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5.1 Areas Between Curves

In the present section, we try to evaluate the integrals to find areas of regions that lie between
the graphs of two functions.

Let f and g be two continuous functions satisfying f (x) ≥ g(x) for every x ∈ [a, b]. Let S
be the region between the two curves y = f (x) and y = g(x), and the vertical lines x = a and
x = b. We use the approximating rectangles method to evaluate the area of S .

Let P be a partition of [a, b]. The Riemann sum

n∑
i=1

[
f (x∗i ) − g(x∗i )

]
4xi

1
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is an approximation to the area of S . We define the area A of the region S as the limiting value
of the sum of the area of these approximating rectangles

A = lim
n→∞

n∑
n=1

[
f (x∗i ) − g(x∗i )

]
4xi.

Theorem 5.1.1. The area A of the region bounded by the cruve y = f (x), y = g(x) and the lines
x = a and x = b, where f and g are integrable and f (x) ≥ g(x) for all x ∈ [a, b], is

A =
∫ b

a

[
f (x) − g(x)

]
dx

Note. (1) If g(x) ≡ 0, S is the region under the graph of f . The area of S is

A =
∫ b

a

[
f (x) − 0

]
dx =

∫ b

a
f (x) dx

is the same as the area we discussed before.

(2) If f (x) ≥ g(x) ≥ 0 for all x ∈ [a, b]

A =
[
area under y = f (x)

]
−
[
area under y = g(x)

]
=

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

=

∫ b

a

[
f (x) − g(x)

]
dx.

Example 5.1.2. Find the area of the region bounded above by y = x2 + 1, bounded below by
y = x, and bounded on the sides by x = 0 and x = 1.

Proof.

A =

∫ 1

0

[
(x2 + 1 − x)

]
dx =

∫ 1

0
(x2 − x + 1) dx

=
x3

3
− x2

2
+ x
ó1

0
=

5
6

□

Example 5.1.3. Find the area of the region bounded above by y = ex, bounded below by y = x
and bounded on the sides by x = 0 and x = 1.
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Proof.

A =

∫ 1

0
[ex − x] dx

= ex − 1
2

x2
∣∣∣1

0
= e − 3

2
.

□

Remark. When we set up an integral for an area, it is helpful to sketch the region to identify
the top curve yT , the bottom curve yB and a typical approximating rectangle.
Then the area of a typical rectangle is (yT − yB)4x and the
equation

A = lim
n→∞

n∑
i=1

(yT − yB)4x =
∫ b

a
(yT − yB) dx

summarizes the procedure of adding (in a limiting sense) the
areas of all the typical rectangles.

Example 5.1.4. Find the area of the region enclosed by the parabola y = x2 and y = 2x − x2.

Proof. The points of intersection of y = x2 and y = 2x−x2

are given by solving the equation x2 = x − x2. They are
x = 0 and x = 1. The graph y = 2x− x2 is above the graph
of y = x2 for all x ∈ [0, 1]. The area of the region is

A =
∫ 1

0

[
(2x − x2) − x2] dx = x2 + x − 2

3
x3
∣∣∣1

0
=

1
3
.

□

To find the area between the curves y = f (x) and y = g(x) where f (x) ≥ g(x) for some
values of x but g(x) ≥ f (x) for other values.

We splits the region S into several subregions S 1, S 2, · · · S n

with areas A1, A2, · · · An. Then the area of S is

A = A1 + A2 + · · · + An.

Since

| f (x) − g(x)| =
ß

f (x) − g(x) when f (x) ≥ g(x)
g(x) − f (x) when f (x) ≤ g(x),

we have the following results.

Theorem 5.1.5. The area between the curves y = f (x) and y = g(x) and between x = a and
x = b is

A =
∫ b

a

∣∣ f (x) − g(x)
∣∣ dx.
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Example 5.1.6. Find the area of the region bounded by the cruves y = sin x, y = cos x, x = 0
and x =

π

2
.

Proof. The points of intersection of two curves in [0,
π

2
]

is
π

4
. Also, cos x ≥ sin x when 0 ≤ x ≤ π

4 and sin x ≥
cos x when π4 ≤ x ≤ π2 . The area of the region is

A =

∫ π
2

0

∣∣ cos x − sin x
∣∣ dx

=

∫ π
4

0
cos x − sin x dx +

∫ π
2

π
4

sin x − cos x dx

= 2
√

2 − 2

□

Some regions are treated by regarding x as a function of y. Suppose that the region S is
bounded by curves with equation x = f (y), x = g(y), y = c and y = d where f and g are
continuous and f (y) ≥ g(y) for all c ≤ y ≤ d. The area of the region S is

A =
∫ d

c

[
f (y) − g(y)

]
dy.

Example 5.1.7. Find the area enclosed by the line y = x − 1 and the parabola y2 = 2x + 6.

Proof. The points of intersection is obtained by solving
y2 = 2y+ 8. Hence, those points are y = 4 and y = 2. The
area of the enclosed region is

A =

∫ 4

−2
(y + 1) − (

1
2

y2 − 3) dy

=

∫ 4

−2
−1

2
y2 + y + 4dy

= 18
□
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Note. We can also obtain the area of the above region by
integrating with respect to x instead of y.

Splitting the region into two subregions A1 and A2 and com-
puting each area and adding them up. But it is very compli-
cated.

Example 5.1.8. Find the area of the region enclosed by the curves x+2y = 3, y = x, and y = 1
4 x

(a) Using x as as the variable of integration

Proof. We split the region into left and right parts, A1 and
A2 as the figure. Then the area of the region is

A = A1 + A2 =

∫ 1

0
(x − 1

4
x) dx +

∫ 2

1
(−1

2
x +

3
2
− 1

4
x) dx

=
[3

8
x2]1

0 +
[
− 3

8
x2 +

3
2

x
]2

1 =
3
4
.

□

(b) Using y as the variable of integration

Proof. We split the region into top and bottom parts, A1 and
A2 as the figure. Then the area of the region is

A = A1 + A2 =

∫ 1/2

0
(4y − y) dy +

∫
1

1/21(3 − 2y − y) dy

=
[3

2
y2]1/2

0 +
[
3y +

3
2

y2]1
1/2 =

3
4
.

□

o Applications

(Skip)

Homework 5.1. 21, 26, 29, 32, 34, 37, 39, 41, 62, 64, 67, 70
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5.2 Volumes

In the present section, we want to find the volume of a solid by using the techniques of integral to
give an exact definition. We start with a simple type of solid called a “cylinder (right cylinder)”.

For a general solid S (not a cylinder), we cut it into several slices and approximate each slice
by regarding them as cylinders. We estimate the volume of S by adding the volumes of those
approximating volumes of slabs.

(i) The intersection of S with a plane and obtaining a plane region that is called a “cross-
section” of S . Let A(x) be the area of the cross-section of S in a plane Px perpendicular to
the x-axis and passing through the point x where a ≤ x ≤ b.

(ii) Dividing S into n “slabs” of equal width 4x by using the planes Px1 , Px2 , · · · to slice the
solid.

(iii) Choosing sample points x∗i in [xi−1, xi], we can approximate the ith slab S i by a cylinder
with base A(x∗i ) and “height” 4xi. The volume of this cylinder is A(x∗i )4xi. Hence, the
volume of S i is

V(S i) = Vi ≈ A(x∗i )4xi.
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(iv) Adding the volumes of these slabs, we get an approximation to the total volume of S ,

V =
n∑

i=1

Vi ≈
n∑

i=1

A(x∗i )4xi.

(v) Let n tend to infinity, we define the volume of S as the limit of these sums.

Definition 5.2.1. Let S be a solid that lies between x = a and x = b. If the cross-sectional area
of S in the plane Px through x and perpendicular to the x-axis, is A(x), where A is a continuous
function, then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗i )4xi =

∫ b

a
A(x) dx.

Note. For a (right) cylinder, A(x) = A for all x. Then the volume is

V =
∫ b

a
A(x) dx =

∫ b

a
A dx = A(b − a).

Example 5.2.2. Find the volume of a sphere of radius r.

Proof. The plane Px intersects the sphere in a circle whose radius is y =
√

r2 − x2.

Hence, the cross-sectional area is

A(x) = π(
√

r2 − x2)2 = π(r2 − x2).

The volume of the sphere is

V =

∫ r

−r
A(x) dx =

∫ r

−r
π(r2 − x2) dx

= π(r2x − 1
3

x3)
∣∣∣r
−r
=

4
3
πr3.

□

Remark. The slabs are circular cylinders, or disks, and the geometric interpretations of the
Riemann sums

n∑
i=1

A(xi)4x =
n∑

i=1

π(12 − x2
i )4x

when n = 5, 10 and 20 (as following figure) if we choose the sample points x∗i to be the
midpoints xi.
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o Volumes of Solid of Revolution

If we revolve a region about a line, we obtain a “solid of revolution”. In order to find the
volume of the solid of revolution, we calculate the area of cross-section. The the volume is

V =
∫ b

a
A(x) dx or V =

∫ d

c
A(y) dy.

To find the area of each cross-section.

(i) If the cross-section is a disk, the area is

A = π(radius)2

(ii) If the cross-section is a washer, the area is

A = πr2
outer − πr2

inner.

Example 5.2.3. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y =

√
x from 0 to 1.
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Proof. The cross-sectional area is

A(x) = π(
√

x)2 = πx.

The solid lies between x = 0 and x = 1 has volume

V =
∫ 1

0
A(x) dx =

∫ 1

0
πx dx =

πx2

2

∣∣∣1
0
=
π

2
.

□

Example 5.2.4. Find the volume of the solid obtained by rotating the region bounded by y = x3,
y = 8 and x = 0 about the y-axis.

Proof. The region is rotated about y-axis. It makes to slice the solid perpendicular to the y-axis
obtaining circular cross-sections. The area of a cross-section through y is

A(y) = πx2 = π( 3
√

y)2 = πy2/3.

The volume of the solid is

V =
∫ 8

0
A(y) dy =

∫ 8

0
πy2/3 dy =

3π
5

y5/3
∣∣∣8
0
=

96π
5
.

□
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o Washer Method (Method of Washer)

Example 5.2.5. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x2, about the x-axis.

Proof. The points of intersection is obtained by x = x2 and hence those points are x = 0 and
x = 1. The area of the cross-section perpendicular to x-axis is

A(x) = πr2
outer − πr2

inner = π(x)2 − π(x2)2 = π(x2 − x4).

The volume of the solid is

V =
∫ 1

0
A(x) dx =

∫ 1

0
π(x2 − x4) dx = π(

1
3

x3 − 1
5

x5)
∣∣∣1
0
=

2π
15
.

□

Example 5.2.6. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x2, about the line y = 2.

Proof. The cross-section is a washer and its area is

A(x) = πr2
outer − πr2

inner = π(2 − x2)2 − π(2 − x)2 = π(x4 − 5x2 + 4x).

The volume of the solid is

V =
∫ 1

0
A(x) dx = π

∫ 1

0
x4 − 5x2 + 4x dx = π

(1
5

x5 − 5
3

x3 + 2x2)∣∣∣1
0
=

8π
15
.

□
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Example 5.2.7. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x2, about the line x = −1.

Proof. The area of the cross-section is

πr2
outer − πr2

inner = π
(√

y − (−1)
)2 − π

(
y − (−1)

)2
= π(2

√
y − y − y2).

The volume of the solid is

V =
∫ 1

0
π(2
√

y − y − y2) dy = π
Ä4

3
y3/2 − 1

2
y2 − 1

3
y3
ä∣∣∣1

0
=
π

2
.

□

o Finding Volume Using Cross-Sectional Area

Example 5.2.8. A solid with a circular base of radius 1. Parallel cross-sections perpendicular
to the base are equilateral triangles. Find the volume of the solid.

Proof. Each cross-section is an equilateral triangle, the base is 2y and the height is
√

3y. Hence
the area of the cross-section is A(x) =

√
3y2 =

√
3(1 − x2). The volume of the solid is

V =
∫ 1

−1
A(x) dx =

∫ 1

−1

√
3(1 − x2) dx =

4
√

3
3
.

□
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Example 5.2.9. Find the volume of a pyramid whose base is a square with side L and whose
height is h.

Proof. Placing the originO at the vertex of the pyramid and the x-axis along its central axis. Let
Px be the plane that passes through x and is perpendicular to the x-axis intersects the pyramid
in a square with side of length s.

By the similar triangle argument,

x
h
=

s/2
L/2
=

s
L

⇒ s =
Lx
h
.

Then the cross-sectional area is

A(x) = s2 =
L2

h2 x2.

Hence, the volume is

V =
∫ h

0
A(x) dx =

∫ h

0

L2

h2 x2 dx =
L2

h2

x3

3

∣∣∣h
0
=

L2h
3

Alternating Method: We can place the center of the base at the origin and the vertex on the
positive y-axis.

When the plane Py when passes through y and
is perpendicular to the y-axis intersecs the pyra-
mid, the the cross-sectioinal area of the square
L2

h2 (h − y)2. Then the volume of the pyramid is

V =
∫ h

0

L2

h2 (h − y)2 =
L2h
3
.

□

Example 5.2.10. A wedge is cut out of circular cylinder of radius 4 by two planes. One plane
is perpendicular to the axis of the cylinder. The other intersects the first at an angle 30◦ along a
diameter of the cylinder. Find the volume of the wedge.
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Proof. Each cross-section is a right triangle with
base y =

√
16 − x2. The intersection angle 30◦ im-

plies that the height is y tan 30◦ =
√

16−x2
√

3
. The area

of the cross-section is

A(x) =
1
2

√
16 − x2 ·

√
16 − x2

√
3

=
1

2
√

3
(16 − x2).

The volume of the solid is

V =

∫ 4

−4
A(x) dx =

∫ 4

−4

1

2
√

3
(16 − x2) dx

=
1

2
√

3
(16x − 1

3
x3)

∣∣∣4
−4
=

128

3
√

3
.

□
Homework 5.2. 16, 19, 22, 25, 28, 36, 39, 52, 59, 61, 67, 75, 81

5.3 Volumes by Cylindrical Shells
For some solids of revolution, it is difficult to find their volumes by using the washer method.

For example, the solid obtained by rotating the region which
is enclosed by y = 2x2 − x3 and x-axis. If we want to use
the washer method to find the volume of the solid, we have to
evaluate the areas of each cross-section, A(y), for every 0 ≤
y ≤ 32

27 . But it is not easy to solve the equation y = 2x2 − x3.

Hence, we study a different method, called the method of “cylindrical shells”, to find its volume
here.

■Method of Cylindrical Shells
Consider a cylindrical shell with inner radius r1, outer radius
r2 and height h. Then the thickness of the shell is 4r = r2 − r1.
The volume of the shell is

V = πr2
2h − πr2

1h = π(r2
2 − r2

1)h

= π(r2 + r1)(r2 − r1)h = 2π · r2 + r1

2︸    ︷︷    ︸
≈ r

h (r2 − r1)︸     ︷︷     ︸
=4r

= 2πr̄h4r
(
≈ 2πrh4r

)
.
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The approximating volume of the cylindrical shell is 2πrh4r.†

Let S be the solid obtained by rotating about the y-axis the region bound by y = f (x), y = 0,
x = a and x = b where 0 ≤ a < b.

Dividing [a, b] into n subintervals [xi−1, xi] of equal width 4x and choose x̄ as the midpoint
of the ith subinterval. Consider the rectangle with base [xi−1, xi] and height f (x̄). The solid
which is obtained by rotating the above region about the y-axis has volume

Vi ≈ (2πx̄)
(

f (x̄i)
)
4x.

The approximation to the volume of S is

V ≈
n∑

i=1

Vi =

n∑
i=1

2πx̄i f (x̄i)4x.

Let n→ ∞, the volume of the solid is,

lim
n→∞

n∑
i=1

2πx̄i f (x̄i)4x =
∫ b

a
2πx f (x) dx.

Theorem 5.3.1. The volume of the solid obtained by rotating about the y-axis the region under
the curve y = f (x) from a to b is

V =
∫ b

a
2πx f (x) dx.

†It can be remembered as V ≈ [circumference][height][thickness].
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Note. Flattening a cylindrical shell with radius x, circumference 2πx, height f (x) and thickness
4x (or dx). Hence, the volume of S is

V =
∫ b

a
2πx︸︷︷︸

circumference
f (x)︸︷︷︸

height

dx︸︷︷︸
thickness

.

Example 5.3.2. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = 2x2 − x3 and y = 0.

Proof.

V =
∫ 2

0
2πx(2x2 − x3) dx = 2π(

1
2

x4 − 1
5

x5)
∣∣∣2
0
=

16π
5
.

□
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Example 5.3.3. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = x and y = x2.

Proof.

The points of intersection of y = x and y = x2 is (0, 0) and (1, 0). Therefore, the volume of
the solid is

V =
∫ 1

0
2πx(x − x2) dx =

π

6
.

□

Example 5.3.4. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y =

√
x from 0 to 1.

Proof.

V =
∫ 1

0
2πy(1 − y2) dy = 2π(

y2

2
− y4

4
)
∣∣∣1
0
=
π

2
.

□

Example 5.3.5. Find the volume of the solid obtained by rotating about the line x = 2 the
region bounded by y = x − x2 and y = 0.

Proof.
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V =
∫ 1

0
2π(2 − x)(x − x2) dx =

π

2
.

□

o Disks and Washers versus Cylindrical Shells

Question: How do we know whether to use disks (or washers) or chylindrical shells?

Consideration:

(i) Is the region more easily described by top and bottom boundary curves of the form y =
f (x), or by left and right boundaries x = g(y)?

(ii) Which choice is easier to work with?

(iii) Are the limits of integration easier to find for one variable versus the others?

(iv) Does the region require two separate integrals when using x as the variable but only one
integral in y?

(v) Are we able to evaluate the integral we set up with our choice of variable?

Example 5.3.6. A region in the first quadrant bounded by the curves y = x2 and y = 2x. A solid
is formed by rotating the region about the line x = −1.

Find the volume of the solid by using
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(a) x as the variable of integration

Proof. When x as the variable of integration and rotat-
ing the region about the line x = −1, we will use the
cylindrical shells. Therefore, the volume is

V =

∫ 2

0
2π(x + 1)(2x − x2) dx

= 2π
∫ 2

0
(x2 + 2x − x3) dx

= 2π
î x3

3
+ x2 − x4

4

ó2
0
=

16π
3
. □

(b) y as the variable of integration.

Proof. When y as the variable of integration and rotat-
ing the region about the line x = −1, we will use the
washer method. Therefore, the volume is

V =

∫ 4

0

[
π(
√

y + 1)2 − π(1
2

y + 1)2] dy

= π

∫ 4

0
(2
√

y − 1
4

y2) dy

= π
î4

3
y3/2 − 1

12
y3
ó4

0
=

16π
3
.

□
Homework 5.3. 11, 13, 16, 19, 21, 25, 29, 39, 42, 55, 59, 63

5.4 Work
We can think of a force as describing a push or pull on an object. :

If the force F is constant and the work done is defined to be the product of the force F and
the distance d that the object moves:

W = Fd work = force × distance

Question: How about the force is not constant?
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Dividing [a, b] into n subintervals with equal width. The force which acts on the object from
xi−1 to xi gives the work

Wi = f (x∗i )4x.

The total work is

W ≈
n∑

i=1

Wi =

n∑
i=1

f (x∗i )4x.

Let n→ ∞, W = lim
n→∞

n∑
i=1

f (x∗i )4x (the work done in moving the object from a to b). We have

W = lim
n→∞

n∑
i=1

f (x∗i )4x =
∫ b

a
f (x) dx.

Example 5.4.1. A particle is located a distance x meters from the origin. A force of x2 + 2x
newton acts on it. How much work is done in moving it from x = 1 to x = 3.

Proof. The total work is

W =
∫ 3

1
x2 + 2x dx =

50
3

J

□

o Hooke’s Law

The force required to maintain a spring stretched x units beyond its natural length is propor-
tional to x:

f (x) = kx

where k is a positive constant called the spring constant.

Example 5.4.2. A force 40N is required to hold a spring that has been stretcvhed from its
natural length of 10cm to a length 15cm. How much work is done in stretching the spring from
15cm to 18cm?

Proof. By the Hooke’s Law, 40 = k × (0.15 − 0.1). Then k = 800 and f (x) = 800x. The work
done from 15cm to 18cm is

w =
∫ 0.18

0.15
f (x) dx =

∫ 0.18

0.15
800x dx − 1.56 J.

Then □
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Example 5.4.3. A 200 lb cable is 100ft long and hangs vertically from the top of t tall building.
How much work is required to lift the cable to the top of the building?

Proof.

Dividing the 100 ft cable into n piece with equal length
4x = 100

n . Each piece has mass 200
100 × 4x = 24x.

Move this piece vertically to the top of the building need work
Wi = xi · 24x = 2xi4x. Hence, the total work acts on the cable
is

W = lim
n→∞

n∑
i=1

Wi = lim
n→∞

n∑
i=1

2xi4x

=

∫ 100

0
2x dx = 10000 ft-lb.

□

Example 5.4.4. A tank has the shape of an inverted circular cone with height 10m and base
radius 4m. It filled with water to a height of 8m. find the work required to empty the tank by
pumping all of the water to the top of the tank. (The density of water is 1000 kg/m3).

Proof.

Dividing the water level [2, 10] into n subintervals with
equal width 4x. At the subinterval [xi−1, xi], the mass of
the water in the ith level is

1000Vi = 1000 · πr2
i 4x

where
ri

10 − x∗i
=

4
10

. Then ri =
2
5 (10 − x∗i ) and

mi = 1000π ·
[2

5
(10 − x∗i )

]24x = 160π(10 − x∗i )4x.

To move the level of water need work

Wi = 9.8 · x∗i · 160π(10 − x∗i )24 = 1568πx∗i (10 − x∗i )24x.

The total work is

W = lim
n→∞

n∑
i=1

1568πx∗i (10 − x∗i )24x

=

∫ 10

2
1568πx(10 − x)2 dx = 1568π

Ä2048
3

ä
J

□

Homework 5.4. 7, 9, 13, 21, 23, 25, 29
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5.5 Average Value of a Function
Observation: The average value of finitely many numbers y1, y2, · · · , yn is

yavg =
y1 + y2 + · · · + yn

n
.

Question: How to compute the average value of a function y = f (x), a ≤ x ≤ b?

Dividing [a, b] into n subintervals with equal width 4x =
b − a

n
. Choose sample point x∗i ∈

[xi−1, xi] for i = 1, 2, · · · , n. The average value of f at these sample points is

f (x∗1) + f (x∗2) + · · · f (x∗n)
n

=
f (x∗1) + f (x∗2) + · · · + f (x∗n)

b − a
4x

=
1

b − a

n∑
i=1

f (x∗i )4x

Let n→ ∞, the average value of f on [a, b] is

favg =
1

b − a
lim
n→∞

f (x∗i ) 4x =
1

b − a

∫ b

a
f (x) dx

Note.
area

width
= average height

o The Mean Value Theorem for Integrals

If f is continuous on [a, b], then there exists a
number c ∈ [a, b] such that

f (c) = favg =
1

b − a

∫ b

a
f (x) dx

or
∫ b

a
f (x) dx = f (c)(b − a)

Note. Geometrically, the theorem means that the area below the graph y = f (x) over [a, b] is
equal to the area of the rectangle with base (b − a) and height favg.
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Example 5.5.1.

Let f (x) = 1 + x2 be continuous on [−1, 2]. By
the Mean Value Theorem for the integrals, there
exists a nubmer c ∈ [−1, 2] such that

f (c) =
1

2 − (−1)

∫ 2

−1
1+x2 dx =

1
3
·(x+

1
3

x3)
∣∣∣2
−1
= 2.

Indeed, 1 + c2 = 2 and hence c = ±1.

Example 5.5.2. Let s(t) be the displacement of the car at tiem t. Then

average velocity =
4s
4t
=

s(t2) − s(t1)
t2 − t1

vavg =
1

t2 − t1

∫ t2

t1
v(t) dt =

1
t2 − t1

∫ t2

t1
s′(t) dt

=
1

t2 − t1

[
s(t2) − s(t1)

]
= average velocity

Homework 5.5. 7, 8, 9, 13, 17, 22, 26
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7.1 Integration by Parts

Differentiation ←→ Integration

Chain Rule ←→ Substitution Rule
(Change of Variables)

Product Rule ←→ Integration by Parts

o Integration by Parts

d
dx

(
f (x)g(x)

)
= f (x)g′(x) + f ′(x)g(x)

=⇒ f (x)g′(x) =
d
dx

(
f (x)g(x)

)
− f ′(x)g(x)

=⇒
∫

f (x)g′(x) dx = f (x)g(x) −
∫

f ′(x)g(x) dx

■ Another Expression

23
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Let u = f (x) and v = g(x). Then
du
dx
= f ′(x)

dv
dx
= g′(x)

=⇒
ß

du = f ′(x) dx
dv = g′(x) dx

We obtain ∫
u dv = uv −

∫
v du

Strategy:

(1) Observe the two funcitons.

(2) One will be differentiated and the other one will be integrated.

(3) Guess the next step
∫

u dv or
∫

f ′(x)g(x) dx.

Example 7.1.1. Find
∫

xex dx

Proof. (Method 1:) ∫
x
f

ex

g′
dx =

∫
x
f

ex

g

−
∫

1
f ′

ex

g

dx = xex − ex +C.

(Method 2:)
∫

x
v

ex dx
dv

.

Let u = x and dv = ex dx. Then du = dx and v = ex. We have∫
x
v

ex dx
dv

= x
u

ex

v

−
∫

ex

v

dx
du

= xex − ex +C.

□

Note. Using the integration by parts is to obtain a simpler integral than the begining integral. If
we set different pair of funcitons, the process may be difficult. For example,∫

x
g′

ex

f

dx =
∫

x2

2
g

ex

f

−
∫

x2

2
g

ex

f ′
dx.

The last integral is difficult to compute.

Example 7.1.2. Evaluate
∫

x2ex dx.
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Proof. ∫
x2

f

ex

g′
dx I.B.P

= x2

f

ex

g

−
∫

2x
f ′

ex

g

dx

I.B.P
= x2ex − 2

Ä
xex −

∫
ex dx

ä
(I.B.P twice)

= x2ex − 2xex + 2ex +C.

□

Example 7.1.3. Evaluate
∫

ln x dx.

Proof. (Method 1:)∫
ln x dx =

∫
ln x

f

· 1
g′

dx = x
g

ln x
f

−
∫

x
g

1
x
f ′

dx = x ln x − x +C.

(Method 2:)
∫

ln x dx =
∫

ln x
u

· 1 dx
dv

. Let u = ln x and dv = dx. Then du =
1
x

dx and v = x.

We have ∫
ln x · 1 dx = x

v

ln x
u

−
∫

x
u

1
x

dx

du

= x ln x − x +C.

□

Example 7.1.4. Evaluate
∫

ex sin x dx.

Proof. ∫
ex

f

sin x
g′

dx I.B.P
= ex

f

(− cos x)
g

−
∫

ex

f ′
(− cos x)

g

dx

= −ex cos x +
∫

ex cos x dx

I.B.P
= −ex cos x +

î
ex sin x −

∫
ex sin x dx

ó
Then

2
∫

ex sin x dx = ex(sin x − cos x) +C.

and we obtain ∫
ex sin x dx =

1
2

ex(sin x − cos x) +C.

□

Example 7.1.5. Evaluate
∫

sinn x dx.
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Proof. • (n = 1) ∫
sin x dx = − cos x +C

• (n = 2) ∫
sin2 x dx =

∫
1 − cos 2x

2
dx =

1
2

x − 1
4

sin 2x +C

• (n ≥ 3 integer)∫
sinn x dx =

∫
sinn−1 x

f

sin x
g′

dx

I.B.P
= sinn−1 x

f

(− cos x)
g

−
∫

(n − 1) sinn−2 x cos x
f ′

(− cos x)
g

dx

= − sinn−1 x cos x + (n − 1)
∫

sinn−2 x(1 − sin2 x) dx

=⇒ n
∫

sinn x dx = − sinn−1 x cos x + (n − 1)
∫

sinn−2 x dx

We obtain the “reduction formulas”∫
sinn x dx = −1

n
sinn−1 x cos x +

n − 1
n

∫
sinn−2 x dx

□

o Definite Integral

∫ b

a
f (x)g′(x) dx = f (x)g(x)

∣∣∣b
a
−
∫ b

a
f ′(x)g(x) dx.

Example 7.1.6.∫ 1

0
tan−1 x dx I.B.P

= x tan−1 x
∣∣∣1

0
−
∫ 1

0

x
1 + x2 dx

= x tan−1 x
∣∣∣1

0
− 1

2

∫ 2

1

1
u

du (u = 1 + x2)

=
π

4
− 1

2
ln u

∣∣∣2
1

=
π

4
− 1

2
ln 2

Homework 7.1. 3, 7, 11, 15, 19, 23, 26, 29, 30, 32, 36, 38, 40, 45, 48, 54, 57, 60, 64, 67, 72
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7.2 Trigonometric Integrals

In this section, we will find the antiderivatives of the forms∫
sinm x cosn x dx and

∫
tanm x secn x dx

for m, n ∈ {0} ∪ N.

o Integrals of Powers of Sine and Cosine∫
sinm x cosn x dx for m, n ∈ {0} ∪ N.

Recall:

• d
dx

(sin x) = cos x and
d
dx

(cos x) = − sin x

• sin2 x + cos2 x = 1

• sin2 x =
1 − cos 2x

2
and cos2 x =

1 + cos 2x
2

• sin 2x = 2 sin x cos x and cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x = cos2 x − sin2 x.

Case 1: Either m is odd or n is odd.

Strategy: If m = 2k + 1 is odd, set u = cos x. If n = 2k + 1 is odd, set u = sin x.

Example 7.2.1. Evaluate
∫

sin3 x dx

Proof. Let u = cos x. Then du = − sin x dx.∫
sin3 x dx =

∫
sin2 x sin x dx =

∫
(1 − cos2 x) sin x dx

= −
∫

1 − u2 du = −(u − 1
3

u3) +C

= − cos x +
1
3

cos3 x +C.

□

Example 7.2.2. Evaluate
∫

sin6 x cos5 x dx.
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Proof. Let u = sin x. Then du = cos x dx.∫
sin6 x cos5 x dx =

∫
sin6 x cos4 x cos x dx

=

∫
sin6 x(1 − cos2 x)2 cos x dx

=

∫
u6(1 − u2)2 du =

∫
u6 − 2u8 + u10 du

=
1
7

u7 − 2
9

u9 +
1

11
u11 +C

=
1
7

sin7 x − 2
9

sin9 x +
1
11

sin11 x +C.

□

Case 2: Both m and n are odd.

Strategy: Using the half-angle identity, either

(i) reducing the integral to Case1, or

(ii) converting the integral to another Case2 and using the half-angle identity until reduc-
ing the integral to Case1.

Example 7.2.3. Evaluate
∫

sin4 x dx.

Proof. (Method 1) Using the Integration by Parts to down the power by 2

(Method 2) ∫
sin4 x dx =

∫ (1 − cos 2x
2

ä2
dx

=
1
4

∫
1 − 2 cos 2x + cos2 2x dx

=
1
4

∫
1 − 2 cos 2x +

1 + cos 4x
2

dx

=
1
4

∫
3
2
− 2 cos 2x +

1
2

cos 4x dx

=
1
4

Ä3
2

x − sin 2x +
1
8

sin 4x
ä
+C

□

Example 7.2.4. Evaulate
∫

sin4 x cos2 x dx
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Proof.∫
sin4 x cos2 x dx =

∫
(1 − cos2 x)2 cos2 x dx =

∫
cos2 x − 2 cos4 x + cos6 x dx

=

∫
1 + cos 2x

2
− 2
Ä1 + cos 2x

2

ä2
+
Ä1 + cos 2x

2

ä3
dx

=

∫
1 + cos 2x

2
− 1 + 2 cos 2x + cos2 2x

2
+

1 + 3 cos 2x + 3 cos2 2x + cos3 2x
8

dx

=

∫
1
8
− 1

8
cos 2x − 1

8
cos2 2x +

1
8

cos3 2x dx

=

∫
1
8
− 1

8
cos 2x − 1

8

Ä1 + cos 4x
2

ä
dx +

1
8

∫
cos2 2x · cos 2x dx

(set u = sin 2x) =
1
8

x − 1
16

sin 2x − 1
16

x − 1
64

sin 4x +
1
8

∫
(1 − u2) · 1

2
du

=
1

16
x − 1

16
sin 2x − 1

64
sin 4x +

1
16

(u − 1
3

u3) +C

=
1

16
x − 1

64
sin 4x − 1

48
sin3 2x +C.

□

o Integrals of Powers of Secant and Tangent∫
tanm x secn x dx for m, n ∈ {0} ∪ N.

Recall:

• d
dx

(tan x) = sec2 x and
d
dx

(sec x) = tan x sec x

• sec2 x = 1 + tan2 x

Case 1: n is even (n = 2k)

Strategy: Let u = tan x. Then du = sec2 x dx

Example 7.2.5. Evaluate
∫

tan5 x sec6 x dx

Proof. Let u = tan x. Then du = sec2 x dx.∫
tan5 x sec6 x dx =

∫
tan5 x sec4 x sec2 x dx

=

∫
tan5 x(1 + tan2 x)2 sec2 x dx

=

∫
u5(1 + u2)2 du =

1
6

u6 +
1
4

u8 +
1

10
u10 +C

=
1
6

tan6 x +
1
4

tan8 x +
1

10
tan10 x +C.
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□

Case 2: m is odd (m = 2k + 1, n , 0)

Strategy: Let u = sec x. Then du = tan x sec x dx

Example 7.2.6. Evaluate
∫

tan5 x sec6 x dx

Proof. Let u = tan x. Then du = sec2 x dx.∫
tan5 x sec6 x dx =

∫
tan4 x sec5 x · tan x sec x dx

=

∫
(sec2 x − 1)2 sec5 x · tan x sec x dx

= (u2 − 1)2u5 du =
1

10
u10 − 1

4
u8 +

1
6

u6 +C

=
1

10
sec10 x − 1

4
sec8 x +

1
6

sec6 x +C

□

Note. In order to solve the integral of other cases, we recall the integral∫
tan x dx = ln

∣∣ sec x
∣∣ +C

Example 7.2.7. Evaluate
∫

tan3 x dx

Proof. ∫
tan3 x dx =

∫
tan x(sec2 x − 1) dx

=

∫
tan x sec2 x − tan x dx =

1
2

tan2 x − ln
∣∣ sec x

∣∣ +C

=

∫
sec x · tan x sec x dx −

∫
tan x dx

(set u = sec x) =

∫
u du − ln

∣∣ sec x
∣∣ +C

=
1
2

sec2 x − ln
∣∣ sec x

∣∣ +C

□

Case 3: Others (m is even or n is odd)
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Strategy: When m = 2k, we can convert the term tan2k x into (sec2 x − 1)k. Hence, we can

convert the integral
∫

tan2k x secn x dx into
∫

(sec2 x − 1)k secn x dx. It suffices to consider

the integral of the form∫
seck x dx or

∫
tank x dx for every k ∈ N.

(i) (k = 1) ∫
sec x dx =

∫
sec x · sec x + tan x

sec x + tan x
dx

(set u = sec x + tan x) =

∫
1
u

du = ln |u| +C = ln
∣∣ sec x + tan x

∣∣ +C

(ii) (k = 2) ∫
sec2 x dx = tan x +C

(iii) (k ≥ 3, integer) By the Integration by Parts,∫
seck x dx =

tan x seck−2 x
k − 1

+
k − 2
k − 1

∫
seck−2 x dx

o Using Product Identities

To evaluate the integarls∫
sin mx cos nx dx,

∫
sin mx sin nx dx,

∫
cos mx cos nx dx

we can use the following identities

(a) sin A cos B = 1
2

[
sin(A − B) + sin(A + B)

]
(b) sin A sin B = 1

2

[
cos(A − B) − cos(A + B)

]
(c) cos A cos B = 1

2

[
cos(A − B) + cos(A + B)

]

Example 7.2.8. Evaluate
∫

sin 4x cos 5x dx
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Proof. ∫
sin 4x cos 5x dx =

∫
1
2
[

sin(−x) + sin 9x
]

dx

=
1
2
(

cos x − 1
9

cos 9x
)
+C

□

Homework 7.2. 11, 17, 20, 25, 29, 38, 41, 48, 53, 56, 61, 66, 75

7.3 Trigonometric Substitution

Goal: To deal with the integral with the terms
√

a2 − x2,
√

a2 + x2 or
√

x2 − a2 where a > 0.

Question: The integral ∫ √
a2 − x2 dx

interprets the area of a circle or an ellipse. How to compute it?

We can evaluate the integral
∫

x
√

a2 − x2 dx =
1
2

∫ √
u du by using the substitution method

(u = a2 − x2)

Recall: (Substitution Method)∫
f
(
g(x)

)
f (u)

g′(x) dx
du

u=g(x)
======

∫
f (u) du

• When using the substitution method, “x” is old variable and “u” is a new variable. More-
over, the new variable u = g(x) is a function of the old variable.

• Conversely, consider
∫

f (x) dx. Assume there exists an one-to-one function g such taht

x = g(t) [the old variable “x” is a function of the new variable “t”].

(Inverse Substitution) ∫
f (x) dx

u=g(t)
======

∫
f
(
g(t)

)
f (x)

g′(t) dt
dx

.

Note. In general, the suitable function g is not easy to find. But, it is effective for the given
radical expression because of the specified trigonometric identities.
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o Trigonometric Substitutions

Example 7.3.1. Evaluate
∫ √

9 − x2

x2 dx.

Proof. Let x = 3 sin θ, −π
2
≤ x ≤ π

2
. Then dx = 3 cos θ dθ.

∫ √
9 − x2

x2 dx =
∫

3 cos θ
9 sin2 θ

· 3 cos θ dθ =
∫

cot2 θ dθ

=

∫
csc2 θ − 1 dθ

= − cot θ − θ +C

= −
√

9 − x2

x
− 3 sin−1 ( x

3
)
+C sin θ =

x
3
⇒ θ = sin−1 ( x

3
)

It is why assuming g is 1-1.

□

Example 7.3.2. Evaluate
∫

1

x2
√

x2 + 4
dx

Proof. Let x = 2 tan θ, −π
2
≤ θ ≤ π

2
. Then dx = 2 sec2 θ dθ.

∫
1

x2
√

x2 + 4
dx =

∫
1

4 tan2 θ · 2 sec θ
· 2 sec2 θ dθ

=
1
4

∫
sec θ
tan2 θ

dθ =
1
4

∫
cos θ
sin2 θ

dθ

=
1
4

∫
1
u2 du = − 1

4u
+C

= − 1
4 sin θ

+C = −
√

x2 + 4
4x

+C. Set u = sin θ ⇒ du = cos θ dθ
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□

Example 7.3.3. Evaluate
∫

1
√

x2 − a2
dx, a > 0

Proof. Let x = a sec θ, 0 < θ <
π

2
or
π

2
< θ < π. Then dx = a tan θ sec θ dθ.

∫
1

√
x2 − a2

dx =
∫

1
a tan θ

· a tan θ sec θ dθ

=

∫
sec θ dθ = ln

∣∣∣ sec θ + tan θ
∣∣∣ +C

= ln
∣∣∣ x
a
+

√
x2 − a2

a

∣∣∣ +C

= ln
∣∣∣x + √x2 − a2

∣∣∣ − ln a +C

= ln
∣∣∣x + √x2 − a2

∣∣∣ +C
Notice that an alternating method is using the hyperbolic functions □

Example 7.3.4. Find the area enclosed by the ellipse

x2

a2 +
y2

b2 = 1.

Proof. The area enclosed by the ellipse is equal to 4 multiple of the region in the first quadrant.

Consider the curve y = b

 
1 − x2

a2 , 0 ≤ x ≤ a.

Area = 4
∫ a

0
b

 
1 − x2

a2 dx =
4b
a

∫ a

0

√
a2 − x2 dx

=
4b
a

∫ π
2

0
a cos θ · a cos θ dθ

= 4ab
∫ π

2

0

1 + cos2 θ

2
dθ

= 2ab
Ä
θ +

1
2

sin 2θ
ä∣∣∣ π2

0
= πab.

set x = a sin θ ⇒ dx = a cos θ dθ
□

Example 7.3.5. Evaluate
∫ 3

√
3

2

0

x3

(4x2 + 9)3/2 dx.

Proof. Let x =
3
2

tan θ, then dx =
3
2

sec2 θ dθ.
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∫ 3
√

3
2

0

x3

(4x2 + 9)3/2 dx =
∫ π

3

0

27
8

tan3 θ

27 sec3 θ
· 3

2
sec2 θ dθ

=
3

16

∫ π
3

0

tan3 θ

sec θ
dθ =

3
16

∫ π
3

0

sin3 θ

cos2 θ
dθ

(Set u = cos θ) =
3

16

∫ 1
2

1

1 − u2

u2

(
− du

)
=

3
16

∫ 1

1
2

u−2 − 1 du

=
3

16
(
− u−1 − u

)∣∣∣1
1
2

=
3

32

□

Example 7.3.6.

∫
x

√
3 − 2x − x2

dx =
∫

x√
4 − (x + 1)2

dx

(Set x + 1 = 2 sin θ) =

∫
2 sin θ − 1

2 cos θ
· 2 cos θ dθ

=

∫
2 sin θ − 1 dθ

= −2 cos θ − θ +C

= −
√

4 − (x + 1)2 − sin−1
Ä x + 1

2

ä
+C.

Homework 7.3. 13, 16, 19, 23, 28, 32, 36, 37(a), 39, 40, 46

7.4 Integration of Rational Functions by Partial Fractions
Observation:


∫

2
x + 1

dx = 2 ln |x + 1| +C∫
1

x − 2
dx = ln |x − 2| +C

=⇒
∫

2
x + 1

− 1
x − 2

dx

=

∫
x − 5

x2 − x − 2
dx

= 2 ln |x + 1| − ln |x − 2| +C

Goal: In this section, we want to deal with the integration of the rational functions. Let

f (x) =
P(x)
Q(x)

where

P(x) = anxn + · · · + a1x + a0 and Q(x) = bmxm + · · · + b1x + b0 for an, bm , 0

are polynomials.
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Definition 7.4.1. If n < m, we call f (x)
î
=

P(x)
Q(x)

ó
a “proper” rational function ; if n ≥ m, we

call f a “improper” rational function.

Review: In high school algebra, we can use long-divison to express a rational function as the
sum of a polynomial and a proper rational function.

P(x)
Q(x)

= S (x)︸︷︷︸
polynomial

+
R(x)
Q(x)︸ ︷︷ ︸

proper rational
f unction

Hence, ∫
P(x)
Q(x)

dx =
∫

S (x) dx︸         ︷︷         ︸
easy

+

∫
R(x)
Q(x)

dx︸          ︷︷          ︸
partial

f raction

From now on, we assume all the below rational functions are proper and discuss the inte-
gration of proper rational functions by using the method of “partial fraction”.

o Partial Fractions ∫
R(x)
Q(x)︸ ︷︷ ︸

proper rational
f unction

dx

■ Strategy

Step 1: Factorizing the denominator Q(x) as far as possible.

Example 7.4.2.

Q(x) = x4 − 16 = (x2 − 4)(x2 + 4) = (x − 2)(x + 2)(x2 + 4)

Q(x) = x3 − 5x2 + 7x − 2 = (x − 2)(x2 − 3x + 1) = (x − 2)
(

x − 3 +
√

5
2

)(
x − 3 −

√
5

2
)

Q(x) = x5 − 2x4 − 16x + 32 = (x − 2)2(x + 2)(x2 + 4)
Q(x) = x3 − 5x2 + 12x − 12 = (x − 2)(x2 − 3x + 6)

Remark. Every polynomail can be factorized as the product of several 1-degree and irreducible
2-degree polynomials. That is,

Q(x) = (a1x + b1)r1 · · · (anx + bn)rn(c1x2 + d1x + e1)s1 · · · (cmx2 + dmx + em)sm

Step 2: To express
R(x)
Q(x)

as the sum of several terms of the forms

A
(ax + b)i or

Ax + B
(ax2 + bx + c)i
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That is,
R(x)
Q(x)

=
A11

(a1x + b1)
+

A12

(a1x + b1)2 + · · · +
A1r1

(a1x + b1)r1

+ · · ·
...

+ · · ·

+
An1

(anx + bn)
+

An2

(anx + bn)2 + · · · +
Anrn

(anx + bn)rn

+
C11x + D11

(c1x2 + d1x + e1)
+

C12x + D12

(c1x2 + d1x + e1)2 + · · · +
C1s1 x + D1s1

(c1x2 + d1x + e1)s1

+ · · ·
...

+ · · ·

+
Cm1x + Dm1

(cmx2 + dmx + em)
+

Cm2x + Dm2

(cmx2 + dmx + em)2 + · · · +
Cmsm x + Dmsm

(cmx2 + dmx + em)sm

Step 3: Take the integral on each of the above terms and use the techniques in the previous
sections.

■ Integration of each of the proper rational functions in Step 2.

(I) Case 1: Let Q(x) = (a1x + b1)(a2x + b2) · · · (akx + bk) where all (aix + bi) are distinct.
That is, Q(x) has no factor repeated. Then

R(x)
Q(x)

=
A1

(a1x + b1)
+ · · · + Ak

(akx + bk)
.

Example 7.4.3. Evaluate
∫

x2 + 2x − 1
2x3 + 3x2 − 2x

dx.

Proof. Since 2x3 + 3x2 − 2x = x(2x − 1)(x + 2), we have

x2 + 2x − 1
2x3 + 3x2 − 2x

=
A
x
+

B
2x − 1

+
C

x + 2
(A =

1
2
, B =

1
5
, C = − 1

10
)

=
1
2

1
x
+

1
5

1
2x − 1

− 1
10

1
x + 2

Hence,∫
x2 + 2x − 1

2x3 + 3x2 − 2x
dx =

1
2

∫
1
x

dx +
1
5

∫
1

2x − 1
dx − 1

10

∫
1

x + 2
dx

=
1
2

ln
∣∣x∣∣ + 1

10
ln
∣∣2x − 1

∣∣ − 1
10

ln
∣∣x + 2

∣∣ +C

□
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(II) Case 2: Let Q(x) = (a1x + b1)r1(a2x + b2)r2 · · · (akx + bk)rk . Then

R(x)
Q(x)

=
A11

(a1x + b1)
+

A12

(a1x + b1)2 + · · · +
A1r1

(a1x + b1)r1

+ · · ·
...

+ · · ·

+
Ak1

(akx + bk)
+

Ak2

(akx + bk)2 + · · · +
Akrk

(akx + bk)rk

Example 7.4.4. Evaluate
∫

4x
x3 − x2 − x + 1

dx.

Proof. Since x3 − x2 − x + 1 = (x − 1)2(x + 1), we have

4x
x3 − x2 − x + 1

=
A

x − 1
+

B
(x − 1)2 +

C
x + 1

(A = 1, B = 2, C = −1)

=
1

x − 1
+

2
(x − 1)2 +

−1
x + 1

Hence, ∫
4x

x3 − x2 − x + 1
dx =

∫
1

x − 1
dx + 2

∫
1

(x − 1)2 dx −
∫

1
x + 1

dx

= ln
∣∣x − 1

∣∣ − 2
x − 1

− ln
∣∣x + 1

∣∣ +C

□

(III) Case 3: Let Q(x) = (a1x2 + b1x + c1)(a2x2 + b2x + c2) · · · (akx2 + bkx + ck) where all
(aix2 + bix + ci) are distinct and irreducible. Then

R(x)
Q(x)

=
A1x + B1

a1x2 + b1x + c1
+

A2x + B2

a2x2 + b2x + c2
+ · · · + Akx + Bk

akx2 + bkx + ck

Example 7.4.5. Evaluate
∫

2x2 − x + 4
x3 + 4x

dx.

Proof. Since x3 + 4x = x(x2 + 4), we have

2x2 − x + 4
x3 + 4x

=
A
x
+

Bx +C
x2 + 4

(A = 1, B = 1,C = −1)

=
1
x
+

x − 1
x2 + 4
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Hence,

∫
2x2 − x + 4

x3 + 4x
dx =

∫
1
x

dx +
∫

x − 1
x2 + 4

dx

=

∫
1
x

dx =
1
2

∫
2x

x2 + 1
dx −

∫
1

x2 + 4
dx

= ln
∣∣x∣∣ + 1

2
ln
∣∣x2 + 1

∣∣ − tan−1 ( x
2
)
+C

∫
1

x2 + a2 dx = tan−1 ( x
a
)
+C

□

Trick: ∫
Cu + D
u2 + a2 du =

C
2

∫
2u

u2 + a2 du + D
∫

1
u2 + a2 du

=
C
2

ln
∣∣u2 + a2

∣∣ + D tan−1 ( x
a
)
+C.

Remark. As long as the denominator ax2 + bx + c cannot be factorized further (irre-

ducible),
Ax + B

ax2 + bx + c
must be expressed as

Ax + B
ax2 + bx + c

=
A
2a
· (2ax + b)

ax2 + bx + c
+
(
B − Ab

2a
)
· 1

ax2 + bx + c

=
A
2a
· 2ax + b

ax2 + bx + c
+
(
B − Ab

2a
)
· 1

(αx + β)2 + γ2

Example 7.4.6.∫
x − 1

4x2 − 4x + 3
dx =

1
8

∫
8x − 4

4x2 − 4x + 3
dx − 1

2

∫
1

(2x − 1)2 + 2

(set u = 2x − 1) =
1
8

ln
∣∣4x2 − 4x + 3

∣∣ − 1
4

∫
1

u2 + 2
du

=
1
8

ln
∣∣4x2 − 4x + 3

∣∣ − 1
4

tan−1 ( u
√

2

)
+C

=
1
8

ln
∣∣4x2 − 4x + 3

∣∣ − 1
4

tan−1 (2x − 1
√

2

)
+C

(IV) Case 4: Let Q(x) = (a1x2 + b1x + c1)s1(a2x2 + b2x + c2)s2 · · · (akx2 + bkx + ck)sk where all
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(aix2 + bix + ci) are distinct and irreducible. Then

R(x)
Q(x)

=
A11x + B11

(a1x2 + b1x + c1)
+

A12x + B12

(a1x2 + b1x + c1)2 + · · · +
A1s1 x + B1s1

(a1x2 + b1x + c1)s1

+ · · ·
...

+ · · ·

+
Ak1x + Bk1

(akx2 + bkx + ck)
+

Ak2x + Bk2

(akx2 + bkx + ck)2 + · · · +
Aksk x + Bksk

(akx2 + bkx + ck)sk

Example 7.4.7. Evaluate
∫

1 − x + 2x2 − x3

x(x2 + 1)2 dx.

Proof.

1 − x + 2x2 − x3

x(x2 + 1)2

=
A
x
+

Bx +C
x2 + 1

+
Dx + E

(x2 + 1)2 (A = 1, B = −1, C = −1, D = 1, E = 0)

=
1
x
− x + 1

x2 + 1
+

x
(x2 + 1)2 .

∫
1 − x + 2x2 − x3

x(x2 + 1)2 dx =
∫

1
x

dx −
∫

x + 1
x2 + 1

dx +
∫

x
(x2 + 1)2 dx

=

∫
1
x

dx − 1
2

∫
2x

x2 + 1
dx −

∫
1

x2 + 1
dx +

1
2

∫
2x

(x2 + 1)2 dx

= ln
∣∣x∣∣ − 1

2
ln
∣∣x2 + 1

∣∣ − tan−1 x − 1
2(x2 + 1)

+ K

□

(V) Case 5: General case,

Q(x) = (a1x+b1)r1(a2x+b2)r2 · · · (anx+bn)rn(c1x2+d1x+e1)s1(c2x2+d2x+e2)s2 · · · (cmx2+dmx+em)sm ,
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then

R(x)
Q(x)

=
A11

(a1x + b1)
+

A12

(a1x + b1)2 + · · · +
A1r1

(a1x + b1)r1

+ · · ·
...

+ · · ·

+
An1

(anx + bn)
+

An2

(anx + bn)2 + · · · +
Anrn

(anx + bn)rn

+
C11x + D11

(c1x2 + d1x + e1)
+

C12x + D12

(c1x2 + d1x + e1)2 + · · · +
C1s1 x + D1s1

(c1x2 + d1x + e1)s1

+ · · ·
...

+ · · ·

+
Cm1x + Dm1

(cmx2 + dmx + em)
+

Cm2x + Dm2

(cmx2 + dmx + em)2 + · · · +
Cmsm x + Dmsm

(cmx2 + dmx + em)sm

o Rationalizing Substitutions

Example 7.4.8. Evaluate
∫ √

x + 4
x

dx.

Proof. Let u =
√

x + 4. Then x = u2 − 4 and du =
1

2
√

x + 4
dx. We have

∫ √
x + 4
x

dx =
∫

u2

u2 − 4
du = 2

∫
1 +

4
u2 − 4

du

= 2u + 2
∫

1
u − 2

− 1
u + 2

du

= 2u + 2 ln
∣∣∣u − 2
u + 2

∣∣∣ +C

= 2
√

x + 4 + 2 ln
∣∣∣ √x + 4 − 2
√

x + 4 + 2

∣∣∣ +C.

□

Homework 7.4. 9, 13, 17, 21, 25, 29, 33, 37, 45, 48, 51, 55, 61, 68

7.5 Strategy for Integration
■Mermorized the Table
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■ Strategy

(1) Simplify the integrand if possible

(2) Look for an obvious substitution

(3) Classify the integrand according to its form

(a) Trigonometric function: products of powers of sin x, · · · , csc x.

(b) Rational function
P(x)
Q(x)

(c) Integration by Parts:∫
f (x)g′(x) dx = f (x)g(x) −

∫
f ′(x)g(x) dx∫

u dv = uv −
∫

v du

(d) Radicals:

• Trigonometric substitution:
√

x2 ± a2,
√

a2 ± x2
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• Rationalizing substitution: n√ax + b
(
let u = n√ax + b

)
(e) Try again!

Question: Can we integrate all continuous functions and find the explicit forms of their an-
tiderivatives?

Answer: No! For example, we cannot find the explicit form of
∫

ex2
dx,
∫

ex

x
dx,
∫

sin(x2) dx,∫
cos(ex) dx,

∫ √
x3 + 1 dx,

∫
1

ln x
dx,
∫

sin x
x

dx.

Homework 7.5. 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 94, 95

7.6 Integration Using Tables and Technology

Homework 7.6.

7.7 Approximate Integration

Sometimes, it is difficult to find the exact value of definite integarl. Two situations may be
happened.

(1) We cannot find the explicit form of an antiderivative of f . For example,
∫ 1

0
ex2

dx,
∫ 1

−1

√
1 + x3 dx.

(2) The function is determined from a scientific experiment. But there may be no formula for
the function.

Goal: In this section, we want to approximate value of definite integrals.

Recall: The Riemann integral is the limit of Riemann sums

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i )4x.

Hence, as n is sufficiently large,

∫ b

a
f (x) dx ≈

n∑
i=1

f (x∗i )4x

where x∗i is any point in [xi−1, xi].
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o Trapezoidal Rule

∫ b

a
f (x) dx ≈ Tn =

1
2
[ n∑

i=1

f (xi−1)4x +
n∑

i=1

f (xi)4
]

=
4x
2
[

f (xi−1) + f (xi)
]

=
4x
2
[

f (x0) + 2 f (x1) + · · · + 2 f (xn−1) + f (xn)
]

where 4x =
b − a

n
and xi = a + i4x.

Example 7.7.1. (a) Use the Trapezoidal Rule with n = 5 to approximate the integral
∫ 2

1

1
x

dx.

Proof. Compute that 4x =
2 − 1

5
= 0.2 and xi = 1 + 0.2i for i = 0, 1, 2, 3, 4, 5. Then

∫ 2

1

1
x

dx ≈ T5 =
0.2
2
[

f (1) + 2 f (1.2) + 2 f (1.4)

+2 f (1.6) + 2 f (1.8) + f (2)
]

≈ 0.695635.

□

(b) Use the Midpoint Rule with n = 5 to approximate the integral
∫ 2

1

1
x

dx.

Proof.
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∫ 2

1

1
x

dx ≈ M5 = 0.2
[

f (1.1) + f (1.3) + f (1.5)

+ f (1.7) + f (1.9)
]

≈ 0.691908.

In fact,
∫ 2

1

1
x

dx = ln 2 = 0.693147....
□

Remark. Define the error of the Trapezoidal Rule and the error of the Midpoint Rule by

ET =

∫ b

a
f (x) dx − Tn and EM =

∫ b

a
f (x) dx − Mn.

In Example 7.7.1, we have ET ≈ −0.002488 and EM ≈ 0.001239.

■ Observe the table for the approximation to
∫ 2

1

1
x

dx

(1) We get more accurate approximations when we increase the value n.

(2) The errors in the left and right endpoint approximations are opposite in sign (ELER < 0)
and (E2n ≈ 1

2 En)

(3) ETn , EMn ≤ ERn , ELn

(4) ETn EMn < 0 and ET2n ≈ 1
4 ETn

(5) EMn ≈ 1
2 ETn for n ∈ N

o Compare with the Errors of Midpoint Rule and Trapezoidal Rule

Note. The Midpoint Rule is more accurate than
the Trapezoidal Rule (EM ≤ ET )

In the figure, the area of the rectangle □AEFD
is equal to the area of the trapezoid ABCD
where BC is the tangent line to the curve y =
f (x) at P.
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Consider the polygon QRCB

The estimate of the error depends on f ′′(x).

o Error Bounds

Suppose
∣∣ f ′′(x)

∣∣ ≤ K for a ≤ x ≤ b. If ET and EM are the errors in the Trapezoidal and
Midpoint Rules, then

∣∣ET
∣∣ ≤ K(b − a)3

12n2 and
∣∣EM

∣∣ ≤ K(b − a)3

24n2 .

Example 7.7.2. Let f (x) =
1
x

on 1 ≤ x ≤ 2. How large should we take n in order to guarantee

that the Trapezoidal and Midpoint Rules approximateions for
∫ 2

1

1
x

dx are accurate to within

0.0001?

Proof. Compute
∣∣ f ′′(x)

∣∣ = |2x−3| ≤ 2 for 1 ≤ x ≤ 2. Then K = 2, a = 1 and b = 2. We obtain

ET ≤ 2 · 1
12n2 < 0.0001 ⇒ n >

1
√

0.0006
≈ 40.8 ⇒ n = 41

EM ≤ 2 · 1
24n2 < 0.0001 ⇒ n >

1
√

0.0012
≈ 29 ⇒ n = 30.

□

Example 7.7.3. (a) Use the Midpoint Rule with n = 10 to approximate the integral
∫ 1

0
ex2

dx.

(b) Give an upper bound for the error involved in this approximation.

Proof.
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(a) Let 4x =
1 − 0

10
= 0.1. Then

∫ 1

0
ex2

dx ≈ 0.1
[

f (0.05) + f (0.15) + · · · f (0.95)
]

≈ 1.460393.

(b) f (x) = ex2
, f ′(x) = 2xex2

, f ′′(x) = (2 +
4x2)ex2 ≤ 6e for 0 ≤ x ≤ 1. Hence, K = 6e
and we have

EM ≤
6e · 13

24 · 102 =
e

400
≈ 0.007.

□

o Simpson’s Rule

Idea: Use several pieces of parabolas to estimate the integral.

(1) Divide [a, b] into n subintervals where

n is an even number and 4x =
b − a

n
.

(2) Approximate the curve y = f (x) ≥ 0
by a parabola passing through consec-
utive points Pi, Pi+1 and Pi+2

A parabola y = Ax2 + Bx +C passing through P0(−h, y0),

P(0, y1) and P2(h, y2) where h = 4x =
b − a

n
. Then y0 = Ah2 − Bh +C

y1 = C
y2 = Ah2 + Bh +C

We have∫ h

−h
Ax2 + Bx +C dx = 2

∫ h

0
Ax2 +C dx =

h
3

(2Ah2 + 6C) =
h
3

(y0 + 4y1 + y2)

∫ b

a
f (x) dx ≈ h

3
[
(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · · + (yn−2 + 4yn−1 + yn)

]
=

h
3
[
y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yn−2 + 4yn−1 + yn

]
=

h
3
[

f (x0) + 4 f (x1) + 2 f (x2) + · · · + 2 f (xn−2) + 4 f (xn−1) + f (xn)
]
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Example 7.7.4. Use Simpson’s Rule with n = 10 to approximate
∫ 2

1

1
x

dx.

Proof. Let f (x) =
1
x

and 4x = 0.1. Then by the Simpson’s Rule,∫ 2

1

1
x

dx ≈ S 10 =
0.1
3
[

f (1) + 4 f (1.1) + 2 f (1.2) + 4 f (1.3) + 2 f (1.4) + 4 f (1.5) + 2 f (1.6)

+4 f (1.7) + 2 f (1.8) + 4 f (1.9) + f (2)
]
≈ 0.693150.

□

Remark.
∫ 2

1

1
x

dx = ln 2 ≈ 0.693147. Then T10 ≈ 0.693771 and M10 ≈ 0.692835. S 10 is more

accurate then T10 and M10. In fact,

S 2n =
1
3

Tn +
2
3

Mn.

Usually, Tn and Mn have different signs and
∣∣EM

∣∣ ≈ 1
2

∣∣ET
∣∣.

Observe that ES 2n ≈
1

16
ES n . Therefore the error bounds should have factor

1
n4 .

■ Error Bound for Simpson’s Rule

Suppose that
∣∣ f (4)(x)

∣∣ ≤ K for a ≤ x ≤ b. If ES is the error involved in using Simpson’s
Rule, then ∣∣ES

∣∣ ≤ K(b − a)5

180n4 .

Example 7.7.5. How large should we take n in order to guarantee that the Simpson’s Rule

approximation for
∫ 2

1

1
x

dx is accurate to within 0.0001?

Proof. Let f (x) =
1
x

and f (4)(x) =
24
x5 . We have

∣∣ f (4)(x)
∣∣ < 24 for 1 ≤ x ≤ 2.

∣∣ES
∣∣ ≤ 24 · 1

180n4 < 0.0001 ⇒ n4 >
24

180 · 0.0001
⇒ n >

1
4√0.00075

≈ 6.04.

We take n = 8 since n must be an even number. □

Recall that for the same accuracy, n = 41 for trapezoidal Rule and n = 29 for Midpoint
Rule.
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Example 7.7.6. (a) Use Simpson’s Rule with n = 10 to approximate the integral
∫ 1

0
ex2

dx.

(b) Estimate the error involved in the approximation.

Proof. (a) Let n = 10 and 4x = 0.1.∫ 1

0
ex2

dx ≈ S 10 =
0.1
3
[

f (0) + 4 f (0.1) + 2 f (0.2) + · · · + 2 f (0.8) + 4 f (0.9) + f (1)
]

≈ 1.42681.

(b) f (4)(x) = (12 + 48x2 + 16x4)ex2 ≤ 76e for 0 ≤ x ≤ 1. Then∣∣ES
∣∣ ≤ 76e · 15

180(10)4 ≈ 0.000115.

Hence, ∫ 1

0
ex2

dx ≈ 1.463.

□

Homework 7.7. 9, 13, 17, 21, 41

7.8 Improper Integrals

In the previous sections, we discuss the definite integral
∫ b

a
f (x) dx of f under the assumptions

that f is defined on a finite interval [a, b] and f does not have an infinite discontinuity. In the
presect section, we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where f has an infinite discontinuity in [a, b]. In either case the
integral is called an “improper integral”.

o Type1: Infinite Intervals

Let f be a function defined on an infinite interval such as [a,∞], (−∞, a] or (−∞,∞).

Example 7.8.1. Let f (x) =
1
x2 be defined on [1,∞).

So far, we can only evaluate the integral of f on an finite in-
terval. Fix t > 1, we have the area of the region bounded by

y =
1
x2 , x-axis, x = 1 and x = t

A(t) =
∫ t

1

1
x2 dx = −1

x

∣∣∣t
1
= 1 − 1

t
.

To evaluate the area of the region bounded by y =
1
x2 , x-axis and x = 1, we let t tend to infinity

and consider the limit

lim
t→∞

A(t) = lim
t→∞

∫ t

1

1
x2 dx = lim

t→∞
(1 − 1

t
) = 1.
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Note. In the above process, the integral
∫ t

1

1
x2 dx should be defined for all t > 1.

Definition 7.8.2. (Improper Integral of Type1)

(a) If f is defined on [a,∞) and
∫ t

a
f (x) dx exists for every number t ≥ a, then∫ ∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx

provided this limit exists.

(b) If f is defined on (−∞, b] and
∫ b

t
f (x) dx exists for every number t ≤ b, then∫ b

−∞
f (x) dx = lim

t→−∞
f (x) dx

proveided this limit exists.

We call the above improper integrals
∫ ∞

a
f (x) dx and

∫ b

−∞
f (x) dx “convergent” if the cor-

responding limit exists and “divergent” if the limit does not exists.

(c) If f is defined on (−∞,∞) and both
∫ ∞

a
f (x) dx and

∫ a

−∞ f (x) dx are convergent, then we
definte ∫ ∞

−∞
f (x) dx =

∫ a

−∞
f (x) dx +

∫ ∞

a
f (x) dx.

In part (c) any real number a can be used.

Remark. If f (x) ≥ 0 and the integral
∫ ∞

a
f (x) dx is convergent, we define the area of the region

S =
{

(x, y)
∣∣x ≥ a, 0 ≤ y ≤ f (x)

}
to be

A(S ) =
∫ ∞

a
f (x) dx.
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Example 7.8.3.

(1) Discuss for what values of p the integral
∫ ∞

1

1
xp dx is convergent or divergent.

Proof. ∫ ∞

1

1
xp dx = lim

t→∞

∫ t

1

1
xp dx

=


lim
t→∞

Ä 1
1 − p

· 1
xp−1

ä∣∣∣t
1

p , 1

lim
t→∞

Ä
ln |x|
ä∣∣∣t

1
p = 1

=


1

1 − p
lim
t→∞

Ä 1
tp−1 − 1

ä
p , 1

lim
t→∞

ln t p = 1

=


1

1 − p

Ä
lim
t→∞

1
tp−1 − 1

ä
=


∞ p < 1

1
p − 1

p > 1

∞ p = 1

□

Conclusion:
∫ ∞

1

1
xp dx is convergenet if p > 1 and divergent if p ≤ 1.

(2) Evaluate
∫ 0

−∞
xex dx.
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Proof. ∫ 0

−∞
xex dx = lim

t→−∞

∫ 0

t
xex dx I.B.P

= lim
t→−∞

î
xex

∣∣∣0
t
−
∫ 0

t
ex dx

ó
= lim

t→−∞

î
− tet − ex

∣∣∣0
t

ó
= lim

r→−∞

î
− tet − 1 + et

ó
= −1.

□

(3) Evaluate
∫ ∞

−∞

1
1 + x2 dx.

Proof. ∫ ∞

−∞

1
1 + x2 dx =

∫ 0

−∞

1
1 + x2 dx +

∫ ∞

0

1
1 + x2 dx.

Consider ∫ ∞

0

1
1 + x2 dx = lim

t→∞

∫ t

0

1
1 + x2 dx = lim

t→∞
tan−1 x

∣∣∣t
0

= lim
t→∞

tan−1 t =
π

2
.

∫ 0

−∞

1
1 + x2 dx = lim

t→−∞

∫ 0

t

1
1 + x2 dx = lim

t→−∞
tan−1 x

∣∣∣0
t

= lim
t→−∞

(− tan−1 t) =
π

2
.

Hnece, ∫ ∞

−∞

1
1 + x2 dx =

∫ 0

−∞

1
1 + x2 dx +

∫ ∞

0

1
1 + x2 dx =

π

2
+
π

2
= π.

Note that f (x) =
1

1 + x2 is an even function.

□

Remark. (Wrong Steps)

(1) We cannot replace “∞” by x directly. For example,
∫ ∞

1

1
x2 dx = −1

x

∣∣∣∞
1
= 0 − (−1) = 1
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(2) When integrating a function over (−∞,∞), the improer integral cannot write as lim
t→∞

∫ t

−t
f (x) dx.

For example,

∫ ∞

−∞

1
1 + x2 dx =

wrong

lim
t→∞

∫ t

−t

1
1 + x2 dx = lim

t→∞
tan−1 x

∣∣∣t
−t

= lim
t→∞

tan−1 t − tan−1(−t)

=
π

2
− (−π

2
) = π

o Type2: Discontinuous Integrands

Let f be a function defined on a finite interval [a, b) but has a vertical asymptote at b.

In Type1 integrals, the regions extended indef-
initely in a horizontal direction. In type2 inte-
grals, the regioin is infinite in a vertical direc-
tion.

For a ≤ t < b, the area of the region S under the graph y = f (x) from x = a to x = t is

A(t) =
∫ t

a
f (x) dx.

If the limit lim
t→b−

A(t) = lim
t→b−

∫ t

a
f (x) dx = A exists, we say that the area of the region S is A.

Definition 7.8.4. (Improper Integral of Type 2)

(a) If f is defined on [a, b) and
∫ t

a
f (x) dx exists for all a ≤ t < b, then

∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx

if this limit exists.

(b) If f is defined on (a, b] and
∫ b

t
f (x) dx exists for all a < t ≤ b, then

∫ b

a
f (x) dx = lim

t→a+

∫ b

t
f (x) dx

if this limit exists.
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We call the improper integral
∫ b

a
f (x) dx “convergent” if the corresponding limit exists and

“divergent” if the limit does not exist.

(c) For a < c < b, if f has an (infinite) discontinuity at c, if

both
∫ c

a
f (x) dx and

∫ b

c
f (x) dx converge then we say that∫ b

a
f (x) dx converges and

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Example 7.8.5.

(1) Evaluate
∫ 5

2

1
√

x − 2
dx.

Proof. The function f (x) =
1

√
x − 2

has the vertical

asymptote x = 2. Thus,∫ 5

2

1
√

x − 2
dx = lim

t→2+

∫ 5

t

1
√

x − 2
dx

= lim
t→2+

2
√

x − 2
∣∣∣5
t

= lim
t→2+

2(
√

3 −
√

t − 2) = 2
√

3.

□

(2) Evaluate
∫ π

2

0
sec x dx.

Proof. The function f (x) = sec x has the vertical
asymptote x = π2 . Thus,∫ π

2

0
sec x dx = lim

t→( π2 )−

∫ t

0
sec x dx

= lim
t→( π2 )−

ln | sec x + tan x|
∣∣∣t
0

= lim
t→( π2 )−

[ln | sec x + tan x| − ln 1] = ∞.

□

(3) Evaluate
∫ 3

0

1
x − 1

dx.
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Proof. The function f (x) =
1

x − 1
has the vertical

asymptote x = 1. Thus,∫ 1

0

1
x − 1

dx = lim
t→1−

∫ t

0

1
x − 1

dx

= lim
t→1−

(ln |x − 1|)
∣∣∣t
0

= lim
t→1−

ln |t − 1| = −∞.

Hence,
∫ 3

0

1
x − 1

dx is divergent. □

Wrong method:
∫ 3

0

1
x − 1

dx = (ln |x − 1|)
∣∣∣3
0
= ln 2 − ln 1 = ln 2.

(4) Evaluate
∫ 1

0
ln x dx.

Proof. The function f (x) = ln x has the vertical
asymptote x = 0. Thus,∫ 1

0
ln x dx = lim

t→0+

∫ 1

t
ln x dx

= lim
t→0+

[x ln x − x]
∣∣∣1
t

= lim
t→0+

(−t ln t − 1 + t) L.H.
= −1.

□

(5) Discuss for what values of p the integral
∫ 1

0

1
xp dx is convergent or divergent.

Proof. When p ≤ 0, f (x) =
1
xp is continuous on [0, 1]. Hence, the integral is convergent

and
∫ 1

0

1
xp dx =

1
1 − p

. Consider the cases p > 0, then function f (x) =
1
xp has a vertical
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asymptote x = 0. Then

∫ 1

0

1
xp dx = lim

t→0+

∫ 1

t

1
xp dx =


1

1 − p
lim
t→0+

1
xp−1

∣∣∣1
t

p , 1

lim
t→0+

(ln |x|)
∣∣∣1

t
p = 1

=


1

1 − p
lim
t→0+

(1 − t1−p) =


1

1 − p
p < 1

∞ p > 1

lim
t→0+

(− ln t) = ∞ p = 1

□

Conclusion:
∫ 1

0

1
xp dx is convergent if p < 1 and divergent if p ≥ 1.

o Comparison Theorem

Note. For some definite integrals, it is impossible (difficult) to find their exact values but we
can still determine whether these integrals are convergent or divergent.

Theorem 7.8.6. (Comparison Theorem) Suppose that f and g satisfy 0 ≤ g(x) ≤ f (x) for every
x ≥ a.

(a) If
∫ ∞

a
f (x) dx is convergent, then

∫ ∞

a
g(x) dx is con-

vergent.

(b) If
∫ ∞

a
g(x) dx is divergent, then

∫ ∞

a
f (x) dx is di-

vergent.

Example 7.8.7.

(1) Determine whether the improper integral
∫ ∞

0
e−x2

dx is convergent or divergent.

Proof.
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Since f (x) = e−x2
is continuous on [0, 1], it is integrable on

[0, 1]. On the other hand, 0 ≤ e−x2 ≤ e−x for every x ≥ 1 and∫ ∞

1
e−x dx = lim

t→∞

∫ t

1
e−x dx = lim

t→∞
(−ex)

∣∣∣t
1
= e−1.

By the Comparison Theorem, the improper integral
∫ ∞

1
e−x2

dx

is convergent. Hence,∫ ∞

0
e−x2

dx =
∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx

is also convergent. In fact,
∫ ∞

0
e−x2

dx =
√
π

2
.

□

(2) Determine whether the improper integral
∫ ∞

1

1 + e−x

x
dx is convergent or divergent.

Proof.

Since 0 <
1
2x
<

1 + e−x

x
for every 1 ≤ x < ∞ and

∫ ∞

1

1
2x

dx =
1
2

lim
t→∞

∫ t

1

1
x

dx =
1
2

lim
t→∞

ln t = ∞.

By the Comparison Theorem, the improper integral∫ ∞

1

1 + e−x

x
dx is divergent.

□

Homework 7.8. 15, 19, 24, 29, 32, 34,
Type 1

36, 38, 46, 48,
Type 2

50, 54, 57, 64, 69, 70, 80, 83
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Further Applications of Integration
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8.1 Arc Length

In the present section, we want to evaluate the arc length of a curve which is the graph of a
smooth function.

Question: For a given curve C, what is the length of C?
If the curve is a polygon, it is easy to find its length.

Question: How about the length of a general curve?

We try to approximate the length of a general curve by polygons and take a limit as the
numbers of thy polygon is increased.

Suppose that f is a function defined on [a, b] and C is the graph of f with equation y =
f (x). Let P =

{
x0, x1, · · · , xn

}
be a partition of [a, b] and the point Pi

(
xi, f (xi)

)
are points

on C. Consider the polygon with vertices P0, P1, · · · , Pn. Then the length L of the curve C is
approximately the length of the polygon

n∑
i=1

∣∣Pi−1Pi
∣∣ = n∑

i=1

√
(xi − xi−1)2 +

[
f (xi) − f (xi−1)

]2
.

As n increases, the approximation gets better

59
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Definition 8.1.1. We define the“length” L of the curve with equation y = f (x), a ≤ x ≤ b, as
the limit of the lengths of these approximating polygonal paths (if the limit exists). That is,

L = lim
n→∞

n∑
i=1

∣∣Pi−1Pi
∣∣

where
∣∣Pi−1Pi

∣∣ is the distance between the points Pi−1 and Pi.

Unfortunately, for a general function f , the approximating length ℓ(P, f ) is not easy to ob-
tain. Therefore, from now on, we assume that f has a (continuous) derivative.

The length of the segment Pi−1Pi is√
(4xi)2 + (4yi)2 =

√
(xi − xi−1)2 + [ f (xi) − f (xi−1)]2

M.V.T
=

»
(xi − xi−1)2 + [ f ′(x∗i )(xi − xi−1)]2

=
»

1 + [ f ′(x∗i )]2 4x.

The length of the curve C with the equation y = f (x) on [a, b] is

L = lim
n→∞

n∑
i=1

»
1 + [ f ′(x∗i )]2 4x =

∫ b

a

√
1 + [ f ′(x)]2 dx.

The last equality is followed the hypothesis that f is continuously differentiable.

■ Arc Length Formula

If f ′(x) is continuous on [a, b], then the length of the curve y = f (x), a ≤ x ≤ b, is

L =
∫ b

a

√
1 + [ f ′(x)]2 dx.

The expression in Leibniz notation is

L =
∫ b

a

…
1 +
Ädy

dx

ä2
dx.
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Example 8.1.2. Find the arc length of the semicubical parabola y2 = x3 between (1, 1) and
(4, 8).

Proof.

The curve between (1, 1) and (4, 8) satisfies the

equation y = x3/2. Then
dy
dx
=

3
2

x1/2. The arc
length of the curve is

L =
∫ 4

1

…
1 +

(3
2

x
1
2
)2 dx =

8
27

u
3
2

∣∣∣10

13
4

=
1

27
(80
√

10−13
√

13).
□

Suppose that the curve C has equation x = g(y), c ≤ y ≤ d. Then the arc length of C is

L =
∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

 
1 +
Ädx

dy

ä2
dy.

Example 8.1.3. Find the arc length of the curve C with the equation y2 = x from (0, 0) to (1, 1).

Proof.

Since the curve has equation x = y2, then
dx
dy
= 2y. The arc

length of the curve is

L =

∫ 1

0

√
1 + (2y)2 dy

=

∫ tan−1 2

0

√
1 + tan2 θ · 1

2
sec2 θ dθ (y =

1
2

tan θ)

=
1
4

Ä
sec θ tan θ + ln | sec θ + tan θ|

ä∣∣∣tan−1 2

0

=

√
5

2
+

1
4

ln(
√

5 + 2).
□

Sometimes, the integral
∫ b

a

√
1 +

(
f ′(x)

)2 dx is difficult to find. Hence, we may use the

approximation for the integral.

Example 8.1.4. (a) Set up an integral for the length of the arc of the hyperbola xy = 1 from
the point (1, 1) to the point (2, 1

2 ).

Proof. Since y =
1
x

, we have
dy
dx
= − 1

x2 . Then the arc length is

L =
∫ 2

1

…
1 +

1
x4 dx.

□
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(b) Use Simpson’s Rule with n = 10 to estimate the ar length.

Proof.

L =
∫ 2

1

…
1 +

1
x4 dx ≈ 0.1

3

î
f (1) + 4 f (1.1) + 2 f (1.2) + · · · + 4 f (1.9) + f (2)

ó
≈ 1.1321

□

■ Arc Length Function

Suppose that a smooth curve C has the equation y = f (x), a ≤ x ≤ b. Let s(x) be the
distance along C from the initial point P0

(
a, f (a)

)
to the point Q

(
x, f (x)

)
. Then s is a function,

called the “arc length function” and

s(x) =
∫ x

a

√
1 + [ f ′(t)]2 dt.

By the Fundamental Theorem of Calculus,

ds
dx
=

√
1 + [ f ′(x)]2 =

…
1 +
Ädy

dx

ä2
.

This shows that the rate of change of s with respect to x is
always at least 1 and is equal to 1 when f ′(x), the slope of the
curve, is 0. The differential of arc length is

ds =

…
1 +
Ädy

dx

ä2
dx.

It is sometimes written in the symmetric form

(ds)2 = (dx)2 + (dy)2.

Similarly,

ds =

 
1 +
Ädx

dy

ä2
dy.
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Hence, the arc length along the curve C from
(
a, f (a)

)
to

(
t, f (t)

)
is

L =
∫ t

a

…
1 +
Ädy

dx

ä2
dx︸                 ︷︷                 ︸

ds

=

∫ t

a
1 ds = s(x)

∣∣∣t
a
= s(t) − s(a) = s(t).

Example 8.1.5. Find the arc length function for the curve y = x2 − 1
8 ln x taking P0(1, 1) as the

starting point.

Proof. The rate of change of y with respect to x is

dy
dx
= 2x − 1

8x
.

The arc length function is

s(x) =
∫ x

1

…
1 + (2t − 1

8t
)2 dt =

∫ x

1

…
(2t +

1
8t

)2 dt

=

∫ x

1
2t +

1
8t

dt = x2 +
1
8

ln x − 1.

The arc length from (1, 1) to (3, f (3)) is

s(3) = 32 +
1
8

ln 3 − 1 = 8 +
ln 3
8
.

□

Homework 8.1. 9, 13, 17, 21, 25, 41, 43, 46, 53

8.2 Area of a Surface of Revolution
In the present section, we want to evaluate the area of a surface of revolution which is formed
when a curve is rotated about a line. Let’s look at some simple cases.
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Area = 2πrh.

θ =
2πr
ℓ

Area =
1
2
ℓ2θ = πrℓ.

r
R
=

ℓ1
ℓ + ℓ1

⇒ ℓ1 =
rℓ

R − r

Area = πR(ℓ + ℓ1) − πrℓ
= π(R − r)ℓ1 + πRℓ
= π(R + r)ℓ.

Consider the surface which is obtained by rotating the curve y = f (x), a ≤ x ≤ b, about
the x-axis where f is positive and has a continuous derivative. Let P = {x0, x1, · · · , xn} be a
partition of [a, b]. The points P0

(
x0, f (x0)

)
, · · · , Pn

(
xn, f (xn)

)
are points on the curve y = f (x).

The surface of revolution S is divided into several “bands”. The surface area of a band can
be calculated in terms of its radius and its arc length.
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Area = π
(

f (xi) + f (xi−1)
)√

(xi − xi−1)2
[

f (xi) − f (xi−1)
]2

M.V.T
= π

(
f (xi) + f (xi−1)

)√
(4xi)2 +

[
f ′(x∗i )4xi

]2

= π
(

f (xi) + f (xi−1)
)»

1 + [ f ′(x∗i )]2 4xi

≈ 2π f (x∗i )
»

1 + [ f ′(x∗i )]2 4xi

Hence, the sufrace area of the revolution is

S = lim
n→∞

n∑
i=1

2π f (x∗i )
»

1 + [ f ′(x∗i )]24xi =

∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx

(Leibniz notation) =

∫ b

a
2πy

…
1 +
Ädy

dx

ä2
dx

(arc length notation) =

∫ b

a
2πy ds (where ds =

…
1 +
Ädy

dx

ä2
dx )

Example 8.2.1. The curve y =
√

4 − x2, −1 ≤ x ≤ 1, is an arc of the circle x2 + y2 = 4. Find
the area of the surface obtained by rotating this arc about the x-axis.

Proof. Since y =
√

4 − x2, then
dy
dx
=

−x
√

4 − x2
. The surface area is

S =

∫ 1

−1
2πy

…
1 +
Ädy

dx

ä2
dx

= 2π
∫ 1

−1

√
4 − x2

 
1 +
Ä −x
√

4 − x2

ä2
dx

= 2π
∫ 1

−1
2 dx = 8π.

□

Similarly, the surface is obtained by rotating the curve x = g(y), c ≤ y ≤ d, about the y-axis.
The surface area is

S =

∫ d

c
2πg(y)

√
1 + [g′(y)]2 dy

=

∫ d

c
2πx

 
1 +
Ädx

dy

ä2
dy

=

∫ d

c
2πx ds (ds =

 
1 +
Ädx

dy

ä2
dy )
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Note. Thinking of 2πy or 2πx as the circumference of a circle traced out by the point (x, y) on
the curve as it is rotated about the x-axis or y-axis respectively.

Example 8.2.2. The portion of the curve x =
2
3

y3/2 between y = 0 and y = 3 is rotated about
the x-axis. Find the Area of the resulting surface.

Proof. Observe the equation that x is given as a function of y, we will use y as the variable of

integration and ds =

 
1 +

(dx
dy

)2 dy. The surface area is

S =

∫ 3

0
2πy

 
1 +
Ädx

dy

ä2
dy

= 2π
∫ 3

0
y
√

1 +
(
y1/2

)2 dy = 2π
∫ 3

0
y
√

1 + y

= 2π
∫ 4

1
(u − 1)

√
u du (set u = 1 + y)

= 2π
∫ 4

1
(u3/2 − u1/2) du

= 2π
[2

5
u5/2 − 2

3
u3/2]4

1 =
232
15
π

□

Example 8.2.3. The arc of the parabola y = x2 from (1, 1) to (2, 4) is rotated about the y-axis.
Find the area of the resulting surface.

Proof. Method 1: Since y = x2, then
dy
dx
= 2x. The surface area is
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S =

∫
2πx dx =

∫ 2

1
2πx

…
1 +
Ädy

dx

ä2
dx

= 2π
∫ 2

1
x
√

1 + 4x2 dx

=
π

4
[2

3
u

3
2
]17

5 =
π

6
(17
√

17 − 5
√

5).

Method 2 : Since x =
√

y, then
dx
dy
=

1
2
√

y
. The surface area is

S =

∫
2πx ds =

∫ 4

1
2π
√

y

 
1 +
Ädx

dy

ä2
dy

= π

∫ 4

1

√
4y + 1 dy

=
π

4

∫ 17

5

√
u du =

π

6
(17
√

17 − 5
√

5).

□

Example 8.2.4. Find the area of the surface generated by rotating the curve y = ex, 0 ≤ x ≤ 1,
about the x-axis.

Proof. Since y = ex, then
dy
dx
= ex. The surface area is

S =

∫
2πy ds =

∫ 1

0
2πex

…
1 +
Ädy

dx

ä2
dx

= 2π
∫ 1

0
ex
√

1 + e2x dx

(u = ex) = 2π
∫ e

1

√
1 + u2 du

(u = tan θ) = 2π
∫ tan−1 e

π/4
sec3 θ dθ

= π
î

sec θ tan θ + ln
∣∣ sec θ + tan θ

∣∣ótan−1 e

π/4

= π
î
e
√

1 + e2 + ln(e +
√

1 + e2) −
√

2 − ln(
√

2 + 1)
ó

≈ 22.943.

□

Homework 8.2. 7, 13, 14, 16, 17, 19, 33, 38(原題有誤，as in Exercise 5.2.75), 41
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So far, we have studied the plane curves which area the graphs of explicit function (y = f (x)
or x = g(y)) or implicit functions ( f (x, y) = 0). In the present chapter, we wiil discuss those
curves which are given in terms of a third variable t (x = f (t) and y = g(t)).

10.1 Curves Defined by Parametric Equations

When a particle moves on a plane along the curve C, in gen-
eral, the path may not be described as an equation of the form
y = f (x) (or x = g(y)). Suppose that x and y are both given
as functions of a third variable t (called a “parameter”). The
equation

x = f (t), y = g(t)

is called a “parametric equation”.

Each value of t determines a point (x, y) which we can plot in a coordinate plane. As t
varies, the point (x, y) =

(
f (t), g(t)

)
varies and traces out a curve C. We call the curve C :

(x, y) =
(

f (t), g(t)
)

a “parametric curve”.

Example 10.1.1. Sketch and identify the curve defined by the parametric equation

x = t2 − 2t y = t + 1

69
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t = y − 1⇒ x = (y − 1)2 − 2(y − 1) = y2 − 4y + 3 (Cartesian equation)

We sometimes restrict t to lie in a finite interval.
Example 10.1.2.

x = t2 − 2t y = t + 1 0 ≤ t ≤ 4

Example 10.1.3.

Observe the parametric equation

x = cos t y = sin t 0 ≤ t ≤ 2π

represents the circle x2 + y2 = 1. As t increases from 0 to 2π,
the point (x, y) = (cos t, sin t) moves once around the circle in
the counterclockwise direction starting from the point (1, 0).

Example 10.1.4.

The parametric equation

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π

still represents the unit circle x2 + y2 = 1. But as t increases
from 0 to 2π, the point (x, y) = (sin 2t, cos 2t) starts at (0, 1)
and moves twice around the circle in the clockwise direction.
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Remark. If we regard a curve as a set of points, it can be represented by different parametric
equations. Thus, we distinguish between a “curve: a set of points” and a “parametric curve:
the points are traced in a particular way.”

Example 10.1.5. Find parametric equations for the circle with center (h, k) and radius r.

Proof. We start from the circle x = cos t, y = sin t. Multiply the expressions for x and y by
r, we get x = r cos t, y = r sin t and it represents a circle with radius r and center the origin
traced counterclockwise. Then we shift hunits in the x-direction and k units in the y-direction
and obtain parametric equations of the circle with center (h, k) and raidus r.

□

Example 10.1.6. (Straight Line)

The parametric equation of a straight line per-
pendicular the x-axis and passing (x0, 0) is

x = x0 y = t.

Example 10.1.7. (Ellipsoid)

The parametric equation of an ellipsoid with
center (h, k) and two axes wth lengths a and b
is

x = h + a cos t y = k + b sin t 0 ≤ t ≤ 2π.

Example 10.1.8. (The Cycloid) The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a “cycloid”.
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x = |OT | − |PQ| = rθ − r sin θ = r(θ − sin θ)
y = |CT | − |CQ| = r − r cos θ = r(1 − cos θ).

• Physical problems

Example 10.1.9. Two particles move along the curves C1 and C2, respectively, with parametric
equations

C1 :

{
x =

16
3
− 8

3
t

y = 4t − 5
t ≥ 0, C2 :


x = 2 sin(

1
2
πt)

y = −3 cos(
1
2
πt)

t ≥ 0

(a) Do the two curves intersect?

Proof. The Cartesian equations of C1 and C2 are C1 : 3x+2y−6 = 0 and C2 :
x2

4
+

y2

9
= 1.

We can solve the two equations and find the points where the the curves intersect at (2, 0)
and (0, 3). □
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(b) Do the two particles collide?

Proof. Find t ≥ 0 such that both
16
3
− 8

3
t = 2 sin(

1
2
πt) and 4t − 5 = −3 cos(

1
2
πt). We have

t = 2 and the two particle collide at (0, 3) when t = 2. □

Homework 10.1. 4, 10, 13, 21, 27, 30, 34, 37, 46

10.2 Calculus with Parametric Curves
In the present section, we will apply the methods of calculus to the parametric curves. We will
solve problems involving tangents, areas, arc length, and surface area.

o Tangents

Suppose that f and g are differentiable functions and C is a curve with parametric equation
x = f (t), y = g(t). We want to find the tangent line of the curve C at a given point. In order to

find the equation of the tangent line, it suffices to obtain its slope
dy
dx

.

The slope of the secant line connecting(
x(t0), y(t0)

)
and

(
x(t0 + h), y(t0 + h)

)
is

y(t0 + h) − y(t0)
x(t0 + h) − x(t0)

=

y(t0+h)−y(t0)
h

x(t0+h)−x(t0)
h

h→0−→ y′(t0)
x′(t0)

=
dy/dt
dx/dt

∣∣∣
t=t0

By the Chain Rule,
dy
dt
=

dy
dx
· dx

dt
.

If
dx
dt
, 0, we have

dy
dx
=

dy/dt
dx/dt

Remark.

(1) The rate of change of y with respect to x,
dy
dx

, is followed by the Chain Rule. It is not
necessary to express y in terms of x.

(2) The curve has a horizontal tangent line when
dy
dt
= 0 and

dx
dt
, 0.

(3) The curve has a vertical tangent line when
dy
dt
, 0 and

dx
dt
= 0.
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(4) How about
dx
dt
= 0 =

dy
dt

? It may need further discussion.

(5) To discuss the concavity of a curve, we consider

d2y
dx2 =

d
dx

Ädy
dx

ä
=

d
dt

Ä
dy
dx

ä
dx
dt

.

Note that
d2y
dt2 ,

d2y
dt2

d2 x
dt2

.

Example 10.2.1. A curve C is defined by the parametric equations x = t2, y = t3 − 3t.

(a) Show that C has two tangents at the point (3, 0) and find their equations.

Proof. Find the value(s) of t at which the curves passes (3, 0).

t2 = 3 ⇒ t = ±
√

3 and t3 − 3t = 0 ⇒ t = 0,±
√

3.

Hence, when t = ±
√

3, the curve passes (3, 0). Also,
dy
dt
= 3t2 − 3 and

dx
dt
= 2t. Then

dy
dt

∣∣∣
t=−
√

3
=

dy/dt
dx/dt

∣∣∣
t=−
√

3
=

3
2

(t − 1
t
)
∣∣∣
t=−
√

3
= −
√

3.

The equation of the tangent line is y = −
√

3(x − 3). Similarly,
dy
dx

∣∣∣√
3
=

3
2

(t − 1
t
)
∣∣∣
t=
√

3
=
√

3.

The equation of the tangent line is y =
√

3(x − 3). □

(b) Find the points on C where the tangent is horizontal or vertical.

Proof. (i) Horizontal tangent line: Let
dy
dt
= 3t2 − 3 = 0. Then t±1. Also,

dx
dt
= 2t , 0

when t = ±1. Hence, when t = 1,
(

x(1), y(1)
)
= (1,−2). The curve has a horizontal

tangent line y = −2. When t = −1,
(

x(−1), y(−1)
)
= (1, 2). The curve has a horizontal

tangent line y = 2.

(ii) Vertical tangent line: Let
dx
dt
= 2t = 0. Then t = 0. Also,

dy
dt
= 3t2 − 3 , 0 when

t = 0 and
(

x(0), y(0)
)
= (0, 0). The curve has a vertical tangent line x = 0.

□

(c) Determine where the curve is concave upward or downward.

Proof. Consider

d2y
dx2 =

d
dx

Ädy
dx

ä
=

d
dt

Ä
dy/dt
dx/dt

ä
dx
dt

=

d
dt [

3
2 (t − 1

t )]
2t

=
3(t2 + 1)

4t3 .
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Then
d2y
dx2 > 0 as t > 0 and

d2y
dx2 < 0 as t < 0.

The curve is concave upward when t > 0 and concave downward when t < 0. □

(d) Sketch the curve

Proof.

□

Example 10.2.2.

(a) Find the tangent to the cycloid x = r(θ − sin θ), y = r(1 − cos θ) at the point where θ =
π

3
.

Proof. Consider
dy
dx
=

dy/dθ
dx/dθ

=
r sin θ

r(1 − cos θ)
=

sin θ
1 − cos θ

.

When θ =
π

3
,
(

x(θ), y(θ)
)
=
(
r(
π

3
−
√

3
2

),
r
2
)

and
dy
dx

∣∣∣
θ= π3

=

√
3/2

1 − 1
2

=
√

3. Therefore, when

θ =
π

3
, the tangent line is

y − r
2
=
√

3
Ä

x − r(
π

3
−
√

3
2

)
ä
.

□

(b) At what points is the tangent horizontal? When is it vertical?

Proof. The function sin θ = 0 or 1 − cos θ = 0 occurs only when θ = nπ, n ∈ Z.
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(i) When n = 2m − 1 is odd and θ = nπ,
dx
dθ
= r(1 − cos θ) , 0. The curve has horizontal

tangent lines at
Ä

x
(
(2m − 1)π

)
, y
(
(2m − 1)π

)ä
=
(
(2m − 1)πr, 2r

)
, m ∈ Z.

(ii) When n = 2m is even and θ = nπ,
dx
dθ
= 0. Consider the limit

lim
θ→2mπ+

dy
dx
= lim
θ→2mπ+

sin θ
1 − cos θ

L.H
= lim
θ→2mπ+

cos θ
sin θ

= ∞.

Similarly, lim
θ→2mπ−

dy
dx
= −∞. The curve has vertical tangent line at

(
x(2mπ), y(2mπ)

)
=

(2mπr, 0).

□

o Areas

Recall that, for a function F(x) ≥ 0, the area under the cruve y = F(x) from a to b is

A =
∫ b

a
F(x) dx. Suppose that a curve has the parametric equation x = f (t) and y = g(t),

α ≤ t ≤ β, we want to calculate an area formula. Let a = f (α) and b = f (β). Then the area of
the region under the curve is

A =
∫ b

a
y dx =

∫ β

α

y
dx
dt

dt =
∫ β

α

g(t) f ′(t) dt.

Example 10.2.3. Find the area under one arch of the cycloid

x = r(θ − sin θ) y = r(1 − cos θ)

Proof.

Using the Substitution Rule with y = r(1−cos θ)
and dx = r(1 − cos θ) dθ, the area of one arch is

A =

∫ 2πr

0
y dx =

∫ 2π

0
r(1 − cos θ)r(1 − cos θ) dθ

= r2(
3
2
· 2π) = 3πr2.

□
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o Arc Length

Let C be a curve with equation y = F(x), a ≤ x ≤ b. If F′(x) is continuous, the arc length of
C is

L =
∫ b

a

…
1 +
Ädy

dx

ä2
dx =

∫ b

a

√
1 +

(
F′(x)

)2 dx.

We want to calculate the arc length of C with parametric equation x = f (t), y = g(t), α ≤ t ≤ β.
(i) If C can be expressed as the graph of a function y = F(x), it is traversed once from left to

right as t increases (i.e.
dx
dt
= f ′(t) > 0). The arc length is

L =

∫ b

a

…
1 +
Ädy

dx

ä2
dx

=

∫ β

α

 
1 +
Ä dy/dt

dx/dt

ä2 Ädx
dt

ä
dt

=

∫ β

α

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt

(ii) If C cannot be expressed in the form y = F(x), we take a partition P = {t0, t1, · · · , tn} of
[α, β]. Let Pi

(
f (ti), g(ti)

)
, i = 1, · · · , n, be point on the curve C. Then the length of the

segment Pi−1Pi is √
[ f (ti) − f (ti−1)]2 + [g(ti) − g(ti−1)]2

By the polygonal approximations and the mean value theorem,

n∑
i=1

|Pi−1Pi| =
n∑

i=1

√
[ f (ti) − f (ti−1)]2 + [g(ti) − g(ti−1)]2

=

n∑
i=1

»
[ f ′(t∗i )4t]2 + [g′(t∗∗i 4t)]2

=

n∑
i=1

»
[ f ′(t∗i )]2 + [g′(t∗∗i )]2 4t

The arc length of C is

L = lim
n→∞

n∑
i=1

»
[ f ′(t∗i )]2 + [g′(t∗∗i )]2 4t

=

∫ β

α

√
[ f ′(t)]2 + [g′(t)]2 dt

=

∫ β

α

…Ädx
dt

ä2
+
Ädy

dx

ä2
dt

Theorem 10.2.4. If a curve C is described by the parametric equation x = f (t), y = g(t),
α ≤ t ≤ β where f ′ and g′ are continuous on [α, β] and C is traversed exactly once as t
increases from α to β, then the arc length of C is

L =
∫ β

α

…Ädx
dt

ä2
+
Ädy

dx

ä2
dt =

∫ β

α

√
[ f ′(t)]2 + [g′(t)]2 dt.
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Note. The formula is consisent with the general formulas L =
∫

1 ds and (ds)2 = (dx)2 + (dy)2.

Example 10.2.5. Compute the circumference of a unit circle by expressing it as the parametric
equation

x = cos t y = sin t 0 ≤ t ≤ 2π

Proof. We have
dx
dt
= − sin t and

dy
dt
= cos t. Then the arc length is

L =
∫ 2π

0

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt =

∫ 2π

0

√
sin2 t + cos2 t dt = 2π.

□

Example 10.2.6. Find the length of one arch of the cycloid x = r(θ− sin θ) and y = r(1− cos θ).

Proof. We have
dx
dθ
= r(1 − cos θ) and

dy
dθ
= r sin θ. The arc length of one arch is

L =

∫ 2π

0

…Ädx
dθ

ä2
+
Ädy

dθ

ä2
dθ

=

∫ 2π

0

»
r2(1 − cos θ)2 + r2 sin2 θ dθ

= r
∫ 2π

0

√
2(1 − cos θ) dθ

= r
∫ 2π

0
2 sin

Äθ
2

ä
dθ

= 8r.
□

Recall: Consider the arc length function

s(t) =
∫ t

α

…Ädx
du

ä2
+
Ädy

du

ä2
du

which represents the arc length along C from an initial point
(

f (α), g(α)
)

to a point
(

f (t), g(t)
)
.

If parametric equation describes the position of a moving particle, then the “speed” of the par-
ticle at time t, v(t), is the rate of change of distance traveled (arc length) with repect to time:
s′(t). By the Fundamental Theorem of Calculus, we have

v(t) = s′(t) =

…Ädx
dt

ä2
+
Ädy

dt

ä2
.

Example 10.2.7. The position of a particle at time t is given by the parametric equations x =
2t + 3, y = 4t2, t ≥ 0. Find the speed of the particle when it is at the point (5, 4).

Proof. The speed of the particle at any time t is

v(t) =
√

22 + (8t)2 = 2
√

1 + 16t2.

At (5, 4) when t = 1, its speed at that point is v(1) = 2
√

17. □
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o Surface Area

Recall that the surface area of the surface obtained by rotating a curve, C : y = F(x) where
F(x) ≥ 0 for a ≤ x ≤ b, about x-axis is

S =
∫ b

a
2πy

…
1 +
Ädy

dx

ä2
dx.

Suppose that C has the parametric equation x = f (t), y = g(t), α ≤ t ≤ β where f ′ and g′ are
continuous and g(t) ≥ 0. Then rotating the curve C about x-axis and the surface area is

S =

∫ b

a
2πy

…
1 +
Ädy

dx

ä2
dx

=

∫ β

α

2πg(t)

 
1 +
Ä dy/dt

dx/dt

ä2 Ädx
dt

ä
dt

=

∫ β

α

2πy

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt.

Note. Let s(t) be the arc length function. Then

ds =

…
1 +
Ädy

dx

ä2
dx =

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt.

The surface area formula is
S =
∫

2πy ds

Example 10.2.8. Find the surface area of a sphere of radius r.

Proof. The sphere is obtained by rotating the semicircle

x = r cos t y = r sin t 0 ≤ t ≤ π

about x-axis. The surface area of the sphere is

S =

∫ π

0
2πr sin t

√
(−r sin t)2 + (r cos t)2 dt

= 2π
∫ π

0
r sin t · r dt = 4πr2

□

Homework 10.2. 9, 11, 17, 19, 23, 31, 33, 36, 38, 40, 44, 47, 50, 55, 59, 67, 73, 75

10.3 Polar Coordinates
A coordinate system represents a point in the plane by an ordered pair of numbers called co-
ordinates. In the present section, we will study a coordinate system which is called the “polar
coordinate system”. The coordinate is established by the following steps
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(i) We choose a point in the plane that is called the “pole” (or origin) and is labeled O.

(ii) We draw a ray starting at O called the “polar axis” . It is usually horizontal to the right
and corresponds to the positive x-axis in Cartesian coordinates.

(iii) If P , O is an point in the plane, let r be the distance
from O to P and let θ be the angle between the polar
axis. We use the convention that an angle is positive if
measured in the counterclockwise direction from the
polar axis and negative in the clockwise direction.

Then the point P is represented by the ordered pair (r, θ) and r, θ are called “polar coordi-
nates” of P.

Note. The origin O = (0, θ) for any θ.

Now, we extend (r, θ) to the case that in which r is negative. The point (−r, θ) means the
point which is opposite to (r, θ) about the origin. Hence, (−r, θ) = (r, θ + π). Moreover, we can
also extend (r, θ) to the case where r ∈ R (not only on [0, 2π]). We have

(r, θ) = (−r, θ + π) = (r, θ + 2π)
= (−r, θ + 3π) = (r, θ + 4π)
=

(
− r, θ + (2k + 1)π

)
=

(
r, θ + 2kπ

)
for every k ∈ Z.

Remark. In the Cartesian coordinate system, every point has only one representation, but in
the polar coordinate system, each point has infinitely many representations.

■ The connection between polar and Cartesian coordinates

 x = r cos θ

y = r sin θ
⇐⇒


cos θ =

x
r

sin θ =
y
r

=⇒


r2 = x2 + y2

tan θ =
y
x

Note. The equation tan θ = y
x do not uniquely determine θ when x and y are given because, as

θ increases through the interval 0 ≤ θ < 2π, each value of tan θ occurs twice. Therefore, in
converting from Cartesian to polar coordinatesm, it is not good enough just to find r and θ that
satisfy the above equation.
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Example 10.3.1. (i) Convert (2,
π

3
) from polar to Cartesian coordinates.

Proof. From the above formulas, x = 2 cos
π

3
= 1 and y = 2 sin

π

3
=
√

3. Then (x, y) =

(1,
√

3). □

(ii) Convert (1,−1) from Cartesian to polar coordinates.

Proof. Again, r =
√

12 + (−1)2 =
√

2 and tan θ = −1
1 = −1. Then θ =

3π
4

or
7π
4

. Since

(1,−1) is a point in the fourth quadrant, θ =
7π
4

and (r, θ) = (
√

2,
7π
4

). □

o Polar Curves

Definition 10.3.2. A polar curve is the graph of a polar equation, r = f (θ) or F(r, θ) = 0,
consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy
the equation.

Example 10.3.3.

r = 2 θ = 1

Example 10.3.4. (a) Sketch the curve with polar equation = 2 cos θ.

Proof.
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θ r = 2 cos θ

0 2
π/6

√
3

π/4
√

2
π/3 1
π/2 0
2π/3 −1
3π/4 −

√
2

5π/6 −
√

3
π −2

□

(b) Find a Cartesian equation for this curve.

Proof.

Consider r = 2 cos θ. Then r2 = 2r cos θ.
Convert this polar equation into Cartesian
equation x2 + y2 = 2x and we have

(x − 1)2 + y2 = 1.

□

Example 10.3.5. Sketch the curve r = 1 + sin θ.

Proof.

(1) Sketch the graph of r = 1 + sin θ in Cartesina coordinates (θ-r plane). That is a shift the
curve of sine function up by one unit.
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(2) Sketch the polar curve as θ increases 0→ π
2
→ π→ 3π

2
→ 2π.

(Cardioid)

□

Example 10.3.6. Sketch the curve r = cos 2θ.

Proof.

□

■ Symmetry

(a)
If f (θ) = f (−θ) or F(r, θ) = F(r,−θ), then the
curve is symmetric about the polar axis.
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(b)
If f (θ) = f (θ+π) or F(r, θ) = F(r, θ+π), then
the curve is symmetric about the pole.

(c) If f (θ) = f (π−θ) or F(r, θ) = F(r, π−θ), then
the curve is symmetric about the vertical line
θ =
π

2
.

o Graphing Polar Curves with Technology

(Skip)

Homework 10.3. 2, 4, 6, 8, 11, 16, 20, 22, 25, 34, 38, 44, 51, 56, 58

10.4 Areas and Lengths in Polar Coordinates

o Areas

We try to find the area of a region whose boundary is given by a polar equation. Let’s start
with an easy case that the area of an sector of a circle with radius r and central angle θ.

Area =
1
2

r2θ.

Let R be the region bounded by the polar
curve r = f (θ) and by the rays θ = a and θ = b,
where f is a positive continuous function and
where 0 < b − a < 2π. We will use the approxi-
mating sectors to estimate the area of R.
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Let P = {θ0, θ1, · · · , θn} be a partition of [a, b]
with 4θ = θi − θi−1. The region R is divided
into n subregions by the rays θ = θi. The area of
each subregion denotes 4Ai. Choose a sample
point θ∗i ∈ [θi−1, θi]. Then

4Ai ≈
1
2

[ f (θ∗i )]24θ.
Then an approximation to the total area A of R is

Area ≈
n∑

i=1

1
2

[ f (θ∗i )]24θ

Taking n→ ∞, then

Area = lim
n→∞

n∑
i=1

1
2

[ f (θ∗i )]24θ = 1
2

∫ b

a
[ f (θ)]2 dθ

=
1
2

∫ b

a
r2 dθ where r = f (θ).

Note. The area formula is to compute the area of the region whose area enclosed by a polar
curve and two straight lines connecting the origin and their intersections of the polar curve.
Example 10.4.1. Find the area enclosed by one loop of the four-leaved rose r = cos 2θ.

Proof.

Area =
∫ π

4

− π4

1
2

r2 dθ =
1
2

∫ π
4

− π4
cos2 2θ dθ

=
1
2

∫ π
4

− π4

1 + cos 4θ
2

dθ =
π

8
.

□
■ Region enclosed by two polar curves
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The area of R is∫ b

a

1
2

[ f (θ)]2 dθ −
∫ b

a

1
2

[g(θ)]2 dθ =
1
2

∫ b

a
f 2(θ) − g2(θ) dθ.

Example 10.4.2. Find the area of the region that lies inside the circle r = 3 sin θ and outside
the cardioid r = 1 + sin θ.

Proof.

The points of intersection of the two polar curves are ob-

tained by solving 3 sin θ = 1+sin θ and hence θ =
π

6
,

5π
6

.
The area of the region is

A =
∫ 5π

6

π
6

1
2

(3 sin θ)2 − 1
2

(1 + sin θ)2 dθ = π.

□

Note. The origin O is also a point of intersection of the two polar curves. But it cannot be
obtained by solving the equation 3 sin θ = 1 + sin θ since r = 3 sin θ = 0 when θ = 0 and π and

r = 1 + sin θ = 0 when θ =
3π
2

.

Remark. It is usually difficult to find the points of intersection of two polar curves since a single
point may have many representation in polar coordinates. Suppose we want to find the points
of intersection by solving f1(θ) = r = f2(θ). The point of intersection has polar coordinate(

f1(θ1), θ1
)
=
(

f2(θ2), θ2
)
. But, in general, the angles θ1 may not equal θ2.

Example 10.4.3. Find all points of intersection of the curves r = cos 2θ and r =
1
2

.

Proof. Let cos 2θ =
1
2

. Then θ =
π

6
,

5π
6
,

7π
6
,

11π
6

. The

points of intersection are (
1
2
,
π

6
), (

1
2
,

5π
6

), (
1
2
,

7π
6

) and

(
1
2
,

11π
6

).

However, the points (
1
2
,
π

3
), (

1
2
,

2π
3

), (
1
2
,

4π
3

) and (
1
2
,

5π
3

)
are also points of intersection of the two polar curves.

Those points can be found by solving cos 2θ = −1
2

. □

o Arc Length

To find the length of a polar curve r = f (θ), a ≤ θ ≤ b, we regard θ as the parameter if we
write the polar equation of the curve as
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x = r cos θ
y = r sin θ ⇒


dx
dθ
=

dr
dθ

cos θ − r sin θ
dy
dθ
=

dr
dθ

sin θ + r cos θ

The arc length is

L =
∫ b

a

…Ädx
dθ

ä2
+
Ädy

dθ

ä2
dθ =

∫ b

a

…
r2 +
Ädr

dθ

ä2
dθ.

Example 10.4.4. Find the length of the cardioid r = 1 + sin θ.

Proof. The arc length fo the cardioid is

L =

∫ 2π

0

…
r2 +
Ädr

dθ

ä2
dθ =

∫ 2π

0

√
(cos θ)2 + (1 + sin θ)2 dθ

=

∫ 2π

0

√
2 + 2 sin θ dθ =

∫ 2π

0

√
4 − 4 sin2 θ
√

2 − 2 sin θ

=

∫ π
2

− π2

2 cos θ
√

2 − 2 sin θ
dθ −

∫ 3π
2

π
2

2 cos θ
√

2 − 2 sin θ
dθ

= 8.

□
o Tangents

We want to use the techniques of finding the tangent lines of parametric curves to obtain the
tangents of polar curves. Consider the curve with polar equation r = f (θ). Thenß

x = r cos θ = f (θ) cos θ
y = r sin θ = f (θ) sin θ =⇒ dy

dx
=

dy/dθ
dx/dθ

=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.

(i) Horizontal tangent line: When
dy
dθ
= 0 and

dx
dθ
, 0, the polar curve has a horizontal

tangent line.

(ii) Vertical tangent line: When
dy
dθ
, 0 and

dx
dθ
= 0, the polar curve has a vertical tangent

line.
(Special case:

dy
dθ
= 0 =

dx
dθ

, we should further consider the limit lim
θ→θ0

dy/dθ
dx/θ

).

(iii) Tangent line at pole:

dy
dx
=

dr
dθ sin θ
dr
dθ cos θ

= tan θ, if
dr
dθ
, 0.

Example 10.4.5. The cardioid has polar equation r = 1 + sin θ.



88 CHAPTER 10. PARAMETRIC EQUATIONS AND POLAR COORDINATES

(a) Find the slope of the tangent line when θ =
π

3
.

Proof. Consider
dr
dθ
= cos θ. Then

dy
dx
=

cos θ sin θ + (1 + sin θ) cos θ
cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

(1 + sin θ)(1 − 2 sin θ)
.

Hence, the slope of the tangent line when θ =
π

3
is

dy
dx

∣∣∣
θ= π3

= −1. □

(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

Proof. We have

dy
dθ
= cos θ(1 + 2 sin θ) = 0 ⇒ θ =

π

2
,

3π
2
,

7π
6
,

11π
6
.

dx
dθ
= (1 + sin θ)(1 − 2 sin θ) = 0 ⇒ θ =

3π
2
,
π

6
,

5π
6
.

The curve has horizontal tangent lines at
(2, π/2), (1/2, 7π/6), (1/2, 11π/6) and has verti-
cal tangent lines at (3/2, π/6), (3/2, 5π/6).

For θ =
3π
2

,
dy
dθ
=

dx
dθ
= 0. Consider

lim
θ→(3π/2)−

dy
dx
=
Ä

lim
θ→(3π/2)−

1 + 2 sin θ
1 − 2 sin θ

äÄ
lim

θ→(3π/2)−

cos θ
1 + sin θ

ä L.H.
= −1

3
lim

θ→(3π/2)−

− sin θ
cos θ

= ∞.

Similarly, lim
θ→(3π/2)+

dy
dx
= −∞. Hence, the cardioid has a vertical tangent line at (0, 3π/2).

□

Homework 10.4. 4, 6, 11, 17, 21, 22, 24, 27, 31, 34, 40, 45, 49, 51, 53, 65, 68, 72

10.5 Conic Sections
(Skip)

Homework 10.5.

10.6 Conic Sections in Polar Coordinates
(Skip)

Homework 10.6.
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We have learned topics which are related the infinite sequence. For example,

• Zeno’s paradoxes

• Decimal representation of numbers

• Newton’s idea of representing functions as sums of infinite series

• Integrating a function by first expressing it as a series and then integrating each term of the
series. (e.g f (x) = e−x2

)

11.1 Sequences

A sequence (of numbers) can be thought of as a list of numbers written in a definite order
It can be regarded as a list of values of a function defined on N.

N 1 2 3 4 . . .

f ↓ ↓ ↓ ↓ ↓

R f (1) f (2) f (3) f (4) . . .

89
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We usually write an instead of the function notation f (n) for the value of the function at the
number n.

a1, a2, a3, a4, . . . , an, . . .

Note. From now on, we say “a sequence” instead of “a sequence of numbers” for the conve-
nience.
Definition 11.1.1. An (infinite) sequence (of numbers), denoted by {an}

(
or {an}∞n=1

)
, is a func-

tion whose domain is a set of positive numbers. The functional values a1, a2, · · · , an, · · · are the
“terms” of the sequence, and the term an is called the “nth term” of the sequence.
Remark.

(i) In the textbook, a sequence can be thought of as a list of numbers written in a definite
order

a1, a2, a3, · · · an, · · ·
↑ ↑ ↑ · · · ↑ · · ·
1st

term
2nd
term

3rd
term · · · nth

term · · ·

(ii) To distinguish the notation of a set with the one of a sequence, we use
{

an
∣∣ n ∈ N

}
to

represent a set and {an} for a sequence.

Example 11.1.2.

(1)
{ n

n + 1
}∞

n=1, { an =
n

n + 1
⇒

{1
2
,

2
3
,

3
4
,

4
5
, . . .

}
.

(2)
{

cos
nπ
6
}∞

n=0, { an = cos
nπ
6
, n ≥ 0 ⇒

{
1,

√
3

2
,

1
2
, 0, . . .

}
.

(3) (Fibonacci sequence)
a1 = 1, a2 = 1, an = an−1 + an−2 for n ≥ 3 ⇒

{
1, 1, 2, 3, 5, 8, 13, 21, . . .

}
.

■ Visualization of sequence

(i) Plot all terms of a sequence on number line.

Example: an =
n

n + 1
.

(ii) Regard a sequence as a function. f : N 7→ R by an = f (n). Plot the graph of f .
(1, a1), (2, a2), . . . , (n, an).

Example: f (n) =
n

n + 1
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Observation: From the above figures, the functional values an approaches as close to 1 as
possible when n becomes large.

Note. People studied the limit of sequences over thousands of years. For example, to compute
the area of a circle.

Question: Does An approach a number as n becomes large?

o Limit and Convergence

■ Intuitive Definition: Let {an} be a sequence. We say that “the limit of {an} exists” if there
exists a real number L ∈ R such that we can make the term an as close to L as we like by
taking n sufficiently large. Denote

lim
n→∞

an = L

or
an → L as n→ ∞

Definition 11.1.3. Let {an} be a sequence.

(a) We say that {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→ ∞

if we can make the term an as close to L as we like by taking n sufficiently large.

(b) If {an} has a limit (i.e. lim
n→∞

an exists), we say that the sequence converges. Otherwise, we
say that the sequence diverges.
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(c) We say that the sequence {an} diverges to ∞ (−∞) and denote lim
n→∞

an = ∞ (−∞) if we can
make the term an as (negatively) large as we like by taking n sufficiently large.

Example 11.1.4. (1)
{

1,
1
2
,

1
3
, . . . ,

1
n
, . . .

}
, an =

1
n

. Then lim
n→∞

an = 0.

(2)
{

1,−1, 1,−1, . . .
}

, an = (−1)n−1. Then lim
n→∞

an does not exist (DNE).

(3) {n}∞n=1 where an = n. Then lim
n→∞

an = lim
n→∞

n = ∞.

Definition 11.1.5. (Precise) Let {an} be a sequence.

(a) We say that “the limit of {an} exists” if there exists a real number L ∈ R such that for
every ε > 0 there exists a corresponding integer N such that

|an − L| < ε for all n ≥ N.

The value L is called “the limit of {an}” and we write

lim
n→∞

an = L

or
an → L as n→ ∞
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(b) If {an} has a limit L. (i.e. lim
n→∞

an = L), we say that the sequence “convergs to L”.
Otherwise, we say that the sequence “diverges”.

(c) lim
n→∞

an = ∞ means that for every positive number M there exists an integer N such that

if n > N then an > M.

■ lim
n→∞

an v.s. lim
x→∞

f (x)

The difference between lim
n→∞

an = L and lim
x→∞

f (x) = L is that n is required to be an integer.

Theorem 11.1.6. If f : [1,∞) → R is a function and an = f (n) for n = 1, 2, 3, · · · . Suppose
that lim

x→∞
f (x) = L. Then lim

n→∞
an = L.
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Remark. (1) This theorem also holds if the limit L = ±∞.

(2) The converse of the theorem is false.

(i)
lim
n→∞

an = L ��XX=⇒ lim
x→∞

f (x) = L.

For example f (x) = sin(πx). Then an = sin(nπ) = 0 and lim
n→∞

an = 0. But lim
x→∞

f (x) = 0.

(ii)
lim
x→∞

f (x) DNE ��XX=⇒ lim
n→∞

an DNE.

Example 11.1.7. Prove that lim
n→∞

1
nr = 0 when r > 0.

Proof. Let f (x) =
1
xr . Then f (n) =

1
nr . Since lim

x→∞

1
xr = 0 for r > 0, we have

lim
n→∞

1
nr = 0 for r > 0.

□

Example 11.1.8. Find lim
n→∞

ln n
n

.

Proof. Let f (x) =
ln x

x
. Then f (n) =

ln n
n

. Since lim
x→∞

ln x
x
= 0, we have

lim
n→∞

ln n
n
= 0.

□

o Limit Laws (for Sequences)

Theorem 11.1.9. If {an} and {bn} are convergent sequences and c is a constant, then

(1) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn.

(2) lim
n→∞

can = c lim
n→∞

an.

(3) lim
n→∞

c = c.



11.1. SEQUENCES 95

(4) lim
n→∞

anbn =
(

lim
n→∞

an
)(

lim
n→∞

bn
)
.

(5) lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn , 0.

(6) lim
n→∞

ap
n =
î

lim
n→∞

an

óp
if p > 0 and an > 0.

Remark. The hypothesis that “{an} and {bn} are convergent” is important.
Example 11.1.10.

lim
n→∞

n
n + 1

lim
n→∞

Ä n
n + 1

×
1
n
1
n

ä
= lim

n→∞

1
1 + 1

n

=

lim
n→∞

1

lim
n→∞

1 + lim
n→∞

1
n

= 1.

(Wrong process)

lim
n→∞

n
n + 1 �Z=

lim
n→∞

n

lim
n→∞

(n + 1)
=
∞
∞ =?.

Example 11.1.11.

lim
n→∞

n
√

10 + n
= lim

n→∞

1»
10
n2 +

1
n

= ∞

because the numerator is 1 and the denominator approaches 0.

o Squeeze Theorem (for sequences)

Theorem 11.1.12. Let {an}, {bn} and {cn} be
three sequences. If there exists n0 ∈ N such that
an ≤ bn ≤ cn for every n ≥ n0. Suppose that

lim
n→∞

an = L = lim
n→∞

cn.

Then lim
n→∞

bn = L.

Theorem 11.1.13. lim
n→∞

∣∣an
∣∣ = 0 if and only if lim

n→∞
an = 0.

Example 11.1.14. Prove that lim
n→∞

(−1)n

n
= 0.

Proof.

Since lim
n→∞

∣∣∣ (−1)n

n

∣∣∣ = lim
n→∞

1
n
= 0, we have

lim
n→∞

(−1)n

n
= 0.

□
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Example 11.1.15. Discuss the convergence of the sequence an =
n!
nn .

Proof. Observe that

an =
n!
nn =

1 · 2 · 3 · · · n
n · n · n · · · n =

(1
n
) (2

n
)
· · ·

(n
n
)

︸          ︷︷          ︸
<1

<
1
n
.

Define rn = 0 and sn =
1
n for n = 1, 2, · · · . Then

rn ≤ an ≤ sn for every n ∈ N.

Since lim
n→∞

rn = 0 = lim
n→∞

sn, by the Squeeze The-
orem the limit lim

n→∞
an exists and lim

n→∞
an = 0.

□

Example 11.1.16. For what values of r is the sequence {rn}∞n=1 convergent?

Proof. For r > 0, consider the exponential function f (x) = rx, r > 0,

lim
x→∞

f (x) =

 0 if 0 < r < 1 (convergent)
1 if r = 1 (convergent)
∞ if r > 1 (divergent)

Consider r ≤ 0.

(i) For r = 0, lim
n→∞

rn = 0 (convergent)

(ii) For −1 < r < 0, we have 0 < |r| < 1 and

lim
n→∞
|rn| = lim

n→∞
|r|n = 0.

Hence, lim
n→∞

rn = 0 (convergent).

(iii) For r = −1, an = (−1)n, {an}∞n=1 =
{
− 1, 1,−1, 1 · · ·

}
is an oscillatory sequence and hence

it is divergent.

(iv) For r < −1,

an = (−1)n|r|n =
ß
−|r|n < −1 if n is odd
|r|n > 1 if n is even

Hence, we cannot find a number L such that an is close to L within
1
2

for every n. Thus,
the sequence is divergent.
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Conclusion: The sequence {rn}∞n=1 converges when −1 < r ≤ 1 and diverges when r ≤ −1 or
r > 1. Moreover,

lim
n→∞

rn =

ß
0 if − 1 < r < 1
1 if r = 1

□

■ Continuous Functions

Theorem 11.1.17. If lim
n→∞

an = L and the function is continuous at L, then

lim
n→∞

f (an) = f (L).

Example 11.1.18. Find lim
n→∞

sin
(π

n
)
.

Proof. Since the function sin x is continuous at 0 and lim
n→∞

π

n
= 0, we have

lim
n→∞

sin
(π

n
)
= sin

(
lim
n→∞

π

n
)
= sin 0 = 0.

□

o Monotonic Sequence and Bounded Sequences

■Monotonic Sequences

Definition 11.1.19. (1) A sequence {an} is called “increasing” (“decreasing”) if

an < an+1 (an > an+1)

for all n ≥ 1.

(2) A sequence {an} is “monotonic” if it is either increasing or decreasing.

Example 11.1.20. Show that
{ 3

n + 5
}

is decreasing.
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Proof. Since

an+1 − an =
3

(n + 1) + 5
− 3

n + 5
< 0

for all n ≥ 1, the sequence
{ 3

n + 5
}

is decreasing. □

Example 11.1.21. Show that
{ n

n2 + 1
}

is decreasing.

Proof.
(Method 1:)

an+1 − an =
n + 1

(n + 1)2 + 1
− n

n2 + 1
< 0.

(Method 2:) Let f (x) =
x

x2 + 1
. Then f ′(x) =

1 − x2

(x2 + 1)2 < 0 for x2 > 1. Thus, f (x) is decreas-

ing. Then
an+1 = f (n + 1) < f (n) = an.

□

■ Bounded Sequences

Definition 11.1.22. (1) A sequence {an} is “bounded above” (“bounded below”) if there exists
a number M such that

an ≤ M (an ≥ M)

for all n ≥ 1.

(2) A sequence is “bounded” if it is both bounded above and below.

Example 11.1.23. (1) {n}∞n=1 is bounded below but not above.

(2)
¶ n

n + 1

©∞
n=1

is bounded (both above and below).

■ Boundedness, Monotonicity and Convergence

Note. Not every bounded sequence is convergent. For example, an = (−1)n. Then the sequence
{an} is bounded and divergent.

Observation: If {an} is monotonic and
boudned, then the terms are forced
to crowd together and approach some
number L.

Theorem 11.1.24. (Monotonic Sequence Theorem) Every bounded and monotonic sequence is
convergent.

Example 11.1.25. Let a1 = 2 and an+1 =
1
2 (an + 6) for n > 1. Then a2 = 4, a3 = 5, · · · .
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(i)

an+1 − an =
1
2

(an + 6) − 1
2

(an−1 + 6) =
1
2

(an − an−1)

=
1
2
[1

2
(an−1 − an−2)

]
=

1
4

(an−1 − an−2)
= · · ·
=

1
2n−1 (a2 − a1) =

1
2n−2 > 0.

Then {an}∞n=1 is increasing.

(ii) Claim: an < 6 for all n ∈ N.
Proof of the claim: For n = 1, a1 = 2 < 6.

If ak < 6 for n = k, then ak+1 =
1
2

(ak + 6) <
1
2

(6 + 6) = 6. By the mathematical induction,
an < 6 for all n ∈ N. Hence, {an} is bounded above.

Since {an}∞n=1 is increasing and bounded above, it is convergent. In fact, lim
n→∞

an = 6.

Remark. To determine the convergence of a sequence {an}∞n=1, it suffices to consider the con-
vergenc of its “tails” {an}∞n=n0

for some n0 ∈ N. Hence, in general, we usually concern the above
theorem on the subsequence {an}∞n=n0

.

Homework 11.1. 14, 21, 26, 29, 34, 39, 42, 45, 50, 54, 56, 60, 70, 74, 75, 79, 84, 87

11.2 Series
Motivation:

(i) Every real number can be expressed as a digital number. Especially, most numbers have
the expression of infinite deciamls. For example,

π = 3.1415926 . . .

= 3︸︷︷︸
a1

+
1
10︸︷︷︸
a2

+
4

102︸︷︷︸
a3

+
1

103︸︷︷︸
a4

+
5

104︸︷︷︸
a5

+
9

105︸︷︷︸
a6

+
2

106︸︷︷︸
a7

+
6

107︸︷︷︸
a8

+ · · ·

= a1 + a2 + a3 + · · ·

(ii)

1 + 2
(

2
3

)
+ 2

(
2
3

)2
+ 2

(
2
3

)3
+ · · ·

= a0 + a1 + a2 + a3 + · · ·
= sum of an infinite sequence

Heuristically, for a given sequence {an}, we want to consider whether the sum of all terms makes
sense.
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Definition 11.2.1. Let {an}∞n=1 be a sequence. We call the sum of the infinite sequence {an} an

“(infinite) series” and is denoted by “
∞∑

n=1

an” or “
∑

an”.

Note. In mathematics, adding infinite numbers is not doable. Hence, the sum

a1 + a2 + a3 + · · · + an + · · ·

does not make sense.

Question: How to define the sum of infinite numbers (terms)?

Consider the “partial sum” of {an}

s1 = a1 (first partial sum)

s2 = a1 + a2 (second partial sum)

s3 = a1 + a2 + a3 (third partial sum)
...

sn = a1 + a2 + · · · + an =

n∑
k=1

ak (nth partial sum).

Then, for every n ∈ N, sn is well-defined and {sn}∞n=1 forms a new sequence. Suppose that sum
of the infinite terms of {an} is well-defined. It is supposed to be the limit of {sn}.
Definition 11.2.2. Let {an}∞n=1 be a sequence and denote its nth partial sum

sn = a1 + a2 + · · · + an =

n∑
k=1

ak.

(1) We call the limit of the sequence {sn}∞n=1 an “infinite series” and denote

∞∑
n=1

an = lim
n→∞

sn = lim
n→∞

n∑
k=1

ak

(2) If the sequence {sn}∞n=1 is convergent and lim
n→∞

sn = s exists as a real number, then the series

is called “convergent” and write
∞∑

n=1

an = s. The number s is called the “sum” of the series.

(3) If the sequence {sn}∞n=1 is divergent, then we say that the series
∞∑

n=1

an is divergent.

Example 11.2.3.
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(1) Let an =
1
2n . Then sn =

1
2
+

1
22 + · · · +

1
2n = 1 − 1

2n .

Hence,

∞∑
n=1

an = lim
n→∞

n∑
k=1

ak = lim
n→∞

sn = lim
n→∞

1 − 1
2n = 1.

(2) (Telescoping series) Let an =
1

n(n + 1)
. Then the partial sum

sn =

n∑
k=1

1
k(k + 1)

=
1

1 · 2 +
1

2 · 3 + · · · +
1

n(n + 1)

= (1 −
�
�
�1

2
) + (

�
�
�1

2
−

�
�
�1

3
) + · · · + (

�
�
�1

n
− 1

n + 1
)

= 1 − 1
n + 1

.

Since lim
n→∞

sn = lim
n→∞

1 − 1
n + 1

= 1, the series
∞∑

n=1

1
n(n + 1)

= 1. The

series
∞∑

n=1

1
n(n + 1)

is convergent.

(3) Let an = (−1)n. Then the partial sum

s2n = (−1) + 1 + (−1) + 1 + · · · + 1 = 0
s2n+1 = (−1) + 1 + (−1) + 1 + · · · + 1 + (−1) = −1

Hence, the limit lim
n→∞

sn does not exist and the series
∞∑

n=1

(−1)n is divergent.

■ Geometric Series

A geometric series with ratio r is a series of the form
∞∑

n=0

arn = a + ar + ar2 + · · · + arn + · · · , a , 0

Note: The series starts with the 0th term rather than the 1st term.

(1) For r = 1, sn = a + a + · · · + a︸              ︷︷              ︸
n

= na→ ±∞ as n→ ∞. Hence lim
n→∞

sn is divergent.

(2) For r , 1,

sn = a + ar + · · · + arn

rsn = ar + · · · + arn + arn+1
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We have (r − 1)sn = a(rn+1 − 1) and hence

sn =
a(rn+1 − 1)

r − 1
.

Consider the limit lim
n→∞

sn = lim
n→∞

a(rn+1 − 1)
r − 1

provided r , 1.

(i) If |r| < 1, then lim
n→∞

rn+1 = 0. Hence,
∞∑

n=0

arn = lim
n→∞

sn =
a

1 − r
.

(ii) If |r| > 1, then lim
n→∞

rn+1 diverges. Hence,
∞∑

n=0

arn = lim
n→∞

sn diverges.

(iii) If r = −1, sn = a−a+a−a+ · · ·+(−1)n−1a =
ß

0 n is even
a n is odd. Hence,

∞∑
n=0

arn = lim
n→∞

sn

diverges.

Conclusion: The geometric series
∞∑

n=0

arn, a , 0

(i) converges if |r| < 1 and
∞∑

n=0

arn =
a

1 − r
.

(ii) diverges if |r| ≥ 1.

In the figure,
s
a
=

a
a − ar

. Then s =
a

1 − r
.

Example 11.2.4.

(1) Evaluate 5 − 10
3
+

20
9
− 40

27
+ · · ·.

Proof. For the series, the first term a = 5 and the ratio
r = −2

3 . Since |r| = | − 2
3 | =

2
3 < 1, the series is

convergent and

∞∑
n=0

5
(
− 2

3
)n
=

5
1 − (−2

3 )
= 3.

□

(2) Evaluate
∞∑

n=0

2
(5

3
)n.

Proof. Since the ratio of the geometric series is r = 5
3 > 1. The series is divergent. □
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(3) Write 0.1232323 · · · = 0.123 as a ratio of integers.

Proof.

0.123 = 0.1 + 0.023 + 0.00023 + 0.0000023 + · · ·
=

1
10
+

23
103 +

23
105 +

23
107 + · · ·

=
1

10
+

23
103

(
1︸︷︷︸
a

+
1

102︸︷︷︸
r

+
1

104 + · · ·
)

=
1

10
+

23
103 ·

1
1 − 1

102

=
122
99
.

□

(4) Find the sum of the series
∞∑

n=0

xn, where |x| < 1.

Proof.
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · .

The first term of the series is a = 1 and the ratio r = x with |r| = |x| < 1. Hence, the series

is convergent and
∞∑

n=0

xn =
1

1 − x
. □

■ Harmonic Series

A harmonic series has the form
∞∑

n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · · .

We claim that
∞∑

n=1

1
n
= ∞. It suffices to show that for any number M > 0,

∞∑
n=1

1
n
> M. Consider

2k∑
n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · · + 1

8
+ · · · + 1

16
+ · · · + 1

2k

> 1 +
1
2
+
(1

4
+

1
4
)
+
(1

8
+

1
8
+

1
8
+

1
8
)
+
( 1

16
+ · · · + 1

16︸              ︷︷              ︸
8 terms

)
+ · · ·

+
( 1

2k + · · · +
1
2k︸             ︷︷             ︸

2k−1 terms

)
> 1 +

1
2
+

1
2
+ · · · + 1

2︸                ︷︷                ︸
k terms

= 1 +
k
2
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Choose k > 2M. Then
2k∑

n=1

1
n
> M. Hence,

∞∑
n=1

1
n
>

2k∑
n=1

1
n
> M. Since M is an arbitrary positive

number,
∞∑

n=1

1
n
= ∞.

o Test for Divergence

For most series, it is difficult to find their limits even if they have nice patterns. Therefore,
we usually don’t expect to compute the exact limit of a convergent series. Instead of this, we
want to study some tests for convergence or divergence of a series and estimate their limits if
they converge.

Theorem 11.2.5. If the series
∞∑

n=1

an is convergent, then lim
n→∞

an = 0.

Proof. Consider an = sn − sn−1. Then

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s − s = 0

The second equality holds since the sequence {sn}∞n=1 converges. □

Note. With any series
∑

an we associate two sequences: the sequence sn of its partial sums

and the sequence {an} of its terms. If
∑

an is convergent, then the limit of the sequence {sn} is
s (the sum of the series) and, as Theorem 11.2.5 asserts, the limit of the sequence {an} is 0.

Remark. The converse of Theorem 11.2.5 is false. That is, even if lim
n→∞

an = 0, it cannot imply

that the series
∞∑

n=1

an converges. That is,

∞∑
n=1

an (or lim
n→∞

sn) converges =⇒ lim
n→∞

an = 0

��XX⇐=

For example, an =
1
n

. Then an → 0 as n→ ∞ but
∞∑

n=1

an = ∞.

■ Test for Divergence

Theorem 11.2.6. (Test for Divergence) If lim
n→∞

an does not converge to 0 (either lim
n→∞

an DNE or

lim
n→∞

an = L , 0), then the series
∞∑

n=1

an is divergent.

Example 11.2.7. Determine whether the series
∞∑

n=1

n2

5n2 + 4
is convergent or divergent.
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Proof. Consider the limit

lim
n→∞

n2

5n2 + 4
= lim

n→∞

1
5 + 4

n2

=
1
5
, 0.

By the test for divergence, the series
∞∑

n=1

n2

5n2 + 4
is divergent. □

Remark. (1) The series
∞∑

n=1

an diverges cannot imply lim
n→∞

an , 0. That is,

lim
n→∞

an , 0 =⇒
∞∑

n=1

an (or lim
n→∞

sn) diverges

��XX⇐=

For example, an =
1
n

.

(2) If lim
n→∞

an , 0, then
∞∑

n=1

an diverges. But if lim
n→∞

an = 0, then
∞∑

n=1

an could be convergent or

divergent. For example,
∞∑

n=1

1
n(n + 1)

is convergent but
∞∑

n=1

1
n

is divergent.

o Laws of Series

Theorem 11.2.8. If
∞∑

n=1

an and
∞∑

n=1

bn are convergent series and c is a constant. Then

(1)
∞∑

n=1

(an ± bn) converges and
∞∑

n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn.

(2)
∞∑

n=1

(can) converges and
∞∑

n=1

(can) = c
∞∑

n=1

an.

Example 11.2.9. Evaluate
∞∑

n=1

î 3
n(n + 1)

+
1
2n

ó
.

Proof. Since
∞∑

n=1

1
n(n + 1)

= 1 (converges), we have
∞∑

n=1

3
n(n + 1)

= 3
∞∑

n=1

1
n(n + 1)

= 3. For the

series
∞∑

n=1

1
2n , it is a geometric series with the first term a = 1

2 and the ratio r = 1
2 . Then it

converges and
∞∑

n=1

1
2n =

1
2

1 − 1
2

= 1. Hence,

∞∑
n=1

î 3
n(n + 1)

+
1
2n

ó
=

∞∑
n=1

3
n(n + 1)

+

∞∑
n=1

1
2n = 3 + 1 = 4.

□
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Remark. The result of Theorem 11.2.8 is false if one of the series
∞∑

n=1

an and
∞∑

n=1

bn is divergent.

Remark. For a sequence {an}, any finite terms of {an} doesn’t affect the convergence or diver-
gence of the sequence. A series has similar results. If we only concern whether a series

∑
an is

convergent or divergent (but not the exact value of the sereis), the sum of a finite number terms

does not change its convergence or divergence. That is, for any number n0 ∈ N, the series
∞∑

n=1

an

and
∞∑

n=n0

an both converge or both diverge.

Homework 11.2. 15, 17, 20, 23, 26, 29, 32, 37, 42, 45, 50, 52, 55, 59, 62, 65, 72, 77, 88, 91

11.3 The Integral Test and Estimates for Sums

In general, it is difficult to find the exact sum of a series. We can compute the sums of some

special series. For example, geometric series,
∞∑

n=1

1
n(n + 1)

. Even for a simple series (like

∞∑
n=1

1
n2 ), we cannot find its sum easily. It is not easy to discover the formula of partial sum.

Hence, we usually only discuss the convergence of a series. Observe two examples

Example 11.3.1. For the series
∞∑

n=1

1
n2 , the partial sum is

sn =

n∑
k=1

1
k2 = 1 +

1
22 +

1
32 + · · · +

1
n2 .

To determine whether the sequence {sn}∞n=1 converges. We observe that the sequence {sn}∞n=1 is
increasing in n. In order to prove that the series is convergent, it suffices to show that the series
is bounded above.

Consider the function f (x) =
1
x2 on [1,∞). We have

sn =

n∑
k=1

1
k2 = 1 +

1
22 +

1
32 + · · · +

1
n2 < 1 +

∫ n

1

1
x2 dx < 1 +

∫ ∞

1

1
x2 dx = 2.

Hence, {sn} is bounded above (by 2). By the bounded criterion, the series
∞∑

n=1

1
n2 is convergent.
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Example 11.3.2. For the series
∞∑

n=1

1
√

n
= 1 +

1
√

2
+

1
√

3
+ · · ·, the partial sum

sn =

n∑
k=1

1
√

k
= 1 +

1
√

2
+

1
√

3
+ · · · + 1

√
n
.

The sequence {sn}∞n=1 is increasing in n. Consider the function f (x) =
1
√

x
on [1,∞). We have

sn =

n∑
k=1

1
√

k
= 1 +

1
√

2
+

1
√

3
+ · · · + 1

√
n
>

∫ n+1

1

1
√

x
dx = 2

√
n + 1 − 1.

Then
lim
n→∞

sn ≥ lim
n→∞

(2
√

n + 1 − 1) = ∞.

and the series
∞∑

n=1

1
√

n
is divergent.

Theorem 11.3.3. (Integral Test) Suppose that f is a continuous, positive and decreasing func-
tion on [1,∞) and f (n) = an. Then

∞∑
n=1

an and
∫ ∞

1
f (x) dx
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either both converge or both diverge. That is,

∞∑
n=1

an converges ⇐⇒
∫ ∞

1
f (x) dx converges

(diverges) (diverges)

Proof. Since f is decreasing, for every k ∈ N,

f (k + 1) · 1 ≤
∫ k+1

k
f (x) dx ≤ f (k) · 1.

Since f is positive, for every n ∈ N,

0 ≤
n−1∑
k=1

ak+1︸     ︷︷     ︸
sn−a1

=

n−1∑
k=1

f (k + 1) ≤
n−1∑
k=1

∫ k+1

k
f (x) dx︸                  ︷︷                  ︸∫ n

1 f (x) dx

≤
n−1∑
k=1

f (k) =
n−1∑
k=1

ak︸  ︷︷  ︸
sn−1

.

Hence,
∞∑

n=2

an ≤
∫ ∞

1
f (x) dx ≤

∞∑
n=1

an.

This inequality implies that
∞∑

n=1

an and
∫ ∞

1
f (x) dx either both converge or both diverge.

□

Remark.

(1) To determine whether a series is convergent or divergent, it is not necessary to start with the

first term. That is, the series
∞∑

n=1

an and
∞∑

n=n0

an either both converge or both diverge. Hence,

to use the integral test, it suffices to compute the integral with lower limit at x = n0 instead
of x = 1. That is,∫ ∞

n0

f (x) dx converges (diverges) ⇐⇒
∞∑

n=n0

an converges (diverges)

⇐⇒
∞∑

n=1

an converges (diverges).
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(2) It is not necessary that f is “always” decreasing. We can use the integral test as long as the
function f is positive and decreasing on (n0,∞) and f (n) = an for some large number n0

and n ≥ n0.

Example 11.3.4. Determine whether the series
∞∑

n=1

1
n2 + 1

is convergent or divergent.

Proof. The function f (x) =
1

x2 + 1
is positive and decreasing on [1,∞). Also, f (n) =

1
n2 + 1

for all n ∈ N. Since the improper integral∫ ∞

1

1
x2 + 1

dx = lim
t→∞

∫ t

1

1
x2 + 1

dx = lim
t→∞

tan−1 x
∣∣∣t
1
= lim

t→∞

(
tan−1 t − tan−1 1

)
=
π

2
− π

4
=
π

4
,

by the integral test, the series
∞∑

n=1

1
n2 + 1

converges. □

Example 11.3.5. (p-series) For what values of p is the series
1
np convergent?

Proof. If p ≤ 0,
1
np = n−p ≥ 1 for all n ∈ N. Hence

∞∑
n=1

1
np diverges.

Consider the cases 0 < p < ∞. The function f (x) =
1
xp is positive and decreasing on [1,∞),

and f (n) =
1
np . Since

∫ ∞

1

1
xp dx =

 ∞ when 0 < p < 1 (divergent)
1

p − 1
when p > 1 (convergent).

By the integral test, the series
∞∑

n=1

1
np converges when p > 1 and diverges when p ≤ 1. □

Example 11.3.6.

(a)
∞∑

n=1

1
n3 converges (p-series with p = 3 > 1)

(b)
∞∑

n=1

1
n1/3 diverges (p-series with p = 1

3 < 1)

Note. The integral test can only determine whether a series is convergent (or divergent). But it
cannot give the sum of the series.

Example 11.3.7. Determine whether the series
∞∑

n=1

ln n
n

converges or diverges.
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Proof. Let f (x) =
ln x

x
. Then f ′(x) =

1 − ln x
x2 < 0 when x > e. Hence, f (x) is positive and

decreasing on (e,∞). Since the integral∫ ∞

e

ln x
x

dx = lim
t→∞

∫ t

e

ln x
x

dx = lim
t→∞

(ln x)2

2

∣∣∣t
e
= lim

t→∞

(ln t)2 − 1
2

= ∞,

by the integarl test, the series
∞∑

n=1

ln n
n

diverges. □

o Estimating the Sum of a Series

Although it is difficult to use the integral test to find the limit of a series
∑

an, it can still

help us to approximate the sum of the series. Recall that “s =
∞∑

n=1

an converges” means that

the partial sum sn =

n∑
k=1

ak → s as n → ∞. Hence, in order to evaluate the sum s, we want to

estimate the difference between sn and s. Define

Rn = s − sn = an+1 + an+2 + · · · =
∞∑

k=n+1

ak as the ”remainder”.

Theorem 11.3.8. (Remainder Estimate for the Integral Test) Let f be a continuous, positive
and decreasing function for every x ≥ n0, and f (n) = an for every n ∈ N and n ≥ n0. Then∫ ∞

n+1
f (x) dx ≤

∞∑
k=n+1

ak

=s−sn

= Rn ≤
∫ ∞

n
f (x) dx

Note.
sn +

∫ ∞

n+1
f (x) dx ≤ s ≤ sn +

∫ ∞

n
f (x) dx.

Example 11.3.9.
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(a) Approximate the sum of the series
∞∑

n=1

1
n3 by using the sum of the first 10 terms. Estimate

the error involved in the approximation.

Proof. Let f (x) =
1
x3 . Then

∫ ∞

n

1
x3 dx =

1
2n2 and

R10 ≤
∫ ∞

10

1
x3 dx =

1
200
.

□

(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

Proof. Consider

Rn ≤
∫ ∞

n

1
x3 dx =

1
2n2 ≤ 0.0005.

Then n2 ≥ 1000 and hence n ≥ 31.6. We need 32 terms to ensure accuracy to within
0.0005. □

(c) Use n = 10 to estimate the sum of the series
∞∑

n=1

1
n3 .

Proof.

s10 +
1

2(11)2 =

10∑
n=1

1
n3 +

∫ ∞

11

1
x3 dx ≤ s ≤

10∑
n=1

1
n3 +

∫ ∞

10

1
x3 dx = s10 +

1
2(10)2 .

Since s10 ≈ 1.197532, we have 1.201664 ≤ s ≤ 1.202532. □

Note. In fact, to make the error smaller than 0.0005, it only needs 10 terms by part(c) instead
of 32 terms by part(b).
Homework 11.3. 7, 13, 19, 23, 27, 31, 34, 39, 42, 45

11.4 The Comparison Tests

In Section 11.3, we know that the geometric series
∞∑

n=1

1
2n is convergent.

Question: Does it say the convergence or divergence of the series
∞∑

n=1

1
2n + 1

?

Observe that the sequence of the partial sum sn =

n∑
k=1

1
2k + 1

is an increasing sequence. Since

0 <
1

2k + 1
<

1
2k for every k ∈ N, we have

sn =

n∑
k=1

1
2k + 1

≤
n∑

k=1

1
2k ≤

∞∑
k=1

1
2k = 1.
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Hence, {sn} is bounded above. By the bounded criterion, the series
∞∑

n=1

1
2k + 1

converges. More-

over,
∞∑

n=1

1
2k + 1

< 1.

Heuristically, we may have the insight of two nonnegative series.

(i) If every term of one series is smaller than the corresponding term of another convergent
series, then the former series is also convergent.

(ii) If every term of one series is larger than the corresponding term of another divergent series,
then the former series is also divergent.

o The Comparison Test

Theorem 11.4.1. (The Direct Comparision Test) Suppose that
∞∑

n=1

an and
∞∑

n=1

bn are series with

nonnegative terms and 0 ≤ bn ≤ an for all n ∈ N.

(1) If
∞∑

n=1

an is convergent, then
∞∑

n=1

bn is convergent.

(2) If
∞∑

n=1

bn is divergent, then
∞∑

n=1

an is divergent.

Proof. Let sn = a1 + a2 + · · · + an and tn = b1 + b2 + · · · + bn. Then the sequences {sn} and {tn}
are increasing and 0 ≤ tn ≤ sn for every n ∈ N.

(1) If
∞∑

n=1

an is convergent, {sn} is convergent. Since {tn} is increasing and bounded above, it is

convergent and thus
∞∑

n=1

bn is convergent.

(2) If
∞∑

n=1

bn is divergent, then lim
n→∞

tn = ∞. Therefore, lim
n→∞

sn = ∞ and thus
∞∑

n=1

an is divergent.

□

Remark.

(i) In order to use the Comparison Test, the “nonnegative” condition is necessary. For exam-

ple, bn = −1 and an =
1
n2 for all n ∈ N. Then bn < an. But the series

∞∑
n=1

bn =

∞∑
n=1

(−1) = −∞

is divergent and the series
∞∑

n=1

an =

∞∑
n=1

1
n2 is convergent.

(ii) In the use of the Comparsion Test, we need to know some convergent or divergent series.
Some important series are:
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• p-series
∞∑

n=1

1
np

 converges when p > 1

diverges when p ≤ 1

• geometric series
∞∑

n=1

arn

 converges when |r| < 1

diverges when |r| ≥ 1

Example 11.4.2. Determine whether the series
∞∑

n=1

5
2n2 + 4n + 3

is convergent or divergent.

Proof. That the series
∞∑

n=1

1
n2 is convergent (p-series, p = 2) implies the series

∞∑
n=1

5
2n2 is also

convergent. Since
5

2n2 + 4n + 3
<

5
2
· 1

n2 for every n ∈ N, by the Comparison Test, the series
∞∑

n=1

5
2n2 + 4n + 3

is convergent.

□

Remark. To determine whether a series is convergent, it suffices to consider the convergence

of the “tail ” (
∞∑

n=n0

an) of the series. Therefore, in the use of the Comparison Test, we can replace

the condition 0 ≤ bn ≤ an “for every n ≥ 1” by “ for every n ≥ n0” and for some integer n0, and
the test still holds.

Example 11.4.3. Determine whether the series
∞∑

n=1

ln n
n

is convergent or divergent.

Proof. Since ln n > 1 for n > e, we have
ln n
n
>

1
n

when n ≥ 3. Also, the series
∑
n=1

1
n

diverges

(p-series, p = 1). By the Comparison Test, the series
∞∑

n=3

ln n
n

diverges and thus the series

∞∑
n=1

ln n
n

also diverges. □

Example 11.4.4. Determine whether the series
∞∑

n=1

1
n3 − 5n − 2

is convergent or divergent.

Proof.
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Observe that

(i) Not all terms are positive

(ii) We guess the series is convergent and hope
1

n3 − 5n − 2
<

2
n3 for all n ≥ n0. To find n0, consider

2n3 − 10n − 4 > n3 ⇐⇒ n3 > 10n + 4 ⇒ n ≥ 4.

When n ≥ 4, the term
1

n3 − 5n − 2
> 0 and

1
n3 − 5n − 2

<
2
n3 . Also,

∞∑
n=4

2
n3 converges (p-series,

p = 3 > 1). By the Comparison Test, the series
∞∑

n=4

1
n3 − 5n − 2

converges. Therefore, the series

∞∑
n=1

1
n3 − 5n − 2

converges. □

Note. Recall that for
∑

an and
∑

bn with 0 ≤ bn ≤ an for all n ∈ N, the Comparison Test says
that

(1)
∑

an converges =⇒
∑

bn converges;

(2)
∑

bn diverges =⇒
∑

an diverges.

But the converse is false. That is,

(1)
∑

bn converges ��XX=⇒
∑

an converges;

(2)
∑

an diverges ��XX=⇒
∑

bn diverges.

Example 11.4.5. Consider the series
∞∑

n=1

1
2n − 1

. In order to use the Comparison Test to show∑ 1
2n − 1

converges, we cannot choose the known convergent series
∑ 1

2n because
1

2n − 1
>

1
2n .

However,
1

2n − 1
looks very close to

1
2n . It is reasonable to guess that the series

∑ 1
2n − 1

also
converges.

■ The Limit Comparison Test

Theorem 11.4.6. (The Limit Comparison Test) Let {an} and {bn} be two nonnegative sequences.
If

lim
n→∞

an

bn
= c

for some 0 < c < ∞, then
∞∑

n=1

an converges if and only if
∞∑

n=1

bn converges. That is, either both

series
∞∑

n=1

an and
∞∑

n=1

bn converge or both diverge.
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Proof. (Exercise) □

Example 11.4.7. Determine whether the series
∞∑

n=1

3
2n − 1

is convergent or divergent.

Proof. Consider the geometric series
∞∑

n=1

1
2n . Since

∞∑
n=1

1
2n converges (geometric series with

r = 1
2 < 1) and

lim
n→∞

3
2n−1

1
2n

= lim
n→∞

3
1 − 1

2n

= 3,

by the Limit Comparison Test, the series
∞∑

n=1

3
2n − 1

is convergent. □

Example 11.4.8. Determine whether the series
∞∑

n=1

2n2 + 3n
√

5 + n5
is convergent or divergent.

Proof. Consider the series
∞∑

n=1

1
n1/2 . Since

∞∑
n=1

1
n1/2 diverges (p-series, p = 1

2 < 1) and

lim
n→∞

2n2+3n√
5+n5

1
n1/2

= lim
n→∞

2 + 3
n»

5
n5 + 1

= 2,

by the Limit Comparison Test, the series
∞∑

n=1

2n2 + 3n
√

5 + n5
diverges. □

■ Estimating Sums

Suppose that
∞∑

n=1

an and
∞∑

n=1

bn are two convergent series with nonnegative terms and 0 ≤ bn ≤ an

for all n ∈ N. Let

s =
∞∑

n=1

an, sn =

n∑
k=1

ak and Rn = s − sn = an+1 + an+2 + · · ·

t =
∞∑

n=1

bn, tn =

n∑
k=1

bk and Tn = t − tn = bn+1 + bn+2 + · · ·

then 0 ≤ Tn ≤ Rn for all n ∈ N. Hence, if we can estimate Rn, then we have an upper bound of
Tn.

Example 11.4.9. Use the sum of the first 100 terms to approximate the sum of the series∑ 1
n3 + 1

. Estimate the error involved in this approximation.
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Proof. Since
1

n3 + 1
<

1
n3 for all n ∈ N, we have

T100 =

∞∑
n=101

1
n3 + 1

≤
∞∑

n=101

1
n3 <

∫ ∞

100

1
x3 dx =

1
2(100)2 .

The error is less than
1

2(100)2 and
∞∑

n=1

1
n3 + 1

≈
100∑
n=1

1
n3 + 1

≈ 0.6864538. □

Homework 11.4. 9, 12, 15, 18, 21, 24, 28, 34, 37, 41, 46, 48(b)(i), 49(b)(i)

11.5 Alternating Series and Absolute Convergence
In the previous section, we consider the convergence tests for the nonnegative series (because
of the bounded criterion). In the present section, we want to relax the condition and discuss the
convergence for some special series which includes positive and negative terms alternatively.

o Alternating Series

Definition 11.5.1. An alternating series
∞∑

n=1

an is a series whose terms are alternatively positive

and negative.

Let bn = |an|. The general form of an alternating series is

∞∑
n=1

an =



∞∑
n=1

(−1)nbn if a1 < 0

∞∑
n=1

(−1)n−1bn if a1 ≥ 0.

Example 11.5.2. The series
∞∑

n=1

(−1)n is an alternating series.

■ Alternating Series Test

Theorem 11.5.3. If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + · · · where bn > 0

satisfies

(i) bn+1 ≤ bn for all n ∈ N

(ii) lim
n→∞

bn = 0,

then the series is convergent.
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Proof.

Let {sn} be the sequence of the partial sums of the alternating series. The condition (i)
implies that, for every n ∈ N,

s2n+2 = s2n + (b2n+1 − b2n+2)︸              ︷︷              ︸
≥0

≥ s2n

and
s2n = b1 − (b2 − b3)︸      ︷︷      ︸

≥0

− · · · − (b2n−1 − b2n)︸           ︷︷           ︸
≥0

≤ b1.

We have
0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ · · · ≤ b1

which is increasing and bounded above by b1. By the bounded criterion, lim
n→∞

s2n = s is conver-
gent. Since s2n+1 = s2n + b2n+1, by condition (ii),

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

b2n+1 = s + 0 = s.

Hence lim
n→∞

sn = s and the alternating series is convergent. □

Example 11.5.4. (alternating harmonic series) Determine whether the series
∞∑

n=1

(−1)n−1

n
is con-

vergent or divergent.

Proof.

Let bn =
1
n

. Then
∞∑

n=1

(−1)n−1

n
=

∞∑
n=1

(−1)n−1bn.

Since bn+1 =
1

n + 1
<

1
n
= bn for all n ∈ N

and lim
n→∞

bn = lim
n→∞

1
n
= 0, by the alternating series

test, the series
∞∑

n=1

(−1)n−1

n
is convergent.

□
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Example 11.5.5. Determine whether the series
∞∑

n=1

(−1)n3n
4n − 1

is convergent or divergent.

Proof. Let bn =
3n

4n − 1
and an =

(−1)n3n
4n − 1

= (−1)nbn. Then |an| = bn for every n ∈ N.

Since lim
n→∞

bn = lim
n→∞

3n
4n − 1

=
3
4
, 0, the limit lim

n→∞
an is not equal to 0 (in fact, the limit does

not exist). By the Test for Divergent, the series
∞∑

n=1

(−1)n3n
4n − 1

= lim
n→∞

an is divergent. □

Example 11.5.6. Determine whether the series
∞∑

n=1

(−1)n+1n2

n3 + 1
is convergent or divergent.

Proof. Let bn =
n2

n3 + 1
Then

∞∑
n=1

(−1)n+1n2

n3 + 1
=

∞∑
n=1

(−1)n+1bn. Since

bn+1 − bn =
(n + 1)2

(n + 1)3 + 1
− n2

n3 + 1
=
−n4 − 2n3 − n2 + 2n + 1

[(n + 1)3 + 1](n3 + 1)
< 0 for all n ∈ N,

we have bn+1 ≤ bn for all n ∈ N. Also, lim
n→∞

bn = lim
n→∞

n2

n3 + 1
= 0. By the alternating series test,

the series
∞∑

n=1

(−1)n+1n2

n3 + 1
is convergent. □

Note. In this example, we can compute
d
dx

Ä x2

x3 + 1

ä
=

x(2 − x3)
(x3 + 1)2 < 0 for x ≥ 2 to obtain bn+1 ≤

bn for all n ∈ N.
Remark. As the similar discussion as before, in the use of the alternating series test, it only
needs that the series satisfies conditions (i) in Theorem 11.5.3 for every n ≥ n0 for some fixed
integer n0.
■ Estimating Sums

Observe the structure of an alternating se-
ries satisfying the two conditions (i) and
(ii) in Theorem 11.5.3. Let Rn = s − sn

be the remainder of the series, then

|Rn| = |s − sn| ≤ bn+1.

Theorem 11.5.7. (Alternating Series Estimation Theorem) If s =
∞∑

n=1

(−1)n−1bn is the sum of an

alternating series that satisfies

(i) 0 ≤ bn+1 ≤ bn for every n ∈ N and (ii) lim
n→∞

bn = 0

then
|Rn| = |s − sn| ≤ bn+1
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Example 11.5.8. Find the sum of the series
∞∑

n=1

(−1)n

n!
correct to three decimal places.

Proof. The series
∞∑

n=1

(−1)n

n!
is an alternating series. Let bn =

1
n!

. Then bn+1 =
1

(n + 1)!
<

1
n!
= bn

and lim
n→∞

bn = lim
n→∞

1
n!
= 0. To find n such that bn =

1
n!
< 0.001, we have n ≥ 7. Hence, by the

alternating series estimation,

|R6| = |s − s6| ≤ b7 < 0.001 (in fact, b7 < 0.0002).

Then s6 = 1 − 1 +
1
2
− 1

6
+

1
24
− 1

120
+

1
720
≈ 0.368056. In fact s =

1
e
≈ 0.36787944.

□

Remark. The rules does not apply to other type of series.

o Absolute Convergence and Conditional Convergence

From now on, we will continue to discuss the convergence of general series (without al-
ternating patterns). Intuitively, it is difficult to give a nice test for every series because they
may have too many varieties. Therefore, we hope to use some known results (discussed in the
previous sections) to deal with the convergence of certain general series.

For a general series
∞∑

n=1

an, we consider the correspondg series

∞∑
n=1

∣∣an
∣∣ = ∣∣a1

∣∣ + ∣∣a2
∣∣ + · · · + ∣∣an

∣∣ + · · · .
Definition 11.5.9. (a) A series

∞∑
n=1

an is called “absolutely convergent” if the series of absolute

values
∞∑

n=1

|an| is convergent.

(b) A series
∞∑

n=1

an is called “conditionally convergent” if it is convergent but not absolutely

convergent.

Example 11.5.10.

(1) The series
∞∑

n=1

(−1)n

n
is convergent by the alternating series test. But

∞∑
n=1

∣∣∣ (−1)n

n

∣∣∣ = ∞∑
n=1

1
n
= ∞

is divergent (harmonic series, p-series with p = 1). Therefore,
∞∑

n=1

(−1)n

n
is a conditionally

convergent series.
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(2) The series
∞∑

n=1

(−1)n

n2 is convergent by the alternating series test and
∞∑

n=1

∣∣∣ (−1)n

n2

∣∣∣ = ∞∑
n=1

1
n2 is

also convergent (p-series with p = 2). Therefore,
∞∑

n=1

(−1)n

n2 is absolutely convergent.

Question: For the two series
∞∑

n=1

an and
∞∑

n=1

|an|, can the convergence of one series imply the

convergence of the other one?

Theorem 11.5.11. If a series
∞∑

n=1

an is absolutely convergent, then it is convergent. That is, if

∞∑
n=1

|an| converges then
∞∑

n=1

an converges.

Proof. Observe that 0 ≤ an + |an| ≤ 2|an|. If
∞∑

n=1

an is absolutely convergent, then
∞∑

n=1

2|an|

converges. By the Comparison Test, the series
∞∑

n=1

(an + |an|) converges. Hence, the series

∞∑
n=1

an =

∞∑
n=1

(an + |an| − |an|) =
∞∑

n=1

(an + |an|) −
∞∑

n=1

|an|

converges.
□

Note.

(1) The converse of Theorem 11.5.11 is false. That is, the convergence of
∞∑

n=1

an cannot imply

the convergence of
∞∑

n=1

|an|.

∞∑
n=1

an converges ��XX=⇒
∞∑

n=1

|an| converges.

For example,
∞∑

n=1

(−1)n

n
is convergent but

∞∑
n=1

∣∣∣ (−1)n

n

∣∣∣ is divergent.

(2) If
∞∑

n=1

an is divergent, then
∞∑

n=1

|an| must be divergent.

∞∑
n=1

an diverges =⇒
∞∑

n=1

|an| diverges.
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Example 11.5.12. Determine whether the series
∞∑

n=1

cos n
n2 is convergent or divergent.

Proof. The series
∞∑

n=1

cos n
n2 is not an alternating series. Con-

sider
∣∣∣cos n

n2

∣∣∣ ≤ 1
n2 for every n ∈ N.

Since
∞∑

n=1

1
n2 converges (p-series, p = 2), by the Compari-

son Test, the series
∞∑

n=1

∣∣∣cos n
n

∣∣∣ converges. Hence, the series

∞∑
n=1

cos n
n2 is absolutely convergent and this implies that it is

convergent. □

Example 11.5.13. Determine whether the series is absolutely convergent, conditionally conver-
gent, or divergent.

(a)
∞∑

n=1

(−1)n

n3 (b)
∞∑

n=1

(−1)n

3
√

n
(c)

∞∑
n=1

(−1)n n
2n + 1

Exercise. Let {an} be a sequence and define

a+n =
ß

an, if an ≥ 0
0, if an < 0 and a−n =

ß
0, if an ≥ 0
an, if an < 0

Prove that the series
∞∑

n=1

|an| converges if and only if both of the series
∞∑

n=1

a+n and
∞∑

n=1

a−n

converge and moreover,
∞∑

n=1

|an| =
∞∑

n=1

a+n −
∞∑

n=1

a−n .

Hint: (=⇒) Using the Comarison Test with the fact 0 ≤ |a±n | ≤ |an| for every n ∈ N and
moreover, the equality holds from the laws for series.
(⇐=) Using the laws for series with the fact |an| = a+n − a−n for every n ∈ N.

o Rearrangement

Question: What is the difference between absolutely convegent or conditionally convergent
series? Whether the behaviors of infinite sums are like the ones of finite sums?

• For a finite sum, we can rearrange the order of the terms and the value of the sum remains
unchanged.

• For an infinite sum, the rearrangement may change the sum.
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Consider an example of a paradox. Let

x = 1 − 1
2
+

1
3
− 1

4
+ · · · + (−1)n+1

n
+ · · ·

?
= (1 − 1

2
) +

1
4
+ (

1
3
− 1

6
) − 1

8
+ (

1
5
− 1

10
) − 1

12
+ (

1
7
− 1

14
) − 1

16
+ (

1
9
− 1

18
) − 1

20
+ · · ·

=
1
2
− 1

4
+

1
6
− 1

8
+ · · ·

=
1
2

(1 − 1
2
+

1
3
− 1

4
+ · · · )

=
1
2

x.

Hence x = 1
2 x and we obtain a contradiction that x = 0.

Question: What’s wrong with this?

For a sum of finitely many numbers, we obtain the same value if arbitrarily rearraneging the
order of those numbers.

Question: Can we get the same value of the sum of infinitely many numbers if we arbitrarily
rearrange the order of these numbers?
Definition 11.5.14. Let {an} and {bn} be two sequences. We say that {bn} is a “rearrangement”
of {an} if there exists a one-to-one and onto function f on N such that bn = a f (n) for every n ∈ N.

Note. In general,
∞∑

n=1

an ,
∞∑

n=1

bn if {bn} is a rearrangement of {an}.

Theorem 11.5.15. If
∞∑

n=1

an is conditionally convergent then, for any number L ∈ R, there

exists a rearrangement {bn} of {an} such that
∞∑

n=1

an = L.

Proof. We only sketch the proof by the following steps.

(I) Let {pn} be the nonnegative subsequence of {an} and {qn} be the negative subsequence

of {an}. Since
∞∑

n=1

an is conditionally convergent, we have
∞∑

n=1

|an| diverges. Hence, at

least one of the series
∞∑

n=1

pn and
∞∑

n=1

qn is divergent. Moreover, the fact that
∞∑

n=1

an

converges implies both series
∞∑

n=1

pn and
∞∑

n=1

qn are divergent. We have that

∞∑
n=1

pn = ∞ and
∞∑

n=1

qn = −∞.
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(II) W.L.O.G, say L > 0. We construct a sequence {bn} from {pn} and {qn} by the following

process. Since
∞∑

n=1

pn = ∞, there exists n1 ∈ N such that

n1−1∑
n=1

pn < L ≤
n1∑

n=1

pn.

Let S 1 =

n1∑
n=1

pn. Then S 1 ≥ L and S 1 − pn1 < L. Hence, |S 1 − L| < pn1 .

Since
∞∑

n=1

qn = −∞, there exists m1 ∈ N such that

n1∑
n=1

pn +

m1−1∑
n=1

qn > L ≥
n1∑

n=1

pn +

m1∑
n=1

qn.

Let T1 =

n1∑
n=1

pn +

m1∑
n=1

qn = S 1 +

m1∑
n=1

qn. Then T1 ≤ L and T1 − qm1 > L. Hence,

|T1 − L| < qm1 .

Continue this process, we have 1 ≤ n1 < n2 < · · · and 1 ≤ m1 < m2 < · · · and {S k}
and {Tk} such that for every k ∈ N,

S k = Tk−1 +

nk∑
n=nk−1+1

pn, S k ≥ L, S k − pnk < L =⇒ |S k − L| < pnk

and

Tk = S k +

mk∑
n=mk−1+1

qn, Tk ≤ L, Tk − qmk ≥ L =⇒ |Tk − L| < qmk .

Define {bn} =
{

p1, p2, · · · , pn1 , q1, q2, · · · , qm1 , pn1+1, · · · , pn2 , qm1+1, · · · qm2 , · · ·
}

(III) To check that {bn} is a rearrangement of {an}, we have to show that

(i) To show that each an appears at most once in {bn}. Since each an is either in {pn}
or in {qn}, and each pn or each qn appears in {bn} at most once by the construction
of {bn}, we have each an appears in {bn} at most once.

(ii) To show that each an appears at least once in {bn}. For K ∈ N, aK must appear
in {pn}Kn=1 or in {qn}Kn=1. Hence, aK appears in {bn} at least once.

(IV) Check that S k → L and Tk → L as k → ∞. Since the series
∞∑

n=1

an converges, an → 0

as n → ∞. Then pn → 0 and qn → 0 as n → ∞. Hence, by part (II), S k → L and
Tk → L as k → ∞.

By the above argument {bn} is a rearrangement of {an} and
∞∑

n=1

bn = L.

□
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Theorem 11.5.16. If
∞∑

n=1

an is absolutely convergent and {bn} is a rearrangement of {an}, then

(a)
∞∑

n=1

an =

∞∑
n=1

bn and

(b)
∞∑

n=1

bn is absolutely convergent.

Proof. Let sn =

n∑
k=1

ak and tm =

m∑
k=1

bk.

(a) Since
∞∑

n=1

an is absolutely convergent and hence it is convergent, the series
∞∑

n=1

an is a

finite number. Given ε > 0, we want to prove
∣∣∣tm −

∞∑
n=1

an

∣∣∣ < ε as m is sufficiently large.

Since
∞∑

n=1

|an| converges, there exists N ∈ N such that

|aN+1| + |aN+2| + · · · <
ε

2
.

Since {bn} is a rearrangement of {an}, there exists M ∈ N such that {a1, a2, · · · , aN} ⊆
{b1, b2, · · · , bM}. For m > M

|tm − sN | ≤ |aN+1| + |aN+2| + · · · <
ε

2
.

Then

|tm −
∞∑

n=1

an| ≤ |tm − sN | + |sN −
∞∑

n=1

an| <
ε

2
+
ε

2
= ε.

Hence, {tm} converges to
∞∑

n=1

an and we have
∞∑

n=1

an =

∞∑
n=1

bn.

(b) Consider the sequence {|an|}. Since
∞∑

n=1

an is absolutely convergent,
∞∑

n=1

|an| is also ab-

solutely convergent. On the other hand, since {bn} is a rearrangement of {an}, {|bn|} is a
rearrangement of {|an|}. By part(a),

∞∑
n=1

|an| =
∞∑

n=1

|bn|.

Hence,
∞∑

n=1

|bn| converges; that is,
∞∑

n=1

bn is absutely convergent.

□
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■ Product of two sequences

Suppose that {an} and {bn} are summable sequences. We recall that

∞∑
n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn

∞∑
n=1

(can) = c
∞∑

n=1

an where c is a constant.

Question: Can we express (
∞∑

n=1

an)(
∞∑

n=1

bn) as a form of series? If yes, what is the

expression?

Heuristically, we observe the product of two finite series.

( N∑
n=1

an
)( M∑

m=1

bm
)
=

L∑
k=1

ck.

where {ck} contains all products of anbm.

Question: Is the formula still true for the product of two arbitrary infinite series?
Anserer: In general, it is not true for two summable sequences.

Exercise. Find two summable sequences {an} and {bn} such that there is no summable se-
quence {cn} satisfying ( ∞∑

n=1

an
)( ∞∑

n=1

bn
)
=

∞∑
n=1

cn.

Theorem 11.5.17. If
∞∑

n=1

an and
∞∑

n=1

bn converge absolutely and {cn} is any sequence con-

taining all products aib j for each pair (i, j), then

∞∑
n=1

cn =
( ∞∑

n=1

an
)( ∞∑

n=1

bn
)
.

Proof. (Exercise) □

Homework 11.5. 3, 6, 9, 11, 13, 17, 20, 22, 25, 28, 31, 34, 37, 41, 46, 48

11.6 The Ratio and Root Tests

In the previous section, we study that an absolutely convergent series is also convergent. How-
ever, it is not easy to check whether a general series is absolutely convergent. In the present
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section, we will introduce two methods which can determine whether certain series are conver-
gent or divergent. The spirit of these two methods is from the comparison with geometric series.

o The Ratio Test

Theorem 11.6.1. (Ratio Test) For the series
∞∑

n=1

an, suppose that lim
n→∞

∣∣∣an+1

an

∣∣∣ = L.

(a) If L < 1, then the series
∞∑

n=1

an is absolutely convergent (and therefore it is convergent).

(b) If L > 1 (or L = ∞), then the series
∞∑

n=1

an is divergent.

(c) If L = 1 the Ratio Test is inconclusive. (For example,
∑ 1

n
diverges and

∑ 1
n2 con-

verges).

Proof. (Postponed) □

Example 11.6.2. Determine whether the following series are convergent or divergent.

(1)
∞∑

n=1

1
n!

Proof. Let an =
1
n!

. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

1
n + 1

= 0 < 1.

By the ratio test, the series
∞∑

n=1

1
n!

is convergent. □

(2)
∞∑

n=1

1
n!

Proof. Let an =
1
n!

. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

1
n + 1

= 0 < 1.

By the ratio test, the series
∞∑

n=1

1
n!

is convergent. □
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(3)
∞∑

n=1

rn

(n + 1)!
for some r ∈ R.

Proof. Let an =
rn

(n + 1)!
. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

rn+1

(n+2)!
rn

(n+1)!

= lim
n→∞

r
n + 2

= 0 < 1.

By the ratio test, the series
∞∑

n=1

rn

(n + 1)!
is convergent. □

(4)
∞∑

n=1

(−1)n n3

3n

Proof. Let an = (−1)n n3

3n . Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (−1)n+1 (n+1)3

3n+1

(−1)n n3

3n

∣∣∣ = lim
n→∞

1
3

Än + 1
n

ä3
=

1
3
< 1.

By the ratio test, the series
∞∑

n=1

(−1)n n3

3n is convergent. □

(5)
∞∑

n=1

nn

n!

Proof. Let an =
nn

n!
. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (n+1)n+1

(n+1)!
nn

n!

∣∣∣ = lim
n→∞

Än + 1
n

än
= lim

n→∞
(1 +

1
n

)n = e > 1.

By the ratio test, the series
∞∑

n=1

nn

n!
is divergent. □

Note. Consider
nn

n!
=

n · n · · · n
1 · 2 · · · n ≥ n→ ∞ as n →. By the Test for Divergence, the series

∞∑
n=1

nn

n!
is divergent.

Proof of Ratio Test
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(a) Since lim
n→∞

∣∣∣an+1

an

∣∣∣ = L < 1, choosing a number s such that L < s < 1, there exists N ∈ N
such that for every n ≥ N

|an+1|
|an|

< s < 1.

Hence, |an+1| < |an|s for every n > N. We have

|aN+2| < |aN+1|s
|aN+3| < |aN+2|s < |aN+1|s2

...

|aN+k| < |aN+k−1|s < · · · < |aN+1|sk−1 for k = 1, 2, 3, · · ·

For every n > N, the partial sum sn of
∞∑

n=1

|an| satisfies

sn = |a1| + |a2| + · · · + |aN | + |aN+1| + · · · + |an|

=

N∑
k=1

|ak| + |aN+1| + · · · + |an|

<

N∑
k=1

|ak| + |aN+1| + |aN+1|s + |aN+1|s2 + · · · + |aN+1|sn−(N+1)

=

N∑
k=1

|ak| +
|aN+1|(1 − sn−N)

1 − s

<

N∑
k=1

|ak| +
|aN+1|
1 − s

since 0 < s < 1.

Since {sn} is an increasing sequence and bounded above, by the bounded criterion, {sn}

converges and hence
∞∑

n=1

an is absolutely convegent.

(b) Since lim
n→∞

∣∣∣an+1

an

∣∣∣ = L > 1, choosing a number s such that 1 < s < L, there exists N ∈ N
such that for every n ≥ N

|an+1|
|an|

> s > 1.

Hence, |an+1| > |an|s for every n > N. We have

|aN+2| > |aN+1|s
|aN+3| > |aN+2|s < |aN+1|s2

...

|aN+k| > |aN+k−1|s > · · · < |aN+1|sk−1 for k = 1, 2, 3, · · ·
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W.L.O.G, we may assume that |aN+1| > 0. Then

lim
n→∞
|an| ≥ lim

n→∞
|aN+1|sn−(N+1) = ∞ (since s > 1).

Hence, lim
n→∞

an , 0. By the Test for Divergence, the series
∞∑

n=1

an is divergent.

o The Root Test

Theorem 11.6.3. (Root Test) For the series
∞∑

n=1

an, suppose that lim
n→∞

n
√
|an| = L.

(a) If L < 1, then the series
∞∑

n=1

an is absolutely convergent (and therefore it is convergent).

(b) If L > 1 (or L = ∞), then the series
∞∑

n=1

an is divergent.

(c) If L = 1 the Ratio Test is inconclusive. (For example,
∑ 1

n
diverges and

∑ 1
n2 con-

verges).

Proof. (Postponed) □

Example 11.6.4. Determine whether the following series are convergent or divergent.

(1)
∞∑

n=1

1
(ln n)n .

Proof. Let an =
1

(ln n)n . Then

lim
n→∞

n
√
|an| = lim

n→∞
n

 ∣∣∣ 1
(ln n)

∣∣∣n = lim
n→∞

1
ln n
= 0 < 1.

By the root test, the series
∞∑

n=1

1
(ln n)n is convergent. □

(2)
∞∑

n=1

2n

n3 .

Proof. Let an =
2n

n3 . Then

lim
n→∞

n
√
|an| = lim

n→∞

n

…∣∣∣2n

n3

∣∣∣ = lim
n→∞

2
n√
n3
= 2 > 1.
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By the root test, the series
∞∑

n=1

2n

n3 is divergent. □

(3)
∞∑

n=1

Ä2n + 3
3n + 2

än
.

Proof. Let an =
Ä2n + 3

3n + 2

än
. Then

lim
n→∞

n
√
|an| = lim

n→∞

n

…∣∣∣2n + 3
3n + 2

∣∣∣n = lim
n→∞

2n + 3
3n + 2

=
2
3
< 1.

By the root test, the series
∞∑

n=1

Ä2n + 3
3n + 2

än
is convergent. □

(4)
∞∑

n=1

Ä n
n + 1

än
.

Proof. Let an =
Ä n

n + 1

än
. Then

lim
n→∞

n
√
|an| = lim

n→∞
n

…∣∣∣ n
n + 1

∣∣∣n = lim
n→∞

∣∣∣ n
n + 1

∣∣∣ = 1.

The Root Test is inconclusive. However,

lim
n→∞

an = lim
n→∞

Ä n
n + 1

än
= lim

n→∞

1Ä
1 + 1

n

än =
1
e
, 0.

By the Test for Divergence, the series
∞∑

n=1

Ä n
n + 1

än
diverges. □

Proof of Ratio Test

(a) Since lim
n→∞

n
√
|an| = L < 1, choosing a number s such that L < s < 1, there exists N ∈ N

such that for every n ≥ N
n
√
|an| < s < 1.
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Hence, |an| < sn for every n ≥ N. The partial sum sn of
∞∑

n=1

|an| satisfies

sn = |a1| + |a2| + · · · + |aN | + |aN+1| + · · · + |an|

<

N∑
k=1

|ak| + sN+1 + sN+2 + · · · + sn

=

N∑
k=1

|ak| +
sN+1(1 − sn−N)

1 − s

<

N∑
k=1

|ak| +
sN+1

1 − s
since 0 < s < 1.

Since {sn} is an increasing sequence and bounded above, by the bounded criterion, {sn}

converges and hence
∞∑

n=1

an is absolutely convegent.

(b) Since lim
n→∞

n
√
|an| = L > 1, choosing a number s such that 1 < s < L, there exists N ∈ N

such that for every n ≥ N
n
√
|an| > s > 1.

Hence, |an| > sn for every n > N. We have

lim
n→∞
|an| ≥ lim

n→∞
sn = ∞ (since s > 1).

Hence, lim
n→∞

an , 0. By the Test for Divergence, the series
∞∑

n=1

an is divergent.

Homework 11.6. 3, 6, 9, 13, 19, 22, 25, 28, 32, 35, 39, 41

11.7 Strategy for Testing Series

In the present section, we will organize all tests introduced in previous sections. The following
steps are some strategies for convergence or divergence for series.

∞∑
n=1

an

1. p-series:
∞∑

n=1

1
np is

 convergent when p > 1

divergent when p ≤ 1.
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2. geometric series:

∞∑
n=1

arn (a , 0) is

 convergent when |r| < 1

divergent when |r| ≥ 1.

3. When the form of the series is similar to a p-series or a geometric series (for example,∑ 2
n2 + 3n + 1

or
∑ 2n+1 − 5

3n + 2
), we could determine the convergence or divergence by using

the comparison test (or limit comparison test).

4. Test for Divergence:

lim
n→∞

an , 0 =⇒
∞∑

n=1

an is divergent.

5. Alternating Series Test: If the series has the form
∞∑

n=1

(−1)nbn for bn > 0 satisfying

(i) bn+1 ≤ bn for all n ∈ N and (ii) lim
n→∞

bn = 0

then the series
∞∑

n=1

(−1)nbn is convergent.

6. Ratio Test: Suppose that lim
n→∞

∣∣∣an+1

an

∣∣∣ = L.

∞∑
n=1

an is

 absolutely convergent if L < 1
divergent if L > 1
inconclusive if L = 1

7. Root Test: Suppose that lim
n→∞

n
√
|an| = L.

∞∑
n=1

an is

 absolutely convergent if L < 1
divergent if L > 1
inconclusive if L = 1

8. Integral Test: Suppose that f is positive and nonincreasing on [1,∞), and an = f (n). Then

∞∑
n=1

an is convergent (divergent) ⇐⇒
∫ ∞

1
f (x) dx is convergent (divergent).

Homework 11.7. 9, 12, 15, 18, 20, 22, 26, 30, 33, 36, 38, 40, 43, 46, 68
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11.8 Power Series

So far, we have studied series of numbers:
∑

an. For a number s ∈ R, it can be expressed as a
series (sum of infinite numbers). For a function f , we want to ask whether a (smooth) function
can be expressed as a sum of infinite function. Here we consider series, called “power series”,
in which each term includes a power of the variable x:

∑
cnxn.

o Power Series

Definition 11.8.1. A “power series” is a series of the form

∞∑
n=0

cnxn = c0 + c1x + c2x2 + c3x3 + · · ·

where x is a variable and the cn are constants called the “coefficients” of the series.

For given x = x0, we should determine whether the series
∞∑

n=0

cnxn
0 converges or diverges.

Let f (x) =
∞∑

n=0

cnxn be as a function. Then the domain of f (x) is the set of all x for which the

series converges.

Example 11.8.2.
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · is a power series. (We regard the power function

as a geometric series with ratio x.) The series converges when |x| < 1 and diverges when |x| ≥ 1.

Therefore, the domain of
∞∑

n=0

xn is (−1, 1).

Definition 11.8.3. In general, a series of the form

∞∑
n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·

is called a “power series in (x − a)” or a “power series centered at a” or a “power series about
a”.

Note. For a power series, it is important to determine for what values of x the series converges.

Example 11.8.4. For what values of x is the series
∞∑

n=0

n!xn convergent?

Proof. (Idea: using the ratio test or root test)

Let an = n!xn. Then
∣∣∣an+1

an

∣∣∣ = ∣∣∣ (n + 1)!xn+1

n!xn

∣∣∣ = (n + 1)|x|. If x = 0, lim
n→∞

∣∣∣an+1

an

∣∣∣ = 0 < 1 and

if x , 0, lim
n→∞

∣∣∣an+1

an

∣∣∣ = ∞.

By the Ratio Test, the series converges when x = 0. □
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Example 11.8.5. For what values of x does the series
∞∑

n=1

(x − 3)n

n
converge?

Proof. Let an =
(x − 3)n

n
. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (x−3)n+1

n+1
(x−3)n

n

∣∣∣ = n
n + 1

|x − 3| −→ |x − 3| as n→ ∞.

By the Ratio Test, if |x − 3| < 1 (i.e. 2 < x < 4), the series
∞∑

n=1

(x − 3)n

n
converges and if

|x − 3| > 1 (i.e. x < 2 or x > 4) the series
∞∑

n=1

(x − 3)n

n
diverges.

For |x − 3| = 1,

(i) When x − 3 = 1 (i.e. x = 4),
∞∑

n=1

(x − 3)n

n
=

∞∑
n=1

1
n

diverges (p-series, p = 1).

(ii) When x−3 = −1 (i.e. x = 2),
∞∑

n=1

(x − 3)n

n
=

∞∑
n=1

(−1)n

n
converges by the alternating series

test.

Hence, the power series
∞∑

n=1

(x − 3)n

n
converges on [2, 4) and diverges on (−∞, 2) ∪ [4,∞). □

Example 11.8.6. For what values of x does the series
∞∑

n=1

xn

(2n)!
converge?

Proof. Let an =
xn

(2n)!
. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ xn+1

[2(n+1)]!
xn

(2n)!

∣∣∣ = |x|
(2n + 1)(2n + 2)

−→ 0 < 1 as n→ ∞

for all x. By the Ratio Test, the series
∞∑

n=1

xn

(2n)!
converges for all x. □

Example 11.8.7. (Bessel function of order 0) Find the domain of the Bessel function

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2 .

Proof. Let an =
(−1)x2n

22n(n!)2 . Then

∣∣∣an+1

an

∣∣∣ =
∣∣∣∣∣∣

(−1)x2(n+1)

22(n+1)[(n+1)!]2

(−1)x2n

22n(n!)2

∣∣∣∣∣∣ = 1
22(n + 1)2 |x|

2.
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For every x ∈ R,

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
22(n + 1)2 |x|

2 = 0 < 1.

By the Ratio Test, the series converges for every x and the domain of J0(x) is R. □

■ Interval of Convergence

Definition 11.8.8. (a) We say that a power series
∞∑

n=0

cn(x − a)n converges

(i) at x0 if
∞∑

n=0

cn(x0 − a)n converges;

(ii) on the set S if
∞∑

n=0

cn(x − a)n converges at each x ∈ S .

(b) If we regard a series f (x) =
∞∑

n=0

cn(x − a)n as a function, then the domain of f (x) is the set

of all x for which the series converges.

Remark. A power series
∞∑

n=0

cn(x − a)n always converges at its center a. In fact, when putting

x = a, the series converges to the constant term c0.

Example 11.8.9. Consider the series
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · as a geometric series with

ratio x. Then the series converges when |x| < 1 and diverges when |x| ≥ 1. Therefore, the

domain of
∞∑

n=0

xn is (−1, 1).
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From the above examples, we observe that the region where the power series
∞∑

n=0

cn(x − a)n

is convergent has always turned out to be an interval (e.g. {a}, finite interval, (−∞,∞) etc).

Question: Is the set where a power series converges always an interval (including the case that
converges at a single point)?

Theorem 11.8.10. For a given power series
∞∑

n=0

cn(x − a)n,

(a) if the series converges at x0 , a, then it converges absolutely at every x with |x − a| < |x0 − a|.

(b) if the series diverges at y0, then it diverges at every x with |x − a| > |y0 − a|.

Proof.

(a) Since
∞∑

n=0

cn(x0 − a)n converges, we have lim
n→∞
|cn(x0 − a)n| = 0. Thus, there exists

N ∈ N such that for every n > N such that |cn(x0 − a)n| < 1.

Let x satisfy |x − a| < |x0 − a|. Since
∣∣∣ x − a
x0 − a

∣∣∣ < 1, the series
∞∑

n=N+1

∣∣∣ x − a
x0 − a

∣∣∣n converges.

Also,
|cn(x − a)n| = |cn(x0 − a)n|

∣∣∣ x − a
x0 − a

∣∣∣n < ∣∣∣ x − a
x0 − a

∣∣∣n for n > N.

By the comparison test, the series
∞∑

n=N+1

|cn(x − a)n| conveges and hence
∞∑

n=1

|cn(x − a)n|

also converges.

(b) Let z0 be a number such that |y0 − a| < |z0 − a|. Assume that the series
∞∑

n=0

cn(z0 − a)n

converges. By part(a), for every x with |x − a| < |z0 − a|, the series
∞∑

n=0

cn(x − a)n

converges. Hence the series
∞∑

n=0

cn(y0 − a)n converges. It contradicts the hypothesis

that the series
∞∑

n=0

cn(y0 − a)n diverges. Therefore,
∞∑

n=0

cn(z0 − a)n must diverges.

Since z0 is an arbitrary number with |y0 − a| < |z0 − a|, part(b) is proved.

□
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Theorem 11.8.11. For a given power series
∞∑

n=0

cn(x − a)n, there are only three possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series conveges if |x − a| < R and diverges if
|x − a| > R.

Proof. (Exercise) □

Note.

(a) The number R in part(c) of Theorem 11.8.11 is called the “radius of convergence”.

(b) By convention, we define the radius of convergence as R = 0 in part(a), and as R = ∞ in
part(b).

(c) The interval which consists of all values of x for which the series converges is called the
“interval of convergence” of the power series.

(d) In order to find the interval of convergence in part(c) if the radius of convergence is ob-
tained, we still need to consider the endpoints of the interval. That is, to consider whether
the series converges at the endpoints x = a − R and x = a + R. All situations would occur.
Hence, the interval of convergence could be (a − R, a + R), [a − R, a + R), (a − R, a + R] or
[a − R, a + R].

Example 11.8.12.

Question: How to find the radius of convergece for a given power series? What is the connec-
tion between the coefficients and the radius of convergence?

Suppose that lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = L. Let an = cn(x − a)n. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣cn+1

cn

∣∣∣|x − a| −→ L|x − a| as n→ ∞.
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By the ratio test,

if L|x − a| < 1⇐⇒ |x − a| < 1
L
, then the series

∞∑
n=0

cn(x − a)n is convergent;

if L|x − a| > 1⇐⇒ |x − a| > 1
L
, then the series

∞∑
n=0

cn(x − a)n is divergent.

Hence, the radius of convergence of the series is R =
1
L

where lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = L.

Example 11.8.13. Find the radius and interval of convergence of the series
∞∑

n=0

xn

n!
.

Proof. Let an =
xn

n!
. Then ∣∣∣an+1

an

∣∣∣ = ∣∣∣ xn+1

(n+1)!
xn

n!

∣∣∣ = |x|
n + 1

.

Hence, for every x ∈ R, lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

|x|
n + 1

= 0. The series
∞∑

n=0

xn

n!
converges for every

x ∈ R. The radius of convergence is∞ and the interval of convergence is R. □

Example 11.8.14. Find the radius and interval of convergence of the series
∞∑

n=0

nnxn.

Proof. For every x , 0, if n ∈ N and n > 2
|x| , then |nx| > 2. Hence,

lim
n→∞
|nnxn| = lim

n→∞
|nx|n ≥ lim

n→∞
2n = ∞.

By the test for divergence, the series
∞∑

n=0

nnxn diverges at every x ∈ 0. The radius of convergence

is 0 and the interval of convergence is {0}.
□
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Example 11.8.15. Find the radius and interval of convergence of the series
∞∑

n=0

(−3)nxn

√
n + 1

.

Proof. Let an =
(−3)nxn

√
n + 1

. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (−3)n+1 xn+1
√

n+2
(−3)n xn
√

n+1

∣∣∣ = 3

…
n + 1
n + 2

−→ 3|x| as n→ ∞.

By the Ratio Test,

(1) When 3|x| < 1⇐⇒ |x| < 1
3

, the power series is convergent.

(2) When 3|x| > 1⇐⇒ |x| > 1
3

, the power series is divergent.

(3) At the endpoints,

(i) if x =
1
3

, the series is
∞∑

n=0

(−1)n

√
n + 1

is convergnet by the alternating series test.

(ii) if x = −1
3

, the series is
∞∑

n=0

1
√

n + 1
is divergent (p-series, p =

1
2
< 1).

Hence, the radius of convergence is
1
3

and the interval of convergence is (−1
3 ,

1
3 ]. □

Example 11.8.16. Find the radius and interval of convergence of the series
∞∑

n=0

n(x + 2)n

3n+1 .

Proof. Let an =
n(x + 2)n

3n+1 . Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (n+1)(x+2)n+1

3n+2

n(x+2)n

3n+1

∣∣∣ = n
3(n + 1)

|x + 2| −→ 1
3
|x + 2| as n→ ∞.

By the Ratio Test,

(1) When
1
3
|x + 2 < 1⇐⇒ |x + 2| < 3, the power series is convergent.

(2) When
1
3
|x + 2 > 1⇐⇒ |x + 2| > 3, the power series is divergent.

(3) At the endpoints, consider
1
3
|x + 2| = 1⇐⇒ |x + 2| = 3.

(i) If x = 1, the series is
1
3

∞∑
n=0

n = ∞ is divergent.
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(ii) If x = −5, the series is
1
3

∞∑
n=0

(−1)nn is divergent by the test for divergence.

Hence, the radius of convergence is 3 and the interval of convergence is (−5, 1). □

Remark.

(i) The Ratio Test (or Root Test) do not apply for the endpoints of the interval of convergence.

(ii) Theorem 11.8.11 is false for general series
∞∑

n=0

fn(x).

Homework 11.8. 7, 10, 13, 17, 21, 24, 26, 31, 35, 37, 39

11.9 Representations of Functions as Power Series

Motivation: Many functions have no elementary antiderivatives or it is difficult to solve differ-
ential equations, or the approximation of them are difficult to find. We hope to express those
functions as sums of power series and do the differentiation or integration on the power series
rather than dealing with the original functions.

Difficulties:

(1) What kinds of functions can be expressed as a powe series?

(2) If a function can be expressed as a power series, can we do the differentiation or integration
on the power series “term by term”?

Example 11.9.1.

Consider the power series
∞∑

n=0

xn = 1 + x + x2 + · · ·. If we

regard the series as a geometric series with ratio x, then
the series diverges when |x| > 1 and converges when |x| <
1. Moreover,

∞∑
n=0

xn =
1

1 − x
for |x| < 1. (11.1)

Hence, the power series is regarded as expressing the

function f (x) =
1

1 − x
.

Note. Observe that the domain of f (x) =
1

1 − x
is R\{1} but the domain of the series

∞∑
n=0

xn is

(−1, 1). This says that a power series representation of a function may equal this function only
on a proper subset of its domain rather than the whole domain.
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Question: For a given function,

(1) does it have a power series representation?

(2) If yes, for what values of x does f (x) equal
∞∑

n=0

cnxn?

(3) If f (x) =
∞∑

n=0

cnxn, can we take differentation or integration on the power series term-by-

term?

Example 11.9.2. Express
1

1 + x2 as the sum of a power series and find the interval of conver-
gence.

Proof. Consider
1

1 + x2 =
1

1 − (−x2)
. Replacing x by −x2 in Equation (11.1), we have

1
1 + x2 =

1
1 − (−x2)

=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n.

The geometric series converes when |− x2| < 1. Thus, the interval of convergence is (−1, 1). □

Example 11.9.3. Find the power series representation of
1

x + 2
.

Proof. Consider
1

x + 2
=

1
2
· 1

1 − (− x
2 )

. Replacing x by − x
2 in Equation (11.1), we have

1
x + 2

=
1
2
· 1

1 − (− x
2 )
=

1
2

∞∑
n=0

(− x
2

)n =

∞∑
n=0

(−1)n

2n+1 xn.

The power series converges when | − x
2 | < 1. The interval of convergence is (−2, 2). □

Example 11.9.4. Find a power series representation of
x3

x + 2
.

Proof. The power series representation is

x3

x + 2
= x3 · 1

x + 2
= x3

∞∑
n=0

(−1)nxn

2n+1 =

∞∑
n=0

(−1)nxn+3

2n+1 .

The interval of convergence is (−2, 2).
□

o Operations on Power Series

Theorem 11.9.5. Let f (x) =
∞∑

n=0

an(x − a)n and g(x) =
∞∑

n=0

bn(x − a)n with the intervals of con-

vergence (a − L, a + L) and (a − M, a + M) respectively. Let R = min(L,M). Then
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(1)
(

f ± g
)
(x) =

∞∑
n=0

(an ± bn)(x − a)n on (a − R, a + R).

(2)
(

f · g
)
(x) =

∞∑
n=0

cn(x − a)n on (a − R, a + R) where cn =

n∑
k=0

akbn−k.

o Differentiation and Integration of Power Series

Theorem 11.9.6. Let f (x) =
∞∑

n=0

cn(x − a)n with the radius of convergence R > 0. Then f is

differentiable (and therefore continuous) on (a − R, a + R) and

(1) f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · + ncn(x − a)n−1 + · · · =
∞∑

n=1

ncn(x − a)n−1

(2) ∫
f (x) dx = C + c0(x − a) + c1

(x − a)2

2
+ c2

(x − a)3

3
+ · · · + cn

n + 1
(x − a)n+1 + · · ·

= C +
∞∑

n=0

cn
(x − a)n+1

n + 1
.

The radii of convergence of the power series of above equations are both R.

Remark. (1)

d
dx

î ∞∑
n=0

cn(x − a)n
ó
=

∞∑
n=0

d
dx

î
c(x − a)n

ó
∫ ∞∑

n=0

cn(x − a0n dx = sin∞n=0

∫
cn(x − a)n dx

(2) The radius of convergence remains the same when a power series is differentiated or in-
tegrated. But it does NOT mean that the interval of convergence remains the same. (For
example, f (x) = tan−1 x)

(3) A powerful method to solve differential equations.

Example 11.9.7. (Bessel function) The function

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2 is defined for all x ∈ R
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Then

J′0(x) =
d
dx

î ∞∑
n=0

(−1)nx2n

22n(n!)2

ó
=

∞∑
n=0

d
dx

î (−1)nx2n

22n(n!)2

ó
=

∞∑
n=1

(−1)n2nx2n−1

2n(n!)2 on R.

Example 11.9.8. Express
1

(1 − x)2 as a power series by differentiating
1

1 − x
. What is the radius

of convergence?

Proof. Since
1

1 − x
= 1 + x + x2 + · · · =

∞∑
n=0

xn for |x| < 1,

1
(1 − x)2 =

d
dx

î 1
1 − x

ó
=

d
dx

î ∞∑
n=0

xn
ó
=

∞∑
n=1

d
dx

(xn) =
∞∑

n=1

nxn−1
Ä
=

∞∑
n=0

(n + 1)xn
ä

= 1 + 2x + 3x2 + · · · .

The radius of convergence of the power series of
1

(1 − x)2 is 1 which is the same as the radius of

convergence of the power series of
1

1 − x
. □

Example 11.9.9. Find a power series representation for ln(1 + x) and its radius of convergence.

Proof. Since ln(1 + x) =
∫

1
1 + x

dx and
1

1 − (−x)
=

∞∑
n=0

(−x)n =

∞∑
n=0

(−1)nxn for |x| < 1,

ln(1 + x) =
∫

1
1 + x

dx =
∫ ∞∑

n=0

(−1)nxn dx = C +
∞∑

n=0

(−1)n xn+1

n + 1
.

To determine C, taking x = 0 ∈ (−1, 1), we have 0 = ln(1 + 0) = C and hence

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
.

Since the radius of convergence of the series for
1

1 + x
is 1, the radius of convergence of the

series for ln(1 + x) is also 1. □

Example 11.9.10. Find a power series representation for f (x) = tan−1 x.

Proof. Since f ′(x) =
1

1 + x2 =
1

1 − (−x2)
=

∞∑
n=0

(−1)nx2n on |x| < 1, we have

f (x) = tan−1 x =
∫ ∞∑

n=0

(−1)nx2n dx = C +
∞∑

n=0

(−1)nx2n+1

2n + 1
.

To determine C, taking x = 0, we have 0 = tan−1 0 = C and hence

tan−1 x =
∞∑

n=0

(−1)n

2n + 1
x2n+1.
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Since the radius of convergence of the series for
1

1 + x2 is 1, the radius of convergence of the

series for tan−1 x is also 1. □

Note. In fact, the power series representation is also true when x = ±1. But this result is not
given by the above theorem.

Example 11.9.11. Express
π

4
as a series.

Proof. From Example 11.9.10,

π

4
= tan−1 1 = 1 − 1

3
+

1
5
− 1

7
+ · · · + (−1)n

2n + 1
+ · · ·

In fact,
π

4
has several different series representations. For example,

π

4
= tan−1 1

2
+ tan−1 1

3

=
î1

2
− 1

3
(1

2
)3
+

1
5
(1

2
)5 − 1

7
(1

2
)7
+ · · ·

ó
+
î1

3
− 1

3
(1

3
)3
+

1
5
(1

3
)5 − 1

7
(1

3
)7
+ · · ·

ó
□

Note. If we use the idnetity π = 48 tan−1 1
18 + 32 tan−1 1

57 − 20 tan−1 1
239 to approximate π, it will

give more rapid rate of convergence than the above series representation since 1
18 , 1

57 and 1
239 are

much smaller than 1
2 and 1

3 . This implies that the reminder of the former decays to zero much
more rapidly than the one of latter.

Example 11.9.12. (a) Evaluate
∫

1
1 + x7 dx as a power series

(b) Approximate
∫ 0.5

0

1
1 + x7 dx correct to within 10−7.

Proof. (a) Since
1

1 + x7 =
1

1 − (−x7)
=

∞∑
n=0

(−x7)n =

∞∑
n=0

(−1)nx7n for |x < 1, we have

∫
1

1 + x7 dx =
∫ ∞∑

n=0

(−1)nx7n dx = C +
∞∑

n=0

(−1)n x7n+1

7n + 1
for |x| < 1.

(b) ∫ 0.5

0

1
1 + x7 dx =

∞∑
n=0

(−1)n

7n + 1
x7n+1

∣∣∣0.5
0
=

∞∑
n=0

(−1)n (0.5)7n+1

7n + 1
.

By the alternating series estimation, for
∞∑

n=0

(−1)bn with bn > 0, the estimate of remain-

der |Rn| < bn+1. Hence, for bn =
(0.5)7n+1

7n + 1
< 10−7, we have n ≥ 4.

Therefore, ∫ 0.5

0

1
1 + x7 dx ≈ 1

2
− 1

8 · 28 +
1

15 · 215 −
1

22 · 222 ≈ 0.49951374.

□
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Remark. Suppose that f (x) =
∞∑

n=0

cn(x − a)n converges for |x−a| < R. Then f ′(x) =
∞∑

n=1

ncn(x − a)n

also converges for |x − a| < R. Hence f ′(x) has a power series representation on (x − R, x + R).
We can also take term-by-term differentiation and obtain

f ′′(x) =
∞∑

n=2

n(n − 1)(x − a)n−2 converges on (a − R, a + R)

...

f (k)(x) =
∞∑

n=k

n(n − 1)(n − 2) · · · (n − k + 1)(x − a)n−k converges on (a − R, a + R).

Homework 11.9. 7, 10, 13, 15, 19, 22, 27, 30, 31, 38, 40(a), 49

11.10 Taylor and Maclaurin Series
So far, we can find power series representations for a centain restricted class of functions.

Question: Which functions do have power series representations?

Suppose that f has a power series representation

f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n + · · · =
∞∑

n=0

cn(x − a)n for |x − a| < R

Question: what are the coefficients cn?

By the term-by-term differentiation, we can take
dk

dxk on f and obtain

f (k)(x) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)cn(x − a)n−k.

Plugging x = a into the equation, we have

ck =
f (k)(a)

k!
for k = 0, 1, 2, · · · .

Note. For the sake of conventions, we denote 0! = 1 and f (0) = f .

Definition 11.10.1. (a) Let f be a function with infinitely many times derivatives at a, that is,
f ′(a), f ′′(a), · · · , f (k)(a), · · · exist for k = 1, 2, · · · . Then the series

f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (k)(a)

k!
(x − a)k + · · · =

∞∑
n=0

f (n)(a)
n!

(x − a)n

is called the “Taylor series for f at a” (or “Taylor series for f about a” or “Taylor series for
f centered at a”).
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(b) For the special case a = 0, the Taylor series at 0,
∞∑

n=0

f (n)(0)
n!

xn is also called the “Maclaurin

series for f ”.

Note. If f can be represented as a power series about a with radius of convergence R > 0, then
f is equal to the sum of its Taylor series about a.

Example 11.10.2. Find the Taylor series for the following functions at the given points.

(1) f (x) = ex at x = 0.

Proof. Since f (k)(x) = ex, we have f (k)(0) = 1 for k = 0, 1, 2, · · · . Hence, the Taylor series
for f at 0 (Maclaurin series) is

∞∑
n=0

f (n)(0)
n!

xn =

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · + xn

n!
+ · · · .

Moreover, let an =
xn

n!
. Then

∣∣∣an+1

an

∣∣∣ = |x|
n + 1

−→ 0 < 1 as n→ ∞ for every x. By the Ratio

Test, the Taylor series converges for all x and the radius of convergence is∞. □

(2) f (x) = sin x at x = 0.

Proof. For k ∈ N,

f (4n)(x) = sin x, f (4n+1)(x) = cos x, f (4n+2)(x) = − sin x, f (4n+3)(x) = − cos x
f (4n)(0) = 0, f (4n+1)(0) = 1, f (4n+2)(0) = 0, f (4n+3)(0) = −1

The Taylor series for f at 0 (Maclaurin series) is

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

Let an =
(−1)n

(2n + 1)!
x2n+1. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (−1)n+1

(2n+3)! x2n+3

(−1)n

(2n+1)! x2n+1

∣∣∣ = ∣∣∣ x2

(2n + 1)(2n + 2)

∣∣∣ −→ 0 for all x.

Therefore, the Taylor series
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1 converges for all x ∈ R and the radius of

convergence is∞. □

■When is a Function Represented by Its Taylor Series?

Note. Suppose that the functions f (x) = ex or f (x) = sin x has power series representation.
Then we have

ex =

∞∑
n=0

xn

n!
or sin x =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1
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By the definition of Taylor series, as long as a function f has infinitely many derivatives at
a, the Taylor series for f about a is defined. It is natural to ask the following questions:

Remark. (1) As long as f has derivatives of all orders at a, then its Taylor series
∞∑

n=0

f (n)(a)
n!

(x − a)n

exists.

(2) If f can be represented as a power series, then its power series representation mush be its
Taylor series.

(3) There are examples that a function is not equal to its Taylor series at all points except the
center. We usually determine whether and where a Taylor series converges by using the
Ratio test or Root test. Even if the Taylor series for f about a converges at some number
x , a, it may not converge to f (x). For example,

f (x) =

®
e−

1
x2 if x , 0

0 if x = 0

We can evaluate that f (0) = f ′(0) = f ′′(0) = · · · = f (k)(0) = · · · = 0. Hence, the Taylor
series for f at 0 is the zero function which does not converge to f except at the center 0.

Question:

(i) What values of x for which the Taylor sereis is convergent or divergent?

(ii) If the Taylor series converges at x, does it converge to f (x)? That is, f (x) ??
=

∞∑
n=0

f (n)(a)
n!

(x − a)n

Consider

f (x) =
∞∑

n=0

f (n)(a)
n!

(x − a)n
Ä
= lim

n→∞

n∑
i=0

f (i)(a)
i!

(x − a)i

Tn(x)

ä
means that f (x) is equal to the limit of the partial sum. Define

Tn(x) =
n∑

i=0

f (i)(a)
i!

(x − a)i

= f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n

We call Tn “nth-degree Taylor polynomial of f at a”. Let

Rn(x) = f (x) − Tn(x)

be the “remainder of the Taylor series”. To check whether the Taylor series converges to f , we
have

f (x) = lim
n→∞

Tn(x) if and only if lim
n→∞

Rn(x) = lim
N→∞

[
f (x) − Tn(x)

]
= 0.



148 CHAPTER 11. SEQUENCES, SERIES, AND POWER SERIES

Theorem 11.10.3. If f (x) = Tn(x) + Rn(x), where Tn is the nth-degree Taylor polynomial of f
at a, and if

lim
n→∞

Rn(x) = 0

for |x − a| < R, then f is equal to the sum of its Taylor series on the interval |x − a| < R.

■ Taylor Theorem

Theorem 11.10.4. (Taylor Theorem) Let f (t) be a n + 1 times differentiable function on
[a, x] and Rn,a(x) be defined by

f (x) = Pn,a(x) + Rn,a(x).

Then

(a) (Cauchy form)

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n(x − a) for some ξ ∈ (a, x).

(b) (Lagrange form)

Rn,a(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1 for some ξ ∈ (a, x).

(c) (Integral form)

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x − t)n dt

By using the part(b) of Taylor Theorem, we can derive the Taylor inequality

Lemma 11.10.5. (Taylor Inequality) Let f (x) be a (n + 1) times differentiable function and
| f (n+1)(x)| ≤ M for all |x − a| ≤ d. Then the remainder Rn(x) of the Taylor series satisfies the
inequaltiy

|Rn(x)| ≤ M
(n + 1)!

|x − a|n+1 for |x − a| ≤ d.

Example 11.10.6. Determine whether the equality ex =

∞∑
n=0

xn

n!
holds. If yes, for what values

of x does the equality hold?

Proof. Let f (x) = ex. Then f (n)(x) = ex for all n ∈ N and

f (x) = ex =

n∑
k=0

xk

k!
+ Rn(x).
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Fix a number x0 and choose a number d ≥ |x0|. Then | f (n+1)(z)| ≤ e|z| ≤ ed for all 0 ≤ |z| ≤
|x0| ≤ d. By the Taylor inequality,

0 ≤ |Rn(x0)| ≤ ed

(n + 1)!
|x0 − 0|n+1 ≤ ed dn+1

(n + 1)!
.

By the Squeeze Theorem, lim
n→∞
|Rn(x0)| = 0. Hence, the Taylor series

∞∑
n=0

xn

n!
converges to ex at

x0. Since x0 is an arbitrary number in R, the Taylor series
∞∑

n=0

xn

n!
converges to ex for every

number in R.

□

Remark. f (x) = ex =

∞∑
n=0

xn

n!
for every x ∈ R. Taking x = 1, we have

e = 1 + 1 +
1
2!
+

1
3!
+ · · · + 1

n!
+ · · · =

∞∑
n=0

1
n!
.

Example 11.10.7. Find the Taylor series for f (x) = ex at a = 2, and determine whether and for
what values of x, f (x) equals its Taylor series about a = 2.

Proof. Since f (n)(x) = ex, f (n)(2) = e2. The Taylor series for f at a = 2 is

∞∑
n=0

f (n)(2)
n!

(x − 2)n =

∞∑
n=0

e2

n!
(x − 2)n

• To determine for which values of x the Taylor series conveges.

Let an =
e2

n!
(x − 2)n. Then for every x ∈ R,

∣∣∣an+1

an

∣∣∣ = ∣∣∣ e2

(n+1)! (x − 2)n+1

e2

n! (x − 2)n

∣∣∣ = 1
n + 1

|x − 2| −→ 0 as n −→ ∞.
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• To determine whether ex =

∞∑
n=0

e2

n!
(x − 2)n.

Fix a number d > 0. By the Taylor theorem, for x with |x − 2| < d, there exists zx between 2
and x such that

Rn,2(x) =
f (n+1)(zx)
(n + 1)!

|x − 2|n+1 =
ezx

(n + 1)!
|x − 2|n+1.

Hence, for |x − 2| < d,

0 ≤ |Rn,2(x)| ≤ e2+d

(n + 1)!
|x − 2|n+1 ≤ e2+d dn+1

(n + 1)!
.

By the Squeeze Theorem, lim
n→∞

Rn,2(x) = 0 for every |x−2| < d and this imiplies that ex =

∞∑
n=0

e2

n!
(x − 2)n

for every |x − 2| < d. Sicne d is arbitrary number, we have

ex =

∞∑
n=0

e2

n!
(x − 2)n for every x ∈ R.

The radius of convergence of the series is∞.

□

Example 11.10.8. Find the Maclaurin series for f (x) = sin x and prove that it represents sin x
for all x.

Proof. The derivatives of f are

f (4k)(x) = sin x, f (4k+1)(x) = cos x, f (4k+2)(x) = − sin x, f (4k+3)(x) = − cos x.

Then
f (4k)(0) = 0, f (4k+1)(0) = 1, f (4k+2)(0) = 0, f (4k+3)(0) = −1.

The Maclaurin series for sin x is

∞∑
n=0

f (n)(0)
n!

xn = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

Since | f (n+1)(x)| = | ± sin x| or | ± cos x| ≤ 1 for all x ∈ R and n ∈ N, we have

|Rn,0(x) ≤ 1
(n + 1)!

|x|n+1.

Hence, for every fixed x, Rn,0(x)→ 0 as n→ ∞. That is,

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1 for all x ∈ R.
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□

Example 11.10.9. Prove that cos x =
∞∑

n=0

(−1)n

(2n)!
.

Proof.

cos x =
d
dx

(sin x) =
d
dx

Ä ∞∑
n=0

(−1)n

(2n + 1)!
x2n+1
ä

=

∞∑
n=0

(−1)n

(2n + 1)!

Ä d
dx

x2n+1
ä

=

∞∑
n=0

(−1)n

(2n)!
x2n for all x ∈ R.

□

Exercise. Find the Taylor series for f (x) = ln(1 + x) and for what values of x the Taylor series
converges to f (x).

Answer:
∞∑

n=1

(−1)n+1

n
xn for −1 < x ≤ 1.

■ Binomial Series

Example 11.10.10. (Binomial Series) Use the Maclaurin series for f (x) = (1 + x)k to deduce
the formula of the binomial series where k is any real number.

Proof. The derivatives of f is

f (n)(x) = k(k − 1)(k − 2) · · · (k − n + 1)(1 + x)k−n for n = 1, 2, · · · .
Then

f (n)(0) = k(k − 1)(k − 2) · · · (k − n + 1) for n = 1, 2, · · · .
The Maclaurin series for f (x) = (1 + x)k is

∞∑
n=0

f (n)(0)
n!

xn =

∞∑
n=0

k(k − 1)(k − 2) · · · (k − n + 1)
n!

xn (binomial series)

□
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Note. (1) (Convergence)

(i) For k ∈ N, k − n + 1 = 0 when n = k + 1. Then the binomial series is a finite sum and
a k degree polynomial. Therefore, the series converges for all x.

(ii) For k ∈ R\N, let an =
k(k − 1)(k − 2) · · · (k − n + 1)

n!
xn. Consider

∣∣∣an+1

an

∣∣∣ = |k − n|
n + 1

|x| =
|1 − k

n |
1 + 1

n

|x| −→ |x| as n→ ∞.

By the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.

Question: How about x = ±1?
Answer: depending on k.

• If −1 < k ≤ 0, the series converges at 1.
• If k ≥ 0, the series converges at ±1.

(2) Denote the coefficients in the binomial seriesÇ
k
n

å
=

k(k − 1)(k − 2) · · · (k − n + 1)
n!

(binomial coefficients)

If k ∈ N and k ≥ n, then

Ç
k
n

å
=

k!
n!(k − n)!

.

(3) The binomial series: if k ∈ R and |x| < 1, then

(1 + x)k =

∞∑
n=0

Ç
k
n

å
xn

= 1 + kx +
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)
3!

x3 + · · · + k(k − 1)(k − 2) · · · (k − n + 1)
n!

xn.

Example 11.10.11. Find the Maclaurin series for the function f (x) =
1

√
4 − x

and its radius of

convergence.

Proof. The function f (x) =
1

√
4 − x

= (4 − x)−
1
2 . By the binomial series with k = −1

2 and re-

placing x by − x
4

, we have

f (x) =
1
2

∞∑
n=0

Ç
−1

2

n

åÄ
− x

4

än

= =
1
2

î
1 +

1
8

x +
1 · 3
2! 82 x2 +

1 · 3 · 5
3! 83 x3 + · · · + 1 · 3 · 5 · · · (2n − 1)

n! 8n xn + · · ·
ó

The series converges when | − x
4
| < 1, that is, on (−4, 4). □
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Exercise. Evaluate the sum of the series
∞∑

n=0

(−1)n 2n + 2
(2n + 1)!

.

Answer:
∞∑

n=0

(−1)n 2n + 2
(2n + 1)!

= sin 1 + cos 1.

■ New Taylor Series from Old

Example 11.10.12. Find the Maclaurin series for the function f (x) = x cos x

Proof. Since cos x =
∞∑

n=0

(−1)n

(2n)!
x2n for all x, we have

x cos x = x ·
∞∑

n=0

(−1)n

(2n)!
x2n =

∞∑
n=0

(−1)n

(2n)!
x2n+1 for all x.

□

Example 11.10.13. Find the Maclaurin series for f (x) = ln(1 + 3x2).

Proof. We know that ln(1 + x) =
∞∑

n=1

(−1)n−1

n
xn for every |x| < 1. Replacing x by 3x2, we have

ln(1 + 3x2) =
∞∑

n=1

(−1)n−1 (3x2)n

n
=

∞∑
n=1

(−1)n−1 3nx2n

n
.
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for every |3x2| < 1. That is the representation valid for |x| < 1
√

3
. □

Example 11.10.14. Find the function represented by the power series
∞∑

n=0

(−1)n 2nxn

n!
.

Proof. By writing
∞∑

n=0

(−1)n 2nxn

n!
=

∞∑
n=0

(−2x)n

n!

and comparing with the Taylor series of ex,

ex =

∞∑
n=0

xn

n!
,

we have
∞∑

n=0

(−1)n 2nxn

n!
=

∞∑
n=0

(−2x)n

n!
= e−2x.

□

Example 11.10.15. Find the sum of the series

1
1 · 2 −

1
2 · 22 +

1
3 · 23 −

1
4 · 24 + · · · +

(−1)n−1

n · 2n + · · ·.

Proof. Consider
∞∑

n=1

(−1)n−1

n · 2n =

∞∑
n=1

(−1)n−1

(
1
2

)n

n
.

Using the Maclarin series for ln(1 + x) by taking x = 1
2 , we have

∞∑
n=1

(−1)n−1

(
1
2

)n

n
= ln(1 +

1
2

) = ln
3
2
.

□

■Multiplication and Divison of Power Series

Recall that if f (x) =
∞∑

n=0

bn(x − a)n and g(x) =
∞∑

n=0

cn(x − a)n, then

f (x)g(x) =
∞∑

n=0

dn(x − a)n where dn =

n∑
k=0

bkcn−k

f (x)
g(x)

=

∞∑
n=0

en(x − a)n where en satisfying bn =

n∑
k=0

cken−k.

Example 11.10.16.

(1) Find the first three nonzero terms in the Maclaurin series for ex sin x.
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Proof. Since

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
+ · · · and

sin x = x − x3

3!
+

x5

5!
+ · · · + (−1)n

(2n + 1)n x2n+1 + · · ·,

we have

ex sin x =
Ä

1 + x +
x2

2!
+

x3

3!
+ · · ·

äÄ
x − x3

3!
+

x5

5!
+ · · ·

ä
= x + x2 +

x3

3
+ · · · .

□

(2) Find the first three nonzero terms in the Maclaurin series for tan x.

Proof. Since

sin x = x − x3

3!
+

x5

5!
+ · · · + (−1)n

(2n + 1)!
x2n+1 + · · · and

cos x = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n

(2n)!
+ · · ·,

we have

tan x =
sin x
cos x

=
x − x3

3! +
x5

5! + · · ·
1 − x2

2! +
x4

4! + · · ·

= x +
1
3

x3 +
2
15

x5 + · · · .

□

Note. One reason that Taylor series are important is that they enable us to integrate functions
which we cannot find and express their antiderivatives as elementary functions.

Example 11.10.17.

(1) Evaluate
∫

e−x2
dx as an infinite series.

Proof. Since e−x2
=

∞∑
n=0

(−x2)n

n!
for any x, we obtain

∫
e−x2

dx =
∫ ∞∑

n=0

(−x2)n

n!
=

∞∑
n=0

∫
(−1)n

n!
x2n dx

= C +
∞∑

n=0

(−1)n

n! (2n + 1)
x2n+1.

□
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(2) Evaluate
∫ 1

0
e−x2

dx correct to within an error of 0.001.

Proof. Consider∫ 1

0
e−x2

dx =
∞∑

n=0

(−1)n

n! (2n + 1)
x2n+1

∣∣∣1
0

= 1 − 1
3
+

1
10
− 1

42
+

1
216

(alternating series)

By the alternating series estimation, |s −
n∑

k=0

bn| ≤ bn+1. Consider

∣∣∣ (−1)n

n! (2n + 1)
· 12n+1

∣∣∣ < 0.001.

Then n ≥ 5 and
∫ 1

0
e−x2

dx ≈ 0.7475. □

(3) Evaluate lim
x→0

ex − 1 − x
x2 .

Proof.

lim
x→0

ex − 1 − x
x2 = lim

x→0

(1 + x + x2

2! +
x3

3! + · · · ) − 1 − x

x2

= lim
x→0

( 1
2!
+

x
3!
+ · · · + xn−2

n!
+ · · ·

)
=

1
2
.

Note: we can also obtain the above limit by the L’Hospital’s Rule. □

Exercise.

(1) Find the Taylor series for the function f (x) = sin−1 x and find its interval of convergence.

(Hint: sin−1(x) =
∫

1
√

1 − t2 dt
and using the binomial series.)

(2) Express the following functions as their Taylor series and find the limits

(i) lim
x→1

ln x
x − 1

.

(ii) lim
x→0

sin x − tan x
x3 .

(iii) lim
x→0

(e2x − 1) ln(1 + x3)
(1 − cos 3x)2 .

Homework 11.10. 4, 6, 10, 11, 16, 18, 23, 28, 30, 35, 37, 39, 43, 47, 56, 59, 62, 65, 69, 72, 73,
74, 83, 90, 96(a)
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11.11 Applications of Taylor Polynomials

Notivation:

• computer scientists use Taylor polynomials to approximate functions

• physicists and engineers use Taylor polynomials on the problems of relativity, optics, electric
dipoles, the velocity of water waves etc.

■ Approximating Functions by Polynomials

Suppose that f (x) is equal to the sum of its Taylor series at a

f (x) =
∞∑

n=0

f (n)(a)
n!

(x − a)n.

For n ∈ N, the polynomial

Tn(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k

is called the “n-degree Taylor polynomials of f at a”.

Recall: Since Tn(x) −→ f (x) as n→ ∞, Tn(x) can be used as an approximation to f (x) ≈ Tn(x).

Note.

(1) Consider the 1st-degree Taylor polynomial T1(x) of f at a.

T1(x) = f (a) + f ′(a)(x − a)
T1(a) = f (a), T ′1(a) = f ′(a)

(2) Consider the nth degree Taylor polynomial Tn(x) of f at a.

Tn(x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n

Tn(a) = f (a), T ′n(a) = f ′(a), · · · ,T (n)
n (a) = f (n)(a)

For example, f (x) = ex and Tn(x)→ ex as n→ ∞.

Question: When using a Taylor polynomial Tn(x) to approximate a function f ,

(1) how good approximation is it?

(2) how large should we take n to be in order to achieve a desired accuracy?
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Consider the remainder ∣∣Rn(x)
∣∣ = ∣∣ f (x) − Tn(x)

∣∣.
There are three possible methods for estimating the size of the remainder:

(1) using the graphing device

(2) using the Alternating Series Estimation Theorem (if it happens)

(3) using Taylor’s Inbequality: if
∣∣ f (n+1)(x)

∣∣ ≤ M for every |x − a| < d then∣∣Rn(x)
∣∣ < M

(n + 1)!
dn+1.

Example 11.11.1. (a) Approximate the function f (x) = 3
√

x by a Taylor polynomial of degree
2 at a = 8.

Proof. Compute

f ′(x) =
1
3

x−
2
3 , f ′′(x) = −2

9
x−

5
3 , f ′′′(x) =

10
57

x−
8
3

Then
f (8) = 2, f ′(8) =

1
12
, f ′′(8) = − 1

144
We have

T2(x) = 2 +
1

12
(x − 2) − 1

144
(x − 8)2.

Therefore,
3√x ≈ 2 +

1
12

(x − 8) − 1
144

(x − 8)2.

□

(b) How accurate is this approximation when 7 ≤ x ≤ 9?

Proof.

To find a bound M such that
∣∣ f ′′′(x)

∣∣ ≤ M for 7 ≤ x ≤ 9.
Consider∣∣ f ′′′(x)

∣∣ = 10
27
|x|− 8

3 ≤ 10
27
· 7− 8

3 for 7 ≤ x ≤ 9.

Hence,∣∣R2(x)
∣∣ ≤ 1

3!
· 10

27
· 7− 8

3
∣∣x − 8

∣∣ for 7 ≤ x ≤ 9

≤ 0.0021
3!

· 1 < 0.0004

Remark. In fact,
∣∣R2(x)

∣∣ = ∣∣ f (x) − T2(x)
∣∣ < 0.0003 when

7 ≤ x ≤ 9.

□
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Example 11.11.2. (a) What is the maximum error possible in using the approximation

sin x ≈ x − x3

3!
+

x5

5!

when −0.3 ≤ x ≤ 0.3? use this approximation to find 12◦ correct to six decimal places.

Proof. Two methods:

(i) (Alternating Series)
When −0.3 ≤ x ≤ 0.3, the series is an alternating series and

|x|2k+1

(2k + 1)!
≤ |x|2k−1

(2k − 1)!
(bk+1 ≤ bk)

and
|x|2k+1

(2k + 1)!
→ 0

(bk→ 0)

as k → ∞

By the alternating series test, for −0.3 ≤ x ≤ 0.3,∣∣∣ sin x −
(

x − x3

3!
+

x5

5!

∣∣∣ ≤ |x|7
7!
≤ (0.3)7

7!
≈ 4.3−8.

sin 12◦ = sin
( π

15
)
≈ π

15
− 1

3!
( π

15
)3
+

1
5!
( π

15
)5 ≈ 0.20791169.

(ii) (Taylor’s Inequality)
Let f (x) = sin x. Then T6(x) = x − x3

3! +
x5

5! is the 6th degree Taylor’s polynomial for f
at 0. The remainder ∣∣R6(x)

∣∣ ≤ M
7!
|x|7

where M is a number such that
∣∣ f (7)(x)

∣∣ ≤ M for −0.3 ≤ x ≤ 0.3.
To find M, consider f (7)(x) = − cos x. Thus, when −0.3 ≤ x ≤ 0.3,∣∣ − cos x

∣∣ ≤ ∣∣ cos 0
∣∣ = 1 = M.

We have ∣∣R6(x)
∣∣ ≤ M

7!
|x|7 ≤ 1

7!
(0.3)7 ≤ 4.3 × 10−8.

□

(b) For what values of x is this approximation accurate to within 0.00005?
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Proof. Consider ∣∣R6(x)
∣∣ ≤ 1

7!
|x|7 < 0.00005.

We have |x| ≤ (0.252)1/7 ≈ 0.821.

□

■ Applications to Physics

(Skip)

Homework 11.11. 13(a)(b), 15(a)(b), 18(a)(b), 21(a)(b), 25, 28, 30, 37



13

C
ha

pt
er

Vector Functions

13.1 Vector Functions and Space Curves . . . . . . . . . . . . . . . . . . . . . . . 161
13.2 Derivatives and Integrals of Vector Functions . . . . . . . . . . . . . . . . . . 166
13.3 Arc Length and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

In this chapter, we will use the vector-valued functions to describe curves, surfaces and the
motion of objects through space.

13.1 Vector Functions and Space Curves
As we know, we can regard Rn as a n-dimensional vector space. Every element in Rn can be
expressed as a vector a = 〈a1, · · · , an〉. In this chapter, we consider the function whose range
consisting of vectors in 3-dimensional vector space R3.

Definition 13.1.1. A vector-valued function (vector function) is a function whose domain is a
set of real numbers and whose range is a set of vectors

r(t) : {subset in R} −→ {set of vectors}.

Note. In the present chapter, we will focus the vector function r(t) whose values are three-
dimensional vectors.

We recall the expressions of vectors and vector-valued functions.

a = 〈a1, a2, a3〉 = a1i + a2j + a3k
r(t) = 〈 f (t), g(t), h(t)〉 = f (t)i + g(t)j + h(t)k

where i = 〈1, 0, 0〉, j = 〈0, 1, 0〉 and k = 〈0, 0, 1〉, and f , g, h : R→ R are component functions

Example 13.1.2. Let r(t) = 〈2t2, 3t − 4,
√

t〉 be a vector-valued function. The domain of r(t) is
[0,∞).

o Limits and Continuity

■ Limits of Vector-valued Functions

161
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To study the calculus of vector-valued functions, motivated by the concepts of real-valued
functions, we will discuss the limits and continuity of vector-valued functions. We heuristically
consider that

(i) a limit of a vector valued function is supposed to be a vector; and

(ii) if L is the limit of a vector valued function r(t) as t → a, we expect that r(t) arbitrarily
approaches to L by taking t arbitrarily close to a.

Definition 13.1.3. Let r(t) = 〈 f (t), g(t), h(t)〉 be a vector valued function defined on an open
interval I and a ∈ I. We say that the limit of r(t) exists, as t approaches a if there exists a vector
L = 〈L1, L2, L3〉 such that

lim
t→a

f (t) = L1, lim
t→a

g(t) = L2 and lim
t→a

h(t) = L3.

The vector L is called the “limit of r(t) as t arpproaches a” and we write

lim
t→a

r(t) = L.

Note. Suppose that r(t) = 〈 f (t), g(t), h(t)〉. Then the limit lim
t→a

r(t) exists if and only if all the
limits lim

t→a
f (t), lim

t→a
g(t) and lim

t→a
h(t) exist. Moreover,

lim
t→a

r(t) = lim
t→a
〈 f (t), g(t), h(t)〉 = 〈lim

t→a
f (t), lim

t→a
g(t), lim

t→a
h(t)〉.

Example 13.1.4. Suppose that r(t) = (1 + t3)i + te−tj +
sin t

t
k. Then

lim
t→0

r(t) =
[

lim
t→0

(1 + t3)
]

i +
[

lim
t→0

te−t] j +
[

lim
t→0

sin t
t

]
k = i + k.

■ Laws of Limts

Theorem 13.1.5. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and α be a number. Suppose that

lim
t→a

r(t) = L, lim
t→a

s(t) =M and lim
t→a

u(t) = c.

Then

(a) lim
t→a

Ä
r ± s
ä

(t) = L ±M.

(b) lim
t→a
αr(t) = αL.

(c) lim
t→a

r(t) · s(t) = L ·M.

(d) lim
t→a

u(t)r(t) = cL.

(e) lim
t→a

r(t) × s(t) = L ×M.
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Proof. (Exercise) □

■ Continuity of Vector-valued Functions

Definition 13.1.6. Let r(t) be a vector-valued function defined on I ⊆ R and a ∈ I. We say that

(1) r is continuous at a if
lim
t→a

r(t) = r(a).

(2) r is continuous on I if r is continuous at every point of I.

Note. If r(t) = 〈 f (t), g(t), h(t)〉 is continuous at a, then

〈lim
t→a

f (t), lim
t→a

g(t), lim
t→a

h(t)〉 = lim
t→a

r(t) = r(a) = 〈 f (a), g(a), h(a)〉.

We have
lim
t→a

f (t) = f (a), lim
t→a

g(t) = g(a) and lim
t→a

h(t) = h(a)

Thus, r(t) is continuous at a if and only if all its component functions f , g and h are continuous
at a.

Theorem 13.1.7. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and α be a number. Suppose that r, s and u are continuous at a. Then
r ± s, αr, ur, r · s and r × s are continuous at a.

Proof. Exercise. □

o Space Curves

Consider the vector-valued function
r(t) = 〈 f (t), g(t), h(t)〉. The tip of r(t) is the
point P

(
f (t), g(t), h(t)

)
and r(t) is the posi-

tion vector of the point P
(

f (t), g(t), h(t)
)
.

As t ranges over an interval I, the point P
traces out some path C in R3. That is,

C = Range
(
r(t)

)
, t ∈ I.

Definition 13.1.8. Let f (t), g(t) and h(t) be three functions defined on an interval I. The set C
of all points (x, y, z) in space, where

x = f (t), y = g(t), z = h(t) for t ∈ I (13.1)

is called a “space curve”.
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Note.

(1) The equation (13.1) is called the “parametric equation of C” and t is called a “parameter”.

(2) The space curve C is “oriented” in the direction as t increases.

Example 13.1.9. Describe the curve defined by the vector function

r(t) = 〈5 + t, 1 + 4t, 3 − 2t〉

Proof. From the parametric equation, the coordinates are

x = 5 + t, y = 1 + 4t, z = 3 − 2t.

The curve represents a line passing through (5, 1, 3) and parallel to the vector 〈1, 4,−2〉. Let
r0 = 〈5, 1,−3〉 and v = 〈1, 4,−2〉. Then r(t) = r0 + tv. □

Example 13.1.10. Sketch the curve whose vector equation is

r(t) = cos t i + sin t j + t k

Proof. The parametric equation represents the
curve with coordinates

x = cos t, y = sin t, z = t.

The curve is called a “helix”. □

Example 13.1.11. Find a vector equation and parametric equations for the line segment that
joins the point P(1, 3,−2) to the point Q(2,−1, 3).

Proof.
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The line segment joining the tip of r0 = 〈1, 3,−2〉 to the
tip of r1 = 〈2,−1, 3〉 is

r(t) = (1 − t)r0 + tr1, 0 ≤ t ≤ 1.

The vector equation of the line segment is

r(t) = (1 − t)〈1, 3,−2〉 + t〈2,−1, 3〉
= 〈1 + t, 3 − 4t,−2 + 5t〉, 0 ≤ t ≤ 1.

The parametric equation of the line segment is

x = 1 + t, y = 3 − 4t, z = −2 + 5t 0 ≤ t ≤ 1.
□

Example 13.1.12. Find a vector function that represents the curve of intersection of the cylinder
x2 + y2 = 1 and the plane y + z = 2.

Proof.

For (x, y, z) on the cylinder x2 + y2 = 1,

x = cos t, y = sin t 0 ≤ t ≤ 2π.

Also, for (x, y, z) on the plane y + z = 2, z = 2 − y. Then for
(x, y, z) on the intersection of x2 + y2 = 1 and y + z = 2,

z = 2 − y = 2 − sin t, 0 ≤ t ≤ 2π.

Hnece, the parametric equation for the curve is

x = cos t, y = sin t, z = 2 − sin t 0 ≤ t ≤ 2π.

The parametrization of the curve is

r(t) = cos t i + sin t j + (2 − sin t) k 0 ≤ t ≤ 2π.

□

Example 13.1.13. Find parametric equations for the curve of intersection of the paraboloid
4y = x2 + z2 and the plane y = x.

Proof.
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A point on the curve C satisfies the equations of both surfaces.
Thus, substituting y = x into the equation of the paraboloid,
4y = x2 + z2, we have 4x = x2 + z2 which is equivalent to
(x − 2)2 + z2 = 4. Then the equation of C must contain
(x − 2)2 + z2 = 4.

Consider the projection of C on the xz-plane is the curve (x −
2)2 + z2 = 4, y = 0 which is a circle with center (2, 0, 0) and
radius 2. Therefore, we can write x = 2 + 2 cos t, z = 2 sin t,
0 ≤ t ≤ 2π. Furthermore, since y = x on the curve C, the
parametric equation for C is

x = 2 + 2 cos t, y = 2 + 2 cot t, z = 2 sin t 0 ≤ t ≤ 2π.
□

■ Using Technology to Draw Space Curves

(Skip)
Homework 13.1. 6, 14, 21, 25-30, 31, 35, 39, 40, 51, 54, 58

13.2 Derivatives and Integrals of Vector Functions

o Derivatives

Recall that the derivative of a real-valued function f is defined by

d f
dx
= f ′(x) = lim

h→0

f (x + h) − f (x)
h

Let r(t) be a vector-valued function. Consider

dr
dt
= r′(t) = lim

h→0

r(t + h) − r(t)
h

if the limit exists.

Note. (1) The numernator r(t + h) − r(t) =
−−→
PQ means a secant vector.

(2) The term
r(t + h) − r(t)

h
represents the vector

1
h
(
r(t + h) − r(t)

)
which has the same direc-

tion as r(t + h) − r(t).

(3) As h→ 0, the vector
1
h
(
r(t + h) − r(t)

)
approaches a vector which lies on the tangent line.

Definition 13.2.1. Let r(t) be a vector function defined on I ⊆ R, C be the curve consisting of
the graph of r(t) and P = r(a) be a point on C.

(a) We say that r(t) is differentiable at a if the limit lim
h→0

r(a + h) − r(a)
h

exists. The limit is called
the “derivative of r at a” and denoted by r′(a). Moreover, we say r(t) is differentiable on I
if it is differentiable at every point in I.
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(b) If the derivative r′(a) exists, it is the “tangent vector” to the curve C at the point P provided
r′(a) , 0.

(c) The ”tangent line” to C at P is defined to be the line through P parallel to the tangnet vector
r′(a).

(d) The unit tangent vector is

T(t) =
r′(t)∣∣r′(t)∣∣ .

Note. From the definition of part(c), the parametric equation of the tangent line to C at P is

r(a) + tr′(a), t ∈ R.

Theorem 13.2.2. If r(t) = 〈 f (t), g(t), h(t)〉 = f (t) i + g(t) j + h(t) k, where f , g and h are
differentiable functions, then

r′(t) = 〈 f ′(t), g′(t), h′(t)〉 = f ′(t) i + g′(t) j + h′(t) k.

Proof. (Exercise) □

Example 13.2.3. Suppose that r(t) = (1 + t3) i + te−t j + sin 2t k.

(a) The tangent vector function is r′(t) = 3t2 i + (1 − t)e−t j + 2 cos 2t k.

(b) To find the unit tangent vector at the point where t = 0, consider the position vector r(0) = i
and the tangnet vector r′(0) = j+ 2k. Therefore, the unit tangent vector at the point (1, 0, 0)
is

T(0) =
r′(0)∣∣r′(0)

∣∣ = 1
√

5
(j + 2k) =

1
√

5
j +

2
√

5
k.

Example 13.2.4. For the curve r(t) =
√

t i + (2 − t) j, find r′(t) and sketch the position vector
r(1) and the tangent vector r′(1).
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Proof. The tangent vector is r′(t) =
1

2
√

t
i − j. Then r(1) = i + j and r′(1) =

1
2

i − j.

To sketch the position vector and the tangent vector, con-
sider the parametric equation

x =
√

t, y = 2 − t ⇒ y = 2 − x2, x ≥ 0.

Then parametric equation of the tangent line to the plane
curve at (1, 1) is

ℓ(t) = r(1)+ tr′(1) = (i+j)+ t(
1
2

i−j) = (1+
1
2

t) i+(1− t) j

□

Example 13.2.5. Find parametric equations for the tangent line to the helix with parametric
equation

x = 2 cos t, y = sin t, z = t.

at the point (0, 1,
π

2
).

Proof. The vector function is r(t) = 〈2 cos t, sin t, t〉. Then the tangent vector function is

r′(t) = 〈−2 sin t, cos t, 1〉.

At the point (0, 1,
π

2
), r(t) = 〈2 cos t, sin t, t〉 = 〈0, 1, π

2
〉. Thus,

t =
π

2
. The tangent vector is

r′(
π

2
) = 〈−2, 0, 1〉.

Hence, the parametric equation of the tangent line through
(0, 1,

π

2
) is

x = 0 + (−2)t = −2t, y = 1 + 0t = 1, z =
π

2
+ t.

□

Theorem 13.2.6. Suppose that r(t) is differentiable at a. Then it is continuous at a.

Proof. Let r(t) = 〈 f (t), g(t), h(t)〉. Since r(t) is differentiable at a, f , g and h are also differen-
tiable at a and hence they are continuous at a. This implies that r(t) is continuous at a. □

■ Second Derivatives

r(t)
d
dt−→ r′(t)

d
dt−→

(
r′
)′
= r′′(t)

r(t) = 〈 f (t), g(t), h(t)〉
d
dt
=⇒ r′(t) = 〈 f ′(t), g′(t), h′(t)〉

d
dt
=⇒ r′′(t) = 〈 f ′′(t), g′′(t), h′′(t)〉.
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Similarly, if r(k)(t) exists, then

r(k)(t) = 〈 f (k)(t), g(k)(t), h(k)(t)〉.

■ Differentiation Rules

Theorem 13.2.7. Let u and v be two differentiable vector functions, c be a number and f be a
real-valued function. Then

(1)
d
dt

[u(t) + v(t)] = u′(t) + v′(t).

(2)
d
dt

[cu(t)] = cu′(t).

(3)
d
dt

[ f (t)u(t)] = f ′(t)u(t) + f (t)u′(t).

(4)
d
dt

[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t). (real-valued function)

(5)
d
dt

[u(t) × v(t)] = u′(t) × v(t) + u(t) × v′(t).

(6)
d
dt

[u
(

f (t)
)
] = f ′(t)u′

(
f (t)

)
. (Chain Rule)

Exercise. Let r(t) = 〈e3t, sin(t2), 2t2−t〉, s(t) = 〈 t2

t + 1
, sec(2t), ln(t2 + 1)〉 and u(t) = 〈1, t, t2〉.

Find
d
dt

Ä
(r × s) · u

ä
.

Proposition 13.2.8. Let r(t) be a differentiable vector function on I and r′(t) , 0 for every t ∈ I.
Then

(a)
d
dt
|r(t)| = r(t) · r′(t)

|r(t)| .

(b)
d
dt

Ä r(t)
|r(t)|
ä
=
−|r|′
|r|2 r +

1
|r|r

′ (n=3)
=

1
|r|2

[
(r × r′) × r

]
.

Proof. (Direct computation! We left the proof to the readers as exercise)
□

Remark. The results of Proposition 13.2.8 are true for all n-dimensional vector valued func-
tions except for the last equality of part(b) which is true for 3-dimensional vector valued func-
tions.

Example 13.2.9. Show that if
∣∣r(t)

∣∣ = C, then r′(t) is orthogonal to r(t) for all t.

Proof.
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Since r(t) · r(t) =
∣∣r(t)

∣∣2 = C2 (constant), we have

2r(t) · r′(t) = d
dt

[r(t) · r(t)] =
d
dt

(C2) = 0

Hence, r(t) is orthogonal to r′(t) for all t.

For example, r(t) = 〈cos t, sin t〉. □

o Integrals
Recall that the integral of a real-valued function f (t) over [a, b] is defined by the limit of Rie-
mann sums. ∫ b

a
f (t) dt = lim

|P|→0

n∑
i=1

f (t∗i )4ti

We try to use the same strategy to define the definite integral of vector-valued functions. Let r(t)
be a continuous vector-valued function defined on [a, b]. Let P = {t0, t1, · · · , tn} be a partition
of [a, b] and 4ti = |ti − ti−1|. Define∫ b

a
r(t) dt = lim

|P|→0

n∑
i=1

r(t∗i )4ti

= lim
|P|→0

î n∑
i=1

〈 f (t∗i ), g(t∗i ), h(t∗i )〉4ti

ó
= lim

|P|→0

〈 n∑
i=1

f (t∗i )4ti,

n∑
i=1

g(t∗i )4ti,

n∑
i=1

h(t∗i )4ti
〉

=
〈∫ b

a
f (t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt

〉
=
Ä∫ b

a
f (t) dt

ä
i +
Ä∫ b

a
g(t) dt

ä
j +
Ä∫ b

a
h(t) dt

ä
k

Definition 13.2.10. Let r(t) be a vector valued function defined on [a, b] where r(t) = 〈 f (t), g(t), h(t)〉.
We say that r is integrable on [a, b] if f , g,and h are integrable on [a, b] and∫ b

a
r(t) dt =

〈∫ b

a
f (t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt

〉
=
Ä∫ b

a
f (t) dt

ä
i +
Ä∫ b

a
g(t) dt

ä
j +
Ä∫ b

a
h(t) dt

ä
k.

Remark. If r(t) is continuous on [a, b], then r(t) is integrable on [a, b].

Theorem 13.2.11. (Integral Rule) Let r(t) and s(t) be integrable vector-valued functions on
[a, b], c be a vector, and α and β be two numbers. Then
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(a) The vector valued function
(
αr + βs

)
(t) is also integrable on [a, b] and∫ b

a

(
αr + βs

)
(t) dt = α

∫ b

a
r(t) dt + β

∫ b

a
s(t) dt.

(b)
∫ b

a
c · r(t) dt = c ·

∫ b

a
r(t) dt.

(c)
∣∣∣∫ b

a
r(t) dt

∣∣∣ ≤ ∫ b

a
|r(t)| dt.

Proof. The proofs of part(a) and (b) are easy and left to the readers. We will prove part(c) here.

Let R =
∫ b

a
r(t) dt. Then

|R|
∣∣∣∫ b

a
r(t) dt

∣∣∣ = |R|2 = R · R

= R ·
∫ b

a
r(t) dt =

∫ b

a
R · r(t) dt

≤
∫ b

a

∣∣∣R · r(t)
∣∣∣ dt ≤

∫ b

a
|R||r(t)| dt

=
∣∣R∣∣∫ b

a

∣∣r(t)
∣∣ dt.

Hence, ∣∣∣∫ b

a
r(t) dt

∣∣∣ ≤ ∫ b

a
|r(t)| dt.

□

■ Fundamental Theorem of Caluclus∫ b

a
r(t) dt = R(t)

∣∣∣b
a
= R(b) − R(a)

where R is an antiderivative of r, that is R′(t) = r(t). Denote

R(t) =
∫

r(t) dt.

Example 13.2.12. Let r(t) = 2 cos t i + sin t j + 2t k. Then∫
r(t) dt = 2 sin t i − cos t j + t2 k + C

and ∫ π
2

0
r(t) dt = 2 sin t

∣∣∣ π2
0

i − cos t
∣∣∣ π2

0
j + t2

∣∣∣ π2
0

k = 2 i + j +
π2

4
k.

Homework 13.2. 3, 9, 12, 15, 19, 21, 24, 27, 30, 36, 39, 44, 51, 57
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13.3 Arc Length and Curvature

o Length of a Curve

In Section ??, we have learned how to evaluate the arc
length of a parametric curve. Let

x = f (t), y = g(t), a ≤ t ≤ b.

The arc length of the curve is

L =
∫ b

a

√
[ f ′(t)]2 + [g′(t)]2 dt =

∫ b

a

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt.

Consider the space curve with the vector equations

r(t) = 〈 f (t), g(t), h(t)〉, a ≤ t ≤ b

If the curve is traversed exactly once as t increases from a to b, the arc length is

L =
∫ b

a

√
[ f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt =

∫ b

a

…Ädx
dt

ä2
+
Ädy

dt

ä2
+
Ädz

dt

ä2
dt.

Note. (1) If r(t) is the position vector of an object at time t, then r′(t) is the velocity vector and
|r′(t)| is the speed.

(2) Since r′(t) = 〈 f ′(t), g′(t), h′(t)〉, we have |r′(t)| =
√

[ f ′(t)]2 + [g′(t)]2 + [h′(t)]2. The arc
length is

L =
∫ b

a
|r′(t)| dt.

We give a precise proof of formula of arc length here.

Theorem 13.3.1. Let r(t) be a continuously differentiable vector function on [a, b]. Let C
be the curve parametrized by r. The arc length of C is

L(C) =
∫ b

a
|r′(t)| dt.

Proof. Let P = {t0, t1, · · · , tn} be a partitition of [a, b]. By the Fundamental Theorem of
Calculus,

|r(ti) − r(ti−1)| =
∣∣∣∫ ti

ti−1

r′(t) dt| ≤
∫ ti

ti−1

|r′(t)| dt.

Then
n∑

i=1

|r(ti) − r(ti−1)| ≤
n∑

i=1

∫ ti

ti−1

|r′(t)| dt =
∫ b

a
|r′(t)| dt.

Since P is an arbitrary partition of [a, b], we have

L(C) = sup
P

n∑
i=1

|r(ti) − r(ti−1)| ≤
∫ b

a
|r′(t)| dt. (13.2)
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On the other hand, define s(t) as arc length of the curve from r(a) to r(t). Then s(t+h)−
s(t) is the arc length from r(t) to r(t + h). □

By (13.2),

|r(t + h) − r(t)| ≤ s(t + h) − s(t) ≤
∫ t+h

t
|r′(u)| du.

Then, for h〉0,∣∣∣r(t + h) − r(t)
h

∣∣∣ = |r(t + h) − r(t)|
h

≤ s(t + h) − s(t)
h

≤ 1
h

∫ t+h

t
|r′(u)| du.

By the Fundamental Theorem of Calculus, as h→ 0,

|r′(t)| ≤ lim
h→0

s(t + h) − s(t)
h︸                   ︷︷                   ︸

=s′(t)

≤ |r′(t)|.

Therefore, the arc length of C is

s(b) =
∫ b

a
s′(t) dt =

∫ b

a
|r′(t)| dt.

Example 13.3.2. Find the length of the arc of the circular helix with vector equation r(t) =
cos t i + sin t j + t k, from the point (1, 0, 0) to the point (1, 0, 2π).

Proof.

Compute r′(t) = − sin t i + cos t j + k and then
|r′(t)| =

√
(− sin t)2 + (cos t)2 + 12 =

√
2. The

length of the arc is

L =
∫ 2π

0
|r′(t)| dt =

∫ 2π

0

√
2 dt = 2

√
2π.

□

■ The Arc Length Function

Let C be a curve with vector function r(t) = f (t) i+g(t) j+
h(t) k, a ≤ t ≤ b. Suppose that r′(t) is continuous and C
is traversed exactly once as t increases from a to b. The
“arc length function” is

s(t) =
∫ t

a
|r′(u)| du =

∫ t

a

…Ädx
du

ä2
+
Ädy

du

ä2
+
Ä dz

du

ä2
du
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Note. The value of s(t) is the arc length of the part of C between r(a) and r(t). By the Funda-
mental Theorem of Calculus,

ds
dt
= |r′(t)|.

Observe that the arc length function s(t) is one-to-one. Hence, we may also regard t as a
function of s, say t = t(s). Then we can “parametrize a curve with respect to are length.

r = r
(
t(s)

)
.

For example, when s = 3, r
(
t(3)

)
is the position vector of the point 3 unit of length along the

curve from its starting point.

Example 13.3.3. Reparametrize the helix r(t) = cos t i + sin tj + t k with respect to arc length
measured from (1, 0, 0) in the direction of increasing t

Proof. Find the arc length function from the starting time t = 0.

s(t) =
∫ t

0
|r′(u)| du =

∫ t

0

√
2 du =

√
2t.

Hence, t = t(s) = 1√
2
s. We have

r
(
t(s)

)
= cos(

1
√

2
s) i + sin(

1
√

2
s) j +

1
√

2
s k.

□

o Curvature

Question: How do we feel the “curvature” of a curve?

From our expericence, when we ride a bike at a constant speed, it is more difficult to turn
the direction along a path with “larger curvature” than the one with a smaller curvature.*†

To discuss the curvature of a curve, we should discard some cases:

*Heuristically speaking, along the larger curvature path, we need to change directions more at the same time.
The constant speed says that the same period is corresponding to the same travelling distance. Thus, we can also
explain the larger curvature path as, when travelling the same distance, the direction changes more.

†The “curvature” is a geometric word. It is supposed to only depend on distance and direction but not ”time”.
Hence, to define “curvature”, we usually parametrize in s.
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(i) Discontinuous curve

(ii) The curve has sharp corners or cusps

(iii) Imagine a particle moves along a curve, we don’t expect that it “stays” at a point for
a period since it cannot decide whether the direction changes there. Thus, we assume
|r′(t)| , 0. We parametrize the curve with respect to arc length parameter “s” rather than
time parameter “t”.

Definition 13.3.4.

(a) A parametrization r(t) is called “smooth ” on an interval I if r′ is continuous and r′(t) , 0
on I.

(b) A curve is called “smooth” if it has a smooth parametrization.

Suppose that C is a smooth curve defined by the vector
function r. The unit tangnet vector

T(t) =
r′(t)
|r′(t)|

indicates the direction of the curve.

Heuristically, the curvature of C at a given point is a measure of how quickly the curve
changes direction at that point.

Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector
with respect to arc length.

Definition 13.3.5. The curvature of a curve is

κ =
∣∣∣dT

ds

∣∣∣
where T is the unit tangent vector.
Note. (1) The unit tangent vector T is usually expressed as a vector function in “t”. By the

chain rule
dT
dt
=

dT
ds

ds
dt
.

Then
κ =

∣∣∣dT
ds

∣∣∣ = ∣∣∣dT/dt
ds/dt

∣∣∣.
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(2) Since the arc length function s(t) =
∫ t

0
|r′(u)| du, by the Fundamental Theorem of Calculus,

ds
dt
= |r′(t)|. Hence,

κ =
|T′(t)|
|r′(t)| .

Example 13.3.6. Show that the curvature of a circle of radius a is
1
a

.

Proof. A parametrization of a circle of radius a is r(t) = a cos t i + a cos t j. Then r′(t) =
−a sin t i + a cos t j and |r′(t)| = a. The unit tangent vector function is

T(t) =
r′(t)
|r′(t)| = − sin t i + cos t j.

Then
T′(t) = − cos t i − sin t j and

∣∣∣dT
dt

∣∣∣ = 1.

The curvature is
κ =
|T′(t)|
|r′(t)| =

1
a
.

□

Note. Small circles have large curvature and large circles have small curvature.

Theorem 13.3.7. The curvature of the curve given by the vector function r is

κ(t) =
|r′(t) × r′′(t)|
|r′(t)|3 .

Proof. Since T =
r′

|r′| and |r′| = ds
dt

, we have

r′ = |r′|T = ds
dt

T.

By the product rule,

r′′ =
d2s
dt2 T +

ds
dt

T′.

Consider

r′ × r′′ =
ds
dt

d2s
dt2 T × T︸  ︷︷  ︸

=0

+
Äds

dt

ä2
T × T′.

Since |T| = 1, we have T(t) ⊥ T′(t). Then |T × T′| = |T|︸︷︷︸
=1

|T′| = |T′|. Also,

|r × r′′| =
Äds

dt

ä2
|T × T′| =

Äds
dt

ä2
|T|︸︷︷︸
=1

|T′| =
Äds

dt

ä2
|T′|.

Hence,

|T′| = |r
′ × r′′|Ä

ds
dt

ä2 =
|r′ × r′′|
|r′|2 .
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The curvature is
κ =
|T′|
|r′| =

|r′ × r′′|
|r′|3 .

□

Example 13.3.8. Find the curvature of the twisted cubic r(t) = 〈t, t2, t3〉 at general point and at
(0, 0, 0).

Proof. Since r′(t) = 〈1, 2t, 3t2〉 and r′′(t) = 〈0, 2, 6t〉, we have

r′(t) × r′′(t) =

∣∣∣∣∣∣
i j k
1 2t 3t2

0 2 6t

∣∣∣∣∣∣ = 〈6t2,−6t, 2〉.

Then |r′ × r′′| =
√

36t4 + 36t2 + 4 = 2
√

9t4 + 9t2 + 1 and |r′| =
√

1 + 4t2 + 9t4. The curvature
is

κ =
2
√

9t4 + 9t2 + 1
(1 + 4t2 + 9t4)3/2 .

At t = 0, κ(0) = 2. □

• Special Case y = f (x)

Suppose that the curve C is the graph of f (x). We can express it as vector-valued function.

r(x) = x i + f (x) j
Ä
+ 0 k

ä
.

Then
r′(x) = i + f ′(x) j and r′′(x) = f ′′(x) j.

The cross product is
r′(x) × r′′(x) = f ′′(x) k.

We have
|r′ × r′′| = | f ′′(x)| and |r′| =

√
1 + [ f ′(x)]2.

Hence, the curvature is

κ =
|r′ × r′′|
|r′|3 =

| f ′′(x)|
(1 + [ f ′(x)]2)3/2 .

Example 13.3.9. Find the curvature of the parabola y = x2 at the point (0, 0), (1, 1) and (2, 4).

Proof.
Compute that y′ = 2x and y′′ = 2. The curvature of the
curve is

κ(x) =
|y′′|

[1 + (y′)2]3/2 =
2

(1 + 4x2)3/2

At (0, 0), κ(0) = 2.

At (1, 1), κ(1) =
2

53/2 ≈ 0.18.

At (2, 4), κ(2) =
2

173/2 ≈ 0.03.
We can observe that κ(x)→ 0 as x→ ±∞.

□
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o The Normal and Binormal Vectors

Let r(t) be smooth space curve and T(t) be the
unit tangent vector. Then

∣∣T(t)
∣∣ = 1

d
dt
=⇒ T(t) · T′(t) = 0
=⇒ T(t) ⊥ T′(t) for all t.

Note. (1) T′(t) may not be a unit vector.

(2) If T′(t) , 0 (hence κ , 0), T′(t) indicates the direction where the curve is turning.

Definition 13.3.10.

(1) We define the “principal unit normal vec-
tor” (or “unit normal”) as

N(t) =
T′(t)∣∣T′(t)∣∣ .

(2) The vector B(t) = T(t) × N(t) is called the
“binormal vector”.

Remark. T(t), N(t) and B(t) are unit vectors and they are orthogonal each other.

Example 13.3.11. Find the unit normal and binormal vectors for the circular helix

r(t) = cos t i + sin t j + t k.

Proof. Compute that

r′(t) = − sin t i + cos t j + k.

The unit tangent vector is

T(t) =
r′(t)∣∣r′(t)∣∣ = 1

√
2

(
− sin t i + cos t j + k

)
and

T′(t) =
1
√

2

(
− cos t i − sin t j

)
.
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The normal and the binormal vectors are

N(t) =
T′(t)∣∣T′(t)∣∣ = − cot t i − sin t j

and

B(t) = T(t) × N(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
i j k

− 1
√

2
sin t

1
√

2
cos t

1
√

2
− cos t − sin t 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
√

2

(
sin t i − cos t j + k

)
.

□

■ The Normal Plane

Definition 13.3.12.

(1) The plane determined by the normal and binormal
vectors N(t) and B(t) at a point P on a curve C is
called the “normal plane” of C at P.

(2) The plane determined by the vector T(t) and N(t) is
called the “osculating plane” of C at P.

Note. (1) The normal plane consists of all ines that are orthogonal to the tangent vector T.

(2) The osculating plane comes closest to con-
taining the part of the curve near P.

(3) For a plane curve, the osculating plane is
the plane that contains the curve.

Definition 13.3.13.

Let C be a smooth space curve and O be the
circle lies in the osculating plane of C at P and
has the same tangnet as C at P and lies on the
concave side of C (toward which N points) with

radius ρ =
1
κ

.

The circle is called the “osculating circle” (or
”circle of curvature”) of C at P.

Note. The osculating circle nicely describes how C behaves near P. It shares the same tangent,
normal and curvature at P.
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Example 13.3.14. Find the equation of the normal plane and the osculating plane of the helix

r(t) = cos t i + sin t j + t k.

at the point P(0, 1, π2 ).

Proof. The tangent vector is r′(t) = − sin t i + cos t j + k and hence r′(
π

2
) = −i + k. Then the

equation of the normal plane is

−1 · (x − 0) + 0 · (y − 1) + 1 · (z − π
2

) or z = x +
π

2
.

Since B = T × N, we have

B(t) =
1
√

2
〈sin t,− cot t, 1〉 and B(

π

2
) = 〈 1

√
2
, 0,

1
√

2
〉.

The equation of the osculating plane is

1
√

2
(x − 0) + 0(y − 0) +

1
√

2
(x − π

2
) = 0.

That is,

x + z − π
2

or z = −x +
π

2
.

□

Example 13.3.15. Find and graph the osculating circle of the parabola y = x2 at the origin.

Proof.

Let f (x) = x2. Then

κ(x) =

∣∣ f ′′(x)
∣∣[

1 +
(

f ′(x)
)2]3/2 =

2(
1 + 4x2

)3/2 .

Then the radius of the osculating circle is
1
κ(0)
=

1
2

and

its center is
(
0, 1

2

)
. The equation of the osculating circle

is
x2 + (y − 1

2
)2 =

1
4
.

□

■ Summary

• T(t) =
r′(t)∣∣r′(t)∣∣

• N(t) =
T′(t)∣∣T′(t)∣∣
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• B(t) = T(t) × N(t)

• κ =
∣∣∣dT

ds

∣∣∣ = ∣∣T′(t)∣∣∣∣r′(t)∣∣ =
∣∣r′(t) × r′′(t)

∣∣∣∣r′(t)∣∣3 .

■ Torsion

Remark. Curvature κ =
∣∣∣dT

dx

∣∣∣ at a point P on a curve C indicates how tightly the curve “bends.”

Since T is a normal vector for the normal plane,
dT
ds

tells us how the normal plane changes as
P moves along C. (The tangent vector at P rotates in the direction of N.)

A space curve can also lift or “twist” out of the osculating plane at P. Since B is normal

to the osculating plane,
dB
ds

gives us information about how the osculating plane changes as P
moves along C.

Note. We can show that
dB
dx

is parallel to N. Hence, the scalar τ such that

dB
dx
= −τN

is called the “torsion” of C at P. Moreover, τ = −τN · (−N) = −dB
ds · N.

Definition 13.3.16. The “torsion” of a curve is

τ = −dB
ds
· N.

Remark. By using the Chain Rule,

dB
dt
=

dB
ds

ds
dt

so
dB
ds
=

dB/dt
ds/dt

=
B′(t)∣∣r′(t)∣∣ .

We have

τ(t) = −B′(t) · N(t)∣∣r′(t)∣∣ .
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Example 13.3.17. Find the torsion of the helix

r(t) = 〈cos t, sin t, t〉.

Proof. For Example 13.3.14, we have

ds
dt
=
∣∣r′(t)∣∣ = √2, N(t) = 〈− cos t,− sin t, 0〉 and B(t) =

1
√

2
〈sin t,− cos t, 1〉.

Then B′(t) =
1
1

√
2〈cot t, sin t, 0〉 and

τ(t) = −B(t) · N(t)∣∣r′(t)∣∣ = −1
2
〈cos t, sin t, 0〉 · 〈− cos t,− sin t, 0〉 = 1

2
.

□

Remark. Compare with the unit circle r(t) = 〈cos t, sin t, 0〉 in the xy-plane and the helix
r(t) = 〈cos t, sin t, t〉. Both of them have constant curvatrue, but the circle has constant tor-
sion 0 whereas the helix has constant torsion 1

2 . We can think of the circle as bending at each
point but never twisting, while the helix both bends and twist (upward) at each point.

Theorem 13.3.18. The torsion of the curve given by the vector function r is

τ(t) =
[r′(t) × r′′(t)] · r′′′(t)∣∣r′(t) × r′′(t)

∣∣2 .

Homework 13.3. 5, 7, 11, 16, 20, 23, 27, 28, 33, 43, 49, 50
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14.1 Functions of Several Variables

o Functions of Two Variables

Example 14.1.1.

(1) Let T = f (x, y) represent the temperature at the position (x, y) where x and y indicate the
longitude and latitude respectively.

(2) Let V = V(r, h) represent the volume of a circular cylinder where r and h indicate the raidus
and the height of the cylinder respectively.

Definition 14.1.2. A function f of two variables is a rule
that assigns to each ordered pair of real numbers (x, y) in
a set D a unique real number denoted by f (x, y). The set
D is the “domain” of f and its “range” is the set of values
that f takes on. That is, Range( f ) = { f (x, y) | (x, y) ∈ D}.

Sometimes, we express z = f (x, y) where x and y are independent variables and z is a dependent
variable.

183
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Remark. If a function is given by a formula and no domain is specified, then the domain of f
is understood to be the set of all pair(x, y) for which the given expression is a well-defined real
number.

Example 14.1.3.

(1) Let f (x, y) =

√
x + y + 1
x − 1

. The domain of f is

Dom( f ) =
{

(x, y)
∣∣ x + y + 1 ≥ 0, x − 1 , 0

}
=

{
(x, y)

∣∣ y ≥ −x − 1, x , 1
}
.

(2) Let f (x, y) = x ln(y2 − x). The domain of f is

Dom( f ) =
{

(x, y)
∣∣ y2 − x > 0

}
=

{
(x, y)

∣∣ x < y2}.

Example 14.1.4. Find the domain and range of g(x, y) =
√

9 − x2 − y2.

The domain of g is

Dom( f ) =
{

(x, y)
∣∣ 9 − x2 − y2 ≥ 0

}
=

{
(x, y)

∣∣ x2 + y2 ≤ 9
}
.

The range of g is

Range(g) =
{

z
∣∣ z =

√
9 − x2 − y2, (x, y) ∈ Dom(g)

}
=

{
z
∣∣ 0 ≤ z ≤ 3

}
.

Example 14.1.5. Find the domain and range and sketch the graph of h(x, y) = 4x2 + y2.

Dom(h) = R2 and Range( f ) = [0,∞). The graph of h

Graph(h) = {(x, y, z) | z = 4x2 + y2, (x, y) ∈ R2}

is an elliptic paraboliod.
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■ Some ways to figure out two variables functions

We introduce some visual methods to understand functions of two variables.

(I) Algebraically (by an explicit formula). Such as above examples.

(II) Verbally (by a description in words)

Example 14.1.6. In regions with severe winter weather, the wind-chill index is often used
to describe the apparent severity of the cold. The index W is a subjective temperature that
depends on the actual temperautre T and the wind speed v.

W is a function of T and v, and we write W = f (T, v). For example, the value of W is
record in a table

■ Graph

Definition 14.1.7. If f is a function of two variables with
domain D, then the “graph” of f is the set of all points
(x, y, z) ∈ R3 such that z = f (x, y) and (x, y) is in D. That
is,

Graph( f ) =
{

(x, y, z)
∣∣ z = f (x, y), (x, y) ∈ D

}
.

Example 14.1.8. Sketch the graph of g(x, y) =
√

9 − x2 − y2.
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Proof.

Let z =
√

9 − x2 − y2. Then the graph of g is

Graph(g) =
{

(x, y, z) | z2 = 9 − x2 − y2, z ≥ 0
}

=
{

(x, y, z)
∣∣ x2 + y2 + z2 = 9, z ≥ 0

}
Note. An entire sphere cannot be represented by a single
function of x and y. The lower hemisphere is represented
by the function h(x, y) = −

√
9 − x2 − y2.

□

Example 14.1.9. Sketch the graph of the function

f (x, y) = 6 − 3x − 2y.

Proof.

Let z = 6 − 3x − 2y or 3x + 2y + z = 6. The intercepts of
the function are (2, 0, 0), (0, 3, 0) and (0, 0, 6).

□

Note. The function f (x, y) = ax + by + c is called a “linear function”. The graph of such a
function is a plane and has the equation z = ax + by + c or ax + by − z + c = 0.

o Computer- generated Graphs

In general, it is difficult to sketch the graph of a two-variables function. A nice method to
sketch the traces in the vertical plne x = k and y = h. For example, fix x = k and sketch the
graph of a single variable function z = f (k, y). It is a curve on the plane x = k. Draw all such
curve as x ranges over all possible values in the x direction.
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■ Level Curves and Contour Maps

So far, we have two methods for visualizing functions: arrow diagrams and graphs. A third
method is to consider a contour map on which points of constant elevation are joined to form
“contour curves”, or “level curves”.

Definition 14.1.10. The “level curves” of a function f of two variables are the curves with
equation f (x, y) = k, where k is a constant (in the range of f ). The level curve is the set{

(x, y) ∈ D
∣∣ f (x, y) = k

}
.

Note. (1) A level curve f (x, y) = k is the set of all points in the domain of f at which f takes
on a given value k. (It shows where the graph of f has height k).

(2) Level curves are useful in the reality. For example, isothermals(等溫線), contour map,
contour line.
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Example 14.1.11. Sketch the level curves of the function f (x, y) = 6 − 3x − 2y for the values
k = −6, 0, 6, 12.

Proof.

Consider the curves 6 − 3x − 2y = k in the domain.
For k = −6, 0, 6, 12, the corresponding level curves
are 3x + 2y − 12 = 0, 3x + 2y − 6 = 0, 3x + 2y = 0
and 3x + 2y + 6 = 0.

□

Example 14.1.12. Sketch the level curves of the function g(x, y) =
√

9 − x2 − y2 for the values
k = 0, 1, 2, 3.

Proof.

Consider the curves
√

9 − x2 − y2 = k in the do-
main. For k = 0, 1, 2, 3, the corresponding level
curves are x2 + y2 = 9, x2 + y2 = 8, x2 + y2 = 5
and x2 + y2 = 0.

□

Example 14.1.13. Sketch the level curves of the function h(x, y) = 4x2 + y2 + 1.

Proof. Consider the curves 4x2 + y2 + 1 = k in the domain. We can rewrite the equation

as
x2

1
4 (k − 1)

+
y2

k − 1
= 1. For k > 1, the level curves are a family of ellipses with semiaxes

1
2

√
k − 1 and

√
k − 1.
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□

Note. The following two figures show different visualized concepts to figure out a two variables
functions f (x, y).

(1) f (x, y) = −xye−x2−y2
.

(2) f (x, y) =
−3y

x2 + y2 + 1
.

o Functions of Three or More Variables

■ Three variables functions

A function of three variables, f , is a rule that assigns to each ordered triple (x, y, z) in a
domain D ⊆ R3 a unique real number denoted by f (x, y, z).

Example 14.1.14. The function f (x, y, z) = ln(z − y) + xy sin z has the domain

Dom( f ) =
{

(x, y, z)
∣∣ z − y > 0

}
=
{

(x, y, z)
∣∣ z > y

}
.
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Note. It is difficult to visualize a function f of three variables by its graph since that would lie
in four-dimensional space.

We obtain some insight into f by examining its “level surfaces”, which are surfaces with
equation f (x, y, z) = k, where k is a constant in the range of f .

Example 14.1.15. Find the domain of f if

f (x, y, z) = ln(z − y) + xy sin z.

Proof.
Dom( f ) =

{
(x, y, z) ∈ R3

∣∣ z > y
}

□

Example 14.1.16. Find the level surfaces of the function

f (x, y, z) = x2 + y2 + z2.

Proof.

Consider the surface with equation x2 + y2 + z2 = k,
k ≥ 0. The corresponding level surfaces form a family
of concentric spheres with radius

√
k.

□

■ n variables functions

A function of n variables is a rule that assigns a number z = f (x1, x2, · · · , xn) to an n-tuple
(x1, x2, · · · , xn) of real numbers.

Example 14.1.17. (Cost function) Let Ci be the cost per unit of the ith ingredient and xi be the
units of the ith ingredient are used. The total cost is

C = f (x1, x2, · · · , xn) = C1x1 +C2x2 + · · · +Cnxn.

which is a n-variable function.

Remark. Since the point (x1, x2, · · · , xn) and the vector x = 〈x1, x2, · · · , xn〉 are one-to-one
correspondence, we have three ways of looking at a function f defined on a subset of Rn.

1. As a function of n real variables x1, x2, · · · , xn, denote f (x1, x2, · · · , xn).

2. As a function of a single point variable (x1, x2, · · · , xn), denote f
(
(x1, x2, · · · , xn)

)
.

3. As a function of a single vector variable x = 〈x1, x2, · · · , xn〉, denote f (x) = f
(
〈x1, x2, · · · , xn〉

)
.

Homework 14.1. 9, 12, 16, 25, 29, 31, 32, 36, 45, 49, 54, 61-66, 67
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14.2 Limits and Continuity

o Limits

Recall that the limit of a single variable func-
tion f (x) as x approaches a is followed by the
concept that the value of f (x) approaches L as x
tends to a. The precise ε − δ definition is given
in Chapter 3.

Question: How about the limit of a two variables function f as (x, y) approaches a point (a, b)?

Definition 14.2.1. (Heuristic definition) Let f be a function of two variables whose domain
D containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
f (x, y) as (x, y) approaches (a, b) exists if there is a number L such that we can make f (x, y) as
close to L as we like by taking (x, y) sufficiently close to (a, b). Denote

lim
(x,y)→(a,b)

f (x, y) = L or f (x, y)→ L as (x, y)→ (a, b).

Definition 14.2.2. (Precise definition) Let f be a function of two variables whose domain D
containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
f (x, y), as (x, y) approaches (a, b), exists if there is a number L such that for every number
ε > 0 there exists a corresponding number δ > 0 such that

| f (x, y) − L| < ε

whenever (x, y) ∈ D and 0 <
√

(x − a)2 + (y − a)2 < δ. Denote

lim
(x,y)→(a,b)

f (x, y) = L or f (x, y)→ L as (x, y)→ (a, b).
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Remark. For functions of a single variable, we only need to consider two possible direction
when x approaches a (from the left and from the right).

For functoins of two variables, we have to consider an infinite numbers of directions in any
manner whatsover as long as (x, y) stays within the domain of f .

Hence, if the limit lim
(x,y)→(a,b)

f (x, y) exists, then f (x, y) must approach the same limit no matter

which direction and how (x, y) approaches (a, b).

Note. From the above remark, if f (x, y) → L1

and (x, y) approaches (a, b) along a path C1

and f (x, y) → L2 when (x, y) approaches (a, b)
along another path C2 where L1 , L2, then the
limit lim

(x,y)→(a,b)
f (x, y) does not exist.

Example 14.2.3. Let f (x, y) =
x2 − y2

x2 + y2 . Consider the limit of f (x, y) as (x, y) approaches (0, 0).

Proof. Along the x-axis (y = 0),

lim
(x,y)→(0,0)

y=0

x2 − y2

x2 + y2 = lim
x→0

x2

x2 = 1.

Along the y-axis (x = 0),

lim
(x,y)→(0,0)

x=0

x2 − y2

x2 + y2 = lim
y→0

−y2

y2 = −1.

Hence, the limit lim
(x,y)→(0,0)

x2 − y2

x2 + y2 does not exist.

□
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Example 14.2.4. If f (x, y) =
xy

x2 + y2 , does lim
(x,y)→(0,0)

f (x, y) exist?

Proof. Along the x-axis (y = 0),

lim
(x,y)→(a,b)

y=0

xy
x2 + y2 = lim

x→0

0
x2 = 0.

Along the y-axis (x = 0),

lim
(x,y)→(a,b)

x=0

xy
x2 + y2 = lim

y→0

0
y2 = 0.

But, along the line y = x,

lim
(x,y)→(a,b)

x=y

xy
x2 + y2 = lim

x→0

x2

2x2 =
1
2
.

Hence, the limit lim
(x,y)→(0,0)

xy
x2 + y2 does not exist.

□

Example 14.2.5. If f (x, y) =
xy2

x2 + y4 , does lim
(x,y)→(0,0)

f (x, y) exist?

Proof. Along the the line y = mx (not y-axis),

lim
(x,y)→(0,0)

y=mx

xy2

x2 + y4 = lim
x→0

x(mx)2

x2 + (mx)4 = lim
x→0

x3(1 + m2)
x2(1 + m4x2)

= 0.

Along the curve x = y2,

lim
(x,y)→(0,0)

x=y2

xy2

x2 + y4 = lim
y→0

y2 · y2

(y2)2 + y4 =
1
2
.

Hence, the limit lim
(x,y)→(0,0)

xy2

x2 + y4 does not exist.

□

■ Laws of Limits and Squeeze Theorem

Theorem 14.2.6. (Laws of Limits) Let f and g be two variables functions defined on D contain-
ing a neighborhood of (a, b) (possibly except (a, b) itself) and c be a constant number. Suppose
that the limits lim

(x,y)→(a,b)
f (x, y) and lim

(x,y)→(a,b)
g(x, y) exist. Then
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(a) lim
(x,y)→(a,b)

[ f ± g](x, y) exists and lim
(x,y)→(a,b)

[ f ± g](x, y) = lim
(x,y)→(a,b)

f (x, y) ± lim
(x,y)→(a,b)

g(x, y).

(b) lim
(x,y)→(a,b)

[c f ](x, y) exists and lim
(x,y)→(a,b)

[c f ](x, y) = c lim
(x,y)→(a,b)

f (x, y).

(c) lim
(x,y)→(a,b)

[ f g](x, y) exists and lim
(x,y)→(a,b)

[ f g](x, y) =
Ä

lim
(x,y)→(a,b)

f (x, y)
äÄ

lim
(x,y)→(a,b)

g(x, y)
ä

.

(d) lim
(x,y)→(a,b)

î f
g

ó
(x, y) exists if lim

(x,y)→(a,b)
g(x, y) , 0 and

lim
(x,y)→(a,b)

î f
g

ó
(x, y) =

lim
(x,y)→(a,b)

f (x, y)

lim
(x,y)→(a,b)

g(x, y)

provided lim
(x,y)→(a,b)

g(x, y) , 0.

(e) In particular,
lim

(x,y)→(a,b)
x = a, lim

(x,y)→(a,b)
y = b, lim

(x,y)→(a,b)
c = c

Theorem 14.2.7. (Squeeze Theorem) Let f (x, y), g(x, y) and h(x, y) be three functions defined
near (a, b). Suppose that f (x, y) ≤ g(x, y) ≤ h(x, y) for every (x, y) near (a, b). If

lim
(x,y)→(a,b)

f (x, y) = L = lim
(x,y)→(a,b)

h(x, y),

then the limit lim
(x,y)→(a,b)

g(x, y) exists and

lim
(x,y)→(a,b)

g(x, y) = L.

Example 14.2.8. Find lim
(x,y)→(0,0)

3x2y
x2 + y2 if it exists.

Proof. First of all, we may try the limits when (x, y) approaches (0, 0) along several paths. We
observe that all the limits are 0. Therefore, we guess that the limit could exist and equal 0.

Let ε > 0. We want to find δ > 0 such that if 0 <
√

(x − 0)2 + (y − 0)2 < δ, then∣∣∣ 3x2y
x2 + y2 − 0

∣∣∣ < ε. Consider

∣∣∣ 3x2y
x2 + y2

∣∣∣ = ∣∣∣ x2

x2 + y2

∣∣∣︸       ︷︷       ︸
<1

·3|y| < 3|y|.

Choose δ = 1
3ε. If 0 <

√
x2 + y2 < δ = 1

3ε, then |y| ≤
√

x2 + y2 < 1
3ε. Therefore,

| f (x, y) − 0| =
∣∣∣ 3x2y
x2 + y2

∣∣∣ < 3|y| < 3 · 1
3
ε = ε

whenever 0 <
√

x2 + y2 < δ and this implies that lim
(x,y)→(0,0)

3x2y
x2 + y2 = 0. □
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■ Limt at Infinity

In the previous chapter, we regard Rn as a vector space and every point (x1, · · · , xn) is
identified as a vector x =< x1, · · · , xn >. The length of a vector is denoted by

‖x‖ =
»

x2
1 + · · · + x2

n.

Hence, if we want to describe a point (or a vector ) x ∈ Rn tending to infinity, we will use
the notation “‖x‖ → ∞” (or ‖(x1, · · · , xn)‖ → ∞ or ‖ < x1, · · · , xn > ‖ → ∞ )

Remark. We usually use the words “as ‖x‖ is sufficiently large” which means that there
exists a positive number M such that for every point x with ‖x‖ > M then · · · . For example,
“ f (x, y) > 1 when ‖(x, y)‖ is sufficiently large” means that there exists a number M > 0 such
that f (x, y) > 1 for every ‖(x, y)‖ > M.

Definition 14.2.9. (Limit at infinity) Let f be a function of two variables whose domain D
containing all points which are sufficiently large. We say that the limit of f (x, y), as (x, y)
approaches infinity, exists if there is a number L such that for every number ε > 0 there
exists a corresponding number M > 0 such that

| f (x, y) − L| < ε

whenever
√

x2 + y2 > M. Denote

lim
‖(x,y)‖→∞

f (x, y) = L or f (x, y)→ L as ‖(x, y)‖ → ∞.

Example 14.2.10. Let f (x, y) = x. Determine whether the limit lim
‖(x,y)‖→∞

f (x, y) exists.

Proof. Fix x = 1 and let y→ ∞, then ‖(x, y)‖ → ∞ and lim
x=1,y→∞

f (x, y) = 1.

Similarly, fix x = 2 and let y → ∞, then ‖(x, y)‖ → ∞ and lim
x=2,y→∞

f (x, y) = 2. Hence,

the limit lim
‖(x,y)‖→∞

f (x, y) does not exist. □

Example 14.2.11. Let f (x, y) =
1

x2 + y2 . Determine whether the limit lim
‖(x,y)‖→∞

f (x, y) exists.

Proof. Given ε > 0, choose M =
1
√
ε

and L = 0. For ‖(x, y)‖ =
√

x2 + y2 > M,

| f (x, y) − L| =
∣∣∣ 1
x2 + y2 − 0

∣∣∣ < 1
M2 = ε.

Hence, lim
‖(x,y)‖→∞

f (x, y) = 0. □

o Continuity
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Recall that the continuity of a single variable function f (x) at a is defined by

lim
x→a

f (x) = f (a).

A slogan is that “the limit of f at a is equal to the value of f at a”. We attempt to use the same
idea to define the continuity of a multi-variables function.

Definition 14.2.12.

(a) A two variables function f is called “continuous at (a, b)” if

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

(b) f is called continuous on D if f is continuous at every point in D.

Remark.

(1) A surface that is the graph of a continuous function has no hole or break.

(2) The sums, differeneces, products and quotients of continuous functions are continuous on
their domains

(3) Every polynomial function or every rational function of two variables is continuous. For
example, f (x, y) = 3x5 + 6y4 + 10x7y6 + 5x − 7y + 6 is continuous everywhere.

Example 14.2.13. Where is the function f (x, y) =
x2 − y2

x2 + y2 continuous?

Proof. Since f is a rational function, it is continuous on its domain. That is, f is continuous on
Dom( f ) =

{
(x, y) | x2 + y2 , 0

}
=
{

(x, y) | (x, y) , (0, 0)
}
= R\

{
(0, 0)

}
. □

Example 14.2.14. Let g(x, y) =


x2 − y2

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0).
. Since the limit lim

(x,y)→(0,0)
g(x, y)

does not exist, g is not continuous at (0, 0).

Example 14.2.15. Let

f (x, y) =


3x2y

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)

Since f is a rational function for (x, y) , (0, 0), it is continuous

on R2\{(0, 0)}. Also, lim
(x,y)→(0,0)

3x2y
x2 + y2 = 0 = f (0, 0). Thus, f is

continuous at (0, 0) and f is continuous on R2.
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■ Composite Functions

We consider the composition of a two variables function and a single variable function.

Let f (x, y) be a continuous function of two variables and g(t) be a continuous function of a
single variable that define on the range of f . Then h = g ◦ f defined by h(x, y) = g

(
f (x, y)

)
is

also a continuous function.

Example 14.2.16. Where is the function h(x, y) = e−(x2+y2) continuous?

Proof. Since the function f (x, y) = x2 + y2 is a polynomail and thus is continuous on R2.
Also, the function g(t) = e−t is continuous on R.
Then the composite function

f (x, y) = g
(

f (x, y)
)
= e−(x2+y2)

is continuous on R2

□

Example 14.2.17. Where is the function h(x, y) = arctan
(y

x
)

continuous?

Proof.

Let f (x, y) =
y
x

be continuous except on the line
x = 0. Let g(t) = arctan t be continu-
ous everywhere. Then the composite function
h(x, y) = arctan

(y
x
)
= g

(
f (x, y)

)
is continuous ex-

cept the line x = 0.

□

■ Functions of Three or more Variables

The definitions of limits and continuity of n-variables functions are similar as the ones of
two variables functions. We ignore the details of their definitions here.

Homework 14.2. 7, 10, 12, 15, 18, 21, 26, 29, 31, 34, 38, 43, 46, 49, 51, 57
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14.3 Partial Derivatives
Recall that for a single variable function f (x), the derivative of f is defined by

f ′(a) = lim
h→0

f (a + h) − f (a)
h

which represents the instantaneous rate of change of f with respect to x.

For a two variables function f (x, y), let x vary while keep-
ing y fixed, say y = b, where b is a constant. We can
regard f (x, b) as a single variable function.
Let g(x) = f (x, b), then g(a) = f (a, b). The derivative of
g(x) at x = a is

g′(a) = lim
h→0

g(a + h) − g(a)
h

= lim
h→0

f (a + h, b) − f (a, b)
h

..

We call it the “partial derivative of f with respect to x at
(a, b)”.

Similarly, let y vary while keeping x fixed, say x = a. Let
k(y) = f (a, y). The partial derivative of f with respect to
y at (a, b) is

lim
h→0

k(b + h) − k(b)
h

= lim
h→0

f (a, b + h) − f (a, b)
h

Definition 14.3.1. (Partial Derivatives) Let f be a function of two variables. The partial deriva-
tives of f with respect to x and with respect to y are the functions fx and fy defined by setting

fx(x, y) = lim
h→0

f (x + h, y) − f (x, y)
h

fy(x, y) = lim
h→0

f (x, y + h) − f (x, y)
h

provided these limits exist.

Notation: Let z = f (x, y). We write

fx(x, y) = fx =
∂ f
∂x
=
∂

∂x
f (x, y) =

∂z
∂x
= Dx f = D1 f = f1

fy(x, y) = fx =
∂ f
∂y
=
∂

∂y
f (x, y) =

∂z
∂y
= Dy f = D2 f = f2

■ Find Partial Derivatives of z = f (x, y)
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• To find fx, we regard y as a constant and differentiate f (x, y) with respect to x.

• To find fy, we regard x as a constant and differentiate f (x, y) with respect to xy.

Example 14.3.2. If f (x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

Proof. The partial derivatives of f are

f(x, y) = 3x2 + 2xy3 and fy(x, y) = 3x2y2 − 4y.

Then fx(2, 1) = 12 + 4 = 16 and fy(2, 1) = 12 − 4 = 8. □

Note. We should consider the single variable function f (x, 1) = x3 + x2 − 4 and f (2, y) =
8 + 4y3 − 2y2. Then

fx(2, 1) =
Ä d

dx
f (x, 1)

ä∣∣∣
x=2
= 3x2 + 2x

∣∣∣
x=2
= 12 + 4 = 16.

fy(2, 1) =
Ä d

dy
f (2, 1)

ä∣∣∣
y=1
= 12y2 − 4y

∣∣∣
y=1
= 12 − 4 = 8.

■ Interpretation of Partial Derivatives

The equation z = f (x, y) represents a surface S (the graph of
f ). If f (a, b) = c, then the point P(a, b, c) lies on S .
Fix y = b, the curve C1 is the intersection of the vertical plane
and S . C1 is also the graph of the function g(x) = f (x, b),
y = b. The slope of its tangent line T1 at P is g′(a) = fx(a, b).
Similar for the curve C2, the tangnet line T2 and its slope
fy(a, b).

Example 14.3.3. If f (x, y) = 4 − x2 − 2y2, find fx(1, 1) and fy(1, 1) and interpret these numbers
as slopes.

Proof. The partial derivatives of f are

fx(x, y) = −2x and fy(x, y) − 4y.

Then fx(1, 1) = −2 and fy(1, 1) = −4.
The equation z = 4 − x2 − 2y2 represents a paraboloid which is the graph of f (x, y). Fix

y = 1, z = 2 − x2 is the equation of a parabola which is the intersection of the vertical plane
y = 1 and the graph of f (x, y). The value fx(1, 1) = −2 is the slope of the tangent line to the
parabola C1 : z = 2 − x2, y = 1 at (1, 1, 1).

Similarly, fy(1, 1) = −4 is the slope of the tangnet line to the parabola C2 : z = 3 − 2y2,
x = 1 at (1, 1, 1).
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□

Note. We can express the curve C1 as a vector equation r(t) = 〈t
x
, 1

y
, 2 − t2

z
〉. Then the tangent

vector is r′(t) = 〈1, 0,−2t〉.
At (1, 1, 1), we have t = 1 and then r′(1) = 〈1, 0,−2〉. The equation of the tangent line is

r(1) + tr′(1) = 〈1 + t, 1, 1 − 2t〉.

Example 14.3.4. If f (x, y) = sin
Ä x

1 + y

ä
, calculate

∂ f
∂x

and
∂ f
∂y

.

Proof. We can calculate the partial derivatives by the chain rule,

∂ f
∂x
= cos

Ä x
1 + y

ä
· 1

1 + y
and

∂ f
∂y
= cos

Ä x
1 + y

ä
· −x

(1 + y)2 .

□
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■ Implicit Differentiation

Recall that if the two variables x and y satisfy an equation F(x, y) = 0, then we can use the

implicit differentiation to find the ralated rate of each other (
dy
dx

or
dx
dy

).

By following the same idea, if three variables x, y and z satisfy an equation F(x, y, z) = 0,
we want to find the related rates (partial derivatives) between any two variables.

Example 14.3.5. Find
∂z
∂x

and
∂z
∂y

if z is defined implicitly as a function of x and y by the

equation
x3 + y3 + z3 + 6xyz + 4 = 0. (14.1)

Proof.

Differentiating both sides of equation (14.1) with respect to x,
we have

∂

∂x

î
x3 + y3 + z3 + 6xyz + 4

ó
=
∂

∂x
(0)

Then

3x2 + 3z2 ∂z
∂x
+ 6yz + 6xy

∂z
∂x
= 0 and hence

∂z
∂x

Ä
3z3 + 6xy

ä
= −
Ä

3x2 + 6yz
ä
.

We have
∂z
∂x
= − x2 + 2yz

z2 + 2xy
.

Similarly,
∂z
∂y
= −y2 + 2xz

z2 + 2xy
.

At the point (−1, 1, 2), we have

∂z
∂x

∣∣∣
(x,y,z)=(−1,1,2)

= −5
2

and
∂z
∂y

∣∣∣
(x,y,z)=(−1,1,2)

=
3
2
.

□

■ Functions of Three or More Variables

• For a three variables function f (x, y, z), fix y and z, the partial derivative of f with respect to
x is defined by

fx(x, y, z) = lim
h→0

f (x + h, y, z) − f (x, y, z)
h

.

( fy and fz have similar definition).

If w = f (x, y, z), then
∂w
∂x

can be interpreted as the rate of change of w with respect to x when
y and z are fixed.
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• for a n-variables function f (x1, x2, · · · , xn),

fxi(x1, x2, · · · , xn) = lim
h→0

f (x1, · · · , xi + h, · · · , xn) − f (x1, · · · , xi, · · · xn)
h

.

If u = f (x1, x2, · · · , xn), then
∂u
∂xi
=
∂ f
∂xi
= fxi = fi = Di f is the partial deriveative of u with

respect to xi.

Note. Denote x = (x1, · · · , xn) and ei = (0, · · · , 0, 1, 0, · · · 0). Then

fxi(x) = lim
h→0

f (x + hei) − f (x)
h

.

Example 14.3.6. Let f (x, y, z) = exy ln z, then

fx(x, y, z) = exy · y ln z = yexy ln z, fy(x, y, z) = xexy ln z, fz(x, y, z) = exy · 1
z
.

■ Higher Derivatives

When study a single variable function f (x), we can regard its derivative f ′(x) as a new
function and consider its second derivative f ′′(x).

For a two variables function f (x, y), we can also regard its partial derivatives fx(x, y) and
fy(x, y) as new functions and consider the “second partial derivatives”. Let z = f (x, y). Then

( fx)x = fxx =
∂

∂x

Ä∂ f
∂x

ä
=
∂2 f
∂x2 =

∂2z
∂x2 = f11

( fx)y = fxy =
∂

∂y

Ä∂ f
∂x

ä
=
∂2 f
∂y∂x

=
∂2z
∂y∂x

= f12

( fy)x = fyx =
∂

∂x

Ä∂ f
∂y

ä
=
∂2 f
∂x∂y

=
∂2z
∂x∂y

= f21

( fy)y = fyy =
∂

∂y

Ä∂ f
∂y

ä
=
∂2 f
∂y2 =

∂2z
∂y2 = f22

• third partial derivatives

( fxy)x = fxyx =
∂

∂x

Ä ∂2 f
∂y∂x

ä
=

∂3 f
∂x∂y∂x

=
∂3z
∂x∂y∂x

( fxy)y = fxyy =
∂

∂y

Ä ∂2 f
∂y∂x

ä
=
∂3 f
∂2y∂x

=
∂3z
∂2y∂x

Example 14.3.7. Let f (x, y) = x3 + x2y3 − 2y2. Then the first partial derivatives of f are

fx = 3x2 + 2xy3, fy = 3x2y2 − 4y

and the second partial derivatives of f are

fxx = 6x + 2y3, fxy = 6xy2, fyx = 6xy2, fyy = 6x2y − 4.
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■ Clairaut’s Theorem

Question: For a multi-variables function, does the second partial derivatives keep unchanged
when the order of two partial differentiations exchange? For example, if f (x, y) has all second
partial derivatives, can we obtain

fxy
??
= fyx.

In general, the answer is false.
Exercise. Let

f (x, y) =


xy(x2 − y2)

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
Check that fxy(0, 0) , fyx(0, 0).
Question: What conditions of f can guarantee its second partial derivatives are equal when
exchanging their order?

Theorem 14.3.8. (Clairaut’s Theorem) Suppose f is defined on a neighborhood D of (a, b). If
the functions fxy and fyx are both continuous at (a, b), then

fxy(a, b) = fyx(a, b).

Proof. Consider

fxy(a, b) = lim
k→0

fx(a, b + k) − fx(a, b)
k

= lim
k→0

lim
h→0

î f (a + h, b + k) − f (a, b + k)
h

− f (a + h, b) − f (a, b)
h

ó
k

= lim
k→0

lim
h→0

f (a + h, b + k) − f (a + h, b) − f (a, b + k) + f (a, b)
kh

.

Define g(y) = f (a + h, y) − f (a, y) Then fxy(a, b) = lim
k→0

lim
h→0

g(b + k) − g(b)
kh

.
Since fy is defined on a neighborhood of (a, b), g is differentiable near b and, by the

mean value theorem, g(b + k) − g(b) = kg′(ξ) for some ξ = ξ(k) ∈ (0, k). Then

fxy(a, b) = lim
k→0

lim
h→0

g′
(
ξ(k)

)
h

= lim
k→0

lim
h→0

1
h
[

fy
(
a + h, b + ξ(k)

)
− fy

(
a, b + ξ(k)

)]
.

Since fy is differentiable with respect to x and by the mean value theorem again,

fxy(a, b) = lim
k→0

lim
h→0

fyx
(
a + η(h), b + ξ(k)

)
where η(h) ∈ (0, h) and ξ(k) ∈ (0, k) and hence lim

h→0
η(h) = 0 and lim

k→0
ξ(k) = 0. Also, the

continuity of fyx at (a, b) implies that

fxy(a, b) = lim
k→0

lim
h→0

fyx
(
a + η(h), b + ξ(k)

)
= fyx(a, b).

□
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Remark. The Clairaut’s Theorem still holds if the hypothesis is weaken that one of fxy and fyx

is continuous at (a, b).

Example 14.3.9. Let f (x, y) = sin(3x + yz). Then

fx = 3 cos(3x + yz), fxx = −9 sin(3x + yz), fxy = −3z sin(3x + yz)

fxxy = −9z cos(3x + yz), fxyx = −9z cos(3x + yz) = fxxy.

o Partial Differential Equations

(Skip)

Homework 14.3. 5, 15, 19, 23, 25, 29, 33, 35, 39, 43, 47, 51, 59, 61, 85, 95, 100

14.4 Tangent Planes and Linear Approximations

o Tangent Planes

Recall that a single variable function f (x) with derivative
f ′(a) can be linearly approximated by its “tangent line”

f (x) ≈ L(x) = f (a) + f ′(a)(x − a) as x is near a

*

For a two variables function f (x, y), we also expect that it can be linearly approximated by
a certain “plane”.

Suppose that

f (x, y) is a two variables function which has continuous first
partial derivatives;

S is the surface with equation z = f (x, y) (the graph of f )
and P(a, b, c) ∈ S ;

C1 and C2 are the curves obtained by intersecting the vertical
planes y = b and x = a with the sufrace S . Then P ∈ C1∩C2.

T1 and T2 are tangent lines to the curves C1 and C2 at the
point P.

*The figure is download from https://www.math24.net/linear-approximation/



14.4. TANGENT PLANES AND LINEAR APPROXIMATIONS 205

Definition 14.4.1. The “tangent plane” to the surface S
at P is defined to be the plane that contains both tangent
lines T1 and T2.

Note. If C is any curve that lies on S and passes P, then
the tangent line to C at P also lies on the tangent plane.
Hence, we can think of the tangent plane to S at P as
consisting of all possible tangent lines at P to curves that
lie on S and pass through P.

■ Equation of the tangent plane

Let the tangent plane to S passing throught P(a, b, c) has equation

A(x − a) + B(y − b) +C(z − c) = 0 (14.2)

We may assume that it is not a vertical tangent plane and hence C , 0. Dividing both sides of
equation (14.3) by −C, the tangent plane has an equivalent equation

z − c = α(x − a) + β(y − b) (α =
A
−C

and β =
B
−C

).

Since the intersection of the tangent plane and the vertical plane y = b is the tangent line T1,
plugging y = b into equation (14.3),

z − c = α(x − a)

is the equation of the tangent line T1. Then α is the slope of T1 to the curve C1 at (a, b, c) and
hence α = fx(a, b).

Similarly, β = fy(a, b). Therefore, the equation of the tangent plane to S at P is

z − c = fx(a, b)
(

x − a
)
+ fy(a, b)

(
y − b

)
.

Example 14.4.2. Find the tangent plane to the elliptic paraboloid z = 2x2 + y2 at (1, 1, 3).

Proof. Let f (x, y) = 2x2 + y2. Then fx(x, y) = 4x and fy(x, y) = 2y. Hence, fx(1, 1) = 4 and
fy(1, 1) = 2. The equation of the tangent plane at (1, 1, 3) is

z − 3 = 4(x − 1) + 2(y − 1) or z = 4x + 2y − 3.



206 CHAPTER 14. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

□

o Linear Approximations

We have studied the linear apporximation for a single variable function f (x). We use the
tangent line to the graph y = f (x) at a to approxinate the value of f near a and the linearization
for f at a is

L(x) = f (a) + f ′(a)(x − a)

and
f (x) ≈ L(x) as x is close to a.

For a two variable function f (x, y), we expect to approximate its values, as (x, y) is near
(a, b), by the tangnet plane at (a, b).

Suppose that f (x, y) has continuous partial derivative. The tangnet plane to the surface
S : z = f (x, y) at P

(
a, b, f (a, b)

)
is

z − f (a, b) = fx(a, b)(x − a) + fy(a, b)(y − b)

or
z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

Definition 14.4.3.
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(a) We call the function

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

the “linearization of f at (a, b).

(b) The approximation f (x, y) ≈ L(x, y) is called the “linear approximation” or “tangent plane
approximation” of f at (a, b).

Example 14.4.4. Find the linearization of f (x, y) = 2x2+y2 at (1, 1, 3) and use it to approximate
the value of f (1.1, 0.95).

Proof. Compute fx(x, y) = 4x and fy(x, y) = 2y and hence fx(1, 1) = and fy(1, 1) = 2. Then the
linearization of f at (1, 1, 3) is

L(x, y) = f (1, 1) + fx(1, 1)(x − 1) + fy(1, 1)(y − 1) = 3 + 4(x − 1) + 2(y − 1) = 4x + 2y − 3.

Also,
f (1.1, 0.95) ≈ L(1.1, 0.95) = 3 + 4 · 0.1 + 2 · (−0.05) = 3.3.

□

We define tangent plane for surface z = f (x, y), where f has continuous partial derivatives.

Question: What happens if fx and fy are not continuous? Consider the following example.

We define tangent plane for surface z = f (x, y), where f has continuous partial derivatives.

Example 14.4.5.

Let f (x, y) =

{ xy
x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
.

Then fx(0, 0) = 0 = fy(0, 0). For (x, y) , (0, 0),

fx(x, y) =
y(y2 − x2)
(x2 + y2)2 . Along x = 0,

lim
(x,y)→(0,0), x=0

fx(x, y) = lim
y→0

y3

y4 = ∞.

Hence, fx is continuous at (0, 0). Also, we can com-
pute that fy is not continuous at (0, 0). Observe that,

for (x, y) on the line x = y, f (x, y) =
1
2
, 0. There-

fore, f is not continuous at (0, 0). This implies that
there is linear approximation of f at (0, 0).

Note. This example says that for the linear approximation, the condition of the continuities of
fx and fy are necessary.
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o Differentiability

We recall the geometric meaning of linear approximation
of y = f (x). Let 4y = f (a + 4x) − f (a). The rate of
change of y with respect to x is

4y
4x
=

f (a + 4x) − f (a)
4x

.

If f is differentiable at a, then
4y
4x
→ f ′(a) as 4x→ 0.

Hence,

4y︸︷︷︸
increment in y

= f ′(a)4x︸     ︷︷     ︸
linear approximation

+ ε4x︸︷︷︸
error

where ε→ 0 as 4x→ 0.

(Note that ε = ε(4x) varies as 4x varies.)

For a two variables function z = f (x, y), as x changes
from a to a+4x and y changes from b to b+4y, the
corresponding increment of z is

4z = f (a + 4x, b + 4y) − f (a, b)
= fx(a, b)4x + fy(a, b)4y︸                         ︷︷                         ︸

linear approximation

+ ε14x + ε24y︸           ︷︷           ︸
error

where ε1 = ε1(4x,4y) and ε2 = ε2(4x,4y). We ex-
pect that ε1, ε2 → 0 as (4x,4y)→ (0, 0).

Definition 14.4.6. Let z = f (x, y). We call that f is “differentiable” at (a, b) if 4z can be
expressed in the form

4z = fx(a, b)4x + fy(a, b)4y + ε14x + ε24y

where ε1, ε2 → 0 as (4x,4y)→ (0, 0).
Exercise. If f (x, y) is differentiable at (a, b), then f is continuous at (a, b).

From Example 14.4.5, a two variables function f (x, y) has all partial derivative at (a, b) can-
not guarantee that it is differentiable there.

■ Sufficient condition for differentiability

Theorem 14.4.7. If the partial derivative fx and fy exists near (a, b) and are continuous at
(a, b), then f is differentiable at (a, b).
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Example 14.4.8. Show that f (x, y) = xexy is differentiable at (1, 0) and find its linearization
there. Then use it to approximate f (1.1,−0.1).

Proof. Since fx(x, y) = exy + xyexy and fy(x, y) = x2exy are continuous functions, f (x, y) is
differentiable everywhere. Moreover, fx(1, 0) = 1 and fy(1, 0) = 1. The linearization of f at
(1, 0) is

L(x, y) = f (1, 0) + fx(1, 0)(x − 1) + fy(1, 0)(y − 0)
= 1 + (x − 1) + y
= x + y.

Then

f (1.1,−0.1) ≈ L(1.1,−0.1) = 1.1 + (−0.1) = 1.

In fact, f (1.1,−0.1) = 1.1e−0.1 ≈ 0.98542.
□

o Differentials

Recall that for a differentiable single variable func-
tion y = f (x), dx is the differantial of x and dy =
f ′(x) dx is a differential of y.
The symbol 4y denotes the change in height of y and
dy represents the change in height of the tangent line
when x changes 4x = dx. Hence, as (x, y) is near
(a, b),

f (x, y) ≈ f (a, b) + f ′(a, b) dx = f (a, b) + dy.

For a differentiable fucntion of two variables
z = f (x, y), dx and dy are differentials of x and y
respectively, and dz is the differenital of z which is
called the “total differential”. Then

dz = fx(x, y) dx + fy(x, y) dy =
∂z
∂x

dx +
∂z
∂y

dy.

Taking dx = 4x = x − a and dy = 4y = y − b, then

dz = fx(x, y)(x − a) + fy(x, y)(y − b).

As (x, y) is near (a, b),

f (x, y) ≈ f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) = f (a, b) + dz.
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Example 14.4.9.
(a) If z = f (x, y) = x2 + 2xy − y2, find the differential dz.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.6, compare the values of 4z and dz.

Proof.

(a) To find dz, fx(x, y) = 2x + 3y and fy(x, y) = 3x − 2y. Then

dz =
∂z
∂x

dx +
∂z
∂y

dy = (2x + 3y)dx + (3x − 2y)dy.

(b) If x changes from x to 2.05 and y changes from 3 to 2.96,
compare 4z and dz.

4z = = f (2.05, 2.96) − f (2, 3) = 0.6449
dz = fx(2, 3)(2.05 − 2) + fy(2, 3)(2.96 − 3) = 0.65.

□

Example 14.4.10. The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as ε cm in each.

(a) Use differentials to estimate the maximum error in the calculated volume of the cone.

Proof.

The volume of the cone is V(r, h) =
1
3
πr2h. Then

∂V
∂r
=

2
3
πrh,

∂V
∂h
=

1
3
πr2.

The differential of V is

dV =
∂V
∂r

dr +
∂V
∂h

dh =
2πrh

3
dr +

πr2

3
dh.

When |dr| ≤ ε and |dh| ≤ ε and at (r, h) = (10, 25), the differential of V is

4V ≈ dV ≤ ∂V
∂r

(10, 25) · ε + ∂V
∂h

(10, 25) · ε

=
500π

3
· ε + 100π

3
· ε = 200πε (cm3)

□
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(b) What is the estimated maximum error in volume if the radius and height are measured with
errors up to 0.1 cm?

Proof. Taking ε = 0.1 cm, then dV = 200π(0.1) = 20π ≈ 63 (cm3). □

Note that the relative error is
dV
V
≈ 63

2618
≈ 0.0214 or 2.4%.

o Functions of Three or More Variables

■ Linear Approximation

The linearization of f at (a, b, c) is

f (x, y, z) ≈ L(x, y, z) = f (a, b, c) + fx(a, b, c)(x − a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c).

■ Differentials

Let w = f (x, y, z). Then

4w = f (x + 4x, y + 4y, z + 4z) − f (x, y, z)

dw = fx(x, y, z)dx + fy(x, y, z)dy + fz(x, y, z)dz =
∂w
dx

dx +
∂w
∂y

dy +
∂w
∂z

dz.

Example 14.4.11. A rectangular box has length, width, and height 75cm, 60 cm and 40cm
respectively. Use differentials to estimate the largest possible error when the volume of the box
is calculatedas each measurement is correct to within ε cm.

(a) Use the differentials to estimate the largest possible error when the volume of the box is
calculated from these measurements.

Proof.

Let x, y and z denote the length, width and height of the box.
The volume of the box is V(x, y, z) = xyz. Then

∂V
∂x
= xy,

∂V
∂y
= xz,

∂V
∂z
= xy.

The differential of V is

dV =
∂V
∂x

dx +
∂V
∂y

dy +
∂V
∂z

dz = yz dx + xz dy + xy dz.

When |dx| ≤ ε, |dy| ≤ ε and |dz| ≤ ε and at (x, y, z) = (75, 60, 40), the differential of V is

4V ≈ dV ≤ (60)(40)ε + (75)(40)ε + (75)(60)ε = 9900ε (cm3).

□

(b) What is the estimated maximum error in the calculated volume if the measured dimensions
are correct to within 0.2 cm?
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Proof. Taking ε = 0.2, then dV = 9900(0.2) = 1980 cm3 in the calculated volume. □

Note that this may seem like a large error, but the relative error is
dV
V
=

1980
(75)(60)(40)

= 0.011

or 1.1%.

Homework 14.4. 5, 9, 17, 21, 24, 27, 34, 36, 39, 43, 49, 54

14.5 The Chain Rule

Recall the for single variable functions y = f (x), x = g(t), y = f
(
g(t)

)
is a composite function

of variable t. Then
dy
dt
=

dy
dx

dx
dt
.

■ The Chain Rule: Case 1

For a two variables function z = f (x, y), if x = g(t) and y = h(t), then z = f
(
g(t), h(t)

)
is

indeirectly a function of t, say z = z(t). Suppose that z = f (x, y) is differentiable and, x = g(t)
and y = h(t) are differentiable. Then

4z = fx(x, y)4x + fy(x, y)4y + ε14x + ε24y

= fx(x, y)
4x
4t
4t + fy(x, y)

4y
4t
4t + ε1

4x
4t
4t + ε2

4y
4t
4t

where ε1, ε2 → 0 as (4x,4y) → (0, 0). Since x = g(t) and y = h(t) are differentiable in t, we

have
4x
4t
→ dx

dt
and
4y
4t
→ dy

dt
as 4t → 0. Then, letting 4t → 0,

4z
4t
→ fx(x, y)

dx
dt
+ fy(x, y)

dy
dt
+ lim
4t→0
ε1︸   ︷︷   ︸

=0

·dx
dt
+ lim
4t→0
ε2︸   ︷︷   ︸

=0

·dy
dt
.

We obtain
dz
dt
= lim
4t→0

4z
4t
= fx(x, y)

dx
dt
+ fy(x, y)

dy
dt
.

Theorem 14.5.1. (The Chain Rule: Case 1) (Two variables function) Suppose that z = f (x, y) is
a differentiable function of x and y where x = x(t) and y = y(t) are both differentiable functions
of t. Then z is a differentiable function of t and

dz
dt
=
∂ f
∂x

dx
dt
+
∂ f
∂y

dy
dt
=
∂z
∂x

dx
dt
+
∂z
∂y

dy
dt
.

Remark. In Chapter 13, we studied the n vector-valued function r(t) = 〈x1(t), · · · , xn(t)〉 :
I → Rn. If r(t) is differentiable on I, then

r′(t) = 〈x′1(t), · · · , x′n(t)〉.

Hence, we have the chain rule for general multiple variables functions:
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Suppose that f : D ⊆ Rn → R is a continuously differentiable function. If r = r(t) is a
differentiable curve in D, then f ◦ r is differentiable and

d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t).

Proof. It suffices to prove the case n = 2 and the general cases are similar.

Since x = x(t) and y = y(t) are differentiable in t,

4x = x(t + 4t) − x(t) =
dx
dt
4t + ε14t and 4y = y(t + 4t) − y(t) =

dy
dt
4t + ε24t

where ε1, ε2 → 0 as 4t → 0 as well as

lim
4t→0

4x
4t
=

dx
dt

and lim
4t→0

4y
4t
=

dy
dt
.

Clearly, 4x,4y→ 0 as 4t → 0.

On the other hand, since f is differentiable,

4z = f (x + 4x, y + 4y) − f (x, y)
= fx(x, y)4x + fy(x, y)4y + ε34x + ε44y

where ε3, ε4 → 0 as (4x,4y)→ (0, 0). Then

4z
4t
= fx(x, y)

4x
4t
+ fy(x, y)

4y
4t
+ ε3
4x
4t
+ ε4
4y
4t
.

Taking limits as 4t → 0, we have

dz
dt
= lim
4t→0

4z
4t
= fx(x, y)

Ä
lim
4t→0

4x
4t

ä
︸         ︷︷         ︸

= dx
dt

+ fy(x, y)
Ä

lim
4t→0

4y
4t

ä
︸         ︷︷         ︸

=
dy
dt

+
Ä

lim
4t→0
ε3

ä
︸       ︷︷       ︸

=0

Ä
lim
4t→0

4x
4t

ä
+
Ä

lim
4t→0
ε4

ä
︸       ︷︷       ︸

=0

Ä
lim
4t→0

4y
4t

ä
= fx(x, y)

dx
dt
+ fy(x, y)

dy
dt

=
∂z
∂x

dx
dt
+
∂z
∂y

dy
dt
.

□
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Example 14.5.2. If z = x2y + 3xy4, where x = sin 2t and y = cos t, find
dz
dt

when t = 0.

Proof.

Compute
∂z
∂x
= 2xy + 3y4 and

∂z
∂y
= x2 + 12xy3. Then

dz
dt
=
∂z
∂x

dz
dt
+
∂z
∂y

dy
dt

= (2xy + xy4)(2 cos 2t) + (x2 + 12xy3)(− sin t)
= (2 sin 2t cos t + 3 cos4 t)(2 cos 2t)

+(sin2 2t + 12 sin 2t cos3 t)(− sin t).

At t = 0,
dz
dt

∣∣∣
t=0
= 6.

Note that
dz
dt

represents the rate of change of z with respect to t as the point (x, y) moves
along the curve C with parametric equation r(t) = 〈sin 2t, cos t〉. □

Example 14.5.3. The pressure P (in kilopascals), volume V (in liters), and temperature T (in
kelvins) of a mole of an ideal gas are related by the equation PV = 8.31T . Find the reate at
whcih the ressure is changing when the temperature is 300K and increasing at a reate of 0.1 K/s
and the volume is 100L and increasing at a rate of 0.2 L/s.

Proof. From the equation PV = 8.31T , we can express P as a function of variables V and T .

That is, P = 8.31
T
V

. By the Chain Rule,

dP
dt
=
∂P
∂T

dT
dt
+
∂P
∂V

dV
dt
= 8.31 · 1

V
· dT

dt
+ 8.31

(
− T

V2

)
· dV

dt

The hypothesis indicates that
dT
dt
= 0.1 and

dV
dt
= 0.2. We want to find

dP
dt

∣∣∣
(T,V)=(300,100)

.

Then

dP
dt

∣∣∣
(T,V)=(300,100)

= 8.31
î 1

100
· 0.1 +

Ä
− 300

1002

ä
· 0.2
ó
= −0.04155 (KPa/s)

□

Example 14.5.4. Compute the rate of change of f (x, y, z) = x2y + z cos z along the curve
r(t) = 〈t, t2, t3〉.

Proof. Compute

∇ f (x, y, z) = 〈2xy, x2, cos z − z sin z〉 and r′(t) = 〈1, 2t, 3t2〉.
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Then

d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t)

= 〈2t3, t2, cos t3 − t3 sin t3〉 · 〈1, 2t, 3t2〉
= 4t3 + 3t2 cos t3 − 3t5 sin t3.

□

Remark. (1) Suppose that f (x) = f (x1, x2, · · · , xn) and r(t) = 〈x1(t), · · · , xn(t)〉. Then

∇ f (x) = 〈 ∂ f
∂x1

(x),
∂ f
∂x2

(x), · · · , ∂ f
∂xn

(x)〉 and r′(t) = 〈x′1(t), · · · , x′n(t)〉

Hence,

d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t)

= 〈 ∂ f
∂x1

(x),
∂ f
∂x2

(x), · · · , ∂ f
∂xn

(x)〉 · 〈x′1(t), · · · , x′n(t)〉

=

n∑
i=1

∂ f
∂xi

(
r(t)

)
x′i(t)

=

n∑
i=1

∂ f
∂xi

(
r(t)

)dxi

dt
(t)

(2) Recall that the directional derivative of f at (a, b) in the direction u (unit vector) is

Du f (a, b) = ∇ f (a, b) · u.

Let the plane curve r(t) pass 〈a, b〉 when t = t0 (that is, r(t0) = 〈a, b〉). Then

d
dt

Ä
f
(
r(t)

)ä∣∣∣
t=t0
= ∇ f

(
r(t0)

)
· r′(t0) = ‖r′(t0)‖Du f (a, b)

where u =
r′(t0)
‖r′(t0)‖ . This means that the rate of change of the composite function f

(
r(t)

)
at t = t0 is equal to ‖r′(t0)‖ multiple of the directional derivative of f at r(t0) in the
direction r′(t0).

Corollary 14.5.5. If x = x(t) and y = y(t) are twice differentiable at t and if z = f (x, y) is
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twice differentiable at
(

x(t), y(t)
)
, then z = f

(
x(t), y(t)

)
is twice differentiable at t and

d2z
dt2 =

∂z
∂x

d2x
dt2 +

Ädx
dt

ä2 ∂2z
∂x2 + 2

∂2z
∂x∂y

dx
dt

dy
dt
+
Ädy

dt

ä2 ∂2z
∂y2 +

∂z
∂y

d2y
dt2 .

Proof. (Exercise) □

■ The Chain Rule: Case 2

Let z = f (x, y), x = x(s, t) and y = y(s, t) be differentiable functions. Then z = z(s, t) =
f
(

x(s, t), y(s, t)
)

is indirectly a function of s and t. Consider the partial derivative of z with
respect to t. From the discuss in Section 14.3, fixing s (as a constant w.r.t t) and regarding z as
a function of t. We can use the idea of Case1 to find the partial derivative of z with respect to t.

∂z
∂t
=
∂z
∂x
∂x
∂t
+
∂z
∂y
∂y
∂t
.

Theorem 14.5.6. (The Chain Rule: Case 2) Suppose that z = f (x, y) is a differentiable function
of x and y, where x = x(s, t) and y = y(s, t) are differentiable functions of s and t. Then

∂z
∂s
=
∂z
∂x
∂x
∂s
+
∂z
∂y
∂y
∂s
,

∂z
∂t
=
∂z
∂x
∂x
∂t
+
∂z
∂y
∂y
∂t
.

The tree diagram is

If xi = xi(s, t) are differentiable at (s, t) for i = 1, · · · n and z = f
(

x1, · · · , xn
)

is differen-
tiable at

(
x1(t), xn(t)

)
then

∂z
∂s
=
∂z
∂x1

∂x1

∂s
+ · · · + ∂z

∂xn

∂xn

∂s
=

n∑
i=1

∂z
∂xi

∂xi

∂s

and
∂z
∂t
=
∂z
∂x1

∂x1

∂t
+ · · · + ∂z

∂xn

∂xn

∂t
=

n∑
i=1

∂z
∂xi

∂xi

∂t
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Example 14.5.7. If z = ex sin y, where x = st and y = s2t, find
∂z
∂s

and
∂z
∂t

.

Proof. Compute that
∂z
∂x
= ex sin y,

∂z
∂y
= ex cos y

and
∂x
∂s
= t2,

∂x
∂t
= 2st,

∂y
∂s
= 2st,

∂y
∂t
= s2.

Then

∂z
∂s
=
∂z
∂x
∂x
∂s
+
∂z
∂y
∂y
∂s
= e2 sin y · t2 + e2 cos y · 2st

= t2est sin(s2t) + 2stest cos(s2t).

and

∂z
∂t
=
∂z
∂x
∂x
∂t
+
∂z
∂y
∂y
∂t
= e2 sin y · 2st + e2 cos y · s2

= 2stest sin(s2t) + s2est cos(s2t).

□

Corollary 14.5.8. Suppose that z = f (x, y) is a twice differentiable function of x and y, where
x = x(s, t) and y = y(s, t) are twice differentiable functions of s and t. Then

∂2z
∂s2 =

∂

∂s

Ä∂z
∂s

ä
=
∂

∂s

î ∂z
∂x
∂x
∂s
+
∂z
∂y
∂y
∂s

ó
=

( ∂2z
∂x2

∂x
∂s
+
∂2z
∂y∂x

∂y
∂s

)∂x
∂s
+
∂z
∂x
∂2x
∂s2

+
( ∂2z
∂x∂y

∂x
∂s
+
∂2z
∂y2

∂y
∂s

)∂y
∂s
+
∂z
∂y
∂2y
∂s2

Example 14.5.9. Let u = f (s2 + t2, st) Find
∂2u
∂s∂t

.

Proof.
∂u
∂t
=
∂ f
∂x

(s2 + t2, st) · 2t +
∂ f
∂y

(s2 + t2, st) · s.

and

∂2u
∂s∂t

=
∂

∂s

Ä∂u
∂t

ä
=
∂2 f
∂x2 (s2 + t2, st)(2s)(2t) +

∂2 f
∂y∂x

(s2 + t2, st)(2t2)

+
∂2 f
∂x∂y

(s2 + t2, st)2s · s + ∂
2 f
∂y2 (s2 + t2, st)t · s + ∂ f

∂y
(s2 + t2, st) · 1.

□
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■ Chain Rule: General Version

Suppose that u is a differentiable function of n variables x1, · · · , xn and each xi is a
differenbitable function of m variables t1, · · · , tm. Then u is a differentiable function of
t1, · · · , tm and

∂u
∂ti
=
∂u
∂x1

∂x1

∂ti
+
∂u
∂x2

∂x2

∂ti
+ · · · + ∂u

∂xn

∂xn

∂ti

for each i = 1, 2, · · · ,m.

Example 14.5.10. Let w = f (x, y, z, t), x = x(u, v), y = y(u, v) and z = z(u, v). Then

∂w
∂u
=
∂w
∂x
∂x
∂u
+
∂w
∂y
∂y
∂u
+
∂w
∂z
∂z
∂u
+
∂w
∂t
∂t
∂u

and

∂w
∂v
=
∂w
∂x
∂x
∂v
+
∂w
∂y
∂y
∂v
+
∂w
∂z
∂z
∂v
+
∂w
∂t
∂t
∂v
.

Example 14.5.11. If u = x4y + y2z3, where x = rset, y = rs2e−t and z = r2s sin t, find the

value of
∂u
∂s

when r = 2, s = 1 and t = 0.

Proof.

∂u
∂x
= 4x3y,

∂u
∂y
= x4 + 2yz3,

∂u
∂z
= 3y2z2

and

∂x
∂s
= ret,

∂y
∂s
= 2rse−t,

∂z
∂s
= r2 sin t.

Then

∂u
∂s
=
∂u
∂x
∂x
∂s
+
∂u
∂y
∂y
∂s
+
∂u
∂z
∂z
∂s

= 4x3y · ret + (x4 + 2yz3) · 2rse−t + 3y2z2 · r2 sin t.

When (r, s, t) = (2, 1, 0), x = 2, y = 2 and z = 0. Hence,

∂u
∂s

∣∣∣
(r,s,t)=(2,1,0)

= 64 · 2 + 16 · 4 + 0 · 0 = 192.

□

Example 14.5.12. If z = f (x, y) has continuous second-order partial derivatives and x = r2 + s2

and y = 2rs, find
∂z
∂r

and
∂2z
∂r2 .

Proof.
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∂z
∂r
=
∂z
∂x
∂x
∂r
+
∂z
∂y
∂y
∂r
=
∂z
∂x

(2r) +
∂z
∂y

(2s).

and

∂2z
∂r2 =

∂

∂r

Ä∂z
∂r

ä
= 2r

î ∂2z
∂x2

∂x
∂r
+
∂2z
∂y∂x

ó
+ 2
∂z
∂x

+2s
î ∂2z
∂x∂y

∂x
∂r
+
∂2z
∂y2

∂y
∂r

ó
= 2

∂z
∂x
+ 4r2 ∂

2z
∂x2 + 4s2 ∂

2z
∂y2 + 8sr

∂2z
∂x∂y

.

Note that
∂2z
∂x∂y

=
∂2z
∂y∂x

since f has continuous second partial derivatives. □

o Implicit Differentiation

Recall that if the two variable x and y have a relation, for example xy2 + x sin y = 1, we can

find
dy
dx

. By differentiating of both sides,

d
dx

(
xy2 + x sin y

)
=

d
dx

(1)

we have
dy
dx
= − y2 + sin y

2xy + x cos y
.

In general, for the equation F(x, y) = 0 where F is differentiable, we can regard y as a

function of x. That is, y = f (x) and then F
(

x, f (x)
)
= 0. To find

dy
dx

,

∂

∂x

Ä
F(x, y)

ä
=
∂

∂x
(0).

We have
∂F
∂x

dx
dx︸︷︷︸
=1

+
∂F
∂y

dy
dx
= 0.

and then

dy
dx
= −

∂F
∂x
∂F
∂y

= − Fx

Fy
.

Note. The “Implicit Function Theorem” give conditions under which this assumption is valid:
if F is defined on a dist containing (a, b) where F(a, b) , 0, and Fx and Fy are continuous on
the disk, then the equation F(x, y) = 0 defines y as a function of x near the point (a, b) and the
derivtive of y with respect to x is

dy
dx
= − Fx

Fy
.
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Example 14.5.13. Find
dy
dx

if x3 + y3 = 6xy.

Proof. Let F(x, y) = x3 + y3 − 6xy. Then Fx = 3x2 − 6y and Fy = 3y2 − 6x. We have

dy
dx
= −Fx

Fy
= −3x2 − 6y

3y2 − 6x
= − x2 − 2y

y2 − 2x
.

□

Question: If z = f (x, y) or F(x, y, z) = 0, how to find
∂z
∂x

and
∂z
∂y

?

For F(x, y, z) = 0, we can regard z as a function of x and y, say z = f (x, y). Then

F
(

x, y, f (x, y)
)

for all x, y ∈ Dom( f ). Find
∂z
∂x

. Consider

∂

∂x

Ä
F(x, y, z)

ä
=
∂F
∂x

dx
dx︸︷︷︸
=1

+
∂F
∂y

dy
dx︸︷︷︸
=0

+
∂F
∂z
∂z
∂x
=
∂

∂x
(0) = 0.

Therefore,
∂z
∂x
= −Fx

Fz
provided Fz , 0.

Similarly,
∂z
∂y
= −

Fy

Fz
provided Fz , 0.

Example 14.5.14. Find
∂z
∂x

and
∂z
∂y

if x3 + y3 + z3 + 6xyz = 1.

Proof. Let F(x, y, z) = x3 + y3 + z3 + 6xyz − 1. Then

Fx = 3x2 + 6yz, Fy = 3y2 + 6xz, Fz = 3z2 + 6xy.

We have
∂z
∂x
= −Fx

Fz
= − x2 + 2yz

z2 + 2xy
and

∂z
∂y
= −

Fy

Fz
= −y2 + 2xz

z2 + 2xy
.

□
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We give the Implicit Function Theorem here. It will be discussed in the course of Advanced
Calculus.

Theorem 14.5.15. (Implicit Function Theorem) If F is defined within a sphere containing
(a, b, c), where F(a, b, c) = 0, Fz(a, b, c) , 0, and Fx, Fy and Fz aer continuous inside the
sphere, then the equation F(x, y, z) = 0 define z as a function of x and y near the point (a, b, c)
and this function is differentiable and

∂z
∂x
= − Fx

Fz
and

∂z
∂y
= −

Fy

Fz
.

Homework 14.5. 4, 7, 12, 15, 18, 21, 28, 29, 34, 38, 39, 43, 52, 60

14.6 Directional Derivatives and the Gradient Vector

o Directional Derivatives

In Section 14.3, we studied the partial derivatives for a two variables function z = f (x, y).
The partial derivative

fx(x0, y0) = lim
h→0

f (x0 + h, y0) − f (x0, y0)
h

represents the rate of change of z in the x-direction (in the direction of the unit vector i). Simi-
larly,

fy(x0, y0) = lim
h→0

f (x0, y0 + h) − f (x0, y0)
h

represents the rate of change of z in the y-direction (in the direction of the unit vector j).

Question: How about the rate of change of z at (x0, y0) in the direction of a unit vector
u = 〈a, b〉.

Let P(x0, y0, z0) lie on a surface S . The vertical plane that passes through P in the direction
of u intersects S in a curve C. The slope of the tangent line T to C at the point P is the rate of
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change of z in the direction u.

Let u = 〈a, b〉 be a unit vector and z = f (x, y). Consider the quotient difference of z in the
direction u

4z
h
=

z − z0

h
=

f (x0 + ha, y0 + hb) − f (x0, y0)
h

.

Taking h→ 0, we obtain the rate of change of z in the direction u.

Definition 14.6.1.

(a) Let f : D ⊆ R2 → R be a function and (x0, y0) ∈ D. The “directional derivatives” of f at
(x0, y0) in the direction of a unit vector u = 〈a, b〉 is

Du f (x0, y0) = lim
h→0

f (x0 + ha, y0 + hb) − f (x0, y0)
h

if the limit exists.

(b) In general, let f : D ⊆ Rn → R be a function, a ∈ D and u be a unit vector. The directional
derivative of f at a in the direction u is the limit

lim
h→0

f (a + hu) − f (a)
h

if it exists and is denoted by Du f (a).

Remark. (1) In the above definition, the direction u is a “unit” vector. Hence, if we want to
compute the directional derivative of f in the direction v, which is not a unit vector, we
should normalize v by u =

v
|v| .

(2) If i = 〈1, 0〉 and j = 〈0, 1〉, then Di f (x0, y0) = fx(x0, y0) and Dj f (x0, y0) = fy(x0, y0). The
partial derivative of f with respect to xi is a special directional derivative in the direction xi.

(3) If u = 〈0, · · · , 0, 1, 0, · · · , 0〉, then Du f (a) = fxi(a). The partial derivative of f with
respect to xi is a special directional derivative in the direction xi.

To compute the directional derivative Du f (x0, y0), there are two common methods:

(i) By the definition

(ii) Under certain assumptions, we can use the following theorem.

Theorem 14.6.2. If f is a differentiable function of x and y, then f has a directional derivative
in the direction of any unit vector u = 〈a, b〉 and

Du f (x, , y) = fx(x, y)a + fy(x, y)b.
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Proof. Let g(h) = f (x0 + ha, y0 + hb) where x = x0 + ha and y = y0 + hb. Then

Du f (x0, y0) = lim
h→0

f (x0 + ha, y0 + hb) − f (x0, y0)
h

(exists since f is differentiable)

= lim
h→0

g(h) − g(0)
h

= g′(0)

Also, by the Chain Rule,

g′(h) =
∂ f
∂x
∂x
∂h
+
∂ f
∂y
∂y
∂h

= fx(x0 + ha, y0 + hb)a + fy(x0 + ha, y0 + hb)b

Therefore, putting h = 0,
g′(0) = fx(x0, y0)a + fy(x0, y0)b.

□

Note. In particular, if f is a differentiable function
of x and y, then f has a directional derivative in the
direction of any unit vector u = 〈a, b〉 and

Du f (x, y) = fx(x, y)a + fy(x, y)b.

Moreover, if u = 〈cos θ, sin θ〉, then

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ.

Theorem 14.6.3. If f : D ⊆ Rn → R is differentiable at a, then f has a directional
derivative at a in every direction u where u is a unit vector and

Du f (a) = ∇ f (a) · u.

Proof.

Recall that f is differentiable at a. Then

lim
h→0

| f (a + h) − f (a) − ∇ f (a) · h|
|h| = 0.

Let h = tu and then |h| = |t||u| = |t|. We have

f (a + tu) − f (a)
t

=
f (a + tu) − f (a) − ∇ f (a) · h

t
+
∇ f (a) · h

t
.
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Hence,

lim
t→0

∣∣∣ f (a + tu) − f (a)
t

− ∇ f (a) · u
∣∣∣ = lim

t→0

∣∣∣ f (a + tu) − f (a)
t

− ∇ f (a) · (tu)
t

∣∣∣
= lim

h→0

| f (a + h) − f (a) − ∇ f (a) · h|
|h|

= 0. (since f is differentiable at a)

Therefore,

Du f (a) = lim
t→0

f (a + tu) − f (a)
t

= ∇ f (a) · u.

□

Remark. If f is differentiable and u is a unit vector, then

Du f (a) = ∇ f (a) · u.

This means that the directional derivative (the rate of change of f ) in the direction of a unit
vector u is the scalar projection of the gradient vector ∇ f (a) onto u.

Example 14.6.4. Find the directional derivative Du f (x, y) if

f (x, y) = x3 − 3xy + 4y2

and u is the unit vector given by angle θ = π6 . What is Du f (1, 2)?

Proof. The gradient of f is

∇ f = 〈 fx, fy〉 = 〈3x2 − 3y,−3x + 8y〉.
Hence, the directional derivative is

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ

= (3x2 − 3y) cos
π

6
+ (−3x + 8y) sin

π

6

=
1
2

[3
√

3x2 − 3x + (8 − 3
√

3)y]

and Du f (1, 2) =
13 − 3

√
3

2
.

□

o The Gradient Vector

Note. If f (x, y) is a differentiable function of x and y, then the directional derivative of f at
(x0, y0) in the unit vector u = 〈a, b〉 is

Du f (x0, y0) = fx(x0, y0)a + fy(x0, y0)b =
〈

fx(x0, y0), fy(x0, y0)
〉
· 〈a, b〉.
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Definition 14.6.5. If f is a function of two variables x and y, then the “gradient” of f is the
vector function, “∇ f ”, defined by

∇ f (x, y) =
〈

fx(x, y), fy(x, y)
〉
=
∂ f
∂x

i +
∂ f
∂y

j.

Notation: Denote “grad f ” or ”∇ f ” and read “del f ”.

Remark. (1) The gradient of f , ∇ f (x, y) is a vector.

(2) If f is differentiable and u is a unit vector, then

Du f (x, y) = ∇ f (x, y) · u.

This expresses the directional derivative in the direction of a unit vector u as the scalar
prejection of the gradient vecctor onto u.

Example 14.6.6. If f (x, y) = sin x + exy, then

∇ f (x, y) = 〈 fx, fy〉 = 〈cos x + yexy, xexy〉
∇ f (0, 1) = 〈2, 0〉.

Example 14.6.7. Find the directional derivative of f (x, y) = x2y3 − 4y at (2,−1) in the direction
v = 2i + 5j.

Proof. The gradient of f is

∇ f = 〈 fx, fy〉 = 〈2xy3, 3x2y2 − 4〉.

Let u =
v
‖v‖ =

2
√

29
i +

5
√

29
j. The directional

derivative is

Du f (2,−1) = fx(2,−1)· 2
√

29
+ fy(2,−1)· 5

√
29
=

32
√

29
.

□

■ Function of Three Variables

Let f (x, y, z) be a three variables function and u be a unit vector. The vector function
Du f (x, y, z) can be interpreted as the rate of change of the function in the direction of u.

Definition 14.6.8. The “directional derivative” of f at (x0, y0, z0) in the direction of a unit vector
u = 〈a, b, c〉 is

Du f (x0, y0, z0) = lim
h→0

f (x0 + ha, y0 + hb, z0 + hc) − f (x0, y0, z0)
h

if this limit exists.
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Note. If we use vector notatin, then the directional derivative can be written as

Du f (x0) = lim
h→0

f (x0 + hu) − f (x0)
h

where x0 = 〈x0, y0〉 (or 〈x0, y0, z0〉)
Remark. If f (x, y, z) is differentiable and u = 〈a, b, c〉, then

Du f (x, y, z) = fx(x, y, z)a + fy(x, y, z)b + fz(x, y, z)c.

The “gradient” of f is

∇ f (x, y, z) =
〈

fx(x, y, z), fy(x, y, z), fz(x, y, z)
〈
=
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k

and
Du f (x, y, z) = ∇ f (x, y, z) · u.

Example 14.6.9. Let f (x, y, z) = x sin yz.

(a)
∇ f (x, y, z) = 〈 fx, fy, fz〉 = 〈sin yz, xz cos yz, xy cos yz〉.

(b) At (1, 3, 0), for the vector v = i + 2j − k. The unit vector u =
v
|v| =

1
√

6
i +

2
√

6
j − 1
√

6
k.

Then the directional derivative at (1, 3, 0) in the direction v is

Du f (1, 3, 0) =
〈

sin 0, 0 cos 0, 3 cos 0
〉
· 〈 1
√

6
,

2
√

6
,− 1
√

6
〉

= 〈0, 0, 3〉 · 〈 1
√

6
,

2
√

6
,− 1
√

6
〉 = − 3

√
6
.

o Differentiability and Partial Derivatives

From Definition 14.4.6, we can prove that a differentiable function f havs (all) par-
tial derivatives. In fact, it has directional derivatives in every direction. But the converse
is false. There indeed exists a function which has all directional derivatives but it is not
differentiable.

On the other hand, Theorem ?? says that continuity of all partial derivatives implies
differentiability of f . We hope to understand the connection between the partial derivatives
and differentiability.

Theorem 14.6.10. If f : D ⊆ Rn → R is differentiable at a, then all partial derivatives of f
exist at a and

∇ f (a) =
¨ ∂ f
∂x1

(a),
∂ f
∂x2

(a), · · · , ∂ f
∂xn

(a)
∂
.
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Proof. Since f is differentiable at a, the gradient vector ∇ f (a) exists and denote

∇ f (a) =< α1, α2, · · · , αn > .

The partial derivative of f with respect to xi is

∂ f
∂xi

(a) = ∇ f (a)· < 0, · · · , 0, 1, 0, · · · , 0 >= αi

for i = 1, 2 · · · , n. Hence ∇ f (a) =
¨ ∂ f
∂x1

(a),
∂ f
∂x2

(a), · · · , ∂ f
∂xn

(a)
∂

.
□

Note. If f is differentiable at a, then we can explicitly write the form of ∇ f (a).

Conclusion: Let f : D ⊆ Rn → R be a function. Then

All partial derivatives of f exist and are continuous at a

⇓

f is differentiable at a and ∇ f (a) exists and ∇ f (a) =
¨ ∂ f
∂x1

(a),
∂ f
∂x2

(a), · · · , ∂ f
∂xn

(a)
∂

.

⇓

All partial derivatives of f exist and the directional derivative Du f (a) = ∇ f (a) · u

Note. All the converse of the above arrows are false.

o Maximizing the Directional Derivatives

Suppose that f : D ⊆ Rn → R is differentiable at a. Then all directional derivatives of f at
a exist and

Du f (a) = ∇ f (a) · u

for any unit vector u.

Question: In which direction does f change fastest and what is the maximum rate of change?

Observe that the rate of change of f in the direction u is

Du f (a) = ∇ f (a) · u = |∇ f (a)| |u|︸︷︷︸
=1

cos θ = |∇ f (a)| cos θ
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where θ is the angle between the two vectors ∇ f (a) and u. Hence, the maximum value of
Du f (a) occurs when θ = 0.

Theorem 14.6.11. Suppose that f is differentiable at a. Then

(a) The maximum value of the directional derivative Du f (a) is |∇ f (a)| and it occurs when u
has the same direction as the gradient vector ∇ f (a). That is, the function f at a increases
fastest in the same direction of ∇ f (a).

(b) Similarly, the minimum value of the direction derivative Du f (a) is −|∇ f (a)| and it occurs
when u has the opposite direction to the gradient vector ∇ f (a). That is, the function f at a
decreases fastest in the opposite direction to ∇ f (a).

(c) The function does not change in the direction of u which is perpendicular to ∇ f (a).

Example 14.6.12. Let f (x, y) = xey.

(a) Find the rate of change of f at the point P(2, 0) in the direction from P to Q( 1
2 , 2).

Proof. The vector
−→
PQ= 〈−3

2
, 2〉 and u =

−→
PQ

|
−→
PQ |

= 〈−3
5
,

4
5
〉. The gradient of f is ∇ f (x, y) =

〈ey, xey〉 and ∇ f (2, 0) = 〈1, 2〉. Hence, the rate of change of f in the direction
−→
PQ is

Du f (1, 2) = 〈1, 2〉 · 〈− 3
5 ,

4
5〉 = 1. □

(b) In what direction does f have the maximum rate of change? What is this maximum rate of
change?

Proof. f increases fastest in the direction of the gradient vector ∇ f (2, 0) = 〈1, 2〉 and the
maximum rate of change is |∇ f (2, 0)| = |〈1, 2〉| =

√
5. □

Example 14.6.13. Suppose that the temperature at a point (x, y, z) in space is given by

T (x, y, z) =
80

1 + x2 + 2y2 + 3z2 ,

where T is measured in degree Celsius and x, y, z in meters. In which direction does the tem-
perature increase fastest at the point (1, 1,−2)? What is the maximum rate of increase?
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Proof. The gradient of T is∇T (x, y, z) =
160

(1 + x2 + 2y2 + 3z2)2 (−xi − 2yj − 3zk) and then∇T (1, 1,−2) =
5
8 (−i − 2j + 6k).

The temperature increases fastest in the direction of the gradient vector ∇T (1, 1,−2) =
5
8 (−i − 2j + 6k) or −i − 2j + 6k. The maximum rate of increase is

|∇T (1, 1,−2)| = 5
8
| − i − 2j + 6k| = 5

√
41

8
≈ 4 (oC/m).

□

o Tangent Plane to Level Surfaces

Recall: In Section14.4, we have learned that the equation of the tangent plane to the surface
S : z = f (x, y) at P(x0, y0, z0) is

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0). (14.3)

Define F(x, y, z) = z − f (x, y). Then

S =
{

(x, y, z)
∣∣ z = f (x, y)

}
=
{

(x, y, z)
∣∣ z − f (x, y) = 0

}
=
{

(x, y, z)
∣∣ F(x, y, z) = 0

}
is a level surface of F when the value is equal to 0. Hence, (14.3) also interprets the equation of
the tangnet plane to the level surface of F at P.

From the same spirit as above, we consider a differentiable function F(x, y, z) of three vari-
ables x, y and z. Let S be a level surface with equation F(x, y, z) = k and x = 〈x0, y0, z0〉 ∈ S . To
find the tangent plane to S at x, it suffices to find the normal vector of S at x.

Theorem 14.6.14. Let F : D ⊆ R3 → R be continuously differentiable and S ⊂ D be a level
surface of F. If x = 〈x0, y0, z0〉 ∈ S and ∇ f (x) , 0, then ∇ f (x) is perpendicular to S at x.

Proof. In order to prove ∇ f (x) is perpendicular to S at x, it suffices to show that the vector
∇ f (x) is perpendicular to any curve on S passing x (the tangent vector to the curve at x).

Let C : r(t) = 〈x(t), y(t), z(t)〉 be a differen-
tiable curve that lies on S and passes through
x = 〈x0, y0, z0〉 when t = t0. Let S be the level
surface with equation F(x, y, z) = k. Then

F
(
r(t)

)
= F

(
x(t), y(t), z(t)

)
= k.

Hence,

0 =
d
dt

î
F
(
r(t)

)ó
=
∂F
∂x

dx
dt
+
∂F
∂y

dy
dt
+
∂F
∂z

dz
dt

= 〈∂F
∂x
,
∂F
∂y
,
∂F
∂z
〉 · 〈dx

dt
,

dy
dt
,

dz
dt
〉

= ∇F
(
r(t)

)
· r′(t)
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Taking t = t0, ∇F(x) ⊥ r′(t0).
Note that r′(t0) is a tangent vector lying on the tangent plane. Since C is an arbitrary curve

on S , any vector on the tangent plane (to S at x) is perpendicular to ∇F(x). Therefore, ∇F(x) is
the normal vector of the tangent plane to S at x. □

Note. (1) Let S be the level surface with equation F(x, y, z) = k and x = 〈x0, y0, z0〉 ∈ S . If
∇F(x) , 0, it is natural to define the tangent plane to the level surface S at x as the plane
that passes through x and has normal vector ∇F(x). The equation of the tangent plane is

∇F(x0, y0, z0) · 〈x − x0, y − y0, z − z0〉 = 0.

That is,

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

(2) Consider the special case that the surface S with equation z = f (x, y) which is the graph
of a function f of two variables. Let F(x, y, z) = f (x, y) − z. Then S is with the equation
F(x, y, z) = 0. Also,

Fx(x0, y0, z0) = fx(x0, y0), Fy(x0, y0, z0) = fy(x0, y0), and Fz(x0, y0, z0) = −1.

The equation of the tangent plane to S at (x0, y0, z0) is

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + (−1)(z − z0) = 0.

Example 14.6.15. Find the equation of the tangne tplane at the point (−2, 1,−3) to the ellipsoid
x2

4
+ y2 +

z2

9
= 3.

Proof.

Let F(x, y, z) =
x2

4
+ y2 +

z2

9
. Then the ellipsoid is the level surface

(with k = 3) of F(x, y, , z). Then

Fx =
x
2
, Fy = 2y and Fz =

2z
9
.

Hence, Fx(−2, 1, 3) = −1, Fy(−2, 1, 3) = 2 and Fz(−2, 1,−3) = −2
3

.
The equation of the tangnet plane is

−(x + 2) + 2(y − 1) − 2
3

(z + 3) = 0

or
3x − 6y + 2z + 18 = 0.

□

o Normal Line

The normal line to S at x is the line passing through x = 〈x0, y0, z0〉 and perpendicular to
the tangent plane. The direction of the normal line is the gradient vector ∇F(x). The symmetric
equation are

x − x0

Fx(x0, y0, z0)
=

y − y0

Fy(x0, y0, z0)
=

z − z0

Fz(x0, y0, z0)
.
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Example 14.6.16. As the above example, the equation of the normal line is

x + 2
−1
=

y − 1
2
=

z + 3
−2

3

.

o Significance of the Gradient Vector

Consider the function f (x, y) of two variables.

• The gradient vector ∇ f (x0, y0) gives the direction of fastest increase of f . Intuitively, it is
because the values of f remain constant as we move along the level curve.

• ∇ f (x0, y0) is perpendicular to the level curve f (x, y) = k that passes througth (x0, y0).

• For a plane curve C : y = f (x), define F(x, y) = y − f (x). Then C is a level curve of F. If
(x0, y0) ∈ C, then ∇F(x0, y0) is the normal vector of C at (x0, y0).
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Example 14.6.17. Let C be the curve defined by C = {(x, y)
∣∣ x2 + y3 = 9}. Find the

tangent line of C at (1, 2).

Proof. Let f (x, y) = x2 + y3. Then C is a level curve of f (with k = 9). The gradient
vector ∇ f (1, 2) = 〈∂ f

∂x (1, 2), ∂ f
∂y (1, 2)〉 = 〈2, 12〉 is the normal vector of C at (1, 2). Hence,

the tangent vector of C at (1, 2) is 〈12,−2〉 (perpendicular to 〈2, 12〉). The equation of the
tangent line to C at (1, 2) is

〈x − 1, y − 2〉 · 〈2, 12〉 = 0 or 2(x − 1) + 12(y − 2) = 0.

□

Homework 14.6. 6, 9, 12, 13, 16, 19, 21, 24, 35, 39, 45, 47, 51, 57, 60, 64, 67

14.7 Maximum and Minimum Values
In the present section, we will study the extreme values of two variables function f (x, y). Recall
that, of a single variable funciton f (x), we find the critical points as candinates and determine the
extreme values by first derivative test or second derivative test. For a muti-variables functions,
we also want to find the critical points by considering the directional derivatives.

Definition 14.7.1. Let f be a two variables function on D. We say that

(1) f has a local maximum (minimum) at (a, b) if

f (x, y) ≤ f (a, b)
(

f (x, y) ≥ f (a, b)
)

when (x, y) is near (a, b). [This means that f (x, y) ≤ f (a, b) for all point (x, y) in some dist
center (a, b)]. The number f (a, b) is called a “local maximum (minimum) value”.

(2) f has an absolute maximum (minimum) at (a, b)if

f (x, y) ≤ f (a, b)
(

f (x, y) ≥ f (a, b)
)

for all (x, y) ∈ D. The number f (a, b) is called an “absolute maximum (minimum) values”.

(3) The maximum and minimum values of f are called the “extreme values of f ”.
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Question: How to find the extreme values of f ?

Theorem 14.7.2. If f has a local maximum or minimum at (a, b) and the first-order partial
derivatives of f exists there, then fx(a, b) = 0 and fy(a, b) = 0. (∇ f (a, b) = 0)

Proof. Let g(x) = f (x, b). If f has a local maximum or minimum at (a, b), g has a local
maximum or minimum at a. Thus, 0 = g′(a) = fx(a, b). Similarly, fy(a, b) = 0.

□

Note. The geometric interpretation is that if the graph of f has a tangent plane at a local maxi-
mum or minimum, then the tangent plane must be horizontal.

Definition 14.7.3. We call that point (a, b) a “critical point” of f if either (1) fx(a, b) = 0 and
fy(a, b) = 0 or (2) one of fx(a, b) and fy(a, b) does not exist.

Example 14.7.4. Let f (x, y) = x2 + y2 − 2x − 6y + 14. Find the critical point of f .

Proof.

The partial derivatives fx(x, y) = 2x − 2 and
fy(x, y) = 2y − 6. Therefore, fx(x, y) = 0
when x = 1 and fy(x, y) = 0 when y = 3.
The point (1, 3) is a critical point of f . In fact,
f (x, y) = 4 + (x − 1)2 + (y − 3) ahs a local and
an absolute maximum at (1, 3).

□

Remark. The above theorem says that if f has a local maximum or minimum at (a, b), then
(a, b) is a critical point of f . However, not all critical points give rise to maximum or minima.

Example 14.7.5. Find the extreme values of f (x, y) = y2 − x2.

Proof.

The partial derivatives fx = −2x and fy = 2y. Then fx = 0
when x = 0 and fy = 0 when y = 0. The point (0, 0) is a
critical point of f . But f (0, 0) is neither a local maximum
nor a local minimum.
Indeed, on the x-axis, f (x, y) = −x2 < 0 if x , 0 and on
the y-axis, f (x, y) = y2 if y , 0.

Note. Near the origin the graph has the shape of a saddle and so (0, 0) is called a “saddle point”
of f .

□

o Second Derivative Test
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Theorem 14.7.6. Suppose that fxx, fxy, fyx and fyy are continuous near (a, b) and fx(a, b) =
fy(a, b) = 0 (that is, (a, b) is a critical point of f ). Let

D = D(a, b) = fxx(a, b) fyy(a, b) − [ fxy(a, b)]2.

(a) If D > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

(c) If D < 0 and f (a, b) is not a local maximum or minimum.

Note. (1) In case(c), (a, b) is called a “saddle point” of f .

(2) If D = 0, the test is inconclusive, f could have a local maximum or local minimum at (a, b),
or (a, b) could be a saddle point of f .

(3)

D =
∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣ = fxx fyy − ( fxy)2.

Example 14.7.7. Find the local maximum and minimum values and saddle points of f (x, y) =
x4 + y4 − 4xy + 1.

Proof. The first and second partial derivatives of f are fx = 4x3 − 4y, fy = 4y3 − 4x, fxx = 12x2,
fxy = −4 = fyx and fyy = 12y2. Then fx = 0 when x3 = y and fy = 0 when y3 = x. We can solve
the critical points of f are (0, 0), (1, 1) and (−1,−1), and

D(x, y) = fxx fyy − ( fxy)2 = 144x2y2 − 16.

• At (0, 0), D(0.0) = −16 < 0. Then f has neither a local maximum nor a local minimum
at (0, 0).

• At (1, 1), D(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0. Then f (1, 1) = −1 is a local minimum
of f .

• At (−1,−1), D(−1,−1) = 128 > 0 and fxx(−1,−1) = 12 > 0. Then f (−1,−1) = −1 is a
local minimum of f .

□



14.7. MAXIMUM AND MINIMUM VALUES 235

Example 14.7.8. Find and classify the critical points of the function f (x, y) = 10x2y − 5x2 −
4y2 − x4 − 2y4. Also find the highest points on the graph of f .

Proof. The first and second partial derivatives of f are

fx = 20xy−10x−4x3, fy = 10x2−8y−8y3, fxx = 20y−10−12x2, fxy = fyx = 20x, fyy = −8−24y2.

To find the critical points of f by solving fx = 0 and fy = 0, we have (x, y) = (0, 0), (±2.64, 1.90), (±0.86, 0.65).

Critical point Value of f fxx D Conclusion
(0, 0) 0 −10 80 local maximum

(±2.64, 1.90) 8.50 −55.93 2488.72 local maximum
(±0.86, 0.65) −1.48 −5.87 −187.64 saddle point

The highest points on the graph of f are (±2.64, 1.90, 8.50).

□

Example 14.7.9. Find the shortest distance from the point (1, 0,−2) to the plane x+ 2y+ z = 4.

Proof. Let (x, y, z) be a point on the plane x+2y+ z = 4. The distance from (x, y, z) to (1, 0,−2)
is

d(x, y, z) =
√

(x − 1)2 + y2 + (z + 2)2.

Taking z = 4 − x − 2y, then d =
√

(x − 1)2 + y2 + (−x − 2y + 6)2. Consider f (x, y) = d2(x, y) =
(x − 1)2 + y2 + (−x − 2y + 6)2. The first and second partial derivatives of f are

fx = 4x + 4y − 14, fy = 4x + 10y − 24, fxx = 4, fxy = fyx = 4, fyy = 10.

To find the critical point of f by solving fx = 0 and fy = 0, the point (x, y) = (
11
6
,

5
3

) is the only

critical point of f . Also, D = 4 · 10 − 42 = 24 > 0 and fxx = 4 > 0. By the second derivatives

test, f (x, y) has a local minimium at (
11
6
,

5
3

). Then d(
11
6
,

5
3

) =
5
√

6
. In fact, it is the absolute

minimum.
□

Example 14.7.10. A rectangle box without a lid is to be made from 12m2 of cardboard. Find
the maximum volume of such a box.
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Proof. Let x, y and z be the length, width and height of the box. Then the volume of the box
is V(x, y, z) = xyz and the area of the four sides and the bottom is 2xz + 2yz + xy = 12. Hence

z =
12 − xy
2(x + y)

and we can rewrite the volume function

V(x, y) =
12xy − x2y2

2(x + y)
.

Consider

∂V
∂x
=

y2(12 − 2xy − x2)
2(x + y)2 and

∂V
∂y
=

x2(12 − 2xy − y2)
2(x + y)2 .

The critical point of V is (2, 2). We can use the second derivative
test to check that V has a local maximum at (2, 2, 1). Then the
maximum volume of the box is 4m3.

□

o Absolute Maximum and Minimum Values

Question: Under what conditions does a function f (x, y) have (absolute) extreme values?
Recall that, for a single variable function f (x), we have the “Extreme Value Theorem” that

if f is continuous on a closed interval [a, b], then f has an absolute maximum value and an
absolute minimum value.

Question: How about two variables function f (x, y)?
Heuristically, corresponding to the “closed interval” in R, a “close set” in R2 is a set contains

all its boundary points. Also, a bounded set in R2 is a set that is contained within some disk.

■ Extreme Value Theorem for Functions of Two Variables

Theorem 14.7.11. If f is continuous on a closed and bounded set D in R2, then f attains
an absolute maximum value f (x1, y1) and an absolute minimum value f (x2, y2) at some point
(x1, y1) and (x2, y2) in D.

Note. If f (x, y) has an extreme value at (x1, y1), then (x1, y1) is either a critical point of f or a
boundary point of D.
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Question: How to find the absolute maximum value or minimum value of a continuous func-
tion f (x, y) on a closed and bounded set D?

■ Strategy:

(1) Find the values of f at the critical point of f in D.

(2) Find the extreme value of f on the boundary of D.

(3) Check the values in (1) and (2). The largest value is the absolute maximum value and the
smallest value is the absolute minimum.

Example 14.7.12. Find the absolute maximum and minimum values of the function f (x, y) =
x2 − 2xy + 2y on the rectangle D =

{
(x, y)

∣∣ 0 ≤ x ≤ 3, 0 ≤ y ≤ 2
}

.

Proof. Since f is a polynomial on the closed and bounded set D, there exists absolute maximum
and minimum values in D.

First of all, we find the critical points of f in the interior of D. The partial derivatives of f
are fx = 2x − 2y and fy = −2x + 2. Hence, (1, 1) is a critical point of f in D and f(1,1)=1 .

Next, we consider the candinates of extreme point on the boundary D. The boundary of D
consists of four lines L1, L2, L3 and L4.

• For (x, y) ∈ L1, 0 ≤ x ≤ 3 and y = 0, f (x, 0) = x2 is increasing. On L1, f has a local
maximum f(3,0)=9 and a local minimum f(0,0)=0 .

• For (x, y) ∈ L2, x = 3 and 0 ≤ y ≤ 2, f (3, y) = −4y + 9 is decreasing. On L2, f has a local
maximum f(3,0)=9 and a local minimum f(3,2)=1 .

• For (x, y) ∈ L3, 0 ≤ x ≤ 3 and y = 2, f (x, 2) = x2 − 4x + 4 = (x − 2)2. On L3, f has a loca
maximum f(0,2)=4 and a local minimum f(2,2)=0 .

• For (x, y) ∈ L4, x = 0 and 0 ≤ y ≤ 2, f (0, y) = 2y is increasing. On L4, f has a local
maximum f(0,2)=4 and a local minimum f(0,0)=0 .

Hence, f has an absolute maximum value f (3, 0) = 9 and an absolute minimum value f (0, 0) =
f (2, 2) = 0. □

Homework 14.7. 3, 5, 9, 13, 17, 21, 35, 38, 40, 45, 51, 55, 59
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14.8 Lagrange Multipliers
In the present section, we will study the Lagrange’s method to maximize or minimize a general
function f (x) subject to a constraint (or side condition) of the form g(x) = k. The method works
for n variables functions but we will only consider 2 or 3 variables functions in this section.

■ Geometric basis of Lagrange’s method (for two variables functions)

Let f (x, y) and g(x, y) be two differentiable functions. The goal is to find the maximum (or
minimum) of f (x, y) subject to the constraint g(x, y) = k. For (x, y) satisfies g(x, y) = k, the
point (x, y) lies on the level curve of g(x, y) with the value k.

We want to find a point(s) (x0, y0) on the level curve C =
{

(x, y)
∣∣ g(x, y) = k

}
such that

f (x0, y0) ≥ f (x, y) for all (x, y) ∈ C. (14.4)

Suppose that (x0, y0) ∈ C satisfying (14.4) and
f (x0, y0) = M. Then (x0, y0) is also on the level
curve C1 =

{
(x, y) | f (x, y) = M

}
. Moreover, since

(x0, y0) is the maximum point, the two level curve C
and C1 must be tangent each other at (x0, y0).

Since C and C1 are level curves of g and f respec-
tively, the gradient vectors ∇g ⊥ C and ∇ f ⊥ C1.
Then ∇g(x0, y0) is parallel to ∇ f (x0, y0). Therefore,
there exists a number λ (“Lagrange multiplier”) such
that

∇ f (x0, y0) = λ∇g(x0, y0).

Conclusion: The candidnate point(s) where the extreme values occur must satisfyß
∇ f (x, y) = λ∇g(x, y) for some number λ
g(x, y) = k

■ Lagrange methods for three variables functions

For finding the extreme values of f (x, y, z) subject to the constraint g(x, y, z) = k, by the
same argument as above, if the maximum value of f is f (x0, y0, z0) = M where (x0, y0, z0) lies
on the level surface S = {(x, y, z) | g(x, y, z) = k}. Then the level surface {(x, y, z) | f (x, y, z) = M}
is tangent to S at (x0, y0, z0). We have

∇ f (x0, y0, z0) ∥ ∇g(x0, y0, z0).

(Intuitive veiwpoint) Let S be the level surface with equation g(x, y, z) = k. For every curve
r(t) = 〈x(t), y(t), z(t)〉 lie on S , the tangent vector r′(t) ⊥ ∇g

(
r(t)

)
for every t.

Suppose that f has an extreme value at P(x0, y0, z0) ∈ S and r(t) is a curve on S passing P,
say r(t0) = 〈x0, y0, z0〉. Consider the function h(t) = f

(
r(t)

)
which has maximum value at t0.
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Then 0 = h′(t0) = ∇ f
(
r(t0)

)
· r′(t0). We have ∇ f

(
r(t0)

)
⊥ r′(t0). Also, r′(t0) ⊥ ∇g

(
r(t0)

)
. Then

∇ f (x0, y0, z0) ∥ ∇g(x0, y0, z0). This implies that

∇ f (x0, y0, z0) = λ∇g(x0, y0, z0) for some number λ.

This number λ is called a “Lagrange multiplier”.

o Method of Lagrange Multiplier

To find the maximu and minimum values of f (x, y, z) subject to the constraint g(x, y, z) = k
(assume that these extreme value exist and ∇g , 0 on the surface g(x, y, z) = k). We solve this
problem by following the below steps.

(a) Find all values of x, y, z and λ such that

∇ f (x, y, z) = λ∇g(x, y, z) and g(x, y, z) = k.

(b) Evaluate f at all the points (x, y, z) that result from Step(a). The largest of these values is
the maximum value of f ; the smallest is the minimum value of f .

Example 14.8.1. Find the extreme values of the function f (x, y) = x2+2y2 on the circle x2+y2 =

1.

Proof. Let g(x, y) = x2 + y2. Then

∇ f (x, y) = 〈2x, 4y〉 and ∇g(x, y) = 〈2x, 2y〉.
Consider ß

∇ f = λ∇g
g(x, y) = 1 ⇒

 2x = 2λx (1)
4y = 2λy (2)
x2 + y2 = 1 (3)

By Equation(1), either λ = 1 or x = 0.

(i) If λ = 1, by Equation(2), y = 0. Then x = ±1 by
Equation(3).

(ii) If x = 0, then y = ±1 by Equation(3) and λ = 2 by
Equation(2).

Consider

f (1, 0) = 1, f (−1, 0) = 1︸                             ︷︷                             ︸
minimum

and f (0, 1) = 2, f (0,−1) = 2︸                             ︷︷                             ︸
maximum

.

The maximum value of f on the circle x2 + y2 = 1 is
f (0,±1) = 2 and the minimum value is f (±1, 0) = 1.
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□

Example 14.8.2. A rectangle box without a lid is to be made from 12m2 of cardboard. Find the
maximum volume of such a box.

Proof. Let the length, width and height of the box be x, y and z. Then the volume of the box is

V(x, y, z) = xyz.

The area of the four sides and the bottom is

g(x, y, z) = 2xz + 2yz + xy = 12.

To find the maximum of V subject to the constraint
g(x, y, z) = 12. The gradient vector of V and g are

∇V = 〈yz, xz, xy〉 and ∇g = 〈y + 2z, x + 2z, 2x + 2y〉.

Considerß
∇V = λ∇g
g(x, y, z) = 12 ⇒


yz = λ(y + 2z)
xz = λ(x + 2z)
xy = λ(2x + 2y)
2xz + 2yz + xy = 12

⇒


xyz = λ(xy + 2xz) (1)
xyz = λ(xy + 2yz) (2)
xyz = λ(2xz + 2yz) (3)
2xz + 2yz + xy = 12 (4)

The number λ , 0; otherwise, we obtain xy = xz = yz = 0 and hence g(x, y, z) = 0 which
contradicts the constraint. Also, Equations(1),(2) and (3) imply that

2xz + xy = 2yz + xy = 2xz + 2yz ⇒ xz = yz.

This says that either x = y or z = 0.

(i) If z = 0, then xy = 0 and hence x = y = 0 which contradicts g(x, y, z) = 12.

(ii) If x = y and z , 0, then 2xz + x2 = 4xz and then x = 2z = y. Also, from Equation(4), we
obtain x = y = 2 and z = 1.

The maximum volume of the box is 4m3. □

Example 14.8.3. Find the extreme values of f (x, y) = x2 + 2y2 on the disk x2 + y2 ≤ 1.

Proof. (1) Find the extreme values of f inside the disk x2 + y2 ≤ 1.
Consider fx = 2x = 0 and fy = 4y = 0. Then the critical point of f is (0, 0). Moreover,
fxx = 2, fxy = fyx = 0 and fyy = 4 and hence D = fxx fyy − ( fxy)2 = 8 > 0. Also, fxx > 0. By
the second derivative test, f (0, 0) is a local minimum.

(2) Combining with the previous example, f (0, 0) = 0, f (±1, 0) = 1 and f (0,±1) = 2. Hence,
the maximum value of f on the disk x2 + y2 ≤ 1is f (0,±1) = 2 and the minimum value is
f (0, 0) = 0.
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□

Example 14.8.4. Find the points on the sphere x2 + y2 + z2 = 4 that are closest to and farthest
from the point (3, 1,−1)

Proof. Let f (x, y, z) = (x − 3)2 + (y − 1)2 + (z + 1) and g(x, y, z) = x2 + y2 + z2. Then

∇ f = 〈2(x − 3), 2(y − 1), 2(z + 1)〉 and ∇g = 〈2x, 2y, 2z〉.

Considerß
∇ f = λ∇g
g(x, y, z) = 4 ⇒


2x − 6 = 2λ2x
2y − 2 = 2λy
2z + 1 = 2λz
x2 + y2 + z2 = 4

⇒


(1 − λ)x = 3 (1)
(1 − λ)y = 1 (2)
(1 − λ)z = −1 (3)
2xz + 2yz + xy = 12 (4)

Clearly, λ , 1, x , 0, y , 0 and z , 0. Consider

(1)
(2)
⇒ x

y
= 3⇒ x = 3y and

(2)
(3)
⇒ y

z
= −1⇒ z = −y.

By (4), we have

(3y)2 + y2 + (−y)2 = 4⇒ y = ± 2
√

11
.

Then

(x, y, z) = (
6
√

11
,

2
√

11
,− 2
√

11
) or (− 6

√
11
,− 2
√

11
,

2
√

11
).

Taking these two poinits into f (x, y, z) the closest

point is (
6
√

11
,

2
√

11
,− 2
√

11
) and the farthest point is

(− 6
√

11
,− 2
√

11
,

2
√

11
).

□
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Remark. In the example, the line passes through the origin and the point (3, 1,−1) has para-
metric equation x = 3t, y = t and z = −t. The line intersection the sphere x2 + y2 + z2 = 4 when

t = ± 2
√

11
. Then we can also solve the closest and the farthest points.

o Two Constraints

Find the maximum and minimum values of f (x, y, z) subject to two constraints g(x, y, z) = k
and h(x, y, z) = c.

Let C be the intersection of the two level surfaces
g(x, y, z) = k and h(x, y, z) = c. Find P(x0, y0, z0) ∈ C
such that f (x0, y0, z0) ahs extreme value along C.

To find the level surface S = {(x, y, z) | f (x, y, z) = M}
which tangnet to C. Then , at the intersection of C and
S , ∇ f ⊥ C. We have

∇ f (x0, y0, z0) = λ∇g(x0, y0, z0) + µ∇h(x0, y0, z0).

Example 14.8.5. Find the maximum value of the function f (x, y, z) = x + 2y + 3z on the curve
of intersection of the plane x − y + z = 1 and the cylinder x2 + y2 = 1.

Proof. Let g(x, y, z) = x − y + z and h(x, y, z) = x2 + y2 Then

∇ f = 〈1, 2, 3〉, ∇g = 〈1,−1, 1〉 and ∇h = 〈2x, 2y, 0〉.
Consider

 〈1, 2, 3〉 = λ〈1,−1, 1〉 + µ〈2x, 2y, 0〉
x − y + z = 1
x2 + y2 = 1 (∗)

⇒

 1 = λ + 2µx
2 = −λ + 2µy
3 = λ

⇒


λ = 3

x = −1
µ

y =
5

2µ

Taking into (∗), we have µ = ±
√

29
2

. Hence,

(x, y, z) = (
2
√

29
,− 5
√

29
, 1+

7
√

29
) or (

2

−
√

29
,

5
√

29
, 1− 7
√

29
).

Therefore, the maximum value of f is 3 +
√

29.

□

Homework 14.8. 5, 10, 14, 20, 21, 23, 25, 29, 33, 39, 47, 56
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In the present chapter, we will extend the idea of a definite integral to double or triple
integrals of functions of two or three variables.

15.1 Double Integrals over Rectangles

Recall: Compute the area under the graph of a single variable function y = f (x) over [a, b]

where f (x) ≥ 0. Dividing [a, b] into n subintervals [xi−1, i] of equal width 4x =
b − a

n
where

a = x0 < x1 < x2 < · · · < xn = b.

The Riemann sum is
n∑

i=1

f (x∗i )4x where 4x =
b − a

n
.

We define the definite integral∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i )4x

provided the limit exists.

o Volumes and Double Integrals

243
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Consider a function f (x, y) of two variables defined on a closed rectangle

R = [a, b] × [c, d] =
{

(x, y) ∈ R2
∣∣ a ≤ x ≤ b, c ≤ y ≤ d

}
.

Suppose that f (x, y) ≥ 0. The graph of f is a surface with equation z = f (x, y). Let S be the
solid that lies above R and under the graph of f , that is,

S =
{

(x, y, z) ∈ R3
∣∣ 0 ≤ z ≤ f (x, y), (x, y) ∈ R

}
.

To find the volume of S . Taking a partition P of R

a = x0 < x1 < x2 < · · · < xm = b, 4xi = xi − xi−1 =
b − a

m
c = y0 < y1 < y2 < · · · < yn = d, 4y j = y j − y j−1 =

d − c
n

Let Ri j = [xi−1, xi] × [y j−1, y j] and 4A = 4Ai j = 4xi4y j = the area of Ri j. Let (x∗i j, y
∗
i j) be a

sample point in Ri j.

The volume of the solid under the graph of f over Ri j is approximated by volume of the
rectangular box with base 4Ai j and height f (x∗i j, y

∗
i j) whose volume is f (x∗i j, y

∗
i j)4Ai j. Then the

approximation to the total volume of S is

V ≈
m∑

i=1

n∑
j=1

f (x∗i j, y
∗
i j)4Ai j (double Riemann Sum)



15.1. DOUBLE INTEGRALS OVER RECTANGLES 245

Note. (1) The approximation becomes better as m and n become larger. We expect that

V = lim
m, n→∞

m∑
i=1

n∑
j=1

f (x∗i j, y
∗
i j)4A.

(2) The double limit is that we can make the double sum as close as we like to the volume V
[for any choice of (x∗i j, y

∗
i j) in Ri j] by taking m and n sufficiently large.

Definition 15.1.1. Let f be a function defined on a rectangle R = [a, b] × [c, d].

(1) The “double integral” of f over R is"
R

f (x, y) dA = lim
m, n→∞

m∑
i=1

n∑
j=1

f (x∗i j, y
∗
i j) 4A

if the limit exists.

(2) A function f is called “integrable” over R if the above limit exists.

Definition 15.1.2. (Precise Definition) The limit L in the equation means that for every
ε > 0 there exists an integer N such that∣∣∣L − m∑

i=1

n∑
j=1

f (x∗i j, y
∗
i j)4A

∣∣∣ < ε
for all m, n > N and for any choice of sample points (x∗i j, y

∗
i j) ∈ Ri j. Denote the number L by"

R
f (x, y) dA.

Remark. (1) If f is continuous on R, then f is integrable over R.

(2) If f is integrable over R, then f is “almost” continuous on R (not too discontinuous).

(3) If f is bounded on R and continuous there except on a finite number of smooth curves, then
f is integrable over R.

■ Volume

Definition 15.1.3. If f (x, y) ≥ 0, then the volume V of the solid that lies above the rectangle R
and below the surface z = f (x, y) is

V =
"

R
f (x, y) dA.
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Example 15.1.4. Estimate the volume of the solid that lies above the square R = [0, 2] × [0, 2]
and below the elliptic paraboloid z = 16− x2−2y2. Devide R into four equal squares and choose
the sample point to be the upper right corner of eahc Ri j. Sketch the solid and the approximating
rectangular boxes.

Proof. Set m = n = 2 and 4x = 2−0
2 = 1 and 4y = 2−0

2 = 1. We have 4A = 4x4y = 1.

The volume is approximated by

V ≈
2∑

i=1

2∑
j=1

f (xi, y j)4A

= f (1, 1)4A + f (1, 2)4A + f (2, 1)4A + f (2, 2)4A
= (13 + 7 + 10 + 4) × 1 = 34.

□

Note. As m and n becomes larger, the approximation becomes better. The exact volume of the
solid is 48.

Example 15.1.5. If R = [−1, 1] × [−2, 2], evaluate the integral"
R

√
1 − x2 dA
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Proof. Compute the integral by interpreting it as a volume.

Let z =
√

1 − x2. Tehn x2 + z2 = 1 and z ≥ 0. The
solid S lies below the circular cylinder x2 + z2 = 1
and the double integral is equal to the volume of S .
That is, "

R

√
1 − x2 dA =

1
2
π(1)2 × r = 2π.

□

o The Midpoint Rule (for Double Integrals)

Choose the sample points (x∗i j, y
∗
i j) as the midpoints in Ri j. That is, x∗i j =

xi−1 + xi

2
= x̄i and

y∗i j =
y j−1 + y j

2
= ȳ j and "

R
f (x, y) dA ≈

m∑
i=1

n∑
j=1

f (x̄i, ȳ j)4A

Example 15.1.6. Use the Midpoint Rule with m = n = 2 to estimate the value of the integral

"
R
(x − 3y2) dA where R = [0, 2] × [1, 2].

Proof.

The midpoints are x̄1 =
1
2 , x̄2 =

3
2 , ȳ1 =

5
4 and ȳ2 =

7
4 , and

4A = 4x4y × 1
2 =

1
2 . The approximation of the double

integral is"
R
(x − 3y2) dA ≈

2∑
i=1

2∑
j=1

f (x̄i, ȳ j) 4A where f (x, y) = x − 3y2

= f
(1

2
,

5
4
)
4A + f

(1
2
,

7
4
)
4A + f

(3
2
,

5
4
)
4A + f

(3
2
,

7
4
)
4A

=
î(
− 67

16
)
+
(
− 139

16
)
+
(
− 51

16
)
+
(
− 123

16
)ó
× 1

2
= −95

8
= −11.875.

□
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Number of
subrectangles

Midpoint Rule
approximation

1 -11.5000
4 -11.8750

16 -11.9687
64 -11.9922

256 -11.9980
1024 -11.9995

Note. (1) The exact value of the double inte-
gral is −12.

(2) f (x, y) is not always positive. The double
integral is not the volume.

(3) As m and n become larger, the approxima-
tion becomes better.

o Iterated Integrals

It is usually difficult to evaluate single integrals directly from the definition. Recall that for
a single variable function f (x), we use the Fundamental Theorem of Calculus to evaluate the

integral
∫ b

a
f (x) dx.

Question: How to evaluate a double integral?

Suppose that f is a function of two variables that is integrable on R = [a, b] × [c, d].

• The integral
∫ d

c
f (x, y) dy means that x is held fixed

and f (x, y) is integrated with respect to y from y = c to
y = d.

• The procedure is called “partial integration with re-
spect to y”.

Note. The integral
∫ d

c
f (x, y) dy is a number that depends on the value of x. Define

A(x) =
∫ d

c
f (x, y) dy.

If We integrate the function A(x) with repsect to x from x = a to x = b.∫ b

a
A(x) dx =

∫ b

a

î∫ d

c
f (x, y) dy

ó
dx

=

∫ b

a

∫ d

c
f (x, y) dydx.

The last integral is called the “iterated integral”.
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Simlarly we can also consider the iterated integral∫ d

c

∫ b

a
f (x, y) dxdy =

∫ d

c

î∫ b

a
f (x, y) dx

ó
dy.

means that fixing each y ∈ [c, d] and integrating the func-
tion f with respect to x from x = a to x = b. After that,
integrating the resulting function of y with respect to y
from y = c to y = d.

Example 15.1.7. (a)∫ 3

0

∫ 2

1
x2y dydx =

∫ 3

0

î1
2

x2y2
∣∣∣y=2

y=1

ó
dx =

3
2

∫ 3

0
x2 dx

=
3
2
· 1

3
x3
∣∣∣3
0
=

27
2
.

(b) ∫ 2

1

∫ 3

0
x2y dxdy =

∫ 2

1

î1
3

x3y
∣∣∣x=3

x=0

ó
dy = 9

∫ 2

1
y dy

=
9
2

y2
∣∣∣2
1
=

27
2
.

Remark. (1) In this example, the two iterated integrals are equal under the exchange of the
order of integrations.

(2) In general cases, the two iterated integrals∫ b

a

∫ d

c
f (x, y) dydx and

∫ d

c

∫ b

a
f (x, y) dxdy

may not be equal.

Question: When are the two iterated integrals equal to each other? How to evaluate the double

integral
"

R
f (x, y) dA?

o The Fubini’s Theorem

Theorem 15.1.8. If f is continuous on R = [a, b] × [c, d], then"
R

f (x, y) dA =
∫ b

a

∫ d

c
f (x, y) dydx =

∫ d

c

∫ b

a
f (x, y) dxdy.

More generally, the equalities are still ture if we assume that f is bounded on R, f is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exists.



250 CHAPTER 15. MULTIPLE INTEGRALS

Intuition: If f (x, y) ≥ 0, the double integral
"

R
f (x, y) dA is the volume V of the solid S

the lies above R and under the graph of f with equation z = f (x, y). On the other hand, the

function A(x) =
∫ d

c
f (x, y) dy is the area under the curve C whose equation is z = f (x, y),

where x is held constant and c ≤ y ≤ d. Also, A(x) is the area of a cross-section of S in the
plane through x perpendicular to the x-axis.

In Section 5.2,"
R

f (x, y) dA = V =
∫ b

a
A(x) dx =

∫ b

a

∫ d

c
f (x, y) dydx.

A similar argument, using cross-sections perpendicular to the y-axis, we have"
R

f (x, y) dA =
∫ d

c

∫ b

a
f (x, y) dxdy.

Example 15.1.9. Evaluate the double integral
"

R
(x − 3y2) dA where R = [0, 2] × [1, 2].

Proof. Since f (x, y) = x − 3y2 is continuous on R, by the Fubini’s Theorem,"
R

x − 3y2 dA =

∫ 2

0

∫ 2

1
x − 3y2 dydx

=

∫ 2

0

î
xy − y3

∣∣∣y=2

y=1

ó
dx

=

∫ 2

0

[
x − y dx =

1
2

x2 − 7x
]2

0

= −12.
Also, "

R
x − 3y2 dA =

∫ 2

1

∫ 2

0
x − 3y2 dxdy =

∫ 2

1

î1
2

x2 − 3xy2
∣∣∣x=2

x=0

ó
dy

=

∫ 2

1

[
− 6y2 dy = 2y − 2y3]2

1 = −12.

□

Example 15.1.10. Evaluate
"

R
y sin(xy) dA where = [1, 2] × [0, π].

Proof. Since f (x, y) = y sin(x, y) is continuous on R, by the Fubini’s Theorem,
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"
R

y sin(xy) dA =

∫ π

0

∫ 2

1
y sin(xy) dxdy

=

∫ π

0

î
y
(
− cos(xy)

)
· 1

y

∣∣∣x=2

x=1

ó
dy

= −
∫ π

0
cos(2y) − cos y dy

=
[
− 1

2
sin(2y) − sin y

]π
0 = 0

□

Note. If exchanging the order of the iterated integral, it is difficult to compute
∫ 2

1

∫ π

0
y sin(xy) dydx.

Example 15.1.11. Find the volume of the solid that is bounded by the elliptic paraboloid x2 +

2y2 + z = 16 the plane x = 2 and y = 2, and the three coordinate planes.

Proof. The domain of the integarl is R = [0, 2] × [0, 2].

Observe the graph of the paraboloid z = 16− x2−2y2

and the volume of the solid is

V =

"
R

16 − x2 − 2y2 dA

=

∫ 2

0

∫ 2

0
16 − x2 − 2y2 dxdy

=

∫ 2

0

88
3
− 4y2 dy

= 48.
□

■ Special Case

Suppose f (x, y) = g(x)h(x) on R = [a, b] × [c, d]. By the Fubini’s Theorem,"
R

f (x, y) dA =

∫ d

c

∫ b

a
g(x)h(y) dxdy =

∫ d

c

î∫ b

a
g(x) h(y)

↓

dx
ó
dy

as a constant when
integratingw.r.t x

=

∫ d

c
h(y)
î∫ b

a
g(x) dx

ó
a constant number

dy

=

∫ b

a
g(x) dx

∫ d

c
h(y) dy.

Example 15.1.12. Evaluate
"

R
sin x cos y dA where R = [0, π2 ] × [0, π2 ].



252 CHAPTER 15. MULTIPLE INTEGRALS

Proof.

"
R

sin x cos y dA =

∫ π
2

0
sin x dx

∫ π
2

0
cos y dy

= 1 × 1 = 1.

□

o Properties of Double Integrals

Theorem 15.1.13. Suppose that f (x, y) and g(x, y) are integrable over R and c is a constant.

(1)
"

R
f (x, y) ± g(x, y) dA =

"
R

f (x, y) dA ±
"

R
g(x, y) dA

(2)
"

R
c f (x, y) dA = c

"
R

f (x, y) dA.

(3) If f (x, y) ≥ g(x, y) for every (x, y) ∈ R, then"
R

f (x, y) dA ≥
"

R
g(x, y) dA.

o Average Value

Recall: Suppose that f (x) is a singe variable function on [a, b]. The average of f on [a, b] is

favg =
1

b − a

∫ b

a
f (x) dx.

Similarly, for a two variable function f (x, y) defined on R, we define the “average value” of
f on R by

favg =
1

A(R)

"
R

f (x, y) dA

where A(R) is the area of R.
Note. (1) If f (x, y) ≥ 0, the equation

A(R) × favg =

"
R

f (x, y) dA

says that the box with base R and height favg has the same volume as the solid that lies under
the graph of f .

(2) If z = f (x, y) describes a mountainous re-
gion and you chop off the tops of the moun-
tains at height favg, then your can use them
to fill in the valleys so that the region be-
comes complete flat.

Homework 15.1. 11, 14, 15, 18, 21, 26, 29, 31, 34, 45, 47, 53, 55
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15.2 Double Integrals over General Regions
In Section 15.1, we have learned the double integrals over a rectanglur region R = [a, b]× [c, d].
In the present section, we consider the double integrals over general regions.

Let f (x, y) be defined on a general region D.

Question: How to use the techniques for double
integrals in Section 15.1 to find the double integrals"

D
f (x, y) dA?

Choose a rectangle R which contains D. Define

F(x, y) =
ß

f (x, y) if (x, y) ∈ D
0 if (x, y) ∈ R\D.

Then F is a two variables function defined on R.

Definition 15.2.1. If F is integrable over R, then we define the “double integral of f over D” by"
D

f (x, y) dA =
"

R
F(x, y) dA.

Remark. (1) This definition is reasonable since F(x, y) contributes nothing to the integral when
F(x, y) = 0 outside D.

(2) It doesn’t matter what rectangle R we use as long as it contains D.

(3) If f (x, y) ≥ 0 on D,
"

D
f (x, y) dA is interpreted as the volume of the solid that lies above

D and under the surface z = f (x, y).

(4) F is likely to have discontinuities at the boundary points of D. If f is continuous on D and

boundary curve of D is “well-behaved”, then
"

R
F(x, y) dA exists and hence

"
D

f (x, y) dA

exists.

■ Double Integrals over general regions
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We will consider the double integrals over some nice regions.

Type I: Let D =
{

(x, y)
∣∣ a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

}
where g1 and g2 are continuous on

[a, b].

Choose a rectangle R = [a, b] × [c, d] containing D and let F(x, y) be the function defined as
above. Then

"
D

f (x, y) dA =
"

R
F(x, y) dA

(Fubini)
=

∫ b

a

∫ d

c
F(x, y) dydx.

Since F(x, y) = 0 if y < g1(x) or y > g2(x),∫ d

c
F(x, y) dy =

∫ g2(x)

g1(x)
F(x, y) dy =

∫ g2(x)

g1(x)
f (x, y) dy

Conclusion: If f is continuous on a Type I region D such that D =
{

(x, y)
∣∣ a ≤ x ≤ b, g1(x) ≤

y ≤ g2(x)
}

then "
D

f (x, y) dA =
∫ b

a

∫ g2(x)

g1(x)
f (x, y) dydx.

Type II: Let D =
{

(x, y)
∣∣ c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)

}
where h1 and h2 are continuous on

[c, d].

Conclusion: If f is continuous on a Type II region D, then"
D

f (x, y) dA =
∫ d

c

∫ h2(y)

h1(y)
f (x, y) dxdy.
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Example 15.2.2. Evaluate
"

D
(x + 2y) dA, where D is the region bounded by the parabolas

y = 2x2 and y = 1 + x2.

Proof.

Find the intersection of y = 2x2 and y = 1 + x2.
We have 2x2 = 1 + x2 and hence x = ±1. The
region D =

{
(x, y)

∣∣ − 1 ≤ x ≤ 1, 2x2 ≤ y ≤
1 + x2

}
. The double integral"

D
x + 2y dA =

∫ 1

−1

∫ 1+x2

2x2
x + 2y dydx

=

∫ 1

−1

[
xy + y2

∣∣∣y=1+x2

y=2x2

]
dx

=

∫ 1

−1
−3x4 − x3 + 2x2 + x + 1 dx

=
32
15
.

□

Example 15.2.3.

Find the volume of the solid that lies under the
paraboloid z = x2 + y2 and above the region D
in the xy-plane bounded by the line y = 2x and
the parabola y = x2.

Proof. Find the intersections of the line y = 2x and the parabola y = x2. We have 2x = x2 and
then x = 0 and 2.
(Solution 1) The Type I region D =

{
(x, y)

∣∣ 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x
}

and the volume of the
region is

V =

"
D

(x2 + y2) dA

=

∫ 2

0

∫ 2x

x2
x2 + y2 dydx

=

∫ 2

0
− x6

3
− x4 +

14
3

x3 dx =
216
35
.
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(Solution 2) The Type II region D =
{

(x, y)
∣∣ 0 ≤ y ≤ 4, 1

2y ≤ x ≤
√

x
}

and the volume of the
region is

V =

"
D

(x2 + y2) dA

=

∫ 4

0

∫ √
y

1
2 y

x2 + y2 dxdy

=

∫ 4

0

1
3

y
3
2 + y

5
2 − 13

24
y3 dy =

216
35
.

□

Example 15.2.4. Evaluate
"

D
xy dA, where D is teh region bounded by teh line y = x− 1 and

teh parabola y2 = 2x + 6.

Proof. If D is expressed as Type I region, we should divide D into two subregions and the dou-
ble integral is

"
D

xy dA =

∫ −1

−3

∫ √
2x+6

−
√

2x+6
xy dydx

+

∫ 5

−1

∫ √
2x+6

x−1
xy dydx

The iterated integrals are complicated.

We express D as Type II region and the double integral is

"
D

xy dA =

∫ 4

−2

∫ y+1

1
2 y2−3

xy dxdy

=
1
2

∫ 4

−2

(
− y5

4
+ 4y3 + 2y2 − 8y

)
dy = 36

□
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Example 15.2.5. Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2,
x = 2y, x = 0 and z = 0.

Proof. The plane x + 2y + z = 2 intersects xy-plane in the line x + 2y = 2. Then the region
D =

{
(x, y)

∣∣ 0 ≤ x ≤ 1, 1
2 x ≤ y ≤ 1 − 1

2 x
}

and the volume of the tetrahedron is"
D

2 − x − 2y dA =

∫ 1

0

∫ 1− 1
2 x

1
2 x

2 − x − 2y dydx

=
1
2

∫ 1

0
x2 − 2x + 1 dy =

1
3
.

□

Example 15.2.6. Evaluate the iterated integral
∫ 1

0

∫ 1

x
sin(y2) dydx.

Proof. The iterated integral is expressed as Type I case. We can check that the direct computa-
tion is difficult. Hence, we try to rewrite it as Type II case∫ 1

0

∫ 1

x
sin(y2) dydx =

"
D

sin(y2) dA =
∫ 1

0

∫ y

0
sin(y2) dxdy

=

∫ 1

0
y sin(y2) dy =

1
2

(1 − cos 1).

□
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o Properties of Double Integrals

Theorem 15.2.7. Let f (x, y) and g(x, y) be integrable over D and c be a constant.

(1)
"

D

[
f (x, y) ± g(x, y)

]
dA =

"
D

f (x, y) dA ±
"

D
g(x, y) dA.

(2)
"

D
c f (x, y) dA = c

"
D

f (x, y) dA.

(3) If f (x, y) ≥ g(x, y) on D, then"
D

f (x, y) dA ≥
"

D
g(x, y) dA.

(4) If D = D1 ∪ D2 where D1 and D2 don’t overlap except on their boundaries, then

"
D

f (x, y) dA =
"

D1

f (x, y) dA +
"

D2

f (x, y) dA

Note. The above equality is also true even if D1 and
D2 are not Type I or Type II.

(5) The area of the region D is equal to

"
D

1 dA = A(D).
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(6) If m ≤ f (x, y) ≤ M for all (x, y) in D, then

mA(D) ≤
"

D
f (x, y) dA ≤ MA(D).

Example 15.2.8. Estimate
"

D
esin x cos y dA where D =

{
(x, y)

∣∣ 0 ≤ x2 + y2 ≤ 4
}

.

Proof. Since −1 ≤ sin x cos y ≤ 1, we have e−1 ≤ esin x cos y ≤ e1 for all (x, y) ∈ D. Then

4π
e
= e−1A(D) ≤

"
D

esin x cos y dA ≤ eA(D) = 4πe.

□

Homework 15.2. 5, 10, 11, 14, 19, 23, 27, 32, 35, 38, 46, 56, 59, 61, 64, 67, 71, 74

15.3 Double Integrals in Polar Coordinates
So far, we can only evaluate the double integrals over rectangles, Type I or Type II regions.
Now, we want to evaluate the double integrals over the region R which is described using polar
coordinates

Recall: The Change of the variables between Carte-
sian coordinates (x, y) and polar coordinates (r, θ).

polar coordinates (r, θ) ←→ rectangular coordinates (x, y).

r2 = x2 + y2, x = r cos θ, y = r sin θ.

Compute the double integral
"

R
f (x, y) dA where R =

{
(r, θ)

∣∣ a ≤ r ≤ b, α ≤ θ ≤ β
}

is a

polar rectangle.
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• Divide [a, b] into m subintervals and divide [α, β] into n subintervals a = r0 < r1 < · · · <
rm = b and α = θ0 < θ1 < · · · < θn = β where 4r =

b − a
m

and 4θ = β − α
n

.

• Let Ri j =
{

(r, θ)
∣∣ ri−1 ≤ r ≤ ri, θ j−1 ≤ θ ≤ θ j

}
. Choose r∗i =

1
2 (ri−1 + ri) and θ∗j =

1
2 (θ j−1 + θ j).

The area of Ri j is

4Ai j =
1
2

r2
i 4θ −

1
2

r2
i−14θ =

1
2

(r2
i − r2

i−1)4θ = 1
2

(ri + ri−1)(ri − ri−1)4θ = r∗i 4r4θ.

■ Change of Areas between Polar Transformation

For a continuous function f (x, y) defined on R, the Riemann Sum is

m∑
i=1

n∑
j=1

f
(
r∗i cos θ∗j , r

∗
i sin θ∗j

)
4Ai j =

m∑
i=1

n∑
j=1

f (r∗i cos θ∗j , r
∗
i sin θ∗j)r

∗
i 4r4θ.

Define g(r, θ) = r f (cos θ, r sin θ). Then the above Riemann Sum is

m∑
i=1

n∑
j=1

g(r∗i , θ
∗
j)4r4θ.
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Then "
R

f (x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f (r∗i cos θ∗j , r
∗
i sin θ∗j)r

∗
i 4r4θ

= lim
m,n→∞

m∑
i=1

n∑
j=1

g(r∗i , θ
∗
j)4r4θ

=

∫ β

α

∫ b

a
g(r, θ) drdθ

=

∫ β

α

∫ b

a
f (r cos θ, r sin θ)r drdθ.

o Change to Polar Coordinates in a Double Integral

If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β where
0 ≤ β − α ≤ 2π, then "

R
f (x, y) dA =

∫ β

α

∫ b

a
f (r cos θ, r sin θ)r drdθ.

Example 15.3.1. Evaluate
"

R
(3x + 4y2) dA, where R is the region in the upper half-plane

bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.

Proof.

"
R
(3x + 4y2) dA =

∫ π

0

∫ 2

1
(3r cos θ + 4r2 sin2 θ)r drdθ

=

∫ π

0

î
r3 cos θ + r4 sin2 θ

ór=2

r=1
dθ

=

∫ π

0
7 cos θ + 15 sin2 θ dθ

=
15
2
π.

□

Example 15.3.2. Evaluate the double integral∫ 1

−1

∫ √
1−x2

0
(x2 + y2) dydx

Proof. The iterated integral is a double integral over the region

R =
{

(x, y)
∣∣ − 1 ≤ x ≤ 1, 0 ≤ y ≤

√
1 − x2

}
.
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To express R in polar coordinates,

R =
{

(r, θ)
∣∣ 0 ≤ θ ≤ π, 0 ≤ r ≤ 1

}
.

The double integral is∫ 1

−1

∫ √
1−x2

0
(x2 + y2) dydx =

∫ π

0

∫ 1

0
r2 · r drdθ =

∫ π

0

îr4

4

ór=1

r=0
dθ =

1
4

∫ π

0
dθ =

π

4
.

□

Example 15.3.3. Find the volume of the solid bounded by the plane z = 0 and the paraboloid
z = 1 − x2 − y2.

Proof.

The xy-plane intersects the paraboloid in the
circle x2+y2 = 1. Let R =

{
(x, y)

∣∣ x2+y2 ≤ 1
}

.
In polar coordinates, D is given by

D =
{

(r, θ)
∣∣ 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

}
.

The volume of the solid is

V =
"

D
(1 − x2 − y2) dA =

∫ 2π

0

∫ 1

0
(1 − r2)r drdθ =

π

2
.

□

Note. If using rectangular coordinates,

V =
"

D
(1 − x2 − y2) dA =

∫ 1

−1

∫ √
1−x2

−
√

1−x2
(1 − x2 − y2) dydx.

It is difficult to find
∫

(1 − x2)
3
2 dx.

o Polar Region

If f is continuous on a polar region of the form

D =
{

(r, θ)
∣∣ α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)

}
,

then"
D

f (x, y) dA =
∫ β

α

∫ h2(θ)

h1(θ)
f ( f cos θ, r sin θ)r drdθ.
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In particular, the area of the region D bounde by θ = α, θ = β and r = h(θ) is

A(D) =
"

D
1 dA =

∫ β

α

∫ h(θ)

0
r drdθ

=

∫ β

α

1
2
(
h(θ)

)2 dθ.

Example 15.3.4. Find the area enclosed by one loop of the four-leaved rose r = cos 2θ.

Proof.
The region enclosed by one loop of the four-leaved rose is

D =
{

(r, θ)
∣∣ − π

4
≤ θ ≤ π

4
, 0 ≤ r ≤ cos 2θ

}
.

The area of the region is

A(D) =
"

D
1 dA =

∫ π
4

− π4

∫ cos 2θ

0
r drdθ

=
1
2

∫ π
4

− π4
cos2 2θ dθ =

1
4

î
θ +

1
4

sin 4θ
ó π

4

− π4

=
π

8
.

□

Example 15.3.5. Find teh volume of the solid that lies under the paraboloid z = x2 + y2, above
the xy-plane, and inside the cylinder x2 + y2 = 2x.

Proof.

The solid lies above the disk D =
{

(x, y)
∣∣ x2 +

y2−2x ≤ 0
}

with boundary x2+ y2 = 2x. In po-
lar coordinate, the circle becomes r2 = 2r cos θ
and this implies r = 2 cos θ. We have

D =
{

(r, θ)
∣∣ − π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ

}
.

The volume of the solid is

V =

"
D

x2 + y2 dA =
∫ π

2

− π2

∫ 2 cos θ

0
r2 · r drdθ

= 4
∫ π

2

− π2
cos4 θ dθ = 8

∫ π
2

0

Ä1 + cos 2θ
2

ä2
dθ

=
3
2
π.
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□

Example 15.3.6. Evaluate
∫ ∞

−∞
e−x2

dx.

Proof. ConsiderÄ∫ ∞

−∞
e−x2

dx
ä2
=
Ä∫ ∞

−∞
e−x2

dx
äÄ∫ ∞

−∞
e−y2

dy
ä
=

∫ ∞

−∞
e−(x2+y2) dxdy

= lim
a→∞

"
Da

e−(x2+y2) where Da =
{

(x, y)
∣∣ x2 + y2 ≤ a2}

= lim
a→∞

∫ 2π

0

∫ a

0
e−r2 · r drdθ

(u = r2) = lim
a→∞

∫ 2π

0

1
2

∫ √
a

0
e−u dudθ = lim

a→∞
π(1 − e−

√
a)

= π.

Hence,
∫ ∞

−∞
e−x2

dx =
√
π. □

Homework 15.3. 10, 13, 15, 18, 22, 26, 33, 36, 41, 49

15.4 Applications of Double Integrals

(Skip)

Homework 15.4.

15.5 Surface Area

Recall: In Sec8.2, we study to find the surface area of a special type of surface - a surface of
revolution. In the present section, we compute the area of a surace with equation z = f (x, y),
the graph of a function of two variables.

Let f (x, y) be a function with continuous partial derivatives. Assume f (x, y) ≥ 0 and
D = Dom( f ) is a rectangle Let S be the graph of f which is a surface with equation z = f (x, y).
To find the area of S above D by following steps:
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(1) We divide D into small rectangles Ri j with area
4A = 4x4y. Let (xi, y j) be the corner of Ri j

closest to the origin. Then the point Pi j =

Pi j
(
(xi, y j, f (xi, y j)

)
lies on S .

(2) Let S i j be the part of S that lies above Ri j with
area 4S i j and Ti j be the tangent plane to S at Pi j.
Hence, it is an approximation of S near Pi j. The
area 4Ti j of the part of this tangent plane that lies
directly above Ri j satisfies

4S i j ≈ 4Ti j

(3) The approximation to the total area of S is

A(S ) =
m∑

i=1

n∑
j=1

4S i j ≈
m∑

i=1

n∑
j=1

4Ti j.

Definition 15.5.1. The surface area of S is defined by

A(S ) = lim
m, n→∞

m∑
i=1

n∑
j=1

4Ti j.

■ To find 4Ti j

Let ai j and bi j be the vectors that start at Pi j and lie along the side of the parallelogram with
area 4Ti j. Then

4Ti j =

∣∣∣ai j × bi j
∣∣.

Note. The partial derivatives fx(xi, y j) and fy(xi, y j) are the slopes of the tangent lines through
Pi j in the directions of a and b.

Hence,

ai j = 4x i + fx(xi, y j)4x k
bi j = 4y j + fy(xi, y j)4y k

We have

ai j × bi j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

4x 0 fx(xi, y j)4x

0 4y fy(xi, y j)4y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= − fx(xi, y j)4x4y i − fy(xi, y j)4x4y j + 4x4y k

= 4A
î
− fx(xi, y j) i − fy(xi, y j) j + k

ó
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Then
4Ti j =

∣∣ai j × bi j
∣∣ = √[

fx(xi, y j)
]2
+
[

fy(xi, y j)
]2
+ 1 4A.

Therefore,

A(S ) = lim
m, n→∞

m∑
i=1

n∑
j=1

4Ti j = lim
m, n→∞

m∑
i=1

n∑
j=1

∣∣ai j × bi j
∣∣

= lim
m, n→∞

m∑
i=1

n∑
j=1

√[
fx(xi, y j)

]2
+
[

fy(xi, y j)
]2
+ 12 4A

=

"
D

√[
fx(x, y)

]2
+
[

fy(x, y)
]2
+ 1 dA.

Theorem 15.5.2. The area of the surface with equation z = f (x, y) for (x, y) ∈ D, where fx and
fy are continuous, is

A(S ) =
"

D

√[
fx(x, y)

]2
+
[

fy(x, y)
]2
+ 1 dA.

Note. In Section 8.1, the arc length formula is

L =
∫ g

a

…
1 +

(dy
dx

)2 dx.

Example 15.5.3. Find teh surface area of the part of the surface z = x2 + 2y that lies above the
triangular region T in the xy-plane with vetices (0, 0), (1, 0) and (1, 1).

Proof. The triangular region is T =
{

(x, y)
∣∣0 ≤ x ≤ 1, 0 ≤ y ≤ x

}
. Let f (x, y) = x2 + 2y. Then

fx(x, y) = 2x and fy(x, y) = 2. The surface area is

A(S ) =
"

T

√
(2x)2 + 22 + 1 dA =

"
T

√
4x2 + 5 dA

=

∫ 1

0

∫ x

0

√
4x2 + 5 dydx

=

∫ 1

0
x
√

4x2 + 5 dx =
1

12
(27 − 5

√
5).

□
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Example 15.5.4. Find the area of the part of the paraboloid z = x2 + y2 that lies under the plane
z = 9.

Proof. The plane z = 9 intersects the paraboloid in the circle x2 + y2 = 9, z = 9. Let
D =

{
(x, y)

∣∣ x2 + y2 ≤ 9
}

and let f (x, y) = x2 + y2. Then fx(x, y) = 2x and fy(x, y) = 2y.

The surface area is

A(S ) =
"

D

√
(2x)2 + (2y)2 + 1 dA

=

∫ 2π

0

∫ 3

0

√
4r2 + 1 · r drdθ

=
π

6
(37
√

37 − 1).

□

Homework 15.5. 5, 8, 11, 14, 17, 25

15.6 Triple Integrals

Let f (x, y, z) be defined on a rectangular box B = [a, b] × [c, d] × [r, s].

■ The Triple integral of f over B

Divide B into sub-boxes by

a = x0 < x1 < x2 < · · · < xℓ = b with equal width 4x = b−a
ℓ

c = y0 < y1 < y2 < · · · < ym = b with equal width 4y = d−c
m

r = z0 < z1 < z2 < · · · < zn = s with equal width 4z = s−r
n

Bi jk = [xi−1, xi] × [y j−1, y j] × [zk−1, zk]

Each sub-box has volume 4V = 4x4y4z. The “triple Riemann sum” is

ℓ∑
i=1

m∑
j=1

n∑
k=1

f
(

x∗i jk, y
∗
i jk, z

∗
i jk

)
4V

where (x∗i jk, y
∗
i jk, z

∗
i jk) ∈ Bi jk is a sample point.
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Definition 15.6.1. The “triple integral of f over B” is$
B

f (x, y, z) dV = lim
ℓ,m,n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f
(

x∗i jk, y
∗
i jk, z

∗
i jk

)
4V

if this limit exists.

Remark. (1) If f is continuous on B, then the triple integral exists.

(2) The limit exists for arbitrary choice of the sample points. For the convenience, we can
choose x jik = xi, yi jk = y j and zi jk = zk. Then$

B
f (x, y, z) dV = lim

ℓ,m,n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f
(

xi, y j, zk
)
4V.

o Fubini’s Theorem for Triple Integrals

Theorem 15.6.2. (Fubini’s Theorem) If f is continuous on the rectangular box B = [a, b] ×
[c, d] × [r, s], then $

B
f (x, y, z) dV =

∫ s

r

∫ d

c

∫ b

a
f (x, y, z) dxdydz.

Note. The iterated integral “
∫ s

r

∫ d

c

∫ b

a
f (x, y, z) dxdydz” means that when taking the integra-

tions from inner to outer. Firstly, fix y and z and integrating f with respect to x. After taking
the values of lower and upper limit for x, fixing z and integrating with respect to y. Then, after
taking the values of lower and upper limits for y, integrating with respect to z.

Remark. If f is continuous on B, we can exchange the order of integration. For example,$
B

f (x, y, z) dv =
∫ s

r

∫ b

a

∫ d

c
f (x, y, z) dydxdz.

and other 5 cases are equal.

Example 15.6.3. Evaluate the triple integral
$

B
xyz2 dV where B is the rectangular box B =

[0, 1] × [−1, 2] × [0, 3].

Proof. Since f (x, y, z) = xyz2 is continuous on B, by the Fubini’s Theorem,$
B

xyz2 dV =

∫ 3

0

∫ 2

−1

∫ 1

0
xyz2 dxdydz

=

∫ 3

0

∫ 2

−1

yz2

2
dydz

=

∫ 3

0

3z2

4
dz =

27
4
.

□
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o Triple Integral over a General Bounded Region

Idea: Suppose that f (x, y, z) is defined on a bounded region E. Choose a rectangular box
B = [a, b] × [c, d] × [r, s] such that E ⊆ B. Define F(x, y, z) on B by

F(x, y, z) =
ß

f (x, y, z) if (x, y, z) ∈ E
0 if (x, y, z) ∈ B\E.

Define$
E

f (x, y, z) dV =
$

B
F(x, y, z) dV

Remark. The integral exists if f is continuous on E and the boundary of E is “reasonably
smooth”.

■ Different Types of Regions

From now on, we only consider those functions which are continuous on certain simple
types of regions.

Type I: E =
{

(x, y, z)
∣∣ (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)

}
where D is the projection of E onto

the xy-plane.

Fix (x, y) ∈ D. Let k(x, y) =
∫ u2(x,y)

u1(x,y)
f (x, y, z) dz. Then k is

continuous on D.$
E

f (x, y, z) dV =

"
D

k(x, y) dA

=

"
D

î∫ u2(x,y)

u( x,y)
f (x, y, z) dz

ó
dA.

In particular, if D =
{

(x, y)
∣∣ a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

}
,

then$
E

f (x, y, z) dV =

"
D

k(x, y) dA

=

∫ b

a

∫ g2(x)

g1(x)
k(x, y) dydx

=

∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)
f (x, y, z) dzdydx.
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Similarly, if D =
{

(x, y)
∣∣ c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)

}
,

then$
E

f (x, y, z) dV =
∫ d

c

∫ h2(x)

h1(x)

∫ u2(x,y)

u1(x,y)
f (x, y, z) dzdxdy.

Example 15.6.4. Evaluate
$

E
z dV , where E is the solid tetrahedron bounded by the four

planes x = 0, y = 0, z = 0 and x + y + z = 1.

Proof. The region D is the projection of the solid E onto xy-plane. Then

D =
{

(x, y)
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

}
.

The lower boundary of the tetrahedron is z = 0 and the upper boundary is the plane x+y+z = 1.
Then

E =
{

(x, y, z)
∣∣ 0 ≤ z ≤ 1 − x − y, (x, y) ∈ D

}
=

{
(x, y, z)

∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y
}
.

The triple integral over E is$
E

z dV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
z dzdydx

=
1
2

∫ 1

0

∫ 1−x

0
(1 − x − y)2 dydx

=
1
6

∫ 1

0
(1 − x)3 dx =

1
24
.

□
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Type II:

E =
{

(x, y, z)
∣∣ (y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)

}
where D is the projection of E onto the yz-
plane. Then$

E
f (x, y, z) dV =

"
D

î∫ u2(y,z)

u(y,z)
f (x, y, z) dx

ó
dA.

Type III:

E =
{

(x, y, z)
∣∣ (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)

}
where D is the projection of E onto the xz-
plane. Then$

E
f (x, y, z) dV =

"
D

î∫ u2(x,z)

u( x,z)
f (x, y, z) dy

ó
dA.

Example 15.6.5.

Evaluate
$

E

√
x2 + z2 dV , where E is the re-

gion bounded by the paraboloid y = x2 + z2 and
the plane y = 4.

Proof. Solution 1:
D1 is the projection of E onto xy-plane. For (x, y, z) ∈ E, (x, y) ∈ D and −

√
y − x2 ≤ z ≤√

y − x2. Then

E =
{

(x, y, z)
∣∣ − 2 ≤ x ≤ 2, x2 ≤ y ≤ 4, −

√
y − x2 ≤ z ≤

√
y − x2

}
.



272 CHAPTER 15. MULTIPLE INTEGRALS

The integral is $
E

√
x2 + z2 dV =

∫ 2

−2

∫ 4

x2

∫ √y−x2

−
√

y−x2

√
x2 + z2 dzdydx.

The above integral is difficult to evaluate.

Solution 2:
D3 is the projection of E onto xz-plane.

D3 =
{

(x, z)
∣∣ − 2 ≤ x ≤ 2, −

√
4 − x2 ≤ z ≤

√
4 − x2

}
.

For (x, y, z) ∈ E, (x, z) ∈ D3 and x2 + z2 ≤ y ≤ 4. Then

E =
{

(x, y, z)
∣∣ − 2 ≤ x ≤ 2, −

√
4 − x2 ≤ z ≤

√
4 − x2, x2 + z2 ≤ y ≤ 4

}
.

The integral is$
E

√
x2 + z2 dV =

∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ 4

x2+z2

√
x2 + z2 dydzdx

=

∫ 2

−2

∫ √
4−x2

−
√

4−x2
(4 − x2 − z2)

√
x2 + z2 dzdxÅ

x = r cos θ
z = r sin θ

ã
=

∫ 2π

0

∫ 2

0
(4 − r2)

√
r2 · r drdθ

=
128
15
π.

□

Remark. From the above example, formally, an triple integral may have several expressions.
Some are easy to compute but some are difficult.
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Example 15.6.6. Express the iterated integral
∫ 1

0

∫ x2

0

∫ y

0
f (x, y, z) dzdydx as a triple integral

and then rewrite it as an iterated integral in a different order, integrating first with respect to x
then z, and then y.

Proof. ∫ 1

0

∫ x2

0

∫ y

0
f (x, y, z) dzdydx =

$
E

f (x, y, z) dV

where E =
{

(x, y, z)
∣∣ 0 ≤ x ≤, 0 ≤ y ≤ x2, 0 ≤ z ≤ y

}
.

$
E

f (x, y, z) dV =

"
D2

∫ 1

√
y

f (x, y, z) dxdA =
∫ 1

0

∫ y

0

∫ 1

√
y

f (x, y, z) dxdzdy

=

"
D3

f (x, y, z) dydA =
∫ 1

0

∫ x2

0

∫ 1

z
f (x, y, z) dydzdx.

□

o Applications of Triple Integrals

If f (x, y, z) ≥ 0, it is difficult to visualize the triple integral
$

E
f (x, y, z) dV .

■ Volume

Let f (x, y, z) = 1 for all points in E. Then the“volume” of E is

V(E) =
$

E
1 dV.

Example 15.6.7. Find the volume of the tetrahedron T bounded by the planes x + 2y + z = 2,
x = 2y, x = 0 and z = 0.
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Proof. Let D be the projection of T onto the xy-plane. Then

D =
{

(x, y)
∣∣ 0 ≤ x ≤ 1,

x
2
≤ y ≤ 1 − x

2
}
.

For (x, y, z) ∈ T , (x, y) ∈ D and 0 ≤ z ≤ 2 − x − 2y. Then

T =
{

(x, y, z)
∣∣ 0 ≤ x ≤ 1,

x
2
≤ y ≤ 1 − x

2
, 0 ≤ z ≤ 2 − x − 2y

}
.

The volume of T is

V(T ) =
$

T
1 dV =

∫ 1

0

∫ 1− x
2

x
2

∫ 2−x−2y

0
1 dzdydx =

1
3
.

□

o Application (the center of mass)

(Skip)

Homework 15.6. 6, 8, 11, 14, 17, 20, 23, 27(a), 3136, 37, 41, 57

15.7 Triple Integrals in Cylindrical Coordinates

Recall : In plane geometry,

Cartesian Coordinate ←→ Polar Coordinate

(x, y) ←→ (r, θ)ß
x = r cos θ
y = r sin θ ⇐⇒

ß
r2 = x2 + y2

tan θ = y
x

o Cylindrical Coordinates

Let P be a point in three dimensional space. Regard the Cartesian coordinate (x, y, z) as(
(x, y)
convert
to polar

coordinate

, z
)
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Write P(r, θ, z) where r ane θ are polar coordi-
nates of the projection of P onto xy-plane and z
is the directed distance from the xy-plane to P.

rectangular coordinates ←→ cylindrical coordintes

(x, y, z) ←→ (r, θ, z) x = r cos θ
y = r sin θ
z = z

⇐⇒

 r2 = x2 + y2

tan θ = y
x

z = z
Example 15.7.1.

(a) Plot the point with cylindrical coordinates (2
r

,
2π
3
θ

, 1) and

fidn its rectangular coordinates

Proof. Consider x = 2 cos
2π
3
= −1 and y = 2 sin

2π
3
=
√

3
and z = 1. □

(b) Find cylindrical coordinates of the point with rectangular
coordinates (3,−3,−7).

Proof. In the cylindrical coordinates, r =
√

(3)2 + (−3)2 =

3
√

2, tan θ =
−3
3
= −1 and z = −7. Then θ =

7π
4
+ 2nπ and

(r, θ, z) = (3
√

2,
7π
4
,−7). □

Note.

Cylindrical coordinates are useful in problems
that involves symmetry about an axis, andthe z-
axis is chosen to coincide with this axis of sym-
metry. For example, consider the circular cylin-
der

Cartesian equation: x2 + y2 = c
Cylindrical equation: r = c.
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The graph of the equation θ = c is a vertical plane through the origin and the graph of the equa-
tion z = c is a horizontal plane.

Example 15.7.2. Describe the surface whose equation in cylindrical coordinates is z = r.

Proof.

• The coordinate z is the height of the point on
the surface. Hence, from the equation z = r,
each point on the surface has height r which
is the distance from the point to the z-axis.

• The coordinate θ does not appear (since it can
vary from 0 to 2π).

• The horizontal trace in the plane z = k (k > 0)
is a circle of radius k.

• The rectangular coordinates z2 = x2 = x2+y2.

□

o Triple Integrals with Cylindrical Coordinates

Let E be a Type I region

E =
{

(x, y, z)
∣∣(x, y) ∈ D, u1(x, u) ≤ z ≤ u2(x, y)

}
where D =

{
(r, θ)

∣∣ α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)
}

. The
triple integral over E is$

E
f (x, y, z) dV =

"
D

î∫ u2(x,y)

u1(x,y)
f (x, y, z)

ó
dA

=

∫ β

α

∫ h2(θ)

h1(θ)
f (r cos θ, r sin θ, z)r dzdrdθ.
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Remark.

Convert a triple integral from rectangular to
cylindrical coordinates. The appropriate limits
of integration for x, y and z are replaced by z, r
and θ. The infinitesimal volume dV is converted
from

dxdydz to r dzdrdθ.

Example 15.7.3.

Evaluate
$

E
x2 dV , where E is the solid that

lies under the paraboloid z = 4 − x2 − y2 and
above the xy-plane.

Proof. Observe that E is symmetric about the z-axis, we use cylindrical coordinates. Moreover,
the paraboloid z − 4 − x2 − y2 = 4 − (x2 + y2) is easily expressed in cylindrical coordinates as
z = 4 − r2.

The paraboloid intersects the xy-plane in the circle r2 = 4or, equivalently, r = 2. We have
the projection of E onto the xy-]plane is the dist r ≤ 2. The region E is{

(r, θ, z)
∣∣ 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, 0 ≤ z ≤ 4 − r2}.

and the triple integral is
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$
E

x2 dV =

∫ 2π

0

∫ 2

0

∫ 4−r2

0
(r cos θ)2 r dzdrdθ

=

∫ 2π

0

∫ 2

0
(r3 cos2 θ)(4 − r2) drdθ

=

∫ 2π

0
cos2 θ dθ

∫ 2

0
(4r3 − r5) dr

=
1
2
[
θ +

1
2

sin 2θ
]2π

0

[
r4 − 1

6
r6]2

0

=
1
2

(2π)(16 − 32
3

) =
16
3
π.

□

Example 15.7.4. A solid E lies within the cylinder x2 + y2 = 1 to the right of the xz-plane,
below the plane z = 4 and above the paraboloid z = 1 − x2 − y2. The density at any point is
paoportional to its distance from the axis of the cylinder. Find the mass of E.

Proof.

In cylindrical coordinates, the cylinder is r = 1 and the
paraboloid is z = 1 − r2. The solid is

E =
{

(r, θ, z)
∣∣ 0 ≤ θ ≤ π, 0 ≤ r ≤ 1, 1 − r2 ≤ z ≤ 4

}
.

The density function is

f (x, y, z) = k
√

x2 + y2 = kr.

Thus, the mass is

M =

$
E

f (x, y, z) dV =
∫ π

0

∫ 1

0

∫ 4

1−r2
kr · r dzdrdθ

=

∫ π

0

∫ 1

0
kr2[4 − (1 − r2)

]
drdθ =

6πk
5
.

□

Example 15.7.5. Evaluate
∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ 2

√
x2+y2

(x2 + y2) dzdydx.

Proof.

E =
{

(x, y, z)
∣∣ − 2 ≤ x ≤ 2, −

√
4 − x2 ≤ y ≤

√
4 − x2,

√
x2 + y2 ≤ z ≤ 2

}
=

∫
(r, θ, z)

∣∣ 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r ≤ z ≤ 2
}
.
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The triple integral is∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ 2

√
x2+y2

(x2 + y2) dzdydx

=

$
E
(x2 + y2) dV

=

∫ 2π

0

∫ 2

0

∫ 2

r
r2 · r dzdrdθ =

16
5
π.

□

Homework 15.7. 9, 11, 17, 19, 23, 26, 31

15.8 Triple Integrals in Spherical Coordinates
Recall:

In two dimensions,

Cartensian Coordinates ←→ Polar Coordinates
(x, y) ←→ (r, θ)

Question: How about in three dimensions?

In the previous section, we learned the cylindrical coordinate,

(x, y, z) −→ (r, θ, z).

Question: Is there any other coordinate system?

o Spherical Coordinates

Let P be a point in space, Q be the projection of P onto xy-plane and OQ be the projection
of OP onto xy-plane.

Denote

• Let ρ =
∣∣OP

∣∣ be the distance from the origin to P.

• Let θ be the angle between the positive x-axis and the
line segment OQ. (the same angle as in cylindrical co-
ordinateds)

• Let ϕ be the angle between the positive z-axis and the
line segment OP.
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Note. In the above variables, we set

ρ ≥ 0, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

Remark. The spherical coordinate system is useful in problems where there is symmetry about
a point, and the origin is placed at the point. For example,

■ Relationship between Rectangular and Spherical Coordinates

(x, y, z) ←→ (r, θ, ϕ) z = ρ cos ϕ

r = ρ sin ϕ
ß

x = r cos θ
y = r sin θ

x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, z = ρ cos ϕ, ρ2 = x2+y2+z2.

Example 15.8.1. The point
(ρ
2,
θ
π
4 ,
ϕ
π
3

)
is given in spherical coordinates. Plot the point and find

its rectangular coordinates.

Proof.

Consider ρ =
√

x2 + y2 + z2 =

»
02 + (2

√
3)2 + (−2)2 = 4.

cos ϕ =
z
ρ
=
−2
4
= −1

2
=⇒ ϕ =

2π
3

cos θ =
x

ρ sin ϕ
= 0 =⇒ θ =

π

2
,
�
�
�A
A
A

3π
2

Check that sin θ =
y

ρ sin ϕ
= 1. Therefore,

(ρ, θ, ϕ) = (4,
π

2
,

2π
3

).
□
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o Triple Integrals with Spherical Coordinates

Let E be a spherical wedge. Then

E =
{

(ρ, θ, ϕ)
∣∣ a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d

}
where a ≥ 0, 0 ≤ β − α ≤ 2π, 0 ≤ d − c ≤ π. Evaluate

$
E

f (x, y, z) dV .

• Divide E into small sub-spherical wedges by

a = ρ0 < ρ1 < · · · < ρℓ = b, 4ρ = b − a
ℓ

α = θ0 < θ1 < · · · < θm = β, 4θ =
β − α

m
c = ϕ0 < ϕ1 < · · · < ϕn = d, 4ϕ = d − c

n

• Consider the smaller spherical wedge Ei jk by
means of equally spaced spheres ρ = ρi, half-
planes θ = θ j, and half-cone ϕ = ϕk. Then Ei jk is
approximately a rectangular box with dimensions
4ρ, ρi4ϕ (arc of a circle with radius, ρi, angle 4ϕ)
and ρi sin ϕk4θ (arc of a circle with radius ρi sin ϕk,
angle 4θ). We have

4Vi jk ≈ (4ρ)(ρi4ϕ)(ρi sin ϕk4θ) = ρ2
i sin ϕk4ρ4θ4ϕ.

By the Mean Value Theorem,

4Vi jk = ρ̄
2
i sin ϕ̄k4ϕ4θ4ϕ

for some (ρ̄i, θ̄ j, ϕ̄k) in Ei jk . Then$
E

f (x, y, z) dV = lim
ℓ, m, n→∞

ℓ∑
i=1

m∑
j=1

n∑
k=1

f
(

x∗i jk, y
∗
i jk, z

∗
i jk

)
=

∫ d

c

∫ β

α

∫ b

a
f
(
ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ

)
ρ2 sin ϕ dρdθdϕ.
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Note.

Convert a triple integral from rectangular coor-
dinates to spherical coordinates by

x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, z = ρ cos ϕ.

The approximate limt of integration for x, y
and z are replaced with respect to ρ, θ and ϕ.
The infinitesimal volume dV is converted from
“dxdydz” to “ρ2 sin ϕ dρdθdϕ”.

Note. The integration formula can be extedede to more general spherical region such as

E =
{

(ρ, θ, ϕ)
∣∣ α ≤ θβ, c ≤ ϕ ≤ d, g1(θ, ϕ) ≤ ρ ≤ g2(θ, ϕ)

}
.

The triple integral formula becomes$
E

f (x, y, z) dV =
∫ d

c

∫ β

α

∫ g2(θ,ϕ)

g1(θ,ϕ)
f
(
ρ sin ϕ cos θ, r sin ϕ sin θ, ρ cos ϕ

)
ρ2 sin ϕ dρdθdϕ.

Example 15.8.2. Evaluate
$

B
e(x2+y2+z2)3/2

dV , where B is the unit ball

B =
{

(x, y, z)
∣∣ x2 + y2 + z2 ≤ 1

}
.

Proof. Using spherical coordinates to express

B =
{

(ρ, θ, ϕ)
∣∣ 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

}
and x2 + y2 + z2 = ρ2. The triple integral is$

B
e(x2+y2+z2)3/2

dV =

∫ π

0

∫ 2π

0

∫ 1

0
eρ

3 · ρ2 sin ϕ dρdθdϕ

=
Ä∫ π

0
sin ϕ dϕ

äÄ∫ 2π

0
1 dθ
äÄ∫ 1

0
ρ2eρ

3
dρ
ä

=
4
3
π(e − 1).

□

Note. It is difficult to evaluate the trple integral by∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √1−x2−y2

−
√

1−x2−y2
e(x2+y2+z2)3/2

dzdydx.
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Example 15.8.3. Use spherical coordinates find the volume of the solid lies above the cone
z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z.

Proof. The sphereical coordinates of the above sphere has equation ρ2 = ρ = cos ϕ and the
ρ = cos ϕ.

The spherical coordinate of the below cone has equatin

ρ cos ϕ =
√

(ρ sin ϕ cos θ)2 + (ρ sin ϕ sin θ)2 = ρ sin ϕ.

We have cos ϕ = sin ϕ and this implies ϕ =
π

4
. Hence the solid E in spherical coordinate is

E =
{

(ρ, θ, ϕ)
∣∣ 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

4
, 0 ≤ ρ ≤ cos ϕ

}
.

The volume of the solid is

V(E) =
$

E
1 dV =

∫ 2π

0

∫ π
4

0

∫ cos ϕ

0
1 · ρ2 sin ϕ dρdϕdθ

=
2π
3

∫ 4π

0
sin ϕ cos3 ϕ dϕ =

π

8

□

Homework 15.8. 17, 20, 22, 26, 29, 32, 38, 44
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15.9 Change of Variables in Multiple Integrals

Recall: In one dimensional calculus,

y = f (x), x = g(u), a = g(c), b = g(d).

To compute
∫ b

a
f (x) dx.

Suppose that g : [c, d] → [a, b] is a one-to-one and onto function. For example
x = x(u) = g(u) = 2u. Consider y = f

(
g(u)

)
.

Substitution Rule∫ b

a
f (x) dx =

∫ d

c
f
(
g(u)

)
g′(u) du or

∫ b

a
f (x) dx =

∫ d

c
f
(

x(u)
) dx

du
du.

Remark.

The role of
dx
du
= g′(u) is the multiple be-

tween the infinitesimal unit vector du → dx
(imagine that dx =

dx
du

du.)

Look at the figures and we want to find the
area of the region below the graph of f and
above the x-axis over [a, b] in the xy-plane.
There exists a corresponding region in the uy-
plane. We try to understand the relations be-
tween these two regions and areas.
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To consider the width of the base in the partition of [a, b] and the one in the partition of

[c, d], we have
dx
du
≈ 4x
4u

. That is the approximation of the rate of the sizes of bases with
respect to 4x and 4u. Therefore the areas∫ b

a
f (x) dx ≈

n∑
i=1

f (xi)4xi =

n∑
i=1

h(ui) ·
4xi

4ui

≈ dx
du

·4ui ≈
∫ d

c
h(u)

dx
du

du =
∫ d

c
f
(
g(u)

)
g′(u) du.

■ Change of Variables in Two Dimensions

Let z = f (x, y). We consider the transformation from Cartesian coordinate to polar coordi-
nates (see Section 15.3)

rectangular coordinates ←→ polar coordinates
(x, y) ←→ (r, θ)

We have
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and therefore the double integral"
R

f (x, y) dA =
"

S
f (r cos θ, r sin θ) r drdθ.

In general, T : C1 transformation from uv-plane to xy-plane

Note. We want to evaluate an double integral over R by evaluating a corresponding double
integral over S .

Remark. There may have problems if T is not one-to-one.

Definition 15.9.1. We say that a transformation T : R2 → R2 is “one-to-one” if (u1, v1) ,
(u2, v2) then

T (u1, v1) , T (u2, v2)

An equivalent definition is that if T (u1, v1) = T (u2, v1) then (u1, v1) = (u2, v2).

Remark. If T is a one-to-one transformation, then it has an inverse transformation T−1 from its
image in xy-plane to its domain uv-plane and it may be possible to solve x = g(u, v), y = h(u, v)
for u and v in terms of x and y:

(u, v) = T−1(x, y), u = G(x, y) and v = H(x, y).
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Example 15.9.2. A transformation is defined by

x = u2 − v2, y = 2uv.

Find the image of the square S =
{

(u, v)
∣∣ 0 ≤ u ≤ 1, 0 ≤ v ≤ 1

}
.

Proof. Note that the transformation maps the boundearies of S to the boundaries of its image.
Hence, we try to find the image of the sides of S . Consider the four sides of S .

• S 1 : (0 ≤ u ≤ 1, v = 0). Then x = u2, y = 0 and we
have

T (S 1) =
{

(x, y)
∣∣ 0 ≤ x ≤ 1, y = 0

}
.

• S 2 : (u = 1, 0 ≤ v ≤ 1). Then x = 1 − v2, y = 2v and

we have x = 1 − y2

4
and

T (S 2) =
{

(x, y)
∣∣ x = 1 − y2

4
, 0 ≤ x ≤ 1

}
.

• S 3 : (0 ≤ u ≤ 1, v = 1). Then x =
y2

4
− 1, −1 ≤ x ≤ 0

and we have

T (S 3) =
{

(x, y)
∣∣ x =

y2

4
− 1, −1 ≤ x ≤ 0

}
.

• S 4 : (u = 0, 0 ≤ v ≤ 1). Then x = −v2, y = 0 and we
have

T (S 4) =
{

(x, y)
∣∣ − 1 ≤ x ≤ 0, y = 0

}
.

The image of S is the region R bounded by the four curves. □

Question: How does a change of variables affect a double integral?
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• The image of S is a region R in xy-plane. Suppose (x0, y0) = T (u0, v0) is a boundary point of

R. Let r(u, v) = g(u, v)i + h(u, v)j be the position vector
ï

x = g(u, v)
y = h(u, v)

ò
.

• Consider the boundary curve of R, r(u, v0) and its tangent vector at (x0, y0) is

ru = gu(u0, v0)i + hu(u0, v0)j =
∂x
∂u

i +
∂y
∂u

j.

Similarly, the bounde curve r(u0, v) with the tangent vector at (x0, y0) is

rv = gv(u0, v0)i + hv(u0, v0)j =
∂x
∂v

i +
∂y
∂v

j.

• To approximate R = T (S ) by a parallelogram determined by the secant vectors.

a = r(u0 + 4u, v0) − r(u0, v0) ≈ 4uru

b = r(u0, v0 + 4v) − r(u0, v0) ≈ 4vrv

Similarly, R can be approximated by the paral-
lelogram determined by the vectors 4uru and
4vrv.

Hence, the area of R can be approximated by the area of the parallelogram∣∣∣(4uru
)
×
(
4vrv

)∣∣∣ = ∣∣∣ru × rv

∣∣∣4u4v.

The area of R

A(R) ≈ Area of the parallelogram =
∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣4u4v =

∣∣∣∂x
∂u
∂y
∂v
− ∂x
∂v
∂y
∂u

∣∣∣4u4v.
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Note. If regarding ru and rv as vector in three dimensions

ru =
∂x
∂u

i +
∂y
∂u

j + 0k, rv =
∂x
∂v

i +
∂y
∂v

j + 0k

and we have

ru × rv =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂x
∂u

∂y
∂u

0

∂x
∂v

∂y
∂v

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣∣∣∣∣∣∣k =
∣∣∣∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣∣∣∣k

Definition 15.9.3. The “Jacobian” of the transformation T given by x = g(u, v) and y = h(u, v)
is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣∣∣∣ =
∂x
∂u
∂y
∂v
− ∂x
∂v
∂y
∂u
.

Remark. An approximation to the area 4A of R is

4A ≈
∣∣∣∂(x, y)
∂(u, v)

∣∣∣4u4v

where the Jacobian is evaluated at (u0, v0).

■ The Riemann Sum

Now, we consider the double Riemann sum. Divide R in xy-plane into some subregion Ri j

with area 4A.

"
R

f (x, y) dA ≈
m∑

i=1

n∑
j=1

f (xi, y j)4A

≈
m∑

i=1

n∑
j=1

f
(
g(ui, v j), h(ui, v j)

)∣∣∣∂(x, y)
∂(u, v)

∣∣∣4u4v

where the Jacobian is evaluated at (ui, v j).
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Let m, n → ∞, the double Riemann sum
m∑

i=1

n∑
j=1

f
(
g(ui, v j), h(ui, v j)

)∣∣∣∂(x, y)
∂(u, v)

∣∣∣4u4v con-

veges to "
S

f
(
g(u, v), h(u, b)

)∣∣∣∂(x, y)
∂(u, v)

∣∣∣ dudv.

■ Change of Variables in a Double Integral

Theorem 15.9.4. Suppose that

(i) the transformation T is a C1 map;

(ii) the Jacobian
∂(x, y)
∂(u, v)

is nonzero;

(iii) T is a one-to-one and onto map from S in uv-plane to R in xy-plane except perhas on the
boundary of S ;

(iv) f is continuous on R and that R and S are Type I or Type II plane regions.

Then "
R

f (x, y) dA =
"

S
f
(

x(u, v), y(u, v)
)∣∣∣∂(x, y)
∂(u, v)

∣∣∣ dudv.

■ Compare with the Change of Variables between 1D and 2D

■ Polar Coordinate Transformation
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x = g(r, θ) = r cos θ, y = h(r, θ) = r sin θ

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣∣∣∣
∂x
∂r
∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r > 0

Therefore, "
R

f (x, y) dA =

"
S

f
(
r cos θ, r sin θ

)∣∣∣∂(x, y)
∂(r, θ)

∣∣∣ drdθ

=

∫ β

α

∫ b

a
f
(
r cos θ, r sin θ

)
r drdθ.

Example 15.9.5. Use the change of variables x = u2 − v2, y = 2uv to evaluate the integral"
R

y dA, where R is the region bounded by the x-axis and the parabolas y2 = 4 − 4x and

y2 = 4 + 4x, y ≥ 0.

Proof.

The transformation S : [0, 1] × [0, 1] → R by (u, v) →
(x, y) = (u2 − v2, 2uv). The Jacobian is

∂(x, y)
∂(r, θ)

=

∣∣∣∣∣∣∣∣∣
∂x
∂r
∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣2u −2v
2v 2u

∣∣∣∣∣∣ = 4(u2 + v2) > 0.

The double integral"
R

f (x, y) dA =
"

R
y dA =

∫ 1

0

∫ 1

0
2uv·4(u2+v2) dudv = 2.

□

Note. For the original integral
"

R
y dA, the region R is awkward. So we use change of vari-

ables.

Example 15.9.6. Evaluate the integral
"

R
e

x+y
x−y dA, where R is the trapezoidal region with ver-

tices (1, 0), (2, 0), (0,−2) and (0,−1).

Proof.
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Let u = x+ y and v = x− y. Then x =
u + v

2
and

y =
u − v

2
. The Jacobian is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣12 1
2

1
2 −1

2

∣∣∣∣∣∣ = −1
2
, 0.

The region R is bounded by y = 0, x − y = 2,
x = 0 and x − y = 1. Hence, the corresponding
region S in uv-plane is u = v, v = 2, u = −v and
v = 1. Then

S =
{

(u, v)
∣∣ 1 ≤ v ≤ 2, −v ≤ u ≤ v

}
.

The double integral"
R

e−
x+y
x−y dA =

∫ 2

1

∫ v

−v
e

u
v

∣∣∣(−1
2

)
∣∣∣ dudv =

1
2

∫ 2

1
ve

u
v

∣∣∣u=v

u=−v
dv

=
1
2

∫ 2

1
e − e−1 dv =

3
4

(e − e−1).

□

o Triple Integrals

Let T be a transformation from a region S in uvw-space onto a region R in xyz-space. Then

x = g(u, v,w), y = h(u, v,w), z = k(u, v,w).

The Jacobian of T is

∂(x, y, z)
∂(u, v,w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
■ Change of Variables in a Triple Integrals

$
R

f (x, y, z) dV =
$

S
f
(

x(u, v,w), y(u, v,w), z(u, v,w)
)∣∣∣ ∂(x, y, z)
∂(u, v,w)

∣∣∣ dudvdw.

■ Spherical Coordinate Transformation
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Let
x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, z = ρ cos ϕ.

The Jacobian is

∂(x, y, z)
∂(ρ, θ, ϕ)

=

∣∣∣∣∣∣∣∣
sin ϕ cos θ −ρ sin ϕ sin θ ρ cos ϕ cos θ
sin ϕ sin θ ρ sin ϕ cos θ ρ cos ϕ sin θ

cos ϕ 0 −ρ sin ϕ

∣∣∣∣∣∣∣∣ = −ρ2 sin ϕ.

The triple integralis$
R

f (x, y, z) dV =
$

S
f
(
ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ

)∣∣∣ − ρ2 sin ϕ
∣∣∣ dρdθdϕ.

Homework 15.9. 4, 8, 10, 13, 16, 19, 21, 25, 27, 30
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