1, t0+T1]

|g(t) − h(t)|.

Denote X0(t) ≡ x0 as a constant function and let

RK,T1 =
{

g ∈ RT1

∣∣ ‖g − X0‖ ≤ K
}
.

Since RK,T1 is closed in the complete space RT1 under the norm ‖ · ‖, it is also complete.

Consider the Fundamental Theorem of Calculus, φ is a solution of the IVP if and only if it
satisfies the equation

x(t) = x0 +

∫ t

t0
f
(

s, x(s)
)

ds.

Define a map S : RK,T1 → RT1 by

S
(
g
)
(t) = x0 +

∫ t

t0
f
(

s, g(s)
)

ds for t0 ≤ t ≤ t0 + T1 and g ∈ RK,T1 .

Our goal is to find an element φ ∈ RK,T1 such that

φ(t) = x0 +

∫ t

t0
f
(

s, φ(s)
)

dx = S
(
φ
)
(t).

That is φ is a fixed point for S . Hence, we will choose an appropriate number T1 such that S is
a contraction map on RK,T1 .
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(1) (To find T1 such that S : RK,T1 → RK,T1)
Let M = sup

(t,x)∈QK,T1

∣∣ f (t, x)
∣∣. For g ∈ RK,T1 , compute

‖S
(
g
)
− X0‖ = max

t∈[t0−T1,t0+T1]

∣∣∣î��x0 +

∫ t

t0
f
(

s, g(s)
)

ds
ó
−��x0

∣∣∣
≤
∫ t

t0

∣∣ f
(

s, g(s)
)∣∣

≤M

ds

≤ MT1.

Hence, choose T1 ≤
K
M

and then S
(
g
)
∈ RK,T1 .

(2) (To find T1 such that S is a contraction mapping on RK,T1)
For g, h ∈ RK,T1 , compute

‖S
(
g
)
− S

(
h
)
‖ = max

t∈[t0−T1,t0+T1]

∣∣∣Äx0 +

∫ t

t0
f
(

s, g(s)
)

ds
ä
−
Ä

x0 +

∫ t

t0
f
(

s, h(s)
)

ds
ä∣∣∣

≤
∫ t

t0

∣∣ f
(

s, g(s)
)
− f

(
s, h(s)

)∣∣ ds

≤
∫ t

t0
L
∣∣g(s) − h(s)

∣∣
≤‖g−h‖

ds

≤ LT1‖g − h‖

Hence, combining the above discussions, we choose T1 = min(T,
K
M
,

1
2L

) and then S is a
contractioin mapping on RK,T1 .

By the Contraction Mapping Theorem, there exists a unique fixed element φ ∈ RK,T1 for S and
it is the solution of (IVP). □

Example 2.11.5. Find a function x(t) : [0,T ]→ R such thatß
x′(t) = x(t)
x(0) = 1. (2.11.1)

Proof. Define

Φ
(

x
)
(t) = 1 +

∫ t

0
x(s) ds,

x0(t) ≡ 1 and xn+1(t) = Φ
(

xn
)
(t). Then

x1(t) = 1 +
∫ t

0
1 ds = 1 + t

x2(t) = 1 +
∫ t

0
1 + s ds = 1 + t +

t2

2

x3(t) = 1 +
∫ t

0
1 + s +

s2

2
ds = 1 + t +

t2

2
+

t3

3!
...

xk(t) = = 1 + t +
t2

2!
+

t3

3!
+ · · · + tk

k!
.
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Then {xk}∞k=0 converges to x(t) =
∞∑

k=0

tk

k!
= et which is the solution of I.V. P for (2.11.1). □

Example 2.11.6. Find a function x(t) such thatß
x′(t) = tx(t)
x(0) = 3 (2.11.2)

Proof. Define

Φ
(

x
)
(t) = 3 +

∫ t

0
sx(s) dx,

x0(t) ≡ 3 and xn+1(t) = Φ
(

xn
)
(t). Then

x1(t) = 3 +
∫ t

0
sx0(s) ds = 3 +

∫ t

0
3s ds = 3 +

3t2

2

x2(t) = 3 +
∫ t

0
sx1(s) ds + 3 +

∫ t

0
3 +

3
2

s2 = 3 +
3t2

2
+

3t4

2 · 4
...

xk(t) = 3 +
3t2

2
+

3t4

2 · 4 + · · · +
3t2k

2 · 4 · · · (2k)

We have xk(t)→ x(t) = 3 + 3
∞∑

k=1

t2k

2 · 4 · (2k)
= 3e

t2
2 which is the solution of the I.V. P for (2.11.2).

□

Remark. This process is called the “Picard iteration”.

Example 2.11.7. Let xc(t) =

{
0 if 0 ≤ t < c
1
4

(t − c)2 if t ≥ c
. Then®

x′c(t) =
(

x(t)
)1/2

xc(0) = 0
for all c > 0.

Hence, this initial value problem has infinitely many solution. Why?
f (x0, t) =

√
x is not Lipschitz near 0. That is, no matter what K > 0 is, there exists x, y ∈ (−δ, δ)

such that ∣∣ f (x, t) − f (y, t)
∣∣ > K|x − y|.

2.12 Partitions of Unity
In this section, we discuss that a smooth function can be broken into a sum of smooth functions,
each of which is zero except on a small set.

Definition 2.12.1. Let f : Rn → R. We say that

(1) the “support of f ” is the closure of the set of points at which f is nonzero. That is,

spt( f ) =
{

x ∈ Rn
∣∣ f (x) , 0

}
.
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(2) A function f is said to have “compact support” if spt( f ) is a compact set.

Example 2.12.2. Let

f (x) =
ß

1 if x ∈ Q
0 if x < Q.

Then spt( f ) = R.
Example 2.12.3. Let

f (x) =

 1 if x ∈ (0, 1)
2 if x ∈ (1, 2)
0 otherwise.

Then spt( f ) = [0, 2].
Remark. If f , g : Rn → R, then

spt( f + g) ⊆ spt( f ) ∪ spt(g).

Proof. (Exercise) □

Notation: The symbol Cp
c (Rn) denote the collection of functions f : Rn → R which are Cp on

Rn and have compact support.
Note. If f j ∈ Cp

c (Rn) for j = 1, 2, · · · , n, then
n∑

j=1

f j ∈ Cp
c (Rn).

Exercise. If f is analytic and has compact support, then f is identically zero.

Lemma 2.12.4. For every a < b, there exists a function φ ∈ C∞c (R) such that φ(t) > 0 for
t ∈ (a, b) and φ(t) = 0 for t < (a, b).

Proof. Let

f (t) =

®
e−

1
t2 if t , 0

0 if t = 0.

Then f ∈ C∞(R) and f (k)(0) = 0 for all k ∈ N. Hence, the function

φ(t) =

®
e−

1
(t−a)2 e−

1
(t−b)2 if t ∈ (a, b)

0 otherwise.

belongs to C∞(R), satisfies φ(t) > 0 for t ∈ (a, b) and spt(φ) = [a, b]. □

Lemma 2.12.5. For each δ > 0, there exists a function ψ ∈ C∞(R) such that 0 ≤ ψ ≤ 1 on R,
ψ(t) = 0 for t ≤ 0, and ψ(t) = 1 for t > δ.
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Proof. By Lemma 2.12.4, choose φ ∈ C∞c (R) such that φ(t) > 0 for t ∈ (0, δ) and φ(t) = 0 for
t < (0, δ). Let

ψ(t) =

∫ t

0
φ(u) du∫ δ

0
φ(u) du

.

Then, by the Fundamental Theorem of Calculus, ψ ∈ C∞(R) and 0 ≤ ψ ≤ 1 and

ψ(t) =
ß

0 if t ≤ 0
1 if t > δ.

□

■ Urysohn’s Lemma

Now, we will construct nonzero functions in C∞c (Rn) by using the one-dimensional C∞ func-
tions.

Theorem 2.12.6. (Urysohn’s Lemma) Let U be open in Rn and K ⊂ U be a nonempty compact
set. Then there exists an h ∈ C∞c (Rn) such that 0 ≤ h ≤ 1 for all x ∈ Rn, h(x) = 1 for all x ∈ K
and spt(h) ⊂ U.

Proof.

Step 1: For given ε > 0, construct a smooth function gε(y) such that gε > 0 in B(0, ε) and
gε = 0 outside Qε(0).

Let φ ∈ C∞c (R) satisfy φ(t) > 0 for (−1, 1) and φ(t) = 0 for t < (−1, 1). For ε > 0 and x ∈ Rn,
let

Qε(x) =
{

y ∈ Rn
∣∣ |y j − x j| ≤ ε for every j = 1, 2, · · · , n

}
= [x1 − ε, x1 + ε] × · · · × [xn − ε, xn + ε].

Define

gε(y) = φ
Äy1

ε

ä
· · · φ
Äyn

ε

ä
for y = (y1, · · · , yn).
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Then gε ∈ C∞(R) and

g(y)
ß
> 0 if y ∈ B(0, ε)
= 0 if y < Qε(0).

This implies that g ∈ C∞c (Rn).

Step 2: By the compactness, construct a smooth function f such that f > 0 in K and f = 0
outside U.

Since K ⊂ U and U is open, for x ∈ K, choose ε = ε(x) such that Qε(x) ⊂ U. Set

hx(y) = gε(y − x), for y ∈ Rn.

Then

(i) hx(y) ≥ 0 on Rn;

(ii) hx(y) > 0 for every y ∈ B(x, ε);

(iii) hx(y) = 0 for every y < Qε(x) and

(iv) hx ∈ C∞c (Rn).

Since K is compact and K ⊂
⋃
x∈K

B(x, ε), there exists finite points x1, · · · xN such that

K ⊆
N⋃

i=1

B(xi, εi).

Define

Q =
N⋃

i=1

Qεi(xi) and f =
N∑

i=1

hxi .

Clearly, Q ⊂ U is compact and f ∈ C∞(Rn). Observe that

(1) If x < Q, then x < Qεi(xi) for every i = 1, · · · ,N. Hence, f (x) = 0 for every x < Q and
spt( f ) ⊆ Q.

(2) If x ∈ K, then x ∈ B(xi, εi) for some i = 1, · · · ,N. Hence f (x) > 0 for every x ∈ K.
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Step 3: Use Lemma 2.12.5 to flatten f so that it is identically 1 on K.

Since K is compact and f is continuous and positve on K, f has a positive minimum on
K. There exists δ > 0 such that f (x) > δ for every x ∈ K. By Lemma 2.12.5, we can choose
ψ ∈ C∞(R) such that ψ(t) = 0 when t ≤ 0 and ψ(t) = 1 wehn t > δ. Define

h = ψ ◦ f .

Then h ∈ C∞c (Rn), spt(h) ⊆ Q ⊂ U and 0 ≤ h ≤ 1 on Rn. Also, since f > δ on K, h = 1 on
K. □

o Partition of Unity

Theorem 2.12.7. (Lindelöf’s Theorem) Let (M, d) be a separable metric space and E ⊆ M.
If
{

Vα

}
α∈A is a collection of open sets and E ⊆

⋃
α∈A

Vα, then there exists a countable subset

{α1, α2, · · · } of A such that

E ⊆
∞⋃

k=1

Vαk .

Proof. (Exercise) □

Theorem 2.12.8. (C∞ Partitions of Unity) Let Ω ⊂ Rn be nonempty and let
{

Vα

}
α∈A be an open

covering of Ω. Then there exist functions φ j ∈ C∞c (Rn) and indices α j ∈ A, j ∈ N, such that the
following properties hold.

(i)
φ j ≥ 0 for every j ∈ N.

(ii)
spt(φ j) ⊂ Vα j for every j ∈ N.

(iii)
∞∑
j=1

φ j(x) = 1 for every x ∈ Ω.

(iv) If K is a nonempty compact subset of Ω, then there exists a nonempty open set U ⊃ K and
an integer N such that φ j(x) = 0 for every j ≥ N and x ∈ U. In particular,

N∑
j=1

φ j(x) = 1 for every x ∈ U.

Proof. For each x ∈ Ω, choose a bounded open set W(x) and an index α ∈ A such that

x ∈ W(x) ⊂ W(x) ⊂ Vα.

Then
{

W(x)
}

x∈Ω is an open covering of Ω. By Lindelöf’s Theorem, we can choose a countable
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open covering
{

W j
}∞

j=1 of Ω from
{

W(x)
}

x∈Ω. By construction, for every j ∈ N, there exists
α j ∈ A such that

W j ⊂ W j ⊂ Vα j .

By Theorem 2.12.6, we choose functions h j ∈ C∞c (Rn) such that

(i) 0 ≤ h j ≤ 1 on Rn; (ii) h j = 1 on W j; and (iii) spt(h j) ⊂ Vα j for j ∈ N.

Set φ1 = h1 and for j > 1, set

φ j = (1 − h1) · · · (1 − h j−1)h j.

Then φ j ≥ 0 on Rn and φ j ∈ C∞c (Rn) with spt(φ j) ⊆ spt(h j) ⊂ Vα j for every j ∈ N. The state-
ments (i) and (ii) are proved.

Consider that
k∑

j=1

φ j = 1 − (1 − h1) · · · (1 − hk) for every k ∈ N.

If x ∈ Ω, then x ∈ W j0 for some j0 and hence 1 − h j0(x) = 0. We have

k∑
j=1

φ j(x) = 1 − 0 = 1 for k ≥ j0.

The statement (iii) is prove.

Let K be a compact subset of Ω. Since
{

W j}∞j=1 is an open covering of Ω, K ⊂ W1∪ · · ·∪Wn

for some N ∈ N. Let W = W1 ∪ · · · ∪Wn. If x ∈ W, there exists 1 ≤ k ≤ N such that x ∈ Wk and
hence hk(x) = 1. That is, φ j(x) = 0 for all j > N. Hence,

N∑
j=1

φ j(x) =
∞∑
j=1

φ j(x) = 1 for every x ∈ W.

□

Definition 2.12.9. (1) A sequence of functions
{
φ j
}∞

j=1 is called a “(C0) partition of unity on
Ω subordinate to” a covering

{
V
}
α∈A if Ω and Vα’s are open and nonempty, the φ j’s are all

continuous with compact support and satisfy statement (i) throught (iv) of Theorem 2.12.8.

(2) If all the function
{
φ j
}∞

j=1 belong to Cp(Ω), we call it a “(Cp) partition of unity on Ω”.

Remark. By Theorem 2.12.8, given any open coveringV fo any nonempty set Ω ⊆ Rn and any
number p ≥ 0, there exists a Cp partition of unifty on Ω subordinate toV.

o Decomposition of a Function

Let f be defined on a setΩ,
{
φ j
}∞

j=1 be a Cp partition of unity onΩ subordinate to a covering{
V j
}∞

j=1 and f j = fφ j. Then

f (x) = f (x)
∞∑
j=1

φ j(x) =
∞∑
j=1

f (x)φ j(x) =
∞∑
j=1

f j(x) for every x ∈ Ω.
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Note. (1) ”The function f can be written as a sum of function f j which are as smooth as f .”
If f is continuous on Ω and p ≥ 0, then each f j is continuous on Ω. If f is continuous
differentiable on Ω and p ≥ 1, then each f j is continuously differentiable on Ω.

(2) “The method allows us to pass from local results to global ones.”
If we know that a certain property holds on small open sets in Ω, then we can show that a
similar property holds on all of Ω by using a partition of unity subordinate to a covering of
Ω which consists of small open sets.

Strategy: Let V be a bounded open set and let f be locally integrable on V; that is, f :
V → R is integrable on every closed Jordan region R ⊂ V . For each x ∈ V , choose an open
Jordan region V(x) so small that x ∈ V(x) ⊂ V . Then

{
V(x)

}
x∈V is an open covering of V ,

and by Lindelöf’s Theorem it has a countable subcover, say V =
{

V j
}∞

j=1. Let
{
φ j
}∞

j=1 be
a partition of unity on V subordinate to V. Since f is locally integrable on V , each fφ j is

integrable. Since f =
∞∑
j=1

fφ j, it seems reasonable to define

∫
V

f (x) dx =
∞∑
j=1

∫
V j

f (x)φ j(x) dx.

Concerning this topic, there are some questions need to be considered. We will ignore these
questions here and we refer the book “Introduction to Analysis, William R. Wade, Fourth
Edition, Section12.5”.

2.13 Method of Lagrange Multipliers

In this section, we will discuss the optimal problems by using the method of Lagrange Multi-
pliers. Let f (x) : Rn → R. We want to find the extreme values of f subject to some constraints
(or under some side conditions).

Theorem 2.13.1. (Implicit Function Theorem) Let D ⊆ Rn = Rm×Rp be open and F : D→ Rm

be a function of class Cr, r ∈ N. Suppose that F(x0, y0) = 0m for some (x0, y0) ∈ D and

[
DxF(x0, y0)

]
=


∂F1

∂x1
· · · ∂F1

∂xm
...

...
∂Fm

∂x1
· · · ∂Fm

∂xm

 (x0, y0)

is invertible. Then there exists an open neighborhood U ⊆ Rp of y0, an open neighborhood
V ⊆ Rm of x0 and f : U → V such that

(1) F
(
f(y), y

)
= 0m for every y ∈ U.

(2) x0 = f(y0).
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(3) Df(y) = −
[
DxF

(
f(y), y

)]−1[DyF
(
f(y), y

)]
for every y ∈ U where

[(
DyF

)
(x, y)

]
=


∂F1

∂y1
· · · ∂F1

∂yn
...

...
∂Fm

∂y1
· · · ∂Fm

∂yn

 (x, y)

(4) f is of class Cr

Example 2.13.2. Consider the equationß
xu + yv2 = 0
xv3 + y2u6 = 0 near (x0, y0, u0, v0) = (1,−1, 1,−1). (2.13.1)

Let F(x, y, u, v) = (xu + yv2

F1

, xv3 + y2u6

F2

). Then

[
Dx,yF

]
(1,−1,1,−1) =


∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y


(1,−1,1,−1)

=

ï
u v2

v3 2yu6

ò
(1,−1,1,−1)

=

ï
1 1
−1 2

ò
is invertible.

By the implicit function theorem, to satisfy the equation (2.13.1), (x, y) can be expressed as a
function of (u, v), say x = g1(u, v), y = g2(u, v) near (1,−1) such that

F
(

x(u, v), y(u, v), u, v
)
= F(1,−1, 1,−1) = (0, 0)

Let (x, y) = g(u, v) =
(
g1(u, v), g2(u, v)

)
. Then

Dg(u, v) = −
[
Dx,yF(x, y, u, v)

]−1 [Du,vF(x, y, u, v)
]
.

o Lagrange Multipliers

Theorem 2.13.3. Let m < n, V be open in Rn, and f , g j : V → R be C1 function on V for
j = 1, 2, · · · ,m. Suppose that there is an a ∈ V such that

∂(g1, · · · , gm)
∂(x1, · · · , xm)

(a) , 0.

If f (a) is a local extremum of f subject to the constraints gk(a) = 0 for k = 1, · · ·m, then there
exist scalars λ1, λ2, · · · , λm such that

∇ f (a) =
m∑

k=1

λk∇gk(a) = 0m. (2.13.2)
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(I) 限制條件 g1, · · · gm 彼此間不能互相矛盾，例: g1(x, y) = 2x + 3y 和 g2(x, y) =
4x + 6y − 1,則無法找到 a ∈ Rn 使得 g1(a) = g2(a) = 0. 當兩函數的 level sets相
交可避免此狀況，即在滿足此兩限制條件下的點 a, ∇g1(a)與 ∇g2(a)不會平行。
因此，當設定

∂(g1, · · · , gm)
∂(x1, · · · , xm)

(a) , 0.

條件下，可避免任兩 level sets相切或平行狀況。亦可保證在 a點附近的滿足

所有限制條件的集合，即 level sets的交集
m⋂

j=1

{
x ∈ V

∣∣ g j(x) = 0
}
是一個 n − m

維度的曲面。

(II) 幾何上來說，我們是在兩函數的 level sets 的交集上找滿足 f 的極值點，若
constraints太多 (m ≥ n)，則可能發生

(1) 無法找到能滿足所有 constraints的可行點集;

(2) 限制條件 (constraints)之間可能彼此相關 (即可移去部份條件);

(3) 每多一個條件，則 level sets的交集少一個維度，當 m = n時，可能僅剩有
限可行點。

(III) 在 S :=
m⋂

j=1

{
x ∈ V

∣∣ g j(x) = 0
}
這個 n − m 維度曲面上找 f 的極值點 a，則 S

在 a 點的切空間 TaS 的 orthonormal space
Ä

TaS
ä⊥
是一個 m 維的向量空間，

由 S pan
{
∇g1(a), · · · ,∇gm(a)

}
所構成。因 f 在 a有極值， f 在 a這一層的 level

set
{

x ∈ V
∣∣ f (x) = f (a)

}
應在 a 點與 S 相切，則 ∇ f (a) 會屬於

Ä
TaS
ä⊥
=

S pan
{
∇g1(a), · · · ,∇gm(a)

}
. 因此

∇ f (a) =
m∑

k=1

λk∇gk(a) = 0m.

Note. Let M and N be two smooth manifolds with dimensions m and n, say m ≤ n. Suppose
M and N are tangent to each other at a. Then TaM ⊆ TaN. This implies

Ä
TaN
ä⊥
⊆
Ä

TaM
ä⊥

.

Hence, if u ⊥ N at a, then u ∈
Ä

TaN
ä⊥
⊆
Ä

TaM
ä⊥

.
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Proof. Equation (2.13.2) can be written as

∂ f
∂x1

(a) + λ1
∂g1

∂x1
(a) + · · · + λm

∂gm

∂x1
(a) = 0

∂ f
∂x2

(a) + λ1
∂g1

∂x2
(a) + · · · + λm

∂gm

∂x2
(a) = 0

...
∂ f
∂xm

(a) + λ1
∂g1

∂xm
(a) + · · · + λm

∂gm

∂xm
(a) = 0

...
∂ f
∂xn

(a) + λ1
∂g1

∂xn
(a) + · · · + λm

∂gm

∂xn
(a) = 0

which is a system of n linear equations with m unknown variables λ1, · · · , λm. Since
∂(g1, · · · , gm)
∂(x1, · · · , xm)

(a) , 0,

the first m equations in the system determines uniquely the λk’s. Hence, it suffices to show that
for those λ1, · · · , λm, the remaining system with n − m equations

∂ f
∂xm+1

(a) + λ1
∂g1

∂xm+1
(a) + · · · + λm

∂gm

∂xm+1
(a) = 0

...
∂ f
∂xn

(a) + λ1
∂g1

∂xn
(a) + · · · + λm

∂gm

∂xn
(a) = 0

holds.

Let p = n − m. As in the proof of the Implicit Function Theorem, write vector in Rm+p int
the form x = (y, t) = (y1, · · · , ym, t1, · · · , tp). We have to show that

∂ f
∂t`

(a) +
m∑

k=1

λk
∂gk

∂t`
(a) = 0

for ` = 1, · · · , p.

Let g = (g1, · · · , gm) : Rn → Rm. For x ∈ Rn, write x = (y, t) where y ∈ Rm and t ∈ Rp.
Choose a = (y0.t0) for some y0 ∈ Rm and t0 ∈ Rp. Then g(y0, t0) = 0m and Dyg(y0, t0) is
invertible.

By the Implicit Function Theorem, there exists an open set W ⊆ Rp which contains t0 and a
function h : W → Rm such that h is continuously differentiable on W, h(t0) = y0, and

g
(
h(t), t

)
= 0m for every t ∈ W.

For every t ∈ W and k = 1, · · · ,m, define

Gk(t) = gk
(
h(t), t

)
and F(t) = f

(
h(t), t

)
.
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Since g
(
h(t), t

)
= 0m on W, Gk(t) is identically zero on W for k = 1, · · · , k and hence DtGk(t) ≡

01×p ( the zero matrix
[
0
]

1×p).

Since t0 ∈ W and
(
h(t0), t0) = (y0, t0) = a, by the Chain Rule,

01×p = DtGk(t0) =
ï
∂gk

∂x1
(a) · · · ∂gk

∂xn
(a)
ò

1×n



∂h1

∂t1
(t0) · · · ∂h1

∂tp
(t0)

...
. . .

...
∂hm

∂t1
(t0) · · · ∂hm

∂tp
(t0)

1 · · · 0
...

. . .
...

0 · · · 1


n×p

Hence, the `th component of DGk(t0) is
m∑

j=1

∂gk

∂x j
(a)

∂h j

∂t`
(t0) +

∂gk

∂t`
(a) (2.13.3)

for k = 1, 2, · · · ,m. Multiplying (2.13.3) by λk and adding, we have

0 =

m∑
k=1

m∑
j=1

λk
∂gk

∂x j
(a)

∂h j

∂t`
(t0) +

m∑
k=1

λk
∂gk

∂t`
(a)

=

m∑
j=1

î m∑
k=1

λk
∂gk

∂x j
(a)
ó∂h j

∂t`
(t0) +

m∑
k=1

λk
∂gk

∂t`
(a).

Therefore,

0 = −
m∑

j=1

∂ f
∂x j

(a)
∂h j

∂t`
(t0) +

m∑
k=1

λk
∂gk

∂t`
(a). (2.13.4)

Suppose that f (a) is a local maximum subject to the constraints g(a) = 0m. Let E0 =
{

x ∈
V
∣∣ g(x) = 0

}
, and choose an n-dimensional open ball Bn(a, r) such that

f (x) ≤ f (a) for every x ∈ Bn(a, r) ∩ E0.

Since h is continuous, choose a p-dimensional open ball Bp(t0, ε) scuh that
(
h(t), t

)
∈ Bn(a, r)

for every t ∈ Bp(t0, ε). Since F(t0) is a local maximum of F on Bp(t0), ∇F(t0) = 0p. Applying
the Chain Rule as above, we obtain

0 =
m∑

j=1

∂ f
∂x j

(a)
∂h j

∂t`
(t0) +

∂ f
∂t`

(a) (2.13.5)

Adding (2.13.4) and (2.13.5), we conclude that

0 =
∂ f
∂t`

(a) +
m∑

k=1

λk
∂gk

∂t`
(a).

[Note that the proof is refered to the book “Introduction to Analysis 4th Ed.”, William R. Wade,
page 443-445.] □
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Example 2.13.4. Find all extrema of x2 + y2 + z2 subject to the constraints x − y = 1 and
y2 − z2 = 1.

Proof. Let f (x, y, z) = x2 + y2 + z2, g(x, y, z) = x − y − 1 and h(x, y, z) = y2 − z2 − 1. Then

∇ f (x, y, z) = 〈2x, 2y, 2z〉, ∇g(x, y, z) = 〈1,−1, 0〉 and ∇h(x, y, z) = 〈0, 2y − 2z〉.
Consider ∇ f + λ∇g + µ∇h = 0. That is,

〈2x + λ, 2y − λ + 2µy, 2z − 2µz〉 = 〈0, 0, 0〉.
To solve 

2x + λ = 0 (2.13.6)
2y − λ + 2µy = 0 (2.13.7)
2z − 2µz = 0 (2.13.8)

By (2.13.8), either z = 0 or µ = 1

(1) If µ = 1, by (2.13.6) and (2.13.7), λ = −2x = 4y. Thus, x = −2y. From g(x, y) = x− y− 1 =

0, we have (x, y) = (
2
3
,−1

3
). But it cannot make h(x, y, z) = y2 − z2 − 1 = 0.

(2) If z = 0, by h(x, y, z) = y2 − z2 − 1 = 0 and g(x, y, z) = x − y − 1 = 0, we have (x, y) =
(2, 1) or (0,−1). Therefore, the only possible extreme points are (2, 1, 0) and (0,−1, 0). The
only candidates for extrema of f subject to the constraints g = 0 = h are f (2, 1, 0) = 5 and
f (0,−1, 0) = 1.

Geometrically, this problem is to find the points on the intersection of the plane x − y = 1
and the hyperbolic cylinder y2 − z2 = 1 which lie closest to the origin. both of these
points correspond to local minima, and there is no maxima. In particular, the minimum of
x2 + y2 + z2 subject to the given constraints is 1, attained at the point (0,−1, 0).

□
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3.1 Vector Spaces of Functions
In Section 2.8, we studied that the collection of all continuous functions forms a vector spaces
(of functions). In fact, many vector spaces can be viewed as vector spaces of functions. Let’s
review the function space discussed before and see more general spaces. Let S be a non-empty
set and

F (S ) := the collection of all functions from S to R =
{

f : S 7→ R
}
.

Then F (S ) is a vector space.

• S = {p1, p2, . . . , pn} is a finite set. Every function f ∈ F (S ) is uniquely determined by its val-
ues at p1, p2, . . . , pn. so f can be identified with the n-tuple

(
f (p1), f (p2), . . . , f (pn)

)
. Hence,

f 7→
(

f (p1), f (p2), . . . , f (pn)
)

is a linear bijection between F
(
S
)

and Rn.

F (S ) � Rn (“Isomorphism′′)

• S = {p1, p2, . . .} is a countable set. Every function f ∈ F (S ) is identified with the sequence(
f (p1), f (p2), f (p3), . . .

)
.

F (S ) �
{

(a1, a2, a3, · · · )
∣∣ an ∈ R ∀n = 1, 2, . . .

}
the space of sequences over R.

• Question: How about S is uncountable? For example, S = [0, 1], F (S ) consists of all
real-valued functions defined on [0, 1].

45



46 CHAPTER 3. NORMED SPACES

o Some common-used function spaces
In the last chpater, we have discussed the space of continuous functions. Let M = Rn.

C(Rn,R) = C(Rn) =
{

f : Rn 7→ R
∣∣ f is continuous.

}
Cb(Rn) =

{
f ∈ C(Rn)

∣∣ sup
x∈Rn
| f (x)| < ∞

}
.

Now, we want to introduce some common-used spaces of functions.

Definition 3.1.1. Let Ω be an open set in Rn and f : Ω 7→ R. The set
{

x ∈ Ω
∣∣ f (x) , 0

}
is

called the “support of f and denoted by supp( f ).

Example 3.1.2. f (x) =
ß

0, x ∈ Q
1, x ∈ Qc.

Then supp( f ) = R.

Definition 3.1.3. The space of functions with continuous (partial) derivatives in Ω of orders
less than or equal to k ∈ N by Ck(Ω); and the space of functions with continuous derivatives of
all orders by C∞(Ω).

Definition 3.1.4. We define two function spaces here.

C0(Rn) =
{

f ∈ C(Rn)
∣∣ lim
|x|→∞

f (x) = 0
}

(ex. f (x) = e−x2
)

Ck
0(Rn) =

{
f ∈ Ck(Rn)

∣∣ lim
|x|→∞

f (x) = 0
}

for k ∈ N

C∞0 (Rn) =
{

f ∈ C∞(Rn)
∣∣ lim
|x|→∞

f (x) = 0
}

C0(Ω) =
{

f ∈ C(Ω)
∣∣ f has compact support in Ω.[supp( f ) is compact.]

}
Ck

c(Ω) =
{

f ∈ Ck(Ω)
∣∣ f has compact support in Ω.

}
for k ∈ N

C∞c (Ω) =
{

f ∈ C∞(Ω)
∣∣ f has compact support in Ω.

}
Exercise. Check that Cc(Rn) and C0(Rn) are vector spaces, and

Cc(Rn) ( C0(Rn) ( Cb(Rn) ( C(Rn).

Example 3.1.5. (1) In the previous chapter, we define a metric d by

d( f , g) := sup
x∈Ω
| f (x) − g(x)|

on Cb(Ω). Check that
Ä
Cc(Ω), d

ä
and
Ä
C0(Ω), d

ä
are also metric spaces.



3.2. THREE INEQUALITIES 47

(2) Similarly, for Ω ⊆ Rn, we can define a metric dk on Ck
c(Ω) and Ck

0(Ω) (if it makes sense) by

dk( f , g) :=
k∑

i=0

n∑
j=1

sup
x∈Ω

∣∣∂i
j f (x) − ∂i

jg(x)
∣∣.

where ∂i f (x) means all ith order partial derivatives. For example, ∂2 f could be
∂2

∂x1∂x2
,
∂2

∂x2
3

, · · ·
etc.

3.2 Three Inequalities

Definition 3.2.1. (Conjugate Pair) For 1 ≤ p, q ≤ ∞, we call p and q are “conjugate” if

1
p
+

1
q
= 1.

(In some books, the conjugate number for p may be denoted by p′.)

Proposition 3.2.2. (Young’s Inequality) If a, b > 0 and 1 < p, q < ∞ with 1/p + 1/q = 1, then

ab ≤ ap

p
+

bq

q
.

and the equality holds if and only if ap = bq.

Proof.
Consider that f (x) = ex is a convex function.
Let

x1 = p ln a and x2 = q ln b.

Then

ab = f (
x1

p
+

x2

q
) ≤ 1

p
f (x1) +

1
q

f (x2)

=
ap

p
+

bq

q
.

The equality holds if and only if x1 = x2 if and
only if ap = bq.

□

Proposition 3.2.3. (Hölder’s Inequality) If a,b ∈ Rn and 1 < p, q < ∞ with 1/p + 1/q = 1,
then

n∑
k=1

|ak||bk| ≤ ‖a‖p‖b‖q

where ‖a‖p = (
n∑

k=1

|ak|p)
1
p and ‖b‖q = (

n∑
k=1

|bk|q)
1
q .
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Proof. We may assume that a , 0 and then ‖a‖p > 0. By Young’s inequality, for every t > 0,

|ak||bk| = |tak||t−1bk| ≤
tp|ak|p

p
+

t−q|bk|q
q

.

Then
n∑

k=1

|ak||bk| ≤
tp

p
‖a‖pp +

t−q

q
‖b‖qq for every t > 0.

To obtain the best estimate, take the derivative with respect to t on the RHS. When t =
‖b‖q/(p+q)

q

‖a‖p/(p+q)
p

=
‖b‖1/p

q

‖a‖1/qp(
since 1/p + 1/q = 1⇒ p

p+q =
1
q and q

p+q =
1
p

)
, we have

n∑
k=1

|ak||bk| ≤
1
p
‖b‖q
‖a‖p/qp

‖a‖pp +
1
q
‖a‖p
‖b‖q/p

q

‖b‖qq

=
1
p
‖a‖p‖b‖q +

1
q
‖a‖p‖b‖q

= ‖a‖p‖b‖q.

□

Proposition 3.2.4. (Minkowski Inequality) For a,b ∈ Rn and p ≥ 1,

‖a + b‖p ≤ ‖a‖p + ‖b‖p.

Proof. The inequality is clearly true if ‖a+b‖p = 0 or p = 1. Thus, we assume that ‖a+b‖p > 0
and p > 1. For k = 1, 2, . . . , n,

|ak + bk|p = |ak + bk||ak + bk|p−1

≤ |ak||ak + bk|p−1 + |bk||ak + bk|p−1.

Let c =
(
|a1 + b1|p−1, . . . , |an + bn|p−1

)
and q = p

p−1 . Then

‖c‖q =
î n∑

k=1

(
|ak + bk|p−1) p

p−1
ó p−1

p
=
î( n∑

k=1

|ak + bk|p
) 1

p
óp−1
= ‖a + b‖p−1

p .

By Hölder’s inequality,

‖a + b‖pp =
n∑

k=1

|ak + bk|p ≤
n∑

k=1

|ak||ak + bk|p−1 +

n∑
k=1

|bk||ak + bk|p−1

=

n∑
k=1

|ak||ck| +
n∑

k=1

|bk||ck|

(Hölder’s inequality) ≤ ‖a‖p‖c‖q + ‖b‖p‖c‖q
=

(
‖a‖p + ‖b‖p

)
‖a + b‖p−1

p .

Hence,
‖a + b‖p ≤ ‖a‖p + ‖b‖p.

□
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■ Generalization of Hölder’s and Minkowski’s Inequalities

1. Hölder’s Inequality for Sequences. For any two sequences a = (a1, a2, · · · ) and b =

(b1, b2, · · · ), and 1 ≤ p, q ≤ ∞ with
1
p
+

1
q
= 1,

∞∑
k=1

|ak||bk| ≤ ‖a‖p‖b‖q

where ‖a‖p =
Ä ∞∑

k=1

|ak|p
ä1/p

and ‖a‖∞ = sup
1≤k<∞

|ak|.

2. Minkowski’s Inequality for Sequences For any two sequences a = (a1, a2, · · · ) and b =
(b1, b2, · · · ), and 1 ≤ p ≤ ∞,

‖a + b‖p ≤ ‖a‖p + ‖b‖p.

3. Hölder’s Inequality for Functions For 1 ≤ p, q ≤ ∞ with
1
p
+

1
q
= 1, and f and g are

integrable on I, we have∫
I
| f g| dx ≤

Ä∫
I
| f |p dx

ä1/pÄ∫
I
|g|q dx

ä1/q
.

where we will denote the above integral by

‖ f ‖Lp(I) :=
Ä∫

I
| f |p dx

ä1/p
and ‖ f ‖L∞(I) := sup

x∈I
| f (x)|.

Rewrite the above inequality,

‖ f g‖L1(I) ≤ ‖ f ‖Lp(I)‖g‖Lq(I).

Proof. Put A = ‖ f ‖Lp and B = ‖g‖Lq . If A or B = 0, then f ≡ 0 or g ≡ 0 and then inequality
is trivial.

Let a =
| f (x)|

A
and b =

|g(x)|
B

, and apply Young’s inequality

ab =
| f (x)g(x)|

AB
≤ | f (x)|p

pAp +
|g(x)|q
qBq =

ap

p
+

bq

q

Take the integral,

1
AB

∫
I
| f (x)g(x)| dx ≤ 1

pAp

∫
| f (x)|p dx +

1
qBq

∫
|g(x)|q dx.

Since Ap =
∫
| f |p dx and Bq =

∫
|g|q dx, we have

1
‖ f ‖Lp‖g‖Lq

‖ f g‖L1 ≤
1
p
+

1
q
= 1.

Then
‖ f g‖L1(I) ≤ ‖ f ‖Lp(I)‖g‖Lq(I).

□
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4. Minkowski’s Inequality for Functions For 1 ≤ p ≤ ∞, and f and g are integrable on I, we
have Ä∫

I
| f + g|p dx

ä1/p
≤
Ä∫

I
| f |p dx

ä1/p
+
Ä∫

I
|g|p dx

ä1/p
.

That is,
‖ f + g‖Lp(I) ≤ ‖ f ‖Lp(I) + ‖g‖Lp(I).

3.3 Normed Spaces
Definition 3.3.1. Let (X,+, ·) be a vector space over F. A “norm” on X is a function ‖ · ‖ : X →
[0,∞) satisfying

(i) ‖x‖ ≥ 0 ∀x ∈ X

(ii) ‖x‖ = 0 if and only if x = 0

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ X

(iv) ‖λx‖ = |λ|‖x‖ ∀λ ∈ F and x ∈ X.

The vector space with a norm (X,+, ·, ‖ · ‖) or (X, ‖ · ‖) ( or X if it is clear) is called a “normed
vector space” or simply a “normed space”.

Example 3.3.2. For 1 ≤ p < ∞, (Rn, ‖ · ‖p) is a normed space, where

‖x‖p =
Ä n∑

k=1

|xk|p
ä 1

p for x = (x1, x2, . . . , xn) ∈ Rn.

Note. When p = 1, 2, it is easy to check that (Rn, ‖ · ‖p) is a normed space. Especially, when
p = 2, the norm is called the “Euclidean norm”. The condition (iii) can be proved by Minkowski
inequality.

Example 3.3.3. (Rn, ‖ · ‖∞) is a normed space, where

‖x‖∞ = max
k=1,...,n

|xk| for x = (x1, x2, . . . , xn) ∈ Rn

is called the “sup-norm”.

o Norms on the space of sequences over R
Question: Can we use the similar definitions to obtain norms on an infinitely dimensional vec-
tor spaces?

Let X =
{

(a1, a2, a3, . . .)
∣∣ a j ∈ R

}
be the collection of all sequences in R, called the space

of sequences over R. Define + : X × X → X and · : R × X → X by

(a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .)
λ · (a1, a2, a3, . . .) = (λa1, λa2, λa3, . . .)

Then (X,+, ·) is a vector space over R.
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Definition 3.3.4. For 1 ≤ p < ∞, we define ‖ · ‖p by

‖a‖p =
Ä ∞∑

k=1

|ak|p
ä 1

p where a = (a1, a2, a3, . . .)

and for p = ∞
‖a‖∞ = sup

1≤k<∞
|ak|, ( “sup-norm”).

Question: Is (X, ‖ · ‖p) a normed space?

Answer: No. (1, 1, 1, · · · ) ∈ X but ‖(1, 1, 1, · · · )‖p = ∞ for every 1 ≤ p < ∞.

Definition 3.3.5. Define the subspaces of X by

`p = `p(R) =
¶

a = (a1, a2, · · · ) ∈ X
∣∣∣ ‖a‖p < ∞© for 1 ≤ p < ∞.

and
`∞ = `∞(R) =

¶
a = (a1, a2, · · · ) ∈ X

∣∣∣ ‖a‖∞ < ∞©.
Exercise. Check that

(
`p, ‖ · ‖p

)
is a normed space for 1 ≤ p ≤ ∞.

o Norms on the Space of Continuous Functions
Recall: Let (M, d) be a metric space and D ⊆ M. We define

C(D) =
{

f : D→ R
∣∣ f is continuous on D

}
.

To avoid some complicated situations, let M = Rn and D ⊆ M be an “interval”.

Definition 3.3.6. For 1 ≤ p < ∞, define

‖ f ‖Lp(D) = ‖ f ‖Lp =
Ä∫

D
| f (x)|p dx

ä 1
p

and for p = ∞, define

‖ f ‖L∞(D) = ‖ f ‖L∞ = sup
x∈D
| f (x)| (“sup-norm”)

Exercise. Prove that
Ä
C
(
[a, b]

)
, ‖ · ‖Lp

ä
is a normed space for 1 ≤ p ≤ ∞.

o Normed Subspaces and Product Spaces

Proposition 3.3.7. Let (X, ‖ · ‖) be a normed space and V ⊆ X be a subspace. Then (V, ‖ · ‖) is
a normed space under the same norm.

Example 3.3.8.
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(i) `∞(R) =
{

(a1, a2, · · · )
∣∣ sup

k∈N
|ak| < ∞

}
is a vector space with sup-norm ‖ · ‖`∞ . Define

`∞c =
{

(a1, a2, · · · ) ∈ `∞(R)
∣∣ {ak}∞k=1 converges.

}
`∞0 =

{
(a1, a2, · · · ) ∈ `∞(R)

∣∣ lim
k→∞

ak = 0
}
.

Hence, `∞0 ⊂ `∞c ⊂ `∞ and
(
`∞0 , ‖ · ‖∞

)
and

(
`∞c , ‖ · ‖∞

)
are normed spaces.

(ii) C([a, b]) =
{

f : [a, b] → R
∣∣ f is continuous on [a, b].

}
is a vector space with sup-norm

‖ · ‖L∞ . Define

X =
{

f ∈ C([a, b])
∣∣ f (a) = 0

}
Y =

{
f ∈ C([a, b])

∣∣ f is a polynomial.
}
.

Then
(
X, ‖ · ‖L∞

)
and

(
Y, ‖ · ‖L∞

)
are normed spaces.

Remark. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be two normed spaces. We can define the product norm
on the product space X × Y by

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y .

3.4 Normed Spaces As Metric Spaces
Let (X, ‖ · ‖) be a normed space. Define d(x, y) = ‖x − y‖. Then (X, d) becomes a metric space

(check!). This metric is called the “induced metric ” of the norm ‖ · ‖
Note.

(i) Every norm can induce a metric. But not every metric is induced by a norm. In functional
analysis, most metrics are induced in this way.

(ii) When a metric is established, the topology is induced by this metric and we can consider
the convergence and continuity implicitly referring to this metric.

Proposition 3.4.1. Let (X, ‖ · ‖) be a normed space. Then

(a) The norm ‖ · ‖ : X → [0,∞) is a continuous function.

(b) The addition operation + : X × X → X and the scalar multiplication · : R × X → X are
continuous.

Proof. Exercise □

■ Comparison with two norms on a vector space

Definition 3.4.2. Let X be a vector space with norms ‖ · ‖1 and ‖ · ‖2. We call that

(1) ‖ · ‖2 is stronger than ‖ · ‖1 if there exists C > 0 such that

‖x‖1 ≤ C‖x‖2 for every x ∈ X.
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(2) ‖ · ‖1 and ‖ · ‖2 are equivalent if ‖ · ‖1 is stronger than ‖ · ‖2 and ‖ · ‖2 is stronger than ‖ · ‖1.
That is , there are C1,C2 > 0 such that

C1‖x‖2 ≤ ‖x‖1 ≤ C2‖x‖2 for every x ∈ X.

Lemma 3.4.3. Let ‖ · ‖1 and ‖ · ‖2 be two norms on a vector space X. Suppose that ‖ · ‖2 is
stronger than ‖ · ‖1. Then if U ⊆ X is open in (X, ‖ · ‖1), then U is open (X, ‖ · ‖2).

Proof. Since ‖ · ‖2 is stronger than ‖ · ‖1, there exists C > 0 such that

‖x‖1 ≤ C‖x‖2

for every x ∈ X.

Let x0 ∈ U be an interior point of U in ‖ · ‖1. There exists r > 0 such that B1(x0, r) ⊆ U
(note: Bi is denoted the ball under the induced metric of ‖ · ‖i for i = 1, 2). Consider the ball
B2(x0,

r
C

) =
{

y ∈ X
∣∣ ‖x0 − y‖2 <

r
C
}

. For y ∈ B2(x0,
r
C

),

‖x0 − y‖1 ≤ C‖x0 − y‖2 < C · r
C
= r

Thus, y ∈ B1(x0, r) and this implies that B2(x0,
r
C

) ⊆ B1(x0, r) ⊆ U. Hence, x0 is an interior
point of U in ‖ · ‖2. Since x0 is an arbitrary point in U, we prove that U is open in ‖ · ‖2. □

Remark. Heuristically, the number of open sets in (X, ‖ · ‖2) is more than the number of open
sets in (X, ‖ · ‖1). That is, T1 ⊆ T2.

Example 3.4.4. On Rn, all p-metric dp(x, y) = ‖x − y‖p induced from the p-norm (1 ≤ p ≤ ∞)
are equivalent.

Proof. It suffices to show that any p-norm is equivalent to the∞- norm. That is,

C1‖x‖∞ ≤ ‖x‖p ≤ C2‖x‖∞

for every 1 ≤ p ≤ ∞ and for some C1,C2 > 0 (depending on p). For x =
n∑

j=1

α je j, ‖x‖2 =»∑n
j=1 |α j|2. For fixed 1 ≤ p ≤ ∞, we have

max(|α1|, |α2|, · · · , |αn|) ≤
(
|α1|p + |α2|p + · · · + |αn|p

)1/p

≤
Ä

n · [max(|α1|, |α2|, · · · , |αn|)]p
ä1/p

= n1/p max(|α1|, |α2|, · · · , |αn|).

Hence, ‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞. □

In fact, there is a general result of this example.

Theorem 3.4.5. Any two norms on a finite dimensional space are equivalent.
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Proof. Hint: Firstly, to prove that any norm is equivalent to the Euclidean norm on Rn. Then,
to prove that any n dimensional space X is isomorphic to Rn. □

Question: How about the norms on an infinite dimensional vector spaces?

Example 3.4.6. Consider the norms ‖ · ‖L1 and ‖ · ‖L∞ on C([a, b]).

‖ f − g‖L1 ≤
∫ b

a
| f − g|(x) dx ≤ (b − a)‖ f − g‖L∞ .

On the other hand, consider the sequence fn(x) =
ß

1 − nx 0 ≤ x ≤ 1/n
0 1/n ≤ x ≤ 1 Then, ‖ fn‖L∞ = 1 for

all n ∈ N but ‖ fn‖L1 → 0. Hence, it is impossible to find a constant C such that ‖ f ‖L∞ ≤ C‖ f ‖L1 .

3.5 Separability
Definition 3.5.1. Let (M, d) be a metric space and E ⊆ M be a subset.

(a) We call that E is a “dense set” of M if its closure is the whole M. That is, E ⊆ M = E.

(b) We call that M is “separable” if it has a countable dense subset.

Example 3.5.2.

(i) R is separable and has a countable dense subset Q. Also, Rn is separable for 1 ≤ n < ∞.

(ii) Any compact set in a metric space is separable.

Exercise. Let (M, d) be a metric space. The following statements are equivalent.

(i) E ⊆ M is a dense subset.

(ii) For every x ∈ M there exists a sequence {xn} ⊆ E such that lim
n→∞

xn = x.

(iii) For every x ∈ M and any open neighborhood U of x, U ∩ E , ∅.

Remark.

(i) Suppose that A ⊆ B ⊆ M. If A is a dense subset of M, then A is a dense subset of B and B
is a dense subset of M.

(ii) The denseness of a subset depends on the given metric. For example, every nonempty set
in a space with discrete metric has only one dense subset. In fact, it is the set itself.

Proposition 3.5.3. The following normed spaces are separable.

(a) (Rn, ‖ · ‖p) for 1 ≤ p ≤ ∞.

(b) (`p, ‖ · ‖`p) for 1 ≤ p < ∞.

(c)
(
C([a, b]), ‖ · ‖Lp

)
for 1 ≤ p ≤ ∞.
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Proof. (a) It is easy to check that Qn is a dense subset of Rn in ‖ · ‖p for 1 ≤ p ≤ ∞.

(b) Let E =
{

(a1, a2, a3, · · · )
∣∣ ai ∈ Q and only finitely many a′i s are nonzero.

}
. Check that E is

a countable dense subset of `p.

(c) Let F =
{

p ∈ C([a, b])
∣∣ p is a polynomial with rational coefficients

}
. Check that F is

one-to-one corresponding to the set E in (b) and hence F is countable.

For f ∈ C([a, b]) and given ε > 0, by the Stone-Weierstrass Theorem, there exists a poly-
nomial P = anxn + · · · + a1x + a0 such that ‖ f − P‖L∞ < ε. Let M = max(|a|, |b|) and
choose rational numbers r0, r1, · · · , rn such that |rk − ak| <

ε

(n + 1)Mk for k = 0, 1, · · · , n.

Then P1(x) = rnxn + · · · + r1x + r0 ∈ F and ‖P1 − P‖L∞ < ε. Thus,

‖ f − P1|L∞ ≤ ‖ f − P‖L∞ + ‖P − P1‖L∞ < 2ε.

Moreover, for 1 ≤ p ≤ ∞,

‖ f − P1‖Lp =
(∫ b

a
| f (x) − P1(x)|
≤ ‖ f−P1‖L∞

p) 1
p ≤ (b − a)

1
p ‖ f − P1‖L∞ < 2(b − a)

1
pε.

Hence, C([a, b]) has a dense subset F and is separable.
□

Exercise. Any subset of a separable metric space is separable.

Proposition 3.5.4. `∞ is not separable.

Proof. Assume that E =
{

p1, p2, p3, · · ·
}

is a countable dense subset of `∞. Denote pk = (p(k)
1 , p(k)

2 , p(k)
3 , · · · ).

Choose a = (a1, a2, a3, · · · ) ∈ `∞ such that ak =

®
1, if |p(k)

k | ≤ 1
2

0, if |p(k)
k | > 1

2 .
For any k ∈ N,

‖a − pk‖`∞ = sup
i∈N
|ai − p(k)

i | ≥ |ak − p(k)
k | ≥

1
2
.

Then E is not a dense subset of `∞. Hence, `∞ has no countable dense subset and is not separa-
ble. □

3.6 Completeness
Recall: A metric space (M, d) is complete if every Cauchy sequence in M converges (in M).

Definition 3.6.1. Let (M, d) be a metric space. A metric space (M∗, d∗) is called a “completion”
of (M, d) provided the following four conditions hold:

(i) (M∗, d∗) is complete.

(ii) There exists a one-to-one map φ : M → M∗.
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(iii) d∗
(
φ(x), φ(y)

)
= d(x, y) for all x, y ∈ M.

(iv) φ(M) is dense in M∗; that is, M∗ = φ(M).

Remark. We say that a metric space (M, d) is “isometrically embedded” in another metric space
(M∗, d∗) if there exists an one-to-one map φ : M → M∗ saytisfying (ii) and (iii).

Question: For any metric space (M, d), can we always find its completion?

Theorem 3.6.2. Any metric space has a unique completion.

Proof. Skip □

■ Complete normed spaces

Definition 3.6.3. A complete normed space is called a “Banach space”.

Proposition 3.6.4.

(1) (Rn, ‖ · ‖p) for 1 ≤ p ≤ ∞ is a Banach space. (Easy!)

(2) (`p, ‖ · ‖`p) for 1 ≤ p ≤ ∞ is a Banach space. (Skip the proof.)

(3)
Ä
C([a, b]), ‖ · ‖L∞

ä
is a Banach space.

Remark.
Ä
C([a, b]), ‖ · ‖Lp

ä
is NOT complete for 1 ≤ p < ∞.

Proof. Consider φn(x) =

 1, x ∈ [−1, 0]
−nx + 1, x ∈ [0, 1

n ]
0, x ∈ [1

n , 1]
and φ(x) =

ß
1, x ∈ [−1, 0]
0, x ∈ (0, 1] It is easy to

see that ‖φn − φ‖Lp → 0. Hence, {φn}∞n=1 is a Cauchy sequence in ‖ · ‖Lp .

Assume that {φn} converges in
Ä
C([−1, 1]), ‖ · ‖Lp

ä
. There exists a function f ∈ C([−1, 1])

such that φn → f in ‖ · ‖Lp . Consider

(∫ 0

−1
| f − φ|p dx

)1/p ≤
(∫ 0

−1
| f − φn|p dx

)1/p
+
(∫ 0

−1
|φn − φ|p dx

)1/p

≤
(∫ 1

−1
| f − φn|p dx

)1/p
+
(∫ 1

−1
|φn − φ|p dx

)1/p

→ 0

Since f and φ are continuous on [−1, 0], f ≡ φ = 1 on [−1, 0]. Similarly, for any δ > 0,( ∫ 1

δ
| f − φ|p dx

)1/p
= 0 and this implies f ≡ φ = 0 on [δ, 1]. It is easy to show there is no such

continuous function f and hence {φn} does not converge in
Ä
C([−1, 1]), ‖ · ‖Lp

ä
.

□

Question: What is the completion of
Ä
C([a, b]), ‖ · ‖Lp

ä
for 1 ≤ p < ∞?

The completion of
Ä
C([a, b]), ‖ · ‖Lp

ä
is denoted by Lp(a, b) under the Lp-norm and the element

in Lp(a, b) is called Lp-function. Hence Rn, `p(R) (1 ≤ p ≤ ∞) and Lp(a, b) (1 ≤ p < ∞) are
Banach spaces.
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3.7 Sequential Compactness
■ Bolzano-Weierstrass property: Any bounded sequence of real numbers has a convergent
subsequence.

We expect that a subset in a metric space (M, d) enjoys the Bolzano-Weierstrass property.
We recall that E ⊆ M is called “sequentially compact” if every sequence in E contains a con-
vergent subsequence in E.

Note.

(i) Any sequentially compact set is a closed set.

(ii) The closed interval [a, b] is sequentially compact in R.

(iii) Every closed and bounded set in Rn is sequentially compact. (In fact, it is compact.)

Remark. We recall some results for Rn and general metric spaces here.

(i) In Rn, a subset A ⊂ Rn is compact⇐⇒ it is sequentially compact.

(ii) In a metric space, a subset is compact⇐⇒ it is sequentially compact =⇒ it is closed and
bounded. But the converse is false.

Question: Which conditions will imply that “closedness and boundedness ” =⇒ “compactness
”?

Answer: The direction “=⇒” is true if it is in a finite dimensional normed space. But it could
be false if the dimension is infinite.

Lemma 3.7.1. Let {x1, · · · , xn} be a linearly independent set of vectors in a normed space
(X, ‖ · ‖) (of any dimension). Then there is a number c > 0 such that for every choice of scalars
α1, · · · , αn we have

‖α1x1 + · · · + αnxn‖ ≥ c
(
|α1| + · · · |αn|

)
.

Proof. If
(
|α1| + · · · |αn|

)
= 0, the inequality is clearly true. Thus, we may assume that

(
|α1| +

· · · |αn|
)
> 0. Moreover, dividing both sides by

(
|α1| + · · · |αn|

)
, it suffices to show that ‖α1x1 +

· · · + αnxn‖ ≥ c for every n-tuple (α1, · · · , αn) with
(
|α1| + · · · + |αn|

)
= 1 and for some constant

c > 0.
Assume that the result is false. Then there is a sequence

ym = α
(m)
1 x1 + · · · + α(m)

n xn with
n∑

i=1

|α(m)
i | = 1.

with the property that ‖ym‖ → 0 as m → ∞. Clearly, |α(m)
i | ≤ 1 holds for every i = 1, · · · , n.

Hence, by Bolzano-Weierstrass property and using the iterative process, there exists a subse-
quence ymk = α(mk)

1 x1 + · · · + α(mk)
n xn such that α(mk)

i → αi as k → ∞. Hence, ymk → y =
α1x1 + · · · + αnxn and

∑n
i=1 |αi| = 1. Since x1, · · · , xn are linearly independent and ‖ymk‖ → 0,

we have y = 0 and thus αi = 0 for i = 1, · · · , n. It contradicts that
∑n

i=1 |αi| = 1. The proof is
complete. □
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■ Closedness and Completeness:

Theorem 3.7.2. Every finite dimensional subspace Y of a normed space (X, ‖ · ‖) is complete.
In particular, every finite dimensional normed space is complete.

Proof. (Exercise) □

Corollary 3.7.3. Every finite dimensional subspace Y of a normed space (X, ‖ · ‖) is closed in
X.

Proof. (Exercise) □

Remark. Infinite dimensional subspaces need not be closed.

■ Compactness v.s Closedness + Boundedness:

Theorem 3.7.4. Let (X, ‖ · ‖) be a normed space with dimX = n < ∞. Then any subset M ⊂ X
is (sequentially) compact if and only if M is closed and bounded.

Proof. We only prove that direction (⇐=) here. Let {x1, · · · , xn} be a basis of X and {ym} be a
sequence in M. Write

ym = α
(m)
1 x1 + · · · + α(m)

n xn.

Since M is bounded, so is {ym}, say B > ‖ym‖ ≥ c
∑n

i=1 |α(m)
i |. By using Bolzano-Weierstrass

consecutively on the bounded sequences α(m)
1 , α(m)

2 , · · · , α(m)
n , there exists a subsequence ymk →

y = α1x1 + · · · + αnxn. But M is closed and hence contains its limit points, so y ∈ M. It implies
that M is compact. □

Remark. The closed unit ball in an infinite dimensional normed space is never compact. (See
the proof below.)

■ Bolzano-Weierstrass and Sequentical Compactness:

Lemma 3.7.5. Every finite dimensional subspace of a normed space (X, ‖ · ‖) has Bolzano-
Weierstrass property.

Proof. Exercise (Hint: use Lemma 3.7.1 and by Bolzano-Weierstrass consecutatively .) □

Lemma 3.7.6. (Best approximation) Let Y be any proper finite dimensional subspace of the
normed space (X, ‖ · ‖). Then for any x ∈ X\Y, there exists y0 ∈ Y such that

‖x − y0‖ = d ≡ dist(x,Y) ≡ inf
y∈Y
‖x − y‖ > 0.

Proof. The space Y is finite dimensional and hence is closed. It is easy to prove that the distance
d is positive. Choose a minimizing sequence {ym} ⊂ Y such that ‖ym − x‖ → d. Then

‖ym‖ ≤ ‖x‖ + ‖x − ym‖ ≤ ‖x‖ + d + 1 as m is sufficiently large.

Since {ym} is bounded and Y is finite dimensional, by Bolzano-Weierstrass, there exists a subse-
quence ymk converges to y0. Thus, d = ‖x−y0‖. Moreover, since Y is closed, we have y0 ∈ Y . □
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Example 3.7.7. If the subspace Y is of infinite dimensions, the best approximation may not
exist. Let X = C

(
[−1, 1]

)
with sup-norm and

Y =
{

f ∈ X
∣∣∫ 0

−1
f (x) dx = 0,

∫ 1

0
f (x) dx = 0

}
.

Let h ∈ X satisfy
∫ 0

−1
h(x) dx = 1 and

∫ 1

0
h(x) dx = −1. We can show that h < Y and dist(h,Y) =

1. But there is no function g ∈ Y such that ‖h − g‖ = 1.

Theorem 3.7.8. Any closed ball in a normed space is sequentially compact if and only if the
space is of finite dimension.

Proof. The direction (⇐=) is proved above. We will prove (=⇒) here.

W.L.O.G, it suffices to show the theroem on the closed unit ball B =
{

x ∈ X
∣∣ ‖x‖ ≤ 1

}
. We

will show that B is not sequentially compact if X is of infinite dimensions.

If X is of infinite dimensions, there exists a linearly independent sequence {x1, x2, x3, · · · }
in X. Define the vector spaces Vn := Span(x1, · · · , xn) for n = 1, 2, · · · . We will construct a
sequence in B which has no convergent subsequence.

Set z1 = x1/‖x1‖. For n ≥ 2, consider xn < Vn−1. By Lemma3.7.6, there exists yn−1 be the
point in Vn−1 such that ‖xn − yn−1‖ = dist

(
xn,Vn−1

)
. Let

zn =
xn − yn−1

‖xn − yn−1‖
.

We have ‖zn‖ = 1 and, for all y ∈ Vn−1,

‖zn − y‖ =
∥∥∥∥ xn − yn−1

‖xn − yn−1‖
− y
∥∥∥∥ = ‖xn − y′‖
‖xn − yn−1‖

≥ 1

where y′ = yn−1 + ‖xn − yn−1‖y ∈ Vn−1 and thus ‖xn − yn−1‖ ≤ ‖xn − y′‖.

For n > m ≥ 1, zm ∈ Vm ⊆ Vm+1 ⊆ · · · ⊆ Vn−1. Then ‖zn − zm‖ ≥ 1. Hence, {zm} cannot
contain a convergent subsequence. We conclude that the closed unit ball is not sequentially
compact in an infinite dimensional normed space. □

3.8 Arzelá-Ascoli Theorem

Not all bounded sequences in an infinite dimensional normed space have convergent subse-
quences. The Arzelá-Ascoli theorem gives a necessary and sufficient condition when a closed
and bounded set in C(K), where K is a closed and bounded (compact) in Rn is sequentially com-
pact. The compactness of K implies that C(K) is a separable Banach space under the sup-norm.

Lemma 3.8.1. Let E be a set in the metric space (X, d). Then
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(1) that E is sequentially compact implies that for any ε > 0, there exist finitely many ε-ball
covering E.

(2) assuming that E is closed and (X, d) is complete, the converse of (1) is true.

Proof. (Exercise) □

Lemma 3.8.2. Let { fn} be a uniformly bounded sequence of functions from the countable set
{z1, z2, · · · } to F. There is a subsequence { fnk} of { fn} such that { fnk(z j)} is convergent for every
z j.

Proof. (Use the diagonal process)(sometimes called to Cantor’s diagonal sequence.) □

Theorem 3.8.3. Let F be a closed set in C(K) where K is a compact set in Rn. Then F is
sequentially compact (in C(K)) if and only if it is uniformly bounded and equicontinuous.

Proof. (Sketch the proof)
(⇐=)

(i) By Lemma3.8.1, for each j = 1, 2, 3 · · · , find
1
j
-balls

¶
B(x j

1,
1
j ), · · · , B(x j

N j
, 1

j )
©

covers K

where the number N j depending on j.
(Note: the collection of all the centers of those balls, S =

{
x j

i

∣∣ j = 1, 2, 3, · · · , 1 ≤ i ≤ N j
}

is a countable dense subset of K.)

(ii) By Lemma3.8.2, uniformly boundedness of F implies that there exists a sequence { fn} in
F such that it is convergent at every point in S .

(iii) Equicontinuity of F implies that { fn} uniformly converges on K.

(iv) That C(K) is complete under the sup-norm implies it is sequentially compact.

(=⇒)

(i) By Lemma3.8.1, for each ε > 0, there exists f1, · · · , fN ∈ F such that F ⊂ ⋃N
j=1 B( f j, ε).

(ii) For each j = 1, · · · ,N, continuity of f j on the compact set K implies f j is uniformly
continuous on K. Moreover, finitely many of { f j} combining with (i) gives F is equicon-
tinuous on K.

(iii) Let ε = 1. Each 1-ball f j is bounded on K and finitely many of those 1-balls with (i) show
that F is uniformly bounded.

□
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Corollary 3.8.4. A sequence in C(K) where K is a closed and bounded set in Rn has a conver-
gent subsequence if it is uniformly bounded and equicontinuous.

Proof. Let { fn} be a uniformly bounded and equicontinuous sequence in C(K) and F be the
closure of { fn}. It suffices to show that F is also uniformly bounded and equicontinuous in
C(K). Then, by Arzelá-Ascoli theorem, { fn} has a convergent subsequence.

Since { fn} is uniformly bounded, there exists a number M such that

| f j(x)| ≤ M, ∀x ∈ K, j ≥ 1.

This implies that all the limit point of { fn} is also bounded by M and F is uniformly bounded.

Similarly, for equicontinuity, for every ε > 0 there exists some δ > 0 such that

| f j(x) − f j(y)| < ε, ∀x, y ∈ K, |x − y| < δ.

Therefore, for the limit point f ∈ F satisfying ‖ f − f j‖ < ε for some f j, we have

| f (x) − f (y)| ≤ | f (x) − f j(x)| + | f j(x) − f j(y)| + | f j(y) − f (y)| < 3ε ∀x, y ∈ K, |x − y| < δ.

Thus, F is equicontinuous. □

3.9 Inner Product Spaces
In Rn, there is a usual inner product (say “dot product”) which can induce the Euclidean norm.
An inner product enables one to define orthogonality. It would help us to establish a nice
structure of space. Therefore, it is natural to motivate us to figure out the inner product on a
space (especially with infinite dimensions).

Definition 3.9.1. We say that X is an “inner product space” if X is a vector space with inner
product 〈·, ·〉 : X × X → F such that ∀x, y, z ∈ X and α ∈ F,

(i) 〈x, x〉 ≥ 0 with the equality holds if and only if x = 0.

(ii) 〈x + y, z〉 = 〈x, z〉 + 〈x, z〉.

(iii) 〈αx, y〉 = α〈x, y〉.

(iv) 〈x, y〉 = 〈y, x〉.

The pair (X, 〈·, ·〉) is called an “inner product space.

Remark.
(1) For x, y, z ∈ X and α ∈ C,

〈x, y + z〉 = 〈x, y〉 + 〈y, z〉
〈x, αy〉 = ᾱ〈x, y〉
〈x, 0〉 = 〈0, x〉 = 0
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(2) If X is a real vector space, then 〈x, y〉 = 〈y, x〉.

Example 3.9.2. We introduce some well-known inner product spaces here.

(1) X = Cn and

〈a, b〉 = 〈(a1, a2, · · · an), (b1, b2, · · · bn)〉 =
n∑

i=1

aibi.

(2) X = C
(
[a, b],C

)
and

〈 f , g〉 =
∫ b

a
f (x)g(x) dx.

(3) X = `2(C) and

〈a, b〉 = 〈(a1, a2, · · · ), (b1, b2, · · · )〉 =
∞∑

i=1

aibi.

Proposition 3.9.3. (Cauchy-Schwarz) For any x and y in an inner product space (X, 〈·, ·〉),∣∣〈x, y〉∣∣ ≤ √
〈x, x〉

√
〈y, y〉.

Moreover, equality holds in this inequality if and only if x and y are linearly dependent.

Proof. Skip □

■ Angles
Form this proposition, for any x, y ∈ X, we have

|〈x, y〉|
√
〈x, x〉

√
〈y, y〉

≤ 1.

Therefore, for any two nonzero vectors x and y, there is a unique θ ∈ [0, π] satisfying

cos θ =
Re〈x, y〉

√
〈x, x〉

√
〈y, y〉

Note. Any two vectors x and y are “orthogonal” if 〈x, y〉 = 0. Thus, the zero vector is orthogonal
to all vectors.

o Inner product and Norm

Definition 3.9.4. Let (X, 〈·, ·〉) be an inner product space.

(1) We define a norm on X which is canonically associated to the inner product by

‖x‖ =
√
〈x, x〉 for every x ∈ X.

It is easy to check that ‖ · ‖ is a norm on X.

(2) A complete inner product space (under the norm ‖ · ‖ =
√
〈·, ·〉 ) is called a “Hilbert space”.

Remark.
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(1) We have the inclusion relations of mathematical spaces that

Inner Product Spaces ⊂ Normed Spaces ⊂ Metric Spaces ⊂ Topological Spaces.

(2) In an inner product space, there is a natural metric which is induced by the inner product.
We can discuss the topological issues on the inner product space.

(3) A Hilbert space is also a Banach space.

Exercise. The inner product 〈·, ·〉 : X × X → R is a continuous function.

■ Some Identities

Proposition 3.9.5. (1) (Parallelogram Identity) Let X be an inner product space and x, y ∈ X.
Then

‖x + y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
(3.9.1)

(2) (Polarization Identity) For every x, y in a real inner product space X, we have

〈x, y〉 = 1
4
(
‖x + y‖2 − ‖x − y‖2

)
.

(3) On a real normed space (X, ‖ · ‖), the above identity defines an inner product on X if and
only if the parallelogram identity holds.
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Proof. The proof of (1) and (2) are directly from the expansion that

‖x + y‖2 = ‖x‖2 + 〈x, y〉 + 〈y, x〉 + ‖y‖2

and
‖x − y‖2 = ‖x‖2 − 〈x, y〉 − 〈y, x〉 + ‖y‖2.

The proof of (3) is left to the readers. □

We have similar results as above if the space is over C.

Proposition 3.9.6. (1) For any x, y in a complex inner product space X, we have the polariza-
tion identities

Re〈x, y〉 = 1
4
(
‖x + y‖2 − ‖x − y‖2

)
,

and
Im〈x, y〉 = 1

4
(
‖x + iy‖2 − ‖x − iy‖2

)
.

(2) On a complex normed space X, the polarization identities define an inner product on X
which induces its norm if and only if the parallelogram identity holds.

Note. This propostion show that if a norm is induced by an inner product, the equality (3.9.1)
is necessarily true. Moreover, this will imply that the ‖ · ‖p norm on Rn is induced from an inner
product if and only if p = 2.

Consider x = (1, 1, 0, · · · , 0) and y = (1,−1, 0, · · · , 0) in Rn. Then ‖x‖p = ‖y‖p = 2
1
p and

‖x + y‖p = ‖x − y‖p = 2. If ‖ · ‖p is induced from an inner product, then

‖x + y‖2 + ‖x − y‖2 = 8 = 2(‖x‖2p + ‖y‖2p) = 2
2
p+2

which holds only if p = 2.
Exercise. Show that ‖ · ‖Lp on C([0, 1]) is induced from an inner product if and only if p = 2.

o Best Approximation

Recall that the best approximation for closed subspaces in a Banach space may not always have
a positive solution (if the dimensions of spaces are infinite). We may also consider this problem
on Hilbert spaces.

Theorem 3.9.7. Let K be a closed and convex subset in the Hilbert space X and x0 ∈ X\K.
There exists a unique point y0 ∈ K such that

‖x0 − y0‖ = inf
y∈K
‖x0 − y‖
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Proof. Let {yn} be a minimizing sequence in K. That is, ‖x0 − yn‖ → d := inf
y∈K
‖x0 − y‖. By the

parallelogram identity,

‖yn − ym‖2 = ‖(yn − x0) − (ym − x0)‖2

= −‖yn − x0 + ym − x0‖2 + 2
(
‖yn − x0‖2 + ‖ym − x0‖2

)
= −4

∥∥∥
∈K︷     ︸︸     ︷

yn + ym

2
−x0

∥∥∥2
≥ d2

+2
(
‖yn − x0‖2 + ‖ym − x0‖2

)
≤ −4d2 + 2

(
‖yn − x0‖2 + ‖ym − x0‖2

)
→ 0 as m, n→ ∞

The above inequality is from the fact that the convexity of K implies that
yn + ym

2
∈ K. Hence,

{yn} is a Cauchy sequence. Since X is complete, there exists y0 ∈ X such that yn → y0 as n→ ∞.
Moreover, since K is closed, we have y0 ∈ K. By the continuity of the norm, d = ‖x0 − y0‖.

To prove that the point y0 ∈ K is unique. Assume that there exists z0 ∈ K such that ‖x0−z0‖ =
d. Then

‖y0 − z0‖2 ≤ −4
∥∥∥

∈K︷    ︸︸    ︷
y0 + z0

2
−x0

∥∥∥2 + 2
(
‖y0 − x0‖2 + ‖z0 − x0‖2

)
≤ −4d2 + 4d2 = 0

Hence, y0 = z0. □

Remark. It is important to note that all of the hypotheses in the theorem are necessary. In
particular, if K is not convex then there may be many points in K for which this distance between
x0 and those point equals the distance between x0 and K.

By the above theorem, for any given nonempty, convex and closed subset K in a Hilbert
space X, every x0 ∈ X\K is uniquely corresponding to an element y0 ∈ K (with minimal
distance from x0 to K). Hence, we can define a map PK : X\K → K by PK(x0) = y0. Moreover,
this map can be extended to the whole space X by

PK(x0) =
ß

y0 if x0 ∈ X\K
x0 if x0 ∈ K
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Proposition 3.9.8. Let K be a convex subset of a Hilbert space, x ∈ X and y0 ∈ K. Then
y0 = PK(x) if and only if

〈x − y0, y − y0〉 ≤ 0 for all y ∈ K. (3.9.2)

Proof. (=⇒) If (3.9.2) fails, there exists y ∈ K such that 〈x − y0, y− y0〉 > 0. Since K is convex,
yλ := λy + (1 − λ)y0 ∈ K for every 0 < λ < 1. Then

‖x − yλ‖2 = 〈x − yλ, x − yλ〉
= ‖x − y0‖2 − 2λ〈x − y0, y − y0〉 + λ2‖y − y0‖2

= ‖x − y0‖2 − λ[2〈x − y0, y − y0〉
>0

−λ‖y − y0‖2]

= ‖x − y0‖2 − Iλ

For λ > 0 sufficiently small, Iλ > 0 and thus ‖x − yλ‖2 < ‖x − y0‖2. Hence, y0 , PK(x).
(⇐=) If (3.9.2) holds and y ∈ K, then

‖x − y0‖2 = 〈x − y0, x − y0〉
= 〈x − y0, x − y〉 + 〈x − y0, y − y0〉

≤0

≤ 〈x − y0, x − y〉 ≤ ‖x − y0‖‖x − y‖

Hence, ‖x − y0‖ ≤ ‖x − y‖ for every y ∈ K and so y0 = PK(x). □

Remark. There are two geometric interpretations of the proposition.

(1) The angle θ between the vectors x − y0 and y − y0 is at least π/2 for every y ∈ K

(2) The convex set K lies on one side of the hyperplane H that is orthogonal to x − y0 and that
passes through y0

Theorem 3.9.9. (Best Approximation) Let Y be a closed subspace of a Hilbert space X and
x0 ∈ X\Y. Let y0 ∈ Y be the point which minimizes the distance between x0 and Y. Then

〈x0 − y0, y〉 = 0, for all y ∈ Y.



3.9. INNER PRODUCT SPACES 67

Conversely, if z ∈ Y satisfies

〈x0 − z, y〉 = 0, for all y ∈ Y,

then z must be y0 and, moreover,

‖x0 − y0‖2 + ‖y0‖2 = ‖x0‖2 (3.9.3)

holds.

Proof. Since y0 is the point in Y such that ‖y0 − x0‖ = min
y∈Y
‖y − x0‖, it also minimizes ‖y − x0‖2.

For any y ∈ Y and y0 + εy ∈ Y , the function

φ(ε) = ‖x0 − y0 − εy‖2 = ‖x0 − y0‖2 − ε〈x0 − y0, y〉 − ε〈y, x0 − y0〉 + ε2‖y‖2

has minimum at ε = 0. Then Then 0 = φ′(0) implies

Re〈x0 − y0, y〉 = 0.

Replacing y by iy, we have Im〈x0 − y0, y〉 = 0.

Conversely, if 〈x0 − z, y〉 = 0 for all y ∈ Y , we have

‖x0 − y‖2 = ‖(x0 − z) − (y − z)
∈Y

‖2 = ‖x0 − z‖2 − 〈x0 − z,
∈Y︷ ︸︸ ︷

y − z〉
=0

− 〈
∈Y︷ ︸︸ ︷

y − z, x0 − z〉
=0

+‖y − z‖2

≥ ‖x0 − z‖2.

Hence, z also minimizes d(x0,Y). Moreover, we will prove that y0 is the unique point in Y which
minimizes the distance from x0 to Y . Let y1 also minimize the distance. Then 〈x0 − y1, y〉 = 0
for all y ∈ Y . We have 〈y0 − y1, y〉 = 〈x0 − y1, y〉 − 〈x0 − y0, y〉 = 0. Taking y = y0 − y1, we obtain
‖y0 − y1‖2 = 0 and hence y0 = y1. This implies that z = y0.

Furthermore, the equation (3.9.3) is directly obtained by 〈x0 − y0, y0〉 = 0. □

Remark. Let (X, 〈·, ·〉) be an inner product space and Y $ X be a finite dimensional subspace
of X. For x ∈ X\Y , we want to find the projcetion of x on Y and the distance from x to Y . Let{

e1, · · · , en
}

be a basis of Y . We can use the Gram-Schmidt process to orthonormalize the basis,
say

{
u1, · · · ,un

}
where ui ⊥ u j and ‖ui‖ = 1 for every i, j = 1, · · · , n. Then the projection of x

on Y is

PY(x) =
n∑

i=1

〈x,ui〉ui.

From Theorem 3.9.9,〈
x −

n∑
i=1

〈x,ui〉ui,u j
〉
=
〈
x,u j

〉
−
〈
〈x,u j〉u j,u j

〉
= 0

Hence, PY(x) =
n∑

i=1

〈x,ui〉ui is the best approximation of x by the elements in Y and

dist(x,Y) =
∥∥∥x − PY(x)

∥∥∥ = ∥∥∥x − n∑
i=1

〈x,ui〉ui

∥∥∥.
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3.10 Convolution and Mollifiers

As we know, L1(R) is a Banach space. The operations of addition and scalar multiplication are
continuous. Moreover, L1(R) is closed under these two operations. But, it is not closed under
multiplication. That is, it is possible that f , g ∈ L1(R) but f g < L1(R). We will introduce a
different operation that L1(R) is closed under.

o Convolution
Definition 3.10.1. Let f , g : R → R be two functions. The “convolution” of f and g, denoted
by f ∗ g, is defined by

( f ∗ g)(x) =
∫
R

f (y)g(x − y) dy

whenever the integral makes sense.

Remark. If f is a function of time variable t and g is Heaviside function. Suppose that f ∗ g(t)
represents an action of a system. Then the behavior of the system at time t depends not only on
its state at time t, but also on its past history. (hereditary system)

■ Properties of convolution (generalized product)

(1) (Commutativity) f ∗ g = g ∗ f .

(2) (Distributive law) f ∗ (g + h) = f ∗ g + f ∗ h

(3) (Associativity) ( f ∗ g) ∗ h = f ∗ (g ∗ h)

(4) (Commutativity with translations) f ∗(Tag) = (Ta f )∗g = Ta( f ∗g) where (Ta f )(x) = f (x − a).

(5) f ∗ 0 = 0 ∗ f = 0 where 0 is the zero function.

Note. The above properties look like the regular product. But the below properties do not.

(6)
(

f ∗ f
)
(t) � 0

(7) L1(R) is closed under convolution. We write in short as

L1(R) ∗ L1(R) ⊆ L1(R).

Proof.

‖ f ∗ g‖L1 =

∫ ∣∣ f ∗ g(x)
∣∣ dx =

∫ ∣∣∣∫ f (y)g(x − y) dy
∣∣∣ dx

≤
∫ ∫ ∣∣ f (y)g(x − y)

∣∣ dydx =
∫ ∫ ∣∣ f (y)g(x − y)

∣∣ dxdy

=

∫
| f (y)| dy

∫
|g(x − y)| dx = ‖ f ‖L1‖g‖L1

□

Note. It is not true that Lp(R) is closed under convolution for p > 1.
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■ Young’s Inequality for Convolution

Proposition 3.10.2.

(1) If 1 ≤ p ≤ ∞, then L1(R) ∗ Lp(R) ⊆ Lp(R), and we have

‖ f ∗ g‖Lp ≤ ‖ f ‖Lp‖g‖L1 ∀ f ∈ Lp(R), g ∈ L1(R).

(2) If 1 ≤ p, q ≤ ∞ and r satisfies 1
r =

1
p +

1
q − 1, then Lp(R) ∗ Lp(R) ⊆ Lr(R), and we have

‖ f ∗ g‖Lr ≤ ‖ f ‖Lp‖g‖Lq ∀ f ∈ Lp(R), g ∈ Lq(R).

Proof. Skip □

■ Convolution as Filtering; Lack of an Identity

We will introduce the view of point of filter until the section of Fourier series. Since L1(R)
is closed under convolution, we may ask whether there exists a function δ in L1(R) such that

f ∗ δ = f ∀ f ∈ L1(R).

Unfortunately, there exists no such a function.
Remark. If such a function δ exists, it must satisfy δ̂(ξ) = 1 for all ξ. But there is no usual L1-
function satisfying this condition. The delta function which satisfies the equality is a generalized
function.
■ Convolution as Averaging; Introduction to Approximate Identities

Convolution can be regarded as a kind of weighted averaging operator. Consider

χT =
1

2T
χ[−T,T ], T > 0

Given f ∈ L1(R), we have that

( f ∗ χT )(x) =
∫

f (y)χT (x − y) dy =
1

2T

∫ x+T

x−T
f (y) dy = AvgT f (x).

where AvgT f (x) is the average of f on the interval [x − T, x + T ].
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Let us consider what happens to the convolution f ∗ χT = AveT f as T → 0. The function
χT =

1
2T χ[−T,T ] becomes a taller and taller “spike” centered at the origin, with the height of the

spike being chosen so that the integral of χT is always 1. Intuitively, averaging over smaller
and smaller intervals should give values

(
f ∗ χT

)
(x) that are closer and closer to the original

value f (x). Thus, f ≈ f ∗ χT when T is small. This phenomenon happens for the more general
averaging operator and we will discuss this later.

■ Convolution and Smoothing

Since convolution is a type of averaging, it tends to be a smoothing operation. Generally
speaking, a convolution f ∗ g inherits the “ best” properties of both f and g.

Exercise. Suppose that f , g ∈ Cc(R), show that

f ∗ g ∈ Cc(R).

and in this case we have

supp( f ∗ g) ⊆ supp( f ) + supp(g) =
{

x + y
∣∣ x ∈ supp( f ), y ∈ supp(g)

}
.

Theorem 3.10.3. Suppose that f ∈ L1(R) and g ∈ Cc(R). Then f ∗ g ∈ C0(R).

Proof. Since f ∈ L1(R) and g ∈ Cc(R), the convolution f ∗ g exists and is bounded. Also, since
g ∈ Cc(R), we have g is uniformly continuous. Consider∣∣( f ∗ g

)
(x) −

(
f ∗ g

)
(x − h)

∣∣
=

∣∣∣∫ f (y)g(x − y) dy −
∫

f (y)g(x − h − y) dy
∣∣∣

≤
∫
| f (y)||g(x − y) − g(x − h − y)| dy

≤
Ä

sup
u∈R
|g(u) − g(u − h)|

ä∫
| f (y)| dy −→ 0 as h→ 0

Hence f ∗ g ∈ Cb(R) and is uniformly continuous. (Note: The above proof is more succinct
by using the Young’s inequality.)

To show that f ∗ g ∈ C0(R). Since g ∈ Cc(R), supp(g) ⊆ [−N,N] for some N > 0. Hence,

|
(

f ∗ g
)
(x)| ≤

∫ x+N

x−N
| f (y)||g(x − y)| dy

≤ ‖g‖L∞
∫ x+N

x−N
| f (y)| dy −→ 0 as |x| → ∞

□

Remark. This theorem is still true if g ∈ C0(R) since Cc(R) is dense in C0(R). We can prove it
by using approximation.

■ Convolution and Differentiation
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Theorem 3.10.4. Let 1 ≤ p < ∞ and m ≥ 0.

(1) If f ∈ Lp(R) and g ∈ Cm
c (R), then f ∗ g ∈ Cm

0 (R).

(2) If f ∈ L∞(R) and g ∈ Cc(R), then f ∗ g ∈ Cb(R).

Further, the differentiation commutes with convolution, i.e.,

D j( f ∗ g) = f ∗ D jg, j = 0, · · · ,m.

Corollary 3.10.5. Let 1 ≤ p < ∞.

(1) If f ∈ Lp(R) and g ∈ C∞c (R), then f ∗ g ∈ C∞0 (R).

(2) If f ∈ L∞(R) and g ∈ C∞c (R), then f ∗ g ∈ C∞b (R).

Moreover, if f is also compactly supported then we have f ∗ g ∈ C∞c (R).

■ Convolutions of Periodic Functions

A periodic function is usually not integrable on R. It is not reasonable to define the con-
volution on periodic functions. But we can keep the main ingredient and modify the definition
of convolution on R by a similar form. For the sake of the discussion of the Fourier series in
the next chapter. We assume those periodic functions with period 2π and defined on [−π, π] (or
sometimes on [0, 2π]).

Definition 3.10.6. Given two 2π-periodic integrable (over [−π, π]) functions f and g on R, we
define their “convolution” f ∗ g on [−π, π] by

( f ∗ g)(x) =
1

2π

∫ π

−π
f (y)g(x − y) dy.

Note.

(1) Since f and g are 2π-periodic, we have

( f ∗ g)(x) =
1

2π

∫ π

−π
f (x − y)g(y) dy.

(2) If g ≡ 1, then f ∗ g(x) =
1

2π

∫ π

−π
f (y) dy = average value of f over [−π, π]. The convolu-

tion can be regarded as the “weighted averages”.

o Mollifiers

As we discuss above, convolution can be regarded as an averaging. Suppose that the sup-
port of the “weighted” function g in localized in a small interval with center 0. Then f ≈ f ∗ g.
Moreover, if g is sufficiently smooth, then so is f ∗ g. This gives an thought to construct smooth
functions fε approximating an L1-function f .
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Let ρ ∈ C∞(Rn) be a non-negative function with support in the unit ball and
∫
Rn
ρ(x) dx = 1.

For example we could take ρ to be

ρ(x) =

 C exp
Ä 1
|x|2 − 1

ä
, |x| < 1

0, |x| ≥ 1

where C is chosen to ensure that
∫
Rn ρ(x) dx = 1.

For each ε > 0, define ρε(x) = ε−nρ
Äx
ε

ä
. Then

∫
Rn
ρε(x) dx = 1 and supp(ρε) ⊆ B(0, ε). Such

functions are called “mollifiers”

Notation: Let Ω ⊆ Rn be an open set.

(a) For ε > 0, we write Ωε :=
{

x ∈ Ω
∣∣ dist(x, ∂Ω) > ε

}
.

(b) We denote B ⊂⊂ Ω if B̄ ⊂ Ω.

Remark. If Ω is a bounded open set and B ⊂⊂ Ω, then dist(B̄, ∂Ω) > 0.
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Definition 3.10.7. Let Ω be a bounded open set in Rn and f ∈ L1(Ω). Then for ε > 0, we define
the “mollification of f ” by

fε(x) = ρε ∗ f in Ωε.

That is,

fε(x) = ε−n
∫
Ω

ρ
Äx − y

ε

ä
f (y) dy =

∫
B(0,ε)

ρε(y) f (x − y) dy

for x ∈ Ωε.
For now on, we assume the set Ω is open and bounded in Rn and f ∈ L1(Ω). The following

results can be generalized to some general functions spaces.

Theorem 3.10.8. (Properties of mollifiers)

(1) fε ∈ C∞(Ωε).

(2) If f ∈ C(Ω), then fε → f as ε→ 0 uniformly on any compact subsets of Ω.

(3) If 1 ≤ p < ∞ and f ∈ Lp(Ω), then fε → f in Lp(Ω).

Proof. (1) Fix x ∈ Ωε, i = 1, 2, · · · , n and h so small that x + hei ∈ Ωε. Then

fε(x + hei) − fε(x)
h

=
1
εn

∫
Ω

1
h

î
ρ
Äx + hei − y

ε

ä
− ρ
Äx − y

ε

äó
f (y) dy

Since ρ ∈ C∞c (Rn) and supp(ρ) ⊆ B(0, 1), by mean value theorem,

1
h

î
ρ
Äx + hei − y

ε

ä
− ρ
Äx − y

ε

äó
−→ 1

ε

∂ρ

∂xi

Äx − y
ε

ä
uniformly as h→ 0.

Hence,
∂ fε
∂xi

(x) exists and equals ∫
Ω

∂ρε
∂xi

(x − y) f (y) dy.

Similarly, we can continuue this process and show that Dα fε(x) exists and

Dα fε(x) =
∫
Ω

Dαρε(x − y) f (y) dy

for x ∈ Ωε and Dα = Dα1
x1 Dα2

x2 · · ·D
αn
xn for α = (α1, · · · , αn).

(2) Let V be a compact subset of Ω. Then δ = dist(V, ∂Ω) > 0. For ε < 1
2δ and x ∈ V ,

fε(x) = ε−n
∫

B(x,ε)
ρ
Äx − y

ε

ä
f (y) dy =

∫
B(0,1)

ρ(z) f (x − εz) dz (let z =
x − y
ε

).

Since
∫

B(0,1)
ρ(z) dz = 1 and f is uniformly continuous on V , f (x) =

∫
B(0,1)

ρ(z) f (x) dz and

sup
x∈V
| f (x) − fε(x)| = sup

x∈V

∣∣∣∫
B(0,1)

ρ(z)[ f (x) − f (x − εz)] dz
∣∣∣

≤ sup
x∈V

∫
B(0,1)

ρ(z)| f (x) − f (x − εz)| dz

≤ sup
x∈V

sup
|z|≤1

∣∣ f (x) − f (x − εz)
∣∣

−→ 0 as ε→ 0.
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The last line follows from the uniform continuity of f and thus the convergence is indepen-
dent of points in V . This implies that the convergence is uniform.

(3) Skip
□

Theorem 3.10.9. For any 1 ≤ p < ∞, Cc(Ω) is dense in Lp(Ω).

Proof. It suffices to show that for every f ∈ Lp(Ω) and given δ > 0, there exists g ∈ C∞c (Ω) such
that ‖ f − g‖Lp(Ω) < δ.

Since f ∈ Lp(Ω), we can choose a compact subset V of Ω such that

‖ f ‖Lp(Ω\V) ≤
δ

3
.

Set

f̃ (x) =
ß

f (x) for x ∈ V
0 for x ∈ Ω\V

By Theorem3.10.8(2), there exists an ε < dist(V, ∂Ω) such that

‖ f̃ − f̃ε‖Lp(V) <
δ

3
.

Since f̃ (x) = 0 for x ∈ Ω\V , it follow that

‖ f̃ε‖Lp(Ω\V) <
δ

3
.

Hence,

‖ f − f̃ε‖Lp(Ω) ≤ ‖ f − f̃ε‖Lp(V) + ‖ f − f̃ε‖Lp(Ω\V)

≤ ‖ f − f̃ ‖Lp(V) + ‖ f̃ − f̃ε‖Lp(V) + ‖ f ‖Lp(Ω\V) + ‖ f̃ε‖Lp(Ω\V)

≤ 0 + ‖ f ‖Lp(Ω\V) + ‖ f̃ε‖Lp(Ω\V) + ‖ f − f̃ε‖Lp(V)

< δ.

The function f̃ε ∈ Cc(Ω) and the theorem is proved. □
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4.1 Physical Examples

o Simple Harmonic Motion

Simple harmonic motion describes the behavior of the most basic oscillatory system and
is a natural place to start the study of vibrations. For example, simple pendulum, horizaontal
spring.

*The content of this chapter is referred to Fourier Analysis; E. Stein, R. Shakarchi.
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Consider the horizontal spring and let y(t) denote the displacement of the mass at time t.
Applying Newton’s law, we have

−ky(t) = my′′(t),

where k > 0 is a given physical quantity called the spring constant and m is the mass. Let
c =
√

k/m. Then the equation becomes

y′′(t) + c2y(t) = 0.

The equation can be solved by

y(t) = y(0) cos ct +
y′(0)

c
sin ct.

Consider
a cos ct + b sin ct = A cos(ct − φ)

where A =
√

a2 + b2 is called “amplitude” of the motion, c is its “natural frequency”, φ is its
“phase”, and 2π/c is the “period” of the motion.

o Standing and Traveling Waves

■Wave Equation

utt − c2uxx = 0

where c =
√
τ/ρ > 0 is the velocity of the spring, τ is the

tension of the spring, and ρ is the density of the spring.

By changing of “units” in space, x → ax, the spatial scale becomes 0 ≤ x ≤ L → 0 ≤ x ≤ L
a .

Let v(t, x) = u(t, ax), then

vtt −
c2

a2 vxx = 0.

Similarly, we also change the unit in time, t → bt, the temporal scale becomes 0 ≤ t ≤ T →
0 ≤ t ≤ T

b . Let v(t, x) = u(bt, x).
vtt − b2c2vxx = 0.
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Hence, by choosing appropriate constants a, b > 0 such that x → ax and t → bt, we may
assume that the wave equation is

utt − uxx = 0 on 0 ≤ x ≤ π, t ≥ 0.

• Traveling Wave

Observe that if F is any twice differentiable function, then u(x, t) = F(x+t) and u(x, t) = F(x−t)
solve the wave equation. The speed of u(x, t) = F(x − t) is 1 and more forward to the right.

Since utt − uxx = 0 is linear, for every F,G ∈ C2(R),

u(t, x) = F(x + t) +G(x − t)

is a solution. For given initial data, u(0, x) = f (x), ut(0, x) = g(x), the d’Alembert’s formula
gives

u(t, x) =
1
2
[

f (x + t) + f (x − t)
]
+

1
2

∫ x+t

x−t
g(y) dy.

• Superposition of standing waves

First of all, we try to look for special solutions to the wave equation which are of the form
u(x, t) = φ(x)ψ(t). In mathematics, this procedure is also called “separation of variables” and
constructs solutions that are called “pure tones”(純音).



78 CHAPTER 4. FOURIER SERIES

Then by the linearity of the wave equation, we can expect to combine these pure tones into
a more complex combination of sound.

Note that the method of separation of variables gives rise to reduce the PDE problem to an
ODE problem. Plugging φ(x)ψ(t) into the wave equation, we have

φ(x)ψ′′(t) = φ′′(x)ψ(t)

Thus,
ψ′′(t)
ψ(t)

=
φ′′(x)
φ(x)

= λ

Note that λ is a constant. The wave equation redueces toß
ψ′′(t) − λψ(t) = 0
φ′′(x) − λφ(x) = 0

If the constant λ ≥ 0, the solution φ will not oscillate as time varies. Hence, we assume
λ = −m2 < 0. Then we can solve

ψ(t) = A cos mt + B sin mt

and
φ(x) = Ã cos mx + B̃ sin mx.

We take into account that the string is attached at x = 0 and x = π. The boundary condition
gives φ(0) = φ(π) = 0. Hence, Ã = 0, and if B̃ , 0 then m ∈ Z. Moreover, we can absorb the
cases m ≤ 0 into the cases m ≥ 0 and reduce the solution to

um(t, x) =
(
Am cos mt + Bm sin mt

)
sin mx

which is of the form of standing wave.†

†The readers could browse some websites listed below to figure out the overtone.
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch?v=0iJmDhNocaQ

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch?v=0iJmDhNocaQ
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Since the wave equation is linear, we can construct more solutions by taking linear combinations
of the standing waves um. This technique is called “superposition” and gives the solution of the
wave equation

u(t, x) =
∞∑

m=1

(
Am cos mt + Bm sin mt

)
sin mx.

Suppose that the initial data is given. That is, u(x, 0) = f (x) for f (0) = f (π) = 0. Then
∞∑

m=1

Am sin mx = f (x).

Question: Given f (x) on [0, π] with f (0) = f (π) = 0, can we find coefficients Am such that

f (x) =
∞∑

m=1

Am sin mx ?

Question: If yes, how to find Am?

Observe that ∫ π

0
sin mx sin nx dx =

{
0 if m , n
π

2
if m = n

Then, formally, ∫ π

0
f (x) sin nx dx =

∫ π

0

Ä ∞∑
m=1

Am sin mx
ä

sin nx dx

=

∞∑
m=1

Am

∫ π

0
sin mx sin nx dx = An ·

π

2
.

Hence,

An =
2
π

∫ π

0
f (x) sin nx dx.

Question: How about the given initial data F(x) is defined on [−π, π]?

We can express F(x) = f (x)+ g(x) where f is odd and g is even. Then f (x) and g(x) can be
expressed as a sine series and a cosine series respectively. That is,

g(x) =
∞∑

m=0

A′m cos mx.

Thus,

F(x) =
∞∑

m=1

Am sin mx +
∞∑

m=1

A′m cos mx +
A′0
2

(4.1.1)

Remark. (1) The constant
1
2

in the last term is for making the formula consistant where

A′0 =
1
π

∫ π

−π
F(x) dx.
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(2) When F(x) is defined on [−π, π] and is of the form (4.1.1), the formulas of the coefficients
Am and A′m are similar but a slightly different.

Am =
1
π

∫ π

−π
F(x) sin mx dx =

1
2πi

∫ π

−π
F(x)

(
eimx − e−imx) dx

A′m =
1
π

∫ π

−π
F(x) cos mx dx =

1
2π

∫ π

−π
F(x)

(
eimx + e−imx) dx.

Remark. Let f (x) be a function defined on [a, b] with b − a = 2π. Then we can extend F(x)
[still called F(x)] defined on R with period 2π. That is, F(x) = F(x + 2π). Suppose that

F(x) =
∞∑

m=1

Am sin mx +
∞∑

m=1

A′m cos mx +
A′0
2

Then we can find the formulas of the coefficients by similar method.

Am =
1
π

∫ π

−π
F(x) sin mx dx =

1
π

∫ b

a
F(x) sin mx dx

A′m =
1
π

∫ π

−π
F(x) cos mx dx =

1
π

∫ b

a
F(x) cos mx dx

o Euler Identity

We recall the Euler identity eit = cos t + i sin t. Suppose that we can express F(x) as the
form

F(x) =
∞∑

m=−∞
ameimx where am ∈ C.

Similarly, since ∫ π

−π
eimxe−inx dx =

ß
0 if n , m
2π if n = m

we have
an =

1
2π

∫ π

−π
F(x)e−inx dx.

The quantity an is called the nth Fourier coefficient of F.

■ Heuristic Viewpoint‡

Consider the complex exponential function

em(x) = e2πimx = cos(2πmx) + i sin(2πmx)

as a function of x. While x lies in R, the function em(x) are complex numbers that lie on the unit
circle S 1 in C. If m > 0, then as x increases through an interval of length 1/m, the values em(x)
moves once around S 1 in the counter-clockwise direction.

‡The reference of this part is from Section1.1.2 of Introduction to Harmonic Analysis, Christopher Heil
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The function em is periodic with period 1/m and we therefore say that it has “frequency m”.
In some sense, the function em is a “pure tone”. We can imagine that an ideal vibrating string
creates a pressure wave in the air. In general, a real string (wave) is much more complicated than
a pure tone with frequency m. The sound created from a musical instrument usually consists of
pure tones, overtones and other complications. But let’s start with a single pure tone em here.

For a fixed m the function ame2πimx is a pure tone whose “amplitude” is the scalar am. The
larger am is, the larger the vibrations of the string and the louder the perceived sound. With
several different frequencies m ∈ Z, the function

F(x) =
N∑

m=−N

ame2πimx

is a superposition of several pure tones.

Suppose that any function F can be represented as a series of pure tones ame2πimx over all
possible frequencies m ∈ Z. By superimposing all the pure tones with the correct amplitudes,
we create any sound that we like. Once we have a representation of F in terms of the pure tones,
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we can act on it. In this sense, we can regard the convolution as a kind of “filter”.

Question: Given any reasonable function F on [−π, π], with Fourier coefficients define above,
is it true that

F(x) =
∞∑

m=−∞
ameimx?

■ Fourier Series on General Intervals

Let F(x) be defined on [−L, L] with F(−L) = F(L). Suppose that F has the form of Fourier
series

F(x) =
∞∑

m=1

Am sin
(mπx

L
)
+

∞∑
m=1

A′m cos
(mπx

L
)
+

A′0
2

=

∞∑
m=−∞

ameimπx/L

Then the formulas of the coefficients are

Am =
1
L

∫ L

−L
F(x) sin

(mπx
L

)
dx

A′m =
1
L

∫ L

−L
F(x) cos

(mπx
L

)
dx

am =
1

2L

∫ L

−L
F(x)e−imπx/L dx

Let F(x) be a function on [a, b] with F(a) = F(b) and b − a = L. Extend F(x) to a new
function [still called F(x)] defined on R and is with period L. Suppose that

F(x) =
∞∑

m=1

Am sin
(2πmx

L
)
+

∞∑
m=1

A′m cos
(2πmx

L
)
+

A′0
2

=

∞∑
m=−∞

ame2πimx/L.

Then the formulas of the coefficients are

Am =
2
L

∫ b

a
F(x) sin

(2πmx
L

)
dx

A′m =
2
L

∫ b

a
F(x) cos

(2πmx
L

)
dx

am =
1
L

∫ b

a
F(x)e−2πimx/L dx

Remind that the above discussions are based on some ideal situations of F. For example,
the integrability of F, the convergence of Fourier series, etc. We need to discuss them carefully.
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4.2 Basic Properties of Fourier Series
In this section, we will rigorously study the convergence of Fourier series. Observe that, for

a complex-valued function f (x) defined on [0, L], the Fourier coefficients of f are defined by

an =
1
L

∫ L

0
f (x)e−2πinx/L dx, for n ∈ Z.

In order to make sure that all those coefficients an exist, f needs some suitable integrability
conditions. Therefore, for the remainder of this chapter, we assume that all functions are at least
Riemann integrable.

■ Periodicity and Functions on the Circle

Definition 4.2.1. A function f is said to be periodic with period p if

f (x + p) = f (x)

for every x in the domain.

Example 4.2.2. sin(x + 2π) = sin x.

Note. 2π is a period of sin nx, cos nx and einx for all n ∈ Z.

First of all, we consider a 2π-periodic function f defined on R. We can identify f as a
function F defined on a circle T (or S 1) in the complex number plane by

f (θ) = F(eiθ)

The integrability, continuity and other smoothness properties of F are determined by those
of f . If f is continuous on R, then F is continuous on T.

Moreover, if f is a function defined on [0, 2π] for which f (0) = f (2π), it can be extended to
a 2π-periodic function on R by and then it can be identified as a function on the circle.

We conclude that two kinds of functions can be regard as functions on the circle. They are
“functions on R with period 2π”, and “functions on an interval of length 2π that take one the
same value at its endpoints”.

o Definitions and Some Examples

Definition 4.2.3. Let f be an integrable function defined on [a, b] with b − a = L.

(1) The nth “Fourier coefficient” of f is defined by

f̂ (n) = an =
1
L

∫ b

a
f (x)e−2πinx/L dx, n ∈ Z. (4.2.1)

(2) The “Fourier series” of f is given by

∞∑
n=−∞

f̂ (n)e2πinx/L
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and we use the notation

f (x) ∼
∞∑

n=−∞
f̂ (n)e2πinx/L.

Definition 4.2.4. If f is an integrable function on [−π, π], then the nth Fourier coefficient of f
is

f̂ (n) = an =
1

2π

∫ π

−π
f (x)e−inx dx, n ∈ Z

and the Fourier series of f is

f (x) ∼
∞∑

n=−∞
aneinx.

Note. If f is a function with period L, the resulting integrals (4.2.1) are independent of the
chosen interval. Thus the Fourier coefficients of a function on the circle are well-defined.

Remark. Let f be integrable on [0, 2π] and

f (x) ∼
∞∑

n=−∞
f̂ (n)einx.

Define g(x) = f (2πx). Then g is integrable on [0, 1] and

g(x) ∼
∞∑

n=−∞
ĝ(n)e2πinx

Check that ĝ(n) = f̂ (n).

Example 4.2.5.

(a) f (x) = x on [−π, π]. Then f̂ (n) =

 (−1)n+1

in
if n , 0

0 if n = 0

f (x) ∼
∑
n,0

(−1)n+1

in
einx = 2

∞∑
n=1

(−1)n+1 sin nx
n

(b) f (x) =
π

sin πα
ei(π−x)α on [0, 2π].

f (x) ∼
∞∑

n=−∞

einx

n + α
whenever α < Z.

The “trigonometric series” is a series of the form
∞∑

n=−∞
cne2πinx/L where cn ∈ C. Similarly,

the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N∑

n=−M

cne2πinx/L for some M,N > 0.
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Example 4.2.6. If f is a trigonometric polynomial function, that is,

f (x) =
N∑

n=1

sn sin nx +
M∑

n=0

cn cos nx,

then

f (x) ∼
N∑

n=1

sn sin nx +
M∑

n=0

cn cos nx.

In other words, the Fourier series of f is itself.

Example 4.2.7. (Dirichlet kernel) For N ∈ N, let cn = 1 for every n = −N,−N+1, · · · ,−1, 0, 1, · · · ,N−
1,N and cn = 0 otherwise. The trigonometric polynomial defined on [−π, π] by

DN(x) =
N∑

n=−N

einx

is called the Nth “Dirichlet kernel ”. Denote ω = eix. For x , 0,

N∑
n=0

ωn =
1 − ωN+1

1 − ω and
−1∑

n=−N

ω−N − 1
1 − ω .

Hence,

DN(x) =
N∑

n=−N

ωn =
ω−N − ωN+1

1 − ω =
ω−N−1/2 − ωN+1/2

ω−1/2 − ω1/2 =
sin

(
(N + 1

2 )x
)

sin(x/2)
(4.2.2)

For x = 0, it is easy to check that DN(0) = 2N + 1. The equation (4.2.2) is also true by
taking limit.

Note that we will see below that S N( f )(x) can be expressed as the convolution of f and
DN(x) by defining f ∗ g(x) = 1

2π

∫ π
−π f (y)g(x − y) dy.

Example 4.2.8. (Poisson kernel) Let 0 ≤ r < 1, the function defined on [−π, π] by

Pr(θ) =
∞∑

n=−∞
r|n|einθ

is called the “Poisson kernel ”.
For fixed 0 ≤ r < 1, since the series is absolutely and uniformly convergent in θ, to calculate

the Fourier coefficients, we can interchange the order of integration and summation. Moreover,
the nth Fourier coefficient equals r|n|. Set ω = reiθ. Then

Pr(θ) =
∞∑

n=0

ωn +

∞∑
n=1

ω̄n (where both series converge absolutely)

=
1

1 − ω +
ω̄

1 − ω̄ =
1 − ω̄ + (1 − ω)ω̄

(1 − ω)(1 − ω̄)

=
1 − |ω|2
|1 − ω|2 =

1 − r2

1 − 2r cos θ + r2
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■ Some Questions

The “trigonometric series” is a series of the form
∞∑

n=−∞
cne2πinx/L where cn ∈ C. Similarly,

the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N∑

n=−M

cne2πinx/L for some M,N > 0. In order to study the convergence of Fourier series, it is natual

to consider the limit of its partial sum. But the convergence of the trigonometric polynomials

here “
N∑

n=−N

f̂ (n)e2πinx/L” is slightly different the typical forms “
N∑

n=−M

f̂ (n)e2πinx/L”.

Definition 4.2.9. Let N ∈ N, then the Nth “partial sum” of the Fourier series of f is

S N( f )(x) =
N∑

n=−N

f̂ (n)e2πinx/L.

Note that the above sum is symmetric since n ranges from −N to N because of the resulting
decomposition of the Fourier series as sine and cosine.

S N( f )(x) =
N∑

n=−N

f̂ (n)e2πinx/L

=

N∑
n=1

An sin
Ä2πnx

L

ä
+

N∑
n=1

A′n cos
Ä2πnx

L

ä
+

A′0
2
.

For the convenience, we consider the functions defined on intervals with length 2π. ([0, 2π],
[−π, π] or etc).

Question: Does the limit
∞∑

n=−∞
f̂ (n)einx = lim

N→∞

N∑
n=−N

f̂ (n)einx = lim
N→∞

S N( f )(x) converges and for

what values of x the limit converge?

Question: If S N( f ) converges to f , in what sense does S n( f ) converge to f as N → ∞ (point-
wise, uniformly, or under a certain norms for instance ‖ · ‖Lp)?

Observe that the Fourier coefficients come from an integral
∫

f (x)e−inx dx. When f and g

have different values only at finitely many points, they will have the same Fourier coefficients.
Hence, without any additional assumption for f , it is unreasonable to obtain the convergent
result that

lim
N→∞

S N( f )(x) = f (x) for every x.

Question: Under what conditions of a function is uniquely determined by its Fourier coeffi-
cients?
■ Uniqueness of Fourier Series

The question of uniqueness is equivalent to the statement that if a function f has Fourier
coefficient f̂ (n) = 0 for all n ∈ Z, then f = 0.
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Theorem 4.2.10. Suppose that f is an integrable function on the circle with f̂ (n) = 0 for all
n ∈ Z. Then f (x0) = 0 whenever f is continuous at the point x0.

Proof. Firstly, we consider f is real-valued. W.L.O.G, we say that f is defined on [−π, π] and
continuous at x0 = 0. (We will prove, by a contradiction, that f (0) = 0 whenever f̂ (n) = 0 for
all n ∈ Z).

The idea is that if f (0) , 0, we can construct a family of trigonometric polynomials {pk}
that “peak” at 0 such that

∫ π

−π
pk(x) f (x) dx→ ∞. It is impossible since f̂ (n) = 0 for all n ∈ Z.

Assume that f (0) > 0. Since f is continuous at 0, there exists 0 < δ <
π

2
such that f (x) >

f (0)
2

for every x ∈ [−δ, δ]. Choose a sufficiently small number ε > 0 such that
∣∣ε + cos x

∣∣ < 1 − ε
2

whenever δ < |x| ≤ π. Denote p(x) = ε + cos x and define

pk(x) = [p(x)]k.

Since f̂ (n) = 0 for every n ∈ Z,
∫ π

−π
f (x)pk(x) dx = 0 for every k ∈ N ∪ {0}. Moreover, f is

integrable over [−π, π]. It implies that f is bounded on [−π, π], say
∣∣ f (x)

∣∣ ≤ B. Also, we choose

0 < η < δ such that p(x) > 1 +
ε

2
for every 0 ≤ |x| < η.
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We have∫ π

−π
f (x)pk(x) dx =

∫
0≤|x|<η

+

∫
η≤|x|<δ

+

∫
δ≤|x|≤π

f (x)pk(x) dx = I + II + III.

For 0 ≤ |x| < η, f (x) >
f (0)
2

and pk(x) ≥ (1 +
ε

2
)k, then

I ≥ 2η · f (0)
2
· (1 + ε

2
)k → ∞ as k → ∞

For η ≤ |x| < δ < π

2
, p(x) ≥ 0 and f (x) >

f (0)
2

> 0, then

II ≥ 0.

For δ ≤ |x| ≤ π,
∣∣pk(x)

∣∣ ≤ (1 − ε
2

)k, then

III ≤ 2π · B · (1 − ε
2

)k → 0 as k → ∞.

Hence, we can choose k sufficiently large such that∫ π

−π
f (x)pk(x) dx > 0 (Contradiction!).

Thus, f (0) = 0.

Generally, suppose that f is complex-valued, say f (x) = u(x) + iv(x). Define f̄ (x) = f (x).

Then u(x) =
f (x) + f̄ (x)

2
and v(x) =

f (x) − f̄ (x)
2

. Hence u and v are integrable over [−π, π] and

continuous at 0. Since ̂̄f (n) = f̂ (−n), we have û(n) = v̂(n) = 0 for all n ∈ Z. Therefore,
u(0) = v(0) = 0. □

Corollary 4.2.11. If f is continuous on the circle and f̂ (n) = 0 for all n ∈ Z, then f (x) ≡ 0 on
the circle.

Corollary 4.2.12. Suppose that f is a continuous function on the circle and that the Fourier

series of f is absolutely convergent, that is
∞∑

n=−∞
| f̂ (n)| < ∞. Then

lim
N→∞

S N( f )(x) = f (x) uniformly.

Proof. Since
∞∑

n=−∞
| f̂ (n)| < ∞, then series

g(x) :=
∞∑

n=−∞
f̂ (n)einx = lim

N→∞

N∑
n=−N

f̂ (n)einx
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converges uniformly. Hence, g is continuous on the circle and the Fourier coefficients ĝ(n) =
f̂ (n) for all n ∈ Z.

On the other hand, since f − g is continuous on the circle and ̂( f − g
)
(n) = 0 for all n ∈ Z.

Thus, f ≡ g on the circle. Then

f (x) =
∞∑

n=−∞
f̂ (n)einx = lim

N→∞
S N( f )(x).

□

Question: In what conditions of f , the Fourier series of f converges absolutely?

Corollary 4.2.13. Suppose that f is a twice continuously differentiable function on the circle.
Then

f̂ (n) = O
Ä 1
|n|2
ä

as |n| → ∞

Hence, the Fourier series of f converges absolutely and uniformly to f .

Proof. By the integration by parts twice, for n , 0,

2π f̂ (n) =
∫ 2π

0
f (x)e−inx dx

=
î

f (x) · e−inx

−in

ó2π
0︸               ︷︷               ︸

=0

+
1
in

∫ 2π

0
f ′(x)e−inx dx

=
1
in

î
f ′(x) · e−inx

−in

ó2π
0︸                   ︷︷                   ︸

=0

+
1

(in)2

∫ 2π

0
f ′′(x)e−inx dx

Since f is twice continuously differentiable on the circle, f ′′(x) is bounded, say | f ′′(x)| ≤ B
for all x ∈ T. Then

2π|n|2| f̂ (n)| ≤
∫ 2π

0
| f ′′(x)| dx ≤ 2πB.

Thus, | f̂ (n)| ≤ B
|n|2 . Moreover, since

∑ 1
n2 converges, the proof is complete. □

Remark.

(1) Heuristically, the index “n” represents the frequency and f̂ (n) reflects the amplitude of nth
harmonic with frequency n when regarding f as a superposition of infinite standing waves
with different frequencies. Hence, the larger frequencey will be corresponding to the size
(weight) of derivatives of f .

(2) More rigorously, we can compute that

f̂ ′(n) = in f̂ (n), for all n ∈ Z.

Thus if f is differentiable and f ∼ ∑ aneinx, then f ′ ∼ ∑ anineinx. Also, if f is twice contin-
uously differentiable, then f ′′ ∼ ∑ an(in)2einx, and so on. Further smoothness conditions on
f imply better decay of the Fourier coefficients.
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(3) Similar as the corollary, to make the Fourier series of f converges absolutely and uniformly
to f , we only need

f̂ (n) = O
Ä 1
|n|α
ä

as |n| → ∞ (4.2.3)

for α > 1/2. If f satisfies a “Hölder condition” of order α, with α > 1/2, that is

sup
x
| f (x + t) − f (x)| ≤ A|t|α for all t,

we can obtain (4.2.3).

4.3 Convolutions of periodic functions and good kernels
Recall that, for given two 2π-periodic integrable functions f and g on R, the convolution of f
and g on [−π, π] is defined by

( f ∗ g)(x) =
1

2π

∫ π

−π
f (y)g(x − y) dy.

■ Properties of Convolution

Proposition 4.3.1. Suppose that f , g and h are 2π- periodic integrable functions. Then

(1) f ∗ (g + h) = f ∗ g + f ∗ h.

(2) (c f ) ∗ g = c( f ∗ g) = f ∗ (cg) for every c ∈ C.

(3) f ∗ g = g ∗ f .

(4) ( f ∗ g) ∗ h = ( f ∗ g) ∗ h.

(5) f ∗ g is continuous.

(6) f̂ ∗ g(n) = f̂ (n)̂g(n).

Proof. The proofs of (1)-(5) are left to the readers. We will prove part(6) here.

f̂ ∗ g(n) =
1

2π

∫ π

−π
( f ∗ g)(x)e−inx dx

=
1

2π

∫ π

−π

1
2π

Ä∫ π

−π
f (y)g(x − y) dy

ä
e−inx dx

=
1

2π

∫ π

−π
f (y)e−iny

Ä 1
2π

∫ π

−π
g(x − y)e−in(x−y) dx

ä
dy

=
1

2π

∫ π

−π
f (y)e−iny

Ä 1
2π

∫ π

−π
g(x)e−inx dx

ä
dy

= f̂ (n)̂g(n).

□
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Remark. Property (5) exhibits that the convolution of f ∗ g is “more regular” than f or g.

Note. One of our goal is to understand whether a function f can be expressed as its Fourier
series. That is, lim

N→∞
S N( f )(x) = f (x) for every x? Consider the partial sum of the Fourier series

of f

S N( f )(x) =
N∑

n=−N

f̂ (n)einx

=

N∑
n=−N

Ä 1
2π

∫ π

−π
f (y)e−iny dy

ä
einx

=
1

2π

∫ π

−π
f (y)
Ä N∑

n=−N

ein(x−y)
ä

dy

= ( f ∗ DN)(x)

where DN is the Nth Dirichlet kernel given by

DN(x) =
N∑

n=−N

einx.

Hence the problem of understanding S N( f ) reduces to the understanding of the convolution
f ∗ DN .

o Good kernels
In Section3.10 we can regard the convolution f ∗ g as a “weighted average” of f when∫

g(x) dx = 1. Moreover, if g is a highly peaked functoin and is concentrated at 0, the value
of ( f ∗ g)(x) is close to f (x) if f is continuous there. The same phenomenon also occurs in
the proof of Theorem4.2.10. It motivates us to study the “kernels” of operators and discuss the
characteristic properties of such functions.

Definition 4.3.2. Let {Kn(x)}∞n=1 be a family of functions defined on the circle. This family is
called a family of “good kernels” if it satisfies the following properties:

(a) For all n ≥ 1,
1

2π

∫ π

−π
Kn(x) dx = 1.

(b) There exists M > 0 such that for all n ≥ 1,∫ π

−π
|Kn(x)| dx ≤ M.

(c) For every δ > 0, ∫
δ≤|x|≤π

|Kn(x)| dx→ 0, as n→ ∞.
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Note.

Property (a) says that Kn assigns unit mass to
the whole circle [−π, π] and Kn is interpreted as
weight distributions on the circle. Property (c)
exhibits that the mass concentrates near the ori-
gin as n becomes large.

Theorem 4.3.3. Let {Kn}∞n=1 be a family of good kernels and f be an integrable function on the
circle. Then

lim
n→∞

( f ∗ Kn)(x) = f (x)

whenever f is continuous at x. If f is continuous everywhere, then above limit is uniform.

Proof. Since f is continuous at x, for given ε > 0 there exists δ > 0 such that

| f (x − y) − f (x)| < ε (4.3.1)

as |y| < δ. Consider

∣∣∣( f ∗ Kn)(x) − f (x)
∣∣∣ = 1

2π

∫ π

−π
Kn(y)

[
f (x − y) − f (x)

]
dy (by condition (a))

≤ 1
2π

∫
|y|<δ
|Kn(y)|

∣∣ f (x − y) − f (x)
∣∣ dy

+
1

2π

∫
δ≤|y|≤π

|Kn(y)|| f (x − y) − f (x)| dy

= I + II.

By the condition (b) and (4.3.1), I ≤ Mε

2π
.

Since f is integrable on the circle, it is bounded, say | f (x)| ≤ B on the circle. From condition
(c),

II ≤ 2B
2π

∫
δ≤|y|≤π

|Kn(y)| dy→ 0 as n→ ∞.

Hence, as n sufficiently large,

|( f ∗ Kn)(x) − f (x)| ≤ Cε.

We have

lim
n→∞

( f ∗ Kn)(x) = f (x).
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Moreover, if f is continuous everywhere, then f is uniformly continuous on the circle. For
the given ε > 0, there exists δ > 0 (which is independent of x) such that

| f (x − y) − f (x)| < ε

for every x on the circle. Hence, f ∗ Kn(x) converges to f (x) everywhere and this convergence
is independent of x. That is, f ∗ Kn → f uniformly. □

Remark.

(i) Heuristically, the weighted distribution Kn concentrates its mass at y = 0 as n becomes
large. Therefore, the value f (x) is assigned the full mass as n→ ∞. The convolution

( f ∗ Kn)(x) =
1

2π

∫ π

−π
f (x − y)Kn(y) dy

is the average of f (x − y), where the weights are given by Kn(y).

(ii) The family {Kn} is refered to as an approximation to the identity.

■ Dirichlet Kernel

Question: Is the family of Dirichlet kernels
{

DN(x) =
N∑

n=−N

einx}∞
N=1 a family of good kernels?

It is easy to check that
1

2π

∫ π

−π
DN(x) dx = 1 for all N ≥ 1. Thus, condition (a) holds. Unfortu-

nately, the absolute integral ∫ π

−π
|DN(x)| dx ≥ c log N, as N → ∞.

Then the condition (b) does not hold. This observation suggests that the pointwise convergence
of Fourier series may fail at points of continuity. In fact, the function DN(x) oscillates very
rapidly as N gets large.



94 CHAPTER 4. FOURIER SERIES

4.4 Fejér kernel and Poisson kernel

o Fejér kernel

Definition 4.4.1. Let {an}∞n=0 be a sequence of numbers and sn =

n−1∑
k=0

ak be the nth parital sum of

{an}.

(1) The average of the first N partial sums

σN =
s0 + s1 + · · · + sN−1

N
=

1
N

N−1∑
n=0

sn

is called the Nth “Cesàro mean” of the sequence {sn} or the Nth “Cesàro sum of the series
∞∑

n=1

an.

(2) IfσN converges toσ as N tends to infinity, we say that the series
∑

an is “Cesàro summable”
to σ.

Exercise.

(1) Let an = (−1)n. Then σN =
1
2
+

1 + (−1)N−1

4N
and σN converges to

1
2

.

(2) If {an} is summable to L (that is sn converges to L), then σN converges to L.

(3) If sn diverges to ±∞, then σN diverges to ±∞.

Note. The Dirichlet kernels fail to belong to the family of good kernels. But their averages are
very well behaved functons, in the sense that they indeed form a family of good kernels.
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Definition 4.4.2. Let Dn(x) be the family of Dirichlet kernel. We call the function

FN(x) =
D0(x) + · · · + DN−1(x)

N

the Nth “Fejér kernel ”.

Consider the Cesàro mean of the Fourier series

σN( f )(x) =
S 0( f ) + · · · + S N−1( f )(x)

N

=
( f ∗ D0)(x) + · · · ( f ∗ DN−1)(x)

N

=
Ä

f ∗ D0 + · · · + DN−1

N

ä
(x)

= ( f ∗ FN)(x).

Lemma 4.4.3. The Fejér kernel

FN(x) =
1
N

sin2(Nx/2)
sin2(x/2)

(4.4.1)

and it is a good kernel.

Proof. Since DN(x) =
ω−N − ωN+1

1 − ω with ω = eix, the equality (4.4.1) is obtained by direct com-
putation.

Moreover, since FN ≥ 0 from (4.4.1) and
1

2π

∫ π

−π
Dn(x) dx = 1 for every n ∈ N, the average

of partial sum of {Dn}∞n=0 is also equal to 1. That is,

1
2π

∫ π

−π
Fn(x) dx = 1.

The conditions (a) and (b) of good kernels hold. For every δ > 0, there exists Cδ > 0 such that
sin2(x/2) ≥ cδ for every |x| > δ. Hence, FN(x) ≤ 1/(Ncδ) and∫

δ≤|x|≤π
|FN(x)| dx→ 0 as N → ∞.

This implies that the condition (c) of good kernel holds. □

Theorem 4.4.4. If f is integrable on the circle, then the Fourier series of f is Cesàro summable
to f at every point of continuity of f . That is,

σN( f )(x)→ f (x) as N → ∞

for every x where f is continuous.
Moreover, if f is continuous on the circle, then the Fourier series of f is uniformly Cesàro
summable to f .

Corollary 4.4.5. If f is integrable on the circle and f̂ (n) = 0 for all n, then f = 0 at all points
of continuity of f .
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Proof. Since S N( f ) =
N∑

n=−N

f̂ (n)einx = 0 for every N ∈ N, the Casàro mean of {S n} is equal to 0

and hence the Nth Fejér kernel FN(x) ≡ 0 for every N. Then

0 = f ∗ FN(x)→ f (x)

at every continuity of f . □

Corollary 4.4.6. Continuous functions on the circle can be uniformly approximated by trigono-
metric polynomials. That is, if f is continuous on [−π, π] with f (−π) = f (π) and ε > 0, then
there exists a trigonometric polynomial P such that

| f (x) − P(x)| < ε for all − π ≤ x ≤ π.

Proof. The corollary is followed by the theorem since the Cesàro means are trigonometric poly-
nomials.

□

o Poisson kernel

Definition 4.4.7. A series of complex number
∑∞

k=0 ck is said to be “Abel summable” to s if for
every 0 ≤ r < 1, there series

A(r) =
∞∑

k=0

ckrk

converges, and
lim
r→1

A(r) = s.

The quantities A(r) are called the “Abel means” of the series.

Remark. If
∑∞

k=0 ck is Cesàro summable to s, then it is also Abel summable to s. But the
converse is not true. For example, ck = (−1)k(k + 1). Then

A(r) =
∞∑

k=0

(−1)k(k + 1)rk =
1

(1 + r)2 .

The series is Abel summable to lim
r→1

A(r) = 1/4 but it is not Cesàro summable.

Definition 4.4.8. Let f (x) ∼ ∑∞n=−∞ aneinθ. Define

Ar( f )(x) =
∞∑

n=−∞
r|n|aneinx.

Remark. Since f is integrable (that is,
∫ π

−π
| f (x)| dx < ∞),

|an| =
∣∣∣ 1
2π

∫ π

−π
f (x)e−inx dx

∣∣∣ ≤ 1
2π

∫ π

−π
| f (x)| dx < ∞.

The uniform boundedness of |an| implies that Ar( f ) converges absolutely and uniformly for each
0 ≤ r < 1.
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Definition 4.4.9. We define the “Poisson kernel” by

Pr(x) =
∞∑

n=−∞
r|r|einx.

Note. The Abel mean of f is equal to the convolution ( f ∗ Pr)(x). In fact,

Ar( f )(x) =
∞∑

n=−∞
r|n|aneinx

=

∞∑
n=−∞

r|n|
Ä 1

2π

∫ π

−π
f (y)e−iny dy

ä
einx

=
1

2π

∫ π

−π
f (y)
Ä ∞∑

n=−∞
r|n|e−in(y−x)

ä
dy

= ( f ∗ Pr)(x).

where the interchange of the integral and infinite sum is justified by the uniorm convergence of
the series.

Lemma 4.4.10. If 0 ≤ r < 1, then

Pr(x) =
1 − r2

1 − 2r cos θ + r2 . (4.4.2)

The poisson kernel is a good kernel, as r tends to 1 from below.

Proof. The identity is obtained by direct computation by setting ω = eix. Since Pr(x) is positive
and evaluating the integral term by term, we have

1
2π

∫ π

−π
Pr(x) dx = 1.

The condtions (a) and (b) of good kernel hold. Moreover, for 1/2 ≤ r ≤ 1 and δ ≤ |x| ≤ π,

1 − 2r cos x + r2 = (1 − r)2 + 2r(1 − cos x) ≥ cδ > 0

where cδ could be given by 1 − cos δ. Then Pr(x) ≤ (1 − r2)
cδ

when δ ≤ |x| ≤ π. Then

∫
δ≤|x|≤π

|Pr(x)| dx ≤ π(1 − r2)
cδ

→ 0 as r → 1−.

The condition (c) of good kernel holds.
□

Theorem 4.4.11. The Fourier series of an integrable function on the circle is Abel summable to
f at every point of continuity. Moreover, if f is continuous on the circle, then the Fourier series
of f is uniformly Abel summable to f .
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4.5 Convergence of Fourier Series
In the present section, we will discuss the convergence of Fourier series in three different senses,
mean-square, pointwise and uniform convergence. The mean-square convergence reflects the
global bahaviors of the partial sum S N( f ). The pointwise and uniforn convergence reveal the
local behaviors of S N( f ). We want to find the sufficient conditions of these convergence.

Recall that a Hilbert space is a complete inner product space.

Example 4.5.1.

(1) Let `2(Z,C) =
{

(· · · , a−1, a0, a1, · · · )
∣∣ an ∈ C with

∑
n∈Z
|an|2 < ∞

}
. Define

〈a,b〉 =
∑
n∈Z

anbn

for a = (· · · , a−1, a0, a1, · · · ) and b = (· · · , b−1, b0, b1, · · · ). Then `2(Z,C) is a Hilbert space.

(2) R =
{

f : [0, 2π]→ C
∣∣ f is a Riemann integrable function on [0, 2π]

}
with

〈 f , g〉 = 1
2π

∫ 2π

0
f (x)g(x) dx.

R is not a Hilbert space.

Let

fn(x) =
ß

x−1/4 if x ∈ [1
n , π]

0 otherwise

Then fn is a Cauchy sequenc of R. For any bounded function f ∈ R,

lim
n→∞
‖ fn − g‖ , 0.

Hence, R is not complete.

Before discussing the convegence of Fourier series, we review some properties of inner
product spaces and Hilbert spaces.

o Orthonormal Sequence
Definition 4.5.2. Let X be a vector space with an inner product 〈·, ·〉 and ‖ · ‖ be the incuced
norm on X which is defined by

‖x‖2 = 〈x, x〉 for every x ∈ X.

We say that the two vectors x, y ∈ X are “orthogonal” if 〈x, y〉 = 0.

■ Some Properties
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(1) (Pythagorean theorem) If x and y are orthogonal, then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

(2) (Cauchy-Schwarz inequality) For x, y ∈ X,∣∣〈x, y〉∣∣ ≤ ‖x‖‖y‖.
(3) (Triangle inequaltiy) For x, y ∈ X,

‖x + y‖ ≤ ‖x‖ + ‖y‖.

Definition 4.5.3. Let (X, 〈·, ·〉) be an inner product space over C. We say that {en}n∈N is a se-
quence of orthonormal vectors if

〈ei, e j〉 =
ß

0, if i , j
1, if i = j

Remark. Let {en}n∈N be a sequence of orthonormal vectors in a Hilbert space X. The closed
span

M = span{en}
is a closed subspace of X.

Theorem 4.5.4. Let X be a Hilbert space and {en}n∈N be an orthonormal sequence in X. Then
the following statements hold.

(a) Bessel’s Inequality:
∞∑

n=1

|〈x, en〉|2 ≤ ‖x‖2

for every x ∈ X.

(b) If the series x =
∞∑

n=1

cnen converges, then cn = 〈x, en〉 for each n ∈ N.

(c) The following equivalence holds:
∞∑

n=1

cnen converges ⇐⇒
∞∑

n=1

|cn|2 < ∞.

Furthermore, in this case the series
∞∑

n=1

cnen converges unconditionally, i.e., it converges

regardless of the ordering of the index set.

(d) If x ∈ X, then

p =
∞∑

n=1

〈x, en〉en

is the orthogonal projection of x onto M := span{en}, and ‖p‖2 =
∞∑

n=1

|〈x, en〉|2.
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(e) If x ∈ X, then the following three statements are equivalent

(i) x ∈ M := span{en}.

(ii) x =
∞∑

n=1

〈x, en〉en.

(iii) ‖x‖2 =
∞∑

n=1

|〈x, en〉|2.

Proof. (a) Choose x ∈ X. For each N ∈ N define

pN =

N∑
n=1

〈x, en〉en and qN = x − pN .

Since the en are orthonormal, the Pythagorean Theorem implies that

‖pN‖2 =
N∑

n=1

‖〈x, en〉en‖2 =
N∑

n=1

|〈x, en〉|2.

Also,

〈pN ,qN〉 = 〈pN , x〉 − 〈pN ,pN〉 =
N∑

n=1

〈x, en〉〈en, x〉 − ‖pN‖2 = 0.

Then the vectors pN and qN are orthogonal. By the Pythagorean Theorem again,

N∑
n=1

|〈x, en〉|2 = ‖pN‖2 ≤ ‖pN‖2 + ‖qN‖2 = ‖pN + qN‖2 = ‖x‖2.

Let N → ∞, we obtain Bessel’s Inequality.

(b) If x =
∞∑

n=1

cnen converges, for each fixed m, we have

〈x, em〉 =
¨ ∞∑

n=1

cnen, em

∂
=

∞∑
n=1

cn〈en, em〉 = cm.

(Notice that the second equality is valid since the sequence is convergent.)

(c) (=⇒) By part(b), cn = 〈x, en〉 since x =
∞∑

n=1

cnen. Thus, by Bessel’s inequality,

∞∑
n=1

|cn|2 =
∞∑

n=1

|〈x, en〉|2 ≤ ‖x‖2.

(⇐=) Suppose that
∞∑

n=1

|cn|2 < ∞. Set

sn =

N∑
n=1

cnen and tN =

N∑
n=1

|cn|2.
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To prove that
{

sn
}

n∈N is a convergent sequence in X. If M < N, then

‖sN − sM‖2 =
∥∥∥∥ N∑

n=M+1

cnen

∥∥∥∥2
=

N∑
n=M+1

‖cnen‖2 (Pythagorean Theorem)

=

N∑
n=M+1

|cn|2 = |tN − tM.|

Since
∞∑

n=1

|cn|2 < ∞, the sequence
{

tn
}

n∈N is a Cauchy sequence. Hence,
{

sn
}

n∈N is a

Cauchy sequence in X. Since X is a Hilbert space, the sequence
{

sn
}

n∈N converges and

so does
∞∑

n=1

cnen.

Furthermore, since
∞∑

n=1

|cn|2 < ∞, the sequence
{
|cn|2

}
n∈N is absolutely summable and the

summation does not change if reordering of the series. Thus,
∞∑

n=1

cnen converges uncondi-

tionally.

(d) By Bessel’s inequality and part(c), the series p =
∞∑

n=1

〈x, en〉en converges. For fixed k,

〈x − p, ek〉 = 〈x, ek〉 −
¨ ∞∑

n=1

〈x, en〉en, ek

∂
(Convergence) −→ = 〈x, ek〉 −

∞∑
n=1

〈x, en〉〈en, ek〉

= 〈x, ek〉 − 〈x, ek〉 = 0

The vector x − p is orthogonal to each vector ek and thus it is orthogonal to every vector in
M. We have that p ∈ M and x− p ∈ M⊥. This implies that p is the orthogonal projection of
x onto M.

(e) By part(d), p =
∞∑

n=1

〈x, e〉en is the orthogonal projection of x onto M and

‖p‖2 = 〈p,p〉 =
∞∑

n=1

∣∣〈x, en〉
∣∣2.

“(i)⇒ (ii)” If x ∈ M, the orthogonal projection of x onto M is x itself. Thus, x = p =
∞∑

n=1

〈x, en〉en.

“(ii)⇒ (iii)” If x = p, then ‖x‖2 = ‖p‖2 =
∞∑

n=1

|〈x, en〉|2.
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“(iii)⇒ (i)” Suppose ‖x‖2 =
∞∑

n=1

|〈x, en〉|2. Then since x − p ⊥ p,

‖x‖2 = ‖(x − p) + p‖2 = ‖x − p‖2 + ‖p‖2

= ‖x − p‖2 +
∞∑

n=1

|〈x, en〉|2 = ‖x − p‖2 + ‖x‖2.

Hence ‖x − p‖ = 0 and x = p ∈ M.
□

Remark. We say that the sequence {en}n∈N is “complete” in X if

span{en} = X.

4.5.1 Mean-Square Convergence
Consider the space R of integrable functions on the circle with inner product

〈 f , g〉 = 1
2π

∫ 2π

0
f (x)g(x) dx

and the induced norm

‖ f ‖2 = 〈 f , f 〉 = 1
2π

∫ 2π

0
| f (x)|2 dx.

Note. The norm ‖ · ‖ is equivalent to ‖ · ‖L2 . In fact,

2π‖ · ‖2 = ‖ · ‖2L2([0,2π]).

We will prove that ‖S N( f ) − f ‖ → 0 as N tends to infinity. It also implies S N( f ) converges to f
in L2 norm.

Set en(x) = einx. Then {en}n∈Z is an orthonormal sequence. Let

an = 〈 f , en〉 =
1

2π

∫ 2π

0
f (x)e−inx dx = f̂ (n)

be the Fourier coefficient of f . Then

S N( f )(x) =
∑
|n|≤N

anen.

Lemma 4.5.5. For every N ∈ N, Ä
f −
∑
|n|≤N

anen

ä
⊥
∑
|n|≤N

bnen

for any bn ∈ C.
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Proof. For every |n| ≤ N,

〈 f −
∑
|m|≤N

amem, en〉 = 〈 f , en〉 −
∑
|m|≤N

am〈em, en〉

= an − an = 0.

By the linear combination, we have
Ä

f −
∑
|n|≤N

anen

ä
⊥
∑
|n|≤N

bnen. □

■ Bessel’s Inequality

By Lemma4.5.5, we write f = ( f −
∑
|n|≤N

anen) +
∑
|n|≤N

anen and

‖ f ‖2 = ‖ f −
∑
|n|≤N

anen‖2 + ‖
∑
|n|≤N

anen‖2 (Pythagorean Theorem)

= ‖ f −
∑
|n|≤N

anen‖2 +
∑
|n|≤N

|an|2‖en‖2

= ‖ f −
∑
|n|≤N

anen‖2 +
∑
|n|≤N

|an|2

= ‖ f − S N( f )‖2 +
∑
|n|≤N

|an|2.

Hence, for every N ∈ N,
∑
|n|≤N

|an|2 ≤ ‖ f ‖2. Letting N → ∞, we have the Bessel’s inequality

∞∑
n=−∞
|an|2 ≤ ‖ f ‖2.

Remark. Suppose that {un} is any orthonormal sequence and bn = 〈 f ,un〉 for every n. We still
have a corresponding Bessel’s inequality,∑

|bn|2 ≤ ‖ f ‖2.

Lemma 4.5.6. (Best approximation) If f is integrable on the circle with Fourier coefficients an,
then

‖ f − S N( f )‖ ≤ ‖ f −
∑
|n|≤N

cnen‖ (4.5.1)

for any cn ∈ C. Moreover, the equality holds precisely when cn = an for all |n| ≤ N.
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Proof. Let bn = an − cn. Then

f −
∑
|n|≤N

cnen = f − S N( f ) +
∑
|n|≤N

bnen.

By Pythagorean theorem, since
Ä

f − S N( f )
ä
⊥
∑
|n|≤N

bnen,

‖ f −
∑
|n|≤N

cnen‖2 = ‖ f − S N( f )‖2 +
∑
|n|≤N

|bn|2.

Thus, the inequality (4.5.1) is proved. □

Theorem 4.5.7. If f is Riemann integrable on the circle, then

‖S N( f ) − f ‖ → 0 as N → ∞.
Proof.

Step1: To show that the theorem is ture if f is (2π-periodic) continuous on the circle. For given
ε > 0, by Corollary4.4.6, there exists a trigonometric polynomial P with degree M such that

‖ f − P‖
L∞
(

[0,2π]
) < ε.

Therefore,
1

2π

∫ 2π

0
| f − P|2 dx ≤ 1

2π
· 2πε2 = ε2.

Then ‖ f − P‖ < ε. By the best approximation,

‖ f − S M( f )‖ ≤ ‖ f − P‖ < ε.
Step2: If f is a continuous function (but possibly f (0) , f (2π)), we define

k(x) =


0, x = 0
linear, 0 < x < δ
f (x), δ < x < 2π − δ
linear, 2π − δ ≤ x < 2π
0, x = 2π
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Then k is continuous on [0, 2π] with k(0) = k(2π) and

‖ f − k‖ < ε

if δ is sufficiently small. Also, f − k is integrable on the circle. By the Bessel’s inequality,

‖S N( f ) − S N(k)‖ = ‖S N( f − k)‖ ≤ ‖ f − k‖ < ε

for every N ∈ N.
Step3: If f is integrable on the circle, by using the method of mollifiers, we can choose a
continuous function g on [0, 2π] such that

‖ f − g‖ < ε

and hence ‖S N( f ) − S N(g)‖ = ‖S N( f − g)‖ ≤ ‖ f − g‖ < ε. Then

‖ f − S N( f )‖ ≤ ‖ f − g‖ + ‖g − S N(g)‖ + ‖S N(g) − S N( f )‖
< ε + ε + ε = 3ε

as N is sufficiently large. □

Corollary 4.5.8. (Parseval’s Identity) Let f be an integrable function on the circle. If an is the
nth Fourier coefficients of f , then

∞∑
n=−∞
|an|2 = ‖ f ‖2.

Proof. The identity is clear since

‖ f ‖2 = ‖ f − S N( f )‖2 + ‖S N( f )‖2 (Pythagorean Theorem)

= ‖ f − S N( f )‖2 +
N∑

n=−N

|an|2.

Let N → ∞ and we obtain
∞∑

n=−∞
|an|2 = ‖ f ‖2. □

Theorem 4.5.9. (Riemann-Lebesgue lemma) If f is integrable on the circle, then f̂ (n) → 0
as |n| → 0.

Proof. Since f is integrable on the circle, f is bounded and this implies that ‖ f ‖2 < ∞. By
Bessel’s identity,

∞∑
n=−∞
| f̂ (n)2| = ‖ f ‖2 < ∞.

Then f̂ (n)→ 0 as |n| → ∞.
□



106 CHAPTER 4. FOURIER SERIES

Note. An equivalent result of this theorem is that if f is integrable on [0, 2π], then∫ 2π

0
f (x) sin(Nx) dx→ 0 as N → ∞

and ∫ 2π

0
f (x) cos(Nx) dx→ 0 as N → ∞

Lemma 4.5.10. Suppose F and G are integrable on the circle with

F ∼
∑

aneinx and G ∼
∑

bneinx.

Then
1

2π

∫ 2π

0
F(x)G(x) dx =

∞∑
n=−∞

anbn.

Proof. Since

〈F,G〉 = 1
4
[
‖F +G‖2 − ‖F −G‖2 + i

(
‖F + iG‖2 − ‖F − iG‖2

)]
by Parseval’s identity

1
2π

∫ 2π

0
F(x)G(x) dx = 〈F,G〉

=
1
4
[
‖F +G‖2 − ‖F −G‖2 + i

(
‖F + iG‖2 − ‖F − iG‖2

)]
=

1
4

∞∑
n=−∞

î
|an + bn|2 − |an − bn|2 + i

(
|an + ibn|2 − |an − ibn|2

)ó
=

∞∑
n=−∞

anbn.

□

4.5.2 Pointwise Convergence
The mean-square convergence theorem does not guarantee that the Fourier series converges for
any x. In order to obtain the pointwise convergence of Fourier series, the function may have
good local behaviors near x0.

Observe that

S N( f )(x0) − f (x0) =
1

2π

∫ π

−π
f (x0 − y)DN(y) dy − f (x0)

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]
DN(y) dy

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]sin
(
(N + 1

2 )y
)

sin( y
2 )

dy
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We expect the integral decays to 0 as N tends to infinity. However, the denominator sin( y
2 )

become small as |y| tends to 0. Hence, we hope to obtain a better control of
f (x0 − y) − f (x0)

sin( y
2 )

that will give the pointwise convergence.

Theorem 4.5.11. Let f be an integrable function on the circle which is differentiable at a point
x0. Then S N( f )(x0)→ f (x0) as N → ∞.

Proof. Define

F(y) =


f (x0 − y) − f (x0)

y
if y , 0 and |y| < π

− f ′(x0) if y = 0

Since f is differentiable at x0, there exists δ > 0 such that F is bounded for |y| ≤ δ. Moreover,
F is integrable on [−π,−δ]∪ [δ, π] because f is integrable on the circle. Then F is integrable on
the circle.

On the other hand, since
y

sin(y/2)
is continuous on [−π, π]\{0}, the functions

F(y) · y
sin(y/2)

cos(y/2) and F(y)y

are Riemann integrable on [−π, π]. Also,

sin
(
(N + 1/2)y

)
= sin(Ny) cos(y/2) + cos(Ny) sin(y/2).

Then

S N( f )(x0) − f (x0) =
1

2π

∫ π

−π
f (x0 − y)DN(y) dy − f (x0)

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]
DN(y) dy

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]sin
(
(N + 1

2 )y
)

sin( y
2 )

dy

=
1

2π

∫ π

−π

Ä
F(y) · y

sin(y/2)
cos(y/2)

ä
sin(Ny) dy

+
1

2π

∫ π

−π
F(y)y cos(Ny) dy.

By Riemann-Lebesgue lemma, the above two integrals converge to 0 as N → 0 and the theorem
is proved. □

Remark. According to the above analysis, we need to control the term
f (x0 − y) − f (x0)

sin(y/2)
as

|y| is small. In fact, the conclusion of the theorem still holds if we assume that f satisfies a
“Lipschitz condition” at x0; that is,

| f (x) − f (x0)| ≤ M|x − x0|

for some M ≥ 0 and all x.
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Theorem 4.5.12. Suppose f and g are two integrable functions defined on the circle, and for
some x0 there exists an open interval I containing x0 such that

f (x) = g(x) for all x ∈ I.

Then S N( f )(x0) − S N(g)(x0)→ 0 as N → ∞.

Proof. Since the function f − g is 0 in I, it is differentiable at x0. Therefore, by Theorem4.5.11,

S N( f )(x0) − S N(g)(x0) = S N( f − g)(x0)→ ( f − g)(x0) = 0.

□

■ Piecewise Continuous Functions

If f is a piecewise continuous function on the circle, then it is bounded and integrable on the
circle. Denote

f (x−) = lim
h→0+

f (x − h) and f (x+) = lim
h→0+

f (x + h).

Let f (x) be the average value

f (x) =
1
2

[ f (x+) + f (x−)].

Note that if f is continuous at x, then f (x) = f (x+) = f (x−) = f (x).

Definition 4.5.13. A piecewise continuous function f is said to be “one-sided differentiable” at
x if the two limits

lim
h→0+

f (x−) − f (x − h)
h

and lim
h→0+

f (x + h) − f (x+)
h

both exist.

Example 4.5.14. The function f (x) = |x| is one-sided differentiable at x = 0 since

lim
h→0+

|0| − | − h|
h

= −1 and lim
h→0+

|h| − |0|
h

= 1.

Theorem 4.5.15. Let f be a piecewise continuous function on [−π, π] such that its 2π-periodic
extension is one-sided differentiable for all x ∈ R. Then S N( f ) converges pointwise to f (x) for
all x ∈ R.

Proof. Since DN(y) is an even function, then

1
2π

∫ 0

−π
DN(y) dy =

1
2π

∫ π

0
DN(y) dy =

1
2
.

We have

f (x) =
1

2π

î∫ 0

−π
DN(y) f (x+) dy +

∫ π

0
DN(y) f (x−) dy

ó
.
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S N( f )(x) − f (x) =
1

2π

î∫ 0

−π
DN(y)

Ä
f (x − y) − f (x+)

ä
dy

+

∫ π

0
DN(y)

Ä
f (x − y) − f (x−)

ä
dy
ó

=
1

2π

î∫ 0

π

DN(−y)
Ä

f (x + y) − f (x+)
ä

(−dy)

+

∫ −π

0
DN(−y)

Ä
f (x + y) − f (x−)

ä
(−dy)

ó
(let y→ −y)

=
1

2π

î∫ π

0
DN(y)

Ä
f (x + y) − f (x+)

ä
dy

+

∫ 0

−π
DN(y)

Ä
f (x + y) − f (x−)

ä
dy
ó

(DN is even .)

=
1

2π

î∫ π

0

f (x + y) − f (x+)
sin(y/2)

· sin
(
(N + 1/2)y

)
dy

+

∫ 0

−π

f (x + y) − f (x−)
sin(y/2)

· sin
(
(N + 1/2)y

)
dy
ó

=
1
π

î∫ 2π

0

f (x + 2z) − f (x+)
sin z

· sin
(
(2N + 1)z

)
dz

+

∫ 0

−2π

f (x + 2z) − f (x−)
sin z

· sin
(
(2N + 1)z

)
dz
ó

(let y = 2z)

= I + II

By the similar argument as the one of Theorem4.5.11, since f is one-sided differentiable, the
functions

f (x + 2z) − f (x+)
sin z

and
f (x + 2z) − f (x−)

sin z
are integrable on [0, 2π] and [−2π, 0] respectively. From Riemann-Lebesgue lemm, both I and
II converge to 0 as N tends to infinity. The theorem is proved.

□

Example 4.5.16. Let f (x) = |x| be defined on [−π, π]. Then the Fourier coefficients of f are

f̂ (n) =


π

2
if n = 0

−1 + (−1)n

πn2 if n , 0

Then the Fourier series

|x| ∼ π
2
+

∞∑
|n|=1

−1 + (−1)n

πn2 einx =
π

2
− 4
π

∞∑
n=1, odd

cos(nx)
n2 .

Since f is continuous on [−π, π] and one-sided differentiable, f can be expressed as its Fourier
series. That is

|x| = π
2
− 4
π

∞∑
n=1,odd

cos(nx)
n2 .
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Taking x = 0, we have
∞∑

n=1, odd

1
n2 =

π2

8
.

4.5.3 Uniform Convergence
In the present subsection, we want to find the sufficient condition for the uniform convergence
of Fourier series. Corollary4.2.13 says that the twice continuous differentiability of f will give
rise to the uniform convergence. Besides, since uniform convergence automatically implies
pointwise convergence, we naturally expect the sufficient conditions for uniform convergence
are strong than the hypotheses in Theorem4.5.11.

The following theorem will apply Corollary4.2.11 and give a better hypothesis than the ones
of Corollary4.2.13.

Theorem 4.5.17. Let f be a function defined on [−π, π] such that its periodic extension is con-
tinuous (i.e f (−π) = f (π)) and let f ′ be piecewise continuous. Then S N( f ) converges uniformly
to f on [−π, π].

Proof. By Corollary4.2.11, it suffices to show that
∞∑

n=−∞
| f̂ (n)| < ∞. Since f ′ is piecewise con-

tinuous, it is integrable on [−π, π] and hence its Fourier coefficients are well-defined and

f̂ ′(n) =
1

2π

∫ π

−π
f ′(x)e−inx dx.

Moreover, from Bessel’s inequality,
∞∑

n=−∞
| f̂ ′(n)|2 ≤ ‖ f ′‖2 < ∞.

On the other hand, for every n ∈ Z,

f̂ ′(n) =
1

2π

∫ π

−π
f ′(x)e−inx dx

=
1

2π

î
f (x)e−inx

∣∣∣π
−π
+ in
∫ π

−π
f (x)e−inx dx

ó
= 0 +

in
2π

∫ π

π

f (x)e−inx dx (since f (−π) = f (π))

= (in) f̂ (n).

By Cauchy-Schwarz inequality,
∞∑

n=−∞
| f̂ (n)| = | f̂ (0)| +

∞∑
|n|=1

| f̂ ′(n)|
|n|

≤ | f̂ (0)| +
Ä ∞∑
|n|=1

1
n2

ä1/2Ä ∞∑
|n|=1

| f̂ ′(n)|2
ä1/2

< ∞.
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By Corollary4.2.11, S N( f ) converges to f uniformly. □

Example 4.5.18. Let f (x) = |x| be defined on [−π, π] and the 2π periodic extension of f and
f ′(x) = sign(x) is piecewise continuous. Therefore, S N( f ) converges to f uniformly.

Example 4.5.19. Let f (x) = sign(x). Since f is not continuous, we cannot conclude that S N( f )
converges to f uniformly on [−π, π]. If fact, it is impossible that S N( f ) convergs to f uniformly
since the limit function of uniform convergence of continuous functions should be continuous.
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4.6 Smoothness and Decay of Fourier Coefficients
From the proofs of Corollary4.2.13 and Theorem4.5.17, we have an insight that the smoother
f is the faster the Fourier coefficients will converge to zero. The rate at which the Fourier
coefficients tend to zero will be measured by checking if

∞∑
n=−∞

n2m| f̂ (n)|2 < ∞

for positive integers m.

Let Cm
p denote the set of functions on R such that f , f ′, · · · , f (m) are all continuous and 2π

periodic. Hence, if f ∈ Cm
p , then

f ( j)(−π) = f ( j)(π) for j = 0, 1, · · · ,m.
Theorem 4.6.1. Let m ≥ 1 be an integer. Assume that f ∈ Cm−1

p and f (m) is piecewise continu-
ous. Then

∞∑
n=−∞

n2m| f̂ (n)|2 = ‖ f (m)‖2.

Proof. Assume that m = 1. Then f is continuous on the circle and f ′ is piecewise continuous
on [−π, π]. Hence, f ′ is integrable on [−π, π] and

f̂ ′(n) = in f̂ (n) for all n ∈ Z.
By Parseval’s inequality,

∞∑
n=−∞

n2| f̂ (n)|2 = ‖ f ′‖2.

Assume that the theorem holds for m. Let f ∈ Cm
p with f (m+1) piecewise continuous, then

f ′ ∈ Cm−1
p with dm

dxm f ′ = f (m+1) piecewise continuous. Then
∞∑

n=−∞
n2(m+1)| f̂ (n)|2 =

∞∑
n=−∞

n2m
∣∣(in) f̂ (n)

∣∣2 = ∞∑
n=−∞

n2m
∣∣ f̂ ′(n)

∣∣2 = ‖ f (m+1)‖2.

The theorem is proved by induction on m. □

Example 4.6.2. In Example4.5.16, we consider the function f (x) = |x| on [−π, π]. The Fourier
coefficients are

f̂ (n) =


π

2
if n = 0

−1 + (−1)n

πn2 if n , 0

Hence,
∞∑

n=−∞
n2| f̂ (n)|2 = 2

∞∑
n=1, odd

n2 4
π2n4 =

8
π2

∞∑
n=1, odd

1
n2 .

It is easy to check that f ∈ C0
p and f ′(x) = sign(x) is piecewise continuous. Also, we can

compute that ‖ f ′‖2 = 1. This also implies that∑
n=1, odd

1
n2 =

π2

8
.
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4.7 Applications

In the present section, we will use the Fourier series to solve an PDE problem.

■ Heat Equation

We consider the heat equation on the domain (0, 1) satisfying

ut(t, x) − uxx(t, x) = 0 x ∈ [0, 1], t ≥ 0 (4.7.1)
u(t, 0) = u(t, 1) = 0 t ≥ 0 (4.7.2)

u(0, x) = f (x) ∈ C2([0, 1]) 0 ≤ x ≤ 1 (4.7.3)

We want to look for special solutions of the form

u(t, x) = A(t)B(x).

The heat equation implies that

A′(t)B(x) − A(t)B′′(x) = 0.

Hence,
A′(t)
A(t)

=
B′′(x)
B(x)

= λ.

The number λ is a constant since it is independent of both x and t. Then we have

A(t) = eλt and B(x) = b1e
√
λx + b2e−

√
λx.

From the boundary condition(4.7.2), we have B(0) = B(1) = 0. Then B(x) is a 1-periodic
function and hence λ < 0 and

√
|λ| is an integer multiple of 2π. Set λ = −4π2n2 for n ∈ N. Let

An(t) = e−4π2n2t and Bn(x) = b1ne2πinx + b2ne−2πinx.

The for every n ∈ N, the function

un(t, x) = An(t)Bn(x) = e−4π2n2t
Ä

b1ne2πinx + b2ne−2πinx
ä
, b1n, b2n ∈ C

satisfies (4.7.1) and (4.7.2). Since the heat equation is linear, the linear combination

u(t, x) =
∞∑

n=−∞
An(t)Bn(x) =

∞∑
n=−∞

ane−4π2n2te2πinx

also solves (4.7.1) and (4.7.2). To determine whether u(t, x) satisfies (4.7.3), setting t = 0 and

f (x) = u(0, x) =
∞∑

n=−∞
ane2πinx
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where an = f̂ (n) =
∫ 1

0
f (x)e−2πinx dx are the Fourier coefficients of f .

Since f is a twice continuously differentiable function, the Fourier coefficients a′ns are bounded.
Also, for every t > 0, e−4π2n2t decays repidly as n tends to infinity. Hence the series

u(t, x) =
∞∑

n=−∞
ane−4π2n2te2πinx

converges for every t > 0. Thus, the above series solves (4.7.1), (4.7.2) and (4.7.3). In fact,
u ∈ C2.

Question: Does u(t, x) converge to f (x) as t tends to 0?
That is,

lim
t→0

u(t, x) = lim
t→0

lim
N→∞

N∑
n=−N

ane−4π2n2te2πinx

??
= lim

N→∞
lim
t→0

N∑
n=−N

ane−4π2n2te2πinx

= lim
N→∞

N∑
n=−N

ane2πinx

= f (x).

Since f is twice continuously differentiable,
∑
n∈Z
| f̂ (n)| =

∑
n∈Z
|an| < ∞. For given ε > 0, there

exists N0 ∈ N such that
∑
|n|≥N0

|an| <
ε

3
. We have

∣∣∣ f (x) −
∑
|n|<N0

ane2πinx
∣∣∣ < ε

3

for every x ∈ [0, 1]. Choose δ > 0 such that 0 < t < δ, then∣∣∣ ∑
|n|<N0

ane−4π2n2te2πinx −
∑
|n|<N0

ane2πinx
∣∣∣ < ε

3

for every x ∈ [0, 1]. Then for 0 < t < δ,

| f (x) − u(t, x)| ≤
∣∣∣ f (x) −

∑
|n|<N0

ane2πinx
∣∣∣ + ∣∣∣ ∑

|n|<N0

ane−4π2n2te2πinx −
∑
|n|<N0

ane2πinx
∣∣∣

+

∣∣∣ ∑
|n|≥N0

ane−4π2n2te2πinx
∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore, u(t, x) converges to f (x) uniformly on [0, 1] as t tends to 0.
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Question: Is the solution of (4.7.2) and (4.7.3) unique?

Suppose that u1 and u2 are solutions of (4.7.2) and (4.7.3). Let v = u1 − u2. Then v satisfies

vt(t, x) − vxx(t, x) = 0 x ∈ [0, 1], t ≥ 0
v(t, 0) = v(t, 1) = 0 t ≥ 0

v(0, x) = 0 0 ≤ x ≤ 1

Define w(t, x) = e−tv(t, x). Then

wt(t, x) − wxx(t, x) + w(t, x) = 0 x ∈ [0, 1], t ≥ 0
w(t, 0) = w(t, 1) = 0 t ≥ 0

w(0, x) = 0 0 ≤ x ≤ 1

Claim: w(t, x) ≤ 0 for t ≥ 0 and 0 ≤ x ≤ 1.

Suppose the contrary, there exists t0 > 0 and 0 < x0 < 1 such that w(t0, x0) > 0. Since
w(t0, x) is continuous on {t0} × [0, 1], we may assume that x0 such that w(t0, x0) = max

0≤x≤1
w(t0, x).

Then
wxx(t0, x0) ≤ 0.

Therefore, wt(t0, x0) ≤ −w(t0, x0) < 0. We have

max
0≤x≤1

w(t, x) > 0 for all 0 ≤ t ≤ t0.

We can repeat the above argument on [0, t0]× [0, 1] until the process goes back to the initial
time t = 0. It will implies that max0≤x≤1 w(0, x) > 0 and obtain a contradiction.

The claim w(t, x) ≤ 0 shows that v(t, x) ≤ 0. On the other hand, the same argument also
holds with v replaced by −v. We will obtain that v(t, x) ≥ 0 and hence v(t, x) ≡ 0. This proves
that the solution of (4.7.2) and (4.7.3) is unique.
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