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Preliminaries

1.1 Notation

e R: real number
e C: complex number

o F: field

m Complex numbers and complex function

For a complex number z € C, z = a + bi for some a,b € R and
2> = 22 = (a + bi)(a — bi) = a* + b*.
Suppose that f : D € R" — C is a complex valued function. Then

J) = filx) +ifa(x)

for some real-valued functions f;, f> : D C R" — R.

ff(x) dx ffl(x) dx+iff2(x) dx
D D D

f [f(0)]” dx f F@F dx, 1< p <.
D D

(ff(x)dx(sf{f(x)ydx (Check!).
D D

Note.

1



2 CHAPTER 1. PRELIMINARIES

1.2 Vector Spaces

Definition 1.2.1. A vector space (linear space) V over the scalar field F (R or C) is a set of
points (or vectors) on which are defined operations of “vectors addition” + : VXV — V and
“scalar multiplication” - : F X V — V such that

D v+w=w+v VyweV

) v+wy+ru=v+w+u) Yuv,weV

(iii)) 0 € Vsuchthatv+0=v VveV

@iv) Yve VIw e Vsuchthatv+w =0

V) A-(v+w)y=A2-v+1-w VieFandv,weV
Vi) A+w)-v=Aa-v+u-vViueFandveV

(vil) (Aopu)-v=A-(u-v) YAuec Fandv € V (Note: “e” is the scalar multipication of the
field F.)

(viii) 1-v=v Vv eV (Note: “1” is the multiplication identity of the field F.)

Example 1.2.2. Let S # 0 and denote F(S) = {f : § — F} the collection of all functions from
S to F. Then #(S) is a vector space over F

Example 1.2.3. Let B be a nonempty subset in a vector space V.
S pan(B) = {v ev | v can be expressed as a finite linear combination of elements in B }

That is, for every v € S pan(B), A4,,...,4, € Fandvy,...,v, € Bsuchthatv = 4jv;+---+4,v,.
Exercise. Prove that S pan(B) is a vector space.
Example 1.2.4. Let S = {p;,...,p,} and f € F(S). Define ¢ : F(S) — F" by

o(f) = (f(p1)s-- .. f(pw)).

Check that ¢ is an linear isomorphism. That is, ¢ is linear and bijective.

We will discuss more general cases of vector spaces of functions in Chapter 3.

1 Basis
Definition 1.2.5.

(a) Let V be a vector space and B be a subset of V. We call B a Hamel basis for V if B is
linearly independent in V and V = § pan(B)

(b) dimV = the number of the elements of B.
Theorem 1.2.6. Every nonempty vector space has a Hamel basis.
Proof. (Skip) by Zorn’s Lemma. O

Example 1.2.7. Define C([0, 1]) = {f : [0, 1] — R| f is continuous on [0, 1]}. Prove that the
basis of C ([O, 1]) is uncountable.



Metric Spaces
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In this chapter, we will review some abstract concept of metric spaces.

2.1 Point-Set Topology of Metric Spaces

Definition 2.1.1. A “metric space” (M, d) is a set M associated with a functiond : M XM — R

such that

(1) d(x,y) >0VYx,y € M,

(2) d(x,y) =0if and only if x = y;
(3) d(x,y) =d(y,x) Vx,y € M;

4) d(x,z) <d(x,y)+d(y,z) Vx,y,z € M (Triangle Inequality)
Example 2.1.2. Let M = R" and X = (x1,x2,...,X,), Y = V1, Y2,-..,Yn) € R".
(i) For 1 < p < oo, defined, : R" xR" — R by

dy(x,y) = (i e = yl”) "
k=1

Then (R", d,,) is a metric space.

==



4 CHAPTER 2. METRIC SPACES

(i) Define d, : R" X R" — R by

doo(X,y) = max{|x; — yil, [x2 = yol, . .., [x, — yal}-

Then (R", d,) is a metric space.

¥

The 1-ball about 0 in R with different p

Note. For the cases p = 1,2, oo, the triangle inequality is easy to check. We will prove other

cases until Chapter 3.
Definition 2.1.3. Let (M, d) be a metric space.

(1) Forx € M and r > 0, the set B(x,r) ={ye M { d(x,y) < r}1is called r-ball centered at x.

; // e ™.
la.‘ M B __\\\
\ J:.é ‘
\\\ Ny |
\

(2) A set U C M is said “open” (in M) if for every point x € U there exists r > 0 such that

B(x,r) CU.

Note. (i) Every r-ball is open. (ii) @ and M are open.

(3) Let A € M be a subset. A point x € A is called an “interior point of A” if there exists r > 0
such that B(x,r) € A. The “interior of A” is the collection of all interior points of A, and is

denoted by A.
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Note. A is the largest open set contained in A. That is, A = U G.
G:open
GeA

(4) Aset A C M is said to be “closed” if A° is open. (Note: () and M are closed.)

(5) Let A € M. A point x € M is called an “accumulation point of A” if for every r > 0, then
B(x,r) N (A\{x}) # 0.

The collection of all accumulation points of A is denoted by A’ and is called the “derived
set of A”.

Note. In some books, an accumulation point is also called a “cluster point of A”.

(6) Let A C M. A point x € A is called an“isolated point of A” if there is r > 0 such that
B(x,r)NA = {x}.

Note. If x € A and x is not an accumulation point of A, then x is an isolated point of A.

(7) A point x € M is called a “limit point of A” if for every r > 0, the open ball B(x, r) contains
a point in A. That is,
B(x,r)NA #0.

(8) Let A C M. The “closure of A” is the set A = A U A’.
Note. A is the smallest closed set containing A. That is, A = ﬂ F.

F:closed
ACF

(9) Let BC A C M. Bis said a “dense subset of A” if BC A C B.
(10) A metric space is “separable” if it has a countable dense subset.
(11) Let A C M. The “boundary of A” is the set A = A N Ac.

m Some results of metric spaces

(a) Any union of open sets is open. An intersection of finitely many open sets is open.
(b) Any intersection of closed sets is closed. A finite union of closed sets is closed.

(c) Aisopenin M ifandonlyif every pointin A is an interior point of A
ifandonlyif A =A4
if and only if A“is closed.

(d) Aisclosedin M if and only if every limit point of A is a point of A
ifandonlyif A’ CA
if and only if A = A.

(e) x € 0A if and only if for every r > 0, B(x,r) N A # 0 and B(x,r) N A° # (.

(f) 0A is closed and 0A = J(A°).
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2.2 Convergence and Completeness

Definition 2.2.1. Let (M, d) be a metric space and {x,},., € M be a sequence.

(1) We say that {x,} ., “converges (in M)” if there exists a point x € M satisfying for every

n=1

£ > 0thereis N € Nsuchthatifn > N
d(x,, x) < e.

Denoted by lim x,, = x.

n—oo

(2) A sequence is said to be a “Cauchy sequence” if for every € > 0, there is N € N such that
form,n > N,
d(x,,, x,) < &.

(3) A metric space (M, d) is said to be “complete” if every Cauchy sequence in M converges
(in M).

(4) A set A C M (or asequence {x,}", € M) is said to be “bounded” if there is a point xo € M
and R > 0 such that

A C B(x,R) (or x, € B(xo,R) Vn € N).

m Some results of convergence and completeness

Let {x,} ", be a sequence in a metric space (M, d).

(a) If {x,}>”, converges, then {x,} , is a Cauchy sequence.

Note. In general, the converse is false. But if M is complete, then the converse is true.

(b) {x,}>~, converges to x € M if and only if every open neighborhood of x contains all but
finitely many of the terms of {x,}> ;.

(c) (Uniqueness) If lim x,, = x; and lim x,, = x,, then x; = x,.
n—0o0 n—0oo

(d) If {x,}>”, converges, then {x,}> , is bounded.
(e) If A € M and x is a limit point of A, then there exists a sequence {x,}’~, C A such that

n=1
lim x, = x.

n—oco

(f) {x,}., converges to x if and only if every subsequence {x,,},7, of {x,} >, converges to x.

(g) If {x,}>, is Cauchy and a subsequence {x,};7, of {x,}’”, converges to x, then {x,}, con-
verges to x.

(h) A closed subset of a complete metric space is complete.

(1) If A € M is a dense subset and every Cauchy sequence in A converges in M, then (M, d) is
complete.
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2.3 Compactness

Definition 2.3.1. Let (M, d) be a metric space and K C M.
(1) K is “compact” if every open cover has a finite subcover.
(2) K is “sequentially compact” if every sequence in K has a convergent subsequence (in K).

(3) K is “totally bounded” if for each r > 0, there is a finite number of r-balls such that the
union of those r-balls covers K.

(4) Let {A,} be a collection of subsets in M. We say that {A,} has “finite intersection property”
if the intersection of every finite subcollection of {A,} is nonempty.

(5) A subset A of a metric space (M, d) is “precompact” if A is compact.

m Some results of compactness

Let (M, d) be a metric space and K C M be compact.

(a) A compact set is closed and bounded.

Note. In general, the converse if false.
(b) A closed subset of a compact set is compact.

(c) Finite intersection property Let {K,} be a collection of compact sets in M. Suppose that
{K,} has the finite intersection property. Then m K, #0.

a
In fact, M is compact if and only if every collection of closed sets having the finite inter-
section property has nonempty intersection.

(d) Heine-Borel Theorem In a metric space (M, d),
K is compact if and only if K is sequentially compact
if and only if K is totally bounded and complete

Each of the above statement implies that K is closed and bounded.

Note. In general, the coverse is false. Butif M = R” with the usual metric, then the converse
1s true.

(e) A totally bounded set is separable.

(f) Bolzano-Weierstrass Theorem Every bounded sequence in R” has a convergenet subse-
quence.

2.4 Connectedness and Path-connectedness

Definition 2.4.1. Let (M, d) be a metric space and A C M.
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(1) We say that A is “disconnected” if there are two nonempty open sets U and V such that
OHANUNV =0
(i) ANU=+0
(iii)) ANV £0

(iv) ACUUYV

On the other hand, A is “connected” if no such separation exists.

(2) We say that A is “path-connected” if for any two points x,y € A, there is a path contained
in A which joining x and y.

m Some results of connectedness and path-connectedness

Let (M, d) be a metric space and A C M.
(a) A isdisconnected in M if and only if there are two nonempty set A; and A, such that
(l) A= A] U A2
(11) Al mA_z :A_l ﬂAz = (Z)
(b) If A is path-connected then A is connected.
Note. The converse if false.

(c) A € Ris connected if and only if x,y € A and x < z < y then z € A.

(d) If A is connected if and only if A contains only two subsets (0 and A itself) which are both
open and closed relative to A.

2.5 Continuity

Definition 2.5.1. Let (M, d) and (N, p) be two metric spaces, A € M and f : A — N be a map.

(1) For a given point xo € A" and b € N. We say that “b is the limit of f at x,” if for every
g > 0, there is 6 > 0 such that if for every x € A and d(x, xy) < ¢ then

p(f(x),b) <e.
Denoted by lim f(x) = b.
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(2) For a given point xy € A, f is said to be “continuous” at x if either xo € A — A’ or

lim f(x) = f(x0)-

(3) fis said to be “continuous on A” if f is continuous at each point of A.

(4) f is said “uniformly continuous on A” if for any & > 0 there is 6 = d(g) > 0 such that if
x,y € A and d(x,y) < d, then

p(f(x), f) <e.

m Some results of continuity

Let (M, d) and (N, p) be two metric spaces, A C M and f : A — N be a continuous map. Then

(a) fiscontinouoson A if and only if for every openset V C N, f~'(V) C A is open relative
to A; that is f~!(V) = U N A for some U open in M
if and only if ~ for every closed set E C N, f~'(E) C A is closed relative
to A; thatis, f~'(E) = F N A for some F closed in M.

(o)

(b) f is uniformly continuous on A if and only if for any two sequence {x,}>",, {y.};o, C A, if
lim d(x,, ,) = 0, then lim p(f(x,). f()) = 0.

(c) Suppose that f : A — N is uniformly continuous. If {x,} , € A is a Cauchy sequence, then
{ f(xn)}:o: | 1s also a Cauchy sequence.

(d) If K C A is compact, then f(K) is compact in (N, p).

(e) If K is compact and f : K — R is continuous, then f attains its maximum and minimum.
(f) If K is compact and f : K — N is continuous, then f is uniformly continuous on K.

(g) If A is connected, then f(A) is connected in (N, p).

(h) If A is path-connected, then f(A) is path-connected in (N, p).

(i) (Intermediate Value Theorem) If f : A — R is continuous, a,b € A and C C A is a path
joining a and b. Suppose that f(a) < f(b). Then for every number L between f(a) and
f(b), there is a point p € C such that f(p) = L.

2.6 Embedding

Informally speaking, the embedding is given by some injective and structure-preserving map
f:M— N.

Definition 2.6.1. Let (M, d) and (N, p) be two metric spaces.
(1) f: M — N is said to be an “embedding” if f : M — f(M) is a homeomorphism. That

is, f : M — f(M) is bijective, continuous and the inverse function f~' : f(M) — M is
continuous. Denote f : M — N.
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(2) If there is an embedding map from M to N, we say that “M is embedded in N.

Example 2.6.2.

(1) Let (M,d) be a metric space and A C M. Then A is (automatically) embedded in M
(A — M). Considerid : A — M.

(i) N—>Z— Q<= R.
(i) ([0,11,1-1) <= ([2,51,2I-1).

Remark. If (M, d) and (N, p) are homeomorphic (that is, there exists a homeomorphism f :
M — N), then f preserves the topology preperties. But f does not preserve the distance
(metric).

Definition 2.6.3. Let (M, d) and (N, p) be two metric spaces. A map ¢ : M — N satisfies

p(¢(x), ¢(y)) =d(x,y) foreveryx,ye M

is called an “isometry” or an “isometric embedding” of M into N”.
Note. An isometry is metric preserving or distance preserving.

Example 2.6.4. (1) idgp : Q — R is an isometry

2) fACBCM,ids: A — Bis anisometry.

Remark. (1) An isometry is one-to-one and continuous.

(2) An isometry is an embedding map.

Definition 2.6.5. (1) An isometry which is onto is called a “isomorphism”.

(2) Two metric spaces (M, d) and (N, p) are “isomorphic” if there is an isomorphism ¢ : M —
N.

Example 2.6.6. ¢ : C — R? defined by ¢(x + iy) = (x,y) is an isomorphism.

2.7 Completion of Metric Spaces

Observation: (Q,I . IQ) 1s an incomplete metric space and (R,l . IR) is complete.
(1) idg : (Q,]-1g) = (R, |- |z) is isometry.
(2) idg (Q) C R is a dense subset of (R,I . IR).

Question: How about a general metric space? If (M, d) is a metric space, is there some metric
space (M*, d") such that

(1) (M*,d*) is complete,

(2) there is an isometric embedding ¢ : (M,d) — (M*,d"), and
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(3) ¢(M) C M* is a dense subset in d*?

Definition 2.7.1. Let (M, d) be a metric space. A metric space (M*,d") is called the “comple-
tion” of (M, d) if

(1) there is an isometric embedding ¢ : M — M",
(2) ¢(M) C M* is a dense subset in M*, and
(3) (M*,d") 1s complete.

Question: Does every metric space have a completion? If yes, is the completion unique?

Observation:

Theorem 2.7.2. Every metric space has a completion. The completion is unique up to isomor-
phism.

Note. If (M, d) is complete, then (M, d) itself is a completion of (M, d). Hence, we assume that
(M, d) is incomplete.

Thought: There may have two problems:
(1) We don’t know what the “(imaginary) limit point” is since it may not be an element in M.

(2) How to define d* since d is only defined on M but not on M* which is usually a larger set
than M.

Sketch the proof: (Cantor’s construction)
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@

(ii)

(iii)

(iv)

v)

CHAPTER 2. METRIC SPACES

We want to put the “(imaginary) limit point” in M*. How to give an appropriate name?

e Suppose {a,}”, € M is a Cauchy sequence, why don’t we name the (imaginary) limit
point “{a,} > ,”. Note that {a,} "’ is a Cauchy sequence in (M, d).

n=1

If there is another sequence {b,}" | approaching this point, can we also name it {b,}?

e We have lim d(a,, b,) = 0. In order the give an appropriate name to the limit point, we

use the “equivalent class” to name it, say [{a,,};‘l": 1] . More precisely, let
N = the collection of all Cauchy sequences in (M, d) = {{an};’f:1 ’ {a,} 1s Cauchy in M }
and define

M =N/ ~={[ta)2,] | tan)2, is Cauchy in M}.

(o]
n=1

where ~ is a relation which satisfies {a,} ", ~ {b,},>, whenever lim d(a,, b,) = 0.

How about those points themselves are in M ?

e We can still use the Cauchy sequence to name them. That is, if xy € M, we can name X
as [{an};’;’:]] where a, = x, for every n € N.

How to define a metric on M*?

e Consider P = [{pn};';l}, 0= [{qn};';l] € M*. (Notice that p,, g, € M for every n € N.
We need to use the known metric d on M to define an expected metric d* on M*). Define
d*: M* X M* — R by

d"(P, Q) = d(pn, qn)-

Check: d* is well-defined and is a metric on M*.

Define an isometry ¢ : M — M*

e For x € M we define

¢(x) = [{x,}oe;]  where lim x, = x

n=1
n—oo

(Ex: choosing x, = x for every n € N).
Check: ¢ preseves the distance.



2.7. COMPLETION OF METRIC SPACES 13

(vi) Is ¢(M) dense in M* under d*?

e Given P = [{Pn}ZZJ € M* and € > 0, to find an element Q € ¢(M) such that d*(P, Q) <
e. Since {p,}”, is Cauchy in M, there exists N € N such that for every m,n > N,

d(pn, pm) < &.
Define Q = [{qn};":]] where g; = ¢ = -+ = py. Then Q = ¢(py) € M* and

d*(P,Q) = lim d(p,, q,) < limsupd(p,, py) < €.

n—oo

(vii) Is (M*,d*) complete?

e Since ¢(M) is dense in M*, it suffices to show that every Cauchy sequence in ¢(M)
converges in (M*,d").

Let {P,}>", € ¢(M) be Cauchy in (M*,d"). For every n € N, we can choose a constant

sequence {p\"}  C M such that P, = [{p,ﬁ”)},j"zl] where p\" = p\’ = ... = p = ... for
L 1

eM
every k € N. Moreover, for € > 0, there exists N € N such that if m,n > N,
e
dP,, P, < —.
(PoPr) < 5

e (To construct a Cauchy sequence {q,} ) in (M, d) such that {P,}" , converges to Q =
[{g.)2,] in (M*,d")). Define g = p%* for k € N.
(@) If m,n>N,
. n m * &
d(gn, gn) = lim d(p}", pi”) = d"(Py, Py) < 3.
Hence, {g;},>, is Cauchy in M.
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(viii)

CHAPTER 2. METRIC SPACES

(b) Let Q = [{qu),] € M*. Forn > N,

* . n . E
d'(P,, Q) = lim d(p;”, qi) = Jim d(q, i) < 5.

Therefore, {P,}’’  converges to P in (M*,d").

Is (M*,d") unique under isomorphism?

Suppose that (M7, d}) are (M3, d3) are two completion of (M, d). Then there are isometric
embeddings ¢, : M — M7 and ¢, : M — M;. (Toﬁnd an isomorphism ¢ . (M7,d}) —
(M3, d5)).

For X € M7, there exists {x,} >, C M such that ¢,(x,) — X (in (M7, d;)) since ¢(M) is
dense in (M7, d}). Moreover, {x,}  is Cauchy in (M, d) since d(x,, x,,) = d*(¢1(x,), $1(x)).

On the other hand, since ¢, is an isometric embedding, {¢.(x,)} ", is Cauchy in (M3, d5).
Then ¢,(x,) — Y € M. We define a map ¢ : M] — M by

w(X) =Y.

Check: ¢ is an isomorphsim.

2.8 Pointwise and Uniform Convergence

Definition 2.8.1. Let (M,d) and (N, p) be two metric spaces, A € M and f; : A — N be
functions fork =1,2,....

(D) {fk};2, 1s said to “converge pointwise” to f if for € > 0 and for every x € A, there is
K = K(x,&e) e Nsuch thatif k > K

p(filn), f(x)) <e.

Write f; — f pointwise (p.w.)

(2) {fidie, 1s said to “converge uniformly” to f if for £ > 0 and for every x € A, there is
K = K(¢) e Nsuch thatif k > K

p(fx), f(0)) <e.

Write f; — f uniformly
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(3) {fi};2, 1s said to be “pointwise bounded on A” if there exists a finite valued function ¢(x)

defined on A such that
/)l < ¢(x)  VkeN, xeA.
(4) {f};2, 1s said to be “uniformly bounded on A” if there exists a number M > 0 such that

lfr(x)] <M VkeN, x € A.

(5) A family B functions defined on A is said to be “equicontinuous on A” if for every € > 0,
there is 6 > 0 such that if d(x, y) < ¢ then

p(f(x),f() <&  VkeN, x,ycAand f€B.

m Some results of convergence of sequence of functions

Let (M,d) and (N, p) be two metric spaces, A € M and f;, f : A — N be functions for
k=1,2,.... Then

(a) If { fi};2, converges uniformly to f then {f;},,

- converges pointwise to f.

(b) Let {fi};=, be a sequence of continuous functions. If { f;};7, converges uniformly to f, then
f 1s continuous.

(c) Let I C R. Let f; : I — R be sequence of differentiable functions and g : I/ — R be a
function. Suppose that {f(a)};7, converges for some a € I and {f/},>, converges uniformly
to g on /. Then

(1) {fi};2, converges uniformly to some differentiable function f on I.
(1) f'(x)=gx)Vxel.

(d) Let fi : [a,b] — R be a sequence of Riemann integrable functions. Suppose that {f;};7,
converges uniformly to f on [a, b]. Then f is Riemann integrable on [a, b] and

b b b
f f(x)dx = f ]}im fi(x) dx = ]}imf Ji(x) dx.

(e) Let K C M be compact and f; : K — [ be continuous and converge uniformly. Then {f};>,
is equicontinuous on K.

(f) (Arzeld-Ascoli) Let K € M be compact and f; : K — F. If {f;};7, is pointwise bounded
and equicontinuous on K, then

(1) {fi}2, 1s uniformly bounded on K.

(i) {fi};2, contains a uniformly convergent subsequence.

m Space of continuous functions

Let (M, d) be a metric space and FF be a field. (In this class, we consider F = R or C.) We collect
all real-valued continuous functions defined on M.

C(M,R) =C(M) :={f: M — R | f is continuous on M }.
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Define the addition operator “® : C(M) X C(M) — C(M)” and the scalar multiplicaton “® :

R x C(M) — C(M)” by
(feg)
(10 f)(x)

Note. Students should realized that @ and © are operations on the space C(M) and + and - are
the usual addition and the scalar multiplication on R.

Example 2.8.2.
(1) Check that (C M), &, @) is a vector space over R.

f(x) + g(x) Vf,g € C(M)
A-f(x)  VYleRand f € C(M).

(ii) Define Co(M) := {f € C(M) | sup|f(x)| < oo}. Check that (Cb(M),EB, @) is a subspace
of C(M). <

For the converience, the vector space (Cb(M ), ®, @) is abbreivated to C,(M). We will define
a metric d on C,(M) by

d(f.8) = sup |f()—gx)|  Vf.geCyM).

Example 2.8.3. Check that (Cb(M), a’) 1S a metric space.
Question: Can we use d as a metric on C(M)?
Example 2.8.4.

(1) Let{f,}>>, be a sequence in (C;,(M), d). Prove thtat f, — f if and only if f,(x) converges

n=1

to f(x) uniformly on M.

(i) By using the result(c), prove that (Cb(M ), d) is complete.

2.9 Interchange of Limiting Operations

We have learned some exchangeability of limiting processes. The uniform convergence of a
sequences of functions will bring some properties to the limit function, such as continuity, dif-
ferentiability, integrability. We can further discuss some results which borrow the concepts of
uniform convergence.

Recall:

(a) A uniform limit of continuous functions is continuous. That is, let {f;},”, be a sequence of
continuous function. If {f;};>, converges uniformly to f, then f is continuous.
lim (fim /i) = Jim (tim o).
(b) A uniform limit of integrable functions is integrable. That is, let f; : [a,b] — R be a

sequence of integrable functions. If {f;};”, converges uniformly to f on [a,b], then f is
integrable on [a, b] and

(o)

k=1

f (Jim fi(w) dx = Jim ( f 5 dx).
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(c) A sequence of differentiable functions which converges at one point and has uniformly
convergent derivatives is differentiable. That is, let {f;};2, be a sequence of differentiable
functions. If { fy(a)};7, converges and {f;(x)};7, converges uniformly to g, then {f;};?, con-
verges uniformly to f and f'(x) = g(x).

e (fm ) = fim (2 70)

(d) (Term-by-term differentiation and integartion of series) Let { f;},7 | be a sequence of funtions

and define 5,(x) = ) fi(x).
k=1

e Suppose that {s,}, satisfies the condition of Part(b). Then

h o © b
f Z fi(x)dx = Zf fi(x) dx.
a k=1 Ya

k=1

(o)

- | satisfies the condition of Part(c). Then

d = d
- [;fk(x)} = kZ; .

e Suppose that {s,}

(o)

e Suppose that a power series Z cx(x — ) converges on (a, 8). For every interval [a, b] C

k=0
(a, B), the above two results hold.

a Interchange of Differentiation and Integration

d
Theorem 2.9.1. (Fundamental Theorem of Calculus) If f is continuous and d—f is integrable
X
onla,bland a < x < b then

d (™ *
d_f f@dt = f(x) :f(a)"'f f'(@0) dr.
x Ja P — |

d—f_'(z)

Consider the two variables function f(x,y). We are interested in the “differentiation under

the integral sign”
d, (7 n (7 of
o f fx.y) dx) = f gy /() dx

d ! 4
Example 2.9.2. Let f(x,y) = (2x+y*)?. Then a—f(x, y) = 6y*(2x +y*) and f f(x,y) dx = 3t 2y° +5°.
y 0
We have

d 1 1 laf
d—f f(x,y) dx = 6y* + 6y° :f 6y*(2x + °) a’x:f —(x,y) dx.
Y Jo 0 o Oy
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Question: Is this result true for every two variables function?

m Counterexample for exchanging the order of differentiation and integration

3

el if x>0 N . o
Let f(x,y) = ¢ 42 be continuous in x and in y, but discontinuous at (0, 0).
0 ifx=0
Define
! 2
F(y) = f f(x,y)dx =ye™ foreveryyeR
0
and
d 2 5
d—F()’) =e¢(1-2y") foreveryyeR.
y
Fory # 0,

x2

18 1 3 2 2 4
f a—f(x,y) dx = f e‘yz/’“(l - 13) dx = e (1 -2y,
0o 0y 0 X

0
But a—f(x, 0) = 0 for every x > 0. Then
y

1
f g(x,O) dx=0
o Oy

and we have

1
F’(O):lq&O:f g(x,O)dx.
o Oy

Example 2.9.3. (See Zheng’s lecture note) For x > 0, we define

y if0<y< +x
fy) =4 2Vx-y if Vx<y <2+
0  ify>2+x

and let f(x,y) = —f(—x,y) if x < 0 and f(x,—y) = f(x,y) if y < 0. (Notice that f is odd in x
and even in y.)
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—(2v/]e[ = lyl)
=-2V-z —y

df

Then f is continuous on R? and d—(O, y) = 0 for all y € R since
X

2
fouy) =0 if|x < yz orify = 0.

1 1
For |x| < T we define F(x) = f f(x,y)dy. Then if x > 0,
-1

1 VE 2 Vx
Fo = 2 [ o= [ ydy+f( CVE-y) dy]
0 0 X
2 y= 2 v
y*y=vx Yo =2V
= — 24/x - - = = 2x.
23 Ly F2VERVx- VR -S| =2
If x <O,
Vo 2V
Fx) = —2[f ydy+f (2\/—x—y)dy}
0 V=x
2 e 2 e
3 yep=v-x Yo PRIy
= 2|3 o T2V «/—x)—Ey:ﬁ} = 2x.
1 Lor
Therefore, F(x) = 2x for all |x|<Zand then F'(x) =2 #0 = f a—(O,y) dy.
_1 0X

Q Differentiation under the Integral Sign

b
Let f(x,y) be a function defined on [a, b] X [c, d]. Define ¢(y) = f f(x,y) dx.

Theorem 2.9.4. If f is continuous on |a, b] X [c, d], then ¢ is continuous on |[c, d].

19
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Proof. Since f is continuous on [a, b] X [c,d], it is bounded and uniformly continuous. For
given € > 0, there exists 0 > 0 such that if |(xy, y;) — (x2, y2)| < 6, then |f(x1,y1) — f(x2,y2)| < €.
Then for yy,y; € [c,d] and [y; — y2| < 6,

b
|61 — d()| < f |G y1) = f(xy2)| dx < &b - a).
Therefore, ¢ is (uniformly) continuous on [c, d]. O

0
Theorem 2.9.5. Suppose that f and 8_f are continuous on [a, bl X[c, d]. Then ¢ is differentiable
y

and ,
d of
= - - d
So0)= [ Gy ax
holds.
Proof. Fixy € (¢,d)and y + h € (c,d) for small & € R. Consider

¢y +h) — ¢(y) " of (P Sy +h) - fxy)  Of
B [ G =| [ (B -E

(x, y)) dx’.

By the Mean Value Theorem,

fauy+h) = fy) _ df
l’l - 8}1 (X, Cx,h)

for some ¢, between y and y + h. Then

b b

Since 0—f is continuous on [a, b] X [c, d], it is uniformly continuous. Given & > 0, there exists
y

0 0
6 > O such that i [cr1,1) = (i)l <6 then |2 ) = -] <
Taking |h| < 6, we obtain |(x, ¢,,) — (x,y)| < ¢ and thus

h) — b 0 b 0 0
M - f 8_f(x’y) dx) < f —f(x, Cxh) = _f(x’y)’ dx
a 0Y a ay
< (b-a)e.

dy

d¢ " of
This shows that ¢ is differentiable at y and d—(y) = f a—(x, y) dx.
Y a 0¥
The proof when y = c or y = d is similar. |

sin tx
—

Then a—f(t, x) = costx. Let
0x

D .
sin ¢
g(x) = f - ® ar,
1

“Refer to Serge Lang, Undergraduate Analysis, p235

Example 2.9.6. BLet f(¢, x) =
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then i
gx) = f cos tx dt.
1

Check: Integrating directly the expression for g’ to check that it is indeed the derivative of g.

(1) Consider x as lying in any closed bounded interval [—c, c] with ¢ > 0. Then g is differen-
tiable everywhere.

(i1) The trick can be used when x is lying in some infinite interval. The same result holds since
the differentiability preperty is local. We can restrict f(¢, x) to values of x lying in a closed
bounded interval to test differentiability of g.

Actually, if we define

sintx .
fan=q T o
X ifr=0,

then f is continuous. We have the same result about differentiating under the integral:

d 2 sin tx 2
— dt = cos tx dt.
dx 0 1 0

Theorem 2.9.7. Let f(t,x) : [a,b] X [c,d] — R be a continuous map. Then

(1) the maps
b d
x+—>ff(t,x)dt and t|—>ff(t,x)dx

are continuous, and

(2)

f{f f(tx)a’tdx— fdf(tx)dx

b
Proof. (1) Let ¢(x) = f f(t, x) dt. Then

b
s+ )=o) = [ [ftxe ) - 2.0 d
Since f is uniformly continuous on [a, b] X [c, d], for given € > 0 as |h| is sufficiently small,

lp(x + h) —p(0)| < &
and thus ¢ is continuous.

(2) Let
W(t, x) :f f(t,u) du.
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0
Then a—l’// = f(t,x). Since f is continuous on [a, b] X [c,d], it is bounded and uniformly
X

continuous. That is, there exists K > 0 such that f is bounded by K and for £ > 0, there
exists 0 > 0 such that

| f(t,x) = f(s,y)| <& whenever |(7,x) - (s,y)| <6.

Therefore, if (¢, x), (ty, xo) € [a, b] X [c¢,d] and

(t,x) — (10, Xo)| < min(3, &),

‘fcxf(t,u) du—fcxof(to,u) du‘

f | f(t,u) = f(to,u)| du + f | f(t,w)| du
eld—-c) + &ekK.

e, = (o, 50|

IA

IA

This proves that i is continuous on [a, b] X [c, d].

0
Applying Theorem 294 to ¢ and a—lp = f, let
X

b
g(x) = f (t, x) dt.

Then , .
g’(X)=f a—l’//(t,X)dt=f [, x) dt,
a ax a
and
d d b
ﬂ@ﬂ@=[§wwzf{fﬂmm+m
On the other hand,
b b b
g(d)—g(C)Zf Y(t,d) df—f Y(t, 0) dt:f {ff(t,x) dx} dt.
The theorem is proved. O

m Improper Integral

There are similar results for improper integrals, but they require some form of uniformity.

Assume that f is defined on [a, ®) X [c,d] and set ¢(y) = f f(x,y) dx. The function ¢(y)
makes sense if the improper integral f f(x,y) dx is well-defined for each y.

Recall

00 b
[ swydx=im [ ronax
Definition 2.9.8. We say that the improper integral

f S(x,y) dx
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is “uniformly converges” if for € > 0 there exists B > 0 such that

’famf(x,y) dx — Lbf(x.y) dx‘ <&

for every y € [c,d] and whenever b > B.

Note. If f f(x,y) dx is uniformly convergent, for £ > 0 there exists B > 0 such that

b
‘j; f(x,y)dx)<s

for every y € [c,d] whenever b, b’ > B.

Remark. Uniform convergence of an improper integral may be studied parallel to the uniform
convergence of sequences of functions (or infinite series). Let

%@:ffmwm

then the improper integral converges uniformly if and only if the sequence of function {¢,}
for some N > a converges uniformly when f(x,y) > 0. When f changes sign, the equivalence
does not always hold.

Recall: (M-Test) Let f, : X — R be a sequence of functions defined on X. Assume that there
are constants M,, forn = 1,2,--- such that

(1) [f.(x)] < M, holds for every x € X and every n € N, and

(ii) Z M, < oo holds.

n=1

Then there series .
D 1)
n=1
converges absolutely and uniformly on X.

Theorem 2.9.9. Suppose that |f(x,y)| < h(x) and h(x) is improper integrable on [a, o). Then
f f(x,y) dx converges uniformly and absolutely.

Proof. (Exercise) O
Theorem 2.9.10. Let f be continuous on [a, o)X |[c,d]. Then ¢(y) = fa ~ f(x,y) dx is continuous

on [c,d] if the improper integral f f(x,y) dx converges uniformly.

Proof. By Theorem 294, the function

m@=ffmww
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is continuous on [c, d] for every n.

Since f f(x,y) dx, for € > 0, there exists B > 0 such that

6, (¥) — $m(¥)l = ) fn f(x,y) dx’ <¢& foreveryn,m> B.

Hence, {¢,}, ,is a Cauchy sequence in sup-norm and then it uniformly converges to a continu-

ous function ¢(y). O
of . .
Theorem 2.9.11. Let f and ™ be continuous on [a, ) X [c,d]. Suppose that the improper
Y
00 00 a
integrals f f(x,y) dx and f a—f(x, y) dx are uniformly convergent. Then ¢ is differentiable,
a a y

and y of
v O
d—y(y) = f e (x,y) dx

holds.

Proof. To prove that for y, € [c,d],

PN =000 (T yax| -0 asy o
Y—Yo a Oy

By Theorem 294, the function

¢n(y) = f f(x,y) dx
is continuous on [c, d] for every n. Applying the Mean Value Theorem to ¢, — ¢,,,

(6,3 = ()] = [6:000) = 8 (0)] = & = y0) [#,(2) — ¢,(2)]

<0
for some z between y and y,. According to Theorem 2293 and uniform convergence of f 8—f(x, y) dx,
a 0¥

for every z € [c,d],
’ ’ " 8f
6@ = ¢, =] | F-xadx| =0
m 0Y
as n,m — 0 (independent of 7). This shows that for given £ > 0, there exists B > 0 such that

¢n(y) - ¢n(y0) _ ¢m(y) - ¢m(y0)
y=XYo y—>Xo

<& Wwhenever m,n > B.

Letm — oo,

¢n0) = 6u0) _ 60) = ¢00)| _
Y—Yo y—>Xo

whenever n > B.
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By the triangle inequality,

() = 6G0) a_f i "
Y=Yo a
< ’¢(y) - ¢(yo) ¢n(y) (yo)‘ $n(y) = ¢u(0) f of (
< - - —(x,y0) dx
Y= Y=Y Y=Y a

"0 0
+"fa %(x,yo)dx—‘[a a—i(x,yo)dx‘.

Fix alarge n > B such that
‘f —(x yo)dx <eg

and by Theorem 295, we can also find 6 > O such that
¢n(y) - ¢n(y0) _ af

—(x Y0) dx‘ < & whenever |y — yg| < 9.
Yy—Yo Ay

Putting things together, we conclude

B0 ("0 | < e
Y=Yo a

O
00

<0
Remark. We can weaken the hypothesis of “uniform convergence” of f f(x,y) dxand f a—f(x, y) dx.
a a y
Suppose that there are integrable functions g, & : [a, ) — R such that
‘f(x, y)‘ < g(x) forevery (x,y) € [a, ) X [c,d]

and 5
‘6—;C(x, y)‘ < h(x) forevery (x,y) € [a, ) X [c,d].

Then the above theorem still holds.
Example 2.9.12. Let f : [0, ) X (0, 0) — R be defined by

eV —e™*
— if 0
flx,y) = X Hx#
-y+1 ifx=0
and define .
F(y) = f f(x,y) dx.
0

Then f is continuous on [0, c0) X (0, c0) and

of { —e™™ ifx#0 .

—(x W=9 | iteno =€ for every x € [0, c0).

is continuous on [0, o0) X (0, c0).



26 CHAPTER 2. METRIC SPACES
For a > 0, let g(x) = —e™**. Then g is integrable over [0, o) and
of
‘a—y(x, y)‘ < g(x) forevery (x,y) € (0,0) X [a, ).
We have

F'(y) = f —f(X, y)dx = f —e % dx=—-— foreveryy € (a, ).
o Oy 0 y

1
Since a > 0 is arbitrary, F’(y) = —— for every y € (0, o0). Therefore, F(y) = —Iny + C.
y

To find C, consider

eV —e™*

f('x’y):{ X
-y+1 ifx=0

ifx#0

Fory > 1, let h,(y) = ™. Then = flx,y)=h@E0-1) = e“f)‘(—y +1). for

some & = &(x,y) € (1,y). We obtain

he(y) = he(1)
X

f(x,y) <0 wheny>1 and f(x,y) increasesasy \ 1.

“fomf(x,y) a’x‘ = ‘fome_fx(—y+ 1) dx) =y-— ll‘ fome_‘fx dx‘

For fixed y > 1,

|F()|

E=&xy>1) < |y—1|(f e dx
IO—I
- 0 asy\, 1.

Hence, C = lim F(y) = 0 and
N\l

© o=XY _ pmX
—lny:f € "¢
0 X

a Applications:

Consider the Laplace equation
Upy + Uy, =0

on the disk D = {(x, y) ‘ 2+ < 1}. Expressed in polar coordinate, the Laplace equation is
transformed to
Ur Uy
ury+—+— =0, for(r,6) €[0,1)Xx]0,2n].
ror
Notice that u = u(r, 0) is periodic in 6 for r € [0, 1) since u is continuous in D in Euclidean
coordinate.
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Observe that the Laplace equation is rotationally invariant. That is, for any solution u(r, 6),
the function v(r,0) = u(r, 8 + 6) is a solution for each 6,. Moreover, the Laplace equation is
n

linear. We have Z cju(r,0 + 6)) s also a solution. In limit form, the function
j=1

27
i(r,0) = f gl@u(r,8 + a) da
0

should also be a solution for any continuous g. Define f(r, 6, ) = g(a)u(r, 8+ a). The functions
of &f of o°f . . .
f, =, —, =—, —, are continuous in [0, d] X [0, 27], d < 1. From Theorem 2924, the function
00 90%" or Or?
it is also harmonic.
In fact, taking the special harmonic function to be

1

,9 :—’
u(r, 6) 1—rcos@ +1r?

we can show that every harmonic function in D which is continuous in {(x, y) ‘ ¥+ < 1}
asises in these ways.

2.10 Arzela-Ascoli Theorem

Definition 2.10.1. Let (M, d) be a metric space and A C M be a subset. Asubset B C C,(A;R)
is said to be “equicontinuous” if for every £ > 0, there exists 6 > 0 such that

If(x) — fx)l <&
whenever d(x;, x;) < 0, x;,x, € Aand f € B.

Theorem 2.10.2. (Arzeld-Ascoli Theorem) Let (M,d) be a metric space, and K C M be a
compact set. Assume that B C C(K;R) is equicontinuous and pointwise bounded on K. Then
every sequence in B has a uniformly convergent subsequence.

Q Applications

Theorem 2.10.3. (Cauchy-Peano Theorem) Let D C R? be open, (ty, xo) € D and f(t,x) : D —
R be a continuous function. For the ordinary differential equation,

xX(1) = f(t,x(1))

x(%y) = xo.

(LV.P) {

there exists a solution in a neighborhood of t.

Proof. Let f be continuous on Q = {(t,x) € R? | |x — xo| < K and |t — fo| < T} C D. Consider
the Fundamental Theorem of Calculus. The function ¢ is a solution of the IVP if and only if it
satisfies the equation

o) =0+ [ £(5.0) ds.
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Let
M:(m;chQ‘f(t,X)| and Tl :min{T,K/M}.
1,x)€
Define
T,
X0 for ty <t <ty+ —,
n
-xn(t) = t_Tl T
XO"‘f f(S,Xn(s)) ds for to+— <t<ty+T).
o n
$$ fg

(LV.P) {”m:f@

x(tp) = xg.
d AR A A A T

!
x(l‘):)(,‘o+ff(s)ds
To
BRAk AFBER FLR D) 20 - RO x(r - a0 H e f(DAre T
NONREE T L T RECINVE R § ¥ P
g f=f(nx0) BARLFRLBEATS - FFTORE 0 L REY § ()
R FRHRRES N L L BEE T B S L BB ES RS e L]
n

I

” . T, .. . . e R SR »
?’P%—Eﬁfﬁ*ﬁk[m,thl AT X0 P RBOEE T R iR — i f e B

T . .
ﬁnew’?ﬁ%@—heaﬁﬁﬁg?%moﬁﬁ{Mm}gﬂak%iﬂn°
n

(D) {xn(t)}:;l is uniformly bounded on [7y, o + T1].

Fort € [ty,ty + T1],

-1 -1 10+T)
|x,(1) = x| = ‘f JEEAC)) ds‘ Sf Mds < Mds=MT, <K.
o 0]

fo

2) {xn(t)}:o:1 is equicontinuous.
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For 11,1, € [ty, to + T1],
T
( 0 if 1,1 € [to, 1o + —1,
n

2w T T
f f(5,x(5)) ds if 1 € [to,to+ —1, 1 € (to + —, fo + T} 1,
N n n

|xn(l1) xn(IZ)‘ = - T, T,
f f (s x0(5)) ds if nelo+—t0+Tl 1€ (to,to+ 7],
o n

== T
f  f(sxa) ds| - if f,n €t + =10+ T,
1 n

Hence,
{Xn(l‘l) - x,,(tz)‘ < M|t —t,| foreveryt),t, € [ty,to + T1],n € N.

By Arzela-Ascoli theorem, there exists a subsequence {xnk};o:l converges to a continuous
function x(¢) on [fo, ty + T;]. Then

X, (2) = X0 + f_nk f(s, xnk(s)) ds

Since f is uniformly continuous on Q, { f (8%, (9)) }Zo_l is uniformly convergent to f (s, x(s)).
Then -

x(1) = %l_)tg X (1) = X0+ I}Lm f f s, x,,k(s)) ds — f(s xnk(s)) dx}

=

Xo +f f(s x(s) ds — hmf s x,,k(s)

Since the third term

T
lim’f f(5:%,(9) ds| £ 1M >0 as koo,
k—o0 ”k

!
x(f) = xo + f f(s, x(s)) ds
fo
Hence, x(¢) is a solution of I.V.P. O

Remark. The solution x(#) is not necessarily unique. In addition, if f(¢, x) is Lipschitz in x,
then the solution is unique.

Example 2.10.4. Let (¢, x) = 5x*° on R x (-1, 1). Consider

{ X (t) = 5x*°
x(0)=0

Then x,(¢) = 0 and x,(¢) = £ are two solutions.



30 CHAPTER 2. METRIC SPACES

2.11 Contraction Mappings

m Contraction Mapping Principle

Definition 2.11.1. Let (M, d) be a metric space, and ® : M — M be a mapping. @ is said to be
a “contraction mapping” if there exists a constant k € [0, 1) such that

d(D(x), ®(y)) < kd(x,y) Vx,y€ M.

Remark. A contraction mapping must be (uniformly) continuous. (Exercise)

Definition 2.11.2. Let (M, d) be a metric space, and ® : M — M be a mapping. A point xo € M
is called a “fixed point” for @ if d(xy) = xo.

Theorem 2.11.3. (Contraction Mapping Principle) Let (M, d) be a complete metric space, and
® : M — M be a contraction mapping. Then ® has a unique fixed point.

Remark. The Contraction Mapping Principle is also called the “Banach fixed point theorem”.

m Application of Contraction Mapping Principle:

We have learned that the contraction mapping principle can apply for Newton’s method. In
Section 2710, we discuss the existence of solutions of differential equations by using Arzela-
Ascoli Theorem. In the present section, we will reconsider the topic by using the Contraction
Mapping Principle.

Let D C R? be open. Consider the set of continuous functions on D,
Cy (D;R) = {f :D—> R } f 1s continuous and bounded on D.}.
We have known that C,,(D; R) is a vector space. Define the “sup-norm” on C,(D;R) by
IIfll = sup |f(z,x)| forevery f e C;,(D;R).

(t.x)eD

Recall that, in Section IR, we define a metric, d, on C,(D;R) by
d(f,g) = sup |f(t,x) —g(t,x)| for f,g € Cy(D;R).

(t,x)eD

Then
dif,g) = lf —ll

Let (ty, xo) € D and f(¢, x) : D — R be continuous on D and Lipschitz in x. That is, there exists

L > 0 such that
}f(l,X) - f(t’y)‘
< L.

(t,0.(t,)eD lx — yl
X£Yy

Theorem 2.11.4. For the ordinary differential equation,

xX(1) = f (2, x(t))

X(l()) = Xp.

(LV.P) {

there exists a unique solution in a neighborhood of t,.
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Proof. Since D is open and (%), xo) € D, there exists K, T > 0 such that the set Qg7 = {(t, X) €
R? | |x—xol < Kand|t—1o| < T} C D.

Fix K and the number O < T; < T will be determined later. Consider the set of continuous
functions Ry, := Cb([to =T, to+T]; R) and the norm
llg = A= max ] lg(#) — h(2)].

elto-T,, to+T)

Denote X((7) = x( as a constant function and let
Rir, = {g € Ry, ‘ llg — Xoll < K}-

Since Rk r, is closed in the complete space Ry, under the norm || - ||, it is also complete.

Consider the Fundamental Theorem of Calculus, ¢ is a solution of the IVP if and only if it
satisfies the equation

!
x(t) = xo + f f(s, x(s)) ds.
to
Defineamap S : Rxr, — Ry, by

!
S (g)(t) =Xy + f f(s,g(s)) ds forty<t<ty+7, andgE€ Rgr,.
fo

Our goal is to find an element ¢ € R 7, such that

o(0) = x0 + f F(s.6(5)) dx =  (8) 1.

That is ¢ is a fixed point for S'. Hence, we will choose an appropriate number 7'; such that S is
a contraction map on Rk r,.
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(1) (TO find Tl such that S : RK,T1 - RK,T])
Let M = sup |f(1,x)|. For g € Rxr,, compute

(1.0)€0K,T)

IS (g) = Xoll

telto—T1,t0+T1]

[ Jr(sa0)] as
to IS_MI
MT,

IA

IA

K
Hence, choose T; < i and then S (g) € Ri7,.

(2) (To find T such that S is a contraction mapping on Rk r,)
For g, h € Rk r,, compute

[|S (g) -S (h)ll = max

teto—T1,t0+T1]

f |/ (5.8(9) = f(s,h(9) | ds

IA

IA

!
f L ‘g(s) —h(s)‘ ds
K <lig—nl

LT\|lg = Al

IA

Hence, combining the above discussions, we choose 7 = min(7,

contractioin mapping on Rk 7,

max H%+ fltf(s,g(s)) ds} _%‘

(xo + ftotf(s, g(s)) ds) — (xo + ft:f(s, h(s)) ds)’

1
) and then § is a

By the Contraction Mapping Theorem, there exists a unique fixed element ¢ € Rg 7, for S and

it is the solution of (IVP).
Example 2.11.5. Find a function x(7) : [0, 7] — R such that

{x’(t) = x(7)
x(0) = 1.

Proof. Define
CD(x)(t) =1 +f x(s) ds,
0

xo(f) = 1 and x,.1() = ®(x,)(1). Then

!
x1(1) = 1+f1ds:1+t
0

! tz
x() = 1+f1+sds:1+t+—

0 2

t 2 2t
x3() = 1+f1+s+s§ds:1+l‘+_+_

0

£ i

@t = =1+t4+—4+—+---

STIEY s

O

(2.11.1)
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Then {x;};2, converges to x(7) = Z o = ¢' which is the solution of 1.V. P for (Z-T1_T). O
k=0 "

Example 2.11.6. Find a function x(7) such that
{ x'(1)
x(0)

(D(x) =3+ f sx(s) dx,
0

xo(f) = 3 and x,4.1 () = @ (x,) (). Then

tx(t)

; (2.11.2)

Proof. Define

! ' 3
x1(1) = 3+fsx0(s)ds:3+f3sds:3+7
0 0

t t,3 32 3t
x() = 3+f0sxl(s)ds+3+j(;3+552:3+7+ﬂ
0 = 3+0. 30 3
= 2 2.4 242k

o 12k
We have x;(t) —» x(1) =3+ 3 Z 4
=1 <

2
W = 3e? which is the solution of the I.V. P for (ZZ112).
O

Remark. This process is called the “Picard iteration”.

0 if0<t<c
Example 2.11.7. Let x.(t) = 1 (t—cf ifr> . Then
—(t—-c¢) i c
1 >
, B 12
{ i:g))) ; (()x(t)) forall ¢ > 0.

Hence, this initial value problem has infinitely many solution. Why?
f(x0,1) = +/xis not Lipschitz near 0. That is, no matter what K > 0 is, there exists x,y € (=6, )
such that

|f(x,0) = f, 0] > Klx —y.

2.12 Partitions of Unity

In this section, we discuss that a smooth function can be broken into a sum of smooth functions,
each of which is zero except on a small set.

Definition 2.12.1. Let / : R” — R. We say that

(1) the “support of f” is the closure of the set of points at which f is nonzero. That is,

spi(f) = {x e R" | f(x) # 0}.
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(2) A function f is said to have “compact support” if spt(f) is a compact set.

Example 2.12.2. Let
_J 1 ifxeQ
ﬂ”‘{Oiu¢Q.
Then spt(f) = R.

Example 2.12.3. Let
1 ifxe,1)
fx)y=<¢ 2 ifxe(1,2)
0 otherwise.

Then spt(f) = [0, 2].
Remark. If f,g : R" — R, then
spt(f +g) € spt(f) U spt(g).
Proof. (Exercise) O

Notation: The symbol C?(R") denote the collection of functions f : R” — R which are C” on
R" and have compact support.

Note. If f; € C/(R") for j = 1,2,--- ,n, then
2.1 € CLE.
=

Exercise. If f is analytic and has compact support, then f is identically zero.

Lemma 2.12.4. For every a < b, there exists a function ¢ € C(R) such that ¢(t) > 0 for
t € (a,b) and ¢(t) = 0 for t ¢ (a, b).

Proof. Let
0 ift=0.
Then f € C*(R) and f*(0) = 0 for all k € N. Hence, the function
(1) = { e_ﬁe_ﬁ if € (a,b)

0 otherwise.

ﬂﬂ:{eﬁﬁzio

belongs to C*(R), satisfies ¢(¢) > O for ¢ € (a, b) and spt(¢) = [a, b]. O

Lemma 2.12.5. For each 6 > 0, there exists a function y € C*(R) such that 0 < < 1 on R,
Y(t) =0fort <0, and y(t) = 1 fort > 9.
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Proof. By Lemma ZT74, choose ¢ € C°(R) such that ¢(¢) > 0 for ¢ € (0,6) and ¢(¢) = O for
t ¢ (0,9). Let

Then, by the Fundamental Theorem of Calculus, ¢y € C*(R) and 0 < ¢ < 1 and

0 ifr<0
Y = { 1 ifr>o.

m Urysohn’s Lemma

Now, we will construct nonzero functions in C;°(R") by using the one-dimensional C* func-
tions.

Theorem 2.12.6. (Urysohn’s Lemma) Let U be open in R" and K C U be a nonempty compact

set. Then there exists an h € CZ(R") such that 0 < h <1 forallx € R", h(x) = 1 forall x € K
and spt(h) c U.

Proof.

Step 1: For given £ > 0, construct a smooth function g.(y) such that g. > 0 in B(0, £) and
g: = 0 outside Q.(0).

Let ¢ € C(R) satisfy ¢(¢) > O for (=1,1) and ¢(r) = O fort ¢ (=1,1). Fore > O and x € R",
let

Q:(x) {YER"!ij—ijSs foreveryj:l,z’...,n}

[xi—&e,x1+&]lX---X[x,—&,x, + €]

Define
g =¢(2) - ¢(2) fory=0u-e .y
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Then g, € C*(R) and

>0 ifyeB(0,¢)
=0 ify¢ 0:(0).

This implies that g € C°(R").

8(y) {

Step 2: By the compactness, construct a smooth function f such that f > 0in K and f =0
outside U.

Since K € U and U is open, for x € K, choose € = &(x) such that Q.(x) C U. Set

he(y) = g-(y — x), foryeR".

Then

(1) hx(y) > 0onR";

(i1) hx(y) > O for every y € B(Xx, &);
(ii1) hx(y) = O for every y ¢ Q.(x) and
(iv) hx € CZ(R™).

Since K is compact and K C U B(x, €), there exists finite points Xy, - - - Xy such that
xeK

N
K - U B(X,‘, 8,‘).
i=1
Define
N N
0= J0.x) and f=>"h,
i=1 i=1

Clearly, Q c U is compact and f € C*(R"). Observe that

(1) If x ¢ Q, then x ¢ Q..(x;) foreveryi = 1,--- ,N. Hence, f(x) = O for every X ¢ Q and
spt(f) € Q.

(2) If x € K, then x € B(x;,&;) forsomei=1,---,N. Hence f(x) > O for every x € K.
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Step 3: Use Lemma ZT27F to flatten f so that it is identically 1 on K.

Since K is compact and f is continuous and positve on K, f has a positive minimum on
K. There exists 6 > 0 such that f(x) > ¢ for every x € K. By Lemma T35, we can choose
Y € C*(R) such that ¥/(f) = 0 when # < 0 and () = 1 wehn ¢ > 6. Define

h=yof.

Then h € C7(R"), sptth) C Q Cc Uand 0 < h < 1 onR". Also, since f >6onK,h=1on
K. O

Q Partition of Unity

Theorem 2.12.7. (Lindelof’s Theorem) Let (M, d) be a separable metric space and E C M.
If {Va}aE 4 Is a collection of open sets and E C U V., then there exists a countable subset

acA

k=1

{ay, @z, -+ -} of A such that

Proof. (Exercise) O

Theorem 2.12.8. (C* Partitions of Unity) Let Q C R" be nonempty and let {Va}ae , be an open
covering of Q. Then there exist functions ¢; € C7(R") and indices aj € A, j € N, such that the
following properties hold.

(1)
¢; >0 forevery jeN.
(ii)
spt(¢;) C V,, forevery j€N.
(iii)

quj(x) =1 foreveryx e Q.

=1
(iv) If K is a nonempty compact subset of ), then there exists a nonempty open set U D K and
an integer N such that ¢ ;(xX) = 0 for every j > N and x € U. In particular,
N
Z ¢i(x)=1 foreveryx e U.
=1
Proof. For each x € Q, choose a bounded open set W(x) and an index a € A such that
xeWx)c Wkx)cV,.

Then {W(x)}__, is an open covering of Q. By Lindel6f’s Theorem, we can choose a countable
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open covering {Wj}j.i] of Q from {W(x)} _,. By construction, for every j € N, there exists
«; € A such that
Wj C Wj C Vaj~

By Theorem IZTZ6, we choose functions i; € C°(R") such that
H0<h;<1 onR'  (i)hj=1 on W; and  (iii) spt(hj) C V,, for jeN.
Set ¢; = h; and for j > 1, set
¢j =-h)---(1- hj—l)hj-

Then ¢; > 0 on R" and ¢; € CZ(R") with spt(¢;) C spi(h;) C V,, for every j € N. The state-
ments (i) and (ii) are proved.

Consider that

k
Z¢j:1—(1_h1)"'(1_hk) for every k € N.
=1

If x € Q, then x € W, for some j, and hence 1 — h;,(x) = 0. We have

k
Y ox=1-0=1 fork=j

=1

The statement (iii) is prove.

Let K be a compact subset of Q. Since {Wj}j‘;l is an open coveringof Q, K c W, U---UW,
forsome NeN. Let W=W,U---UW,. If x € W, there exists 1 < k < N such that x € W, and

hence hi(x) = 1. That is, ¢;(x) = 0 for all j > N. Hence,

N oo
Z@(x) = Zqﬁj(x) =1 foreveryxe W.
=1 j=1
O
Definition 2.12.9. (1) A sequence of functions {¢ j};il is called a “(C°) partition of unity on
Q subordinate to” a covering {V}aE , if Q and V,,’s are open and nonempty, the ¢;’s are all
continuous with compact support and satisfy statement (i) throught (iv) of Theorem DZT2R.
(2) If all the function {¢ j};il belong to CP(€2), we call it a “(C?) partition of unity on Q.
Remark. By Theorem -T2, given any open covering V fo any nonempty set 2 € R” and any
number p > 0, there exists a C? partition of unifty on Q subordinate to V.

0 Decomposition of a Function

Let f be defined on a set €2, {¢ j};il be a C? partition of unity on €2 subordinate to a covering
{Vj};il and f; = f¢;. Then

FX) = fX) Y 0% = > fX)$;(x) = > fi(x) forevery x € Q.
j=1 j=1 j=1
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Note. (1) "The function f can be written as a sum of function f; which are as smooth as f.”

2)

If f is continuous on Q and p > 0, then each f; is continuous on Q. If f is continuous
differentiable on Q and p > 1, then each f; is continuously differentiable on Q.

“The method allows us to pass from local results to global ones.”

If we know that a certain property holds on small open sets in €, then we can show that a
similar property holds on all of Q by using a partition of unity subordinate to a covering of
Q which consists of small open sets.

Strategy: Let V be a bounded open set and let f be locally integrable on V; that is, f :
V — R is integrable on every closed Jordan region R C V. For each x € V, choose an open
Jordan region V(x) so small that x € V(x) C V. Then {V(X)}xevis an open covering of V,
and by Lindel6f’s Theorem it has a countable subcover, say V = {V]-}j.il. Let {¢ j};il be
a partition of unity on V subordinate to V. Since f is locally integrable on V, each f¢; is

integrable. Since f = Z f¢;, it seems reasonable to define
=1

ff(X) dx = Z f f(X)p;(x) dx.
v =1 YV

Concerning this topic, there are some questions need to be considered. We will ignore these
questions here and we refer the book “Introduction to Analysis, William R. Wade, Fourth
Edition, Section12.5”.

2.13 Method of Lagrange Multipliers

In this section, we will discuss the optimal problems by using the method of Lagrange Multi-
pliers. Let f(x) : R — R. We want to find the extreme values of f subject to some constraints
(or under some side conditions).

Theorem 2.13.1. (Implicit Function Theorem) Let D C R" = R" XR? be open and ¥ : D — R”"
be a function of class C", r € N. Suppose that ¥(Xy, yo) = 0,, for some (Xy,yo) € D and

or,  or

6x1 6xm
[DF(Xo,¥0)] = | (%0, ¥o)

Oy OFy

0x; 0xp,

is invertible. Then there exists an open neighborhood U C R? of yo, an open neighborhood
V CR"of xgand f : U — V such that

(1)
(2)

F(f(y), y) =0, foreveryy € U.

xo = f(yo).
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(3) DE(y) = —[DF(£(y),y)] " [DyF(E), y)] for everyy € U where

oF, OF,
Oy Oy,
(DF)xy] = | | xy)

oF,, oF,,
Iy OYn

(4) fis of class C”

Example 2.13.2. Consider the equation

xu+y? =0
{ O +yy2ue _ |Dear (x0, Yo, U, vo) = (1,-1,1,-1). (2.13.1)

Let F(x,y,u,v) = (xu + yvz, 0+ y2u6). Then
L ] L [ |

Fq F
OF, OF,
ox 0Oy 2 11
[Dx, F} 1 = = [ug, v 6} :[ ] is invertible.
7LD oF, OF, v 2yu (1-1,1,-1) -1 2
ox Oy (1,-1,1,-1)

By the implicit function theorem, to satisfy the equation (ZZ13.1), (x,y) can be expressed as a
function of (u,v), say x = g;(u,v), y = g2(u,v) near (1, —1) such that

F(x(u, v), y(u, v), u, v) =F1,-1,1,-1) = (0,0)
Let (x,y) = g(u,v) = (g1(u,v), &2(u,v)). Then
Dg(u,v) = — [D,F(x,y,u,v)] - (D, F(x,y,u,v)] .

0 Lagrange Multipliers

Theorem 2.13.3. Let m < n, V be open in R", and f,g; : V — R be C' function on V for

Jj=1,2,--- ,m. Suppose that there is an a € V such that
(9(81,"' ,gm)
—(a) #0.
TR L

If f(a) is a local extremum of f subject to the constraints gi(a) = 0 for k = 1,---m, then there
exist scalars Ay, Ay, - -+ , A, such that

V£(a) = Z A Vgi(a) = 0,,. (2.13.2)
k=1
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(1)

(1)

(I %

PR E ™ gy, gm B i 3 #B R b gi(xny) = 2x + 3y fo ga(x,y) =
4x+6y—1, PlEz23H5 3 acR" # 7 gi(a) = g,(@) = 0. § & IHeeh level sets 4p
2 *’@i&;}*ﬁl » W AR A "’#Jvi 27 gk a, Vgi(a) & Vga(a) 2 ¢ T {7 o

a(gla""gm)
—— 0.
olxy, -+, xm)(a)i
EET . VA TS level sets 4prr & T ﬁ;[&,\z; o PNV BT foa BLIHIT A K
S PR B & 0 W level sets 3 B ﬂ{xev‘ (x) = }{_ Bn—m
j=1

BRSO G o

Aot k> AP A Sficlevel sets S P H R f fRER o F
constraints = 5 (m>n)> B|¥ i % 4

(1) #4535 i & 4975 constraints <77 {7 8% ;

(2) “‘lﬁ:' % & (constraints) 2. ¥ ac (L AR BE (P A A I AE L),

(3) & 5 - gt Rl level sets ch &> - BRR > § m=npF > ¥ i WF7
Kr’? f—rg‘!:.

ﬂ{xev{gj(x) OV ie®n-mBR¥ & 145 feteEsar Bl S

& a ,ﬂ!'«mlf Z B TS 0 orthonormal space <T S)l F-Bmads s F>
d Span{Vgi(@),--- . Vgu(@} “rH = o ¥ f tra F B f taiz- & level
set {x € V| fx) = f@)} Bt agss #w C B Vi) ¢ B (TLS) =
Span{Vgl(a), e ,ng(a)}. ]t

V@ =) AVea) =0
k=1

Note. Let M and N be two smooth manifolds with dimensions m and n, say m < n. Suppose
1 1
M and N are tangent to each other at a. Then T,M C T,N. This implies (TaN ) C <TaM ) .

Hence,ifu L N ata, thenu € (TaN>L C <T3M>l.
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Proof. Equation (ZZI37) can be written as

(Of 0g Ogm
—@+4—@+--+4,—@=0
axl(a) 1ax1(a) axl(a)
af 0g Ogm
—@+4—@+--+4,—@=0
axz(a) 1ax2(a) aXz(a)
af 0g, 08m, .
. (a) + 4 o @+---+ 4, Ix. @a=0
of dg1 08
+ A4 +-ot+Ay—@) =0
\ 8Xh(a) 16Xh(a) aXh(a)
o o N N o N . a(gl""agm)
which is a system of n linear equations with m unknown variables Ay, - - - , A,,. Since ﬁ
X1, 5 Xm
the first m equations in the system determines uniquely the A;’s. Hence, it suffices to show that
for those Ay, - - - , 4,,, the remaining system with n — m equations
(?f 6g1 agm
+ A4 + Ay =0
axm+l (a) : axm+1 (a) axm+1 (a)
A o+ A,—(@) =0
a}ﬁ(a)+- 1axn(a)+- + axn(a)

holds.

Let p = n —m. As in the proof of the Implicit Function Theorem, write vector in R"*7 int
the form x = (y,t) = (y1,- - ,Ym, 11, -+ , 1,). We have to show that

aof N Ogk
—(a) + A— @) =0
@ ; 5, @
for{=1,---,p.
Letg = (g1, ,8m) : R" = R". For x € R", write X = (y,t) wherey € R" and t € R”.
Choose a = (yo.tp) for some y, € R" and t, € R”. Then g(yo,t)) = 0,, and Dyg(yo, to) is

invertible.

By the Implicit Function Theorem, there exists an open set W C R” which contains t, and a
function h : W — R such that h is continuously differentiable on W, h(z,) =y, and

g(h(t),t) =0, foreveryte W.
Foreveryte Wandk =1,--- ,m, define

Gi(t) = gr(h(t),t) and F(t) = f(h(t),t).
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Since g(h(t), t) = 0,, on W, G,(t) is identically zero on W fork = 1,-- -, k and hence DGy(t) =
0, ( the zero matrix [0] )"

Since ty € W and (h(to), to) = (Yo, tp) = a, by the Chain Rule,

-ahl 6h1 T
- Y €'
3 t1 (to) 3 tp( 0)
08 0gx ahm.
015, = DiGy(to) o (a) I (a) . atl = (to) ar,) (to)
1 ... 0
L 0 L]
nxp
Hence, the £th component of DG(ty) is
N g ogr
Z ax, @ )—(to) + 5, @ (2.13.3)
fork =1,2,---,m. Multiplying (ZZI33) by 4, and adding, we have
m m a
0= 2 2 g, 5 (a)—(to) * Z Ak—( )
= J—l
N N 08k oh; N 08
= Az —@| (o) + ) A——(a).
; [; Xj :| ot, ; ot,
Therefore,
0=- —( )—(to) Z/lk—( a). (2.13.4)
/‘ —

Suppose that f(a) is a local maximum subject to the constraints g(a) = 0,,. Let Ey = {X €
\% } g(x) = 0}, and choose an n-dimensional open ball B,(a, r) such that

f(x) < f(a) foreveryx € B,(a,r)N E,.

Since h is continuous, choose a p-dimensional open ball B,(ty, ) scuh that (h(t), t) € B,(a,r)
for every t € B,(ty, ). Since F(ty) is a local maximum of F on B,(t), VF(ty) = 0,. Applying
the Chain Rule as above, we obtain

- 0
0= jz 6—f( )—(to> —f(a> (2.13.5)
Adding (Z1374) and (P139), we conclude that

:—() Z@—()

[Note that the proof is refered to the book “Introduction to Analysis 4th Ed.”, William R. Wade,
page 443-445.] O



44 CHAPTER 2. METRIC SPACES

Example 2.13.4. Find all extrema of x*> + y* + z* subject to the constraints x —y = 1 and
2 2
y—-z- =1

Proof. Let f(x,y,2) = x> +y* + 2%, g(x,y,2) = x —y — L and h(x,y,z) = y* — 2 — 1. Then
Vfi(x,y,2) =(2x,2y,2z), Vg(x,y,2) =(1,-1,0) and Vh(x,y,z)=(0,2y — 2z).
Consider Vf + AVg + uVh = 0. That is,
QRx+ 4,2y — A+ 2uy, 2z — 2uzy = €0,0,0).

To solve
2x+1=0 (2.13.6)
2y —A+2uy =0 (2.13.7)
27 -2uz =0 (2.13.8)

By (ZI3R), eitherz=0oru =1
(1) If u = 1, by (I36) and (Z1377), A = —2x = 4y. Thus, x = -2y. From g(x,y) = x—-y—-1 =
2 1
0, we have (x,y) = (§’ —5). But it cannot make h(x,y,z) = y* —z> — 1 =0.

(2) If z = 0, by h(x,y,2) = y¥* =22 —1 = 0 and g(x,y,z) = x—y — 1 = 0, we have (x,y) =
(2,1) or (0, —1). Therefore, the only possible extreme points are (2, 1,0) and (0, —1,0). The
only candidates for extrema of f subject to the constraints g = 0 = h are f(2,1,0) = 5 and
f(0,-1,0) = 1.

Geometrically, this problem is to find the points on the intersection of the plane x —y = 1
and the hyperbolic cylinder y* — z2 = 1 which lie closest to the origin. both of these
points correspond to local minima, and there is no maxima. In particular, the minimum of
x* + y? + 7% subject to the given constraints is 1, attained at the point (0, —1, 0).
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3.1 Vector Spaces of Functions

In Section I8, we studied that the collection of all continuous functions forms a vector spaces
(of functions). In fact, many vector spaces can be viewed as vector spaces of functions. Let’s
review the function space discussed before and see more general spaces. Let S be a non-empty
set and

F(S) := the collection of all functions from S to R = { f:Se R}.

Then ¥ (§) is a vector space.

e S ={p1,p2-..,pn}isafinite set. Every function f € ¥(S) is uniquely determined by its val-
ues at py, p2, ..., Pn- SO f can be identified with the n-tuple (f(pl), f(p2),..., f(pn)). Hence,
e (F(p1), f(p2), ..., f(py) is a linear bijection between ¥ (S) and R”.

F(S)=R" (“Isomorphism”)

e S ={p1, p2,...} is a countable set. Every function f € ¥ (§) is identified with the sequence
(fp0s F(P2), f(P3)s - ).

F(S) = {(al,az,a3,~~) | a, €R Vn = 1,2,...} the space of sequences over R.

e Question: How about S is uncountable? For example, S = [0, 1], #(S) consists of all
real-valued functions defined on [0, 1].

45
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Q Some common-used function spaces

In the last chpater, we have discussed the space of continuous functions. Let M = R".

CR",R) = C(R")
Cy(RY)

{f ‘R'—R ‘ fis continuous.}
{f € CRM | suplf(0)] < o}

Now, we want to introduce some common-used spaces of functions.

Definition 3.1.1. Let Q be an open set in R” and f : Q — R. The set {x € Q | f(x) # 0} is
called the “support of f and denoted by supp(f).

L supp(f) Tl L supp(f) J]

0, xeQ
1, xeQ".
Definition 3.1.3. The space of functions with continuous (partial) derivatives in Q of orders

less than or equal to k € N by C¥(Q); and the space of functions with continuous derivatives of
all orders by C*(Q).

Example 3.1.2. f(x) = { Then supp(f) = R.

Definition 3.1.4. We define two function spaces here.
Co®") = {feC®)| lim fx)=0} (ex.f(x)=e¢™)
CiR"H = {feC'®" | Jim f(x) = 0} fork e N
Co®") = {feC™®"| Jim_ f(x) = 0}

Co(Q) = {f €C(Q) | f has compact support in Q.[supp(f) is compact.] }
C’f.(Q) = {f e CHQ) | f has compact support in Q.} forke N
Cr(Q) = { feCQ) | f has compact support in Q.}

Exercise. Check that C.(R") and Cy(R") are vector spaces, and
C.R") € Co(R") € C,(R") € C(R).
Example 3.1.5. (1) In the previous chapter, we define a metric d by

d(f,8) := sup|f(x) — g(x)|

xeQ

on C,(Q). Check that (C’C(Q), d) and (CO(Q), d) are also metric spaces.
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(2) Similarly, for Q € R", we can define a metric d; on C’C‘(Q) and C’g(Q) (if it makes sense) by

k n
dif.8) =) > sup |6,/ (%) = 9jg(x)].

i=0 j=1 X

where @' f(x) means all ith order partial derivatives. For example, * f could be

etc.

3.2 Three Inequalities

&>

0x10x,” 0x3’

Definition 3.2.1. (Conjugate Pair) For 1 < p, g < oo, we call p and ¢ are “conjugate” if

1 1
—+-=1
P q

(In some books, the conjugate number for p may be denoted by p’.)

Proposition 3.2.2. (Young’s Inequality) Ifa,b > 0and 1 < p,g < cowith1/p+1/q =1, then

P e
ab < & + —.
2
and the equality holds if and only if a’ = b1.
Proof.
Consider that f(x) = e* is a convex function.
Let
x; = plnaand x, = glnb.
Then 1 1
— f(z1) + = f(z2)
X1 X2 1 1 q
ab = f(—+—)<—f(x1)+—f(x)
P 4 4 q i T2
J(—+—)
a’ bl P q
= —+—.
P q

The equality holds if and only if x; = x; if and
only if a” = b1.

Ty

ﬂ_’_g CCQ
p q

O

Proposition 3.2.3. (Holder’s Inequality) Ifa,b € R" and 1 < p,q < cowith 1/p +1/q =1,

then
n
D ladibel < lall, bl
k=1

- 1 . 1
where |all, = () lail”)? and [Iblly = () 1bl*)?.
k=1 k=1
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Proof. We may assume that a # 0 and then |[|a||, > 0. By Young’s inequality, for every # > 0,

-1
lar||be| = [taillt™ byl <

Then

n

k=1

To obtain the best estimate, take the derivative with respect to f on the RHS. When t =

i = P
(smce I/p+1/g=1= o+a

n
D ladibd
k=1

=Ll and
q

tPlay|P b |?
|k|+ |k|.

q

P 1
> ladlbel < lally + ~Ibily - for every 1> 0.

/(p+q) 1/
bl by
/(p+q) — 1/
lally,"™ " lall,
4 _1
ed p),we have
Uil 1l
—mﬂaﬂp + —WHqu
Pllall, q1bllg
1|| lI,Iblly + 1|| [I,,//b]
—|la —la
4 q 4 q
p q
llall,[[bll-
O

Proposition 3.2.4. (Minkowski Inequality) Fora,b € R" and p > 1,

lla +bll, <lall, + [bl],.

Proof. The inequality is clearly true if [[a+b|[, = 0 or p = 1. Thus, we assume that |[a+b]||, > 0

and p>1.Fork=1,2,...,n,

lax + byl?

IA

Letc = (|a1 +b1|P_1,~~-,|an + bn|p_l)

n

lell, = |

k=1
By Holder’s inequality,

n

la+bllp = > lag + bil”
k=1
(Holder’s inequality)

Hence,

(s + a7 |

lay + byllay + bilP™!
-1 -1
lallax + bil”~" + |byllax + bl

and g = ﬁ. Then

! n _
(Ot + b)) = Ja+ bl

k=1

n

n
D ladllag + b~ + > Ibillay + bl

<
k=1 k=1
n n
= > ladicd + ) Ibilied
k=1 k=1
<

llallllclly + lIbll,llell,
-1
(llall, + Ibll,) lla + bl5~".

lla +bll, <llall, +[bl],.
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m Generalization of Holder’s and Minkowski’s Inequalities

1. Holder’s Inequality for Sequences. For any two sequences a = (aj,ap,---) and b =

1 1
(by1,by,-++),and 1 < p,g < 0o with — + — =1,
P 4

[ee)

> ladibyl < lall,libll,
k=1

1<k<oco

- 1p
where llall, = ( ) lad?) " and Jlall = sup lal.
k=1
2. Minkowski’s Inequality for Sequences For any two sequences a = (a;,d,---) and b =
(b1,by,--+),and 1 < p < oo,

lla +bll, <lall, + [[bl],.

1 1
3. Holder’s Inequality for Functions For 1 < p,q < oo with —+ — =1, and f and g are
P 9

1/p 1/q
[rtar< (i ax)"( [lstax)”.

where we will denote the above integral by

integrable on /, we have

W= [177ax)" and Il 1= sup .
Rewrite the above inequality,
f el < Nfllrallgllza.-
Proof. Put A = ||fl|.» and B = ||g||zs. If A or B = 0, then f = 0 or g = 0 and then inequality

is trivial.

Leta and b =

_ |/ 1(4)5)' , and apply Young’s inequality

g0l
B

= L@@ _If@P gl _a? b
AB pAP qgB1 P q

Take the integral,
5 [reeidx s — [y axe - [lecord
— x)g(x)| dx < — X X+ — x| dx.
AB J, & ~ pAr qB? &

Since A? = flflp dx and BY = flgl‘f dx, we have

+-=1

SR

1
Ifglle, < —
p

1
1z llgllza
Then
fgllray < N leanllgllzoc-
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4. Minkowski’s Inequality for Functions For 1 < p < oo, and f and g are integrable on /, we
have
1/p 1/p 1/p
(f|f+g|pa’x> S(flfl”dx) +(f|g|de) :
1 1 1

ILf + glleray < W flleeary + 11gllzeay-

That is,

3.3 Normed Spaces
Definition 3.3.1. Let (X, +, -) be a vector space over F. A “norm” on X is a function || - || : X —
[0, c0) satisfying
@ |Ix| =0 VxeX
(i1) ||x|| = 0 if and only if x = 0
(i) flx+yll < lIxlf + 1[Iyl Yx,y € X
@iv) ||[Ax]| = |Alllx]] VA e€Fand x € X.

The vector space with a norm (X, +, -, || - ||) or (X, ]| - |[|) (or X if it is clear) is called a “normed
vector space” or simply a “normed space”.

Example 3.3.2. For 1 < p < oo, (R", ]| - ||,,) is a normed space, where

n

1
I, = (> )" forx = (xi, x,...,%,) €R".

k=1

Note. When p = 1,2, it is easy to check that (R", ]| - [|,) is a normed space. Especially, when
p = 2, the norm is called the “Euclidean norm”. The condition (iii) can be proved by Minkowski
inequality.

Example 3.3.3. (R", ] - ||) is a normed space, where

IXlles = max x| forx = (x1,x2,...,x,) €R"
=1,..., n

is called the “sup-norm”.

0 Norms on the space of sequences over R

Question: Can we use the similar definitions to obtain norms on an infinitely dimensional vec-
tor spaces?

Let X = {(a1,a,a3,...) | a; € R} be the collection of all sequences in R, called the space
of sequences over R. Define+ : X XX — Xand-: RXx X — X by

(al$a2, as, .. ) + (bh bZ’ b3’ .. )

A-(ay,az,a3,...)

(Cll + bl,az + b2,613 + b3, .. )
(/1611, /laz, /1613, .. )

Then (X, +, -) is a vector space over R.
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Definition 3.3.4. For 1 < p < oo, we define || - ||, by

(o8]

1
lall, = () lail”)”  where a = (a1, a,as,..)

k=1
and for p = oo

lalle = sup lal, (“sup-norm”).
1<k<oco

Question: Is (X, || - [|,) a normed space?
Answer: No. (1,1,1,---) e X but ||(1,1,1,---)||, = co forevery 1 < p < co.
Definition 3.3.5. Define the subspaces of X by

= 'R) = {a:(al,az,---)eX‘||a||p<oo} for 1 < p < co.

and
£ =C® = {a= @@, ) e X | flalle <}

Exercise. Check that (¢7, ]| - ||,,) is a normed space for 1 < p < co.

Q Norms on the Space of Continuous Functions

Recall: Let (M, d) be a metric space and D € M. We define
C(D) = {f: D — R| fis continuous on D}.

To avoid some complicated situations, let M = R" and D C M be an “interval”.

Definition 3.3.6. For 1 < p < oo, define

1
fllroy = 1fllr = (f |f(x)|” dx) i’
D
and for p = oo, define

1A llzopy = Ifllz= = sup|f (0l (“sup-norm”)
xeD

Exercise. Prove that (C([a, b). |- IILp) is a normed space for 1 < p < oo.

Q Normed Subspaces and Product Spaces

Proposition 3.3.7. Let (X, || - ||) be a normed space and V C X be a subspace. Then (V,|| - ||) is
a normed space under the same norm.

Example 3.3.8.
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(i) £°®R) = {(a1,a2,--+) | suplaxl < oo} is a vector space with sup-norm || - [|~. Define
keN

> = {(al,az, o) el (R) | {larhie, converges.}
= {@,ay ) et>®) | ]li_{gak:()}-
Hence, €3’ c £ c {* and ({’8°, II - ”oo) and (fﬁ", Il - “oo) are normed spaces.

(1) C([a, b)) = { f:la,b] > R ’ f is continuous on [a, b].} is a vector space with sup-norm
|| - |z~. Define

X
Y

{feC(a,b)) | f(a) =0}
{f €C(a,b]) | fis a polynomial. }.

Then (X, [ - ||Loo) and (Y, l| - ||Loo) are normed spaces.

Remark. Let (X, | - |lx) and (Y] - |ly) be two normed spaces. We can define the product norm
on the product space X X Y by

1 Wy = [xllx + [1ylly-

3.4 Normed Spaces As Metric Spaces

Let (X, || - ||) be a normed space. Define d(x,y) = |[|x — y||. Then (X, d) becomes a metric space
(check!). This metric is called the “induced metric > of the norm || - ||

Note.

(1) Every norm can induce a metric. But not every metric is induced by a norm. In functional
analysis, most metrics are induced in this way.

(i1)) When a metric is established, the topology is induced by this metric and we can consider
the convergence and continuity implicitly referring to this metric.

Proposition 3.4.1. Let (X, || - ||) be a normed space. Then
(a) The norm||-|| : X — [0, 00) is a continuous function.

(b) The addition operation + : X X X — X and the scalar multiplication - : R X X — X are
continuous.

Proof. Exercise |

m Comparison with two norms on a vector space

Definition 3.4.2. Let X be a vector space with norms || - ||; and || - ||,. We call that

(1) || - |l> is stronger than || - ||; if there exists C > 0 such that

x|l < Cllx]|, for every x € X.
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(2) ||+ |l; and || - ||, are equivalent if || - ||; is stronger than || - ||, and || - ||, is stronger than || - ||;.
That is , there are C;, C, > 0 such that

Cillxll, < llxlly £ Callx]l,  for every x € X.

Lemma 3.4.3. Let || - ||; and || - ||, be two norms on a vector space X. Suppose that || - ||, is
stronger than || - ||;. Then if U C X is open in (X, || - ||1), then U is open (X, || - ||2).

Proof. Since || - ||, is stronger than || - ||;, there exists C > 0 such that
lIxll; < Cllxll2

for every x € X.

Let xo € U be an interior point of U in || - ||;. There exists r > 0 such that By(xy,r) € U
(note: B; is denoted the ball under the induced metric of || - ||; for i = 1,2). Consider the ball

r r r
By (xo, E) ={yeX|lx -yl < E} For y € By(xo, E),

r
llxo =¥l £ Cllxg = yll. < C - c — 7

.. . r . . .
Thus, y € Bj(xy,r) and this implies that B;(xo, E) C By(xp,r) C U. Hence, xj is an interior
point of U in || - ||,. Since x is an arbitrary point in U, we prove that U is open in || - ||>. O

Remark. Heuristically, the number of open sets in (X, || - ||,) is more than the number of open
setsin (X, || - |l;). Thatis, 77 € 7>.

Example 3.4.4. On R”, all p-metric d,(x,y) = |[x — yl|, induced from the p-norm (1 < p < o0)
are equivalent.

Proof. It suffices to show that any p-norm is equivalent to the co- norm. That is,

Cilixlleo < [Ixll, < ColXlloo

for every 1 < p < oo and for some Cy,C, > 0 (depending on p). For x = Zajej, x|, =

=1
\/ 2j=1 la*. For fixed 1 < p < oo, we have
1/p
max(lail,lasl, -+ Sl < (laal” +laal” + - + laul?)
1/p
< (n- [max(lenl leal, -l 1)
1

= n'" max(lail,laal, -, ).

Hence, |X/lo < [IXIl, < 7'/7||X]|co. O

In fact, there is a general result of this example.

Theorem 3.4.5. Any two norms on a finite dimensional space are equivalent.
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Proof. Hint: Firstly, to prove that any norm is equivalent to the Euclidean norm on R”. Then,
to prove that any n dimensional space X is isomorphic to R". O

Question: How about the norms on an infinite dimensional vector spaces?

Example 3.4.6. Consider the norms || - ||;1 and || - ||z~ on C([a, b]).

b
1 — glls < f f = gl0) dx < (b= @)lf = gllu~.

l-nx 0<x<1/n
0 I/n<x<1
all n € N but ||f,]l,1 — 0. Hence, it is impossible to find a constant C such that || f|[;~ < C||f||p:-

On the other hand, consider the sequence f,,(x) = { Then, ||f,|l.~ = 1 for

3.5 Separability

Definition 3.5.1. Let (M, d) be a metric space and E C M be a subset.
(a) We call that E is a “dense set” of M if its closure is the whole M. Thatis, E C M = E.
(b) We call that M is “separable” if it has a countable dense subset.
Example 3.5.2.
(i) R is separable and has a countable dense subset Q. Also, R" is separable for 1 < n < oo.
(i) Any compact set in a metric space is separable.
Exercise. Let (M, d) be a metric space. The following statements are equivalent.
(i) E C M is a dense subset.

(i1) For every x € M there exists a sequence {x,} C E such that lim x, = x.

n—oo

(iii) For every x € M and any open neighborhood U of x, U N E # 0.
Remark.

(1) Suppose that A € B C M. If A is a dense subset of M, then A is a dense subset of B and B
is a dense subset of M.

(i) The denseness of a subset depends on the given metric. For example, every nonempty set
in a space with discrete metric has only one dense subset. In fact, it is the set itself.

Proposition 3.5.3. The following normed spaces are separable.
(@) R"||-l,) for 1 < p < co.
(D) (L7, 11-llep) for 1 < p < co.

(c) (Ca,bD), |l llr) for 1 < p < oo,
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Proof. (a) Itis easy to check that Q" is a dense subset of R" in || - ||, for 1 < p < co.

(b) LetE = {(al, a,dsz, ) ‘ a; € Q and only finitely many a’s are nonzero.}. Check that E is
a countable dense subset of £7.

(¢) Let F = {p € C(la,b]) | p is a polynomial with rational coefficients }. Check that F is
one-to-one corresponding to the set E in (b) and hence F is countable.

For f € C([a, b]) and given & > 0, by the Stone-Weierstrass Theorem, there exists a poly-
nomial P = a,x" + --- + a;x + ag such that ||f — P||;~ < €. Let M = max(|al,|b|]) and

choose rational numbers rg, 71, -« ,r, such that |r, — a;| < fork =0,1,--- ,n.

£
(n + 1)M*
Then P;(x) = r,x"+---+rix+rg € Fand ||P, — P||;~ < &. Thus,

If = Pile= < |If = Pllze + ||P = Pyll~ < 2e.
Moreover, for 1 < p < oo,

b 1 1
If = Pillr = (f 1f(x) = Pi0PP)? < (b—a)?|If = Pill~ < 2(b - a)re.

< f=Pullp=

Hence, C([a, b]) has a dense subset F and is separable.

O

Exercise. Any subset of a separable metric space is separable.
Proposition 3.5.4. £~ is not separable.
Proof. Assume that E = {pl, D2, D3y } is a countable dense subset of £. Denote p; = (p(]k), p(zk), pgk), S ).

. L if |p1 <3
Choose a = (aj,a», az, -+ ) € £ such that g; = e | 4, _ 7 ForanykeN,

0, if |p.’1> 3.
) W5 1
lla = pille= = supla; — p;”’| = lax — p;°| = 5
ieN

Then E is not a dense subset of £*. Hence, £~ has no countable dense subset and is not separa-
ble. m]

3.6 Completeness

Recall: A metric space (M, d) is complete if every Cauchy sequence in M converges (in M).

Definition 3.6.1. Let (M, d) be a metric space. A metric space (M*,d") is called a “completion”
of (M, d) provided the following four conditions hold:
(1) (M~*,d") is complete.

(i) There exists a one-to-one map ¢ : M — M.
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(i) d*(p(x),¢(y)) = d(x,y) forall x,y € M.

(iv) ¢(M) is dense in M*; that is, M* = ¢p(M).

Remark. We say that a metric space (M, d) is “isometrically embedded”’ in another metric space
(M*,d") if there exists an one-to-one map ¢ : M — M™ saytisfying (ii) and (iii).

Question: For any metric space (M, d), can we always find its completion?
Theorem 3.6.2. Any metric space has a unique completion.
Proof. Skip |

m Complete normed spaces

Definition 3.6.3. A complete normed space is called a “Banach space”.
Proposition 3.6.4.

(1) (R",|[-|l,) for 1 < p < oo is a Banach space. (Easy!)

(2) (P, || - |ler) for 1 < p < o0 is a Banach space. (Skip the proof.)

(3) (C([a, b, |l - ||Loo) is a Banach space.

Remark. (C([a.b]). |- ll» ) is NOT complete for 1 < p < .

1, x € [-1,0] I, xe[-1.0]
Proof. Consider ¢,(x) = { —-nx+1, x€[0,1] and¢(x) = { ’ 7 Itis easy to
0 eIl 0, x€(0,1]

see that ||¢,, — ¢|l.» — 0. Hence, {¢,}° , is a Cauchy sequence in || - ||z».

n=1

Assume that {¢,} converges in (C([—l, 1D, - ”Lp). There exists a function f € C([-1,1])
such that ¢, — f in|| - ||.». Consider

0 0 0
(fl f - dx)" < (fl |f—¢n|f’dx)””+(f] 60— I dx)'"”
1 1
< ([ r-owa) ([ oo a0
-1 -1
0

Since f and ¢ are continuous on [-1,0], f = ¢ = 1 on [—1,0]. Similarly, for any 6 > 0,
(f; lf — olP dx) Y7 = 0 and this implies f = ¢ = 0 on [6, 1]. It is easy to show there is no such

continuous function f and hence {¢,} does not converge in (C([—l, 1D, - L]J).
O

Question: What is the completion of (C([a, b, - || Lp) for1 < p < o?

The completion of (C ([a, 6D, I - ”Lp) is denoted by L”(a, b) under the L”-norm and the element
in L?(a, b) is called LP-function. Hence R", {/(R) (1 < p < o0) and LP(a,b) (1 < p < o) are
Banach spaces.
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3.7 Sequential Compactness

m Bolzano-Weierstrass property: Any bounded sequence of real numbers has a convergent
subsequence.

We expect that a subset in a metric space (M, d) enjoys the Bolzano-Weierstrass property.
We recall that E C M is called “sequentially compact” if every sequence in E contains a con-
vergent subsequence in E.

Note.

(1) Any sequentially compact set is a closed set.

(i) The closed interval [a, b] is sequentially compact in R.
(iii)) Every closed and bounded set in R” is sequentially compact. (In fact, it is compact.)
Remark. We recall some results for R” and general metric spaces here.

(1) InR", a subset A C R" is compact < it is sequentially compact.

(i) In a metric space, a subset is compact < it is sequentially compact = it is closed and
bounded. But the converse is false.

Question: Which conditions will imply that “closedness and boundedness ” — “compactness
”?

Answer: The direction “=" is true if it is in a finite dimensional normed space. But it could
be false if the dimension is infinite.

Lemma 3.7.1. Let {xy,--- ,X,} be a linearly independent set of vectors in a normed space
(X, - ) (of any dimension). Then there is a number ¢ > 0 such that for every choice of scalars
ay, -, a, we have

llarxy + -+ + apX,ll = c(lan] + - - - ).

Proof. If (|| + - - |a|) = 0, the inequality is clearly true. Thus, we may assume that (|o;| +
-++]a,l) > 0. Moreover, dividing both sides by (la| + - - - |@,l), it suffices to show that [la;x; +
-+ + @uX,|| > ¢ for every n-tuple (@, - - , @,) with (lay| + - + |@,|) = 1 and for some constant
c>0.

Assume that the result is false. Then there is a sequence

n
Y = a/(lm)xl Tt a;'")Xn with Z |a,5m)| = 1.

i=1

with the property that ||y,|| — 0 as m — oo. Clearly, Iagm)l < 1 holds for every i = 1,--- ,n.

Hence, by Bolzano-Weierstrass property and using the iterative process, there exists a subse-
quence y,, = a/(lm")xl + - + @"™x, such that afgm") — a; as k - oo. Hence,y,, >y =
a1X; + -+ @X, and ), || = 1. Since xy, - - - , X, are linearly independent and ||y, || — O,
we have y = 0 and thus ¢; = O fori = 1,---,n. It contradicts that )i, |a;| = 1. The proof is

complete. O
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m Closedness and Completeness:

Theorem 3.7.2. Every finite dimensional subspace Y of a normed space (X, || - ||) is complete.
In particular, every finite dimensional normed space is complete.

Proof. (Exercise) |

Corollary 3.7.3. Every finite dimensional subspace Y of a normed space (X, || - ||) is closed in
X.

Proof. (Exercise) O

Remark. Infinite dimensional subspaces need not be closed.

m Compactness v.s Closedness + Boundedness:

Theorem 3.7.4. Let (X, || - ||) be a normed space with dimX = n < co. Then any subset M C X
is (sequentially) compact if and only if M is closed and bounded.

Proof. We only prove that direction (<) here. Let {x;,--- ,X,} be a basis of X and {y,,} be a
sequence in M. Write

Y = Oz(lm)X] + oo+ a™x,.

Since M is bounded, so is {y,,}, say B > |ly./l > ¢ >~ ™. By using Bolzano-Weierstrass
y y y i=11; y g

consecutively on the bounded sequences a(l'"), a(zm), .-, a", there exists a subsequence y,, —

y = ai1X; + -+ + @,X,,. But M is closed and hence contains its limit points, so y € M. It implies

that M is compact. O

Remark. The closed unit ball in an infinite dimensional normed space is never compact. (See
the proof below.)

m Bolzano-Weierstrass and Sequentical Compactness:

Lemma 3.7.5. Every finite dimensional subspace of a normed space (X, || - ||) has Bolzano-
Weierstrass property.
Proof. Exercise (Hint: use Lemma 3.7.1 and by Bolzano-Weierstrass consecutatively .) m|

Lemma 3.7.6. (Best approximation) Let Y be any proper finite dimensional subspace of the
normed space (X, || - ||). Then for any x € X\Y, there exists yy € Y such that

llx = yoll = d = dist(x,Y) = ingllx -yl > 0.
ye

Proof. The space Y is finite dimensional and hence is closed. It is easy to prove that the distance
d is positive. Choose a minimizing sequence {y,,} C Y such that ||y,, — x|| — d. Then

Iyl < 12l + lx = Yol < llxll +d + 1 as m is sufficiently large.

Since {y,,} is bounded and Y is finite dimensional, by Bolzano-Weierstrass, there exists a subse-
quence y,, converges to yo. Thus, d = |[x—yo||. Moreover, since Y is closed, we have yp € Y. O
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Example 3.7.7. If the subspace Y is of infinite dimensions, the best approximation may not
exist. Let X = C([-1, 1]) with sup-norm and

0 1
Y:{fex\Lf(x)dx:O,fof(x)dxzo}.

0 1

Lethe X satisfyf h(x)dx =1 andf h(x) dx = —1. We can show that i ¢ Y and dist(h,Y) =
-1 0
1. But there is no function g € Y such that || — g|| = 1.

Theorem 3.7.8. Any closed ball in a normed space is sequentially compact if and only if the
space is of finite dimension.

Proof. The direction (<) is proved above. We will prove (=) here.

W.L.O.G, it suffices to show the theroem on the closed unit ball B = {x € X | [lx]| < 1}. We
will show that B is not sequentially compact if X is of infinite dimensions.

If X is of infinite dimensions, there exists a linearly independent sequence {x;, x,, X3, - -}
in X. Define the vector spaces V, := Span(x;,---,x,) forn = 1,2,---. We will construct a

sequence in B which has no convergent subsequence.

Set z; = x1/||xy||. For n > 2, consider x,, ¢ V,_;. By Lemma3.7.6, there exists y,_; be the

point in V,_; such that [lx, — y,1|| = dist(x,, Va1). Let
Xn = Yn-1

in =9 -

”xn - yn—lll

We have ||z,|| = 1 and, forall y € V,,_4,

Xn = Yn-1 ”xn _ylll
oyl = [ I
”xn _yn—l|| ”xn _yn—l||

where y, =Yp-1t ”xn _yn—llly € Vn—l and thus ”xn _yn—IH < ”Xn _y’||~

Forn>m>1,2z,€V, €V, €---C V,q. Then |z, — z./| = 1. Hence, {z,,} cannot
contain a convergent subsequence. We conclude that the closed unit ball is not sequentially
compact in an infinite dimensional normed space. O

3.8 Arzela-Ascoli Theorem

Not all bounded sequences in an infinite dimensional normed space have convergent subse-
quences. The Arzeld-Ascoli theorem gives a necessary and sufficient condition when a closed
and bounded set in C(K), where K is a closed and bounded (compact) in R" is sequentially com-
pact. The compactness of K implies that C(K) is a separable Banach space under the sup-norm.

Lemma 3.8.1. Let E be a set in the metric space (X, d). Then
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(1) that E is sequentially compact implies that for any € > 0, there exist finitely many e-ball
covering E.

(2) assuming that E is closed and (X, d) is complete, the converse of (1) is true.
Proof. (Exercise) O

Lemma 3.8.2. Let {f,} be a uniformly bounded sequence of functions from the countable set
{z1,20,+ -} to F. There is a subsequence {f,,} of {f,} such that {f, (z;)} is convergent for every
Zj.

Proof. (Use the diagonal process)(sometimes called to Cantor’s diagonal sequence.) O

Theorem 3.8.3. Let ¥ be a closed set in C(K) where K is a compact set in R". Then ¥ is
sequentially compact (in C(K)) if and only if it is uniformly bounded and equicontinuous.

Proof. (Sketch the proof)
(=)

1 . .
(i) By LemmaB1), for each j = 1,2,3---, find —-balls {B(x], 1), , B(x} . 1)} covers K
J J

where the number N; depending on j.
(Note: the collection of all the centers of those balls, S = {x/ | j=1,2,3,---, 1 <i < N;}
is a countable dense subset of K.)

(i)) By LemmaB=X72, uniformly boundedness of # implies that there exists a sequence {f,} in
¥ such that it is convergent at every point in S .

(iii) Equicontinuity of # implies that {f,} uniformly converges on K.
(iv) That C(K) is complete under the sup-norm implies it is sequentially compact.
(=)
(1) By LemmaBX, for each & > 0, there exists fi,--- , fy € F such that ¥ C U,I,y=1 B(fj, e).

(i1) For each j = 1,---, N, continuity of f; on the compact set K implies f; is uniformly
continuous on K. Moreover, finitely many of {f;} combining with (i) gives ¥ is equicon-
tinuous on K.

(iii) Let & = 1. Each 1-ball f; is bounded on K and finitely many of those 1-balls with (i) show
that 7 is uniformly bounded.
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Corollary 3.8.4. A sequence in C(K) where K is a closed and bounded set in R" has a conver-
gent subsequence if it is uniformly bounded and equicontinuous.

Proof. Let {f,} be a uniformly bounded and equicontinuous sequence in C(K) and ¥ be the
closure of {f,}. It suffices to show that F is also uniformly bounded and equicontinuous in
C(K). Then, by Arzela-Ascoli theorem, {f,} has a convergent subsequence.

Since {f,} is uniformly bounded, there exists a number M such that
Ifi(ol <M, VxeKk, j>1.
This implies that all the limit point of {f,} is also bounded by M and ¥ is uniformly bounded.

Similarly, for equicontinuity, for every £ > 0 there exists some ¢ > 0 such that

Ifi(x) = fil<e, Vx,yeKk, |x—y|l <.

Therefore, for the limit point f € ¥ satisfying || — fil| < & for some f;, we have

lf) = fOI < 1f () = fi0 + 1fi(x) = ;D01 + i) = fWI <38 Vx,y €K, |x -y <6

Thus, ¥ is equicontinuous. O

3.9 Inner Product Spaces

In R”, there is a usual inner product (say “dot product”) which can induce the Euclidean norm.
An inner product enables one to define orthogonality. It would help us to establish a nice
structure of space. Therefore, it is natural to motivate us to figure out the inner product on a
space (especially with infinite dimensions).

Definition 3.9.1. We say that X is an “inner product space” if X is a vector space with inner
product (-,-) : X X X — Fsuch that Vx,y,z€ X and a € F,

(1) {(x,x) > 0 with the equality holds if and only if x = 0.
(i) (x+y,2) ={x,2) +{x,2).
(i) (ax,y) = a{x,y).
(iv) (x.y) = (..

The pair (X, (-, -)) is called an “inner product space.

Remark.
(1) Forx,y,z€ Xand a € C,

,y+z) = (x,y)+{.2)
(x, ay) ax,y)
(x,0) 0,x)=0
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(2) If X is a real vector space, then (x,y) = (y, x).
Example 3.9.2. We introduce some well-known inner product spaces here.
(1) X=C"and

n

(a,b) = (@1, a2, ), (b1, b, b)) = ) aib.

i=1
(2) X =C([a,b],C) and
b
(f9)= [ FE0a dx.

(3) X = ¢*C) and
(@,b) = (@1, a2, ), (b1, ba, )y = ) aib.
i=1

Proposition 3.9.3. (Cauchy-Schwarz) For any x and y in an inner product space (X, (-, ")),

[, )] < VA x) V)
Moreover, equality holds in this inequality if and only if x and y are linearly dependent.
Proof. Skip O

m Angles
Form this proposition, for any x,y € X, we have

<X,

<
VX, x) /L )

Therefore, for any two nonzero vectors x and y, there is a unique 6 € [0, rr] satisfying

1.

Re(x,y)

VX, ) A/ )

Note. Any two vectors x and y are “orthogonal” if (x,y) = 0. Thus, the zero vector is orthogonal
to all vectors.

cosf =

Q Inner product and Norm

Definition 3.9.4. Let (X, (-, -)) be an inner product space.

(1) We define a norm on X which is canonically associated to the inner product by

x| = v/{x,x) foreveryxe X.
It is easy to check that || - || is a norm on X.
(2) A complete inner product space (under the norm || - || = V/{,-) ) is called a “Hilbert space’.

Remark.
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(1) We have the inclusion relations of mathematical spaces that

Inner Product Spaces € Normed Spaces ¢ Metric Spaces C Topological Spaces.

Metric spaces

Inner
product
spaces

(2) In an inner product space, there is a natural metric which is induced by the inner product.
We can discuss the topological issues on the inner product space.

(3) A Hilbert space is also a Banach space.

Exercise. The inner product (-, -) : X X X — R is a continuous function.

m Some Identities

Proposition 3.9.5. (1) (Parallelogram Identity) Let X be an inner product space and x,y € X.

Then
llx + ¥l + llx = yII> = 2(IIxl* + ||y||2) (3.9.1)
X
4
X - y 4
= »

The parallelogram equality.

(2) (Polarization Identity) For every x,y in a real inner product space X, we have

(Il + Y12 = 1lx = y1P).

n—

x,y) =

(3) On a real normed space (X, || - ||), the above identity defines an inner product on X if and
only if the parallelogram identity holds.
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Proof. The proof of (1) and (2) are directly from the expansion that
e+ V1P = 1122 + ) + (s ) + [yl

and
[l = Y = [l = €, ) = €y, ) + Iyl
The proof of (3) is left to the readers. O
We have similar results as above if the space is over C.

Proposition 3.9.6. (1) For any x,y in a complex inner product space X, we have the polariza-
tion identities

(Il + Y1 = 1lx = yIP),

FN.

Re(x,y) =
and {
Imx,y) = 7 (Il + iyl = llx = ivll?).
(2) On a complex normed space X, the polarization identities define an inner product on X
which induces its norm if and only if the parallelogram identity holds.

Note. This propostion show that if a norm is induced by an inner product, the equality (B9
is necessarily true. Moreover, this will imply that the || - ||, norm on R" is induced from an inner
product if and only if p = 2.

Consider x = (1,1,0,---,0) and y = (1,-1,0,---,0) in R". Then ||x]|, = Ilyll, = 27 and
llx + yll, = llx = yll, = 2. If || - ||, is induced from an inner product, then

2
b+ YIP + [lx = yIP = 8 = 2(Ixd2 + [Iylf2) = 27*

which holds only if p = 2.
Exercise. Show that || - ||;» on C([0, 1]) is induced from an inner product if and only if p = 2.

0 Best Approximation

Recall that the best approximation for closed subspaces in a Banach space may not always have
a positive solution (if the dimensions of spaces are infinite). We may also consider this problem
on Hilbert spaces.

Theorem 3.9.7. Let K be a closed and convex subset in the Hilbert space X and x, € X\K.
There exists a unique point y, € K such that

llxo — yoll = inf [lxo — Il
yeK

X0

(Nenempty, closed, convex)
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Proof. Let {y,} be a minimizing sequence in K. That is, |[xg — y,|| = d := inlg l[xo — y||. By the
ye

parallelogram identity,

yn = yull® = NG = X0) = O = %)
= _”yn —Xot Ym — Xo||2 + Z(Hyn - Xo||2 + ”ym - x0”2)
5%
——
Yn t Ym

2

> d?
< —4d® + 2(llyn = %ol + lym — xol*)

— 0 asm,n— oo

= -4 —xo||” +2(llyn = x0lP + llym — %ol

}’l+yﬂ’l

The above inequality is from the fact that the convexity of K implies that Y € K. Hence,

{v.} 1s a Cauchy sequence. Since X is complete, there exists y, € X such thaty, — ypasn — oo.
Moreover, since K is closed, we have y, € K. By the continuity of the norm, d = ||xo — yol|.

To prove that the point y, € K is unique. Assume that there exists zo € K such that ||xo—zo|| =
d. Then

94

Yo +2Z 2
0 0
o — zoll> < —4|| > —xo||” + 2(Iyo = xoll* + 120 — xolI*)
< —Ad*+4d* =0
Hence, yy = zp. a

Remark. It is important to note that all of the hypotheses in the theorem are necessary. In
particular, if K is not convex then there may be many points in K for which this distance between
Xo and those point equals the distance between x; and K.

Xo

K
(Mot Convex)

By the above theorem, for any given nonempty, convex and closed subset K in a Hilbert
space X, every xo € X\K is uniquely corresponding to an element y, € K (with minimal
distance from xj to K). Hence, we can define a map Px : X\K — K by Pg(xp) = yo. Moreover,
this map can be extended to the whole space X by

Yo if xp € X\K
X0 if.X() ek

Pg(xo) = {
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Proposition 3.9.8. Let K be a convex subset of a Hilbert space, x € X and yy € K. Then

Yo = P(x) if and only if
(xX=y0,y=Y0) <0 forallyeK. (3.9.2)

Proof. (=) If (B92) fails, there exists y € K such that (x — yy,y — yo) > 0. Since K is convex,
ya:=Ay+ (1 - Ay € K forevery 0 < A < 1. Then

(Xx=yrx—Yy»
llx = yoll* = 22¢x = yo,y — o) + |y = yoll*

llx — yoll* - A[2Ax = yo,y = yoy = Ally = yoll’]
>0

2
[l = yall

llx = yoll® = 1,

For A > 0 sufficiently small, I, > 0 and thus ||x — y,|* < ||x — yol/*>. Hence, yo # Px(x).
(&) If B32) holds and y € K, then

lx = yoll* = {x—yo,x—yo)

= (X=Y0, X —Y) +{X—=Y0,Yy — Yo)
 —

<0
< (x =y, x =y < lx = yollllx = yll

Hence, ||x — yo|| < ||x — y|| for every y € K and so yy = Px(x). O
Remark. There are two geometric interpretations of the proposition.

(1) The angle 6 between the vectors x — yy and y — yy is at least /2 for every y € K

(2) The convex set K lies on one side of the hyperplane H that is orthogonal to x — y, and that
passes through y,

Theorem 3.9.9. (Best Approximation) Let Y be a closed subspace of a Hilbert space X and
xo € X\Y. Let yg € Y be the point which minimizes the distance between xy and Y. Then

(X0 —=y0,y) =0, forallyel.
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Conversely, if z € Y satisfies
(xo—2z,y)=0, forallyey,

then z must be y, and, moreover,

1250 = Yoll® + Ilyol* = llxolI* (3.9.3)
holds.
Proof. Since y is the point in Y such that |lyy — xo|| = r}nelgl Ily = Xol|, it also minimizes |y — xo||*.
For any y € Y and y, + €y € Y, the function

¢(&) = l1xo = yo = &yII” = llxo = Yol = &(x0 = Yo, ) = &, X0 = yo) + &°ylI°
has minimum at € = 0. Then Then 0 = ¢’(0) implies
Re(xo = yo.y) = 0.
Replacing y by iy, we have Im{xy — yo,y) = O.
Conversely, if (xo — z,y) = 0 for all y € Y, we have
ey 9%

A~ AN
Ixo =2 == IF =l -2 = (-2 =)= =2, %0 - 2) +lly -2’
L - ] L = ] L = ]

2
llxo = ¥l

2
> lxo —zll”.

Hence, z also minimizes d(xy, Y). Moreover, we will prove that y, is the unique point in ¥ which
minimizes the distance from x, to Y. Let y; also minimize the distance. Then (xy — y;,y) = 0
for all y € Y. We have (yo — y1,y) = {(xo — y1,¥) — (X0 — Yo, y) = 0. Taking y = yy — y;, we obtain
llyo — 111> = 0 and hence y, = y;. This implies that z = .

Furthermore, the equation (B:93) is directly obtained by (x¢ — yo, yo) = O. |

Remark. Let (X, (-,-)) be an inner product space and ¥ & X be a finite dimensional subspace
of X. For x € X\Y, we want to find the projcetion of x on Y and the distance from x to Y. Let

{el, el e,,} be a basis of Y. We can use the Gram-Schmidt process to orthonormalize the basis,
say {uy,---,u,} where w; L u; and |juj| = 1 for every i, j = 1,--- ,n. Then the projection of x
on Y is

Py(x) = ) (x, uu.
i=1
From Theorem B99,
(x— Z(x, udu,u;) = (x,u;) — ((X,uuj,u;) =0
i=1
Hence, Py(x) = Z(X, u,)u; is the best approximation of x by the elements in ¥ and

i=1

dist(x,Y) = ||x - Py(x)” = ||X - Z(x, u,-)u,-”.
i=1
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3.10 Convolution and Mollifiers

As we know, L'(R) is a Banach space. The operations of addition and scalar multiplication are
continuous. Moreover, L'(R) is closed under these two operations. But, it is not closed under
multiplication. That is, it is possible that f,g € L'(R) but fg ¢ L'(R). We will introduce a
different operation that L'(R) is closed under.

a Convolution

Definition 3.10.1. Let f,g : R — R be two functions. The “convolution” of f and g, denoted
by f = g, is defined by

(f * ) = fR FO)gCx =) dy

whenever the integral makes sense.

Remark. If f is a function of time variable 7 and g is Heaviside function. Suppose that f * g(¢)
represents an action of a system. Then the behavior of the system at time ¢ depends not only on
its state at time ¢, but also on its past history. (hereditary system)

m Properties of convolution (generalized product)

(1) (Commutativity) f % g = g * f.

(2) (Distributive law) f* (g +h) = f*g+ f*h

(3) (Associativity) (f  g)  h = f * (g + )

(4) (Commutativity with translations) f+(T,g) = (T.f)xg = Ta(f*g) where (Tof)(x) = f(x — a).

(5) f*0=0=xf =0 where 0 is the zero function.

Note. The above properties look like the regular product. But the below properties do not.

©) (f*f)® 20

(7) L'(R) is closed under convolution. We write in short as

L'R) « L'(R) ¢ L'(R).

f‘f*g(x)|dx=f’ff(y)g(x—y)dy) dx
f f | fg(x —y)| dydx = f f | f()g(x = )| dxdy

f ) dy f lgCx =) dx = Il gl

Proof.

ILf = gl

IA

Note. It is not true that L”(R) is closed under convolution for p > 1.
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m Young’s Inequality for Convolution

Proposition 3.10.2.

(1) If1 < p < oo, then L'(R) * LP(R) C LP(R), and we have
If * gl < Ifllrliglls Y f € LP(R), g € L'(R).

(2) If 1 < p,q < o and r satisfies % = i + é — 1, then LP(R) = LP(R) C L'(R), and we have
IS * gl < M1 flleollglle Vf € LP(R), g € L'(R).

Proof. Skip O

m Convolution as Filtering; Lack of an Identity

We will introduce the view of point of filter until the section of Fourier series. Since L!'(R)
is closed under convolution, we may ask whether there exists a function ¢ in L'(R) such that

fxo=f VfeL®).

Unfortunately, there exists no such a function.

Remark. If such a function & exists, it must satisfy 4(¢) = 1 for all £ But there is no usual L'-
function satisfying this condition. The delta function which satisfies the equality is a generalized
function.

m Convolution as Averaging; Introduction to Approximate Identities

Convolution can be regarded as a kind of weighted averaging operator. Consider
1
= —xrrr, 1 >0
XT ZTX [-T.T]

Given f € L'(R), we have that

X+

1 T
F %)) = f Fowrte=ydy=5 [ o) dy = Avgr fo.
x=T

where Avgr f(x) is the average of f on the interval [x — T, x + T].

Ave,f(x)

vx+T
z—T

the graph of f between z — T and =z + 7.

The area of the dashed box equals | f(y) dy, which is the area under
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Let us consider what happens to the convolution f * y7 = Averf as T — 0. The function
X7 = %X[—T,T] becomes a taller and taller “spike” centered at the origin, with the height of the
spike being chosen so that the integral of yr is always 1. Intuitively, averaging over smaller
and smaller intervals should give values ( f = )(T)(x) that are closer and closer to the original
value f(x). Thus, f = f * yr when T is small. This phenomenon happens for the more general
averaging operator and we will discuss this later.

m Convolution and Smoothing

Since convolution is a type of averaging, it tends to be a smoothing operation. Generally
speaking, a convolution f = g inherits the *“ best” properties of both f and g.

Exercise. Suppose that f, g € C.(R), show that

f*geC.(R).

and in this case we have

supp(f = g) C supp(f) + supp(g) = {x+y | x € supp(f), y € supp(g)}.
Theorem 3.10.3. Suppose that f € L'(R) and g € C.(R). Then f * g € Co(R).

Proof. Since f € L'(R) and g € C.(R), the convolution f * g exists and is bounded. Also, since
g € C.(R), we have g is uniformly continuous. Consider

|(f )0 = (f * g)(x =)
[ st ay- [ fore-n-ya

IA

f FOlgCx —y) — g(x—h— Y] dy

IA

(supletw) - gt~ ) [ 1f0dy —0 ash—0

ueR

Hence f * g € C,(R) and is uniformly continuous. (Note: The above proof is more succinct
by using the Young’s inequality.)

To show that f * g € Co(R). Since g € C.(R), supp(g) € [-N, N] for some N > 0. Hence,

x+N
(Pl < [ 1olk-yidy
x—N

x+N
< lglhs f o) dy — 0 as x| — oo

-N

O
Remark. This theorem is still true if g € Cy(R) since C.(R) is dense in Cy(R). We can prove it
by using approximation.

m Convolution and Differentiation
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Theorem 3.104. Let 1 < p < coandm > 0.

(1) If f € LP(R) and g € C!'(R), then [ x g € Cj(R).

(2) If f € L(R) and g € C.(R), then f * g € Cp(R).

Further, the differentiation commutes with convolution, i.e.,
Di(f+g)=f*Dlg, j=0,--,m

Corollary 3.10.5. Let 1 < p < 0.

(1) If f € LP(R) and g € CT(R), then f * g € C7(R).

(2) If f € L"(R) and g € CZ(R), then f * g € C;(R).

Moreover, if f is also compactly supported then we have f * g € C(R).

m Convolutions of Periodic Functions

A periodic function is usually not integrable on R. It is not reasonable to define the con-
volution on periodic functions. But we can keep the main ingredient and modify the definition
of convolution on R by a similar form. For the sake of the discussion of the Fourier series in
the next chapter. We assume those periodic functions with period 27 and defined on [, 7] (or
sometimes on [0, 27]).

Definition 3.10.6. Given two 2x-periodic integrable (over [—m, xr]) functions f and g on R, we
define their “convolution” f % g on [—n, ] by

1 T
(90 =5- [ o=y
T Jn

Note.

(1) Since f and g are 2n-periodic, we have

1 T
9w =5 [ fo-ngody
7T =T

T

1
(2) If g = 1, then f*g(x) = 7 f(y) dy = average value of f over [-m, ]. The convolu-
7

tion can be regarded as the “weighted averages”.

1 Mollifiers

As we discuss above, convolution can be regarded as an averaging. Suppose that the sup-
port of the “weighted” function g in localized in a small interval with center 0. Then f = f * g.
Moreover, if g is sufficiently smooth, then so is f * g. This gives an thought to construct smooth
functions f, approximating an L'-function f.
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Let p € C*(R") be a non-negative function with support in the unit ball and f

For example we could take p to be

Cex

p(x) =

2

CHAPTER 3. NORMED SPACES

p(x)dx = 1.
er

P

). KI<1

x| > 1

x> -1

where C is chosen to ensure that f S px)dx = 1.

For each & > 0, define p.(x) = s‘”p(§). Then
E

functions are called “mollifiers”

f p:(x) dx =1 and supp(p.) € B(0,&). Such

R’

y=pilz)

¥ = mix) = plx)

2l =1 0

Notation: Let Q2 C R" be an open set.

(a) Fore > 0, we write Q, := {x € Q| dist(x,0Q) > &}.

(b) We denote B cc Qif B c Q.

e R

Remark. If Q is a bounded open set and B cC Q, then dist(B, Q) > 0.
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Definition 3.10.7. Let Q be a bounded open setin R” and f € L'(Q). Then for & > 0, we define
the “mollification of f” by

fs(x) = Ps * f in Q..
That is,

fs(X)=8‘”fp(ﬂ)f(y)dy=f ps(Nf(x —y) dy
Q € B

(0.5)
for x € Q..

For now on, we assume the set Q is open and bounded in R" and f € L!'(Q). The following
results can be generalized to some general functions spaces.

Theorem 3.10.8. (Properties of mollifiers)

(1) fe € C™(Ly).

(2) If f € C(Q), then f, — [ as € — 0 uniformly on any compact subsets of €.
(3) If 1 < p<ocoand f € LP(Q), then f, — f in LP(Q).

Proof. (1) Fixxe Q. i=1,2,---,nand h so small that x + he; € Q.. Then

S + he) = f(x) zifl[p(W)-p(x‘y)}ﬂyw

h e Jo h £

Since p € C(R") and supp(p) € B(0, 1), by mean value theorem,

1 he; — - 10 -
e R e e e

p Jol ) uniformly as 4 — 0.

ofs )
Hence, ai(x) exists and equals
x‘

1

axi
Similarly, we can continuue this process and show that D f.(x) exists and

fg P« )y dy.

D10 = [ Diputx- sy dy
Q
forx € Q. and D* = Dy!D? --- Dy for a = (@, -, @,).
(2) Let V be a compact subset of Q. Then ¢ = dist(V,0Q) > 0. For € < %6 andx eV,

fx) =& f p(F=1) r dy = f p@)f(x—ez)dz (letz =Y.
B(x,£) € B(0,1) e

Since B0, p(z) dz = 1 and f is uniformly continuous on V, f(x) = fB(o, 0 p(z)f(x) dz and

supl )~ fiol = sup [ |, PO = f(x = em]
B(0.1)

xeV xeV

< Squ P@)f(X) - f(x —ez) dz
BO,1)

xeV
< su‘[/) lSll,lIf |f(x) - f(x - g2)|

— 0 ase—0.
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The last line follows from the uniform continuity of f and thus the convergence is indepen-
dent of points in V. This implies that the convergence is uniform.

(3) Skip

Theorem 3.10.9. Forany 1 < p < oo, C.(Q) is dense in L (Q).

Proof. 1t suffices to show that for every f € LP(Q2) and given ¢ > 0, there exists g € C"(€2) such
that ||f — gllzr@) < 0.

Since f € LP(Q), we can choose a compact subset V of Q such that

0
Iflzr\vy < 3

Set
f(x) forxeV

f(X):{O forx € Q\V
By TheoremBT0O.8(2), there exists an & < dist(V, 0Q) such that

-~ 1)
lf = fellerevy < g

Since f(x) = 0 for x € Q\V, it follow that

~ )
fellr@yvy < 5
Hence,
If = follry < Wf = follerowy + 1Lf = feller@w
< Nf = fllrey + 11 = fellrory + 1 llryyy + [l fellrivy
< 0+ fllzr@vwy + Wfellrywy + ILf = felloovy
< 0.

The function f, € C.(Q) and the theorem is proved. O
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4.1 Physical Examples

0 Simple Harmonic Motion

Simple harmonic motion describes the behavior of the most basic oscillatory system and
is a natural place to start the study of vibrations. For example, simple pendulum, horizaontal

spring.

Simple pendulum

Simple harmonic oscillator

Horizontal spring

*The content of this chapter is referred to Fourier Analysis; E. Stein, R. Shakarchi.
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Consider the horizontal spring and let y(f) denote the displacement of the mass at time 7.
Applying Newton’s law, we have

—ky(t) = my”(t),

where k£ > 0 is a given physical quantity called the spring constant and m is the mass. Let
¢ = Vk/m. Then the equation becomes

V' (1) + c*y(t) = 0.

The equation can be solved by

’

y(t) = y(0)cos ct + y©O sin ct.

Consider
acosct+ bsinct = Acos(ct — ¢)

where A = Va? + b? is called “amplitude” of the motion, c is its “natural frequency”, ¢ is its
“phase”, and 2rr/c is the “period” of the motion.

Awil
SV

The graph of A cos(ct — )

a Standing and Traveling Waves

m Wave Equation

Uy — czum =0 ‘

7 ‘

where ¢ = /7/p > 0is the velocity of the spring, Tisthe () L
tension of the spring, and p is the density of the spring. I\/ \/‘

L
e

By changing of “units” in space, x — ax, the spatial scale becomes 0 < x <L — 0<x <
Let v(¢, x) = u(t, ax), then
2
c

V[t - _zvxx = 0.
a

Similarly, we also change the unit in time, ¢t — bt, the temporal scale becomes 0 <t < T —
0<t< %. Let v(z, x) = u(bt, x).
vy —b*c*v,, = 0.
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Hence, by choosing appropriate constants a,b > 0 such that x — ax and ¢t — bt, we may
assume that the wave equation is

Uy —uUee =0 on0<x<m t>0.

e Traveling Wave

Observe that if F' is any twice differentiable function, then u(x, f) = F(x+1t) and u(x, t) = F(x—1)
solve the wave equation. The speed of u(x, ) = F(x —¢) is 1 and more forward to the right.

. F(z+1t) / F(z —t)
o S B Flz) ‘ )
\\\“_(/ //,/’/
s e
e o o
- - -
— - X
i ~
\ e =
e S s F(z+t)
et SN

Waves traveling in both directions

Since u,; — uy, = 0 is linear, for every F,G € C*(R),
ut,x) =Fx+t)+Gx—-1)

is a solution. For given initial data, u(0, x) = f(x), u,(0, x) = g(x), the d’Alembert’s formula

gives
X+1

1 1
u(t,x) = E[f(x+r)+f(x—t)} + Ef g(y) dy.

x—t

e Superposition of standing waves

First of all, we try to look for special solutions to the wave equation which are of the form
u(x,t) = ¢(x)y(r). In mathematics, this procedure is also called “separation of variables” and
constructs solutions that are called “pure tones” (¥ 3 ).

Y

u(z,0) = p(x)

A standing wave at different moments in time:
t=0 and { = to
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Then by the linearity of the wave equation, we can expect to combine these pure tones into
a more complex combination of sound.

Note that the method of separation of variables gives rise to reduce the PDE problem to an
ODE problem. Plugging ¢(x)y(¢) into the wave equation, we have

Q" () = ¢” () (t)
Thus,
v _ ¢ _
Y@ d(x)

Note that A is a constant. The wave equation redueces to

{ () - W) = 0
¢"(x) = Ap(x) = 0

If the constant 4 > 0, the solution ¢ will not oscillate as time varies. Hence, we assume
A = —m? < 0. Then we can solve

Y(t) = Acosmt + Bsinmt

and
¢(x) = A cos mx + Bsinmx.

We take into account that the string is attached at x = 0 and x = . The boundary condition
gives ¢(0) = ¢(m) = 0. Hence, A = 0, and if B # 0 then m € Z. Moreover, we can absorb the
cases m < 0 into the cases m > 0 and reduce the solution to

Un(t, x) = (A, cosmt + B, sinmt) sinmx

which is of the form of standing wave.B

0 \ 5 I f\ = (]

TR T 2T
L T I T
v vl
V! v
~ -

(a) Fundamental tone or first harmonic (b) First overtone or second harmonic
of the vibrating string (m=1) (m=2)

"The readers could browse some websites listed below to figure out the overtone.
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch”’v=01JmDhNoca()


https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch?v=0iJmDhNocaQ
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Since the wave equation is linear, we can construct more solutions by taking linear combinations
of the standing waves u,,. This technique is called “superposition” and gives the solution of the
wave equation

(o8]

u(t, x) = Z (A, cos mt + B, sinmt) sinmax.

m=1

Suppose that the initial data is given. That is, u(x, 0) = f(x) for f(0) = f(m) = 0. Then

i A, sinmx = f(x).
m=1
Question: Given f(x) on [0, ] with f(0) = f(m) = 0, can we find coefficients A,, such that
flx) = iAm sinmx ?
m=1
Question: If yes, how to find A,,?

Observe that

i 0 ifm#n
f sinmxsinnxdx =4 7 F o =
0 > ifm=n
Then, formally,

JT [ee)
( Z A, sin mx) sinnx dx

m=1

ZAmf sinmxsinnxdx = A, - E.
0 2

m=1

fﬂ f(x)sinnx dx
0

S—

0

Hence,
2 T
A, = —f f(x)sinnx dx.
T Jo

Question: How about the given initial data F(x) is defined on [—x, 71]?

We can express F(x) = f(x) + g(x) where f is odd and g is even. Then f(x) and g(x) can be
expressed as a sine series and a cosine series respectively. That is,

gx) = Z A}, cos mx.

m=0

Thus,

(o) o A/
F(x):ZAmsinmx+ZA;ncosmx+70 4.1.1)

m=1 m=1
1. . . .
Remark. (1) The constant 3 in the last term is for making the formula consistant where

1 T
Ay == f F(x) dx.
V-

74



80 CHAPTER 4. FOURIER SERIES

(2) When F(x) is defined on [—m, ] and is of the form (EIT), the formulas of the coeflicients
A,, and A/, are similar but a slightly different.

1 (" 1 i , ,
A, = - f F(x)sinmx dx = — f F(x) (e""x - e_”"x) dx
nJ . 2 J_,
, 1 (" 1 (" , »
A, = - F(x)cosmxdx = — F(x) (e’"” +e ’mx) dx.
nJ . 2 J_,

Remark. Let f(x) be a function defined on [a, b] with b — a = 2n. Then we can extend F(x)
[still called F(x)] defined on R with period 2x. That is, F(x) = F(x + 2x). Suppose that

(o) (o) A/
F(x) = ZAmsinmx+ZA;ncosmx+ ?0

m=1 m=1

Then we can find the formulas of the coefficients by similar method.

An

1 [ 1 [
—f F(x)sinmxdx:—f F(x)sinmx dx
nJ nJ,

7s

1 (" 1
A, = —f F(x)cosmxdx:—f F(x)cosmx dx
_ T Ja

T 74

Q Euler Identity

We recall the Euler identity e = cost + isint. Suppose that we can express F(x) as the
form

[Se]

F(x) = Z ane™  where a,, € C.

m=—0o

”imx —inxd _{0 lfl’l?ﬁm
_e ¢ YT\ 2n ifn=m

/4

Similarly, since

we have

1 (" ,
a, = —f F(x)e " dx.
2 J_,

The quantity a, is called the nth Fourier coefficient of F'.

m Heuristic Viewpoint?

Consider the complex exponential function

2rimx

eq(x)=e = cos(2rmx) + i sin(2rmx)

as a function of x. While x lies in R, the function e,,(x) are complex numbers that lie on the unit
circle S! in C. If m > 0, then as x increases through an interval of length 1/m, the values e,,(x)
moves once around S! in the counter-clockwise direction.

The reference of this part is from Section1.1.2 of Introduction to Harmonic Analysis, Christopher Heil
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The function e, is periodic with period 1/m and we therefore say that it has “frequency m”.
In some sense, the function e, is a “pure tone”. We can imagine that an ideal vibrating string
creates a pressure wave in the air. In general, a real string (wave) is much more complicated than
a pure tone with frequency m. The sound created from a musical instrument usually consists of
pure tones, overtones and other complications. But let’s start with a single pure tone e,, here.

Graph of ¢(z) = cos(2my/Tx).

For a fixed m the function a,,e?™™* is a pure tone whose “amplitude” is the scalar a,,. The
larger a,, is, the larger the vibrations of the string and the louder the perceived sound. With
several different frequencies m € Z, the function

N

F(x) = Z e

m=—N

is a superposition of several pure tones.

10

IN

1 \ M | "M |

f'/
5
1

llﬁ‘” ‘ ‘ | W ‘.

“ﬁ I

Il
il
i

Graph of 75 superimposed pure tones:

e — =

\"| ;
|

=L

Graph of o(x) = 2cos(2n3x) + 0.7 cos(279x)
Pp(x) = Z a,, cos(2wmx)

m=1

Suppose that any function F can be represented as a series of pure tones a,,e”™ over all
possible frequencies m € Z. By superimposing all the pure tones with the correct amplitudes,
we create any sound that we like. Once we have a representation of F in terms of the pure tones,
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we can act on it. In this sense, we can regard the convolution as a kind of “filter”.

Question: Given any reasonable function F on [—n, ], with Fourier coefficients define above,
is it true that

(o9

F(x) = Z Ape™?

m=—00
m Fourier Series on General Intervals

Let F(x) be defined on [—-L, L] with F(—L) = F(L). Suppose that F' has the form of Fourier
series

(o] A’
A, sin (?) + ZA”" cos (?) + 70
m=1

M

F(x)
1

3
I

o0

E ametmnx/L

m=—oo

Then the formulas of the coefficients are

1t . mnrx
A, = ZI F(x)sm(T) dx

L
1 L
A = —f F(x) cos (@) dx
L), L
_ 1 LF( ) —imﬂx/Ld
ay = L . x)e X

Let F(x) be a function on [a, b] with F(a) = F(b) and b — a = L. Extend F(x) to a new
function [still called F(x)] defined on R and is with period L. Suppose that

00 oo A/
Fx) = ZA," sin (27rmx) + ZA’I" cos (27me) + ?0
m=1 m=1
— i am€27rimx/L.

Then the formulas of the coefficients are

b
4, = 2 f F(x)sin(z’TZ”) dx

L
2 (P 2

A, = 7 f F(x) cos ( ”Z”) dx
1 [ .

a, = _f F(x)e—mex/de
LJ,

Remind that the above discussions are based on some ideal situations of F. For example,
the integrability of F, the convergence of Fourier series, etc. We need to discuss them carefully.
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4.2 Basic Properties of Fourier Series

In this section, we will rigorously study the convergence of Fourier series. Observe that, for
a complex-valued function f(x) defined on [0, L], the Fourier coefficients of f are defined by

1 [t .
a, = — f Ff(x)e L dx, forn € Z.
L Jo
In order to make sure that all those coeflicients a, exist, f needs some suitable integrability
conditions. Therefore, for the remainder of this chapter, we assume that all functions are at least

Riemann integrable.

m Periodicity and Functions on the Circle

Definition 4.2.1. A function f is said to be periodic with period p if

Jx+p)=fx)

for every x in the domain.
Example 4.2.2. sin(x + 27) = sin x.
Note. 2 is a period of sinnx, cosnx and ™ for all n € Z.

First of all, we consider a 2x-periodic function f defined on R. We can identify f as a
function F defined on a circle T (or S!) in the complex number plane by

fO) = F(e")

The integrability, continuity and other smoothness properties of F' are determined by those
of f. If f is continuous on R, then F is continuous on T.

Moreover, if f is a function defined on [0, 27] for which f(0) = f(2n), it can be extended to
a 2m-periodic function on R by and then it can be identified as a function on the circle.

We conclude that two kinds of functions can be regard as functions on the circle. They are
“functions on R with period 27, and “functions on an interval of length 27 that take one the

same value at its endpoints”.

A Definitions and Some Examples

Definition 4.2.3. Let f be an integrable function defined on [a, b] with b —a = L.
(1) The nth “Fourier coefficient” of f is defined by

b
fn) =a, = % f f(x)e ™™/ dx, neZ. 4.2.1)

(2) The “Fourier series” of f is given by

Z ﬁn)e2ninx/L
n=—oo
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and we use the notation

f(x) - Z f"\(n)eZITinx/L.

n=—0oo

Definition 4.2.4. If f is an integrable function on [, 7], then the nth Fourier coefficient of f

is
- 1 4 ‘
f(n)=a, = —f f(x)e™ dx, neZ
2 J_,

and the Fourier series of f is

(o)

f(x) ~ Z a,e™.

Note. If f is a function with period L, the resulting integrals (B221]) are independent of the
chosen interval. Thus the Fourier coefficients of a function on the circle are well-defined.

Remark. Let f be integrable on [0, 27r] and

f@~ > fme™.

Define g(x) = f(2nx). Then g is integrable on [0, 1] and

(o)

g0 ~ ) Fme™™

Check that 2(n) = f(n).
Example 4.2.5.
_ (_1);1+] )
(2) f(x) = xon[-ma]. Then f(n)= 4 —5, ~ Hn#0
0 ifn=0
(-t = (—1)"! sinnx
~ mx - 2
f) ; P ;——7——

(b) f(x) = ——e™9 on [0, 2n].
SInmTa

b inx

f(X) - Z l’le+ (0

whenever «a ¢ Z.

eZm’nx/L

[S]
The “trigonometric series” is a series of the form Z Cn where ¢, € C. Similarly,

n=—oo
the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N

Z ¢, for some M, N > 0.
n=—M
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Example 4.2.6. If f is a trigonometric polynomial function, that is,

N M

f(x) = Z S, Sinnx + Z ¢, COS nXx,
n=1 n=0
then
N M
f(x) ~ Z Sy sinnx + Z C, COS nXx.
n=1 n=0

In other words, the Fourier series of f is itself.

Example 4.2.7. (Dirichlet kernel) For N € N, letc, = 1 foreveryn = -N,-N+1,--- ,-1,0,1,---

1, N and ¢, = 0 otherwise. The trigonometric polynomial defined on [, ] by

N

Dy = ) ™

n=—N

is called the Nth “Dirichlet kernel . Denote w = ¢™*. For x # 0,

N -1
1 — N+ -N _1
Za)” =—%  and Z @ .
oy l-w —l-w
Hence,
N L owN - WVt NE12 N2 gin ((N + %)x)
Dy(x) = n_ZN‘“ T T e o —w”  sin(x/2) (42:2)

For x = 0, it is easy to check that Dy(0) = 2N + 1. The equation (8227) is also true by
taking limit.

Note that we will see below that S y(f)(x) can be expressed as the convolution of f and
Dy(x) by defining f + g(x) = 5= [ f(")g(x = y) dy.
Example 4.2.8. (Poisson kernel) Let 0 < r < 1, the function defined on [—x, 7] by

[>9)

P,(H) — Z rln\ein(-)

n=—oo

is called the “Poisson kernel ”.

For fixed 0 < r < 1, since the series is absolutely and uniformly convergent in 6, to calculate
the Fourier coefficients, we can interchange the order of integration and summation. Moreover,
the nth Fourier coefficient equals . Set w = re®. Then

Z W'+ Z @" (where both series converge absolutely)

P0) =
n=0 n=1
_ L e _l-et(-we
l-w 1-0 (1 -w)(1-o)
1—|a)|2_ 1—r?

-—w]? 1-2rcosf+r?

9N_
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m Some Questions

2rinx/L

[s]
The “trigonometric series” is a series of the form Z cpe where ¢, € C. Similarly,

n=—o0o
the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N

Z ¢, ™ for some M, N > 0. In order to study the convergence of Fourier series, it is natual

n=—M
to consider the limit of its partial sum. But the convergence of the trigonometric polynomials

N N
here Z F(n)e¥™™/1 is slightly different the typical forms Z F(n)e¥ it

n=—N n=—M
Definition 4.2.9. Let N € N, then the Nth “partial sum” of the Fourier series of f is

N
SN(H) = > Flmpe™ k.
n=—N

Note that the above sum is symmetric since n ranges from —N to N because of the resulting
decomposition of the Fourier series as sine and cosine.

N

Sn(HX)

f(n)eZm'nx/L
N

n=-—

ZIZ;A,, sin (27;,‘”) + ZN]A; cos (27”6) + %.

n=1

For the convenience, we consider the functions defined on intervals with length 2. ([0, 27],
[—m, ] or etc).

00 N
Question: Does the limit Z f(n)e™ = 1\1}1_1}1(30 ZN f(n)e™ = 1\171_{1(}0 S n(f)(x) converges and for

what values of x the limit converge?

Question: If S y(f) converges to f, in what sense does S ,(f) converge to f as N — co (point-
wise, uniformly, or under a certain norms for instance || - |[z»)?

Observe that the Fourier coefficients come from an integral f f(x)e”™ dx. When f and g

have different values only at finitely many points, they will have the same Fourier coefficients.
Hence, without any additional assumption for f, it is unreasonable to obtain the convergent
result that

Al]im Sn(f)(x) = f(x) forevery x.

Question: Under what conditions of a function is uniquely determined by its Fourier coeffi-
cients?
m Uniqueness of Fourier Series

The question of uniqueness is equivalent to the statement that if a function f has Fourier
coefficient f(n) = 0 for all n € Z, then f = 0.
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Theorem 4.2.10. Suppose that f is an integrable function on the circle with j?(n) = 0 for all
n € Z. Then f(xy) = 0 whenever f is continuous at the point x.

Proof. Firstly, we consider f is real-valued. W.L.O.G, we say that f is defined on [—n, 7] and

—

continuous at xo = 0. (We will prove, by a contradiction, that f(0) = O whenever f(n) = 0 for
all n € Z).

The idea is that if f(0) # 0, we can construct a family of trigonometric polynomials {py}

that “peak”™ at O such that f pi(x)f(x) dx — oo. It is impossible since f(n) =0foralln € Z.
f(0)

Assume that f(0) > 0. Since f is continuous at 0, there exists 0 < ¢ < 7_2r such that f(x) > —
E

for every x € [-0,0]. Choose a sufficiently small number & > 0 such that ‘8 + cos x{ <1l- 3

whenever ¢ < |x| < . Denote p(x) = € + cos x and define

pr(x) = [p)]~.

P15

Pe

-m/2

ol p(x) =€+ cosx The functions p, pg, and p;5
when € = 0.1

Since f(n) = (0 foreveryn € Z, f()pi(x) dx = 0 for every k € N U {0}. Moreover, f is

integrable over [, xr]. It implies that f is bounded on [—, 7], say | f(x)| < B. Also, we choose

0 < 71 < ¢ such that p(x) > 1 + g for every 0 < |x| < 7.

p(x) = e+ cosx

N ®
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We have
f f(x)pi(x) dx = f +f +f fpr(x)ydx=1+11+1I1.
- 0<|xl<n n<|xl<é O<|xlsm
0 v
For 0 < |x| < 7, f(x) > % and py(x) > (1 + g)k, then
12277-@.(1+§)k—>oo as k— o D)
y=/x)
0
Forn§|x|<(5<g,p(x)ZOandf(x)>§>O,then S y
11> 0. - \
For 6 < || < 7, | pu(x)] < (1 - S)%, then s
=S PER = =50 -7 05w

mgzn-B-(l—g)k—m as k — oo,

Hence, we can choose k sufficiently large such that

f f(x)pe(x) dx >0 (Contradiction!).
Thus, £(0) = 0.

Generally, suppose that f is complex-valued, say f(x) = u(x) + iv(x). Define f(x) = f(x).
Then u(x) = LT gy = 7O
continuous at 0. Since }:(n) = ﬂ—n), we have u(n) = Wn) = O for all n € Z. Therefore,

u(0) = v(0) = 0. O

. Hence u and v are integrable over [, 7] and

Corollary 4.2.11. If f is continuous on the circle and ]?(n) =0foralln € Z, then f(x) = 0on
the circle.

Corollary 4.2.12. Suppose that f is a continuous function on the circle and that the Fourier

series of f is absolutely convergent, that is Z |]T(n)| < 0o, Then

n=—o0o

Al/im Sn(fH)x) = f(x) uniformly.

Proof. Since Z If(n)l < oo, then series

n=—oo

0 N
@)= ) flme™ = lim ;Nf(n)e"“

n=—o0o
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converges uniformly. Hence, g is continuous on the circle and the Fourier coefficients g(n) =
f(n) foralln € Z.

—

On the other hand, since f — g is continuous on the circle and ( |- g) (n) =0 forall n € Z.
Thus, f = g on the circle. Then

f@ = ) Fwe™ = lim Sy()().

n=—oo

Question: In what conditions of f, the Fourier series of f converges absolutely?
Corollary 4.2.13. Suppose that f is a twice continuously differentiable function on the circle.
Then {

]?(n) = 0(—) as |n| — oo

In?

Hence, the Fourier series of f converges absolutely and uniformly to f.

Proof. By the integration by parts twice, for n # 0,

21

27rf(n) f(x)e™™ dx

0
e—inx o0 271

1 .
[f (x) - — } 0 T F(x)e™™ dx
—in in
~—————

0
=0

@

=0

27

f/l(x)e—inx dx

—inx

e }271 1

+
0 (in)* Jo

—in

Since f is twice continuously differentiable on the circle, f”(x) is bounded, say |f”(x)| < B
for all x € T. Then

27
2ninP| f(n)] < f lf”(x)l dx < 27B.
0

—~ B ) 1 .
Thus, [f(n)| < W Moreover, since Z — converges, the proof is complete. O
n n

Remark.
(1) Heuristically, the index “n” represents the frequency and ]T(n) reflects the amplitude of nth
harmonic with frequency n when regarding f as a superposition of infinite standing waves

with different frequencies. Hence, the larger frequencey will be corresponding to the size
(weight) of derivatives of f.

(2) More rigorously, we can compute that
f'(n) = inf(n), forall neZ.

Thus if f is differentiable and f ~ 3 a,e™, then f’ ~ 3 a,ine™ . Also, if f is twice contin-
uously differentiable, then " ~ 3" a,(in)*e™, and so on. Further smoothness conditions on
f imply better decay of the Fourier coefficients.
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(3) Similar as the corollary, to make the Fourier series of f converges absolutely and uniformly
to f, we only need

f(n):O(i) as |n] — oo 4.2.3)

|

for @ > 1/2. If f satisfies a “Holder condition” of order a, with @ > 1/2, that is

sup|f(x+1)— f(x)| < Alf|* forall ¢,

we can obtain (B273)).

4.3 Convolutions of periodic functions and good kernels

Recall that, for given two 2r-periodic integrable functions f and g on R, the convolution of f
and g on [—m, 7] is defined by

1 T
(f* )0 = 7 f F3g(x — ) dy.
T Jn

m Properties of Convolution

Proposition 4.3.1. Suppose that f, g and h are 2n- periodic integrable functions. Then
(1) f+(@+h)=fxg+fxh

(2) (cf)xg=c(fxg) = f*(cg)foreveryceC.

(3) frg=g*f.

(4) (fxg)xh=(f*g) *h

(5) f = g is continuous.

(6) [+ gn) = fnign).

Proof. The proofs of (1)-(5) are left to the readers. We will prove part(6) here.

JE——

1 (" .
frgnm) = — f (f * 9™ dx
T J-n
1 (™1 " .
= 5 f FO)glx -y dy)e ™ dx

),

1 i | i .
- =iy ( _— _ —in(x—=y)
o Lf(y)e (52 Lg(x Ve d) dy

1 g —in 1 " —inx
= 52 [ 10 (5 [ s ax) ay

—_

= f()gn).
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Remark. Property (5) exhibits that the convolution of f * g is “more regular” than f or g.

Note. One of our goal is to understand whether a function f can be expressed as its Fourier
series. That is, Al/im Sy(f)(x) = f(x) for every x? Consider the partial sum of the Fourier series

of f

Sn(H)

N —

D, fime™

n=—N

_ ZN<%T I ﬂ o) dy)en
S

= 5> f O D ) dy

=-N

= (f*Dy)(x)
where Dy is the Nth Dirichlet kernel given by
N
Dy(x)= )" ™.
n=—N

Hence the problem of understanding S y(f) reduces to the understanding of the convolution
f * DN.

1 Good kernels

In Section3.10 we can regard the convolution f * g as a “weighted average” of f when
f g(x) dx = 1. Moreover, if g is a highly peaked functoin and is concentrated at 0, the value
of (f = g)(x) is close to f(x) if f is continuous there. The same phenomenon also occurs in
the proof of TheoremAZT0. It motivates us to study the “kernels” of operators and discuss the
characteristic properties of such functions.

Definition 4.3.2. Let {K,(x)}>, be a family of functions defined on the circle. This family is
called a family of “good kernels” if it satisfies the following properties:

(a) Foralln > 1,
1 T
—f K,(x)dx = 1.
2 J_,

(b) There exists M > 0 such that foralln > 1,

f K, (x)| dx < M.

(c) Forevery ¢ > 0,
f |IK,(x)|dx —» 0, asn — oo.
o<|xl<m
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Note.

Property (a) says that K, assigns unit mass to
the whole circle [-m, 7] and K, is interpreted as
weight distributions on the circle. Property (c)
exhibits that the mass concentrates near the ori-
gin as n becomes large.

Theorem 4.3.3. Let {K,} | be a family of good kernels and f be an integrable function on the
circle. Then

lim (f % K,)() = f(x)

whenever f is continuous at x. If f is continuous everywhere, then above limit is uniform.

Proof. Since f is continuous at x, for given € > 0 there exists 6 > 0 such that

lfix=y)—fl<e 4.3.1)

as |y| < 8. Consider

1 T
(f * Kn)(x) = f (X)‘ o f K. [f(x=y) = f(x)] dy (by condition (a))

IA

L KOy - £ dy

27 Jiyi<s

1
o K WIIf(x = y) = £l dy

o<lylsm

= I+1I

M
By the condition (b) and (E3T), I < 2—8
T

Since f is integrable on the circle, it is bounded, say |f(x)| < B on the circle. From condition

(c),

2B
Il < — |K,(»)|dy - 0 asn — oo.
T Js<iyl<n

Hence, as n sufficiently large,

I(f * K,)(x) — f(x)| < Ce.

We have
lim (f % K)() = £(0).
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Moreover, if f is continuous everywhere, then f is uniformly continuous on the circle. For
the given € > 0, there exists 6 > 0 (which is independent of x) such that

fx=y) = fl<e

for every x on the circle. Hence, f * K, (x) converges to f(x) everywhere and this convergence
is independent of x. That is, f * K, — f uniformly. O

Remark.

(1) Heuristically, the weighted distribution K, concentrates its mass at y = 0 as n becomes
large. Therefore, the value f(x) is assigned the full mass as n — co. The convolution

1 T
(Ko =5 [ Sk dy
is the average of f(x — y), where the weights are given by K,,(y).
(i) The family {K,} is refered to as an approximation to the identity.

m Dirichlet Kernel

N

Question: Is the family of Dirichlet kernels { Dy(x) = Z ei”"};vozl a family of good kernels?
n=—N

1 T
It is easy to check that 7 f Dy(x) dx =1 for all N > 1. Thus, condition (a) holds. Unfortu-
74 /4

nately, the absolute integral

f |IDy(x)| dx > clogN, asN — co.

/4

Then the condition (b) does not hold. This observation suggests that the pointwise convergence
of Fourier series may fail at points of continuity. In fact, the function Dy(x) oscillates very
rapidly as N gets large.
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The Dirichlet kernel for large NV

4.4 Fejér kernel and Poisson kernel

a Fejér kernel
n—1
Definition 4.4.1. Let {a,} . , be a sequence of numbers and s, = Z ay. be the nth parital sum of
k=0
{an}.
(1) The average of the first N partial sums
N-1
So+ ST+ -+ Sy-q 1
ON = == Sn
N N

n=

is called the Nth “Cesaro mean” of the sequence {s,} or the Nth “Cesaro sum of the series
a,.

n=1

(2) If oy converges to o as N tends to infinity, we say that the series ) a, is “Cesaro summable”

to o.
Exercise.
I 1+ ((=DNV! 1
(1) Leta, =(-1)". Then oy = 3 + (4—1\/) and oy converges to 3

(2) If {a,} is summable to L (that is s, converges to L), then oy converges to L.
(3) If s, diverges to +oo, then oy diverges to +oo.

Note. The Dirichlet kernels fail to belong to the family of good kernels. But their averages are
very well behaved functons, in the sense that they indeed form a family of good kernels.
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Definition 4.4.2. Let D,(x) be the family of Dirichlet kernel. We call the function

Dy(x) + -+ + Dy_1(x)

Fy(x) = N

the Nth “Fejér kernel .

Consider the Cesaro mean of the Fourier series

So(f)+ -+ Sy 1(HX)
N
(f * Do)(x) + - -+ (f * Dy_1)(x)
N
Do+ -+ Dy_
0 N N 1)()6)

on()x) =

(/=
(f * Fy)(x).

Lemma 4.4.3. The Fejér kernel

1 sin>(Nx/2)
F =~ 777 4.4.1
v = N i G2) (a1

and it is a good kernel.

-N _ , \N+1
Proof. Since Dy(x) = 2%

putation.

7 with w = e™, the equality (E4_T) is obtained by direct com-
- w

7T

1
Moreover, since Fy > 0 from (41 and o f D,(x) dx = 1 for every n € N, the average
T Jr

of partial sum of {D,}>  is also equal to 1. That is,

1 T
— F = 1.
7 j:,, (X)) dx

The conditions (a) and (b) of good kernels hold. For every ¢ > 0, there exists Cs > 0 such that
sin®(x/2) > ¢ for every |x| > 0. Hence, Fy(x) < 1/(Ncs) and

f |[Fy(x)|dx —> 0 as N — oo,
o<lxi<n

This implies that the condition (c) of good kernel holds. O

Theorem 4.4.4. If f is integrable on the circle, then the Fourier series of f is Cesaro summable
to f at every point of continuity of f. That is,

on(f)(x) = f(x) asN — oo

for every x where f is continuous.
Moreover, if f is continuous on the circle, then the Fourier series of f is uniformly Cesaro
summable to f.

Corollary 4.4.5. If f is integrable on the circle and f(n) = 0 for all n, then f = 0 at all points
of continuity of f.
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Proof. Since Sn(f) = i j?(n)e"’” = 0 for every N € N, the Casaro mean of {S,} is equal to 0
and hence the Nth Fejél;:l;grnel Fyn(x) =0 for every N. Then

0=f*Fyx)— f(x)
at every continuity of f. m|

Corollary 4.4.6. Continuous functions on the circle can be uniformly approximated by trigono-
metric polynomials. That is, if f is continuous on [—n, ] with f(—n) = f(rn) and € > 0, then
there exists a trigonometric polynomial P such that

If(x)— P(x)| <& forall —n<x<nm.

Proof. The corollary is followed by the theorem since the Cesaro means are trigonometric poly-
nomials.
O

a Poisson kernel

Definition 4.4.7. A series of complex number } ;- ¢, is said to be “Abel summable” to s if for
every 0 < r < 1, there series

(59

A(r) = Z e

k=0
converges, and

lirrll A(r) = s.
The quantities A(r) are called the “Abel means” of the series.

Remark. If } ;7 ¢ is Cesaro summable to s, then it is also Abel summable to s. But the
converse is not true. For example, ¢; = (—1)*(k + 1). Then

A(r) = Y (-Dfk+ Drf = ——.
kzz(; (1+ r)?

The series is Abel summable to lirrll A(r) = 1/4 but it is not Cesaro summable.

Definition 4.4.8. Let f(x) ~ Y.°°__ a,e™. Define

n=—o0o

(59

AHE) = Y Mae™.

n=—0oo

Remark. Since f is integrable (that is, f |f(x)] dx < 0),

1 T . 1 T
] = \— f F(x)ens dx] < — f £ ()] dx < oo
2 J_, 2 J_,

The uniform boundedness of |a,,| implies that A,(f) converges absolutely and uniformly for each
0<r<l.
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Definition 4.4.9. We define the “Poisson kernel” by

(o)

P.(x) = Z e,

n=—oo

Note. The Abel mean of f is equal to the convolution (f * P,)(x). In fact,

(o)

§ rlnlanemx

n=—oo

A () ()

(o9

— Z rlnl(% Iﬂ f(y)e—iny dy) einx

= (f*P)().

where the interchange of the integral and infinite sum is justified by the uniorm convergence of
the series.

Lemma 4.4.10. If0 <r < 1, then

1-72

—2rcosf@ + r?’

P,(x) = - (4.4.2)

The poisson kernel is a good kernel, as r tends to 1 from below.

Proof. The identity is obtained by direct computation by setting w = e™*. Since P,(x) is positive
and evaluating the integral term by term, we have

1 T
ZTIHPr(X) dx =1.

The condtions (a) and (b) of good kernel hold. Moreover, for 1/2 <r < 1land¢ < |x| <,
1 -2rcosx+r*=(1—=r)*+2r(1 —cosx)>cs >0

(1-r")

Cs

where cs could be given by 1 — cosé. Then P,(x) < when ¢ < |x| < &. Then

1-— 2
f |P(x)] dx < u -0 asr—1".
o<|xl<m Cs

The condition (c) of good kernel holds.
O

Theorem 4.4.11. The Fourier series of an integrable function on the circle is Abel summable to
[ at every point of continuity. Moreover, if f is continuous on the circle, then the Fourier series
of f is uniformly Abel summable to f.
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4.5 Convergence of Fourier Series

In the present section, we will discuss the convergence of Fourier series in three different senses,
mean-square, pointwise and uniform convergence. The mean-square convergence reflects the
global bahaviors of the partial sum S y(f). The pointwise and uniforn convergence reveal the
local behaviors of S y(f). We want to find the sufficient conditions of these convergence.

Recall that a Hilbert space is a complete inner product space.

Example 4.5.1.

(1) Let £*(Z,C) = {(--- ,a-y,ap,a1,--+) | a, € C with Z |a,|* < eo}. Define

nez

@b)= ) ab,

nez
fora=(---,a_y,ap,a,,---)and b = (--- ,b_y, by, by,---). Then ¢*(Z, C) is a Hilbert space.
2) R= { f:10,2n] - C | f 1s a Riemann integrable function on [0, 27r]} with
27

1 -
(f.8) = o f(x)g(x) dx.
T Jo

R is not a Hilbert space.

Let L )
)X if xe[,n]
In(x) = { 0 otherwise

Then f, is a Cauchy sequenc of R. For any bounded function f € R,
lim |1£, = gll # 0.
Hence, R is not complete.

Before discussing the convegence of Fourier series, we review some properties of inner
product spaces and Hilbert spaces.

a Orthonormal Sequence

Definition 4.5.2. Let X be a vector space with an inner product (-, -) and || - || be the incuced
norm on X which is defined by

Ix|? = (x,x) for every x € X.

We say that the two vectors X,y € X are “orthogonal” if (x,y) = 0.

m Some Properties
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(1) (Pythagorean theorem) If x and y are orthogonal, then

IIx + yII> = [IxII* + [Iyll*.
(2) (Cauchy-Schwarz inequality) For x,y € X,
%, y)| < IIxllllyll.
(3) (Triangle inequaltiy) For x,y € X,

lIx + yll < [IxI] + llyll.

Definition 4.5.3. Let (X, (-, -)) be an inner product space over C. We say that {e,},cn iS a se-
quence of orthonormal vectors if

(0, ifi#j
<ei’ej>_ { 1’ lfl:J

Remark. Let {e,},cv be a sequence of orthonormal vectors in a Hilbert space X. The closed
span
M = spanie,}

is a closed subspace of X.

Theorem 4.5.4. Let X be a Hilbert space and {e,},cn be an orthonormal sequence in X. Then
the following statements hold.

(a) Bessel’s Inequality:
D kx e < X
n=1

foreveryx € X.

(b) If the series X = Z cpe, converges, then c, = (X, e,) for each n € N.

n=1

(c) The following equivalence holds:

(o) (o)
Z c,e, converges Z |c,,|2 < 00,

n=1 n=1
(o)

Furthermore, in this case the series Z cqe, converges unconditionally, i.e., it converges
n=1

regardless of the ordering of the index set.

(d) If x € X, then
pP= Z(x, €,)e,
n=1

is the orthogonal projection of x onto M := span{e,}, and ||p||2 = Z I(x, e,)%.

n=1
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(e) If x € X, then the following three statements are equivalent

(i) x € M := spanie,}.

(i) x = Z(x, e,)e,.
n=1

(iii) 1P = > % en)P.
n=1

Proof. (a) Choose x € X. For each N € N define

N
Py = Z(X, e,e, and gy =X-—Ppy.

n=1

Since the e, are orthonormal, the Pythagorean Theorem implies that

N N
Ipwll® = Zl I1(x, e,)e,|* = 21 (X, &),

Also,

N
(P> ) = (P> X) = (P, i) = ) (%, €,)e, X) = [Ipyll* = 0.

n=1

Then the vectors py and qy are orthogonal. By the Pythagorean Theorem again,

N
Z IKx, e = [IpwI* < lIpall” + llawl® = llpy + qull® = X1,
n=1

Let N — oo, we obtain Bessel’s Inequality.

(b) If x = Z cpe, converges, for each fixed m, we have
n=1

[Se] [

(x,e,) = <Z c,,en,em> = ch<en,em) =Cp.

n=1 n=1

(Notice that the second equality is valid since the sequence is convergent.)

(¢) (=) By part(b), ¢, = (x, e,) since X = Z cqe,. Thus, by Bessel’s inequality,
n=1

[

(o]
2 2 2
§ leal” = § (%, e, < [Ix]|"
n=1

n=1

(&) Suppose that Z lea]* < 0. Set

n=1

N N

s, = Z ce, and fy = Z e, 2.
n=1

n=1
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To prove that {s,} __is a convergent sequence in X. If M < N, then

N
| > e

n=M+1

2

2
lIsy — Sl

N
Z llc,enll? (Pythagorean Theorem)
n=M+1

N
2
D el = Ity =t

n=M+1

is a Cauchy sequence. Hence, {sn} is a

neN neN

(o8]
Since Z le]> < oo, the sequence {t,,}
n=1

Cauchy sequence in X. Since X is a Hilbert space, the sequence {S"}neN converges and

[

so does Z Cn€,.

n=1

Furthermore, since Z lea* < oo, the sequence {|c,[*}, , is absolutely summable and the

n=1
(o]

summation does not change if reordering of the series. Thus, Z cpe, converges uncondi-
n=1

tionally.

(d) By Bessel’s inequality and part(c), the series p = Z(X, e,)e, converges. For fixed k,

n=1

(X, ) — <i<x €,)€n, ek>
n=1

[

(X, €)= Z(X, €,){€n, e)

n=1

= <X’ ek> - <X’ ek> =0

(X —p,e)

(Convergence) —

The vector x — p is orthogonal to each vector e; and thus it is orthogonal to every vector in
M. We have that p € M and x — p € M~. This implies that p is the orthogonal projection of
x onto M.

(e) By part(d), p = Z(X, e)e, is the orthogonal projection of x onto M and

n=1

bR = p.p) = D [(xen)]
n=1

“@1) = (i1)” If x € M, the orthogonal projection of x onto M is x itself. Thus,x = p = Z(X, e,e,.

n=1

“(ii) = (ii))” If x = p, then [[x|* = ||p|I* = Z (x, €,)I.

n=1
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“(iii) = (i)” Suppose ||x||* = Z |(x, e,)°. Then since x — p L p,

n=1

2
[l

lIx = p) + pI* = lIx - pII* + lIpl*

Ix —pl* + Z Kx, &) =[x = plI* + [Ix|I*.

n=1

Hence [x —pll=0andx =p € M.

Remark. We say that the sequence {e,},cy 1S “complete” in X if

span{e,} = X.

4.5.1 Mean-Square Convergence
Consider the space R of integrable functions on the circle with inner product
27

1 _
(f,8 = 7 f(0)g(x) dx
T Jo

and the induced norm

1 271
HN=mﬂ=§LLWWM

Note. The norm || - || is equivalent to || - ||;2. In fact,

2 2
271'” . || = || . ”Lz([o,zﬂ])'

We will prove that ||S y(f) — fI| = 0 as N tends to infinity. It also implies S y(f) converges to f
in L? norm.

Set e,(x) = . Then {e,},cz is an orthonormal sequence. Let

1 27 ) .
a, ={f,e,) = o fe™ dx = f(n)
T Jo

be the Fourier coefficient of f. Then

SN = ) ae.

[n|<N

Lemma 4.5.5. For every N € N,

(f— Z anen> 1 Z bue,

[n|<N [n|l<N

for any b, € C.
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f=8n(f)

©  Sn(f)

en ai e

The best approximation lemma

Proof. For every |n| < N,

<f’ en) - Z am<em’ en>

<f_ Z A€,y en>

|m|<N |m|l<N
= a,—a,=0.
By the linear combination, we have ( f- Z anen) L Z b,e,. m|
|n|<N |n|l<N

m Bessel’s Inequality

By Lemmal# 55, we write f = (f — Z a,e,) + Z a,e, and

|n|l<N |n|l<N
2 2 2
AP = If = > aeal? +11 Y ae,l*  (Pythagorean Theorem)
In|<N [nl<N
2 2 2
= If = ) aed?+ ) lallel
[n|<N [n|<N
= If = ) aell + ) lal’
|n|l<N n|l<N
2 2
= NIf =SnHIP+ D Il
In|<N

Hence, for every N € N, Z la. > < || f I%. Letting N — oo, we have the Bessel’s inequality
Inl<N

[
2 2
D lanl <IIfIP.

n=—oo

Remark. Suppose that {u,} is any orthonormal sequence and b, = (f,u,) for every n. We still
have a corresponding Bessel’s inequality,

Db < IAR.

Lemma 4.5.6. (Best approximation) If f is integrable on the circle with Fourier coefficients a,,
then

1f = SN IF = D cuel 4.5.1)

|n|l<N

for any c, € C. Moreover, the equality holds precisely when c, = a, for all |n| < N.
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Proof. Letb, = a, — c,. Then
f_ chen :f_SN(f)+ anen

[n|<N |n|<N

By Pythagorean theorem, since ( f=5n( f)) 1 Z b,e,,

Inl<N
= D cneal = IIF = Sw(AIP + D 1bal’.
Inl<N lnl<N
Thus, the inequality (E51) is proved. O
Theorem 4.5.7. If f is Riemann integrable on the circle, then
ISn() = fIl>0 as N — oo.
Proof.

Step1: To show that the theorem is ture if f is (2z-periodic) continuous on the circle. For given
e > 0, by CorollaryZ 48, there exists a trigonometric polynomial P with degree M such that

[

P||L°° ([o,zn]) <&

Therefore,
1f%lf P|2a’<122 ?
— — X< — - 2ne” =¢g°.
2 0 2

Then ||f — P|| < €. By the best approximation,

If =Su(HI<If =Pl <e.
Step2: If f is a continuous function (but possibly f(0) # f(2r)), we define

0, x=0

linear, 0<x< 9§
k(x) =< f(x), o6<x<2m-9¢

linear, 27 -0 <x<2nm

0, x=2r

The function k (dashed) is close in LZ-norm to f (solid), and also satisfies

k(Q) = k(2w).



4.5. CONVERGENCE OF FOURIER SERIES 105

Then k is continuous on [0, 2] with £(0) = k(27) and
If -kl <e
if ¢ 1s sufficiently small. Also, f — k is integrable on the circle. By the Bessel’s inequality,
ISn(H) = Sv@Il = ISn(f —BIl <IIf —kll <&
for every N € N.

Step3: If f is integrable on the circle, by using the method of mollifiers, we can choose a
continuous function g on [0, 27r] such that

IIf—gll<e
and hence [|S y(f) = Sn(@Il = ISy(f = Il < |If — gll < &. Then

ILf =SnvOI < NIf =gl + llg = Sn@I + IS n(g) = Sn(I

< €+e+e=3¢
as N is sufficiently large. O

Corollary 4.5.8. (Parseval’s Identity) Let f be an integrable function on the circle. If a, is the
nth Fourier coefficients of f, then
D lanl = 1IfIP.

n=—oo

Proof. The identity is clear since

AP = If =SxHIF +ISn(AIF  (Pythagorean Theorem)
N
= If =SnHIP+ D laaf
n=—N
Let N' - co and we obtain " la, [’ = I|fI%. O

n=—oo

Theorem 4.5.9. (Riemann-Lebesgue lemma) If f is integrable on the circle, then f(n) -0
as |n| — 0.

Proof. Since f is integrable on the circle, f is bounded and this implies that ||f]|*> < co. By
Bessel’s identity,

DA =P < oo.

Then f(n) — 0 as |n| — oo.
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Note. An equivalent result of this theorem is that if f is integrable on [0, 2r], then

271

f(x)sin(Nx)dx - 0 asN — o
0

and

27

f(x)cos(Nx)dx - 0 asN — o
0

Lemma 4.5.10. Suppose F and G are integrable on the circle with

F ~ Z a,e™ and G ~ Z b,e"*.

1 2 - o
5 fo F(x)G(x) dx = Z a,b,.

n=—oo

Then

Proof. Since

(F,G) = Z[IIF + G’ = |IF = GI? +i(|IF +iG| ~ |IF - iG|”*)]

ENT

by Parseval’s identity

27
i f F(x)G(x) dx = (F,G)
27T 0

[IF +GIP = IF = GI + i(IIF +iGIP ~ IF - iG|I*)]

e Bl S e

M

[l + bal* = lay = by + i (1ay + b, = |, — ib, ) |

n=—o0o

S an

n=—

4.5.2 Pointwise Convergence

The mean-square convergence theorem does not guarantee that the Fourier series converges for
any x. In order to obtain the pointwise convergence of Fourier series, the function may have
good local behaviors near x;.

Observe that

1 T
Sn(f)(x0) = f(x0) o f f(xo = y)Dn(y) dy — f(x0)

1 T
- > f [f(xo = ) = F(x0)] Dx(y) dy

1 T 1 N+l
Ef [f(xo—y)—f(xo)}wdy

,T sin(3)
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We expect the integral decays to 0 as N tends to infinity. However, the denominator sin(3)
S0 —y) = f(x0)

sin(3)

become small as [y| tends to 0. Hence, we hope to obtain a better control of
that will give the pointwise convergence.

Theorem 4.5.11. Let f be an integrable function on the circle which is differentiable at a point
Xo. Then S n(f)(x9) = f(xp) as N — oo.

Proof. Define
Sxo = y) = f(x0)

ify#0and|y| <nm
y
—f"(x0) ify=0
Since f is differentiable at x,, there exists & > 0 such that F is bounded for [y| < 6. Moreover,

F is integrable on [—m, —0] U [0, ] because f 1s integrable on the circle. Then F is integrable on
the circle.

F(y) =

On the other hand, since is continuous on [—s, 7]\{0}, the functions

y
sin(y/2)
F@)-

Yy
Sn072) cos(y/2) and F(y)y

are Riemann integrable on [—, ]. Also,
sin ((N + 1/2)y) = sin(Ny) cos(y/2) + cos(Ny) sin(y/2).

Then

1 T
SAN00) ~ fw) = 5 f (o = y)Dy() dy - f(x0)

- L f (£ - y) — f(x0)] Dy(y) dy

sin ((N + )y)
in(3)

cos(y/z)) sin(Ny) dy

1
= z—f f(xo—Y) f(xo)}

5l

+2—f F(y)ycos(Ny) dy.
T Jn

By Riemann-Lebesgue lemma, the above two integrals converge to 0 as N — 0 and the theorem
is proved. O

f(xo—y) — f(x0) as
sin(y/2)

[y| is small. In fact, the conclusion of the theorem still holds if we assume that f satisfies a
“Lipschitz condition” at xo; that is,

[f(x) = f(xo)| < M|x — xo

Remark. According to the above analysis, we need to control the term

for some M > 0 and all x.
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Theorem 4.5.12. Suppose f and g are two integrable functions defined on the circle, and for
some X there exists an open interval I containing x, such that

f(x)=gx) forall xel
Then S n(f)(x0) = Sn(8)(x9) > 0 as N — .

Proof. Since the function f — g is 0 in /, it is differentiable at x,. Therefore, by Theorem& 5 TT],

Sn(H)(xo0) = Sn(g)(xo) = Sn(f = g)(xo) = (f = g)(xo) = 0.

m Piecewise Continuous Functions

If f is a piecewise continuous function on the circle, then it is bounded and integrable on the
circle. Denote

fG=)=lim f(x—#) and f(x+) = lim f(x+h).

Let f(x) be the average value

— 1
FG) = SLf0e) + fa-).

Note that if f is continuous at x, then f(x) = f(x+) = f(x=) = f(x).

Definition 4.5.13. A piecewise continuous function f is said to be “one-sided differentiable” at
x if the two limits

T S(x=)— f(x—h) . f(x+h) = flx+)
m and lim

h—0* h h—0* h

both exist.

Example 4.5.14. The function f(x) = |x| is one-sided differentiable at x = 0 since

lim O =1=Al _ ~1 and lim Al =101 _
h—0+ h h—0+

1.

Theorem 4.5.15. Let f be a piecewise continuous function on [—mr, ] such that its 2r-periodic
extension is one-sided differentiable for all x € R. Then S y(f) converges pointwise to f(x) for
all x e R.

Proof. Since Dy(y) is an even function, then

1‘foD()d = 1‘[”D()d -1

We have .
| n
7o =5z [ Dusenrdy+ [ Dy ).
T-J- 0

T
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_ 1 0
$xNW =T = 5[ [ Duo(Fee=n - feen) dy

+fOﬂDN(y)<f(X—y) _f(x_)> dy}

- 5l Dun (f ) - ) ()

+ fo DV (f ) = fm)) ()] ety - —y)

= 5[ Doy - ) v

0
+ [ Dy (40 - fam)) ] (Dyiseven)

_ i[f”f(ﬂy)—f(xﬂ.
- 2nl Y, sin(y/2)

sin (N + 1/2)y) dy

0
Jx+y) - flx-) .
Loy 2 @]
27 —
_ l[ fx+ ZZ) f(x+) . sin ((2N+ l)z) dz
T 0 Sin zZ
0 _ —
S+ 20 2 707) G (on + 1) dz| (lety =22)
o S1n g
= I+1I

By the similar argument as the one of Theorem& 5 TTl, since f is one-sided differentiable, the

functions
Jfx+22) = f(x+) and fx+22) = f(x-)
sinz sinz

are integrable on [0, 2] and [-2n, 0] respectively. From Riemann-Lebesgue lemm, both / and
11 converge to 0 as N tends to infinity. The theorem is proved.
]

Example 4.5.16. Let f(x) = |x| be defined on [—x, ]. Then the Fourier coefficients of f are

R g ifn=0
J) =<9 214 (=1

— ifn#0

T

Then the Fourier series

(o)

n -1+, 7 4 cos(nx)
M~ 3+ ) "= 2

[n|=1 n=1, odd

Since f is continuous on [—, ] and one-sided differentiable, f can be expressed as its Fourier
series. That is

(o)

4 cos(nx)
T . Z n?

=1,odd

x| =

NN
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Taking x = 0, we have
i 1 B n?
P - .
n=1, odd n 8

4.5.3 Uniform Convergence

In the present subsection, we want to find the sufficient condition for the uniform convergence
of Fourier series. Corollaryd® 2 T3 says that the twice continuous differentiability of f will give
rise to the uniform convergence. Besides, since uniform convergence automatically implies
pointwise convergence, we naturally expect the sufficient conditions for uniform convergence
are strong than the hypotheses in Theorem& 5. T1l.

The following theorem will apply Corollary@2TT and give a better hypothesis than the ones
of Corollaryd 2 T3.

Theorem 4.5.17. Let f be a function defined on [—n, ] such that its periodic extension is con-
tinuous (i.e f(—n) = f(r)) and let f" be piecewise continuous. Then S y(f) converges uniformly
to f on [—n,n].

Proof. By CorollaryE2TTl, it suffices to show that Z If(n)l < oco. Since f” is piecewise con-

tinuous, it is integrable on [—, 7] and hence its Fourier coeflicients are well-defined and

— 1 T .
P = 5 f F0e ™ dx.
T Jrn

Moreover, from Bessel’s inequality,

DUF@E < IfIP < .

n=—o0o

On the other hand, for every n € Z,
1 " / —inx
o f(x)e"™ dx
1 —inx d . " —inx
= o [f(x)e . +in f(x)e dx}

_ 0+é—’; f Cf@edx (since f(-m) = ()

= (n)f(n).
By Cauchy-Schwarz inequality,

i fm

Z0)

o+ 3 L@

In|

nl=1

ol (35" Fwr)”?

lnl=1 |nl=1

IA

< 09,
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By Corollary@TT, S y(f) converges to f uniformly. O

Example 4.5.18. Let f(x) = |x| be defined on [—x, 7] and the 27 periodic extension of f and
f'(x) = sign(x) is piecewise continuous. Therefore, S y(f) converges to f uniformly.

1 J T T T T T T

o \ 7

DAk \ ?:.I

o7t \\ P{j
o6t kY i

%,
i, I;
DA-
N\ ¥4
o4t \ F
"\ Fi
oa \ /
Y f
b2 ":;._ ;"
i 1\ & 1
L e o f
o L I 1 L \‘/ RS U LS o ST T
=1 -pa 08 -04 02 o 1R 0.4 (] na 1

Sa2(f) (dashed) and S+(f) when f(z) = |z|.

Example 4.5.19. Let f(x) = sign(x). Since f is not continuous, we cannot conclude that S y(f)
converges to f uniformly on [, 7r]. If fact, it is impossible that S y(f) convergs to f uniformly
since the limit function of uniform convergence of continuous functions should be continuous.

N=1

N=3

1 05 0 05 1 4 05 0 05 1 -1 -05 0 05 1

S2n-1 for different values of N when f(x) = sign(x)
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4.6 Smoothness and Decay of Fourier Coeflicients

From the proofs of Corollary® 213 and Theorem#& 517, we have an insight that the smoother
f 1s the faster the Fourier coefficients will converge to zero. The rate at which the Fourier
coefficients tend to zero will be measured by checking if

Z 2" F () < oo

n=-o0o

for positive integers m.

Let C’" denote the set of functions on R such that f, f’, ---, £ are all continuous and 27
periodic. Hence if f € C7), then

Theorem 4.6.1. Let m > 1 be an integer. Assume that f € CI’Z’_I and ™ is piecewise continu-
ous. Then

[Se]

D nFmP = 11

n=—oo
Proof. Assume that m = 1. Then f is continuous on the circle and f” is piecewise continuous
on [—m, r]. Hence, f” is integrable on [—m, ] and
F'(n) = inf(n) foralln e Z.

By Parseval’s inequality,

2177002 2
D fmP = 1P
n=—oo
Assume that the theorem holds for m. Let f € C) with f™*! piecewise continuous, then
[ e Crt with 42 7 = fm*1 piecewise continuous. Then

S m vy N AVEIRNY; 2 N m| 7, 2 m
DR = Y amfm)| = Y e | Pl = 1.
The theorem is proved by induction on m. O

Example 4.6.2. In ExampleA 5T, we consider the function f(x) = |x| on [-r, 7]. The Fourier
coefficients are

R g ifn=0
=49 Z1 4 (=1)y
D ez 0
mn
Hence,
2, Il = Z == Z —.

n=-—oo n=1, n=1,
It is easy to check that f € Cg and f'(x) = szgn(x) is piecewise continuous. Also, we can
compute that ||f’|[> = 1. This also implies that



4.7. APPLICATIONS 113

4.7 Applications
In the present section, we will use the Fourier series to solve an PDE problem.

m Heat Equation

We consider the heat equation on the domain (0, 1) satisfying

u(t, x) — u(t,x) =0 x€[0,1], =0 4.7.1)
u®,0)=u1)=0 t>0 4.7.2)
u(0,x) = f(x) € C*([0,1]) 0<x<1 4.7.3)

We want to look for special solutions of the form
u(t, x) = A(t)B(x).
The heat equation implies that
A'(t)B(x) — A(t)B"(x) = 0.
Hence,
A'(t) _B"(x) _
A0 B(x)

The number A is a constant since it is independent of both x and ¢. Then we have

A() = e and B(x) = bye V¥ + bye V2,

From the boundary condition(B7), we have B(0) = B(1) = 0. Then B(x) is a 1-periodic
function and hence A < 0 and /4] is an integer multiple of 27r. Set 1 = —4n’n? for n € N. Let

An(t) = e_4n2n2[ and Bn(X) — blneZm'nx + bzne_Z”i"".
The for every n € N, the function
I/tn(l, X) = An(Z)Bn(X) = e_4ﬂ2n2t (blnezm‘nx + bzne—Zm'nx>’ bln,bzn c C

satisfies (BZT) and (BEZ72). Since the heat equation is linear, the linear combination

(o)

Ut )= Y ADB) = Y ae I

n=—oo n=—o0o

also solves (21)) and (8-72). To determine whether u(¢, x) satisfies (873, setting t = 0 and

(59

f@ =uw0,x) = > ae”™

n=—oo
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1
where a, = f(n) = f f(x)e™>™"* dx are the Fourier coefficients of f.

0
Since f is a twice continuously differentiable function, the Fourier coeflicients a; s are bounded.
Also, for every t > 0, et decays repidly as n tends to infinity. Hence the series

[

CAn22 .
I/t(l, X) — § a,e 4n°n teZmnx

n=—oo

converges for every r > 0. Thus, the above series solves (EZZ1l), (B72) and (B"73). In fact,
ueC’.

Question: Does u(t, x) converge to f(x) as ¢ tends to 0?

That is,
N
. . . _Ar24,2 :
limu(t,x) = lim lim Qe g?rinx
t—0 t—0 N>
n=—N
N
?:? lim lim a e—47r2n2t627rinx
N—oo t—0 "
n=—N
N
= lim a, e
N—oo
n=—N
= f(.
Since f is twice continuously differentiable, Z |f(n)| = Z |a,| < co. For given &£ > 0, there
nez nez
. P>
exists Ny € N such that Z la,| < 3 We have
|n|>Ng
. g
‘f(x) _ Z aneZmnx < §

[n|<No

for every x € [0, 1]. Choose ¢ > 0 such that 0 < # < ¢, then

422 . .
) § a,e 4nn 1627rmx _ § aneZmrlx

In|<No |nl<No

<

e
3
for every x € [0, 1]. Then for 0 <t < 6,

|f()C) _ I/l(t, )C)| < ’f(x) _ Z ane%rmx’ + ’ Z a,e 4n°n teZNtnx _ Z aneZme

|n|<N0 |n|<N0 |n|<N0
422 .
+ ‘ § a,e 4n°n teZmnx
|n|>No
& + € + &
stz +z =e
3 3 3

Therefore, u(t, x) converges to f(x) uniformly on [0, 1] as ¢ tends to O.
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Question: Is the solution of (B°7) and (BE°73) unique?
Suppose that u; and u, are solutions of (B-72) and (B“Z3)). Let v = u; — u,. Then v satisfies

Vt(t’ X) - Vxx(t, -x) =0 xe€ [09 1]9 t> 0
vt,)=v(t,1) =0 >0
v(0,x) =0 0<x<1

Define w(t, x) = e~ 'v(t, x). Then

wi(t,x) —w(t,x)+w(t,x)=0 x€[0,1], >0
w(t,0)=w(,1)=0 t>0
w(0,x) =0 0<x<l1

Claim: w(t,x) <Oforf>0and0 < x < 1.

Suppose the contrary, there exists 7y > 0 and 0 < xy < 1 such that w(#, xo) > 0. Since
w(ty, x) 1s continuous on {fy} X [0, 1], we may assume that x; such that w(z, x) = 5naxl w(ty, X).
<x<
Then
Wxx(t(b .X()) < O

Therefore, w;(ty, xo) < —w(ty, xo) < 0. We have

max w(t,x) >0 forall0 <t <.

0<x<1

We can repeat the above argument on [0, 7] X [0, 1] until the process goes back to the initial
time ¢ = 0. It will implies that maxy<,<; w(0, x) > 0 and obtain a contradiction.

The claim w(t, x) < 0 shows that v(#, x) < 0. On the other hand, the same argument also
holds with v replaced by —v. We will obtain that v(z, x) > 0 and hence v(z, x) = 0. This proves
that the solution of (B-72) and (E~Z3) is unique.
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