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5.1 Areas Between Curves

In the present section, we try to evaluate the integrals to find areas of regions that lie between
the graphs of two functions.

Let f and g be two continuous functions satisfying f(x) > g(x) for every x € [a, b]. Let S
be the region between the two curves y = f(x) and y = g(x), and the vertical lines x = a and
x = b. We use the approximating rectangles method to evaluate the area of §.

v
y=fx) y - y |
| alliin
|| 1 [
£x7) i ' ] | |
S ) —gla) ol H | I
I [0 [ |
I ; A I l |
a N : Y a N e X
0 il boox ’ —g(H) {1 { b ’ | } } 'Jé b
y=g) ~ T
Ax
S={xy la<x<bg)<y<flx)} (a) Typical rectangle (b) Approximating rectangles

Let P be a partition of [a, b]. The Riemann sum

n

DD - gh)] ax;

i=1



2 CHAPTER 5. APPLICATIONS OF INTEGRATION

is an approximation to the area of S. We define the area A of the region S as the limiting value
of the sum of the area of these approximating rectangles

A= Tim 3" [f() = g(D)] ax;
n=1

Theorem 5.1.1. The area A of the region bounded by the cruve y = f(x), y = g(x) and the lines
x = aand x = b, where f and g are integrable and f(x) > g(x) for all x € [a, b], is

b
= f /() - g()] dx

Note. (1) If g(x) =0, S is the region under the graph of f. The area of S is

_ fab £~ 0] dx = fabﬂx) dx

is the same as the area we discussed before.

(2) If f(x) = g(x) > 0 forall x € [a, b]

5
Il

[area under y = f(x)] — [area under y = g(x)]

f f(x)dx — f g(x) dx

fa [f(x) = g(x)] dx A= f lbf(x)dx — fl g(x)dx

Example 5.1.2. Find the area of the region bounded above by y = x* + 1, bounded below by
y = x, and bounded on the sides by x = 0 and x = 1.

y
y=x*+1
Proof. x=1
1 1
A = f[(x2+1—x)}dx:f(x2—x+1)dx a
0 0 y=x
X 15 a
= ?—?+xi|0:g x=0 Ao

0 1I X

Example 5.1.3. Find the area of the region bounded above by y = ¢*, bounded below by y = x
and bounded on the sides by x = 0 and x = 1.

b

=Y
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Proof.

bS

I

5

Ly
=

|
&,
U

=

Remark. When we set up an integral for an area, it is helpful to sketch the region to identify
the top curve yr, the bottom curve y and a typical approximating rectangle.

o 3

Then the area of a typical rectangle is (y7 — yg)Ax and the Y
equation %
" . Yr— s
A= r}l_{g Z(yT — YB)AX = f (yr —yp) dx
i=1 a B K:
summarizes the procedure of adding (in a limiting sense) the 0 @ - >
areas of all the typical rectangles. ¢ i
Example 5.1.4. Find the area of the region enclosed by the parabola y = x> and y = 2x — x%.
yr=2x—x*
y
Proof. The points of intersection of y = x? and y = 2x—x? (1,1)
are given by solving the equation x*> = x — x*. They are
x = 0and x = 1. The graph y = 2x— x? is above the graph : \
of y = x* for all x € [0, 1]. The area of the region is < Y =
X
| >
2 1 1 (0,0) x
A:f [(2x—x2)—x2}dx:x2+x—§x3 == \
0

To find the area between the curves y = f(x) and y = g(x) where f(x) > g(x) for some
values of x but g(x) > f(x) for other values.

We splits the region S into several subregions S,S,,---S,
with areas A, A,,---A,. Then the area of S is V4

A=A +A,+---+A,.

Since

[ F)-g(0) when f(x) > g(x)
() = gl = { (0 — f(x) when f(x) < g(x), 0

we have the following results.

Theorem 5.1.5. The area between the curves 'y = f(x) and y = g(x) and between x = a and
x=bis

b
A= f [£(0) = g(x)] d.
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4
Example 5.1.6. Find the area of the region bounded by the cruves y = sinx, y = cosx, x = 0
and x = g

. . . . /s
Proof. The points of intersection of two curves in [0, 5] y

/S . .
is —. Also, cosx > sinx when 0 < x < 7 and sinx > /

cos x when § < x < 7. The area of the region is A A,
- T
x=0 =

y = cosx y=sinx

s

A = f2|cosx—sinx‘dx
0

i 3
= f cosx—sinxdx+f sin x — cos x dx
0 x O

1
= 2V2-2
Some regions are treated by regarding x as a function of y. Suppose that the region S is

bounded by curves with equation x = f(y), x = g(y), y = cand y = d where f and g are
continuous and f(y) > g(y) for all ¢ <y < d. The area of the region § is

d
A= f [0 — 8] dy.

X

Example 5.1.7. Find the area enclosed by the line y = x — 1 and the parabola y> = 2x + 6.

Proof. The points of intersection is obtained by solving
y* = 2y + 8. Hence, those points are y = 4 and y = 2. The
area of the enclosed region is

1
[oen-dr-3a
)
1

f——y2+y+4dy
o 2

18

A




5.1. AREAS BETWEEN CURVES

Note. We can also obtain the area of the above region by
integrating with respect to x instead of y.

Splitting the region into two subregions A; and A, and com-
puting each area and adding them up. But it is very compli-
cated.

y=—\/2x+6

Example 5.1.8. Find the area of the region enclosed by the curves x+2y =3,y = x,andy = %x

(a) Using x as as the variable of integration

Proof. We split the region into left and right parts, A; and
A, as the figure. Then the area of the region is

1
A = Al+A = (X
3

2
1 3 1
dx+f1(—§x+§—zx)dx
3 2 3

= [§x2}3+[ gx +§)C}l —4.

(b) Using y as the variable of integration

Proof. We split the region into top and bottom parts, A; and
A, as the figure. Then the area of the region is

1/2
A = A+A- <4y—y>dy+f1/2l(3—2y—y>dy
0 1
3 5012 3,51 3
[iy }o + [3y+ Ey ]1/2 T
Q Applications
(Skip)

Homework 5.1. 21, 26, 29, 32, 34, 37, 39, 41, 62, 64, 67, 70
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5.2 Volumes

In the present section, we want to find the volume of a solid by using the techniques of integral to
give an exact definition. We start with a simple type of solid called a “cylinder (right cylinder)”.

(a) Cylinder V=Ah  (b) Circular cylinder V= 7r*h  (c) Rectangular box V = [wh

For a general solid S (not a cylinder), we cut it into several slices and approximate each slice
by regarding them as cylinders. We estimate the volume of S by adding the volumes of those
approximating volumes of slabs.

(1) The intersection of S with a plane and obtaining a plane region that is called a “cross-
section” of §. Let A(x) be the area of the cross-section of S in a plane P, perpendicular to
the x-axis and passing through the point x where a < x < b.

(i) Dividing S into n “slabs” of equal width Ax by using the planes P,,, P,,,--- to slice the
solid.

(iii) Choosing sample points x; in [x;_1, x;], we can approximate the ith slab §; by a cylinder
with base A(x}) and “height” Ax;. The volume of this cylinder is A(x])Ax;. Hence, the
volume of §; is

V(S)) = Vi = A(x})Ax;.
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0 a ,'/ -*\X b A 0 a=2x, X € A3 Xy Xs X x=b X

(iv) Adding the volumes of these slabs, we get an approximation to the total volume of S,

V= Z: Vi~ ZA(X?)Axi.

(v) Let n tend to infinity, we define the volume of S as the limit of these sums.

Definition 5.2.1. Let S be a solid that lies between x = a and x = b. If the cross-sectional area
of S in the plane P, through x and perpendicular to the x-axis, is A(x), where A is a continuous
function, then the volume of S is

n—oo

n b
V = lim ZA(x;‘)Axi = f A(x) dx.
i=1 a
Note. For a (right) cylinder, A(x) = A for all x. Then the volume is
b b
V:f A(x)dx:f Adx=AMb-a).

Example 5.2.2. Find the volume of a sphere of radius r.

Proof. The plane P, intersects the sphere in a circle whose radius is y = Vr? — x2.

Hence, the cross-sectional area is yT

A(x) = m(Vr2 = x2)? = n(r* = x). 7
rzs
The volume of the sphere is : 0/ 3 | .

r r X

V = f A(x)dxzf a(r* — x%) dx ‘

—-r —-r ‘

ro 4
= n(r*x - §x3) = §7rr3.

O

Remark. The slabs are circular cylinders, or disks, and the geometric interpretations of the

Riemann sums
n

Z AR)Ax = Z 2(1% = ¥)ax

i=1 i=1
when n = 5, 10 and 20 (as following figure) if we choose the sample points x; to be the
midpoints X;.
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(a) Using 5 disks, V= 4.2726 (b) Using 10 disks, V = 4.2097 (c) Using 20 disks, V= 4.1940

Approximating the volume of a sphere with radius |

1 Volumes of Solid of Revolution

If we revolve a region about a line, we obtain a “solid of revolution”. In order to find the
volume of the solid of revolution, we calculate the area of cross-section. The the volume is

b
V=fA(x)dx or V=fA(y)dy.

To find the area of each cross-section.

(1) If the cross-section is a disk, the area is

A = n(radius)?

(i1) If the cross-section is a washer, the area is

_ 2 2
A= T outer — T inner-

Example 5.2.3. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y = +/x from 0 to 1.



5.2. VOLUMES 9

y=vx

Proof. The cross-sectional area is

A(x) = n(Vx)* = 7x.

The solid lies between x = 0 and x = 1 has volume
1 1 21
Vz‘fA()c)dx:j‘7Txdx=ﬂ :E.
0 0 2 lo 2

Example 5.2.4. Find the volume of the solid obtained by rotating the region bounded by y = x°,
y = 8 and x = 0 about the y-axis.

O

y y
=8
y | ol
X
Ay { (X y)
x=0— !
y=x° \
or \
=3y l
|
0 X 0 X
>

Proof. The region is rotated about y-axis. It makes to slice the solid perpendicular to the y-axis
obtaining circular cross-sections. The area of a cross-section through y is

AG) = 1 = 1(3) = 1y,

The volume of the solid is

8 8
3 8 96
V:f A(y) dy :f 7Ty2/3 dy: 7Ty5/3 — ﬂ"
0 0 5 0 5
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1 Washer Method (Method of Washer)

Example 5.2.5. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x*, about the x-axis.

b ’ pA

" &
/10, 0 X

Proof. The points of intersection is obtained by x = x*> and hence those points are x = 0 and
x = 1. The area of the cross-section perpendicular to x-axis is

Ax) =nr  —arr = nax)? - 1(x?)? = 7(x* - xY).

outer inner

The volume of the solid is
! ! 1 1 ! 2«
V = A dx = 2 _ 4 dx = -3 _ .5 =
fo (x) dx j; a(x” —x") dx ﬂ(3x Sx)o 15

O

Example 5.2.6. Find the volume of the solid obtained by rotating the region which is enclosed
by y = xand y = x?, about the line y = 2.

y
44

Proof. The cross-section is a washer and its area is
AX) = A2 = Ty = T2 = X2)7 = (2 — x)* = m(x* — 5x% + 4x).

inner

The volume of the solid is

1 1
1
V:fA(x)dx:nf x4—5x2+4xdx:7r(§x5—§x3+2x2)‘ = —.
0 0
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Example 5.2.7. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x?, about the line x = —1.

<o Y

Proof. The area of the cross-section is

ﬂ-rguter _ﬂ-riznner = ﬂ'(\/y_ (_1))2 _ﬂ-(y_ (_1))2 = 7'[(2\/&—))—)/2),

The volume of the solid is

1 44, 1, 1
V:foF(ZW—y—yz)dy=ﬂ(§y3’2——yz——y3)‘ _

1 Finding Volume Using Cross-Sectional Area

Example 5.2.8. A solid with a circular base of radius 1. Parallel cross-sections perpendicular
to the base are equilateral triangles. Find the volume of the solid.

(a) The solid (b) Its base (c) A cross-section

Proof. Each cross-section is an equilateral triangle, the base is 2y and the height is V3y. Hence
the area of the cross-section is A(x) = \/§y2 = V3(1 — x?). The volume of the solid is

1 1
V:fA(x)dx:f \/g(l—xz)dx::—\/g.
-1 -1
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Example 5.2.9. Find the volume of a pyramid whose base is a square with side L and whose
height is A.

Proof. Placing the originO at the vertex of the pyramid and the x-axis along its central axis. Let
P, be the plane that passes through x and is perpendicular to the x-axis intersects the pyramid
in a square with side of length s.

YA YA
P

_—N

=
>
t
~

0] “\\“I‘/:J\‘___“ X (0] X ¥
p 4
By the similar triangle argument,
x  s§/2 s R Lx
_= — = — sy = —
h L/2 L
Then the cross-sectional area is
2 r 2
A(x) =5 = ﬁx .
Hence, the volume is
h ho72 2.3 2
L L~x’\» L°h
V=| Awdx= | Sxdx==5%| =—
fo Wdx= | v dy=57]=3

Alternating Method: We can place the center of the base at the origin and the vertex on the
positive y-axis.

y
When the plane P, when passes through y and hT
is perpendicular to the y-axis intersecs the pyra- N\
mid, the the cross-sectioinal area of the square

L? 2 s -
ﬁ(h —y)°. Then the volume of the pyramid is 7y y
ho12 2
L L°h
V= —(h—y)* = —.
fo =) == o

O

Example 5.2.10. A wedge is cut out of circular cylinder of radius 4 by two planes. One plane
is perpendicular to the axis of the cylinder. The other intersects the first at an angle 30° along a
diameter of the cylinder. Find the volume of the wedge.
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Proof. Each cross-section is a right triangle with
base y = V16 — x2. The intersection angle 30° im-

plies that the height is y tan 30° = —‘16;’52. The area

The volume of the solid is

\f
of the cross-section is
1 V16 — x2 1
A = =VI6—22- 16—
2 V3 23

1
vV = A)dx= | —16-x)d
f:(x)x j::zﬁ( ) d
1 1,4 128
= —(6x-=-x)| =——.
2\/3( * 3x)‘—4 33

Homework 5.2. 16, 19, 22, 25, 28, 36, 39, 52, 59, 61, 67, 75, 81

5.3 Volumes by Cylindrical Shells

30°

13

For some solids of revolution, it is difficult to find their volumes by using the washer method.

For example, the solid obtained by rotating the region which
is enclosed by y = 2x? — x* and x-axis. If we want to use
the washer method to find the volume of the solid, we have to
evaluate the areas of each cross-section, A(y), for every 0 <
But it is not easy to solve the equation y = 2x* —

32
V<=5

y

y=2x>—x?

0
4=

Hence, we study a different method, called the method of ““cylindrical shells”, to find its volume

here.

m Method of Cylindrical Shells

Consider a cylindrical shell with inner radius r, outer radius
r» and height 4. Then the thickness of the shell is Ar = r, — 1.

The volume of the shell is

Vv

2 20 _ 2 2
nryh —nrih = n(r; — r))h

w(ry +r)(ry —r)h =2r -

27r7’hAr( x 27rrhAr) .

r,+r;

——

X

=Ar

h(ry—r)
~——
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The approximating volume of the cylindrical shell is 2zrhar B

Let S be the solid obtained by rotating about the y-axis the region bound by y = f(x),y =0,
x=aand x =bwhere 0 <a < b.

Yy y

Dividing [a, b] into n subintervals [x;_;, x;] of equal width Ax and choose X as the midpoint
of the ith subinterval. Consider the rectangle with base [x;_1, x;] and height f(x). The solid
which is obtained by rotating the above region about the y-axis has volume

Vi ~ 2rx)(f(x)) Ax.

The approximation to the volume of S is

V=~ Zn: V= z”: 2nx; f(X;)AX.
i=1 i=1

y ¥
T y=fx) I y=flx)
‘ /
\
\
\
\

Let n — oo, the volume of the solid is,
n b
lim " 27%, f(%)Ax = f 2rxf(x) dx.
n—oo P a

Theorem 5.3.1. The volume of the solid obtained by rotating about the y-axis the region under
the curve 'y = f(x) from a to b is

b
V:f 2rxf(x) dx.

It can be remembered as V ~ [circumference][height][thickness].
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Note. Flattening a cylindrical shell with radius x, circumference 27, height f(x) and thickness
Ax (or dx). Hence, the volume of S is

b
- wm e o&

 circumference height thickness

VA
1
flx) fx)
.
X 27X Ax

Example 5.3.2. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = 2x*> — x> and y = 0.

Proof.

2x*—x3

2
2mx(2x?—x3) Ax

2 1, 1.2
V= f 21x(2x% — ¥*) dx = 2n(=x* — =x°)| = —.
0 2 5 7lo
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Example 5.3.3. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = x and y = x%.

Proof.

YA

The points of intersection of y = x and y = x? is (0, 0) and (1, 0). Therefore, the volume of
the solid is

! n
V= f 2rx(x — x}) dx = =.
0 6

O

Example 5.3.4. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y = +/x from O to 1.

Proof.

¥ shell height = 1 — y?
I [

TS shell
radius =y

|

1 2 4 01
yo oy Vs
V= 2y(1 = y?) dy = 2n(= — =)| = =.
foﬂy( y°)dy ﬂ(2 4)0 >
O

Example 5.3.5. Find the volume of the solid obtained by rotating about the line x = 2 the
region bounded by y = x — x? and y = 0.

Proof.
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0 1\ X 0 ST
<—X4-|<——2—x——>

1
v:f 2712 = X)(x — ) dx = =
. 2

0 Disks and Washers versus Cylindrical Shells

Question: How do we know whether to use disks (or washers) or chylindrical shells?

Consideration:

(i) Is the region more easily described by top and bottom boundary curves of the form y =
f(x), or by left and right boundaries x = g(y)?

(i1) Which choice is easier to work with?
(ii1) Are the limits of integration easier to find for one variable versus the others?

(iv) Does the region require two separate integrals when using x as the variable but only one
integral in y?

(v) Are we able to evaluate the integral we set up with our choice of variable?

Example 5.3.6. A region in the first quadrant bounded by the curves y = x*> and y = 2x. A solid
is formed by rotating the region about the line x = —1.

x=-1 Y4

. + x=-1 7Y
< 1>
'\ === 14

Find the volume of the solid by using
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(a) x as the variable of integration

x=-17
Proof. When x as the variable of integration and rotat- I PR
ing the region about the line x = —1, we will use the 1
cylindrical shells. Therefore, the volume is y=2 4 y=x
2
vV = f 2n(x + 1)(2x — x%) dx
0 X
2 Ax
= 27rf (x* +2x — x) dx
0
x° x*2  l6m ! 0 2
= 27r[—+x2——} = —. O
3 410 3
(b) y as the variable of integration.
=17
Proof. When y as the variable of integration and rotat- * 4l
ing the region about the line x = —1, we will use the 1
washer method. Therefore, the volume is i
) 1 5 x=\Y
V = [7(\y+ 1) —n(§y+1)}dy
0 1 J«—AYy
= nf(2\/_— Zyz)dy
0 N
4 1 4 167 -1 0 2 X
— [_ys/z _ —yﬂ -
3 127 Jo 3 O

Homework 5.3. 11, 13, 16, 19, 21, 25, 29, 39, 42, 55, 59, 63

5.4 Work

We can think of a force as describing a push or pull on an object. :

< d >

If the force F is constant and the work done is defined to be the product of the force F' and
the distance d that the object moves:

W = Fd work = force X distance

Question: How about the force is not constant?

)

f(x)—>

a Xi-1 Xi b
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Dividing [a, b] into n subintervals with equal width. The force which acts on the object from
X;_1 to x; gives the work

Wi = f(xj)ax.

W~ Zn] W, = Zn:f(xf)Ax.
i=1 i=1

Letn — oo, W = lim Z f(x7)Aax (the work done in moving the object from a to b). We have
n—oo l:]

The total work is

n—0oo -

n b
W = lim Z fx)ax = f f(x) dx.
i=1 a

Example 5.4.1. A particle is located a distance x meters from the origin. A force of x* + 2x
newton acts on it. How much work is done in moving it from x = 1 to x = 3.

Proof. The total work is

3

50
W:f x2+2xa’x:?J
1

a Hooke’s Law

The force required to maintain a spring stretched x units beyond its natural length is propor-
tional to x:

J(x) = kx
where k is a positive constant called the spring constant.

flx)=kx
|—>

frictionless () X ’ ' "

N 0 X -
surface
(a) Natural position of spring (b) Stretched position of spring

Hooke’s Law

Example 5.4.2. A force 40N is required to hold a spring that has been stretcvhed from its
natural length of 10cm to a length 15cm. How much work is done in stretching the spring from
15cm to 18cm?

Proof. By the Hooke’s Law, 40 = k x (0.15 — 0.1). Then £ = 800 and f(x) = 800x. The work
done from 15cm to 18cm is

0.18 0.18
w= f(x)dx = f 800x dx — 1.56 J.
0

0.15 15
Then O
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Example 5.4.3. A 200 Ib cable is 100ft long and hangs vertically from the top of t tall building.
How much work is required to lift the cable to the top of the building?

Proof.

0+ - Dividing the 100 ft cable into n piece with equal length

‘ | AXx = %. Each piece has mass % X AX = 2AX.

1 o
Move this piece vertically to the top of the building need work
ol wy W, = x;- 2Ax = 2x;Ax. Hence, the total work acts on the cable
' I is
1001 | W= Jim ) Wi lim ) 26
100
xv = f 2x dx = 10000 ft-1b.
0

O

Example 5.4.4. A tank has the shape of an inverted circular cone with height 10m and base
radius 4m. It filled with water to a height of 8m. find the work required to empty the tank by
pumping all of the water to the top of the tank. (The density of water is 1000 kg/m?).

Proof.

Dividing the water level [2, 10] into n subintervals with
equal width Ax. At the subinterval [x;_;, x;], the mass of

the water in the ith level is T
1000V; = 1000 - 7177 Ax Xt
here — * The 2(10 - x*) and l
r = —. nr;=2(10-x*
T Ty VR T

2
m; = 10007 - [2(10 = x)]“ax = 160x(10 — x))asx.

To move the level of water need work

W; =9.8-x - 160m(10 — x})*A = 15687x;(10 — x})*Ax.

The total work 1is

w

lim " 15687x/(10 — /)’ ax 10— x
i=1

| 2048 JL -

10
f 15687x(10 — x)? dx = 15687r(—> J
) 3

Homework 5.4. 7,9, 13, 21, 23, 25, 29
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5.5 Average Value of a Function

Observation: The average value of finitely many numbers y;, y,, - - -

av
8 n

Yit+tyrt+--t Y,

,Vn 18

Question: How to compute the average value of a function y = f(x),a < x < b?

Dividing [a, b] into n subintervals with equal width Ax = ;a‘

[xi—1, x;] fori=1,2,--- ,n. The average value of f at these sample points is

JOD+ )+ fa) _ fOD+ )+ + f) _

n B b—-a
AX

Let n — oo, the average value of f on [a, b] is

Jave = i hm f(x)) ax = —f f(x) dx

Note. 2 average height

0 The Mean Value Theorem for Integrals

i f(x)H)ax

b—a -

21

Choose sample point x; €

T
If f is continuous on [a, b], then there exists a
number ¢ € [a, b] such that 15 1
1 b 10
O = fug = 7— f £ dx
“a ), .|
b -
[ rwar = few-a s / V| Tw
' 0 2 18 24 !

Note. Geometrically, the theorem means that the area below the graph y = f(x) over [a, b] is
equal to the area of the rectangle with base (b — a) and height f,,,.

VA

):favg

=Y
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Example 5.5.1.

Let f(x) = 1 + x* be continuous on [-1,2]. By
the Mean Value Theorem for the integrals, there
exists a nubmer ¢ € [—1, 2] such that

1 SR 11 42
(_1) ‘[1 1+x“dx = §~(x+§x ) » =2.

f©) = 5-

Indeed, 1 + ¢* = 2 and hence ¢ = +1.

Example 5.5.2. Let s(¢) be the displacement of the car at tiem 7. Then

: As  s(h) — s(ty)
average velocity = Fvinlre—
2 — 1

1 2 J 1 " J
Vave = v(t) dt = s’ () dt
e LTl G

1
= P [s(tz) - s(t )} = average velocity
2 — 1

Homework 5.5. 7, 8,9, 13, 17, 22, 26
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[/ TImproper Infegrald . . . . . . . . . . . . . . e 49

7.1 Integration by Parts

Differentiation — Integration
Chain Rule — Substitution Rule
(Change of Variables)
Product Rule «— Integration by Parts

0 Integration by Parts

d
a(f (Wg(0)) = f(OX)+ f(0)gx)

d
= Jgx) = E(f (0)g(0) = f'(0g(x)

= f F0)g'(x) dx J0g(x) — f [ (0g(x) dx

m Another Expression

23
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Let u = f(x) and v = g(x). Then

du ,

A { du = f'(x) dx

dv _ dv =g (x)dx

T8 (x)

x
We obtain
fudv:uv—fvdu

Strategy:

(1) Observe the two funcitons.

(2) One will be differentiated and the other one will be integrated.

(3) Guess the next step fu dv or ff’(x)g(x) dx.

Example 7.1.1. Find f xe* dx

Proof. (Method 1:)
fxex dx:fxex—flex dx =xe*—¢e" +C.
AT A7) Ui
¢ f g fg

(Method 2:) f xe dx.
tl dv

Letu = x and dv = e* dx. Then du = dx and v = ¢*. We have

xetdx=xe"— | efdx=xe"—¢e" +C.
[ ]t A T [

v o dv u v v du

O

Note. Using the integration by parts is to obtain a simpler integral than the begining integral. If
we set different pair of funcitons, the process may be difficult. For example,

The last integral is difficult to compute.

Example 7.1.2. Evaluate f x’e" dx.
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Proof.

LB.P
et dx 2 xPet— | 2xet dx
[ [ T
fg f fog

= xlet - 2(xex - fex dx) (I.B.P twice)

= x’¢"—2xe* +2¢" +C.

Example 7.1.3. Evaluate f Inx dx.

Proof. (Method 1:)

1

flnxdx:flnx-l dx:xlnx—fx— dx=xInx—-x+C.
1 u (AT uy
;e s J -

1
(MethodZ:)flnxdx:flnx'ldx. Letu = Inxand dv = dx. Thendu = ~ dxand v = x.
X

—
u dv
We have |
flnx- ldx=xInx— | x—dx=xInx-x+C.
[T uy
vV ou U |1
du

O

Example 7.1.4. Evaluate f e* sin x dx.

Proof.

. I.B.P
fexsmx dx = e*(—cosx)— fex(—cosx) dx
(] L, 1 (' 1
fog f g 1 g
= —e'cosx+ fe"cosxdx
IB.P ) )
= —e‘cosx+ [e" sin x — fex sin x dx}
Then
2 fex sinx dx = e*(sinx — cos x) + C.
and we obtain .
fex sinx dx = Eex(sinx —cosx)+ C.

O

Example 7.1.5. Evaluate f sin” x dx.
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Proof. ¢« (n=1)

fsinxdx: —cosx+C

* (n=2)

2 2

1- 2 1 1
fsinzxdx:fﬂdx:—x—Zsin2x+C

e (n > 3 integer)
fsin" xdx = fsin”_] xsinx dx
Ifll_l
. g

=" sin"! x (= cos x) — f(n — 1)sin"2 xcos x (- cos x) dx
| — ) 1 L 1l 1

f g Iz g

= —sin"'xcosx+(m—1) fsin”‘2 x(1 = sin® x) dx

- nfsin”xdx

We obtain the “reduction formulas”

—sin" ! xcosx+ (n—1) fsin”_zx dx

) 1 . n—1 -
fsm”xdx: ——sin" ! xcosx + sin" 2 x dx
n n

A Definite Integral

b b b
[ s ar=swew] - [ reew x

Example 7.1.6.

| | |
_ IB.P _ X
f tan"' xdx = xtan lx‘ —f > dx
0 0 o 1+x

1
= xtanlx‘——f—du u=1+x
0 21M
o 11 ’2
4 2nul
T 1
= ——=In2
4 2"

Homework 7.1. 3,7, 11, 15, 19, 23, 26, 29, 30, 32, 36, 38, 40, 45, 48, 54, 57, 60, 64, 67, 72
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7.2 Trigonometric Integrals

In this section, we will find the antiderivatives of the forms

f sin” xcos” x dx and f tan™ x sec” x dx

form,n € {0} UN.

0 Integrals of Powers of Sine and Cosine

fsinm xcos" xdx form,n e {0} UN.

27

Recall:
d d

e —(sinx)=cosx and —(cosx)=—sinx
dx dx

e sin“x+cos?x=1

. 2 1 —cos2x ) 1 + cos2x
o sin“x=——F— and cos Xx=—

2 2

e sin2x =2sinxcosx and cos2x=2cos?x—1=1-2sin’>x = cos

X — sin” x.

Case 1: Either m is odd or 7 is odd.

Strategy: If m = 2k + 1 is odd, set u = cos x. If n = 2k + 1 is odd, set u = sin x.

Example 7.2.1. Evaluate f sin® x dx

Proof. Let u = cos x. Then du = —sin x dx.

fsin3xa’x = fsinzxsinxa’x:f(l—coszx)sinxdx

1
—fl—u2du:—(u—§u3)+c

1
—cosx+§cos3x+C.

Example 7.2.2. Evaluate f sin® x cos x dx.
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Proof. Let u = sin x. Then du = cos x dx.

fsin6 xcos® x dx fsin6 xcos* xcos x dx

= fsin6 x(1 = cos? x)? cos x dx

fu6(1 —uH)? du = fu6 —2u® + u' du

1 7 2 9 1 11
= -u' ——u+—~u +C
74 79 T

= lsin7x—%sin9x+isin“x+c.
7 9 11

Case 2: Both m and » are odd.

Strategy: Using the half-angle identity, either
(i) reducing the integral to Casel, or

(i1) converting the integral to another Case2 and using the half-angle identity until reduc-
ing the integral to Casel.

Example 7.2.3. Evaluate f sin® x dx.

Proof. (Method 1) Using the Integration by Parts to down the power by 2

fsin4 xdx =

(Method 2)

1 —-cos2x\2
(o2,

—

1 — 2cos2x + cos® 2x dx

1—2cos2x+#dx

3 1
— 2 — 4
> cos x+2c0s x dx

ol Bl S B S B S

1
X —sin2x + gsin4x) +C

—
\SROA

Example 7.2.4. Evaulate f sin* x cos? x dx
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Proof.

f sin* x cos® x dx

f(l —cos? x)? cos® x dx = fcoszx—2cos4x+cos6xdx

f1+c2052x _2(1 +c20s2x>2+ <1 +c2052x>3dx

f1+cos2x 1+2c0s2x+00522x+1+3c0s2x+300522x+cos32x
= X
2 8
= fl——cos2x——c0322x+1cos32xdx
B g 8 8 8
1 1 1,1 4 1
= fg—gcosbc—g(%c)d + = fcos 2x-cos2x dx
1 1
(set u = sin 2x) = § —Esm2x—Ex——sm4x+ f(l—u) — du
| 1
= Ex—ﬁs1n2x—6—4s1n4x+—(u—§u)+C
_ ! ! 4 ! 2x+ C.
= 16x 64s1n X 48s1n X

0 Integrals of Powers of Secant and Tangent

ftan’" xsec"xdx form,n € {0} UN.

Recall:
d 5 d
e —(tanx) =secx and —(secx) =tanxsecx
dx dx

e sec?x=1+tan’x

Case 1: nis even (n = 2k)

Strategy: Let u = tan x. Then du = sec? x dx

Example 7.2.5. Evaluate f tan’ x sec® x dx

Proof. Letu = tan x. Then du = sec? x dx.

f tan’ xsec® x dx = f tan’ x sec* xsec® x dx

f tan® x(1 + tan” x)? sec? x dx

1 1 1
fus(l +u?)? du = 8u6 + Zug + Eulo +C

1

1 1
gtan6x+1tan8x+l—0tan1°x+C.
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O
Case2: misodd (m =2k + 1,n # 0)
’ Strategy: Let u = sec x. Then du = tan x sec x dx
Example 7.2.6. Evaluate f tan’ x sec® x dx
Proof. Let u = tan x. Then du = sec? x dx.
ftanS xsec® xdx = j‘tan4 xsec’ x - tan x sec x dx
= j‘(sec2 x — 1)?sec’® x - tan x sec x dx
= W -1D%"du= %ulo — %us + éu6 +C
= Tl()seclox—%sech+ gsec6x+C
O
Note. In order to solve the integral of other cases, we recall the integral
ftanxdx =1In | secx‘ +C
Example 7.2.7. Evaluate f tan® x dx
Proof.
j‘tan3 xdx = ftan x(sec’ x — 1) dx
= ftanxseczx—tanxdx :%tanzx—ln‘secx|+C
= fsecx~tanxsecxdx— ftanxdx
(set u = sec x) = fudu—ln!secx}+C
L oo
= 5sec x—In|secx|+C
O

Case 3: Others (m is even or n is odd)
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Strategy: When m = 2k, we can convert the term tan?* x into (sec? x — 1)*. Hence, we can
convert the integral tan* x sec” x dx into f (sec? x — 1)* sec™ x dx. It suffices to consider

the integral of the form

f sec* xdx or f tan® x dx for every k € N.

1 (k=1
+
fsecxdx = fsecx-mdx
secx +tanx

1
f—du:1n|u|+C:In secx+tanx| +C
u

(set u = sec x + tan x)

(i) (k=2)
fseczxdx =tanx + C

(iii) (k > 3, integer) By the Integration by Parts,

k=2

t - k-2
fseckxdx: an)lc{s_ecl x+k_1fseck‘2xdx

0 Using Product Identities

To evaluate the integarls
f sin mx cos nx dx, f sin mx sin nx dx, f COS MX COS nx dx

we can use the following identities

(a) sinAcos B = 1[sin(A — B) + sin(A + B)]
(b) sinAsinB = % [cos(A — B) —cos(A + B)}
(c) cosAcosB = % [COS(A — B) + cos(A + B)]

Example 7.2.8. Evaluate f sin4xcos Sx dx
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Proof.
1
fsin4xcos§xdx = fi sin(—x) + sin 9x] dx
= 1(cosx— —cos9x) + C
2 9

Homework 7.2. 11, 17, 20, 25, 29, 38, 41, 48, 53, 56, 61, 66, 75

7.3 'Trigonometric Substitution
Goal: To deal with the integral with the terms

Va? — x2, Va?>+x*> or x2 —a*> wherea > 0.

Question: The integral

f Va? — x2 dx

interprets the area of a circle or an ellipse. How to compute it?

1
We can evaluate the integral f xVa? — x* dx = 5 f Vu du by using the substitution method

(u=a*-x%

Recall: (Substitution Method)

f £(8(0) g'(x) dx 25 f f(w) du

fw) du

e When using the substitution method, “x” is old variable and “u” is a new variable. More-
over, the new variable u = g(x) is a function of the old Varlable.

e Conversely, consider f f(x) dx. Assume there exists an one-to-one function g such taht

x = g(t) [the old variable “x” is a function of the new variable “7”].

(Inverse Substitution)

ff()d e, ffg(r) ) ¢/(0)di
f(x) x

Note. In general, the suitable function g is not easy to find. But, it is effective for the given
radical expression because of the specified trigonometric identities.
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Qa Trigonometric Substitutions
Expression Substitution Identity
[ I "
Ja? — x? X = asin 6. 7%’ sfs< 71 1 — sin’f = cos’0 H/ -
Vai— x
v /////
= Jai—a?
JaT 12 x =atan 6, *%T <f< 21 I+ tan’6 = sec’f /H// .
Y .\'3+ V
m x=asec B, ﬂ‘*’-ﬁ‘{?()l 'JT“‘H<% sec’f — 1 = tan’0 ///H/ I
a
9 — x2
Example 7.3.1. Evaluate >— dx.
X
) m T
Proof. Let x = 3siné, ) <x< 5 Then dx = 3 cos 6 d6.
. =
o X
VO — x2 3cosf A
2x dx = f ) -3cos6a’0:fc0t20d0 0
X 9sin“ 6 Jo—x
= fcscze—lde sin 0 =<
= —cotd-60+C
V9 — x2 X
= - al —3sin”! (§)+C sin@zf = 0 =sin"! (f)
X
It is why assuming g is 1-1.
O
1
Example 7.3.2. Evaluate f dx
x2Vx2+4

Proof. Let x = 2tané, —g <6< g Then dx = 2 sec? 6 do.

[3e]

X
tan 0 = 3

1 1
———dx = -2sec’ 6 do
2V +4 * f4tan20-2sece
1 6 1 6
_ fsec :_fcos 40
tan? 0 4 J sin’6
= f—du———+C
3 VX2 +4
B 4sm6’ B dx

+C. \Setu:sine = duzcos@d@\
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O
Example 7.3.3. Evaluat f ! d >0
X J3.3. Evaluate | ———=dx,a
V-2
Toom
Proof. Letx =asec6,0<60< 3 or 3 <@ <m. Then dx = atan0sec 8 do.
f ! d f ! tan 0 sec 6 df
——dx = -atanfsec
Va2 — a2 atané ' o
= fsec 0df =In ‘ sec 6 + tan 9‘ +C /.-f'”'// b
e H/
= |t —x2_“2‘+c ' a
a a —
= In|x+ sz—az‘—lna+C R
= In|x+ sz—a2’ +C
Notice that an alternating method is using the hyperbolic functions O

Example 7.3.4. Find the area enclosed by the ellipse
2 2
all + Y - l.
a’  b?
Proof. The area enclosed by the ellipse is equal to 4 multiple of the region in the first quadrant.

2
. X
Consider the curve y =b 1 — — 0<x<a.
a

y
(0, b)
Area = 4fb 1—x—dX——f Va? — x% dx K_F\(am
0 piq O X
4b (2 \/v
= — acosf-acosbdb
a Jo
21 +cos?6
- 4abf T8 T e R
0 2 A
1. 2 g8 e
= 2ab(9+§sm29) . = nab.
set x =asinf = dxzacos@d@\
]
3V3
2 x3
Example 7.3.5. Evaluate‘fo m dX.

3 3
Proof. Let x = 3 tan 0, then dx = 3 sec? 6 do.
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._l‘J

Y 3 z 8tan@ 3
——dx = = . Zsec’6do
fo @x2 +9y2 fo 2Tsecif 2"
3 5 tan’ 6 3 5 sin’o
16 J, secd 16 J, cos?é
3 (71— 3,
(Setu =cosf) = %) @ (—du):ﬁféu —1du
3 4 3
- R(_” _”)‘;_3_2
Example 7.3.6.
X X
— dx f—dx
f\/3—2x—x2 V4= (x+1)?
2sin6 —1
(Setx+ 1 =2sin0) = ILQcostH
2cosd
= stinG—ldQ
= —-2cos0-0+C

= —\4—(x+1)2=sin"’ (%) +C.

Homework 7.3. 13, 16, 19, 23, 28, 32, 36, 37(a), 39, 40, 46

V4-(+1)

7.4 Integration of Rational Functions by Partial Fractions

Observation:

f

.x+1

f 1
.x_2

dx=2Iln|x+1|+C

dx=2In|x+ 1] -

f 2 1

=

X+ x—2
f 2 —x-— 2

dx=In|x-2|+C

Inlx-2|+C

Goal: In this section, we want to deal with the integration of the rational functions. Let

_ P(x)
fx) = )
where
Px)y=a,x"+---+aix+ay and Q(x)=b,x"+---+bix+by

are polynomials.

for a,,b, #0

35

x+1
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P
Definition 7.4.1. 1f n < m, we call £(x) [ = 23] a “proper” ratonal function s i n > m, we
X
call f a “improper” rational function.

Review: In high school algebra, we can use long-divison to express a rational function as the
sum of a polynomial and a proper rational function.

P(x) R(x)

= S

0w~ Wt om
polynomial N~

proper rational

function
Hence,
P(x) f R(x)
dx= | S(x)dx+ | —=dx
0(x) ) om
et‘lgy pa:’;ial
fraction

From now on, we assume all the below rational functions are proper and discuss the inte-
gration of proper rational functions by using the method of “partial fraction™.

0 Partial Fractions

R dx

O(x)
~———
proper rational
function

m Strategy

Step 1: Factorizing the denominator Q(x) as far as possible.

Example 7.4.2.

O(x) H-16=(2 =P +4) = (x=2)(x+2)(x* +4)
Olx) = x3—5x2+7x—2=(x—2)(x2—3x+1):(x—2)(x— 3 )(x— 3 )

Q(x)
Q(x)

X = 2x* —16x+32 = (x - 2)*(x + 2)(x* + 4)
=52 +12x - 12 = (x=2)(x* - 3x + 6)

Remark. Every polynomail can be factorized as the product of several 1-degree and irreducible
2-degree polynomials. That is,

Ox)= (a1 x+b)" - (a,x + bn)’”(clx2 +dix+e)t - (cmx2 +d,x + e,

R(x)

O(x)

as the sum of several terms of the forms

Step 2: To express

A Ax+ B
_ o —
(ax + b) (ax? + bx + ¢)
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That is,
R(x) _ Ay + A 4. Alr1
0(x) (aix+by) (a1x+by)? (alx + b))
+
+
Anl An2 + Anr,,
(apx +b,)  (ayx+b,)? (a,,x + b))
C11X+D11 C12x+D12 . Cls1x+Dlsl
(c1x2+dix+e) (c1x*+dix+e)? (c1x2+dix+e)n
+
+

lex + Dml szx + Dm2

Cins, X + Dy,

(X2 +dpx+e,) (cux*+d,x+e,)? (cmx + dyx + ey

37

Step 3: Take the integral on each of the above terms and use the techniques in the previous

sections.

m Integration of each of the proper rational functions in Step 2.

(I) Case 1: Let Q(x) = (a1x + by)(ax + by) - --
That is, Q(x) has no factor repeated. Then

R(x) A, Ay
= + ... + _
O(x) (aix+by) (arx + by)

2+2x -1
Example 7.4.3. Evaluate f 2;37;2_2)6 dx.

Proof. Since 2x° + 3x* — 2x = x(2x — 1)(x + 2), we have

2+2x—1 A B C 1 1 1
_— = -+ + (A:—,B:_,C:__)
2x3 +3x2 - 2x x 2x—1 x+2 2 5 10
_ 11 1 1 1 1
= 2% 52x—1 10x+2
Hence,
2 +2x—1 1 (1 1 1 1 1
= dx = = | —dx+-= dx — — d
f2x3+3x2—2x o 2f o 5f2x—1 TT0) x+2

= —1n} |+—1n}2x—1}——1n]x+2\+c

(arx + by) where all (a;x + b;) are distinct.
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(II) Case 2: Let Q(x) = (a1x + by)"(azx + by)™ - - - (agx + by)™. Then

R(x) _ Ay + A et A1r1
0(x) (ax+b)  (a1x+by)? (a1x + by))n
+
+
Anl A Ak,
+ + P + S —
(akx + bk) (akx + bk)2 (akx + bk)r"
Example 7.4.4. Eval tf hal d
p valuate R p— X

Proof. Since x* — x> —x+1 = (x - 1)*(x + 1), we have

4x A N B N C
B-x2-x+1 x=1 (x-12 x+1
1 2 -1
+ +
x=1 (x=-12% x+1

4x 1 1 1
—_—d dx+2 dx — d
fx3—x2—x+1 o fx—l T f(x—1)2 * fx+1 *
2

~In|x+1|+C

A=1,B=2 C=-1)

Hence,

ln‘x—l‘ o

(III) Case 3: Let Q(x) = (a1x* + bix + ¢))(axx* + bax + ¢3) - - - (@px* + bex + ¢;) where all
(a;x* + b;x + ¢;) are distinct and irreducible. Then

R()C) _ Alx+ By Arx+ B, + Arx + By
0x) @ +bix+c; @xX>+bx+c, ax? + byx + ¢,
2x* —x+4
Example 7.4.5. Evaluate f 2T
X3 +4x

Proof. Since x* + 4x = x(x* + 4), we have

2x* —x+4 A Bx+C

_ = -+ A:1,B:1,C:—1
X3+ 4x x x*+4 ( )

1 x—1

X

+
X2 +4
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Hence,
2x* —x+4 1 x—1
| Pt = e [ e
2x

1 1 1
Sdx= - dx — d
fx * 2fx2+1 o fx2+4 o

ln‘x|+%ln‘x2+1’—tan_l(§)+C dex:tan_l(Z)+C

Trick:

Cu+D C 2u 1
U | -2 au+p | ——d
fu2+a2 “ 2fu2+a2 “ fu2+a2 "

= gln }uz +a2‘ + Dtan™! (2) +C.

Remark. As long as the denominator ax*> + bx + ¢ cannot be factorized further (irre-

Ax+B
ducible), — >

————— must be expressed as
ax*+bx+c

Ax+ B A (2ax + b) Ab 1
- @ = _.—+(B__).—
ax* +bx+c 2a ax*+bx+c 2a’ ax?+bx+c
A 2ax + b Ab 1

- _  + T —
2a ax*+bx+c ( 2a> (ax + B)? + 2
Example 7.4.6.
f x—1 J 1 f 8x—4 J 1 f 1
4x2 —4x+3 8 ) 4x2—4x+3 2J Qx-12+2

1 ) 1 1
gInf4x —4x+3‘—1fu2+2du

(setu =2x-1)

= Lhjae- ~ L an (2L

= 81n\4x 4x +3| 7 tan (\/§)+C
1 1 2x—1

= gln]4x2—4x+3‘—ztanl( 7 )+C

(IV) Case 4: Let O(x) = (a1 x> + bix + ¢)* (aax® + bax + ¢2)* - - - (g x> + bex + ¢x)** where all
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(a;x* + b;x + ¢;) are distinct and irreducible. Then

R(X) _ A11X+Bll A12X+Blz + + A1s1x+B151
0x)  (@xX2+bix+c) (ax2+bix+c)? (a1 x>+ byx+c))"
+
+
Apix + By Ax + By . Aps X + By,
(apx® + bpx +c)  (apx® + bex + ¢x)? (agx® + byx + cp)%
l—x+2x>-x°
Example 7.4.7. Evaluate f T T gk
x(x2+1)?

Proof.

l—x+2x* =%

x(x2 + 1)?
A Bx+C Dx+E
—+ +
x  x2+1  (x2+1)?
1 x+1 N X
x x24+1 2+

I —x+2x*-x3 1 x+1 X
dx = | Zdx- e+ | —2— 4
f x2+1p fx o fx2+1 T @Y
1 1 2x 1 1 2x
Sdx— = dx — e+ - | =22 4
fx o 2fx2+1 o fx2+1 o 2f(x2+1)2 o

1 _ 1
1n}x|—§1n}x2+l‘—tan 1X—2(x2—+1)+K

A=1,B=-1,C=-1,D=1, E=0)

(V) Case 5: General case,

0(x) = (a1 x+b))" (arx+by)"? - - - (anx+bn)’"(c1x2+d1x+el)s'(czx2+d2x+eg)52 e (cmx2+dmx+em)s’”
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then
R(x) _ Ap 4 Ap oy Ay,
O(x) (aix+by)  (a1x+b)? (a1 x + by)"
+
+
Anl An2 + + Anr,l
(a,x+b,) (a,x+b,)? (a,x + b,)n
+ C11X+D11 C12x+D12 - C151X+D1Sl
(C1X2 +d1.x+€1) (C1X2 +d1.x+€1)2 (c1x2+d1x+el)“
+
+
lex + Dml Cm2X + sz Cmsmx + Dmsm

+ P +
(Xt +duyx+e,)  (cpx?+d,x+ep)? (CnX? + dypx + e,,)m

0 Rationalizing Substitutions

VX

+4
dx.
X

Example 7.4.8. Evaluate f

Proof. Letu = Vx+4. Then x = u> — 4 and du = dx. We have

2Vx+4
Vx+4 u’ 4
=211
f P dx fu2_4du f +u2_4du

1 1
= 2u+?2 - d
“r fu—Z u+2 .

u-—2

+C
u+2’

2u+21n‘

N
Vit d+2In L‘+C.
Vx+4+2

Homework 7.4. 9, 13, 17, 21, 25, 29, 33, 37, 45, 48, 51, 55, 61, 68

7.5 Strategy for Integration

® Mermorized the Table
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Table of Integration Formulas Constants of integration have been omitted.
n+l N 1
l.fx dx—n+ (n#—1) 2.J;dx—ln|x|
3. f e‘dx = e 4., J b*dx = &
Inb
5.fsinxdx=—cosx 6.jcosxdx=sinx
7 f sec’x dx = tan x 8. j cscx dx = —cot x
9. fsecxtanxdx=secx 10. jcscxcotxdx=—cscx
11. fsecxdx= In|sec x + tan x| 12. jcscxdx = In|csc x — cot x
13.ftanxdx=ln|secx| 14.jcotxdx=ln[sinx|
15. f sinh x dx = cosh x 16. f cosh x dx = sinh x
dx 1 o X dx o X
17.fx2+a2—atan (a) ls.jmsm (a)’ a>0
d 1 = d
9. [ == -l —— . [ == =In|x + P = |
x*—a  2a |x+a x? & g2
m Strategy

(1) Simplify the integrand if possible
(2) Look for an obvious substitution
(3) Classify the integrand according to its form

(a) Trigonometric function: products of powers of sin x, - - - , csc x.

(x)

P
(b) Rational function ——

Q(x)
(c) Integration by Parts:

f f(0)g'(x) dx J0g(x) - f f'(0g(x) dx

fudv = uv—fvdu
(d) Radicals:

e Trigonometric substitution: V2 + a2, Va2 + x2
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e Rationalizing substitution: Vax+b (letu = Vax +b)
(e) Try again!

Question: Can we integrate all continuous functions and find the explicit forms of their an-
tiderivatives?

Answer: No! For example, we cannot find the explicit form of f e dx, f < dx, f sin(x?) dx,
X

fcos(e)dx f Va3 + dxf fsmx

Homework 7.5. 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 94, 95

7.6 Integration Using Tables and Technology

Homework 7.6.

7.7 Approximate Integration

Sometimes, it is difficult to find the exact value of definite integarl. Two situations may be
happened.

1 1
(1) We cannot find the explicit form of an antiderivative of f. For example, f e* dx, V1 + x3 dx.
0 -1

(2) The function is determined from a scientific experiment. But there may be no formula for
the function.

Goal: In this section, we want to approximate value of definite integrals.

Recall: The Riemann integral is the limit of Riemann sums

b n
f f(x) dx = lim Z F(xXHax.
a A

Hence, as n is sufficiently large,

b n
f fx)dx = Z f(x)H)ax
a i=1

where x” is any point in [x;_y, x;].
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Y A y y
I
ik
| ]|
]|
Lrrpn
T O I
O I B
O B
| | | l
o x, x x x5 x, v 0] xp x x5 x3 X X 0 X X, X3 X X
Left endpoint approximation Right endpoint approximation Midpoint approximation

j"’f(x) e~ L — if(x"“) Ax J’ f(x)dx =~ R, = ﬁ:lf(x,-) Ax j' F(x) dx =M, = ; £(x) Ax

Qa Trapezoidal Rule
p\
b 1 n n
j; fdx~T, = 5[ 2 J(xim)Ax + ; fxal
= S [f0i + f0)]
_ % [fGo) +2fC) + - +2f () + fO)] S
_ Trapezoidal approximation
where Ax = . and x; = a + iAx. J:j’f(x) dx=T,= %[E} (f(ximr) +f(x,))]

2
1
Example 7.7.1. (a) Use the Trapezoidal Rule with n = 5 to approximate the integral f — dx.
1 X

2-1
Proof. Compute that Ax = 5 =02and x; =1+0.2ifori=0,1,2,3,4,5. Then

\ _ 1
y==
X

2
f ldsz5 %[f(1)+2f(1.2)+2f(1.4)
1

+2£(1.6) + 2f(1.8) + (2)]
0.695635.

&

2
1

(b) Use the Midpoint Rule with n = 5 to approximate the integral f —dx.
1 X

Proof.
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2
fldszs = 02[f(.1) + f(1.3) + £(1.5) ) =
X =
+f(1.7) + f(1.9)] L T
~ 0.691908. L]
EEEREERE
HEEEE N

2
In fact, f L =12 =0693147...
1 X

8]

Remark. Define the error of the Trapezoidal Rule and the error of the Midpoint Rule by

b b
Er = f f)dx-T, and Ey = f f(x)dx - M,.
In Example [T, we have E; =~ —0.002488 and E), ~ 0.001239.

2
1
m Observe the table for the approximation to f —dx
1

X
. . 2 1 n Ln Rn Tn Mn
Approximations to ‘ —dx

o 9 0.745635 0.645635 0.695635 0.691908
10 0.718771 0.668771 0.693771 0.692835
20 0.705803 0.680803 0.693303 0.693069

. n EL ER ET EM

Corresponding errors

5 —0.052488 0.047512 —0.002488 0.001239
10 —0.025624 0.024376 —0.000624 0.000312
20 —0.012656 0.012344 —0.000156 0.000078

(1) We get more accurate approximations when we increase the value n.

(2) The errors in the left and right endpoint approximations are opposite in sign (E Ex < 0)
and (E2n ~ %En)

(3) Er,, Em, < Eg,, EI,

(4) Er,Ey, <0and Er,, ~ 1Er,

(5) Eu, = 3Er, forn € N

0 Compare with the Errors of Midpoint Rule and Trapezoidal Rule

C C

e

! the Trapezoidal Rule (E), < E7)
B
i In the figure, the area of the rectangle DAEFD
| is equal to the area of the trapezoid ABCD
B ! b where BC is the tangent line to the curve y =

Xi— X X; f(.X) at P.

Note. The Midpoint Rule is more accurate than
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Consider the polygon QRCB

The estimate of the error depends on f”'(x).

a Error Bounds

Suppose f”(x)‘ < K fora < x < b. If Er and E,, are the errors in the Trapezoidal and
Midpoint Rules, then
Kb -a)’ Kb -a)’
‘ET‘ < W and |EM‘ < A2

1
Example 7.7.2. Let f(x) = — on 1 < x < 2. How large should we take » in order to guarantee
X

2
that the Trapezoidal and Midpoint Rules approximateions for f — dx are accurate to within
1

X
0.0001?

f"(x)| =2x3|<2for1 <x<2. Then K =2,a =1and b = 2. We obtain

Proof. Compute

2-1 1
Er < 5 < 0.0001 = n>——=~408 = n=41
12n 0.0006

2.1 1
Ey > < 0.0001 = n>—— 29 = n = 30.
24n 0.0012

IA

O

1
Example 7.7.3. (a) Use the Midpoint Rule with n = 10 to approximate the integral f e* dx.
0

(b) Give an upper bound for the error involved in this approximation.

Proof.
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1-0
(a) Let Ax= —— =0.1. Then y
10
. /
f e“ dx ~ 0.1[f(0.05)+ f(0.15) +---,(0.95)] y
0 2
~ 1.460393. rTe A
(b) f(x) = e, f'(x) = 2xe", f(x) = 2 +
4x%)e” < 6e for 0 < x < 1. Hence, K = 6e¢
and we have
6e - 13 e : A

Ey<—— = 20.007.
M=94.102 ~ 400

a Simpson’s Rule

Idea: Use several pieces of parabolas to estimate the integral.

.‘v

(1) Divide [a, b] into n subintervals where
. b-a
n is an even number and Ax =

n

(2) Approximate the curve y = f(x) > 0
by a parabola passing through consec-

utive points P;, P;.; and P;,»

\
t t }
a=x, Xy X, X3 X4 X5 X¢=b X

A parabola y = Ax? + Bx + C passing through Py(—Ah, y),
P(0,y,) and P,(h,y,) where h = Ax = — a‘ Then

n
Yo = Ah? = Bh+ C

n=C
y» = Ah*> + Bh+ C

We have

b
f f(x) dx

h h
h h
fo2+Bx+Cdx:2f Ax* + Cdx = ZQ2AR +6C) = 300 +4y1 +y2)
—h 0

Q

(G0 +4y1 +32) + 2 +4y3 +y4) + - + Guz + 4t + V)]

= = [yo+4yi + 20 +4ys+ 24+ -+ 200 + Ayt + V)

WS Wl s

h
3 [f(x0) +4f(x1) + 2f(x2) + -+ + 2f (Xy2) + 4f (1) + £ (x)]
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2

1
Example 7.7.4. Use Simpson’s Rule with n = 10 to approximate f — dx.
1 X

1
Proof. Let f(x) = — and Ax = 0.1. Then by the Simpson’s Rule,
X

2
f ia’x ~ Si= %[f(l) +AF(1]) +2£(1.2) + 4£(1.3) + 2£(1.4) + 4£(1.5) + 2£(1.6)
1
+4£(1.7) + 2f(1.8) + 4£(1.9) + f(2)] ~ 0.693150.

O

2

1

Remark. f —dx=1In2 ~0.693147. Then Ty ~ 0.693771 and M;, ~ 0.692835. S, is more
1 X

accurate then Ty and M;,. In fact,
1 2

Som==T,+=M,.
n =3 3

1
Usually, 7, and M, have different signs and |Ey| ~ E}ET}

n Mn Sn n EM ES
0.69121989 0.69315453 4 0.00192729 —0.00000735
8 0.69266055 0.69314765 8 0.00048663 —0.00000047
16 0.69302521 0.69314721 16 0.00012197 —0.00000003

1 1
Observe that Eg, =~ EE s, Therefore the error bounds should have factor —.
n

m Error Bound for Simpson’s Rule

Suppose that | f®(x)| < K fora < x < b. If E is the error involved in using Simpson’s
Rule, then
Kb - ay’
180n*
Example 7.7.5. How large should we take n in order to guarantee that the Simpson’s Rule

| <

2

1

approximation for f — dx is accurate to within 0.0001?
1 X

1 24
Proof. Let f(x) = — and f*(x) = —. We have | f*(x)| <24 for 1 < x <2.
X X

24 -1 24 1
E¢| < <0000l = n*>——"— = >—— ~6.04.
1Es| < 708 " 7180 0.0001 " 0.00075
We take n = 8 since n must be an even number. O

Recall that for the same accuracy, n = 41 for trapezoidal Rule and n = 29 for Midpoint
Rule.



7.8. IMPROPER INTEGRALS 49

1
Example 7.7.6. (a) Use Simpson’s Rule with n = 10 to approximate the integral f e* dx.
0

(b) Estimate the error involved in the approximation.

Proof. (a) Letn =10and Ax =0.1.

1
f e dxx~S,y = % [£(0) + 4£(0.1) +2£(0.2) + -+ + 2£(0.8) + 4£(0.9) + f(1)]
0
1.42681.

X

(b) fD(x) = (12 + 48x% + 16x*)e* < 76e for 0 < x < 1. Then

76e - 1°
—— ~ (0.000115.
180(10)*

1
f e dx ~ 1.463.
0

|Es| <

Hence,

Homework 7.7. 9, 13, 17, 21, 41

7.8 Improper Integrals

b
In the previous sections, we discuss the definite integral f(x) dx of f under the assumptions

that f is defined on a finite interval [a, b] and f does not have an infinite discontinuity. In the
presect section, we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where f has an infinite discontinuity in [a, b]. In either case the
integral is called an “improper integral”.

Q Typel: Infinite Intervals

Let f be a function defined on an infinite interval such as [a, o], (—00, a] or (—oo, c0).

1
Example 7.8.1. Let f(x) = = be defined on [1, 00). y
X

So far, we can only evaluate the integral of f on an finite in-

terval. Fix r > 1, we have the area of the region bounded by

1 .
y:—z,x—ams,x:landx:t
X

"1 1
A(t):f—zdx:——
1 X X

1
To evaluate the area of the region bounded by y = —, x-axis and x = 1, we let 7 tend to infinity
X

t
=1--. 0
1 t

and consider the limit

!

1 1
lim A(¢) = lim = dx = lim(1 — ;) =1.

t—o00 t—o0 1 X t—o0
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VA

1
area = 5 area= 1

0 1 2 X 0 i ‘Iz) X 0 | 54 0 1 *

!
1
Note. In the above process, the integral f — dx should be defined for all 7 > 1.
1 X
Definition 7.8.2. (Improper Integral of Typel)

(a) If f is defined on [a, c0) and fa ' f(x) dx exists for every number ¢ > a, then
00 !
f f(x)dx = limf f(x)dx
a t—o00 a

(b) If f is defined on (—oo, b] and ft ¢ f(x) dx exists for every number ¢ < b, then

provided this limit exists.

b
f f(x)dx = tlir_n f(x) dx

proveided this limit exists.

(oo

b
We call the above improper integrals f f(x) dx and f f(x) dx “convergent” if the cor-

a —00
responding limit exists and “divergent” if the limit does not exists.

(c) If f is defined on (—o0, 00) and both fa ~ f(x) dx and f_ aoo f(x) dx are convergent, then we
definte

foof(X) dx= | f(x) dx+fwf(x) dx.

In part (c) any real number a can be used.

Remark. If f(x) > 0 and the integral fa ” f(x) dx is convergent, we define the area of the region
S={(xy)[x>a,0<y< f(x)}tobe

A(S) = foof(x) dx.

y = f(x)
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Example 7.8.3.

<1
(1) Discuss for what values of p the integral f " dx is convergent or divergent.
1 X

Proof.

=1 ‘1
f —dx=1lim | —dx
1 xP t—eo Jy xP

Conclusion: f " dx is convergenet if p > 1 and divergent if p < 1.
1 X

YA v 4

. infinite area
finite area

0 i X 0 i X

/| " (1/x?) dx converges. |7 (1/x) dx diverges.

1

0
(2) Evaluate f xe* dx.

—00
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Proof.

0 . ) 0 « 4 LBP .. |° 0 .
xe*dx = lim xe*dx = lim [xe - e dx}
—00 t t

t——00 t——00 t

’ =lim |-t —1+¢
N [ ]

= lim [—te’—ex

t——00 r——00
= -1.
O
(3) Evaluate [ Ti e dx.
Proof.
1 | 1
dx = dx + dx.
f_‘m1+x2 * £O<,1+)c2 o fo‘ T+
Consider
< 1 | t
f dx = lim dx = limtan™' x
0 1+X2 = Joy 1+x2 t—o0 0
= limtan™'7 = 7—T.
t—00 2
0 1 ‘ 0 1 ] . 0
dx = lim dx = lim tan™" x
oo L+ X2 im0 J, 1+ x2 100 '
= Tim(—tan-ly = X
= tl_l)r_rgo( tan” 1) 5
Hnece, .
| 1 | T
dx = dx + dx=—-+=-=nm.
Lo1+x2 * L<,1+x2 * fo 1+ 277"
Note that f(x) = is an even function.
1+ x2
YA
_ 1
0 X

Remark. (Wrong Steps)

<1 1
(1) We cannot replace “co” by x directly. For example, f = dx = —— = 0-(-1 =1
1 X X
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!
(2) When integrating a function over (—oo, o), the improer integral cannot write as lim f f(x) dx.
tooo ),

For example,

wrong
I 1

00 1 ! t
dx = lim dx = limtan™' x
oo L+ X2 —oo J_, 1+ x? P —t

= limtan~'7 —tan”!(—7)

—00

m m
= 5—(—§)=7T

Q Type2: Discontinuous Integrands

Let f be a function defined on a finite interval [a, b) but has a vertical asymptote at b.
y

In Typel integrals, the regions extended indef-

initely in a horizontal direction. In type2 inte-

grals, the regioin is infinite in a vertical direc-

tion.

01 4 th x
For a < t < b, the area of the region S under the graph y = f(x) fromx =atox =t1is

At = ft f(x) dx.

!
If the limit lil’l{l A(t) = 1iIgl f f(x) dx = A exists, we say that the area of the region § is A.
t—b~ t—b~ a
Definition 7.8.4. (Improper Integral of Type 2)

(a) If f is defined on [a, b) and fa ' f(x) dx exists for all a < t < b, then

y

b t
f f(x)dx = lilgl f f(x)dx y=f) x=b
a =6 a

if this limit exists.

(b) If f is defined on (a, ] and ft ’ f(x) dx exists for all a < t < b, then

b b
ff(x)dx:}iqff(x)dx

if this limit exists.

y
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b
We call the improper integral f(x) dx “convergent” if the corresponding limit exists and

a
“divergent” if the limit does not exist.

(c) For a < ¢ < b, if f has an (infinite) discontinuity at c, if

C b
both f f(x)dx and f f(x) dx converge then we say that ~
b a c
f f(x) dx converges and
b c b 5 -
f f(x)dx = f f(x) dx + f f(x) dx. “ ¢ ?
Example 7.8.5.
S |
(1) Evaluate f dx.
2 Vx-—-2

Proof. The function f(x) = has the vertical

x—2
asymptote x = 2. Thus,

2 5 5
1 1
f dx = limf dx
2 Vx-=2 =20 J; x—2
5
area=2\ﬁ = 11m2‘\/x—2t

t—2t
of 1 2 3 4 5

tnrgz(«f— Vi-2)=213.

=Y
1

s

2
(2) Evaluate f sec x dx.
0

Proof. The function f(x) =secx has the vertical

1 =z
v asymptote x = 7. Thus,
0 y=sec x : t
f secxdx = lim sec x dx
. 0 =) Jo
t
= lim In|sec x + tan x|
X t—(3)" 0
1 2 3 .
= lim [In|secx +tanx| —In1] = oo.
t—)(’z—r)‘
O
3
(3) Evaluate f dx.
0 X—



7.8. IMPROPER INTEGRALS 55

1
Proof. The function f(x) = 1 has the vertical
x —_—
asymptote x = 1. Thus,

1 t
1 1
f dx lim dx
0 .x_l t—1- Ox—l

t
: I,

wH

|
W
It

lir]n Injt — 1] = —c0.
—1"

3
1
Hence, f dx is divergent. O
0o X— 1

1 3
a’x:(lnlx—ll)‘ =In2-1Inl=1n2.
x—1 0

3
Wrong method: f
0

1
(4) Evaluate f In x dx.
0

Proof. The function f(x)=Inx has the vertical

%
/ asymptote x = 0. Thus,
> 1

1
0 1 x flnxdx = lim Inxdx
0

.
t—0 P

1
lim[x1nx — x]

t—0*

t
:hWﬁW—HﬂgFL
t—0*

y=Ilnx

1

(5) Discuss for what values of p the integral = dx is convergent or divergent.
0 X

1
Proof. When p <0, f(x) = - is continuous on [0, 1]. Hence, the integral is convergent
X

1
1 1 1

and f — dx = ——. Consider the cases p > 0, then function f(x) = — has a vertical
0 XP 1-p xP



56 CHAPTER 7. TECHNIQUES OF INTEGRATION

asymptote x = 0. Then

1 i 1 !
lim p#1
1 1 1—p;—>o+xp—1t
—dx = lim —dx =
0o XP =0* J; XP 1
lim (In |x|)’ p=1
t—07* t
( 1
— p<l
lim(1-77) =¢ ~ P
1 -p t—07t
= o) p>1
\ tllgl(—lnt):oo p=1

1
1

Conclusion: f = dx is convergent if p < 1 and divergent if p > 1.
0o X

Q Comparison Theorem

Note. For some definite integrals, it is impossible (difficult) to find their exact values but we
can still determine whether these integrals are convergent or divergent.

Theorem 7.8.6. (Comparison Theorem) Suppose that f and g satisfy 0 < g(x) < f(x) for every

X 2a.
VA
(a) If f f(x) dx is convergent, then f g(x) dxis con- f
(b) Iff g(x) dx is divergent, then f f(x) dx is di- N
vergaent. ¢ 0] a .
Example 7.8.7.

(1) Determine whether the improper integral f e dxis convergent or divergent.
0

Proof.
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Since f(x) = e~ is continuous on [0, 1], it is integrable on
[0, 1]. On the other hand, 0 < e < e~ for every x > 1 and

00 !
e " dx =1lim
1 =0 1

e dx = lim(—¢") -1

—o0

t
=e
1

57

00 0
By the Comparison Theorem, the improper integral f e dx
1

is convergent. Hence,

00 1 00
f e dx = f e dx + f e dx
0 0 1

Vr
=

is also convergent. In fact, f e dx =
0

‘i'(') e dx

0.7468241328
0.8820813908
0.8862073483
0.8862269118
0.8862269255
0.8862269255

AN N R W N =~

O
: . . “1l+e™ .
(2) Determine whether the improper integral dx is convergent or divergent.
1
Proof.
. I +e* . g
Since 0 < — < forevery 1 < x < co and : A
2x x 2 0.8636306042
© 1 ‘1 1 5 1.8276735512
f 2— dx = 5 lim —dx == limlnt = oo, 10 2.5219648704
[—o0 [—o0
poe L 100 4.8245541204
By the Comparison Theorem, the improper integral 1000 71271392134
“1+e” L. 10000 9.4297243064
dx is divergent.
1 X
O
70, 80, 83

Homework 7.8. 15, 19,24,29,32,34, 36, 38,46, 48, 50, 54, 57, 64, 69,
Type 1

Type 2
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BT ArcLength . . . . . . . . . . . . e e e 59

8.1 Arc Length

In the present section, we want to evaluate the arc length of a curve which is the graph of a
smooth function.

Question: For a given curve C, what is the length of C?
If the curve is a polygon, it is easy to find its length.

. . (7
Question: How about the length of a general curve? What is the length of this curve?

We try to approximate the length of a general curve by polygons and take a limit as the
numbers of thy polygon is increased.

OO0

Suppose that f is a function defined on [a, b] and C is the graph of f with equation y =
f(x). Let P = {xo,x,---,x,} be a partition of [a,b] and the point P;(x;, f(x;)) are points
on C. Consider the polygon with vertices Py, Py, --- , P,. Then the length L of the curve C is
approximately the length of the polygon

Zn] |Pi_yPy| = i \/(Xi — X+ [f(x) - f(xi—l)]z-
=1

i=1

As n increases, the approximation gets better

59
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Definition 8.1.1. We define the*“/ength” L of the curve with equation y = f(x), a < x < b, as
the limit of the lengths of these approximating polygonal paths (if the limit exists). That is,

L= tim 3} Peip
i=1

where |Pl~_1P,-‘ is the distance between the points P,_; and P;.

Unfortunately, for a general function f, the approximating length £(P, f) is not easy to ob-
tain. Therefore, from now on, we assume that f has a (continuous) derivative.

The length of the segment P;_; P; is g
Fxi)

VP + @y = V=P o) - ool
B N e e R )

= 1+ ax. 5

The length of the curve C with the equation y = f(x) on [a, b] is

n b
L=1im Y \/1+[f()P ax = f V1+ (0P dx.
i=1 a

The last equality is followed the hypothesis that f is continuously differentiable.

m Arc Length Formula

If f’(x) is continuous on [a, b], then the length of the curve y = f(x), a < x < b, is

b
L:f V14 [f(x)]*dx.

The expression in Leibniz notation is

L:fb\/1+(%)2dx.
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Example 8.1.2. Find the arc length of the semicubical parabola y* = x> between (1,1) and

4,8).
Proof. 4
The curve between (1, 1) and (4, 8) satisfies the 13:5)
equation y = x*2. Then d_y = Ex”z. The arc .
X y =X
length of the curve is
3 § 0 1 —
L=| 1+ (Ex) dx=—u?| =-—80VI10-13V13). ° .
f14 (2x2) X = o-u 5 27( V10 V13)
O

Suppose that the curve C has equation x = g(y), ¢ <y < d. Then the arc length of C is

) o
L:f\m+wwp@:fjl+@ﬁﬁy

dy
Example 8.1.3. Find the arc length of the curve C with the equation y*> = x from (0, 0) to (1, 1).
Proof.

) . dx
Since the curve has equation x = y?, then e 2y. The arc
y

length of the curve is

1
f V1+Q2y2dy =y
0

tan~! 2
1 1
\/1+tan29~§seczed9 (y:EtanO)

tan~!' 2

L

0

1
= Z(sec@tan0+ln|se09+tanHI)

V5

— +
2

0

In(V5 +2).

Bl—

m]
b 2
Sometimes, the integral 1+ ( f’(x)) dx is difficult to find. Hence, we may use the

a
approximation for the integral.

Example 8.1.4. (a) Set up an integral for the length of the arc of the hyperbola xy = 1 from
the point (1, 1) to the point (2, %).

1 1
Proof. Since y = —, we have d—y = ——. Then the arc length is
X X X

2 [
L= 1+ — dx.
[ +x4dx
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(b) Use Simpson’s Rule with n = 10 to estimate the ar length.

Proof.

|
L:I 1+;dx

X

0.1
=3 [f(l) +4f1.1)+2f(1.2)+---+4f(1.9) +f(2)}
1.1321

2

m Arc Length Function

Suppose that a smooth curve C has the equation y = f(x), a < x < b. Let s(x) be the

distance along C from the initial point P, (a, f (a)) to the point Q(x, f (x)). Then s is a function,
called the “arc length function” and

s(x) = fx 1+ [f"(0)]* dt.

Py

By the Fundamental Theorem of Calculus,

d d
d—i = VI OP = 1+ (d—)yc)z.

This shows that the rate of change of s with respect to x is
always at least 1 and is equal to 1 when f’(x), the slope of the
curve, is 0. The differential of arc length is

ds=\/1+ (%)2 dx.

It is sometimes written in the symmetric form

(ds)* = (dx)* + (dy)®.

0/

Similarly,
dx
dy

ds = l+< )zdy.
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Hence, the arc length along the curve C from (a, f(a)) to (¢, f(1)) is
! d 2 ! t
L= f Vi+(52) ax= f 1 ds = s(x)’ = 5(t) - s(a) = 5(1).
a dx P a a
ds

Example 8.1.5. Find the arc length function for the curve y = x> — é In x taking Py(1, 1) as the
starting point.

Proof. The rate of change of y with respect to x is

The arc length function is

s(x)

. 1 * 1
1+Qt——)2dt= 2t + —)2 dt
flv rermgy) fIV( t8)
. 1 1

f 2+ —dt=x>+—-Inx— 1.
| 8

8t
The arc length from (1, 1) to (3, f(3)) is

s(3):32+éln3—1:8+1n?3.
YA
1L
0 ] %
In x
5 —t = s(x)=x>+1Inx—1

Homework 8.1. 9, 13, 17, 21, 25, 41, 43, 46, 53

8.2 Area of a Surface of Revolution

In the present section, we want to evaluate the area of a surface of revolution which is formed
when a curve is rotated about a line. Let’s look at some simple cases.
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@

Area = 2nrh.
27rr
27
g = 2nr
¢

1
Area = Et’zﬁznr&

7R + &,) — nré
(R —r)t; + nR¢
(R + r)l.

£+ ¢ Area
rf
R-r

x|~
I
S
o

Consider the surface which is obtained by rotating the curve y = f(x), a < x < b, about
the x-axis where f is positive and has a continuous derivative. Let P = {xo, x{,--- , x,} be a
partition of [a, b]. The points Py (xo, f (xo)) ,o L, Py, (xn, f (xn)) are points on the curve y = f(x).

YA y=fx) 7
Y m‘ X 0
(a) Surface of revolution (b) Approximating band

The surface of revolution S is divided into several “bands”. The surface area of a band can
be calculated in terms of its radius and its arc length.
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= 7(f(a) + f(xin) \/(Xi = X)) = f(ximn)] ’
I (F) + Fun) \ax? + [F0)ax]?

= ﬂ(f(xi) + f(xi—l)) V 1+ D] ax;

~ 20f() 1+ LGP Ax,

Hence, the sufrace area of the revolution is
n b

lim Z 2rf(x)) /1 + [f/(x)]Pax; = f 2nf(x) /1 + [f'(x)]* dx
n—oo l:I a

b

dy\2
(Leibniz notation) = f 2y \[1+ (52) dx
a dx
b dy

2
(arc length notation) = f 2rry ds (whereds = 4/ 1+ (d—) dx )
a X

S

Example 8.2.1. The curve y = V4 — x2, —1 < x < 1, is an arc of the circle x> + y* = 4. Find
the area of the surface obtained by rotating this arc about the x-axis.

d - : )
Proof. Since y = V4 — x2, then d_y = Y The surface area is ’/"_'<4; z
X y=v J

4 — x?

1 dy~2
S = Il2ny\/1+<a) dx

1 > — —*—>l .
- 2nf Va—2 1+ ) dx
-1 4 - x2 ‘
1 "
= 27rf 2 dx = 8.
-1
O

Similarly, the surface is obtained by rotating the curve x = g(y), ¢ <y < d, about the y-axis.

The surface area is
y

f 2rg(M) V1 + g (] dy
dx\2
fZﬂx 1+<d—y) dy

! dx\2
. onxds (ds = 1+(d—y) dy )

=
Il
aQ
L3
|95}
I I
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Note. Thinking of 2y or 27x as the circumference of a circle traced out by the point (x,y) on
the curve as it is rotated about the x-axis or y-axis respectively.

Y y
(%, )

7 |

;]/y ;

| . x
- Ll . € == Py

x 3 \
circumference = 27y ’ circumference = 277 x
0] X
Rotation about x-axis: Rotation about y-axis:
radius radius
s=[2m yds s=[2m x s

ircumference circumference

2
Example 8.2.2. The portion of the curve x = §y3/ 2 between y = 0 and y = 3 is rotated about
the x-axis. Find the Area of the resulting surface.

Proof. Observe the equation that x is given as a function of y, we will use y as the variable of

integration and ds = 1+ (— y ) dy. The surface area is
y _
3
dx2
S = f 2y 1+ dy
0 (%)
3 3
= 27rf v/ 1+ (yl/z)zdy:2ﬂf vy 1+y
0 0

= 2yrfA(u—1)\/L_tdu (setu=1+Yy)

= 2ﬂf(u3/2 u'?) du
ﬂ B2

2 232
— 3/2 232
5 3" i = 15

y
3 4

T

O

Example 8.2.3. The arc of the parabola y = x* from (1, 1) to (2, 4) is rotated about the y-axis.
Find the area of the resulting surface.

d
Proof. Method 1: Since y = x?, then d_y = 2x. The surface area is
x
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( »(2,4)

2 o

/ dy\2 o

S = f2ﬂxdx=f2ﬂx 1+<—y> dx /

1 dx y:xz
2
= 27rfx\'1+4x2dx -1
1 i
m:.2 3417 W ‘ .
= Z[guzh 28(17\/ﬁ—5\/§) 0‘ i 5 g
Method 2 : Since +/y, then dx ! The surface area is
+ Si X =y, —_— =
dy 24/y
dx\2
S = f27rxds:f27r y 1+ (—) dy
1 v (dy>
= nf a4y +1dy
1
x (" T
= = Vi du = =(17V17 = 5V5).
4 Js 6
O

Example 8.2.4. Find the area of the surface generated by rotating the curve y = %, 0 < x < 1,
about the x-axis.

d .
Proof. Since y = e*, then d—y = ¢". The surface area is
X

1
dy\2
S = 2ny ds = 2ne"\/1+(—) d
fﬂy K I) e (dx) X
1
= 27Tf e* V1 + e2* dx
0
(u=¢e" = 27rf V1 + u? du
1tan’le
(u = tan 6) = 27rf sec’ 0 db
/4
= n[sec@tan9+ln]sect9+tan9”ta;: ‘
= n[e\/1+e2+1n(e+ \/1+e2)—\/§—1n(\/§+1)]
~ 22.943.

Homework 8.2. 7, 13, 14, 16, 17, 19, 33, 38(/n 48 3 3% > as in Exercise 5.2.75), 41
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So far, we have studied the plane curves which area the graphs of explicit function (y = f(x)
or x = g(y)) or implicit functions (f(x,y) = 0). In the present chapter, we wiil discuss those
curves which are given in terms of a third variable ¢ (x = f(¢) and y = g(¢)).

10.1 Curves Defined by Parametric Equations

. . YA
When a particle moves on a plane along the curve C, in gen- C
eral, the path may not be described as an equation of the form

y = f(x) (or x = g(y)). Suppose that x and y are both given (. y) = (£, g(0))
as functions of a third variable ¢ (called a “parameter”). The C
equation
x= [0, y=g0) /]
is called a “parametric equation”. / 0

=Y

Each value of ¢ determines a point (x,y) which we can plot in a coordinate plane. As ¢
varies, the point (x,y) = ( f(0), g(t)) varies and traces out a curve C. We call the curve C :
(x,y) = ( f(), g(t)) a “parametric curve”.

Example 10.1.1. Sketch and identify the curve defined by the parametric equation
— 2 —
x=t -2t y=t+1

69
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f X ) y

=) 8 -1

-1 3 0 =2
0 0 1
I s 2 e=1K o
2 0 3 =0 >
4 8 5

t=y-1=x=(-1°-2(y—1)=y*—4y+3 (Cartesian equation)

We sometimes restrict ¢ to lie in a finite interval.
Example 10.1.2.

x=1r-2t y=t+1 0<r<4

v
t=4
=3 (8,5)
=2
j‘:]<((),1;
t=0 8
0

Example 10.1.3.

Observe the parametric equation
x=cost y=sint 0<tr<2nx

represents the circle x*> + y> = 1. As ¢ increases from 0 to 2,
the point (x,y) = (cost, sin ) moves once around the circle in
the counterclockwise direction starting from the point (1, 0).

Example 10.1.4.

The parametric equation
x=sin2t y=cos2t 0<t<2n

still represents the unit circle x*> + y?> = 1. But as 7 increases
from O to 27, the point (x,y) = (sin?2t,cos 2¢) starts at (0, 1)
and moves twice around the circle in the clockwise direction.

(cos t, sin t)
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Remark. If we regard a curve as a set of points, it can be represented by different parametric
equations. Thus, we distinguish between a “curve: a set of points” and a “parametric curve:
the points are traced in a particular way.”

Example 10.1.5. Find parametric equations for the circle with center (4, k) and radius r.

Proof. We start from the circle x = cost, y = sint. Multiply the expressions for x and y by
r, we get x = rcost, y = rsint and it represents a circle with radius r and center the origin
traced counterclockwise. Then we shift hunits in the x-direction and k units in the y-direction
and obtain parametric equations of the circle with center (k, k) and raidus r.

B e Do
TP =

x=cost, y=sint Xx= rcost, y=rsint x=h+rcost,y=k+rsint

YA
Example 10.1.6. (Straight Line)

The parametric equation of a straight line per-
pendicular the x-axis and passing (xg, 0) is

=
Il
=
o
<
Il
-~
Y

Example 10.1.7. (Ellipsoid)

The parametric equation of an ellipsoid with -
center (h, k) and two axes wth lengths a and b

1S

x=h+acost y=k+bsint 0<t<2n.

x=h+tacost,y=k-+ bsint

Example 10.1.8. (The Cycloid) The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a “cycloid”.
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=
Il

|OT| — |PQ| = rf — rsin@ = r(6 — sin 6)
|ICT|—|CQ|=r—rcosf =r(l —cosb).

Y

J
¢ Physical problems
A
P

PR e

P P

cycloid p
B
brachistochrone problem tautochrone problem
48 By 4R (B 3R PR 4R ) For ()

Example 10.1.9. Two particles move along the curves C; and C», respectively, with parametric
equations

1
X = 16 _ §t x = 2sin(znt) .
C: 3 3 t>0, C: 21 t>0 4 2
y=4t-5 y=-3 cos(zm)

Ci

(a) Do the two curves intersect?

2 2

Proof. The Cartesian equations of Cy and C, are Cy : 3x+2y—-6 =0and C; : xz + Y 1.

We can solve the two equations and find the points where the the curves intersect at (2, 0)
and (0, 3). O
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(b) Do the two particles collide?

16 8 1 1
Proof. Find t > 0 such that both 3 §t =2 sin(zm) and 4r—-5=-3 cos(im). We have
t = 2 and the two particle collide at (0, 3) when ¢ = 2. O

Homework 10.1. 4, 10, 13, 21, 27, 30, 34, 37, 46

10.2 Calculus with Parametric Curves

In the present section, we will apply the methods of calculus to the parametric curves. We will
solve problems involving tangents, areas, arc length, and surface area.

0 Tangents

Suppose that f and g are differentiable functions and C is a curve with parametric equation
x = f(t), y = g(t). We want to find the tangent line of the curve C at a given point. In order to

find the equation of the tangent line, it suffices to obtain its slope d_y
X

The slope of the secant line connecting

(x(to + 1), p(to + ) (x(to), ¥(t0)) and (x(to + h), y(to + h)) is

C !
enow e
x(to + h) = x(to) g Hh)—x()

h
-0 Y'(ty) dy/dt
—_ —
xX'(ty) dx/dt

(X(to)aJ’(to))

1=ty

By the Chain Rule,
dy _dy dx
dt  dx dt’
dx
If T # 0, we have
dy  dy/dt
dx  dx/dt
Remark.

d
(1) The rate of change of y with respect to x, d—y, is followed by the Chain Rule. It is not
X
necessary to express y in terms of x.

d
(2) The curve has a horizontal tangent line when d_)t) =0and d—); # 0.

dx

d
(3) The curve has a vertical tangent line when d—f # 0 and i 0.
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d d
(4) How about d—); =0= d—);? It may need further discussion.

(5) To discuss the concavity of a curve, we consider

Ly _d(dyy_ i(%)

dx? dx\dx dx
dt
Note that
2 &y
d°y dr
dr? 2x

dr?
Example 10.2.1. A curve C is defined by the parametric equations x = 2,y = £ — 3t.

(a) Show that C has two tangents at the point (3, 0) and find their equations.

Proof. Find the value(s) of ¢ at which the curves passes (3, 0).

£=3=t=+V3 and £-3t=0 = t=0,+V3.

d d
Hence, whent = + \/5, the curve passes (3, 0). Also, d_)t) =3 -3 and d—j = 2t. Then

dy dy/dt 3 1
— = =—(t—- =-V3.
dt li=—v3  dx/dtli=+3 2( t) =3 V3
The equation of the tangent line is y = — V3(x — 3). Similarl Q’ = §(t - 1) =13
d 8 Y= ‘ Pl 2 T e
The equation of the tangent line is y = V3(x — 3). O

(b) Find the points on C where the tangent is horizontal or vertical.

d d
Proof. (i) Horizontal tangent line: Let d—f =32 -3 =0. Thent+1. Also, ?): =2t #0
when ¢ = +1. Hence, when 7 = 1, (x(1),y(1)) = (1,-2). The curve has a horizontal
tangent line y = —2. When r = —1, (x(=1),y(—1)) = (1,2). The curve has a horizontal
tangent line y = 2.

d d
(i1) Vertical tangent line: Let d—); =2t =0. Then r = 0. Also, d_)t} =3 -3 # 0 when
t =0and (x(O), y(O)) = (0,0). The curve has a vertical tangent line x = 0.

(c) Determine where the curve is concave upward or downward.

Proof. Consider

d (dy/d
d_zy — i(ﬂ) _ E(di/di) 3 %[%(t— %)] _ 32 + 1)
dx®>  dx\dx/ = & 2t PR

dt
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Then ) )
d’y d’y
E>O as >0 and E<O as t<0.
The curve is concave upward when ¢ > 0 and concave downward when ¢ < 0. O

(d) Sketch the curve

Proof.

Example 10.2.2.

(a) Find the tangent to the cycloid x = r(6 — sin8), y = r(1 — cos 0) at the point where 6 = ;—T

Proof. Consider

@ _dy/dd  rsinf  sinf
dx dx/d0 r(1-cosf) 1—cos6
d
When 6 = g, (x(@),y(@)) = (r(;—r - ?), %) i ‘e \/_/ = 3. Therefore, when
=1 _1

2
T . .
0= 3 the tangent line is

y—%: @(x—r(g—g)).

(b) At what points is the tangent horizontal? When is it vertical?

Proof. The function sinf = 0 or 1 — cos 8 = 0 occurs only when 6 = nm, n € Z.
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d
(i) Whenn =2m —11is odd and 6 = nn, d—; = r(1 — cos#) # 0. The curve has horizontal

tangent lines at (x((2m — 1)), y(2m - Dr)) = (@m = Dar,2r), m € Z.

(i1) When n = 2m is even and 6 = nm, d_; = (. Consider the limit

sin LH .. cos @

m —= Imm ———— = 1m - =
6—2mrt dx 6—2mrt 1 — cos @ 6—2mna* sin @

d
Similarly, . lizm d_y = —oo. The curve has vertical tangent line at (x(2m7r), y(2m7r)) =
—2mn~ AX

2mnr, 0).

=tk 2F)

X

0 2ar 4arr

Q Areas

Recall that, for a function F(x) > 0, the area under the cruve y = F(x) from a to b is

b
A= f F(x) dx. Suppose that a curve has the parametric equation x = f(¢) and y = g(¢),

a <t <, we want to calculate an area formula. Let a = f(@) and b = f(B). Then the area of
the region under the curve is

b B
Azfydxzfy%dt:fg(t)f’(t)dt.

Example 10.2.3. Find the area under one arch of the cycloid

x = r(f — sin ) y=r(l —cosb)

Proof.

Using the Substitution Rule with y = r(1—-cos )
and dx = r(1 — cos 6) d6, the area of one arch is y

A

27r 27
f ydx = f r(1 —cos@)r(1 —cos ) db
0 0

rz(% - 2n) = 31,

0 2ar X
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a Arc Length

Let C be a curve with equation y = F(x), a < x < b. If F'(x) is continuous, the arc length of

Cis , ,
dy\2 ,
L:fa Vit (3) dx:fa 1+ (F'(x)” dx.

We want to calculate the arc length of C with parametric equation x = f(7), y = g(t), a <t < S.
(1) If C can be expressed as the graph of a function y = F(x), it is traversed once from left to

d

right as ¢ increases (i.e. d—): = f'(t) > 0). The arc length is

b

dy\2

fa \/ 1+ (E) dx

A d

y/dt \2 ;dx
1+ — ) dt

[ G (@)

» dx\2 dy\2
[VE () a
(i) If C cannot be expressed in the form y = F(x), we take a partition P = {ty,#;,--- ,t,} of

[@,B]. Let Pi(f(1),8(t)), i = 1,--- ,n, be point on the curve C. Then the length of the
segment P;_; P; is

L

VI = faD? + [g(t) — g(ti1)]?

By the polygonal approximations and the mean value theorem,

Zn: |Pi-1 P
i=1

D V@) = fa )P + [8(t) — gDl
i=1

DAL E)s + [ s
i=1

n

D VIFEP + 1P at 0
i=1
The arc length of C is

L= lim IR+ 12/ o
i=1

3
f VIFOP + g P di

s dx\2 dy\2
[V (&) a
Theorem 10.2.4. If a curve C is described by the parametric equation x = f(t), y = g(1),

a <t < B where f" and g’ are continuous on [a,B] and C is traversed exactly once as t
increases from « to 3, then the arc length of C is

L=f6 \/(%)2+<%)2df=fﬁ VIFOP+ g 0P dr.
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Note. The formula is consisent with the general formulas L = f 1 ds and (ds)* = (dx)* + (dy)>.

Example 10.2.5. Compute the circumference of a unit circle by expressing it as the parametric
equation
X =cost y =sint 0<t<2n

dx d
Proof. We have y7inl sin ¢ and d_i] = cost. Then the arc length is

27 2 d 2
f \/ _y dt = sin’t + cos?r dt = 2n.
0

O

Example 10.2.6. Find the length of one arch of the cycloid x = r(# —sin#) and y = r(1 —cos 6).

d d
Proof. We have d—z = r(1 — cos6) and d_)H; = rsin 6. The arc length of one arch is

27 d 5 d 2
L= [TV (2

21
f \/r2(1 —c0s0)? + r2sin® 6 do
0

2ar

21
= r \/2(1 —cos8) db 0
027r 0
= 2 do
[ 2sin(3)

= 8r.

Recall: Consider the arc length function

s(t)—f \/ dxy? d—i du

which represents the arc length along C from an initial point ( f(a), g(@)) to a point ( (1), g(1)).
If parametric equation describes the position of a moving particle, then the “speed” of the par-
ticle at time 7, v(), is the rate of change of distance traveled (arc length) with repect to time:
s’(t). By the Fundamental Theorem of Calculus, we have

W(b) = 5'(F) = \/(‘2) +(%)2.

Example 10.2.7. The position of a particle at time ¢ is given by the parametric equations x =
2t+3,y = 4¢%, t > 0. Find the speed of the particle when it is at the point (5, 4).

Proof. The speed of the particle at any time ¢ is

v(t) = /2% + (81> =2 VI + 16¢2.

At (5,4) when r = 1, its speed at that point is v(1) = 2 V17. O

=Y



10.3. POLAR COORDINATES 79

a Surface Area

Recall that the surface area of the surface obtained by rotating a curve, C : y = F(x) where
F(x) > 0 fora < x < b, about x-axis is

:fb2ﬂy\/l+(%)2dx

Suppose that C has the parametric equation x = f(7), y = g(¢), @ < t < 8 where f’ and g’ are
continuous and g(¢) > 0. Then rotating the curve C about x-axis and the surface area is

s = fb27ry\/1+<%>2dx
fZﬂg(t) 1+(j§%)2 (%) dt
[T (&) + (&Y

dt
Note. Let s(¢) be the arc length function. Then

dy \/ 2
=1/1 dt.
dx
S = f27ry ds

Example 10.2.8. Find the surface area of a sphere of radius r.

The surface area formula is

Proof. The sphere is obtained by rotating the semicircle
X =rcost y=rsint 0<t<nm

about x-axis. The surface area of the sphere is

S

f 27rsin t \/(—r sinf)? + (rcost)? dt
0

T
= 27rf rsint-rdt = 4nr’
0

Homework 10.2. 9, 11, 17, 19, 23, 31, 33, 36, 38, 40, 44, 47, 50, 55, 59, 67, 73, 75

10.3 Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called co-
ordinates. In the present section, we will study a coordinate system which is called the “polar
coordinate system”. The coordinate is established by the following steps
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(1) We choose a point in the plane that is called the “pole” (or origin) and is labeled O.

(i1) We draw a ray starting at O called the “polar axis” . It is usually horizontal to the right
and corresponds to the positive x-axis in Cartesian coordinates. Pir. 6)
r,
(i) g p # O is an point in the plane, let r be the distance
from O to P and let 6 be the angle between the polar
axis. We use the convention that an angle is positive if
measured in the counterclockwise direction from the
polar axis and negative in the clockwise direction.

polar axis

Then the point P is represented by the ordered pair (7, 6) and r, 6 are called “polar coordi-
nates” of P.

Note. The origin O = (0, 6) for any 6.

Now, we extend (r,6) to the case that in which r is negative. The point (—r, ) means the
point which is opposite to (r, 8) about the origin. Hence, (-r, ) = (r, 8 + 7). Moreover, we can
also extend (7, 0) to the case where r € R (not only on [0, 27]). We have

(r, 0)
(r,6) = (-r,80+m)=(r06+2n) 0+ g
= (-r,0+3n1) =(r,0+4n) ///'0 >
= (-n0+Q2k+Dn) Iy
= (r,9+2k7r) for every k € Z. (//
(=r, 0)

Remark. In the Cartesian coordinate system, every point has only one representation, but in
the polar coordinate system, each point has infinitely many representations.

m The connection between polar and Cartesian coordinates

VA
P(r, 8) =P(x,y)
d 2_ 2,0
X =rcosd cos@z; r=x+y
7
= - y y
=rsiné a_ Y tanf = =
y sinf = - X \
O X X

Note. The equation tan 6 = )XC do not uniquely determine & when x and y are given because, as
0 increases through the interval 0 < 6 < 2m, each value of tan 6§ occurs twice. Therefore, in
converting from Cartesian to polar coordinatesm, it is not good enough just to find r and 6 that
satisfy the above equation.
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Example 10.3.1. (i) Convert (2, g) from polar to Cartesian coordinates.

Proof. From the above formulas, x = 2005% =landy=2 sing = V3. Then (x, y) =

(1, V3). o

(i) Convert (1, —1) from Cartesian to polar coordinates.

3 7
Proof. Again, r = /12 + (=1)> = V2 and tan 6 = ‘Tl = —1. Then 0 = Zﬂ or Zﬂ Since
7 7
(1,-1) is a point in the fourth quadrant, § = Zﬂ and (r,0) = ( \/5, Zﬂ). ]

a Polar Curves

Definition 10.3.2. A polar curve is the graph of a polar equation, r = f(6) or F(r,0) = 0,
consists of all points P that have at least one polar representation (r, 8) whose coordinates satisfy
the equation.

Example 10.3.3.

r=2 6=1

Example 10.3.4. (a) Sketch the curve with polar equation = 2 cos 6.

Proof.
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0 r=2cos6
0 2
/6 V3
/4 V2 .
/3 1
/2 0
2n/3 -1
3r/4 -V2
Sr/6 -V3
T -2 Table of values and graph of r =2 cos 6
]
(b) Find a Cartesian equation for this curve.
Proof.
y
P
Consider r = 2cosf. Then r* = 2rcosé. L
Convert this polar equation into Cartesian 9
: 2 2 >
equation x~ + y~ = 2x and we have 0 ) 0 »
(x—1)2+y*=1.
O

Example 10.3.5. Sketch the curve r = 1 + sin 6.
Proof.

(1) Sketch the graph of r = 1 + sin6 in Cartesina coordinates (6-r plane). That is a shift the
curve of sine function up by one unit.

A

271

1+ /

¢ T T 37 27 0
2 2

r =1+ sin @ in Cartesian coordinates, 0 < <27
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. n 3
(2) Sketch the polar curve as 6 increases 0 — > > > — 27,
(Cardioid)
g=1 =7
2
| i i o ] 0 0
OfF1— =0 o0== 0 =1 =27
o="7 g=21
(a) (b) (©) (d) (e)
Stages in sketching the cardioid r =1+ sin 8
O
Example 10.3.6. Sketch the curve r = cos 26.
Proof.
A ng
: o= %T L@ ® o=3
@© @ ® & //
® O /@
A\ £
. 0=
27 0 ~ N =0
® g
7 N
// ® \\

r = cos 26 in Cartesian coordinates

® Symmetry

()
If f(8) = f(—0) or F(r,0) = F(r,—0), then the
curve is symmetric about the polar axis.

Four-leaved rose » = cos 26
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(b)
If f(6) = f(B+m) or F(r,0) = F(r,0+mr), then /
the curve is symmetric about the pole. /l(n 0)
—~—70
ro )
e
(b)
©) 1t £(6) = f(r—0) or F(r,0) = F(r,x—0), then MRl -
the curve is symmetric about the vertical line )
6 = 7_T T—0 /
2 \ 0

a Graphing Polar Curves with Technology

(Skip)
Homework 10.3. 2,4, 6,8, 11, 16, 20, 22, 25, 34, 38, 44, 51, 56, 58
10.4 Areas and Lengths in Polar Coordinates
 Areas

We try to find the area of a region whose boundary is given by a polar equation. Let’s start
with an easy case that the area of an sector of a circle with radius r and central angle 6.

1
Area = —r%6.

/o)

Let R be the region bounded by the polar
curve r = f(6) and by the rays = a and 6 = b,
where f is a positive continuous function and
where 0 < b —a < 2n. We will use the approxi-
mating sectors to estimate the area of R.
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Let P = {6,061, - ,6,} be a partition of [a, b]
with A6 = 6; — 6,_1. The region R is divided
into n subregions by the rays 6 = 6;. The area of
each subregion denotes AA;. Choose a sample
point 8} € [6;_;,6;]. Then

DA% SO 06,

Then an approximation to the total area A of R is
1
Area ~ —[f(6)])* 00
Zl SL@)]
Taking n — oo, then

Area

51 1
tim Y Su@Pso =5 [ e as
i=1 a

2

Note. The area formula is to compute the area of the region whose area enclosed by a polar
curve and two straight lines connecting the origin and their intersections of the polar curve.

1 b
= = f r*df where r = f(6).

Example 10.4.1. Find the area enclosed by one loop of the four-leaved rose r = cos 26.

Proof.
r=cos 26 9:%
Ve
7 i 1 (%
) Area = f Erz dé):zf cos®26 d
-1 -1
N 1 (% 1+cos46 n
N = — —dH:—
AN ~ 2‘[n 2 8
o=-% 4

m Region enclosed by two polar curves

)
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The area of R is
1 b1 1
f E[f(G)]2 d9—f E[g(@)]2 do = Ef f2(6) — g*(0) dé.

Example 10.4.2. Find the area of the region that lies inside the circle r = 3 sin 6 and outside
the cardioid r = 1 + sin 6.

Proof.
The points of intersection of the two polar curves are ob-
5

tained by solving 3 sin6 = 1 +sin 6 and hence 6 = g g

\\\ The area of the region is

0 — 5_77'\ Sn
T 6\~ 1. 1 o
A= f 5(3 sin @)” — 5(1 + sin6)” df = «.
Ol r=1+sin 6 5

O

Note. The origin O is also a point of intersection of the two polar curves. But it cannot be
obtained by solving the equation 3sinf = 1 + siné since r = 3sind = 0 when 8 = 0 and 7 and

r:l+sin9:0when9:—ﬂ.

Remark. It is usually difficult to find the points of intersection of two polar curves since a single
point may have many representation in polar coordinates. Suppose we want to find the points
of intersection by solving f;(6) = r = f,(0). The point of intersection has polar coordinate
(f1(61),61) = (f>(62),6>). But, in general, the angles ¢, may not equal 6,.

1
Example 10.4.3. Find all points of intersection of the curves r = cos26 and r = —.

1 n St Trm 1lrn
Proof. Let 20=—. Then0=—-, —, —, —. Th
roof. Let cos > en1 6165 z 1 9 e
points of intersection are (5, Z), (5, g), ( —ﬂ) and

6 2°6
(1 11n
26 1 12 1 4 15
Vs T T Vs
H he poi = =) (= =), (5, = -, =
owever, t 'e p01nt§ (2, 3),‘(2, 3 ), (2, 3 ) and (2, 3 )
are also points of intersection of the two polar curves.

).

Those points can be found by solving cos 260 = ~5 O

a Arc Length

To find the length of a polar curve r = f(0), a < 6 < b, we regard 6 as the parameter if we
write the polar equation of the curve as
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dx dr .
{x:rcos@ . %:d—ecose—rsme
y=rsinf dy dr .

— = —sinf + rcosf

do do

The arc length is

= [ V& (L) ao= [ e (G a0

Example 10.4.4. Find the length of the cardioid r = 1 + sin 6.

Proof. The arc length fo the cardioid is

27 dr~2 21 N
L = f r2+(_) de:f V/(cos )% + (1 + sin ) df
0 do 0

74 21 < 2
V4~ 4sin’ 0
V2+2singdo= | Y7

0 0 V2-2sin6
0 R _ f§ 2cos 6 Jo— T 2cosf 40
_x V2 -2sin6 : V2-2sing
r=1+sin 6 =8
m|
0 Tangents

We want to use the techniques of finding the tangent lines of parametric curves to obtain the
tangents of polar curves. Consider the curve with polar equation r = f(6). Then

{ x=rcosf = f(#)cosf dy _ dy/do _ 2 sin @ + rcos 0
y =rsinf = f(§)sin@ dx ~ dx/d6 ~ %cosd-rsing
: . . dy dx .
(1) Horizontal tangent line: When 20 =0 and 70 # 0, the polar curve has a horizontal
tangent line.
. . . dy dx )
(i1) Vertical tangent line: When 70 # 0 and i 0, the polar curve has a vertical tangent
line. 4 J dv/d8
(Special case: d_)e) =0= d—; we should further consider the limit gli_{% ;x 70 ).
(iii)) Tangent line at pole:
dy Z—; sin @ o dr
— = =t 9, f — 0.
dx Z—é’) cos 6 an ! do *

Example 10.4.5. The cardioid has polar equation r = 1 + sin 6.
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(a) Find the slope of the tangent line when 6 = g

d
Proof. Consider d—; = cos 6. Then

@ _cosfsin® + (1 +sinfd)cost

cos0(1 + 2 sin 6)

dx cos@cosf— (1 +sinf)sind (1 +sin@)(1 —2siné)’

Hence, the slope of the tangent line when 6 = = is — =

m. dy
-1. |
3 dxle=z

(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

Proof. We have -
4 (2.3)
d 3r Tx 11 1+5,3
d—Z:cose(1+2sin0):0: ezg,g,g,?ﬂ. (+3)
d 3 5 s
d—;:(1+sin9)(1—25in9):0 = 9:7",%,?”. (24)
(0’ O)
The curve has horizontal tangent lines at g
2,7/2), (1/2,71/6), (1/2,11x/6) and has verti- (1 L,,) <1 M)
cal tangent lines at (3/2,7/6), (3/2,57/6). 408 FINE S0
Tangent lines for r =1+ sin 6
3n d d
For 6 = 271, d—z = d_; = 0. Consider
1+ 2siné 0 1 —siné
lim Y _ < lim ﬁ)( im COS, ) M lim SInY _ oo.
0—(3r/2)" dx 0-Gr/2- 1 —=2sin @/ \6-3x/2- 1 + sin 6 3 6-Gr/2)- cos6
Similarly, . 1(i3n/12) T = —oo. Hence, the cardioid has a vertical tangent line at (0, 37/2).
—3Br/2)" dX

Homework 10.4. 4,6, 11, 17, 21, 22, 24, 27, 31, 34, 40, 45, 49, 51, 53, 65, 68, 72

10.5 Conic Sections

(Skip)
Homework 10.5.

10.6 Conic Sections in Polar Coordinates

(Skip)
Homework 10.6.
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We have learned topics which are related the infinite sequence. For example,

Zeno’s paradoxes

Decimal representation of numbers

Newton’s idea of representing functions as sums of infinite series

Integrating a function by first expressing it as a series and then integrating each term of the
series. (e.g f(x) = e‘xz)
11.1 Sequences

A sequence (of numbers) can be thought of as a list of numbers written in a definite order
It can be regarded as a list of values of a function defined on N.

N 1 2 3 4
rl Lol Ll
Rf f@ f3) f@

89
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We usually write a, instead of the function notation f(n) for the value of the function at the
number 7.

a, ay, Az, A4, ..., Ay, ...
Note. From now on, we say “a sequence” instead of “a sequence of numbers” for the conve-
nience.
Definition 11.1.1. An (infinite) sequence (of numbers), denoted by {a,} (or {a,}2,), is a func-
tion whose domain is a set of positive numbers. The functional values a,a,,- - ,a,,--- are the
“terms” of the sequence, and the term g, is called the “nth term” of the sequence.

Remark.

(1) In the textbook, a sequence can be thought of as a list of numbers written in a definite

order
ay, dp, dz, -+ dy,
1st 2nd 3rd ... nth
term term term term

(i) To distinguish the notation of a set with the one of a sequence, we use {an ‘ n e N} to
represent a set and {a,} for a sequence.

Example 11.1.2.

n 1 2 3 4
O ey = ree)
nmn V31
(2) {cos—}no,f\» a, = cos —, n>0 = {,7,5, )

(3) (Fibonacci sequence)
a=1,a=1a,=a,1+a,,forn>3 = {1, 1,2,3,5,8,13,21,...}.

m Visualization of sequence

(1) Plot all terms of a sequence on number line.

n
E le: a, = —. |
xample: a, = —— g

(i) Regard a sequence as a function. f : N +— R by a, = f(n). Plot the graph of f.
(La), 2,a2),..., (n,a,).

a, A

n

E le: = — .
xample: f(n) — ) 7
8

Sy

Ol 1234567
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Observation: From the above figures, the functional values a, approaches as close to 1 as
possible when n becomes large.

Note. People studied the limit of sequences over thousands of years. For example, to compute
the area of a circle.

Blalolelo}
A e P/ \_/ \\/

Question: Does A, approach a number as n becomes large?

a Limit and Convergence

m Intuitive Definition: Let {a,} be a sequence. We say that “the limit of {a,} exists” if there
exists a real number L € R such that we can make the term a, as close to L as we like by

taking n sufficiently large. Denote

lima, =L
n—-oo
or
a,—> L as n—o oo

Definition 11.1.3. Let {a,} be a sequence.
(a) We say that {a,} has the limit L and we write

lima, =L or a, > L as n—o o

n—oo

if we can make the term a,, as close to L as we like by taking n sufficiently large.

(b) If {a,} has a limit (i.e. lim a, exists), we say that the sequence converges. Otherwise, we
n—oo

say that the sequence diverges.

a

(’H A n

0ié§4 n Oilzg_i

Graphs of two sequence with ,llil,]} a,=L
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(c) We say that the sequence {a,} diverges to co (—o0) and denote lim a, = co (—o0) if we can
make the term a, as (negatively) large as we like by taking » sufficiently large.

n 0l 1234

N
(a) (b)
Graphs of two divergent sequences
11 1 1 .
Example 11.14. (1) {1,-,~,...,—,... },a, = —. Then lim g, = 0.
2°3 n n n—oo

2) {1, -1,1,-1,... } a, = (—=1)""!. Then lim a, does not exist (DNE).

n—oo

(3) {n})., where a, = n. Then lim g, = lim n = co.

n—oo n—oo

Definition 11.1.5. (Precise) Let {a,} be a sequence.

(a) We say that “the limit of {a,} exists” if there exists a real number L € R such that for
every € > 0 there exists a corresponding integer N such that

la, — L| <& foralln> N.

The value L is called “the limit of {a,}” and we write

lima, =L

n—oo

or
a,—> L as n—o o
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a, as s dyg ([IN+1 an+2 \ ay ag ds day a;
(I) L ) e L L —’0— &
VA
y=L+e
] e R e
y=L—¢g
ol 123 4 N "
Ay
ay
° e
®
a
TN I e T S 315 R S
a4 <7 dio
® ® @
L #
°
oh 1) -
a, ag ag 12
| ] o e
L —Ed— e
as
°
t t t f ; } t i f t t »
1 2 3 5 6 7 8 g 10 11 12 L
N
(b) If {a,} has a limit L. (i.e. lima, = L), we say that the sequence “convergs to L”.
n—oo
Otherwise, we say that the sequence “diverges”.
(c) lim a, = oo means that for every positive number M there exists an integer N such that
n—oo
ifn>N then a,>M.

m lim g, v.s. lim f(x)
n—oo X—00

The difference between lim a, = L and

n—oo

lim f(x) = L is that n is required to be an integer.
X—00

Theorem 11.1.6. If f : [1,00) — R is a function and a, = f(n) forn = 1,2,3,---. Suppose

that lim f(x) = L. Then lim a,, = L.
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y= f(x)

|l _
7

1 1 1 1
T

0l 1 234

=Y

Remark. (1) This theorem also holds if the limit L = +co.

(2) The converse of the theorem is false.

(1)
lima,=L = lim f(x)=L.

For example f(x) = sin(zx). Then a,, = sin(nr) = 0 and lim @, = 0. But lim f(x) = 0.
(i1)
lim f(x) DNE === lima, DNE.

n—oo

1
Example 11.1.7. Prove that lim — = 0 when r > 0.

n—oo N

1 1
Proof. Let f(x) = —. Then f(n) = —. Since lim — = 0 for r > 0, we have
xr nr x r

—00 X

limi:O for r > 0.

n—oo n’
O
1
Example 11.1.8. Find lim —.
n—oo N
In x Inn . . Inx
Proof. Let f(x) = —. Then f(n) = —. Since lim — = 0, we have
X n x—00 X
1
lim —— = 0.
n—oo N
O

a Limit Laws (for Sequences)

Theorem 11.1.9. If {a,} and {b,} are convergent sequences and c is a constant, then
(1) lim(a, +b,) = lim a, + lim b,

(2) lim ca, = c lim a,.

n—oo

(3) limc =c.

n—oo
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(4) lim a,b, = (lim a,) (lim b,).

lim a,
a, n—oo e
5) lim — = lim b,, # 0.
() lim b, _ lim b, if lim by, #

(6) lima! = [lim a,]” if p > 0 and a, > 0.
Remark. The hypothesis that “{a,} and {b,} are convergent” is important.
Example 11.1.10.

n . 1 1 lim 1
lim —— lim (—— x &) = lim —— = —== = 1.
et Lo n T T fim 14 tim -
n—oo n—oo N
(Wrong process)
lim n
n—00 &
im - =— =?
nmeop+1" lim(n+1) oo
Example 11.1.11.
T n 1
im —— = = o0
= 104+ o 1(2)+£

because the numerator is 1 and the denominator approaches 0.

A Squeeze Theorem (for sequences)

Theorem 11.1.12. Let {a,}, {b,} and {c,} be
three sequences. If there exists ny € N such that
a, < b, < c, for every n > ng. Suppose that

by t.e-ct

lim a, = L = lim c¢,.

n—oo n—o00

0 n

Then lim b,, = L.

f—>c0 The sequence {b,} is squeezed between
the sequences {a,} and {c,}.
Theorem 11.1.13. lim {an‘ = 0 if and only if lim a, = 0.
—1)y
Example 11.1.14. Prove that lim ) =

n—oo n

0.

Proof.
ailw
-1)" 1
Since lim ‘( ) = lim — = 0, we have
n—oo n n—oo N} )
" - - O
_1 n 0 ) s . n

lim &2 o, T

n—oo N
71 4
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!
Example 11.1.15. Discuss the convergence of the sequence a, = n
nn

Proof. Observe that

n! 1-2-3---n 1, ,2 1
= = = ) GG <y
1
<
1
Define r, = 0 and s, = % forn=1,2,---. Then
rm<a,<s, for every n € N. -
Since lim r,, = 0 = lim s,, by the Squeeze The-
orem the limit lim a,, exists and lim a,, = 0. "
n— oo n— oo 0
Example 11.1.16. For what values of r is the sequence {r"} | convergent?
Proof. For r > 0, consider the exponential function f(x) = r*, r > 0,
0 ifO0<r<1 (convergent)
lim f(x) = I ifr=1 (convergent)
e co ifr>1 (divergent)
Consider r < 0.
(1) Forr =0, limr" =0 (convergent)
(i) For-1 <r<0,wehave 0 < |r] <1 and
lim || = lim |r]" = 0.
Hence, lim " =0 (convergent).
(iii) Forr = -1,a, = (=1)", {a,};, = { -1,1,-1,1--- } is an oscillatory sequence and hence
it is divergent.
(iv) Forr < -1,
B aom ) —Ir" <=1 ifnis odd
an = (DI = { /" >1 ifniseven

) |
Hence, we cannot find a number L such that a,, is close to L within 3 for every n. Thus,

the sequence is divergent.
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Conclusion: The sequence {r"}” , converges when —1 < r < 1 and diverges when r < —1 or
r > 1. Moreover,

lim r* =

n—o0o

{0 if —1<r<l1
1 if r=1

a, a,

& —1<r<0

Y
I
o

P
N =+
Q) ==
=

=

The sequence {(-1)} The sequence a,= r"

m Continuous Functions

Theorem 11.1.17. If lim a, = L and the function is continuous at L, then
lim f(a,) = f(L).

Example 11.1.18. Find lim sin (7—T)

n—oo n

. . . . . . T
Proof. Since the function sin x is continuous at 0 and lim — = 0, we have

n—oo N}

lim sin (E) = sin ( lim E) =sin0 = 0.

n—oo n n—oo n

a Monotonic Sequence and Bounded Sequences

m Monotonic Sequences

Definition 11.1.19. (1) A sequence {a,} is called “increasing” (“decreasing”) if
a, < Qpi1 (an > an+l)

foralln > 1.

(2) A sequence {a,} is “monotonic” if it is either increasing or decreasing.

3
n+>5

Example 11.1.20. Show that { } is decreasing.
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Proof. Since
3 3

n+l — Ay = - <0
el = = iy D+5 n+s
3
for all n > 1, the sequence {?} is decreasing. O
n
n ) )
Example 11.1.21. Show that {n2 1 } is decreasing.
Proof.
(Method 1:)
n+1 n
Qpe1 — a 0.

":(n+1)2+1_n2+1<
2

— 5 < 0for x> > 1. Thus, f(x) is decreas-

1
(Method 2:) Let f(x) = 2+ 1)

ing. Then

a1 Then f'(x) =

an+1:f(n+l)<f(n):an-

m Bounded Sequences

Definition 11.1.22. (1) A sequence {a,} is “bounded above” (“bounded below”) if there exists
a number M such that
a, <M (a,>M)

foralln > 1.

(2) A sequence is “bounded” if it is both bounded above and below.

Example 11.1.23. (1) {n}>, is bounded below but not above.

) {nnﬁ}:; is bounded (both above and below).

m Boundedness, Monotonicity and Convergence

Note. Not every bounded sequence is convergent. For example, a, = (—1)". Then the sequence
{a,} 1s bounded and divergent.

aﬂ
Observation: If {a,} is monotonic and My
boudned, then the terms are forced o T T X
to crowd together and approach some R
number L. .
0[123 n

Theorem 11.1.24. (Monotonic Sequence Theorem) Every bounded and monotonic sequence is
convergent.

Example 11.1.25. Leta; =2 and a,,; = %(an +6)forn > 1. Thena, =4,a3 =5,---
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(@)

1 1 1
apy1 — 4y = E(an + 6) - E(an—l + 6) = E(an - an—l)

11 1
= E [E(an—l - an—Q)} = Z(an—l - Cln_z)
1
= 2 (612 —611) =

T > 0.

Then {a,} ", is increasing.
(i) Claim: a, < 6 for all n € N.
Proof of the claim: Forn =1,a; =2 < 6.
1 1
If a, < 6 forn =k, then a1 = E(ak +6) < 5(6 + 6) = 6. By the mathematical induction,

a, < 6 for all n € N. Hence, {a,} is bounded above.

Since {a,};., is increasing and bounded above, it is convergent. In fact, lim a, = 6.

n—oo

Remark. To determine the convergence of a sequence {a,},_,, it suffices to consider the con-
vergenc of its “tails” {a,} -, for some ny € N. Hence, in general, we usually concern the above

n=ny
[se]

theorem on the subsequence {a,},,, -
Homework 11.1. 14, 21, 26, 29, 34, 39, 42, 45, 50, 54, 56, 60, 70, 74, 75, 79, 84, 87

11.2 Series

Motivation:

(1) Every real number can be expressed as a digital number. Especially, most numbers have
the expression of infinite deciamls. For example,

3.1415926. ..

3+ +4+1+5+i+i+i+

~~ 10 102 10® 10* 105 108 107
~ N NN NN NS

a

T

ar as as as ag ar as
= agtat+az+---

(i)
bow2(3) ¢ 207+ 2(3) +

= qay + a + an + as +
sum of an infinite sequence

Heuristically, for a given sequence {a,}, we want to consider whether the sum of all terms makes
sense.
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Definition 11.2.1. Let {a,}’ , be a sequence. We call the sum of the infinite sequence {a,} an

“(infinite) series” and is denoted by “Z a,” or “Z a,”.
n=1
Note. In mathematics, adding infinite numbers is not doable. Hence, the sum

a+a+az+---+a,+---

does not make sense.

Question: How to define the sum of infinite numbers (terms)?

Consider the “partial sum” of {a,}

S| = ay (first partial sum)
S)=a; +a (second partial sum)
S3=a; +a) + a3 (third partial sum)

n
S,=a;+a+---+a, = Z a; (nth partial sum).
k=1

Then, for every n € N, s, is well-defined and {s,} ", forms a new sequence. Suppose that sum
of the infinite terms of {a,} is well-defined. It is supposed to be the limit of {s,}.

Definition 11.2.2. Let {a,}," | be a sequence and denote its nth partial sum

n

sn:a1+a2+---+an:Zak.
k=1

(o]
n=1

(1) We call the limit of the sequence {s,} . an “infinite series” and denote

(o) n

E a, = lim s, = lim ay
n—o00 n—o0

n=1 k=1

(o)
n=1

(2) If the sequence {s,}>> , is convergent and lim s, = s exists as a real number, then the series

n—oo
[

is called “convergent” and write Z a, = s. The number s is called the “sum’ of the series.

n=1

(5]

(3) If the sequence {s,} . , is divergent, then we say that the series Z a, 1s divergent.

n=1

Example 11.2.3.
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=

Sum of first n terms

11.2. SERIES
1 I 1 1 1
(l) Letan:E.Thensn:§+?+---+5:l—5.
Hence,

= 1
Da,=1im Y g =lims, = lim 1 - o~ = 1.

n—oo n—oo n—oco 2

L B R e R S B S

[S RN e]
wh O

0.50000000
0.75000000
0.87500000
0.93750000
0.96875000
0.98437500
0.99218750
0.99902344
0.99996948
0.99999905
0.99999997

1
(2) (Telescoping series) Let a, = ———. Then the partial sum

nn+1)

i 1 1 N 1 - 1
S, = = e _
Hk(k+1) 1.2 2-3 nn+1)

1
1
1_

n+1

[ee)

1 1
Si lims, =lim 1 - =1, th i ———=1. Th
ince lim s, = lim 1 e series Z nt D) e

n=1

R 1 )
SEeries Z ———— 1S convergent.
n(n+ 1) &

n=1

(3) Leta, = (—1)". Then the partial sum

Son D+1+CD+1+---+1=0
Some1 = D+1+CD+1+--+1+(-1)=-1

Hence, the limit lim s, does not exist and the series Z(—l)“ is divergent.

n—oo

n=1
m Geometric Series
A geometric series with ratio r is a series of the form
[se]
Zar":a+ar+ar2+~~+ar”+~--, a#+0
n=0

Note: The series starts with the Oth term rather than the 1st term.

(1) Forr=1,s,=a+a+---+a=na— oo as n — oo. Hence lim s, is divergent.
~—_—————

n—oo
n

(2) Forr#1,

s, = a+ar+---+ar"

rs, = ar+ -+ ar'" + ar"!
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We have (r — 1)s, = a(r"*' — 1) and hence

a(rt —1)
Sy = —————.
r—1
-1
Consider the limit lim s, = lim a(—l) provided r # 1.
n—oo n—o0 r —

(o8]

(i) If|rl < 1, then lim /"' = 0. Hence, Y ar" = lim s, = 1 a

n—00 —-r
n=0

0

(i) If || > 1, then lim r**' diverges. Hence, Z ar" = lim s, diverges.

n—oo
n=0

. (o)
0 niseven n 1
Hence, Z ar’ = lim s,

(i) fr=-1,s, =a—a+a—a+---+(-1)"'a = {

a nisodd. — n—00
diverges. _
ar3
& 2
Conclusion: The geometric series Z ar*,a+ 0 “
n=0 ar?
o ar
. ) a
(i) converges if |[r| < 1 and Z ar' = . a—ar a
oy 1-r s
(ii) diverges if |r| > 1.
a a
s a a
In the figure, — = . Then s = 3
a a-—ar 1-r P
Example 11.2.4.
10 20 40
1) Evaluate 5— — + — - — + - -
M 3 9 27 s,
Proof. For the series, the first term a = 5 and the ratio
r o= —%. Since |r| = | - %l = % < 1, the series is
convergent and 31 e Taimeimas

S 2a 5
2,3(=5)" =12 =3

n=0

(59

(2) Evaluate 2(%)”.

n=0

Proof. Since the ratio of the geometric series is r = % > 1. The series is divergent. O
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(3) Write 0.1232323--- = 0.123 as a ratio of integers.

Proof.
0.123

1 23 23 23

TR TR T
o2, 1

TRET I COIARTRET TR
a ~~

1 23 1 122

0710 1-L " 99
~ i

[Se]

(4) Find the sum of the series Z X", where |x] < 1.
n=0

Proof.
Zx":1+x+x2+x3+---.

n=0

0.1 +0.023 + 0.00023 + 0.0000023 + - - -

103

The first term of the series is ¢ = 1 and the ratio r = x with |r| = |x| < 1. Hence, the series

1

1-x

[ee)
is convergent and Z X' =
n=0

m Harmonic Series

A harmonic series has the form

O

1 = 1
We claim that Z — = oo. It suffices to show that for any number M > 0, Z — > M. Consider
n n

n=1 n=1
21 111 1 1 I
Z— = l+-+-+-+--+-+-+—=+ —
—in 2 3 4 8 16 2k
1 I 1 I 1 1 1 1 1
> l+-+(-+- -+ -+ )+ (=+ -+ =
2 (4 4) (8 8 8 8) (16 16
| S —
8 terms
1 1
+(?+---+?)
~———
2t-1 terms
I 1 1
> l4+-+-+--4+=
2 2 2
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2k o 2k
1 1 1
Choose k > 2M. Then Z — > M. Hence, E - > Z — > M. Since M is an arbitrary positive
n n n
n=1 n=1 n=1

number,

o 1
A

n=1

a Test for Divergence

For most series, it is difficult to find their limits even if they have nice patterns. Therefore,
we usually don’t expect to compute the exact limit of a convergent series. Instead of this, we
want to study some tests for convergence or divergence of a series and estimate their limits if
they converge.

(o)

Theorem 11.2.5. If the series Z a, is convergent, then lim a, = 0.

n—oo
n=1

Proof. Consider a, = s, — s,-1. Then

lim a, = lim(s,, — s,,-1) = lim s, - lim s,_; = s—s5s=0
n—0oo n—oo n—oo n—-oo
The second equality holds since the sequence {s,},> | converges. O

Note. With any series Z a, we associate two sequences: the sequence s, of its partial sums

and the sequence {a,} of its terms. If Z a, is convergent, then the limit of the sequence {s,} is
s (the sum of the series) and, as Theorem T2 asserts, the limit of the sequence {a,} is 0.

Remark. The converse of Theorem IT23 is false. That is, even if lim a, = 0, it cannot imply

n—oo
[ee)
that the series Z a, converges. That is,
n=1
()
Z a, (or lim s,) converges = lima, =0
n—00 n—o00

n=1

=

1 (o8]
For example, a, = —. Then a, — 0 as n — oo but Z a, = oo,
n

n=1

m Test for Divergence

Theorem 11.2.6. (7est for Divergence) If lim a,, does not converge to 0 (either lim a, DNE or

lim a, = L # 0), then the series Z a, is divergent.

n—oco
n=1

2
5n? +4

Example 11.2.7. Determine whether the series Z is convergent or divergent.
n=1
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Proof. Consider the limit
2 1 1
. i —

lim ——— = lim
n—o 5n2 + 4 n—><><>5+ni2 5

© 2

is divergent.

By the test for divergence, the series Z 521 d
n

Remark. (1) The series Z a, diverges cannot imply lim a, # 0. That is,

n=1

lima, #0 = Zan (or lim s,) diverges

n—oo
n=1

R

For example, a, = —.
n

(2) If lim a, # 0, then Z a, diverges. But if lim a, = 0, then Zan could be convergent or

n—oo
n=1

n—oo
n=1

N 1 |
divergent. For example, E i D is convergent but E — is divergent.
n(n n
n=1

n=1

a Laws of Series

Theorem 11.2.8. If Z a, and Z b, are convergent series and c is a constant. Then

n=1
i a, + i b,.

(1) Z(an + b,) converges and Z(an +b,) =
n=1 n=1 n=1 n=1

n=1

(o)

n=1

(2) Z(can) converges and Z(can) =c Z a,.
n=1 n=1

- 3 1
Example 11.2.9. Evaluate Z [ D + 2—}
nn n

n=1

1 o 3 - 1
Py = 1 (converges), we have Z TP =3 Zl YR = 3. For the

n=1

Proof. Since Z
n(n
n=1
. = B . . . | .
series Z o it is a geometric series with the first term a = 3 and the ratio r =

n=1

Then it

1
5

) 1 1
converges and Z o = N 2_ = . Hence,
n=1 -

N 3 1 = 3 = 1
;[n(n+1)+§} :;n(n+1)+;§:3+1:4'

=
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(o)

Remark. The result of Theorem [T2R is false if one of the series Z a, and Z b, is divergent.

n=1 n=1

Remark. For a sequence {a,}, any finite terms of {a,} doesn’t affect the convergence or diver-
gence of the sequence. A series has similar results. If we only concern whether a series Z a, is
convergent or divergent (but not the exact value of the sereis), the sum of a finite number terms

(o)

does not change its convergence or divergence. That is, for any number n, € N, the series Z a,

n=1

and Z a, both converge or both diverge.

n=ng

Homework 11.2. 15, 17, 20, 23, 26, 29, 32, 37, 42, 45, 50, 52, 55, 59, 62, 65, 72,77, 88, 91

11.3 The Integral Test and Estimates for Sums

In general, it is difficult to find the exact sum of a series. We can compute the sums of some

[

special series. For example, geometric series, Z
— nn+1)

. Even for a simple series (like

(o)

1 . . ) . .
Z —), we cannot find its sum easily. It is not easy to discover the formula of partial sum.
n

n=1
Hence, we usually only discuss the convergence of a series. Observe two examples

(o)

1
Example 11.3.1. For the series Z — . the partial sum is
n

n=1

1 1 1
= :E: 2 = + — + 55 + -+ ;E

To determine whether the sequence {s,}*, converges. We observe that the sequence {s,} . is
increasing in n. In order to prove that the series is convergent, it suffices to show that the series
is bounded above.

1
Consider the function f(x) = — on [1, 00). We have
X

Hence, {s,} is bounded above (by 2). By the bounded criterion, the series Z — 1s convergent.

n=1
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y= = :
¥ n -3
i=1 1"
-] 1.4636
_1 10 1.5498
e 50 1.6251
100 1.6350
| i ; = 500 1.6429
1 2 3 4 5 X 1000 1.6439
1 1 1 1 5000 1.6447
area =3 area =73 area=-;  area=;
1 1 )
Example 11.3.2. For the series Z 1+ —+ 7 + - - -, the partial sum
3

n=1

1 1
‘Z «F B

1
The sequence {s,},  is increasing in n. Consider the function f(x) = 7 on [1, c0). We have
X

(o)

n=1

Z a, and f‘” f(x)dx
1

n
1 1 1
Sy = — =1+—+—+ +—> —dx—2Vn+1—1
T Vk 2 3 1
Then
lim s, > 11m(2\/n +1-1)=
n—oo
[ee]
and the series Z —— 1s divergent.
n
n=1
y = 1 ,

Jx # s S

=1 1

5 3.2317

10 5.0210

S 50 12.7524

100 18.5896

i 4 i 1 500 43.2834

1 ’ ‘ ‘ 4 ‘ 5 X 1000 61.8010

1 1 1 5000 139.9681

area = —— area = —— area = —— area = ——
1 J2 NE) J4

Theorem 11.3.3. (Integral Test) Suppose that f is a continuous, positive and decreasing func-
tion on [1,0) and f(n) = a,. Then



108 CHAPTER 11. SEQUENCES, SERIES, AND POWER SERIES
either both converge or both diverge. That is,

Z a, converges & f f(x)dx converges
n=1 1
(diverges) (diverges)
Proof. Since f is decreasing, for every k € N,

k+1

flk+1)-1< f(x)dx < f(k) - 1.

k

Since f is positive, for every n € N,

n—1 n—1 n—1 k+1 n—1 n—1

0< Ylaw = ) flk+1) < fOydx < ) fk) = ) a
k=1 k=1 k=1 k=1 k=1

\ / - ~ - N~
Sn—ai f! fx) dx Sn-1

Hence,

This inequality implies that Z a, and f f(x) dx either both converge or both diverge.
1

n=1
My =F) M ey =fx)
an*l
a,|as|a,|as a, a, | a,|a;|a, ﬁ%"
0 1 2 3 4 5 --- n x 0 1 2 3 4 5 - n x
O
Remark.

(1) To determine whether a series is convergent or divergent, it is not necessary to start with the

(o)

first term. That is, the series Z a, and Z a, either both converge or both diverge. Hence,
n=1 n=ng
to use the integral test, it suffices to compute the integral with lower limit at x = n, instead

of x = 1. That is,

f f(x)dx converges (diverges) = Zan converges (diverges)
no n=ny

o0
— Zan converges (diverges).

n=1
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(2) Itis not necessary that f is “always” decreasing. We can use the integral test as long as the
function f is positive and decreasing on (ng, o) and f(n) = a, for some large number n,
and n > ny.

[ee)

Example 11.3.4. Determine whether the series Z

7 is convergent or divergent.

2
i n’ +

. . . ) 1

Proof. The function f(x) = T is positive and decreasing on [1, o). Also, f(n) = ]
X n
for all n € N. Since the improper integral

00 1 . ! 1 . - t . 1 -1 T T T

‘fl x2+1dx:t1l>r‘1)10 A dx:tll)rgtan xl:tll)rg(tan t —tan 1):5—1:1,
by the integral test, the series Z R converges. O

1
Example 11.3.5. (p-series) For what values of p is the series - convergent?
n

(o)

1 1
Proof. If p <0, — =n"" > 1 for all n € N. Hence Z — diverges.
n? n?

n=1

1
Consider the cases 0 < p < co. The function f(x) = = is positive and decreasing on [1, 00),
X

1
and f(n) = -l Since

o | 00 when 0 < p <1 (divergent)
f —dx =
. xP F when p > 1 (convergent).
By the integral test, the series Z — converges when p > 1 and diverges when p < 1. O
n
n=1

Example 11.3.6.

= 1
(a) Z e converges (p-series with p =3 > 1)

n=1

> 1
(b) Z 7 diverges (p-series with p = % <1
n=1

Note. The integral test can only determine whether a series is convergent (or divergent). But it
cannot give the sum of the series.

o 1
Example 11.3.7. Determine whether the series Z nrn converges or diverges.

n
n=1
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1 1-1
Proof. Let f(x) = E. Then f'(x) = an < 0 when x > e. Hence, f(x) is positive and
X X
decreasing on (e, o). Since the integral
1 "1 Inx)? |t Int)> -1
f T . N T L UL Ml
e X —00 e X —00 e t—00 2
1
by the integarl test, the series Z an diverges. O
n

n=1

0 Estimating the Sum of a Series

Although it is difficult to use the integral test to find the limit of a series ) a,, it can still

help us to approximate the sum of the series. Recall that “s = Z a, converges” means that

n=1
n

the partial sum s, = Z a, — s as n — oo. Hence, in order to evaluate the sum s, we want to
k=1
estimate the difference between s, and s. Define

R,=s—s,=a,,1 +a,mr+ = Z ai as the "remainder”.

k=n+1

Theorem 11.3.8. (Remainder Estimate for the Integral Test) Let f be a continuous, positive
and decreasing function for every x > ny, and f(n) = a, for every n € N and n > ny. Then

dx < =R, < d
[ rwdrs Y a=rs [ o

k=n+1
| M|

=5—5,

y = f(x) ‘ y=f(x)

Api a,+o . Ay a,»

n+1

Note. . .
s,,+f f(x)dxésﬁsn+f f(x) dx.
n+l1 n
Example 11.3.9.
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()

1
(a) Approximate the sum of the series 2—3 by using the sum of the first 10 terms. Estimate
n

n=1
the error involved in the approximation.

x3 2n?

S| |
Ro< | —dyx=—.
10 fm ¥ 7200

1 “1 1
Proof. Let f(x) = —. Then f — dx = — and
X n

O
(b) How many terms are required to ensure that the sum is accurate to within 0.0005?
Proof. Consider
“1 1
Then n* > 1000 and hence n > 31.6. We need 32 terms to ensure accuracy to within
0.0005. O
(¢) Use n = 10 to estimate the sum of the series Z —
n=1
Proof.
1
—dx<s< — + —d + )
2(11)2 Z w fl P Z f 0T 500y
Since s;9 ~ 1.197532, we have 1.201664 < s < 1.202532. O

Note. In fact, to make the error smaller than 0.0005, it only needs 10 terms by part(c) instead
of 32 terms by part(b).

Homework 11.3. 7, 13, 19, 23, 27, 31, 34, 39, 42, 45
11.4 The Comparison Tests

-1
In Section 11.3, we know that the geometric series Z > is convergent.

n=1
. . ) w1
Question: Does it say the convergence or divergence of the series Z ] ?
=1

Observe that the sequence of the partial sum s, = Z is an increasing sequence. Since

— 2k 4+ 1

1 1
0< T < 5% for every k € N, we have
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(o)

Hence, {s,} is bounded above. By the bounded criterion, the series Z

n=1
- 1
over, <1
v ;2k+1

Heuristically, we may have the insight of two nonnegative series.

converges. More-
2k + 1

(1) If every term of one series is smaller than the corresponding term of another convergent
series, then the former series is also convergent.

(i1) Ifevery term of one series is larger than the corresponding term of another divergent series,
then the former series is also divergent.

Q The Comparison Test

Theorem 11.4.1. (The Direct Comparision Test) Suppose that Z a, and Z b, are series with

n=1 n=1
nonnegative terms and 0 < b, < a, for all n € N.

(1) If Z a, is convergent, then Z b, is convergent.
n=1 n=1
(2) If Z b, is divergent, then Z a, is divergent.
n=1 n=1
Proof. Lets, =a;+a,+---+a,andt, = by + b, +---+ b,. Then the sequences {s,} and {¢,}
are increasing and 0 < ¢, < s, for every n € N.

(1) If Z a, is convergent, {s,} is convergent. Since {¢,} is increasing and bounded above, it is

n=1

convergent and thus Z b, is convergent.

n=1

o0

2) If Z b, is divergent, then I}Lrg t, = co. Therefore, ’11_{{)10 s, = oo and thus Z a, 1s divergent.
n=1 n=1

O

Remark.

(1) In order to use the Comparison Test, the “nonnegative” condition is TNecessary. For exam-

1
ple,b, = —landa, = — foralln € N. Then b, < a,. But the serlest = E (=1) = -o0
n=1 n=1
- . |
is divergent and the series Z a, = — is convergent.

(i1) In the use of the Comparsion Test, we need to know some convergent or divergent series.
Some important series are:
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© converges when p > 1
e p-series Z -

n=1 diverges when p < 1
o0 converges when |r| < 1
e geometric series Zar"
n=1 diverges when |r| > 1

. RS 5 . .
Example 11.4.2. Determine whether the series E 7 is convergent or divergent.
n
n=1

+4n+3

oo 1 . . .o 5.
Proof. That the series Z p is convergent (p-series, p = 2) implies the series Z o is also

n=1 n=1

5 1 . .
5 - — forevery n € N, by the Comparison Test, the series
n

convergent. Since —————— <
£ M +dn+3 2

[ 5 '
— 1S convergent.
nzz; 2n® +4n+3 g

Remark. To determine whether a series is convergent, it suffices to consider the convergence

of the “tail ” (Z a,) of the series. Therefore, in the use of the Comparison Test, we can replace
n=ng
the condition 0 < b, < a, “for every n > 1” by “ for every n > ny” and for some integer n,, and

the test still holds.

. . o Inn .
Example 11.4.3. Determine whether the series Z — is convergent or divergent.
n

n=1

| 1 1 .
Proof. Since Inn > 1 for n > e, we have an > — when n > 3. Also, the series Z — diverges

n n i n
. . . nn .
(p-series, p = 1). By the Comparison Test, the series Z — diverges and thus the series
n
n=3
S Inn )
Z — also diverges. m|
n=1 n
- 1

Example 11.4.4. Determine whether the series Z ————— is convergent or divergent.

n—5n-2

n=1

Proof.
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Observe that

(1) Not all terms are positive

1
(i1) We guess the series is convergent and hope ——
mw-5n-2 n

M —1n-4>n < n>10nh+4 >=n>4.

2
<= for all n > ny. To find n,, consider

1 1 2 o 2
Wh >4, the t ———— >0and —— < —. Also, ) — -series,
enn eterm —-—— — and - —— < 3. Also ; 3 converges (p-series
= 1
p =3 > 1). By the Comparison Test, the series Z ———=—— converges. Therefore, the series
“n’—5n-2
i : converges ]
n—5n-2 ges.

n=1

Note. Recall that for Z a, and Z b, with 0 < b, < a, for all n € N, the Comparison Test says
that

(1) Z a, converges — Z b, converges;
(2) Z b, diverges — Z a, diverges.
But the converse is false. That is,

(D Z b, converges == Z a, converges;

) Z a, diverges === Z b, diverges.

(o)

Example 11.4.5. Consider the series Z T In order to use the Comparison Test to show
n=1 N
Z ! converges, we cannot choose the known convergent series Z s because > )
2 1 8es 1 & 2 1 o
However, looks very close to o It is reasonable to guess that the series Z T also
converges.” Bl

®m The Limit Comparison Test

Theorem 11.4.6. (The Limit Comparison Test) Let {a,} and {b,} be two nonnegative sequences.

If

[Se]

for some 0 < ¢ < oo, then Z a, converges if and only if Z b, converges. That is, either both

n=1 n=1
0

[s+]
series Z a, and Z b, converge or both diverge.

n=1 n=1
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Proof. (Exercise) O

[ee)

Example 11.4.7. Determine whether the series Z

n=1

T is convergent or divergent.

o 1 Sl . . .
Proof. Consider the geometric series Z o Since Z o converges (geometric series with
n=1 n=1
= 5 < 1)and
3
lim 2=- = lim =3,
n—o0 L n—oo 1 —_ i
2’1 2’1
o . : 3 .
by the Limit Comparison Test, the series Z T is convergent. O
=1
2n* +3n .
Example 11.4.8. Determine whether the series ———— is convergent or divergent.

n=1 V5+n

[ [

1 1
Proof. Consider the series Z YL Since Z 172 diverges (p-series, p = 5 < 1) and

n=1 n=1

2n2+3n
V5+n3

1
nl/2

243
= lim —— =2,

n—o0o 5
5

lim

n—oo

+
[S—

2n% + 3n

V5 +nd

by the Limit Comparison Test, the series Z diverges. m|

m Estimating Sums

Suppose that Z a, and Z b, are two convergent series with nonnegative terms and 0 < b, < a,

n=1 n=1

for all n € N. Let

(o]
Zam _Zak and R, =5—S8,=au1 +apr + -+

n=1

ibn, Zbk and T, =t—1t, = bys; +byay + - -

n=1 k=1

then 0 < 7, < R, for all n € N. Hence, if we can estimate R,, then we have an upper bound of
T,.

Example 11.4.9. Use the sum of the first 100 terms to approximate the sum of the series

1 . : o o
Z T Estimate the error involved in this approximation.
n
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1
< — for all » € N, we have

n + n3
Zl(;l e f o X 2(100)2

~ 0.6864538. O

Proof. Since

T =
n= 101

(o8]

. 1 0
The error is less than W Z B+ Z

n=1

Homework 11.4. 9, 12, 15, 18, 21, 24, 28, 34, 37, 41, 46, 48(b)(i), 49(b)(i)

11.5 Alternating Series and Absolute Convergence
In the previous section, we consider the convergence tests for the nonnegative series (because

of the bounded criterion). In the present section, we want to relax the condition and discuss the
convergence for some special series which includes positive and negative terms alternatively.

a Alternating Series

(o)

Definition 11.5.1. An alternating series Z a, is a series whose terms are alternatively positive
n=1
and negative.

Let b, = |a,|. The general form of an alternating series is

/ [
Z(—l)”bn ifa, <0
n=1

[Se]
2=

n=1 s
Z(—l)"‘lbn if a, > 0.

\ n=1

Example 11.5.2. The series Z(—l)” is an alternating series.
n=1

m Alternating Series Test

Theorem 11.5.3. If the alternating series

Z(—l)"-lbn —b—by+bs—by+--- whereb, >0

n=1
satisfies
(i) byy1 < b, foralln e N
(ii) lim b, =0,

then the series is convergent.
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Proof.

3 5

Let {s,} be the sequence of the partial sums of the alternating series. The condition (i)
implies that, for every n € N,

Sons2 = Sop + (Dops1 — bansn) > Sy
~——————

>0
and
Son = b1 - (b2 - b3)_ T (bZn—l - bZn) < bl'
>0 >0
We have

0<$ <su<s6< < 8§, <~ < by

which is increasing and bounded above by b;. By the bounded criterion, lim s,, = s is conver-
n—o0o

gent. Since $y,+1 = S2, + bant1, by condition (ii),

lim $5,41 = lim 55, + lim by, = s+ 0 = s.
n—oo n—-oo

n—oo
Hence lim s, = s and the alternating series is convergent. O
n— oo
> -1 n—1
Example 11.5.4. (alternating harmonic series) Determine whether the series Z is con-
n
n=1
vergent or divergent.
Proof.
1+
1 o (D) O I {s,}
Let by =~ Then Y TV = S 1y, IR
n A AR AR
n=1 n=1 1
) 1 1
Since b, =——<—=b, for all n € N
n+l1 n
and lim b, = lim — = 0, by the alternating series | {a,}
n—oo n—cop T T e e e e e e e
. — (—1)"! . 0] PRI n
test, the series Z is convergent. '
n
n=1
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[

-1)"3
Example 11.5.5. Determine whether the series Z ( 7] ) ln is convergent or divergent.
n —_—
n=1
3 -1)"3
Proof. Letb, = and a, = (=1)"3n = (-1)"b,. Then |a,| = b, for every n € N.
4n -1 34n -1
Since lim b, = lim yr # 0, the limit lim a,, is not equal to O (in fact, the limit does
n—o0 n—oo 49 — n—oo

o (—1)"3
(=1)"3n = lim a, is divergent. O

not exist). By the Test for Divergent, the series 7 7
n — n—oo
n=1

(o)

Example 11.5.6. Determine whether the series Z

n=1

-1 n+1 n2
3 is convergent or divergent.
n’+1

[ee)

Proof. Letb n’ Then i rn? Z( 1)"'b,. Since
roof. n = —_— = - n-
+1 o

n3 n+1
n=1

(n+1)? n? _—n4—2n3—n2+2n+1
n+13+1 md+1  [(n+1)P+1]n3+1)
2

b1 — b, = <0 forallneN,

we have b,,; < b, for all n € N. Also, lim b,, = lim

3 = (. By the alternating series test,
n—o0 n—oo n° + 1

(59

_1)n+1 n2
the series Z ———— Is convergent. m|
nd+1

d, 2 2-x°
Note. In this example, we can compute — <x3x+ 1 ) = )(C)(ﬁ T ic)z)

dx
b, for all n € N.

Remark. As the similar discussion as before, in the use of the alternating series test, it only
needs that the series satisfies conditions (i) in Theorem for every n > ng for some fixed
integer n.

< 0 for x > 2 to obtain b,,; <

m Estimating Sums

b,
_b, Observe the structure of an alternating se-
b, ; ries satisfying the two conditions (i) and
. by (ii) in Theorem II373. Let R, = s — s,
b, be the remainder of the series, then
— b6
| HHHHHH |Rn| = |S - Snl S bn+l*

0 ) Sy S s S5 83 5

Theorem 11.5.7. (Alternating Series Estimation Theorem) If s = Z(—l)”_lb,, is the sum of an
n=1
alternating series that satisfies

(i)0< b, <b, foreveryneN and (i) imb, =0

then
|Rn| = |S - Snl < bn+1
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(o)

Example 11.5.8. Find the sum of the series Z

n=1

n

correct to three decimal places.
n!

(o0

Proof. The series Z

n=1

1 1
and lim b, = lim — = 0. To find n such that b, = — < 0.001, we have n > 7. Hence, by the

n—00 n—oo J1. n!

alternating series estimation,

-1 1 1 1
D is an alternating series. Letb, = —. Then b, = <—=b,
n! n! (n+1)! n!

|Rs| = |s — 56| < b7 < 0.001 (in fact, b7 < 0.0002).

1 1 1 1 1
Thens¢=1-1+—-—- -+ — — — + — ~ (0.368056. In fact s =

~ 0. 44,
276724 120 T 720 0.367879

Q| =

Remark. The rules does not apply to other type of series.

a Absolute Convergence and Conditional Convergence

From now on, we will continue to discuss the convergence of general series (without al-
ternating patterns). Intuitively, it is difficult to give a nice test for every series because they
may have too many varieties. Therefore, we hope to use some known results (discussed in the
previous sections) to deal with the convergence of certain general series.

[ee)

For a general series Z a,, we consider the correspondg series

n=1

[e9)
Z\an} = |a| + |ao| + -+ |an| +--- .
n=1

[e9)

Definition 11.5.9. (a) A series Z a, is called “absolutely convergent” if the series of absolute

n=1
(o)
values Z |a,| is convergent.
n=1

o0

(b) A series Z a, 1s called “conditionally convergent” if it is convergent but not absolutely

n=1
COHVCI‘gGIlt.

Example 11.5.10.

[Se]

(1) The series Z

n=1

(1)

(D"
n

is convergent by the alternating series test. But Z ‘
n=1

= 1
:;Z:oo

is a conditionally

(o)

is divergent (harmonic series, p-series with p = 1). Therefore, Z

n=1

n

convergent ser ies.
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i l ‘

= — 1S

n2
n=1

is absolutely convergent.

()

(2) The series Z (

n=1

n

(_1)’1

n2

>— 1s convergent by the alternating series test and Z ‘
n
n=1

[ee)

also convergent (p-series with p = 2). Therefore, Z — >
n

n

n=1

[ee] oo

Question: For the two series Z a, and Z la,|, can the convergence of one series imply the
n=1 n=1

convergence of the other one?

[ee)

Theorem 11.5.11. If a series Z a, is absolutely convergent, then it is convergent. That is, if

n=1
(o)

(o]
Z |a,| converges then E a, converges.

n=1 n=1

Proof. Observe that 0 < a, + |la,| < 2|a,|. If Zan is absolutely convergent, then Z 2|a,|

n=1 n=1

converges. By the Comparison Test, the series Z(an + |a,|) converges. Hence, the series

n=1

[Se] [Se] [Se] [Se]
D an= ) (an+lad —lau) = Y (a0 +la) = > lal
n=1 n=1

n=1 n=1

converges.

Note.

(1) The converse of Theorem TT5TT is false. That is, the convergence of Z a, cannot imply

n=1

(o]
the convergence of Z |a,|.

n=1

[>9) [
Zan converges = Z la,| converges.

n=1 n=1

> n

For example, Z (

n=1

=D

n

is divergent.

is convergent but Z ‘
n=1

2) If Z a, is divergent, then Z |a,| must be divergent.

n=1 n=1

(o)

(e8]
Zan diverges = Z la,| diverges.

n=1 n=1
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. .o cosn .
Example 11.5.12. Determine whether the series Z is convergent or divergent.

2
n=1 n

[se]
) cosn
Proof. The series Z >
n

is not an alternating series. Con-

n=1

1
‘ < — foreveryn € N. 0.5 '
1 " {s,}
Since Z — converges (p-series, p = 2), by the Compari- P L
n

n=1

. cos
sider ‘ >
n
o0

.\ |cosn )

son Test, the series Z ) ‘ converges. Hence, the series {a,}

n=1 n >
o COSTL | S . 0 "
Z 5— 1s absolutely convergent and this implies that it is

n

n=1
convergent. O

Example 11.5.13. Determine whether the series is absolutely convergent, conditionally conver-
gent, or divergent.

© 1y
(a)Z(na)
n=1

o (1) Sy
(b); = © ;(—1) S

Exercise. Let {a,} be a sequence and define

+

a":{o, ifa, <o "¢

a,, ifa,>0 d __{0, ifa, >0
a,, ifa,<0

Prove that the series Z la,| converges if and only if both of the series Z a; and Z a,
n=1 n=1 n=1
converge and moreover,

n=1 n=1 n=1
Hint: (=) Using the Comarison Test with the fact 0 < |a;| < |a,| for every n € N and

moreover, the equality holds from the laws for series.
(=) Using the laws for series with the fact |a,| = a — a,, for every n € N.

0 Rearrangement

Question: What is the difference between absolutely convegent or conditionally convergent
series? Whether the behaviors of infinite sums are like the ones of finite sums?

e For a finite sum, we can rearrange the order of the terms and the value of the sum remains
unchanged.

e For an infinite sum, the rearrangement may change the sum.
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Consider an example of a paradox. Let

~ 1 1 1 (=1)y™!
x = 1 2+3 4+ + " +
L )+1+(1 1) 1+(1 1) 1+(1 1) 1+( 1) 1+
S 2774 3 60 8 5 100 12 7 147 16 9 187 20
1 1+1 1+
2 4 6 8
1 1 1 1
= UmatsTgt)
1
= :Zx.

Hence x = %x and we obtain a contradiction that x = 0.

Question: What’s wrong with this?

For a sum of finitely many numbers, we obtain the same value if arbitrarily rearraneging the
order of those numbers.

Question: Can we get the same value of the sum of infinitely many numbers if we arbitrarily
rearrange the order of these numbers?

Definition 11.5.14. Let {a,} and {b,} be two sequences. We say that {b,} is a “rearrangement”
of {a,} if there exists a one-to-one and onto function f on N such that b, = ay, for every n € N.

Note. In general, Z a, * Z b, if {b,} is a rearrangement of {a,}.

n=1 n=1

Theorem 11.5.15. If Z a, is conditionally convergent then, for any number L € R, there

n=1

exists a rearrangement {b,} of {a,} such that Z a, = L.

n=1

Proof. We only sketch the proof by the following steps.

(I Let {p,} be the nonnegative subsequence of {a,} and {g,} be the negative subsequence

of {a,}. Since a, is conditionally convergent, we have Z la,| diverges. Hence, at

n=1 n=1

least one of the series Z pn and Z g, 1s divergent. Moreover, the fact that Z a,

n=1 n=1 n=1

converges implies both series Z p, and Z q, are divergent. We have that

n=1 n=1

ipn =oo and iqn:—oo.
n=1

n=1




11.5. ALTERNATING SERIES AND ABSOLUTE CONVERGENCE 123

(II) W.L.O.G, say L > 0. We construct a sequence {b,} from {p,} and {g,} by the following

process. Since Z pn = 00, there exists n; € N such that
n=1

ni—1

an<L<2pn

ni
LetS) = ) p,. ThenS; > Land § - p,, < L. Hence, |S1 = L| < py,.

n=1
Since Z qn = —o0, there exists m; € N such that

mi—1

an an L>an+2qn
nj

Let T, = an + an =5+ an Then Ty < L and T) — q,, > L. Hence,
|T1 Ll < qml

Continue this process, we have 1 < n; <ny <---and 1 <m; <mp < --- and {S;}
and {7} such that for every k € N,
ny,

Si=Tii+ > pw Si2L Si—py<L = ISi-Li<p,

n=ny_1+1
and
my
Te=Si+ D, qn Te<L Ti—gu>L =>ITi=LI<gu.
n=myj._ 1+1
Deﬁne {pl’p29 . ,Pnpﬂh,qz,"' ,CIml,PnIH,"' ’pnzaqm1+l9"'Qm2’“ }

(III) To check that {b,} is a rearrangement of {a,}, we have to show that

(i) To show that each a, appears at most once in {b,}. Since each a, is either in {p,}
orin {g,}, and each p, or each g, appears in {b,} at most once by the construction
of {b,}, we have each a, appears in {b,} at most once.

(i1) To show that each a, appears at least once in {b,}. For K € N, ax must appear
in {p,}%_, orin {g,}X_,. Hence, ax appears in {b,} at least once.

(o9

(IV) Check that S; — Land T, — L as k — oo. Since the series Z a, converges, a, — 0

n=1
asn — oo. Then p, — 0 and g, — 0 as n — co. Hence, by part (II), S, — L and

T, > Lask — oo.

By the above argument {b,} is a rearrangement of {a,} and Z b, = L.

n=1
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Theorem 11.5.16. If Z a, is absolutely convergent and {b,} is a rearrangement of {a,}, then

n=1

(a) ian = ibn and
n=1 n=1

(b) Z b, is absolutely convergent.

n=1

(a)

(b)

Proof. Lets, = Z arand t,, = Z by.
k=1

k=1
(o) o0

Since Z a, is absolutely convergent and hence it is convergent, the series Z a, is a

n=1 n=1

< g as m is sufficiently large.

finite number. Given £ > 0, we want to prove ‘tm - Z a,

n=1

Since Z |a,| converges, there exists N € N such that

n=1
&
layi] + layso| + -+ < 5
Since {b,} is a rearrangement of {a,}, there exists M € N such that {a;,a,,--- ,ay} C
{b1,by, -+ ,by}. Form > M
g
[t = syl < laysil + laysa| + -+ - < 7
Then
b 00
e &
|tm - Zan| < |l’m - SNl + |SN - Zanl < —4+ —==&.
22
n=1 n=1
Hence, {t,,} converges to Z a, and we have Z a,= Y b,.
n=1 n=1 n=1

(o)

Consider the sequence {|a,|}. Since Z a, is absolutely convergent, Z |a,| 1s also ab-
n=1 n=1
solutely convergent. On the other hand, since {b,} is a rearrangement of {a,}, {|b,|} is a

rearrangement of {|a,|}. By part(a),

Hence, Z |b,| converges; that is, Z b, is absutely convergent.

n=1 n=1
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m Product of two sequences

Suppose that {a,} and {b,} are summable sequences. We recall that

c Z a, Wwhere cis a constant.

n=1

N
gk

~

R

Q
N
N—

|

Question: Can we express (Z an)(z b,) as a form of series? If yes, what is the
. n=1 n=1
expression?

Heuristically, we observe the product of two finite series.
N M L
(2 a)( D bn) = ) e
n=1 m=1 k=1

where {c;} contains all products of a,b,,.

Question: Is the formula still true for the product of two arbitrary infinite series?
Anserer: In general, it is not true for two summable sequences.

Exercise. Find two summable sequences {a,} and {b,} such that there is no summable se-

quence {c,} satisfying
Z a, bn) = Z Cp-

n=1 n=1

Mg

S
Il
—_

Theorem 11.5.17. If Z a, and Z b, converge absolutely and {c,} is any sequence con-

n=1

taining all products a; b for each pair (i, j), then

icn: an)(ibn).

n=1 n=1

e

S
Il
—_

Proof. (Exercise) O

Homework 11.5. 3,6, 9, 11, 13, 17, 20, 22, 25, 28, 31, 34, 37, 41, 46, 48

11.6 The Ratio and Root Tests

In the previous section, we study that an absolutely convergent series is also convergent. How-
ever, it is not easy to check whether a general series is absolutely convergent. In the present
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section, we will introduce two methods which can determine whether certain series are conver-
gent or divergent. The spirit of these two methods is from the comparison with geometric series.

0 The Ratio Test

Aptl - L

Theorem 11.6.1. (Ratio Test) For the series Z a,, suppose that lim

n—oo

a
n=1 n

[

(a) If L < 1, then the series Z a, is absolutely convergent (and therefore it is convergent).

n=1

(o8]

(b) If L > 1 (or L = o), then the series Z a, is divergent.

n=1
. . . | 1
(c) If L = 1 the Ratio Test is inconclusive. (For example, Z — diverges and Z — con-
n n
verges).
Proof. (Postponed) O

Example 11.6.2. Determine whether the following series are convergent or divergent.

(o)

(1) Z%

n=1

1
Proof. Leta, = —- Then
n!

1
. |a ) D! . 1
hm) 21| = lim (n+1) = lim =0<1.
n—oo a, n—oo = n—oo N + 1
n:
: . w1
By the ratio test, the series Z — is convergent. m|
i n!
- 1
@ 2w
n!
n=1
1
Proof. Leta, = —- Then
n!
g 1
. . D! .
lim =] = lim ("J;) = lim =0<1.
n—oo |, n—oo ) n—oo N +

. oo 1
By the ratio test, the series Z — 18 convergent. O
n!

n=1
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(e8] rn
3) ; D! for some r € R.

n

Proof. Leta, = r—‘ Then

(n+1)
rn+l
. |a . 2)! . r
lim |~ | = lim (":,,) = lim =0<1.
n—oo |, n—o0 (n+_l)' n—oo N + 2
[Se] rn
By the ratio test, the series Z is convergent. m|
(n+ D!
n=1
d 3
n
4 )1y
n=1
w3
Proof. Leta, = (—1)”§. Then
3
T R G Vit S [P NS NI |
lim = lim —3‘:hm—< ) =-<1.
n—eo | a, n—co (_l)ngl_n n—oo 3\ p 3
By the ratio test, the series Z(—l)”; is convergent. m|
n=1
[ee) nn
) Y =
n!
n=1
nn
Proof. Leta, = - Then
n!
(}’H—l)’”l N 1 1
. a . 1! . n n .
lim ‘ 1= lim ‘ Snsl ‘ = lim ( ) =lim(l+=)"=e> 1.
n— o0 a, n—o0 % n—oo n n—o00 n
(e8] nn
By the ratio test, the series Z — is divergent. O
i n!
X nn n-n---n i .
Note. Consider =12, >n — o as n —. By the Test for Divergence, the series
n. . ... n

X n

n. .
Z — is divergent.
n!

n=1

Proof of Ratio Test
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an+1

(a) Since lim

n—oo an

such that for every n > N

= L < 1, choosing a number s such that L < s < 1, there exists N € N

|an+1|
lan]

Hence, |a,1| < |a,|s for every n > N. We have

s<1.

lan2l < lansils

2
lanssl < lansals < lansils
lansl < lansoils < -o- <layals®™' fork=1,2,3,---

For every n > N, the partial sum s, of Z |a,| satisfies

n=1

Sp = lag| +lazl + -+ - +lay| + laysi| + - - - + |ay,]

N
= Y lad +layail + - + lal
k=1

N
2 —(N+1
< D laid +laval + layals + layals® + - + lay.ls"
k=1
N _
_ jan+1l(1 = ")
- Zlakl 1—
k=1 §
N |
N+1 .
< Z|ak|+ ; i since 0 < s < 1.
-8

>~
I

1

Since {s,} is an increasing sequence and bounded above, by the bounded criterion, {s,}

converges and hence Z ay, 1s absolutely convegent.

n=1

(b) Since lim | 22!

n—oo

= L > 1, choosing a number s such that 1 < s < L, there exists N € N

n
such that for every n > N

|an+1|

s> 1.
|a|

Hence, |a,+1| > |a,|s for every n > N. We have

lan2l > lansils

2
lansl > lanels <lay+ils

k—1
|aN+k| > |aN+k—1|s > < |aN+1|s for k = 1’2’ 37 e
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W.L.O.G, we may assume that |ay.| > 0. Then
lim |a,| > lim |ay.q|s" D = co (since s > 1).
n—o00 n—oo

(o)

Hence, lim a, # 0. By the Test for Divergence, the series Z a, is divergent.
n—oo

n=1

1 The Root Test

(o8]

Theorem 11.6.3. (Root Test) For the series Z a,, suppose that lim +/l|a,| = L.
nz] n—oo

(a) If L < 1, then the series Z a, is absolutely convergent (and therefore it is convergent).
n=1

(o8]

(b) If L > 1 (or L = ), then the series Z a, is divergent.

n=1

1 1
(c) If L = 1 the Ratio Test is inconclusive. (For example, Z — diverges and Z — con-
n n

verges).
Proof. (Postponed) O

Example 11.6.4. Determine whether the following series are convergent or divergent.
S
£ (Inny"’

1
Proof. Leta, = ——. Then

(Inn)"
lim /}a,l = lim " "o lim L =0<1
im y/la,| = lim " |——| =lim — = .
n—co n—eo [ (Inn) n—eo Inn
By the root test, the series Z anny is convergent. O

n=1

n

2
Proof. Leta, = —. Then
n
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X An

By the root test, the series Z — is divergent. O
n

n=1

> 21+ 3\n
@ 2 G

2n+ 3\n

Proof. Leta, = (3n " 2) . Then
W12+ 3 n 2n+3 2
lim v/|a,| = lim 4/ = li =-<1.
ngg |Cl | ngg 3n+2 ngg 3In+2 3
= 21+ 3\n
By the root test, the series Z (3Z " 2) is convergent. O

@ > (A

n=1

Proof. Leta, = (#)n Then

11m Vla,| = lim \/
n—oo n—»oo l’l + 1

The Root Test is inconclusive. However,

n \n . 1 1
1) =lim —=-#0.

lim a,, = lim ( o (1 4 %>” e

n—oo n—oo \n +

[ee)

By the Test for Divergence, the series Z (

n=1

" Z 7 )n diverges. O

Proof of Ratio Test

(a) Since lim y/|a,| = L < 1, choosing a number s such that L < s < 1, there exists N € N
such that for every n > N
l0a,| < s < 1.
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Hence, |a,| < s" for every n > N. The partial sum s, of Z |a,| satisfies

n=1

Sp = lag| +laz| + -+ +layl + layi| + -+ + ay|
N
< ZIak|+sN+l+sN+2+ + 5"
k=1
N N+1(1 sn—N)

Il
S
=

+

o]
—
I
5}

since 0 < s < 1.

A
1=
=)
+
-
|

Since {s,} is an increasing sequence and bounded above, by the bounded criterion, {s,}

converges and hence Z a, 1s absolutely convegent.
n=1
(b) Since lim v/|a,| = L > 1, choosing a number s such that 1 < s < L, there exists N € N
n—oo
such that for every n > N
Vl0a,| > s > 1.

Hence, |a,| > s" for every n > N. We have

lim |a,| > lim §" = o (since s > 1).
n—oo

n—oo

(o)

Hence, lim a, # 0. By the Test for Divergence, the series Z a, is divergent.
n—o0o

n=1

Homework 11.6. 3, 6,9, 13, 19, 22, 25, 28, 32, 35, 39, 41

11.7 Strategy for Testing Series

In the present section, we will organize all tests introduced in previous sections. The following
steps are some strategies for convergence or divergence for series.

(o]
2
n=1

1. p-series:
convergent when p > 1

@
Zn—pls

n=1 divergent when p < 1.
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2. geometric series:

- convergent when |r| < 1
> ar (a#0)is
n=1 divergent when |r| > 1.

3. When the form of the series is similar to a p-series or a geometric series (for example,
2 2n+1 _
—————or
Zn2+3n.+1 3n+2 )
the comparison test (or limit comparison test).

), we could determine the convergence or divergence by using

4. Test for Divergence:

(o)

lima, #0 = E a, isdivergent.
n—oo
n=1

5. Alternating Series Test: If the series has the form Z(—l)"bn for b, > 0 satisfying
n=1

(1) byry < b, foralln e N and (i) lim b, =0

(o)

then the series Z(—l)"bn is convergent.

n=1

6. Ratio Test: Suppose that lim Gnet] _p,
n—oo an
oo absolutely convergent if L <1
Z a, is divergent if L>1
n=1 inconclusive if L=1

7. Root Test: Suppose that lim +/|a,| = L.

) absolutely convergent if L <1
Z a,is ¢ divergent if L>1
n=1 inconclusive if L=1

8. Integral Test: Suppose that f is positive and nonincreasing on [1, 00), and a, = f(n). Then

Z a, 1s convergent (divergent) = f f(x)dx is convergent (divergent).
1

n=1

Homework 11.7. 9, 12, 15, 18, 20, 22, 26, 30, 33, 36, 38, 40, 43, 46, 68
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11.8 Power Series

So far, we have studied series of numbers: Z a,. For a number s € R, it can be expressed as a
series (sum of infinite numbers). For a function f, we want to ask whether a (smooth) function
can be expressed as a sum of infinite function. Here we consider series, called “power series”,

in which each term includes a power of the variable x: Z X',

a Power Series

Definition 11.8.1. A “power series” is a series of the form

(o]

no_ 2 3
chx =CcotCix+ox +c3x 4+
n=0

where x is a variable and the ¢, are constants called the “coefficients” of the series.

[ee)
For given x = x(, we should determine whether the series Z cyx; converges or diverges.
n=0

[Se]

Let f(x) = Z c,Xx" be as a function. Then the domain of f(x) is the set of all x for which the

n=0
series converges.

Example 11.8.2. Z X" =1+x+x>+x° +--isapower series. (We regard the power function

n=0
as a geometric series with ratio x.) The series converges when |x| < 1 and diverges when |x| > 1.

Therefore, the domain of Z xtis (—=1,1).
n=0

Definition 11.8.3. In general, a series of the form

[

ch(x—a)” =co+ci(x —a) + cp(x —a)* + - -
n=0

is called a “power series in (x — a)” or a “power series centered at a” or a “power series about

"

a .

Note. For a power series, it is important to determine for what values of x the series converges.

(o)

Example 11.8.4. For what values of x is the series Z n!x" convergent?
n=0

Proof. (Idea: using the ratio test or root test)

a n+ 1)l . |a
Let @, = n!x". Then ‘ | _ | ')n =(n+ Dlxl. If x = 0, lim [ =0 < 1 and
a, nlx n—e | @,
. . a
if x # 0, lim || =
n—oo | @,

By the Ratio Test, the series converges when x = 0. O
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[e6] _ 3 n
Example 11.8.5. For what values of x does the series Z =3 converge?
n
n=1
— 3
Proof. Leta, = x=3) . Then
n
a (x_s)nJrl n
2:1 = ‘ (;'_:31)" ‘ = 1|x—3| — [x—=3] asn— .
) . ) .o (x=3) .
By the Ratio Test, if |[x — 3] < 1 (i.e. 2 < x < 4), the series Z converges and if
n
n=1
. .o (=3
|lx—=3] > 1 (i.e. x < 2 or x > 4) the series Z diverges.
n=1 n
For |[x - 3| =1,
o (x-3 o 1
(i) Whenx—-3=1(G.e. x=4), Z x=3) = Z — diverges (p-series, p = 1).
n=1 n n=1 n
b — 3y b -1y
(i1) When x—3 = -1 (i.e. x = 2), Z x=3) = Z =D converges by the alternating series
n=1 n n=1 n

test.
(x-3)"

Hence, the power series Z converges on [2,4) and diverges on (—00,2) U [4,00). O

n=1

n

Example 11.8.6. For what values of x does the series Z al converge?
i (2n)!
Proof. Letdy = ——. Th
roof. Leta, = anr en
xn+]
Gps1 | _ | RorDIE ‘ 1
= = 0<1
a, | =T @i nan+2) s
. .o X
for all x. By the Ratio Test, the series Z converges for all x. O
i (2n)!

Example 11.8.7. (Bessel function of order 0) Find the domain of the Bessel function

*© -1y 2n
o = Yy S
n=0

2211(”!)2 '
(_1)x2n
Pl’OOf Let a, = W Then
(_1)x2(n+l)
n+1 20D | 1 2
an (D 2m+ 12

22"(71!)2
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For every x € R,

. an+1 . 1 2
lim =lim —=x["=0<1.
n—oo a, n—oo 22(7’1 =+ 1)2| |
By the Ratio Test, the series converges for every x and the domain of Jy(x) is R. O
YA
S y
1 So
1
y=Jox)
\

Partial sums of the Bessel function J,

m Interval of Convergence

[

Definition 11.8.8. (a) We say that a power series Z c,(x — a)" converges
n=0

(1) at xg if Z cn(xg — a)" converges;
n=0

(i) on the set S if Z c,(x — a)" converges ateach x € S.
n=0

[

(b) If we regard a series f(x) = Z c,(x —a)" as a function, then the domain of f(x) is the set
n=0
of all x for which the series converges.

Remark. A power series Z c,(x — a)" always converges at its center a. In fact, when putting

n=0
X = a, the series converges to the constant term c.

[e9)

Example 11.8.9. Consider the series Z X' =1+x+x*+x +---as a geometric series with
n=0
ratio x. Then the series converges when |x| < 1 and diverges when |x| > 1. Therefore, the

domain of Z x'is (=1, 1).

n=0
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From the above examples, we observe that the region where the power series Z cp(x —a)'

n=0
is convergent has always turned out to be an interval (e.g. {a}, finite interval, (—oo, c0) etc).

Question: Is the set where a power series converges always an interval (including the case that
converges at a single point)?
Theorem 11.8.10. For a given power series Z cn(x —a)',
n=0
(a) ifthe series converges at xy # a, then it converges absolutely at every x with |x — a| < |xo — al.

(b) if the series diverges at y,, then it diverges at every x with |x — a| > |y — al.

diverges converges diverges

&
<

Xo0 a Yo

A 4
v
~n

Proof.

[ee)

(a) Since Zc,,(xo —a)" converges, we have lim |c,(xo —a)"| =0. Thus, there exists
n—oo

n=0
N € N such that for every n > N such that |c,(xo — a)"| < 1.

n

. ) x—a i > | x—a
Let x satisfy |x — a| < |xy — al. Since ‘ ) < 1, the series Z ‘

converges.
Xo—d n=N+1 Xo—d
Also,
xX—a|n X—a|n
len(x — a)"| = |en(xo — a)”| ’ for n > N.
Xo—da Xo—da

(o) (o)
By the comparison test, the series Z lc,(x — a)"| conveges and hence Z lc,(x — a)"|
n=N+1 n=1
also converges.

[ee)

(b) Let zo be a number such that [y — a| < |zo — al. Assume that the series Z cu(zo —a)"
n=0

converges. By part(a), for every x with |x — a| < |zp — a, the series Z cp(x—a)"
n=0

[

converges. Hence the series Z c,(yo —a)" converges. It contradicts the hypothesis

n=0
that the series Z c,(yo — a)" diverges. Therefore, Z cn(zo — a)" must diverges.
n=0 n=0

Since z; is an arbitrary number with [yy — a| < |zg — al, part(b) is proved.
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(o)

Theorem 11.8.11. For a given power series Z c,(x —a)", there are only three possibilities:
n=0

(i) The series converges only when x = a.
(ii) The series converges for all x.

(iii) There is a positive number R such that the series conveges if |x — a| < R and diverges if
|x —al > R.

Proof. (Exercise) ]

Note.

(a) The number R in part(c) of Theorem IT-8TTl is called the “radius of convergence”.

(b) By convention, we define the radius of convergence as R = 0 in part(a), and as R = oo in
part(b).

(c) The interval which consists of all values of x for which the series converges is called the
“interval of convergence” of the power series.

(d) In order to find the interval of convergence in part(c) if the radius of convergence is ob-
tained, we still need to consider the endpoints of the interval. That is, to consider whether
the series converges at the endpoints x = a — R and x = a + R. All situations would occur.
Hence, the interval of convergence could be (a — R,a + R), [a — R,a + R), (a — R,a + R] or
[a—R,a+R].

convergence for [x —a| <R

A

Y

a—R c; a+R

L4

divergence for |[x —a| >R

Example 11.8.12.

Question: How to find the radius of convergece for a given power series? What is the connec-
tion between the coefficients and the radius of convergence?

. Cn+l
Suppose that lim |——| = L. Let a, = ¢,(x — a)". Then
n—o | ¢,
Ap+l Cn+l
= |lx —al — L|x — q| as n — oo.
a, Cn




138 CHAPTER 11. SEQUENCES, SERIES, AND POWER SERIES

Series Radius of convergence Interval of convergence
Geometric series Y, a* R =1 (—1.:1)
n=0
Example | > nlze R=0 {0}
n=0
 i— T
Example 2 y — R=1 [2, 4)
n=1 n
(_ 1 )n_\, 2n
Example 3 D R=ow (—oe, )
n=0 2- (”Tv)‘-

By the ratio test,

. 1 . .

ifllx—al<1l & |x—a| < T then the series Z c,(x —a)" is convergent;
n=0

) 1 ) - w1

ifllx—al>1 = |x—a| > 7 then the series Z ca(x —a)" is divergent.
n=0

Cn+l =L

) . 1 )
Hence, the radius of convergence of the series is R = A where lim

n—oo

Cn

(o)

Example 11.8.13. Find the radius and interval of convergence of the series E _x' .
n!
n=0

n

n

Proof. Leta, = x_| Then
n!

xn+l
Ani1 | | (nrD)! ’ A
- X" - .
a, = n+1
(o0
. Anyl . |x] . X"
Hence, for every x € R, lim |——| = lim = (. The series Z — converges for every
n—oo | @, n—oo N + 1 0 n'
n=
x € R. The radius of convergence is co and the interval of convergence is R. O

Example 11.8.14. Find the radius and interval of convergence of the series Z n"x".
n=0

2

L then |nx| > 2. Hence,

Proof. Forevery x # 0,if n € Nand n >
lim |#"x"| = lim |nx|" > lim 2" = oo.
n—oo n—oo n—oo

By the test for divergence, the series Z n"x" diverges at every x € 0. The radius of convergence

n=0
is 0 and the interval of convergence is {0}.
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o (=3)"X"
Example 11.8.15. Find the radius and interval of convergence of the series Z (=3) .
n=0 YN 1

=3 x"
Proof. Leta, = (=3) . Then
n+1
(_3))1+1)€n+1
Aps1 V2 n+1
:‘ — | =3 — 3|x| asn — o
a, () i3 n+2
Vnt+1
By the Ratio Test,

1
(1) When3jx| <1 < |x| < 3 the power series is convergent.

1
(2) When 3|x| > 1 < |x| > 3 the power series is divergent.
(3) At the endpoints,

b

w0 Vyn-+

1 o1
(i1) if x = —=, the series is
3 nzz(; n+1

1) ifx= 3 the series is is convergnet by the alternating series test.

[S—

1
is divergent (p-series, p = 3 <.

. 1 . .
Hence, the radius of convergence is 3 and the interval of convergence is (—%, %].

(o)

Example 11.8.16. Find the radius and interval of convergence of the series Z —n();:;lZ)”
n=0
Proof. Leta, = n();:;lZ) ’ Then
Ansl —(n+1)3(f$2)ml n 1
o e = e+ 2 g2 asn— o
By the Ratio Test,

1

(1) When §|x +2 <1 & |x + 2| < 3, the power series is convergent.
1 D

(2) When glx +2>1 &= |x+ 2| > 3, the power series is divergent.

1
(3) At the endpoints, consider §|x +2|=1& |x+2|=3.

1 [se]
(1) If x = 1, the series is = Z n = oo is divergent.
3 n=0

139
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1 (e8]
(i) If x = -5, the series is 3 Z(—l)"n is divergent by the test for divergence.
n=0

Hence, the radius of convergence is 3 and the interval of convergence is (=5, 1). O

Remark.

(i) The Ratio Test (or Root Test) do not apply for the endpoints of the interval of convergence.

(i) Theorem IT-XTT is false for general series Z S (X).
n=0

Homework 11.8. 7, 10, 13, 17, 21, 24, 26, 31, 35, 37, 39

11.9 Representations of Functions as Power Series

Motivation: Many functions have no elementary antiderivatives or it is difficult to solve differ-
ential equations, or the approximation of them are difficult to find. We hope to express those
functions as sums of power series and do the differentiation or integration on the power series
rather than dealing with the original functions.

Difficulties:
(1) What kinds of functions can be expressed as a powe series?

(2) If a function can be expressed as a power series, can we do the differentiation or integration
on the power series “term by term”?

Example 11.9.1.

(o)

Consider the power series Z X' =1+x+x"+--- Ifwe
n=0
regard the series as a geometric series with ratio x, then

the series diverges when |x| > 1 and converges when |x| <
1. Moreover,

- 1
anz— for |x| < 1. (11.1)
1—x

n=0

Hence, the power series is regarded as expressing the

1
function f(x) = -+

Note. Observe that the domain of f(x) =

is R\{1} but the domain of the series Z x" s
n=0
(=1, 1). This says that a power series representation of a function may equal this function only

on a proper subset of its domain rather than the whole domain.

1-x
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Question: For a given function,

(1) does it have a power series representation?

(2) If yes, for what values of x does f(x) equal Z cpX"?
n=0

3) If f(x) = Z c,X", can we take differentation or integration on the power series term-by-
n=0
term?

1
Example 11.9.2. Express T

0 as the sum of a power series and find the interval of conver-
X
gence.

1 1
Proof. Consider = . Replacing x by —x? in Equation (I1-T)), we have
L+x> 1-(-x%

The geometric series converes when |- x?| < 1. Thus, the interval of convergence is (—1,1). O

Example 11.9.3. Find the power series representation of

x+2

1 1 1
Proof. Consider = . Replacing x by —3 in Equation (IT_T)), we have
x+2 2 1-(-3)

1 " (1)"
x+2 2 ——g 22( ) 2n+1

The power series converges when | — 7| < 1. The interval of convergence is (-2, 2). O

3

Example 11.9.4. Find a power series representation of 5
X

Proof. The power series representation is

The interval of convergence is (-2, 2).

a Operations on Power Series

(&9

Theorem 11.9.5. Let f(x) = Z a,(x —a)" and g(x) = Z b,(x — a)" with the intervals of con-

n=0
vergence (a — L,a + L) and (a - M a + M) respectively. Let R = min(L, M). Then
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(1) (fig)(x) = Z(an +b,)(x—a)"on(a—R,a+R).

n=0

[ee)

(2) (f-g)(x) = ch(x— a)" on (a — R,a + R) where ¢, = Zakbn_k.

n=0 k=0

R = min(L, M)
R R

Q 4|<

a+M

s
+ o 4
o

Q Differentiation and Integration of Power Series

(9]

Theorem 11.9.6. Let f(x) = Z c,(x —a)" with the radius of convergence R > 0. Then f is
n=0
differentiable (and therefore continuous) on (a — R,a + R) and

[oe]

(1) f'(x) =c1+2c(x—a)+3c3(x— ay +---+ncy(x—a)" '+ = Z ne,(x — a)"!

n=1

(2)
)2 )3
ff(x)dx = C+c0(x—a)+c1(x Za) +C2(x 3a) +.-.+ni‘1(x_a)"+1+...
_ (x a)n+1
B C+Z T+l

The radii of convergence of the power series of above equations are both R.

Remark. (1)

(o0

% [Z cp(x — a)"} i % [c(x - a)"}

n=0 n=0
fZ cp(x —a0" dx sin an(X —a)"dx
n=0

(2) The radius of convergence remains the same when a power series is differentiated or in-
tegrated. But it does NOT mean that the interval of convergence remains the same. (For
example, f(x) = tan"! x)

(3) A powerful method to solve differential equations.

Example 11.9.7. (Bessel function) The function

s —1)" 2n
NOESY (22”()’1),6) — s defined for all x € R
n=0 ’
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Then

( l)n 2n > d (_1)’7 2n *® (_1)n2 on—1
Jo(x) = _[Z 22;1(”1)2} :Zd_[zzn(n)!c)g} :ZTIZ; on R.

n=0 n=1

. What is the radius

Example 11.9.8. Express as a power series by differentiating

1 1
(1-x)? 1-x

of convergence?

:1+x+x2+--~:Zx”f0r|x|<1,

1 d o0 © g o0 ) )
(1-x)? - a’x[l—x} [Zx} ZE n):annl(=Z(n+l)x>

n=0 n=1 n=1 n=0

Proof. Since 7

= 1+2x+3x>+---

18 1 which is the same as the radius of

The radius of convergence of the power series of Ty
- X

convergence of the power series of T O

- X

Example 11.9.9. Find a power series representation for In(1 + x) and its radius of convergence.

. 1 1 N n N n.n
Proof. Since In(1 + x) = f T s dx and () = ;(—x) = ,,Z:(;(_l) x" for x| < 1,

1 & & xn+1
ln(l+x):f1+xdx:fZ(—l)"x"dx:C+Z(—l)"n+l.
n=0 n=0

To determine C, taking x = 0 € (=1, 1), we have 0 = In(1 + 0) = C and hence

n—1
ln(l+x)—Z( D>

n=1

Since the radius of convergence of the series for is 1, the radius of convergence of the

) ) + x
series for In(1 + x) is also 1. O

Example 11.9.10. Find a power series representation for f(x) = tan™! x.

1
Proof. Since f'(x) = T Z( 1)"x* on |x| < 1, we have
x

n 2n+1
f(x):tan—lx:fZ( 1y 2"dx—C+Z(21’z+1 :

To determine C, taking x = 0, we have 0 = tan"! 0 = C and hence
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Since the radius of convergence of the series for I > is 1, the radius of convergence of the

+x
series for tan~! x is also 1. O

Note. In fact, the power series representation is also true when x = +1. But this result is not

given by the above theorem.

Example 11.9.11. Express g as a series.

Proof. From Example TT.9.10,

1 1 1 -1)
—:tan‘llzl——+———+---+( ) +
4 3 5 7 2n+1

Vg ) . .
In fact, 1 has several different series representations. For example,

z — t _11_|_t _ll
4 = al 5 an 3
1 1,15 1,15 1,15 1 1,15 1,15 1,15
= [5‘5(5) +§(5) —7(5) +"'}+[§‘§(§) +§(§) —7(5) +]

Note. If we use the idnetity 7 = 48 tan™" & + 32tan™' = — 20tan™! 55 to approx1mate it will

give more rapid rate of convergence than the above serles representation since — 18 , 57 and 2;9 are
much smaller than 1 > and ; This implies that the reminder of the former decays to zero much

more rapidly than the one of latter.

1
Example 11.9.12. (a) Evaluate f o7 dx as a power series
X

1
1+ x7

0.5
(b) Approximate f dx correct to within 1077,
0

Proof. (a) Since Z( Xy = Z( 1)"x7" for |x < 1, we have

1+x 1—( x7)

f1+ 7dx—fZ( 1" 7”dx—C+Z( '

fO.S 1 oo 00 (_1)n x7n+1 0.5
o 1+x7 £ Tn + 1

7n+1

for |x| < 1.

(b)

0.5 Tn+1
Z( 1)( )

Tn+1 "

0

(o)

By the alternating series estimation, for Z(—l)bn with b, > 0, the estimate of remain-

n=0
(0.5)7n+1 5
der |R,| < b,1. Hence, for b, = < 107", we have n > 4.
Tn+1
Therefore,
0.5
1 1 1 1 1
dx ~ — — - ~ (0.49951374.
fo 0 278 3 5.2 202
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0 (o)

Remark. Suppose that f(x) = Z cn(x — a)" converges for [x—a| < R. Then f’(x) = Z ne,(x —a)"
n=0 n=1

also converges for [x — a|l < R. Hence f’(x) has a power series representation on (x — R, x + R).

We can also take term-by-term differentiation and obtain

f(x) = Z nn—1)(x—-a)"> converges on (¢ — R,a + R)
n=2

[

fPx) = Z nn-1Dm—=2)---(n—k+1)(x—a)"*  converges on (a—R,a+R).
n=k

Homework 11.9. 7, 10, 13, 15, 19, 22, 27, 30, 31, 38, 40(a), 49

11.10 Taylor and Maclaurin Series

So far, we can find power series representations for a centain restricted class of functions.
Question: Which functions do have power series representations?

Suppose that f has a power series representation

f(x):co+cl(x—a)+cz(x—a)2+~--+cn(x—a)”+--~:ch(x—a)" for|x —al <R
n=0

Question: what are the coefficients c,?

k

By the term-by-term differentiation, we can take Tk on f and obtain
X

[ee)

FO@ = nn= 1) (n—k+ Dey(x—a) ™.

n=k

Plugging x = a into the equation, we have

_ Y@

C_
k k!

fork=0,1,2,---.

Note. For the sake of conventions, we denote 0! = 1 and f© = f.

Definition 11.10.1. (a) Let f be a function with infinitely many times derivatives at a, that is,
f'(a), f(@), -, fPa),--- existfor k = 1,2,---. Then the series

fla) +

, ,, ® o S
L@ s LD g g s D Zo L0 ar

is called the “Taylor series for f at a” (or “Taylor series for f about a” or “Taylor series for
f centered at a”).
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1o

n!

0
)x” is also called the “Maclaurin

(b) For the special case a = 0, the Taylor series at 0, Z
n=0

series for .
Note. If f can be represented as a power series about a with radius of convergence R > 0, then
f 1s equal to the sum of its Taylor series about a.

Example 11.10.2. Find the Taylor series for the following functions at the given points.

(1) f(x)=e*atx=0.

Proof. Since f®(x) = e*, we have f®(0) = 1 fork = 0,1,2,---. Hence, the Taylor series
for f at 0 (Maclaurin series) is

o f(n)(o) . e P _ x2 X3 P
;TX —;H—l+x+a+§+“'+a+"'
x" Ap+1 |x] :
Moreover, let a, = - Then =1 — 0 < 1 as n — oo for every x. By the Ratio
n! a n
Test, the Taylor series converges for all x and the radius of convergence is co. O
(2) f(x) =sinxatx=0.
Proof. For k € N,
fA(x) =sinx, f@*D(x) =cosx, [f#*I(x)=—sinx, [f@*I(x)=-cosx
f4(0) =0, fE0) = 1, fE2(0) =0, fE0) = ~1

The Taylor series for f at 0 (Maclaurin series) is

(o)

(D" o
2n+1)!
—1)
Leta, = szn”. Then
2n+ 1)!
u D™ 2043 2
n+1 2n+3)!
= = 0 forall x.
a ‘%xzm ‘(Zn PTG I) B
N _ED .
Therefore, the Taylor series mx converges for all x € R and the radius of
n !
n=0
convergence is oo. m|

® When is a Function Represented by Its Taylor Series?

Note. Suppose that the functions f(x) = e¢* or f(x) = sinx has power series representation.

Then we have
x _ N X . _ (_l)n 2n+1
€= Z ar 00 SIAE ano Qn+ D
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By the definition of Taylor series, as long as a function f has infinitely many derivatives at
a, the Taylor series for f about a is defined. It is natural to ask the following questions:

f (”)(a)

n

Remark. (1) Aslongas f has derivatives of all orders at a, then its Taylor series Z (x—a)

exists.

(2) If f can be represented as a power series, then its power series representation mush be its
Taylor series.

(3) There are examples that a function is not equal to its Taylor series at all points except the
center. We usually determine whether and where a Taylor series converges by using the
Ratio test or Root test. Even if the Taylor series for f about a converges at some number
X # a, it may not converge to f(x). For example,

1

_Je2 ifx#0
f(x)_{o ifx=0

We can evaluate that £(0) = f/(0) = f”(0) = --- = f®(0) = --- = 0. Hence, the Taylor
series for f at 0 is the zero function which does not converge to f except at the center O.

Question:

(1) What values of x for which the Taylor sereis is convergent or divergent?

9 o f®
(i1) Ifthe Taylor series converges at x, does it converge to f(x)? Thatis, f(x) = Z f ‘(a) (x—a)
— n

Consider

f(x)_zf(")(a)( _a)< Tt ooZf(’)(at)( _ )>

n=0 i=0
1 1

Tn(x)

means that f(x) is equal to the limit of the partial sum. Define

Zf(’)( ) x - ay

T,(x) =
i=0
, 7 (n)
- f(a)+f(a)(x—a)+f(a)(x—a)2+---+m(x—a)”
1! 2! n!

We call T, “nth-degree Taylor polynomial of f at a”. Let

Ry(x) = f(x) = Tu(x)

be the “remainder of the Taylor series”. To check whether the Taylor series converges to f, we
have
f(x) = lim T,(x) ifandonlyif lim R,(x)= Al/im [f(x) =T, ()] =
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Theorem 11.10.3. If f(x) = T,(x) + R,(x), where T, is the nth-degree Taylor polynomial of f
at a, and if
lim R,(x) =0

n—o0

for|x —a| < R, then f is equal to the sum of its Taylor series on the interval |x — a| < R.

m Taylor Theorem

Theorem 11.10.4. (Taylor Theorem) Let f(t) be a n + 1 times differentiable function on
[a, x] and R, ,(x) be defined by

f(X) = Pn,u(x) + Rn,a(-x)-
Then

(a) (Cauchy form)

(n+1)
Ry q(x) = f . €) x=8"(x-a) for some & € (a, x).
(b) (Lagrange form)
(n+1)
R,.(x) = {n " l(f‘) (x —a)""! for some & € (a, x).

(c) (Integral form)

X r(n+1)
Rya(x) = f 7 vy an

n!

By using the part(b) of Taylor Theorem, we can derive the Taylor inequality

Lemma 11.10.5. (Taylor Inequality) Let f(x) be a (n + 1) times differentiable function and
|f"*D(x)| < M for all |x — a| < d. Then the remainder R,(x) of the Taylor series satisfies the

inequaltiy

IR, (x)| < Ix—a™  for |x—al <d.

S (n+ 1!

(o0

Example 11.10.6. Determine whether the equality e = E x'
n.
n=0

n

holds. If yes, for what values

of x does the equality hold?

Proof. Let f(x) = e*. Then f™(x) = ¢* for all n € N and

n k

fE) =€ =) T + Ry,
k=0 '
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Fix a number x, and choose a number d > |xo|. Then [f"*V(z)| < e < e forall 0 < |7] <
|xo| < d. By the Taylor inequality,

d n+1

e
0<IR, < -0t < ¢! )
< Ru(xo)l < Zmmyheo = O < €72,

o X!
By the Squeeze Theorem, lim |R,(xy)| = 0. Hence, the Taylor series Z — converges to e at
n—oo n.
n=0

X n
. . . . . X
Xo. Since x( is an arbitrary number in R, the Taylor series Z — converges to e* for every
‘ “ n!
number in R.

“y

o X!
Remark. f(x) =¢' = Z - for every x € R. Taking x = 1, we have
n!
n=0

I 1 1 o1
e:1+1+5+§+---+a+---:;ﬁ.

Example 11.10.7. Find the Taylor series for f(x) = e* at a = 2, and determine whether and for
what values of x, f(x) equals its Taylor series about a = 2.

Proof. Since f™(x) = e*, f*"(2) = e*. The Taylor series for f ata = 2 is

2 Fm O 2
Z_;f Pa-2=) Sy

n
n=0

e To determine for which values of x the Taylor series conveges.
2

Leta, = e—‘(x — 2)". Then for every x € R,
n!

2
m(x _ 2)n+1

%(x—Z)” n+1

ap+1

an
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© 3
e To determine whether ¢* = Z e—(x -2)".
oy n!
Fix a number d > 0. By the Taylor theorem, for x with |x — 2| < d, there exists z, between 2
and x such that

f(n+1)(Zx) . e »
Rn = - — 2" = — n
20 =y AT = 2
Hence, for [x — 2| < d,
2+d ) red n+1
0 <|R, < =2I" < et ——.
< Ruall < e = 2 < T
By the Squeeze Theorem, lim R, ,(x) = O for every |x—2| < d and this imiplies that ¢* = Z —‘(x -2)
n—oo n:
n=0
for every |x — 2| < d. Sicne d is arbitrary number, we have
e* = Z —(x-=2) for every x € R.
ey n!
The radius of convergence of the series is co.
O

Example 11.10.8. Find the Maclaurin series for f(x) = sin x and prove that it represents sin x
for all x.

Proof. The derivatives of f are
FHx) = sinx, f*D(x) = cosx, fH*P(x) = —sinx, fH*I(x) = —cosx.

Then
FH0) =0, fH*D0) =1, f4*20) =0, f40) = -1.

The Maclaurin series for sin x is

! 31517 4 (2n+1)!
Since |f"P®| = | £ sinx| or | + cos x| < 1 for all x € R and n € N, we have
Rn < l’l+l‘
IRy,,0(x) o 1)!IXI

Hence, for every fixed x, R, o(x) — 0 as n — oo. That is,

3 5 7 had

S XXX _ D" o
smx-x—§+§—ﬂ+-~—;mx for all x € R.
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O
00 _1 n
Example 11.10.9. Prove that cos x = D .
~ (2n)!
Proof.
_ _d DT o
cosx = —(smx) a’_( (2n+1)' )
_ N (d @)
- (2n+1)‘
_ N D,
= HZ:;‘ (2n)!x for all x € R.
O

Exercise. Find the Taylor series for f(x) = In(1 + x) and for what values of x the Taylor series
converges to f(x).

1n+1
Answer: Z( ) X" for-1<x<1.

m Binomial Series

Example 11.10.10. (Binomial Series) Use the Maclaurin series for f(x) = (1 + x)* to deduce
the formula of the binomial series where k is any real number.

Proof. The derivatives of f is
FfO) = ktk=1)(k=2)---(k—n+ D1 +x)" forn=1,2,---
Then
fP0) =k(k—1)(k-2)---(k—n+1) forn=1,2,---
The Maclaurin series for f(x) = (1 + x)* is

X £(n) ad _ Nl —
Zf (O)xnzzk(k Dk=-2)---(k n+l)x”

| |
s n. oy n.

(binomial series)
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Note. (1) (Convergence)

(i) Forke N, k—n+1 =0 whenn =k + 1. Then the binomial series is a finite sum and
a k degree polynomial. Therefore, the series converges for all x.

D=2 (k—n+1
(i) Fork € R\N, let g, = k= D& )' k=n+D s Consider
n.

ap]

_ |k—nl 1 -

k
o = —=
n+1 1+1

|x| — |x| asn — oo.

ay

By the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.

Question: How about x = +1?
Answer: depending on k.

e If —1 < k <0, the series converges at 1.
e If k > 0, the series converges at +1.

(2) Denote the coefficients in the binomial series

<k> Ckk=D(k=2)---(k—n+1)

, (binomial coeflicients)
n n!

k!

k
IfkeNandk > n, then <n) = m

(3) The binomial series: if £ € R and |x| < 1, then

% ()"

L+ kx4 k(kz—' 1)x2+ k(k — 13)'(}%—2))63 s k(k — 1)(k—2)|---(k—n+ l)x”.

(1 + x)

Example 11.10.11. Find the Maclaurin series for the function f(x) = and its radius of

4 —-x
convergence.
Proof. The function f(x) = : =“ —x)_%. By the binomial series with k = —% and re-
- X
placing x by —2, we have
1 - —l X\n
= — 2 - =
o = 533 () (-3
1 1 1-3 , 1-3-5, 1-3-5---2n-1) ,
= =pllrgrr gt ! 8" Kot

The series converges when | — j—:l < 1, that is, on (-4, 4). O



11.10. TAYLOR AND MACLAURIN SERIES 153

- 2n +2
Exercise. Evaluate the sum of the series 1)
v ! Z:;( GTIE
2n+2
Answer: 1 =sinl + cos 1.
nZ;( S G
1 i ; :
=E.r"=l—|—.!;+,r“+.\:“+--- R =1
Lo n=0
x XXX P
,,EU n! 1! 21 3! i
: ] & & &
E.,(‘)m—-“¥+§‘?+‘” k==
Zi;' .".‘3 -....-1- ,\,‘h
COS X ”E“(_l [:'}”}I ]—2—!+4—!—6I+"' R ==
oo L2n+ 1\ '1,5 .".‘?
,—I_.= . n =___|_____|_ —
anx = 2 (1) o T = - =
In(1 + x) Z(—])"'i=~—i+""3—£+ R=1
- n=1 2 3 4
- k kik —1) | kik — 10k — 2
(1+_1-)*=E( ).\'“=1+£;_r+ ( }_1-—+ { A ]_r-‘+~-R=|
n=0 n 2! 3!
m New Taylor Series from Old
Example 11.10.12. Find the Maclaurin series for the function f(x) = xcos x
Proof. Since cos x = Z ( 2n)' 2" for all x, we have
— N (=" 2n _ N (=" 2n+1
xcosx—x-;(zn)!x _;(211)!)( for all x.
O

Example 11.10.13. Find the Maclaurin series for f(x) = In(1 + 3x?).

ad -1 n—1
Proof. We know that In(1 + x) = Z =D
n

n=1

2\n b
1n(1+3x)—Z( 1" ‘(3x) Z( i —

x" for every |x| < 1. Replacing x by 3x?, we have

3n 2n
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1
for every |3x%| < 1. That is the representation valid for |x| < % O

211 xn
!

Example 11.10.14. Find the function represented by the power series Z(—l)”
n

n=0

Proof. By writing

(59

had on —2x)"
Y= BT

n=0 n=0

and comparing with the Taylor series of e*,

we have

n=0 ! n=0 n!
O
Example 11.10.15. Find the sum of the series
1 1 1 1 (1)
- + - + -+ +
1-2 2-22 3.23 4.24 n-2"
Proof. Consider
S (3)
— -1 n 227
nZ:; n-2n nzz;( ) n
Using the Maclarin series for In(1 + x) by taking x = %, we have
C (3)" 1 3
1y ' =In(l+<)=In=.
;k Y =+ 5) = In g
O

m Multiplication and Divison of Power Series

[oe]

Recall that if f(x) = Z b,(x — a)" and g(x) = Z cu(x — a)", then

n=0 n=0

fg() = Y dix—a)  whered, = ) biciy
n=0 =0
f(x) N e C
— = e,(x —a)" where e, satisfying b, = Crln—i-
8(x) Z:(; e kzz(; o
Example 11.10.16.

(1) Find the first three nonzero terms in the Maclaurin series for e* sin x.
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Proof. Since

X x2 X3
et = 1l+x+—+—+--+—+
2! 3! n!
3 5 "
. X X 1
smx = x——+—+---+ ( ) x2n+l
31 5! 2n + 1)
we have
e'sinx = X TR X St
2 X
= X+Xx +?+

(2) Find the first three nonzero terms in the Maclaurin series for tan x.

Proof. Since

3 5 "
. X X (_1)
sihx = X——+ —+--- 2n+1
31 5! 2n+1)!
x» X +(—l)"+
CosSx = -+ .
21 4l (2n)! ’
we have
3 5
sin x X—3+5+
tanx = = xz‘ xé;
COS X 1_7"'4_1"'
1, 2
= X+ =—x+—=x+
3 15
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Note. One reason that Taylor series are important is that they enable us to integrate functions

which we cannot find and express their antiderivatives as elementary functions.

Example 11.10.17.

(1) Evaluate f ¢ dx as an infinite series.

2)n

Proof. Since e = Z

f e dx

for any x, we obtain

n=0

(St VA
c+ Z n! 2n + 1) ’

(- xz)" =D" 5,
f Z n! *
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1
(2) Evaluate f e dx correct to within an error of 0.001.
0

Proof. Consider

1 o0
—x? D" 2n+1
X d - n+
l:e g ggnzgn+rﬁ
I

l— -+ ———+—
3 10 42 216

1

0

(alternating series)

n
By the alternating series estimation, |s — Z b,| < b,,1. Consider

k=0
D'
——— 17" <0.001.
’n! 2n+1)
! 2
Thenn > 5 and f e dx =~ 0.7475. O
0
. e —=1-x
(3) Evaluate lim —
x—0 X
Proof.
e —1-x (1+x+;—2,+%+ )—1—-x
lim = lim ' '
x—0 x2 x—0 x2
1 -2
= hm(—+£+ +—t--)
x-0 221 3| n!
1
2
Note: we can also obtain the above limit by the L’Hospital’s Rule. O
Exercise.

(1) Find the Taylor series for the function f(x) = sin”! x and find its interval of convergence.

1
(Hmugf%mzbf——————
V1 -2 dt

(2) Express the following functions as their Taylor series and find the limits

and using the binomial series.)

Inx

T .
0)£3x_1
... .. sinx—tanx
il =
(€ - DIn(1 + x%)

(1 —cos3x)?

Homework 11.10. 4, 6, 10, 11, 16, 18, 23, 28, 30, 35, 37, 39, 43, 47, 56, 59, 62, 65, 69, 72, 73,
74, 83, 90, 96(a)

(i11) 161_{%
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11.11 Applications of Taylor Polynomials

Notivation:
e computer scientists use Taylor polynomials to approximate functions

e physicists and engineers use Taylor polynomials on the problems of relativity, optics, electric
dipoles, the velocity of water waves etc.

m Approximating Functions by Polynomials

Suppose that f(x) is equal to the sum of its Taylor series at a

2 £
f=3 00 ay.
n=0

n!

For n € N, the polynomial

n k)
nw=>1100 -
k=0 ’

is called the “n-degree Taylor polynomials of f at a”.

Recall: Since 7,,(x) — f(x) asn — oo, T,,(x) can be used as an approximation to f(x) = T,,(x).

Note.

» "':”\/,x':T3(.\’»
(1) Consider the 1st-degree Taylor polynomial 7' (x) of f at a. S
y="T,(x)
T = fl@)+f@x-a 4
Ti(a) = f(a), Ti(a) = f'(a) %
0
(2) Consider the nth degree Taylor polynomial 7,,(x) of f at a.
(n)
Ty = F@+ f @) + -+ D~ ay r=02 | x=30
n!
Ty(x) | 1220000 | 8.500000
_ Y = £ e Ty — ) Tu(x) | 1221400 | 16375000
Tw(a) = f(a), T)(a) = f(@), -, T, (a) = f"(a) n9 | 1221403 | 19412500
Ty(x) | 1221403 | 20.009152
For example, f(x) = e and T,(x) — e¢* as n — oo. To(x) | 1.221403 | 20.079665
¢t 1.221403 | 20.085537

Question: When using a Taylor polynomial 7',(x) to approximate a function f,
(1) how good approximation is it?

(2) how large should we take n to be in order to achieve a desired accuracy?
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Consider the remainder
[R.(x)] = | F(x) = Tu(x)]-
There are three possible methods for estimating the size of the remainder:
(1) using the graphing device
(2) using the Alternating Series Estimation Theorem (if it happens)

(3) using Taylor’s Inbequality: if | /""" (x)| < M for every |x — a| < d then

M n+1
|R,(x)| < PSR

Example 11.11.1. (a) Approximate the function f(x) = +/x by a Taylor polynomial of degree
2ata=38.

Proof. Compute

1 2 10
£ =35t i = =5t £ =
Then 1 {
— 2 / - 77 -
f@®) =2, f'(8) 3 S (8) a4
‘We have 1 1
_ R Y
T)(x) =2+ 12(x 2) 144(x 8)”.
Therefore,

s 1 1 5
\/_~2+12(x 8) 144(x 8)".

(b) How accurate is this approximation when 7 < x < 9?

Proof.

To find a bound M such that

f”’(x)‘ < Mfor7 <x<09.

Consider
10 10
fr@)= g 5T for T<x<0.
Hence,
1 10 _ s 0.0003
[Re)| < 37-55-77|x=8] for7<x<9
0.0021
< T 1 < 0.0004

Remark. In fact, |[Ry(x)| = | f(x) - T2(x)| < 0.0003 when

T<x<09.
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Example 11.11.2. (a) What is the maximum error possible in using the approximation

©x

sinx~ x— — + —

31 5!

when —0.3 < x < 0.3? use this approximation to find 12° correct to six decimal places.

Proof. Two methods:

(i) (Alternating Series)

When —-0.3 < x < 0.3, the series is an alternating series and

|x|2k+l |x|2k—l |x|2k+1
M L 0as k
Qk+)! - @k—1! M ke U8 ET®
(bks1 < by) (bk— 0)

By the alternating series test, for —0.3 < x < 0.3,

, 2 X |1 (0.3 "
‘s1nx—(x—§+§‘S7§ 7 ~4.37°,
. . T T 1 ,m.3 1,715
12° =sin () ~ 2= — —(ZV 4+ 2 (Z)° ~0.20791169.
s sin(33) ~ 3~ 51(35) *51(53)

(i) (Taylor’s Inequality)

Let f(x) = sinx. Then T¢(x) = x — ’3‘—3, + )5‘—5, is the 6th degree Taylor’s polynomial for f
at 0. The remainder

M
|Rs(x)| < ﬂIXV

where M is a number such that | f7(x)| < M for 0.3 < x < 0.3.
To find M, consider f”(x) = —cos x. Thus, when —0.3 < x < 0.3,

| —cosx| < [cosO| =1 =M.

We have M i
[Re()] < 7" < 55(0.3)" <4.3x 107

43x10° 0.00006
| y=0.00005

y=Rq(x)|
’ y=|Ry()]

—0.3 0.3 -1 1

(b) For what values of x is this approximation accurate to within 0.00005?
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Proof. Consider

1
[Rs(x)] < =71l" < 0.00005.
We have |x| < (0.252)"7 = 0.821.

=Y

y=sinx

m Applications to Physics

(Skip)

Homework 11.11. 13(a)(b), 15(a)(b), 18(a)(b), 21(a)(b), 25, 28, 30, 37
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In this chapter, we will use the vector-valued functions to describe curves, surfaces and the
motion of objects through space.

13.1 Vector Functions and Space Curves

As we know, we can regard R” as a n-dimensional vector space. Every element in R” can be
expressed as a vector a = (ay,--- ,a,). In this chapter, we consider the function whose range
consisting of vectors in 3-dimensional vector space R?.

Definition 13.1.1. A vector-valued function (vector function) is a function whose domain is a
set of real numbers and whose range is a set of vectors

r(r) : {subset in R} — {set of vectors}.

Note. In the present chapter, we will focus the vector function r(f) whose values are three-
dimensional vectors.

We recall the expressions of vectors and vector-valued functions.

a (ar, az,a3) = aiji + ayj + azk

r(?) (f(0), 8(1), h(1)) = f(Di + g(O)j + h(Dk

where i = (1,0,0),j =(0,1,0) and k = (0,0, 1), and f, g, : R — R are component functions

Example 13.1.2. Let r(¢) = (212, 3t — 4, V1) be a vector-valued function. The domain of r(z) is
[0, c0).

0 Limits and Continuity

m Limits of Vector-valued Functions

161
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To study the calculus of vector-valued functions, motivated by the concepts of real-valued
functions, we will discuss the limits and continuity of vector-valued functions. We heuristically
consider that

(i) alimit of a vector valued function is supposed to be a vector; and

(i1) if L is the limit of a vector valued function r(¢) as t — a, we expect that r(¢) arbitrarily
approaches to L by taking ¢ arbitrarily close to a.

Definition 13.1.3. Let r(r) = (f(¢), g(t), h(t)) be a vector valued function defined on an open
interval I and a € I. We say that the limit of r(z) exists, as t approaches a if there exists a vector
L = (L;, L,, L3) such that

lim f(t) = L, limg(t) = L, and limhA(t) = Ls.
t—a t—a t—a
The vector L is called the “limit of v(¢) as t arpproaches a”” and we write

limr(z) = L.

1—a

Note. Suppose that r(r) = (f(#), g(¢), h(r)). Then the limit lim r(¢) exists if and only if all the

t—a

limits lim f(¢), lim g(¢) and lim A(f) exist. Moreover,
t—a t—a t—a
limr(#) = im{f(2), (1), A(2)) = (lim f(7), lim g(7), lim A(7)).
t—a t—a t—a t—a t—a
e _.  sint
Example 13.1.4. Suppose thatr(r) = (1 + )i+ te”'j + Tk' Then

. ) . ) . . sint .
limr(r) = [Tim(1 + )] i+ [Timze™] j + [1,1387] k=i+k

m Laws of Limts

Theorem 13.1.5. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and « be a number. Suppose that

limr(z) =L, lims(zr) =M and limu(t) = c.
—a t—a

t—a t

Then

(a) lim (res)=L+M
(b) limar(s) = oL.

(c) limr(®) -s(t) = L - M.
(d) Timu(Dr(t) = cL.

(e) limr(1) X s(1) = L x M.
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Proof. (Exercise) O

m Continuity of Vector-valued Functions

Definition 13.1.6. Let r(7) be a vector-valued function defined on / C R and a € I. We say that
(1) ris continuous at a if

ltirn r(t) = r(a).

(2) ris continuous on [ if r is continuous at every point of /.

Note. If r(zr) = (f(2), g(1), h(t)) is continuous at a, then
(lim f(7), lim g(7), lim h(#)) = limr(r) = r(a) = (f(a), g(a), h(@)).

We have
1tim f(@® = f(a), ltim g(t) =g(a) and ltim h(t) = h(a)

Thus, r(#) is continuous at a if and only if all its component functions f, g and 4 are continuous
ata.

Theorem 13.1.7. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and a be a number. Suppose that r, s and u are continuous at a. Then
r+Ss, ar, ur, r-sandr X S are continuous at a.

Proof. Exercise. o

a Space Curves

Consider the vector-valued function i P(f (1), (). h(1))
(1) = (f(t), g(t), h(1)). The tip of r(¢) is the /a

point P(f(1), g(t), h()) and r(7) is the posi- C/

tion vector of the point P( f(0),g(), h(t)).

r(t)=(f(1), g(1), h(1))

As t ranges over an interval /, the point P
traces out some path C in R*. That is,

."

C = Range (r(t)) , tel. C is traced out by the tip of a moving
position vector r(t).

Definition 13.1.8. Let f(¢), g(r) and h(t) be three functions defined on an interval /. The set C
of all points (x, y, z) in space, where

x=f@), y=gt), z=h@ fortel (13.1)

is called a “space curve”.
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Note.
(1) The equation (I3) is called the “parametric equation of C” and t is called a “parameter”.
(2) The space curve C is “oriented” in the direction as f increases.
Example 13.1.9. Describe the curve defined by the vector function
r(t)=5+1t,1+41,3-2¢

Proof. From the parametric equation, the coordinates are

x=5+t y=1+4t, z=3-2t

The curve represents a line passing through (5, 1, 3) and parallel to the vector (1,4, -2). Let
ro =(5,1,-3)and v = (1,4, -2). Then r(r) = ry + tv. O

Example 13.1.10. Sketch the curve whose vector equation is

r(f) =costi+sintrj+trk

Proof. The parametric equation represents the
curve with coordinates

X =cost, y=sint, z==1.

The curve is called a “helix”. O L/ 10,0

Example 13.1.11. Find a vector equation and parametric equations for the line segment that
joins the point P(1, 3, —2) to the point Q(2, -1, 3).

Proof.
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The line segment joining the tip of ry = (1,3, -2) to the
tipofry = (2,-1,3) is
r)=(1-Hrop+my;, 0<r<1.

The vector equation of the line segment is

r(t)

(I=1X1,3,-2) +K2,-1,3)
= (1+t,3-4t,-2+5), 0<r<l.

The parametric equation of the line segment is

x=1+t, y=3-4t, z=-2+5 0<t<l.

165

02,1, 3)

P, 3,—2)

Example 13.1.12. Find a vector function that represents the curve of intersection of the cylinder

x> +y* =1 and the plane y + z = 2.

Proof.

For (x,y,z) on the cylinder x*> +y? = 1,

x=cost, y=sint 0<t<2nm.

Also, for (x,y,z) on the plane y + z = 2, z = 2 — y. Then for
(x,y,2) on the intersection of x> +y> =l and y + z = 2,
z=2—-y=2-sint, 0<r<2nm
Hnece, the parametric equation for the curve is
x=cost, y=sint, z=2-sint 0<t<2nm.
The parametrization of the curve is

r(f) =costi+sintj+(2-sinn) k 0<t<2n.

C (—1,0,2)

0,1,1)

Example 13.1.13. Find parametric equations for the curve of intersection of the paraboloid

4y = x> + 7> and the plane y = x.

Proof.
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A point on the curve C satisfies the equations of both surfaces. 1 4y =x2+ 72
Thus, substituting y = x into the equation of the paraboloid,
4y = x* + 7%, we have 4x = x*> + z?> which is equivalent to

(x = 2> + 22 = 4. Then the equation of C must contain = /
(x-22+22=4.

Consider the projection of C on the xz-plane is the curve (x — \ y
2)? + 22 = 4, y = 0 which is a circle with center (2,0, 0) and he

radius 2. Therefore, we can write x = 2 + 2cost, z = 28int,

0 < t < 2n. Furthermore, since y = x on the curve C, the X
parametric equation for C is

x=2+2cost, y=2+2cott, z=2sint 0<t<2m.

m Using Technology to Draw Space Curves

(Skip)
Homework 13.1. 6, 14, 21, 25-30, 31, 35, 39, 40, 51, 54, 58

13.2 Derivatives and Integrals of Vector Functions

a Derivatives

Recall that the derivative of a real-valued function f is defined by
df _ fx+h) = f()
dx h
Let r(¢) be a vector-valued function. Consider

f'(x) =lim

r(t+ h) —r(r)

ro,
7 - r@0=lim 2

dt
if the limit exists.

Note. (1) The numernator r(t + h) — r(t) = P—Q> means a secant vector.

t+h)—r( 1
(2) The term w represents the vector 7 (r(t +h)— r(t)) which has the same direc-

tion as r(t + h) — r(¢).
1
(3) As h — 0, the vector 7 (r(t +h) — r(t)) approaches a vector which lies on the tangent line.

Definition 13.2.1. Let r(#) be a vector function defined on I C R, C be the curve consisting of
the graph of r(¢) and P = r(a) be a point on C.

+h) -
(a) We say that r(¢) is differentiable at a if the limit }lil‘l(l) w exists. The limit is called

the “derivative of r at a” and denoted by r’(a). Moreover, we say r(¢) is differentiable on /
if it is differentiable at every point in /.
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) r(t+h)—r(t)
r(t+h)—r(t) ) h

r(t+h)

D
e T A

.\.

(a) The secant vector PQ (b) The tangent vector 1'()

(b) If the derivative r’(a) exists, it is the “tangent vector” to the curve C at the point P provided
r'(a) # 0.

(c) The "tangent line” to C at P is defined to be the line through P parallel to the tangnet vector
r'(a).

(d) The unit tangent vector is
r'(1)
(]

T(t) =

Note. From the definition of part(c), the parametric equation of the tangent line to C at P is
r(a) + ir'(a), teR.

Theorem 13.2.2. If r(t) = (f(1),g(t),h(t)) = f(t) i+ g(t) j+ h(t) k, where f,g and h are

differentiable functions, then
r'@) =(f®,8O.nN0)=f0i+g®j+h Ok
Proof. (Exercise) O
Example 13.2.3. Suppose that r(t) = (1 + £}) i+ te™ j + sin 2t k.
(a) The tangent vector functionis r'(f) = 32 i+ (1 — )e™ j + 2 cos 2t k.

(b) To find the unit tangent vector at the point where ¢ = 0, consider the position vector r(0) = i
and the tangnet vector r’'(0) = j + 2k. Therefore, the unit tangent vector at the point (1,0, 0)
is

(0 1 2

r'© J+2k)=—j+ —k

B TR \/_ V5

Example 13.2.4. For the curve r(f) = vVt i+ (2 — 1) j, find r'(¢) and sketch the position vector
r(1) and the tangent vector r'(1).
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1 1
Proof. The tangent vectorisr'(f) = ——i—j. Thenr(l) =i+ jand r'(1) = > i—j.

2V
To sketch the position vector and the tangent vector, con- Y/
sider the parametric equation
x = Vi, y=2-t = y:2—x2,x20. A1)
r(1 '
Then parametric equation of the tangent line to the plane ) r'(l)
curve at (1,1) is -
. | 0 1 \ X
() =r()+m'(1) = (i+j)+t(§i—j) =(1 +§t) i+(1-0j

O

Example 13.2.5. Find parametric equations for the tangent line to the helix with parametric
equation

x=2cost, y=sint, z==1.
at the point (0, 1, g).

Proof. The vector function is r(t) = (2 cost,sint, t). Then the tangent vector function is
r'(t) = (-2sint,cost, 1).

At the point (0, 1, g), r(r) = (2cost, sint, 1) = (0, 1, ’—2r>. Thus,

t= g The tangent vector is o f
T
() = (=2,0,1). 81
ri;) =« ) p L
4 +
Hence, the parametric equation of the tangent line through 1 >/ ,
0.1, )is o
Xx=04(=2)t=-2t, y=1+0r=1, z:g+t.
]

Theorem 13.2.6. Suppose that x(t) is differentiable at a. Then it is continuous at a.

Proof. Let x(t) = (f(¢), g(t), h(t)). Since r(¢) is differentiable at a, f, g and & are also differen-
tiable at @ and hence they are continuous at a. This implies that r(¢) is continuous at a. O

m Second Derivatives

d d

. — reo 5 () =r'0

d

r() = (F0,80.h(0) = Y@ =(f).g0).K0)

d
dt

= rO=("0.8"0O,n"®).
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Similarly, if r®(¢) exists, then

r®) = (fP@), gY@, K1),

m Differentiation Rules

Theorem 13.2.7. Let u and v be two differentiable vector functions, ¢ be a number and f be a
real-valued function. Then

d
(1) E[u(t) +v(O] =u'(@) + V().

d ,
(2) Zleu@] = cu' (D).

d
(3) E[f(l)ll(t)] = fMu() + f(Ou' ().
(4) %[u(t) v =a'(®) - v(t) +u(t) - V(¢). (real-valued function)

%[u(t) X v()] = a' () X v(¢) + u(r) X v'(¢).

(5)

d
(6) E[“( fO)1 = /O (f(1)). (Chain Rule)

2

Exercise. Letr(¢) = (¢¥, sin(#?), 2t>—t), s(t) = { , sec(2f), In(# + Dyand u(r) = (1, t, 12).

t+1
Find%((rxs)-u).

Proposition 13.2.8. Let r(¢) be a differentiable vector function on I and x'(t) # 0 for every t € I.

Then
d _r@)-r'@)
(a) Ell‘(t)l =T
d r@t)\ -~ 1, =3 i ,
O i) =l

Proof. (Direct computation! We left the proof to the readers as exercise)
]

Remark. The results of Proposition 372X are true for all n-dimensional vector valued func-
tions except for the last equality of part(b) which is true for 3-dimensional vector valued func-
tions.

Example 13.2.9. Show that if {r(t)} = C, then r'() is orthogonal to r(¢) for all z.

Proof.
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Since r(?) - r(f) = |r(t)‘2 = C? (constant), we have

d d
2r() - x'(n) = E[l'(t) ()] = d—t(C2) =0

Hence, r() is orthogonal to r’(¢) for all 7.

For example, r(f) = (cost,sint).

a Integrals

Recall that the integral of a real-valued function f(¢) over [a, b] is defined by the limit of Rie-
mann sums.

We try to use the same strategy to define the definite integral of vector-valued functions. Let r(z)
be a continuous vector-valued function defined on [a, b]. Let P = {ty,t;,--- ,t,} be a partition
of [a, b] and At; = |t; — t;_1|. Define

b n
f r(t) dt lim r(t)At;

[P0 £
i=1

= lim [ i( (), g, h(t; )Wi}
i=1

|P|—0
= I}’ilr—n@ < ; f)H)a, ; g(t)At;, ; h(t;.")Atl.>

b b b
= f f@ dt, f g(n) dt, f h(t) dt)
(fbf(t)dt)i+(fbg(t)dt)j+(fbh(t)dt)k

Definition 13.2.10. Let r(¢) be a vector valued function defined on [a, b] where r(¢) = (f(¢), g(¢), h(t)).
We say that r is integrable on [a, b] if f, g,and h are integrable on [a, b] and

b b b b
f r(7) dt ( f (@) dt, f g(t) dt, f h(t) dr)
b b b
(f f(t)dt)i+(f g(t)dt)j+(f h(t) dt) k.

Remark. If r(7) is continuous on [a, b], then r(¢) is integrable on [a, b].

Theorem 13.2.11. (Integral Rule) Let r(t) and s(t) be integrable vector-valued functions on
la, b], ¢ be a vector, and « and 3 be two numbers. Then
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(a) The vector valued function (ar + ,BS) (1) is also integrable on |a, b] and

b b b
f (ar+Bs)() dt =« f r(t) dt + 8 f s(?) dt.

b
(b)fc r(H)ydt=c- fr(t)dt
() ‘ f r(t)dt f Ie(0)| d.

Proof. The proofs of part(a) and (b) are easy and left to the readers. We will prove part(c) here.
b
LetR = f r(¢) dt. Then

b
|R|‘ f r(7) dt( R’ =R-R
‘ b b
R-fr(t)dt:fR-r(t)dt
b ‘ ¢ b
f dr < f IR|r(7)| di

\R|f x| d.
b b
‘ f r(t)dz(s f Ir(0)| dt.

® Fundamental Theorem of Caluclus

IA

Hence,

f ") di = R(z)[ = R(b) - R(a)
where R is an antiderivative of :, that is R’(¢) = r(¢). Denote
R@®) = fr(t) dt.
Example 13.2.12. Letr(r) = 2costi+sint j + 2t k. Then
fr(t)dt =2sinti—costj+ k+C

and
z 2

i—cost J+t k:2i+j+ﬂzk.

3
f r(¢) dt = 25int
0
Homework 13.2. 3,9, 12, 15, 19, 21, 24, 27, 30, 36, 39, 44, 51, 57
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13.3 Arc Length and Curvature

a Length of a Curve

In Section ??, we have learned how to evaluate the arc
length of a parametric curve. Let

x=f(0, y=g, a<t<b. W
The arc length of the curve is

L=fb V[f'(r>]2+[g'<r>]2dr:fb V&Y + (D)

Consider the space curve with the vector equations

The length of a space curve is the limit

of lengths of inscribed polygons.
r(t) = (f(),8®),h(®), a<t<b

If the curve is traversed exactly once as ¢ increases from a to b, the arc length is

b b
dx\2 ,dy\2 ,dz\2
— ’ 2 ’ 2 ’ 2 — _ —_— -
L‘fa VIFOP + g 0P + (0] d"fa \/(dt) +(Z) +(5,) an
Note. (1) If r(¢?) is the position vector of an object at time ¢, then r’(¢) is the velocity vector and
Ir’(7)| is the speed.

(2) Since r'(1) = (f'(t),g' (), W' (1)), we have [r'()] = +/[F/(O? +[g'(D]* + [ (t)]>. The arc
length is
b
L= f v’ (1)] dt.

We give a precise proof of formula of arc length here.

Theorem 13.3.1. Let r(t) be a continuously differentiable vector function on [a,b). Let C
be the curve parametrized by r. The arc length of C is

b
L(C) = f Ir'(1)| dt.

Proof. Let P = {ty,t;,--- ,t,} be a partitition of [a,b]. By the Fundamental Theorem of
Calculus,

k) -l =| [ vodis [ wola

n n ti b
PNLGENTHEDY f (0] dr = f ()] dr.
i=1 i=1 Y-l a

Since P is an arbitrary partition of [a, b], we have

Then

n b
L(C) = sup ) Ir(t) = r(t;-1)| < f I (1)| dt. (13.2)
PoE a
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On the other hand, define s(7) as arc length of the curve from r(a) to r(¢). Then s(t+h) —
s(t) is the arc length from r(¢) to r(z + h). O

By ([]3:2)’ t+h
r(t+ h) —r(@)| < s(t+h) — s(t) < f It’(u)| du.
Then, for h)0,

rt+h) —r@)| Irt+h)-r@)| st+h)-s@ 1 ("
p = P < A < A f Ir'(u)| du.
t
By the Fundamental Theorem of Calculus, as h — 0,

Ir'(1)] < lim w < (0l

=5(0)

Therefore, the arc length of C is
b b
s(b) = f s'(1) dt = f v’ ()| dt.

Example 13.3.2. Find the length of the arc of the circular helix with vector equation r(¢) =
costi+sint j+ t k, from the point (1,0, 0) to the point (1,0, 2x).

Proof.

Compute r'(f) = —sint i + cost j + k and then
I'(t) = \/(=sin£)? + (cos1)> + 12 = V2. The
length of the arc is

21 21
L= f I’ ()| dt = V2 dt = 2V2n.
0 0

m The Arc Length Function

Let C be a curve with vector function r(¢) = f(¢) i+g(?) j+ 5 V

h(t) kK, a <t < b. Suppose that r'(¢) is continuous and C @
is traversed exactly once as ¢ increases from a to b. The
“arc length function” is

r(a)

r(f)
2 dy dz\2
(1) = f|r(u>|du—f\/ () +(5) au —




174 CHAPTER 13. VECTOR FUNCTIONS

Note. The value of s(7) is the arc length of the part of C between r(a) and r(¢). By the Funda-
mental Theorem of Calculus,

ds
— = (D).
7 I’ (2)]

Observe that the arc length function s(¢) is one-to-one. Hence, we may also regard ¢ as a
function of s, say ¢t = #(s). Then we can “parametrize a curve with respect to are length.

r= r(t(s)) .

For example, when s = 3, r(t(3)) is the position vector of the point 3 unit of length along the
curve from its starting point.

Example 13.3.3. Reparametrize the helix r(¢) = cost i + sinzj + ¢ k with respect to arc length
measured from (1, 0, 0) in the direction of increasing ¢

Proof. Find the arc length function from the starting time ¢ = 0.

s(t) = f I’ ()| du = f V2 du = V2.
0 0

Hence, t = #(s) = \irzs. We have

r(1(s)) = cos(is) i+ sin(is) j+ Lok

V2 V2 V2

a Curvature
Question: How do we feel the “curvature” of a curve?

From our expericence, when we ride a bike at a constant speed, it is more difficult to turn
the direction along a path with “larger curvature” than the one with a smaller curvature.50

Small curvature Large curvature

To discuss the curvature of a curve, we should discard some cases:

*Heuristically speaking, along the larger curvature path, we need to change directions more at the same time.
The constant speed says that the same period is corresponding to the same travelling distance. Thus, we can also
explain the larger curvature path as, when travelling the same distance, the direction changes more.

"The “curvature” is a geometric word. It is supposed to only depend on distance and direction but not time”.
Hence, to define “curvature”, we usually parametrize in s.
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-
/

(i) Discontinuous curve

(i1) The curve has sharp corners or cusps

(iii)) Imagine a particle moves along a curve, we don’t expect that it “stays” at a point for
a period since it cannot decide whether the direction changes there. Thus, we assume

Ir’ ()] # 0. We parametrize the curve with respect to arc length parameter “s” rather than
time parameter “¢”.

Definition 13.3.4.

(a) A parametrization r(¢) is called “smooth ” on an interval [ if r’ is continuous and r'(¢) # 0
onl.

(b) A curve is called “smooth” if it has a smooth parametrizatic»

Suppose that C is a smooth curve defined by the vector
function r. The unit tangnet vector

r'()
T(@) =
I’ (0) C
X
indicates the direction of the curve. Unit tangent vectors at equally

spaced points on C

Heuristically, the curvature of C at a given point is a measure of how quickly the curve
changes direction at that point.

Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector
with respect to arc length.

Definition 13.3.5. The curvature of a curve is
dT
<= |l
where T is the unit tangent vector.

Note. (1) The unit tangent vector T is usually expressed as a vector function in “¢’. By the

chain rule
dT dTds
dt  dsdt
Then
dT‘ dT/dt‘
K= |—|= .
ds ds/dt
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(2) Since the arc length function s(¢) = fot |r’(u)| du, by the Fundamental Theorem of Calculus,

ds

— =r'(t). H ,

7 [r’(?)|. Hence ,
_ Tl

o

1
Example 13.3.6. Show that the curvature of a circle of radius a is —.
a

Proof. A parametrization of a circle of radius a is r(f) = acost i+ acost j. Then r'(¢) =
—asinti+ acost jand |r'(¢)] = a. The unit tangent vector function is

r'(1)

T() = = —sinti+costj.

(1) !

Then T

T'(t) = —costi—sintj and ’—‘ =1.
dt
The curvature is )

_ [T (0| _ 1
@l a’

Note. Small circles have large curvature and large circles have small curvature.

Theorem 13.3.7. The curvature of the curve given by the vector function r is

I’ () X ¥ (1)]
k(t) = ————
I’ (6)
. r’ , ds
Proof. Since T = and |[r'| = —, we have
r’| dt
d
Ny
dt
By the product rule,
d’s ds
"= —T+ —T".
r dr? dt
Consider Is J
sd°s SN2
"'Xr"' = ——TxT+(—) TxT.
rxr dt dr? \36—/ <dt>

Since |T| = 1, we have T(¢) L T'(¢). Then |T x T’| = |T| |T’| = |T’|. Also,
~~

=1
rx 1’| = (%)ﬂTxTw - (%)2|\’ll|T’| - (%)Zm.

=1

Hence,
B r' X r”| B Ir' X r”|

T’ = =
(@)2 |r/|2
dt
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The curvature is
3 |TI| B |rl Xrlll

Il P

O

Example 13.3.8. Find the curvature of the twisted cubic r(¢) = (¢, >, ) at general point and at
(0,0,0).

Proof. Since r'(¢) = (1,2t,3¢*) and r’’(¢) = {0, 2, 6¢), we have
i j k
riOxr'@®=|1 2t 32 | =(61*-6t2).
0 2 6t

Then [’ X r”’| = V36¢* + 3612 +4 = 2V9r* + 92 + 1 and |r'| = V1 + 472 + 9¢*. The curvature

1S
2V + 92 + 1
T U4z rompr
Att =0, k(0) = 2. O

e Special Case y = f(x)

Suppose that the curve C is the graph of f(x). We can express it as vector-valued function.

r(x)=xi+ f(x)j(+0k).
Then
rx)=i+f(xj and r’(x)=f"(x)].

The cross product is
r(x) xr’(x) = f"(x) k.

" X’ =f"(0l and |F'|=/1+[f(0)]

_Ixr )
2 (1 +[f (03
Example 13.3.9. Find the curvature of the parabola y = x? at the point (0, 0), (1, 1) and (2,4).

‘We have

Hence, the curvature is

Proof.

Compute that y* = 2x and y” = 2. The curvature of the
curve is

b2
1+ )PP2 ~ (1 +4x2)"

k(x) =

At (0,0), x(0) = 2.

2
At (1, 1), (1) = @ ~ 0.18. ; 5 1 >

~ 0.03. The parabola y = x? and its curvature
function y = k(x)

At (2,4),k(2) = T

We can observe that «(x) — 0 as x — +oo.
O
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1 The Normal and Binormal Vectors

N(r
Let r(¢) be smooth space curve and T(¢) be the / (#)
unit tangent vector. Then r(7)

ITo|=1 = T T@0=0
= T(r) L T'(+) for all¢.

Note. (1) T’(r) may not be a unit vector.

(2) If T'(¢r) # 0 (hence k # 0), T’(¢) indicates the direction where the curve is turning.

Definition 13.3.10.

(1) We define the “principal unit normal vec-
tor” (or “unit normal’) as

()
(|

N@) =

(2) The vector B(r) = T(¢) X N(¢) is called the
“binormal vector”. /

X

Remark. T(7), N(¢) and B(¢) are unit vectors and they are orthogonal each other.

Example 13.3.11. Find the unit normal and binormal vectors for the circular helix
r(f) =costi+sintj+tk.

Proof. Compute that

r'(t) = —sinti+costj+k.

The unit tangent vector is

T@) = :Eg{ = %(—sinti+costj+k)
and
T (1) = %(—costi—sintj).
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The normal and the binormal vectors are

T'(1)

N(#) = —— = —cotti—sintj
T'(1))|
and
i k |
B)=T@H)xNn=| 1 . 1 I | = —(sinti—costj+Kk).
———sint ——cost ——
v el v
—cost —sint 0
O
® The Normal Plane
Definition 13.3.12. T osculating plane

(1) The plane determined by the normal and binormal
vectors N(#) and B(#) at a point P on a curve C is
called the “normal plane” of C at P.

(2) The plane determined by the vector T(#) and N(¢) is
called the “osculating plane” of C at P.

X

Note. (1) The normal plane consists of all ines that are orthogonal to the tangent vector T.

(2) The osculating plane comes closest to con-
taining the part of the curve near P.

(3) For a plane curve, the osculating plane is
the plane that contains the curve.

Definition 13.3.13.

Let C be a smooth space curve and O be the
circle lies in the osculating plane of C at P and
has the same tangnet as C at P and lies on the
concave side of C (toward which N points) with

1
radius p = —.
K

The circle is called the “osculating circle” (or
circle of curvature”) of C at P. 0 o

Note. The osculating circle nicely describes how C behaves near P. It shares the same tangent,
normal and curvature at P.
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Example 13.3.14. Find the equation of the normal plane and the osculating plane of the helix
r(f) =costi+sintj+tk.
at the point P(0, 1

b b 2

Proof. The tangent vector is r'(f) = —sint i+ cost j + k and hence r’(g) = —i+ k. Then the

equation of the normal plane is
—1-(x—0)+0-(y—1)+1-(z—g) o z=x+r

Since B = T X N, we have

B() = %(sint —cott,1) and B( )— ( \ji’ , %).

The equation of the osculating plane is

1 1 bd
$(x—0)+0(y—0)+%(x—§)=0

That is,

+z-1 +
X+Z—— or =—X —.
2 2

Example 13.3.15. Find and graph the osculating circle of the parabola y = x? at the origin.
Proof.

Let f(x) = x*>. Then v

osculating
circle

el o
[ )T ()™

1
Then the radius of the osculating circle is — = — and

k() 2
its center is (0, 2) The equation of the osculating circle

is

1
2 (y——)? =
x+h-3)
B Summary

r'(1)
re)|
T (1)
2

T@® =

e N(») =
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e B(r) = T(r) X N(?)

dT ‘ 0| [r'@)xr(@)
0 K=|—| = =

sl | (@[’
m Torsion

dT
Remark. Curvature x = ‘ T } at a point P on a curve C indicates how tightly the curve “bends.”
x

Since T is a normal vector for the normal plane, I tells us how the normal plane changes as
s

P moves along C. (The tangent vector at P rotates in the direction of N.)

A space curve can also lift or “twist” out of the osculating plane at P. Since B is normal

dB
to the osculating plane, I gives us information about how the osculating plane changes as P
s

moves along C.

dB
Note. We can show that T is parallel to N. Hence, the scalar 7 such that
X

dB
= _IN

dx T
is called the “rorsion” of C at P. Moreover, T = —7N - (-N) = —% -N.
Definition 13.3.16. The “torsion” of a curve is

dB
=—-—"N.
T ds

Remark. By using the Chain Rule,

dB _dBds dB _ dB/dt _ B'()
dt  ds dt ds — dsjdt "~ |r(@)|
We have B N
) = — (1) -N@O)

()|
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Example 13.3.17. Find the torsion of the helix
r(t) = {(cost,sint, ).
Proof. For Example [373T14, we have

ds

dr

r'(1)| = V2, N() =(—cost,—sint,0) and B() = %(sin t,—cost, 1).

1
Then B'(f) = T V2(cott,sint,0) and

CBO)-N@) _

1 1
1) = = ——{cost,sint,0) - (—cost,—sint,0) = —.
(1) R )+ )=

O

Remark. Compare with the unit circle r(f) = (cost,sint,0) in the xy-plane and the helix
r(r) = (cost,sint,t). Both of them have constant curvatrue, but the circle has constant tor-
sion 0 whereas the helix has constant torsion % We can think of the circle as bending at each
point but never twisting, while the helix both bends and twist (upward) at each point.

7 A ZA

=

y T =

1
2

k=17=0 K=

Under certain conditions, the shape of a space curve is completely determined
by the values of curvature and torsion at each point on the curve.

Theorem 13.3.18. The torsion of the curve given by the vector function r is

_ @) xx"(0] - v
r(6) X (1)’

(1)

Homework 13.3. 5,7, 11, 16, 20, 23, 27, 28, 33, 43, 49, 50
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14.1 Functions of Several Variables

1 Functions of Two Variables

Example 14.1.1.

(1) Let T = f(x,y) represent the temperature at the position (x,y) where x and y indicate the
longitude and latitude respectively.

(2) Let V = V(r, h) represent the volume of a circular cylinder where r and /4 indicate the raidus
and the height of the cylinder respectively.

y
flxy)

Definition 14.1.2. A function f of two variables is a rule

that assigns to each ordered pair of real numbers (x, y) in

a set D a unique real number denoted by f(x,y). The set 10

D is the “domain” of f and its “range” is the set of values

that f takes on. That is, Range(f) = (f(x,y) | (x,y) € D). fla.b)

Sometimes, we express z = f(x,y) where x and y are independent variables and z is a dependent
variable.

183
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Remark. If a function is given by a formula and no domain is specified, then the domain of f
is understood to be the set of all pair(x, y) for which the given expression is a well-defined real
number.

Example 14.1.3.

\/x+y+1 . . x+y+1=0
——— . The domain of f is
X

(1) Let f(x.y) = ~——

Dom(f) = {(x,y)|x+y+120,x—1¢0} ool -
= {y|y=-x-1,x#1}. 1&
RS Jx+y+1
Domain of f(x, y) = =1
(2) Let f(x,y) = xIn(y* — x). The domain of f is y
Dom(f) = {(xy) ]y —x>0}

{(x’y) ‘ X< yZ} 0 : X

Domain of f(x, y)=xIn(y*—x)
Example 14.1.4. Find the domain and range of g(x,y) = /9 — x> — y2.

The domain of g is

Dom(f)

{(x,y) ‘9—x2—y220} -
{(x,y)‘x2+y2S9}. /\
The range of g is _3\\/3 '

Range(g) = {z|z= +/9—-x>—)% (x,y) € Dom(g)}

= {z]0<z<3}.
Example 14.1.5. Find the domain and range and sketch the graph of a(x,y) = 4x* + y*.

Domain of g(x, y) = J9—x2—y?

Dom(h) = R? and Range(f) = [0, o). The graph of
Graph(h) = {(x,y,2) | z = 4x* +¥°, (x,y) € R’}

is an elliptic paraboliod.

Graph of h(x, y) = 4x? + y?



14.1. FUNCTIONS OF SEVERAL VARIABLES

m Some ways to figure out two variables functions

We introduce some visual methods to understand functions of two variables.

(I) Algebraically (by an explicit formula). Such as above examples.

(IT) Verbally (by a description in words)

185

Example 14.1.6. In regions with severe winter weather, the wind-chill index is often used
to describe the apparent severity of the cold. The index W is a subjective temperature that

depends on the actual temperautre 7 and the wind speed v.

W is a function of T and v, and we write W = f(T,v). For example, the value of W is

record in a table

Wind speed (km/h)

h vi s 10 15 20 | 25 30 | 40 | 50 | 60 | 70 80

4 3 2 1 1 0 -1 -1 -2 —2 -3

o 0| —2 -3 —4 -5 -6 -6 =7 -8 -9 -9 —-10
et =5 (. -9 | —-11|—-12|—-12 | —-13 | —-14 | =15 | —16 | —16 | —17
*g —10 | —13 | =15 | =17 | =18 | =19 | =20 | =21 | =22 | =23 | =23 | —24
é =15 | =19 | =21 | =23 | =24 | =25 | =26 | =27 | =29 | =30 | —30 | —31
;i —-20 | —24 | =27 | =29 | =30 | =32 | =33 | =34 | =35 | =36 | —37 | —38
§ —25| —-30 | =33 | =35 | =37 | =38 | =39 | =41 | =42 | —43 | —44 | —45
= —30| =36 | =39 | —41 | —43 | —44 | —46 | —48 | —49 | =50 | =51 | —52
—35| —41 | —45| —48 | —49 | =51 | =52 | =54 | =56 | =57 | =58 | —60

—40 | =47 | =51 | =54 | =56 | =57 | =59 | =61 | =63 | —64 | —65 | —67

Wind-chill index as a function of air temperature and wind speed

m Graph

Definition 14.1.7. If f is a function of two variables with
domain D, then the “graph” of f is the set of all points
(x,y,z) € R? such that z = f(x,y) and (x,y) is in D. That

is,

Graph(f) = {(x,y,2) | z = f(x,y), (x,y) € D}.

Example 14.1.8. Sketch the graph of g(x,y) = /9 — x* — y2.
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Proof.

Let z = /9 — x2 — y2. Then the graph of g is

Graph(g)

{(x,y,z)|22 = 9—X2—y2, Z2> O}
{(x,y,Z) { x2+)’2+Z2 = 9, 2 0}

Note. An entire sphere cannot be represented by a single
function of x and y. The lower hemisphere is represented

by the function A(x,y) = — /9 — x2 — y%.

Example 14.1.9. Sketch the graph of the function
f(x,y) =6—-3x—2y.

Proof.

Letz =6 —3x —2yor 3x + 2y + z = 6. The intercepts of
the function are (2,0, 0), (0, 3,0) and (0, 0, 6).

X

Graph of f(x,y)=6 —3x—2y
O

Note. The function f(x,y) = ax + by + c is called a “linear function”. The graph of such a
function is a plane and has the equation z = ax + by + corax + by —z+c = 0.

Q Computer- generated Graphs

In general, it is difficult to sketch the graph of a two-variables function. A nice method to
sketch the traces in the vertical plne x = k and y = h. For example, fix x = k and sketch the
graph of a single variable function z = f(k,y). It is a curve on the plane x = k. Draw all such
curve as x ranges over all possible values in the x direction.

(@) f(x, y) = (x* + 3yY)e™Y (b) f(x, y) = (x> + 3yHe ™’
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(¢) flx, y) =sin x +sin y

m Level Curves and Contour Maps

187

o §in x sin y
(@ fley) ===

So far, we have two methods for visualizing functions: arrow diagrams and graphs. A third
method is to consider a contour map on which points of constant elevation are joined to form

“contour curves”, or “level curves”.

Definition 14.1.10. The “level curves” of a function f of two variables are the curves with
equation f(x,y) = k, where k is a constant (in the range of f). The level curve is the set

{(x.y) e D| f(x,y) = k}.

Note. (1) A level curve f(x,y) = k is the set of all points in the domain of f at which f takes
on a given value k. (It shows where the graph of f has height k).

(2) Level curves are useful in the reality. For example, isothermals(% ;§ %), contour map,

contour line.

45

level
curve

flx,y)=20
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Example 14.1.11. Sketch the level curves of the function f(x,y) = 6 — 3x — 2y for the values
k=-6,0,6,12.

Proof. 7

Consider the curves 6 — 3x — 2y = k in the domain.
For k = —6,0, 6, 12, the corresponding level curves
are 3x+2y—-12=0,3x+2y-6=0,3x+2y =0
and 3x +2y+ 6 =0.

Contour map of f(x,y) =6 —3x—2y

O
Example 14.1.12. Sketch the level curves of the function g(x,y) = /9 — x? — y? for the values
k=0,1,2,3.
Proof. M =3
k=2
k=1
Consider the curves /9 — x> —y> = k in the do- f k=0
main. For k = 0,1,2,3, the corresponding level
curvesare x> +y> = 9, > +y> = 8, x> +y> = 5 0 3o
and x> + y*> = 0.
Contour map of g(x, y) =9 — x* — y?
O

Example 14.1.13. Sketch the level curves of the function A(x,y) = 4x> +y* + 1.

Proof. Consider the curves 4x> + y* + 1 = k in the domain. We can rewrite the equation
2 2
as - al 42
k=1 k-1
%\/k— 1 and Vk — 1.

= 1. For k > 1, the level curves are a family of ellipses with semiaxes

y

7

\

(a) Contour map (b) Horizontal traces are raised level curves

Z

NS

The graph of h(x, y) = 4x?> + y? + 1 is formed by lifting the level curves.
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O

Note. The following two figures show different visualized concepts to figure out a two variables
functions f(x,y).

2_.2

(D) flxy) = —xye™™ .

‘43

(a) Level curves of f(x, y) =—xye (b) Two views of f(x, y) = —xye ™"
2 =—
(2) fx,) poa——

(c) Level curves of f(x,y) = m

0 Functions of Three or More Variables

m Three variables functions

A function of three variables, f, is a rule that assigns to each ordered triple (x,y,z) in a
domain D C R’ a unique real number denoted by f(x,y, 7).

Example 14.1.14. The function f(x,y,z) = In(z — y) + xy sin z has the domain

Dom(f) = {(x,y,2) | z=y >0} = {(x,5,2) | 2> y}.
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Note. It is difficult to visualize a function f of three variables by its graph since that would lie
in four-dimensional space.

We obtain some insight into f by examining its “level surfaces”, which are surfaces with
equation f(x,y,z) = k, where k is a constant in the range of f.

Example 14.1.15. Find the domain of f if
f(x,y,2) =In(z—y) + xysinz.

Proof.
Dom(f) = {(x,y,2) €R’ | 2>y}

Example 14.1.16. Find the level surfaces of the function
ooy =2+ + 2%

Proof.

Consider the surface with equation x> + y> + 22 = k,
k > 0. The corresponding level surfaces form a family
of concentric spheres with radius Vk.

m 2 variables functions

A function of n variables is a rule that assigns a number z = f(x, x5, -, X,) to an n-tuple
(x1, X2, - -+ , x,) of real numbers.

Example 14.1.17. (Cost function) Let C; be the cost per unit of the ith ingredient and x; be the
units of the ith ingredient are used. The total cost is

C=f(x1,x2,-, %) =Cix1 + Coxg + -+ - + Cpyx,,.

which is a n-variable function.

Remark. Since the point (x, x5, -, x,) and the vector x = (x,xp,---,X,) are one-to-one
correspondence, we have three ways of looking at a function f defined on a subset of R".

1. As a function of n real variables xi, x,, - - - , x,,, denote f(xy, xp, -+ , Xp).
2. As a function of a single point variable (xy, x, - - , x,), denote f((x1, X2, -, X,)).
3. Asafunction of a single vector variable X = (x;, x, - - - , x,,), denote f(x) = f((x1 L, X0,y Xy )

Homework 14.1. 9, 12, 16, 25, 29, 31, 32, 36, 45, 49, 54, 61-66, 67
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14.2 Limits and Continuity
Q Limits

Recall that the limit of a single variable func-
tion f(x) as x approaches a is followed by the
concept that the value of f(x) approaches L as x
tends to a. The precise € — ¢ definition is given
in Chapter 3.

a-3 é a-;-ﬁ

Question: How about the limit of a two variables function f as (x, y) approaches a point (a, b)?

Definition 14.2.1. (Heuristic definition) Let f be a function of two variables whose domain
D containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
f(x,y) as (x,y) approaches (a, b) exists if there is a number L such that we can make f(x,y) as
close to L as we like by taking (x, y) sufficiently close to (a, b). Denote

Jim fey =L or fey) o Loas(xy) = @b,
x,y)—a,

Definition 14.2.2. (Precise definition) Let f be a function of two variables whose domain D
containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
f(x,y), as (x,y) approaches (a, b), exists if there is a number L such that for every number
& > ( there exists a corresponding number 6 > 0 such that

lfCe,y) - Ll <&

whenever (x,y) € D and 0 < \/(x — a)? + (y — a)? < §. Denote

( 1)1rr(1 ” f(x,y)=1L or f(x,y) > L as(x,y) — (a,b).
x,y)—a,
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z
] L+te
y z L _ ———
(x,y) L—¢ S
Y I
L+
(a,b) f h & I |
0 & L—¢ | |
0 / |
X

Remark. For functions of a single variable, we only need to consider two possible direction
when x approaches a (from the left and from the right).

For functoins of two variables, we have to consider an infinite numbers of directions in any
manner whatsover as long as (x, y) stays within the domain of f.

Hence, if the limit ( 1)111(1 ” f(x,y) exists, then f(x, y) must approach the same limit no matter
X,y)—a,

which direction and how (x, y) approaches (a, b).

Note. From the above remark, if f(x,y) — L, di
and (x,y) approaches (a,b) along a path C, /\
and f(x,y) — L, when (x,y) approaches (a, b) ﬁ _____
along another path C, where L; # L,, then the /T\
limit lim x,y) does not exist. |
(e (@h) Jex) / 0 a \

2 _ 2
Example 14.2.3. Let f(x,y) = % Consider the limit of f(x,y) as (x,y) approaches (0, 0).
XT Ty

Proof. Along the x-axis (y = 0),

2y y
m —-—=Ilim—=1.

@)—=00) X2 +y> x50 x2
y=0

Along the y-axis (x = 0), flx, y)=-1

2 2 2
Xo—=y Y
im ——— =lim—- = -1 :
)-00) X2 +y> 30 y fix,y) =1

x=0

2 2

.. . X .
Hence, the limit lim 2_)72 does not exist.
@)—00 x2 +y
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= i ist?
Example 14.2.4. If f(x,y) e does (x’yl)gl(lo’o) f(x,y) exist’

Proof. Along the x-axis (y = 0),

.0
lim —— =Ilim— =0.
(xy)—-@b) X2 +y> x50 x2
y=0
Along the y-axis (x = 0),
lim —— =Ilim— =0.
(xy)—(ab) X2 + y2 y—0 y2 z y

x=0

Y e
B e e e ey
P /_f.-.-.:..'ﬁ.
K AZ ATy
§ RRLAAT I A TRRLT

<5 "".’ .....0.
S RS (NSRS
S l e

But, along the line y = x,

x2

. 1
lim —— =lim —.
(x2)=(ah) X2+y? x-02x2 2

Hence, the limit lim
(@x)—=0.0) x% + y?

does not exist.

2

oy : o
Example 14.2.5. If f(x,y) = ey does (x,yl)l—I>r(10,0) f(x,y) exist’

Proof. Along the the line y = mx (not y-axis),

o x(mx)? (1 +m?)

im = = IR S
(22)(0.0) X +yt o0 x2+ (mx)* -0 x2(1 + mtx?)

Along the curve x = y?,

2 2.2
_ Yoy
im = 2 2 _
(x,)—(0,0) x2 + y4 y—0 0/2)2 + y4
2
X=Yy

1
7

2
Hence, the limit lim SR
(xy)—0,0) x* +y

does not exist.

m Laws of Limits and Squeeze Theorem

Theorem 14.2.6. (Laws of Limits) Let f and g be two variables functions defined on D contain-
ing a neighborhood of (a, b) (possibly except (a, b) itself) and c be a constant number. Suppose
that the limits  lim  f(x,y) and lim g(x,y) exist. Then

(x.y)—(a.b) (x.y)—(a.b)

X.
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(a) lim [f*gl(x,y)existsand lim [f +g](x,y)= hm f(x,y) + hm g(x,y).

(x,y)—(a,b) (xy)—(a,b) —(a,b) —(a,b)
b) i ts and i ) =c i
(b) oo im b)[Cf 1(x,y) exists an oim. ’b)[Cf](x y)=c¢ “ y)mg » S y).
lim t d hm ,Y) = hm lim
(¢) Jim [felCey) existsand | lim  [fglry) = lim fey)( lim g(xy).

o [L T
(d) (x,y1)1—>n;la,b) |:§:| (-x, y) exists l‘f(x’yl)l_,n;la’b) g(X, y) + O and

lim (x,y)
. f (xy)—(a.b) Flxy
) [_](X’y)_ li (x,9)

x,y)—(a, 1mm x
§ (x.y)—(a,b) g

provided lim g(x,y) # 0.
(x,y)—(a,b)
(e) In particular,
Iim x=a, lim y=0>b, Iim c=c¢
(x,y)—(a,b) (x,y)—(a,b) (x,y)—(a,b)

Theorem 14.2.7. (Squeeze Theorem) Let f(x,y), g(x,y) and h(x,y) be three functions defined
near (a, b). Suppose that f(x,y) < g(x,y) < h(x,y) for every (x,y) near (a,b). If

lim =L = hm h
(x,y)—=(a,b) f(x y) (x,y)—(a,b) (x y)

then the limlt( hII(l ” g(x,y) exists and

lim X,y) =
(X))*(ub)g( y)

2

Example 14.2.8. Find lim if it exists.

(x)—0.0) x% + y?

Proof. First of all, we may try the limits when (x, y) approaches (0, 0) along several paths. We
observe that all the limits are 0. Therefore, we guess that the limit could exist and equal 0.

Let & > 0. We want to find § > 0 such that if 0 < /(x-0)2+(y—-0)? < &, then
‘ 3x%y

— 5~ 0‘ < &. Consider
X2 +y

3x%y
))c2+y2 - ‘x2+ 2‘ 31 < 3bl

<1

Choose 6 = 1£. If 0 < \/x? +y? < 6 = &, then |y| < \/x? +y? < 1&. Therefore,

2

3x7y 1
£ = 01= | 3 5] <3bi <35 =e
o 3x%y
whenever 0 < /x> + y?> < ¢ and this implies that lim ——— =0. O

(x)—(0.0) x2 + y?
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m Limt at Infinity

In the previous chapter, we regard R" as a vector space and every point (xi,- -, X,) 1S
identified as a vector x =< xi,--- , X, >. The length of a vector is denoted by
_ 2
Il = /X7 + -+ x2.

Hence, if we want to describe a point (or a vector ) x € R” tending to infinity, we will use
the notation “||x|| — oo™ (or [|(x1, - -+ , x)l| = 0 oOr || < xp,- -+, x, > || > 00)

Remark. We usually use the words “as ||x|| is sufficiently large” which means that there
exists a positive number M such that for every point x with ||x|| > M then - - - . For example,
“f(x,y) > 1 when ||(x, y)|| is sufficiently large” means that there exists a number M > 0 such
that f(x,y) > 1 for every ||(x,y)|| > M.

Definition 14.2.9. (Limit at infinity) Let f be a function of two variables whose domain D
containing all points which are sufficiently large. We say that the limit of f(x,y), as (x,y)
approaches infinity, exists if there is a number L such that for every number &£ > 0 there
exists a corresponding number M > 0 such that

lf(x,y)—Li<e
whenever /x> + y?> > M. Denote
lim f(x,y) = or  f(xy)—> L as|(x,yll— co.

llGxll—00

Example 14.2.10. Let f(x,y) = x. Determine whether the limit lim  f(x,y) exists.

[ )l|—00

Proof. Fix x = 1 and let y — oo, then ||(x, y)|| = oo and llim flx,y) =1.
x=1,y—o00

Similarly, fix x = 2 and let y — oo, then ||(x, y)|| — oo and 12im f(x,y) = 2. Hence,
x=2,y—00

the limit lim  f(x,y) does not exist. |

[ICx,y)l[—00

1
Example 14.2.11. Let f(x,y) = o Determine whether the limit lim  f(x, y) exists.
X“+y

llCell—00

1
Proof. Given g > 0, choose M = 7 and L = 0. For ||(x,y)|| = /X2 +y* > M,
E

== | -
fen=1= |5

Hence, lim f(x,y)= m|

llCey)l[—o0

Q Continuity
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Recall that the continuity of a single variable function f(x) at a is defined by
lim /(x) = f(a).

A slogan is that “the limit of f at a is equal to the value of f at a”. We attempt to use the same
idea to define the continuity of a multi-variables function.

Definition 14.2.12.

(a) A two variables function f is called “continuous at (a, b)” if

lim f(x,y) = f(a,b).

(x,y)—(a,b)

(b) f is called continuous on D if f is continuous at every point in D.
Remark.
(1) A surface that is the graph of a continuous function has no hole or break.

(2) The sums, differeneces, products and quotients of continuous functions are continuous on
their domains

(3) Every polynomial function or every rational function of two variables is continuous. For
example, f(x,y) = 3x° + 6y* + 10x’y® + 5x — 7y + 6 is continuous everywhere.

2 _ 2
Example 14.2.13. Where is the function f(x,y) = xz—_l_yz continuous?
AT Ty

Proof. Since f is a rational function, it is continuous on its domain. That is, f is continuous on
Dom(f) = {(x,y) | & +y* # 0} = {6, ) | (x,y) # (0,00} = R\{(0,0)}. O

22

Example 14.2.14. Let g(x,y) = { @2ay2 o) # 0.0
0 if (x,y) = (0,0).
does not exist, g is not continuous at (0, 0).

Example 14.2.15. Let

. Since the limit lim X,
(x,y)—(0,0) g( y)

3x? '
flxy) = xz—eryz if (x,y) # (0,0)

0 if (x,y) = (0,0)
Since f is a rational function for (x, y) # (0, 0), it is continuous

2
2 . Xy 4 .
on R~\{(0, 0)}. Also, (x’}gl_r)r(lo,o) x2—+yz =0 = £(0,0). Thus, fis

continuous at (0,0) and f is continuous on R?.
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m Composite Functions

We consider the composition of a two variables function and a single variable function.

Let f(x,y) be a continuous function of two variables and g(¢) be a continuous function of a
single variable that define on the range of f. Then h = g o f defined by h(x,y) = g( f(x, y)) is
also a continuous function.

£ g
o i, T : .
Z
Range of Range of g
Dom(g) »
D=Dom(f) . — o o
h(x.y)= g(f(x.y))

Example 14.2.16. Where is the function A(x, y) = ¢~ *" continuous?

Proof. Since the function f(x,y) = x> + y* is a polynomail and thus is continuous on R?.

Also, the function g(f) = ¢ is continuous on R.
Then the composite function

flx,y) = g(f(x, y)) )

is continuous on R?

Example 14.2.17. Where is the function /(x, y) = arctan (X) continuous?
x

Proof. )
Let = X b ti t the li z 0 JHLELIEKLR
et f(x,y) = e continuous except on the line s
27754
x = 0. Let g(f)y = arctant be continu- 5 RS
<l

ous everywhere. Then the composite function
h(x,y) = arctan (X) = g(f(x,y)) is continuous ex-
X

cept the line x = 0.

The function A(x, y) = arctan(y/x)
is discontinuous where x = 0.
O

m Functions of Three or more Variables

The definitions of limits and continuity of n-variables functions are similar as the ones of
two variables functions. We ignore the details of their definitions here.

Homework 14.2. 7, 10, 12, 15, 18, 21, 26, 29, 31, 34, 38, 43, 46, 49, 51, 57
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14.3 Partial Derivatives

Recall that for a single variable function f(x), the derivative of f is defined by

fla+h) - f(a)
h

f'(@) =lim

which represents the instantaneous rate of change of f with respect to x.

For a two variables function f(x, y), let x vary while keep-

ing y fixed, say y = b, where b is a constant. We can o
regard f(x, b) as a single variable function. =
Let g(x) = f(x, b), then g(a) = f(a,b). The derivative of V/

gx)atx=ais a ,V\A
A \_b

(@) = i B P 8@ @t hb) - flab) RN
g'(a) = lim p = lim p . :

We call it the “partial derivative of f with respect to x at
(a,b)”.

Similarly, let y vary while keeping x fixed, say x = a. Let
k(y) = f(a,y). The partial derivative of f with respect to

yat (a, b) is
) " A
i kb k) _ L flab+h) ~ fa,b) 2~ b
h—0 h h—0 h O - ¥
ab) -

Definition 14.3.1. (Partial Derivatives) Let f be a function of two variables. The partial deriva-
tives of f with respect to x and with respect to y are the functions f, and f; defined by setting

[+ hy) - f(x)
filx,y) = }g% .

1 f(X,}H‘h)_f(X,)’)
S y) = lim :

provided these limits exist.

Notation: Let z = f(x,y). We write

_ . _9f _ 9 _ 0z _ _ _
fx(x’y) - fx - ax - axf(x’y) - ax - Dxf - le - fl
0 0 0
Fey) = fi = a—]yp - Sy = 5= DS = Daf = f

m Find Partial Derivatives of z = f(x,y)
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e To find f,, we regard y as a constant and differentiate f(x,y) with respect to x.

e To find f,, we regard x as a constant and differentiate f(x,y) with respect to xy.
Example 14.3.2. If f(x,y) = x* + x*y* — 2y?, find £,(2,1) and f,(2,1).
Proof. The partial derivatives of f are
Jx,y) = 3x% + 2xy° and Hxy) = 3x%y° — 4y.
Then f,(2,1) =12+ 4 =16 and f,(2,1) =12 -4 =8. O

Note. We should consider the single variable function f(x,1) = x* + x> — 4 and f(2,y) =
8 +4y* — 2y*. Then

=12+4 =16.
x=2

=3x2 + 2x

fan = (fen)|

e = (Fren)| | =12 -a

y=

=12-4=8.

y=1

m Interpretation of Partial Derivatives

The equation z = f(x,y) represents a surface S (the graph of
f). If f(a,b) = c, then the point P(a, b, c) lies on §.

Fix y = b, the curve C; is the intersection of the vertical plane
and §. C; is also the graph of the function g(x) = f(x, b),
y = b. The slope of its tangent line 7, at P is g’(a) = f.(a,b). ;
Similar for the curve C,, the tangnet line 7, and its slope (a, b, 0)

Ha, D). The partial derivatives of f at (a, b) are
the slopes of the tangents to C, and C,.

Example 14.3.3. If f(x,y) =4 — x* = 2y?, find f.(1, 1) and f,(1, 1) and interpret these numbers
as slopes.

Proof. The partial derivatives of f are

f(x,y) = —2x and S(x,y) —4y.

Then f,(1,1) = =2 and f,(1,1) = —4.

The equation z = 4 — x> — 2y? represents a paraboloid which is the graph of f(x,y). Fix
y = 1, z = 2 — x? is the equation of a parabola which is the intersection of the vertical plane
y = 1 and the graph of f(x,y). The value f,(1,1) = =2 is the slope of the tangent line to the
parabola C; : z=2—- x>, y=1lat(1,1,1).

Similarly, f,(1,1) = —4 is the slope of the tangnet line to the parabola C, : z = 3 — 2y?,
x=1lat(l,1,1).
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O

Note. We can express the curve C; as a vector equation r(f) = (¢, 1,2 — #*). Then the tangent
Xy z

vector is r'(¢) = (1,0, =21).
At (1,1,1), we have r = 1 and then r'(1) = (1,0, —2). The equation of the tangent line is

r()+m’'(1) =1 +1¢1,1-21).

of 9
Example 14.3.4. If £(x,y) = sin (1 i ). calculate 8—f and a—f.
y x " dy

Proof. We can calculate the partial derivatives by the chain rule,

of X 1 of X —X
Bx_cos<1+y> I+y and ay_cos(1+y) (1+y)?
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m Implicit Differentiation

Recall that if the two variables x and y satisfy an equation F(x,y) = 0, then we can use the

implicit differentiation to find the ralated rate of each other (d_y or d—x).
X y

By following the same idea, if three variables x, y and z satisfy an equation F(x,y,z) = 0,
we want to find the related rates (partial derivatives) between any two variables.

0 0
Example 14.3.5. Find a—z and 6_Z if z is defined implicitly as a function of x and y by the

X Y
equation
X+ 4+ +6xyz+4=0. (14.1)
Proof.
Differentiating both sides of equation (I41) with respect to x,
we have
0 0
o {x3 +y° + 20+ 6xyz + 4] = a(O)
Then
0 0
3x% + 322—Z + 6yz + 6xy—Z =0 and hence
Ox Ox
0z /. 3 B )
a(3z + 6xy) = —(3x + 6yz).
We have
9z X +2yz
ox 2 +2xy
Similarly,

0z ¥ +2xz

dy T2+ 2xy’
At the point (-1, 1,2), we have

8)1 (x,y.2)=(-1,1,2) B 2

% ) and 0z 3
Oxley=-1,12) 2

m Functions of Three or More Variables

e For a three variables function f(x,y, z), fix y and z, the partial derivative of f with respect to

x is defined by

T f(x"‘h,y’Z)—f(x,y,Z)
fx(-x7y’ Z) - }ll_r)% I’l *

(fy and f; have similar definition).

0
Ifw= f(x,y,2), then 6—W can be interpreted as the rate of change of w with respect to x when

y and z are fixed.
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e for a n-variables function f(xy, x2,- - , X,),
S, i+h’..., ) — Sttt Xiy Xy
Ful w3 = lim L0 o) = S0 X )
h—0 h
ou Of ) ) ) . .
Ifu= f(x1,x,--+,x,), then g™ = ™ = f, = fi = D;f is the partial deriveative of u with
X; Xi

respect to x;.
Note. Denote x = (x,--- ,x,) ande; = (0,---,0,1,0,---0). Then

J(xX+ he) — f(x)
. :

fx,-(x) = }ll_l')r(l)

Example 14.3.6. Let f(x,y,z) = ¢” Inz, then
1
filx,y,2)=eY-ylnz=ye®Inz, fi(x,y,2) =xe®Inz, fix,y,2)=e"- E

m Higher Derivatives

When study a single variable function f(x), we can regard its derivative f’(x) as a new
function and consider its second derivative f”(x).

For a two variables function f(x,y), we can also regard its partial derivatives f.(x,y) and
fy(x,y) as new functions and consider the “second partial derivatives”. Let z = f(x,y). Then

ory _ &f _ o=

fx = fu = 5-(5-) = i " o fir
= fo = 3(5) = 30 = 35 =
fx = fix = %(%) = aajgy = ;j;y = fa
= o= 5 (3) - 275 - g—yz - f
o third partial derivatives
2 3 3
ke = Jor = a%(aayafx) - 8;96){;)6 - c')x(?)yzﬁx

d , *f Ff 0’z
Fods = fon = 5-(55-) = 5 = 2
oy \0yox 0%*yox 0%yox
Example 14.3.7. Let f(x,y) = x> + x*>y® — 2y?. Then the first partial derivatives of f are
fo=3x% 4+ 2xy°, h= 3x%y* — 4y

and the second partial derivatives of f are

fa=6x+2y,  fo=6xy%, f.=6x", f,=06xy—4.
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m Clairaut’s Theorem

Question: For a multi-variables function, does the second partial derivatives keep unchanged
when the order of two partial differentiations exchange? For example, if f(x,y) has all second
partial derivatives, can we obtain

f Xy = f;*x-
In general, the answer is false.
Exercise. Let .
xy(x”—y7) .
——— if (x, 0,0
0 if (x,y) =(0,0)

Check that f,,(0,0) # £,,(0,0).
Question: What conditions of f can guarantee its second partial derivatives are equal when
exchanging their order?

Theorem 14.3.8. (Clairaut’s Theorem) Suppose f is defined on a neighborhood D of (a, b). If
the functions f,, and f,. are both continuous at (a, b), then

fxy(a, b) = fyx(aa D).

Proof. Consider

fw(a,b)

k—0 k
. (flathb+ kb fl@b+k)  fla+hb) - fb)
hm[ _ }
— limh—>0 h A
k—0 k
_ limiim L@t b+ B — flat hb) - fla b+ k) + fa,b)
k—0 h—0 kh

Define g(y) = f(a + h,y) = f(a,y) Then fq(a, b) = limlim gb+k)— g(b).

kh
Since f, is defined on a neighborhood of (a, b), g is differentiable near b and, by the
mean value theorem, g(b + k) — g(b) = kg’(¢) for some & = &(k) € (0, k). Then

gE®) o1
(h ) :}{%mz[ﬂ(mh,bﬁ(m) — fy(a, b+ £0))].

fo(a,b) = limlim
Since f, is differentiable with respect to x and by the mean value theorem again,
fxy(a’ b) = %1_1;13 }ll_{% f;/x (Cl + 7](/1), b+ é:(k))

where n(h) € (0,h) and &(k) € (0,k) and hence }ling n(h) =0 and iirréf(k) = 0. Also, the
continuity of f;, at (a, b) implies that

fola.b) = limlim £, (a +n(h).b + £0)) = fulab).
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Remark. The Clairaut’s Theorem still holds if the hypothesis is weaken that one of f,, and f,,
is continuous at (a, b).

Example 14.3.9. Let f(x,y) = sin(3x + yz). Then
fi=3cos(Bx+yz), fuo=-9sinBx+yz), fiy =—-3zsin(3x+ yz)

Sy = =92€08(3x +y2),  fix = —92¢08(3x + y2) = frny-

Q Partial Differential Equations

(Skip)
Homework 14.3. 5, 15, 19, 23, 25, 29, 33, 35, 39, 43, 47, 51, 59, 61, 85, 95, 100

14.4 Tangent Planes and Linear Approximations

0 Tangent Planes

Recall that a single variable function f(x) with derivative

f’(a) can be linearly approximated by its “tangent line” i

f(x) = L(x) = f(a) + f'(a)(x — a) as x is near a

=Y

For a two variables function f(x,y), we also expect that it can be linearly approximated by
a certain “plane”.

Suppose that

f(x,y) is a two variables function which has continuous first
partial derivatives;

S 1s the surface with equation z = f(x,y) (the graph of f)
and P(a,b,c) € §;

C, and C; are the curves obtained by intersecting the vertical
planes y = b and x = a with the sufrace S. Then P € C; N (5.

T, and T, are tangent lines to the curves C; and C, at the The partial derivatives of f at (a, b) are
point P. the slopes of the tangents to C, and C,.

*The figure is download from https://www.math24.net/linear-approximation/
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Z

Definition 14.4.1. The “tangent plane” to the surface S
at P is defined to be the plane that contains both tangent
lines 7y and 7T5.

Note. If C is any curve that lies on S and passes P, then
the tangent line to C at P also lies on the tangent plane.
Hence, we can think of the tangent plane to S at P as
consisting of all possible tangent lines at P to curves that
lie on S and pass through P.

The tangent plane contains the tangent
line 7 and T>.

m Equation of the tangent plane

Let the tangent plane to S passing throught P(a, b, ¢) has equation
Ax—-a)+Bly-b)+C(z-¢)=0 (14.2)

We may assume that it is not a vertical tangent plane and hence C # 0. Dividing both sides of
equation (I43) by —C, the tangent plane has an equivalent equation

A B
z—c=alx—a)+B(y—->b) (azzandﬁzj).

Since the intersection of the tangent plane and the vertical plane y = b is the tangent line 77,
plugging y = b into equation (IT43),
z—c=a(x—a)
is the equation of the tangent line 7';. Then « is the slope of T to the curve C; at (a, b, c¢) and
hence a = f.(a, b).
Similarly, 5 = f,(a, b). Therefore, the equation of the tangent plane to S at P is
z—c = fla,b)(x—a) + f(a,b)(y - b).
Example 14.4.2. Find the tangent plane to the elliptic paraboloid z = 2x> + y? at (1, 1, 3).
Proof. Let f(x,y) = 2x* + y*. Then f.(x,y) = 4x and f,(x,y) = 2y. Hence, f.(1,1) = 4 and
f(1,1) = 2. The equation of the tangent plane at (1, 1,3) is
z-3=4(x-1+2(y-1) or z=4x+2y-3.

(a) (b) («©)

The elliptic paraboloid z = 2x° + y” appears to coincide with its tangnet plane as
we zoom in toward (1,1,3).
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DA

Zooming in toward (1,1) on a contour map of f(x, y) = 2x*+ y?

1

0.5

a Linear Approximations

We have studied the linear apporximation for a single variable function f(x). We use the
tangent line to the graph y = f(x) at a to approxinate the value of f near a and the linearization
for fatais

L(x) = f(a) + f'(a)(x — a)

and
f(x) = L(x) as x is close to a.

For a two variable function f(x,y), we expect to approximate its values, as (x,y) is near
(a, b), by the tangnet plane at (a, b).

Suppose that f(x,y) has continuous partial derivative. The tangnet plane to the surface
S 1z = f(x,y)at P(a,b, f(a,b)) is

2= fla,b) = fula,b)(x — a) + f,(a,b)(y - b)

or
z = f(a,b) + fi(a,b)(x — a) + f(a,b)(y — b).
Definition 14.4.3.
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(a) We call the function

L(x,y) = f(a,b) + f(a, b)(x — a) + fy(a,b)(y — b)
the “linearization of f at (a, b).

(b) The approximation f(x,y) = L(x,y) is called the “linear approximation” or “tangent plane
approximation” of f at (a, b).

Example 14.4.4. Find the linearization of f(x,y) = 2x>+y? at (1, 1, 3) and use it to approximate
the value of f(1.1,0.95).

Proof. Compute fi(x,y) = 4x and f,(x,y) = 2y and hence f,(1,1) = and f,(1,1) = 2. Then the
linearization of f at (1, 1,3) is

Lix,y)=f(1,D+ f(1,Dx-D+ £, Dy -1)=3+4x-1)+2(y-1)=4x+2y-3.

Also,
f(1.1,0.95) ~ L(1.1,0.95) =3 +4-0.1 +2-(-0.05) = 3.3.

O

We define tangent plane for surface z = f(x,y), where f has continuous partial derivatives.
Question: What happens if f, and f, are not continuous? Consider the following example.

We define tangent plane for surface z = f(x,y), where f has continuous partial derivatives.

Example 14.4.5.

if (x,y) # (0,0)

if (x,y) = (0,0)

Then f:(0,0) = 0 = £(0,0). For (x,y) # (0,0),
y(? - x%)

fx(x, y) = m AlOIlg x=0,

Xy
Let f(x,y) = { X2+ y?
0

3
. .Y
lim x,y) = lim= = oo.
(x3)—(0.0), x=0 Sx(x:y) y—0 y4
Hence, f, is continuous at (0, 0). Also, we can com-
pute that f; is not continuous at (0, 0). Observe that,

1
for (x,y) on the line x = y, f(x,y) = 2 # 0. There-

fore, f is not continuous at (0,0). This implies that
there is linear approximation of f at (0, 0).

Note. This example says that for the linear approximation, the condition of the continuities of
fr and f; are necessary.
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Q Differentiability

We recall the geometric meaning of linear approximation
of y = f(x). Let Ay = f(a + Ax) — f(a). The rate of
change of y with respect to x is

Ay _ fla+ax) - fla) I
AX AX ’

0 a a-+Ax X
tangent line

y=fla)+ f'(a)(x —a)

A
If f is differentiable at a, then A—y — f'(a) as Ax — 0.
X

Hence,
Ay = f(@)ax + eAx  wheree >0 as Ax— 0.
—— erfor

increment in y  linear approximation

(Note that £ = g(Ax) varies as Ax varies.)

. . - (a+Ax,b+ Ay, f(a+ Ax, b+ Ay)
For a two variables function z = f(x, y), as x changes surface z = f(x, y)

from a to a + Ax and y changes from b to b + Ay, the
corresponding increment of z is

(a. b, f(a, b))

A7 = f(a+ 2ax,b+ Ay)— f(a,b)
= fia,b)ax + fi(a,b)Ay + 10X + &,y
linear app?oximation crror %7

pect that €1, &, — 0 as (Ax, Ay) — (0,0).

tangent plane

= f(a, b) . f.\"(a’ b)(x —a)t f)'(a’ b)(}’ - b)

Definition 14.4.6. Let z = f(x,y). We call that f is “differentiable” at (a,b) if Az can be
expressed in the form

Az = fila,b)Ax + fi(a,b)Ay + &1Ax + &MY

where g1, &, — 0 as (Ax, Ay) — (0,0).
Exercise. If f(x,y) is differentiable at (a, b), then f is continuous at (a, b).

From Example T4°475, a two variables function f(x, y) has all partial derivative at (a, b) can-
not guarantee that it is differentiable there.

m Sufficient condition for differentiability

Theorem 14.4.7. If the partial derivative f, and f, exists near (a,b) and are continuous at
(a, b), then f is differentiable at (a, b).
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Example 14.4.8. Show that f(x,y) = xe" is differentiable at (1,0) and find its linearization
there. Then use it to approximate f(1.1,-0.1).

Proof. Since fi(x,y) = € + xye® and f,(x,y) = x*¢® are continuous functions, f(x,y) is

differentiable everywhere. Moreover, f(1,0) = 1 and f,(1,0) = 1. The linearization of f at
(1,0) is

Lx,y) = f(1,0)+ £i(1,0)(x = 1) + f,(1,0)(y — 0)
= 1+x-D+y
= x+y.
Then
f(1.1,-0.1) = L(1.1,-0.1) = 1.1 + (-0.1) = 1.

In fact, £(1.1,-0.1) = 1.1e7%! ~ 0.98542.

a Differentials

Recall that for a differentiable single variable func-
tion y = f(x), dx is the differantial of x and dy =
f'(x) dx is a differential of y.

The symbol Ay denotes the change in height of y and

dy represents the change in height of the tangent line T

when x changes Ax = dx. Hence, as (x,y) is near Cllx - AIX

(a,b), Nl \
0 a a+Ax X

f(x’ y) ~ f(a’ b) + f,(a’ b) dx = f(a’ b) + dy tangent line

y=fla)+ f'(a)(x —a)

. . . X (a+Ax,b+Ay, fla+Ax, b+ Ay)
For a differentiable fucntion of two variables surface z = f(x, ) /

z= f(x,y), dx and dy are differentials of x and y
respectively, and dz is the differenital of z which is

called the “rotal differential”. Then
(a,b, fla, b))

0z
dz = fulx,y) dx + f,(x, y) dy = o dx + 3 dy.

Taking dx = Ax = x —a and dy = Ay = y — b, then /(a,b

dz = f(x, y)(x = a) + f,(x, )(y = D).

As (x,y) is near (a, b),

f(x,y) = f(a,b) + f(a,b)(x — a) + fy(a,b)(y — D) = f(a,b) + dz.
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Example 14.4.9.
(a) If z = f(x,y) = x* + 2xy — y*, find the differential dz.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.6, compare the values of Az and dz.

Proof.
(a) To find dz, fi(x,y) = 2x + 3y and f,(x,y) = 3x — 2y. Then

d d
dz = Zax + Zdy = Qx + 3y)dx + 3x - 2y)dy. 601 2
0x dy i

207
(b) If x changes from x to 2.05 and y changes from 3 to 2.96, ’

compare Az and dz.

_20 +

Az = = £(2.05,2.96) — f(2,3) = 0.6449
dz = £i(2,3)(2.05-2)+ £,(2,3)(2.96 — 3) = 0.65.

Example 14.4.10. The base radius and height of a right circular cone are measured as 10 cm

and 25 cm, respectively, with a possible error in measurement of as much as € cm in each.

(a) Use differentials to estimate the maximum error in the calculated volume of the cone.

Proof.

1
The volume of the cone is V(r, h) = gﬂ}’zh. Then

v %Jrrh A 1”2
ar 37 on 3
The differential of V is
ov oV 2nrh r?
dV = —dr+ —dh = dr + — dh.
ar 7 on 3 T3

When |dr| < € and |dh| < € and at (r, h) = (10, 25), the differential of V is

AV

Q

ov ov
< —(10,25) - —(10,25) -
dV < 0r( 0,25) 8+ah( 0,25 ¢
5007 1007

= e+

3 3

-& =200 (cm®)
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(b) What is the estimated maximum error in volume if the radius and height are measured with
errors up to 0.1 cm?

Proof. Taking & = 0.1 cm, then dV = 2007(0.1) = 207 ~ 63 (cm?). |
Note that the relative error is d—V i ~ 0.0214 or 2.4%.
v " 2618

1 Functions of Three or More Variables

m Linear Approximation

The linearization of f at (a, b, c) is

f(x’y’Z) ~ L(xay,z) = f(a,b,c) +fx(a,b,c)(x— a) +]§,(Cl, b’ C)(y - b) +ﬂ(a,b,C)(Z - C)-

m Differentials

Letw = f(x,y,z). Then

Aw = f(x+Ax,y+ Ay, z+ A7) — f(x,9,2)

0 0 0
£y, 2)dx + £,(6, 9, 2dy + f:(x,9,2)dz = ——dx + —dy + —dz.
dx ay 0z

dw

Example 14.4.11. A rectangular box has length, width, and height 75cm, 60 cm and 40cm
respectively. Use differentials to estimate the largest possible error when the volume of the box
is calculatedas each measurement is correct to within £ cm.

(a) Use the differentials to estimate the largest possible error when the volume of the box is
calculated from these measurements.

Proof.
/! 60 cm
Let x, y and z denote the length, width and height of the box. i
The volume of the box is V(x,y, z) = xyz. Then L
” e R —

av aV av P 4 40 cm

— =Xy, /— = XZ, — = X).

ox dy 0z 75cm
The differential of V is

ov ov ov
dV = —dx+ —dy+ —dz—yzdx+xzdy+xydz

ox ay 0z
When |dx| < €, |dy| < € and |dz| < € and at (x,y, z) = (75, 60, 40), the differential of V is

AV = dV < (60)(40)e + (75)(40)e + (75)(60)s = 9900  (cm”).

O

(b) What is the estimated maximum error in the calculated volume if the measured dimensions
are correct to within 0.2 cm?
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Proof. Taking & = 0.2, then dV = 9900(0.2) = 1980 cm? in the calculated volume. O

dv 1980
Note that this may seem like a large error, but the relative error is 2 W =0.011
or 1.1%.

Homework 14.4. 5,9, 17, 21, 24, 27, 34, 36, 39, 43, 49, 54

14.5 The Chain Rule

Recall the for single variable functions y = f(x), x = g(t),y = f (g(t)) is a composite function

of variable . Then
dy dy dx

dt  dxdt’
m The Chain Rule: Case 1

For a two variables function z = f(x,y), if x = g(tr) and y = h(¢), then z = f (g(t),h(t)) is
indeirectly a function of ¢, say z = z(f). Suppose that z = f(x,y) is differentiable and, x = g()
and y = h(¢) are differentiable. Then

AZ

L, y)ax + fi(x,y)Ay + £140x + £,AY

AX Ay AX Ay
= X, y)—Al+ (X, y)— At + g.—— At + &,—— At
fx( y) Al f;’( y) At 1 At 2 At

where €1, — 0 as (ax,Ay) — (0,0). Since x = g(¢) and y = h(¢) are differentiable in 7, we

A d A d
have N and 2, as At — 0. Then, letting At — 0,
dt At dt

dx d
- filx, y) +fy(x y) + hm £ v + Bg%sz d_)t;
~——

=0 =0

‘We obtain J p
z y
dr At M At = Jxlx, y) *HY) dt

Theorem 14.5.1. (The Chain Rule: Case 1) (Two variables function) Suppose that z = f(x,y) is
a differentiable function of x and y where x = x(t) and y = y(t) are both differentiable functions
of t. Then z is a differentiable function of t and

dz_ofdx ofdy 9zdx ozdy
dt  dxdr dydt Oxdr Oydt

Remark. In Chapter 13, we studied the n vector-valued function r(7) = (x(?), - - , x,(?)) :
I — R". If r(¢) is differentiable on /, then

r'(t) = (x((1), -+, x,(0).

Hence, we have the chain rule for general multiple variables functions:
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Suppose that f : D € R" — R is a continuously differentiable function. If r = r(7) is a
differentiable curve in D, then f o r is differentiable and

%(f (x(®)) = V£ (r@) - ¥'(0).

Proof. It suffices to prove the case n = 2 and the general cases are similar.

Since x = x(f) and y = y(¢) are differentiable in ¢,
dx dy
Ax = x(t + At) — x(t) = EN +eat and Ay =y(t+ A1) —y(t) = EN + &) At

where 1,6, — 0 as At — 0 as well as

Ax  dx . Ay dy
im—=— and lim — = —=.
At—0 At dt at—0 At dt

Clearly, Ax, Ay — 0 as At — 0.

On the other hand, since f is differentiable,

AZ f(x+ax,y+ Ay)— f(x,y)

L, y)ax + fi(x, y)Ay + £30% + £4AY

where €3,&4 — 0 as (Ax, Ay) — (0,0). Then

DI _ 4 (¢ p)BF LY A% &y
~ —fx(x,y)At +fy(x,y)At te e
Taking limits as At — 0, we have
a’z_ . A7 . X . Ay
a = hmy = A (im 2w (lim 20)
_dx _dy
= =G
. A . y
+ (lime) (fim 22) + (lim o) ( fim )
0 =0
dx dy
= x\As — + s .
Selx y)dt Slx y)dt
3 6zdx+8zdy
~ dxdt  Oydt
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d
Example 14.5.2. If z = x?y + 3xy*, where x = sin2¢ and y = cos t, find d—i when ¢ = 0.

Proof.
a (9 YA
Compute % _ 2xy + 3y* and Koy 12xy®. Then 0,1)
0x ay
dz  0zdz N 0z dy
dt  Oxdt Oydt
= Q2xy+xyH)(2cos20) + (x* + 12xy*)(—sin7) >
= (2sin2tcost + 3 cos* 1)(2 cos 27)
+(sin® 2¢ + 12 sin 27 cos® £)(— sin 7).
d
Atr=0,=| =6 ,
dt =0 The curve x = sin 2¢, y = cos ¢

dz ) .
Note that o represents the rate of change of z with respect to ¢ as the point (x,y) moves

along the curve C with parametric equation r(f) = (sin 2¢, cost). O

Example 14.5.3. The pressure P (in kilopascals), volume V (in liters), and temperature 7 (in
kelvins) of a mole of an ideal gas are related by the equation PV = 8.317. Find the reate at
whcih the ressure is changing when the temperature is 300K and increasing at a reate of 0.1 K/s
and the volume is 100L and increasing at a rate of 0.2 L/s.

Proof. From the equation PV = 8.317, we can express P as a function of variables V and 7.
T
That is, P = 8.31‘—/. By the Chain Rule,

dP O0PdT oOPdV 1 dT T dv
— = ——+ ——=83]1-—-— +831(-—) - —
dt 0T dt 9V dt V dt ( V2) dt
dar av dpP
The hypothesis indicates that — = 0.1 and — = 0.2. We want to find —‘ .
dt dt dt 1(1,v)=(300,100)
Then
dpP 1 300
0o = 831 [ﬁ 0.1+ (— o 02) ‘0.2] = —0.04155 (KPa/s)

Example 14.5.4. Compute the rate of change of f(x,y,z) = x*y + zcos z along the curve
r(t) = (t,1*, ).

Proof. Compute

V£(x,y,z) = (2xy,x*,cosz —zsinz) and r'(7) = (1,2t,3¢%).
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Then

d ,
Z(F0)) = Vi) ro
= (28,7, cost —sint’) - (1,21, 31%)
= 48 + 3 cost — 3P sinf.

Remark. (1) Suppose that f(x) = f(xy, x2,- -, x,) and r(¢) = (x;(¢),-- - , x,(¢)). Then

0 0 0
Vf(X)=<—6f(X), o7 (X), -+ ,—f (x)) and r'(t) = (X[, -, x,(1)
X 0x, ox,

Hence,

< (f(r®)) = Vf(r®) @

dt
L PN P A PR
- <(9X1 (X)’ axz (X)? s axn (X)> <x1(t), s xn(t)>
~ n 8_f ,
= ; o (r(0) x}(1)
I N
- S oo

(2) Recall that the directional derivative of f at (a, b) in the direction u (unit vector) is
Dyf(a,b) =V f(a,b)-u.

Let the plane curve r(t) pass {(a, b) when t = 1, (that is, r(#y) = {(a, b)). Then

d
S(F@))|, = V() - ¥ = IFGoIDuf(a. b)

r'(t)
e (2ol

at t = 1y is equal to ||r'(#)|| multiple of the directional derivative of f at r(y) in the
direction r’(fy).

whereu =

This means that the rate of change of the composite function f (r(t))

Corollary 14.5.5. If x = x(t) and y = y(t) are twice differentiable at t and if z = f(x,y) is
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twice differentiable at (x(t), y(t)), thenz = f (x(t), y(t)) is twice differentiable at t and

d’z  O0zd*x  ,dx\20°z 0%z dxdy ,dy\20%z dzd%y
— =+ () =+ == (Z) S+ s
drr  Ox dr dt’ dx*>  Ox0dy dt dt dt’ 0y* 0Oydr

Proof. (Exercise) O

m The Chain Rule: Case 2

Let z = f(x,y), x = x(s,t) and y = y(s, ) be differentiable functions. Then z = z(s,?) =
f (x(s, 1), y(s, t)) is indirectly a function of s and ¢. Consider the partial derivative of z with
respect to . From the discuss in Section [473, fixing s (as a constant w.r.t 7) and regarding z as
a function of . We can use the idea of Casel to find the partial derivative of z with respect to t.
0z 0z 0x N 0z Oy
ot Ox ot Oyt
Theorem 14.5.6. (The Chain Rule: Case 2) Suppose that 7 = f(x,y) is a differentiable function
of x and y, where x = x(s,t) and y = y(s, t) are differentiable functions of s and t. Then
(9z_0z6x+6z8y 82_0z6x+6z6y
ds  dxds dyods’ ot dxdt Ayt

z
oz oz
9x ay
X y
9x 9x  dy 9y
os / \ ot os / \8t
S t S t

The tree diagram is

If x; = x;(s, t) are differentiable at (s,t) fori=1,---nand z = f(xl, cee x,,) is differen-
tiable at (xl(t), xn(t)) then
Js 0x; 0s ox, 0s — ox; Os
and
ot ox, Ot ox, Ot — Ox; Ot
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Example 14.5.7. If z = ¢* siny, where x = st and y = 5%¢, find —

Proof. Compute that

217

0z
s and i

% _ e'siny, == = ¢ cos
ox Y dy Yy
and ; ] ) a
X 2 X y y ,
— =t — = =2 t, — — 2y ), &= .
s ot Os ot =S
Then
dz _ 0z0x 0z dy . L
t o -+ . 2st
ds  O0x0s ayas ¢ Siny e“cosy-2s
e’ sin(s?t) + 2ste™ cos(s*t).
and
0z 0z0x 070
(; (%Zc (;:_,. a)z, a); e*siny - 25t + e cosy - s°

2ste” sin(s*t) + s2e* cos(s*t).

O

Corollary 14.5.8. Suppose that z = f(x,y) is a twice differentiable function of x and y, where
x = x(s,t) and y = y(s, t) are twice differentiable functions of s and t. Then

%z 0 (

057 ds

P
Example 14.5.9. Let u = f(s> + £, st) Find ——.

Proof.
ou
ar
and
Gu _ 0 ouy _ &S
0sot  Ods \ Ot

>f
ﬁxﬁy

0z
7)

_9f 2

—(s + 12, s1)(25)(21) +

(s + 12, s1)2s - s +
y?

+ 72, s1) - 21 +
(s , St) - 5

[8zax+0z6y}
oxds dyds
Poox | iz o ox oz
0x*ds  0Oyoxds’ ds  Ox 0s?
¥z s Fzov v oy
Oxdyds  Oy*0s’ ds 0Oy ds?

2

0sot

of

L (s> + 1%, s1) - 5.
>

f (s + 12, s1)(27%)
2f

(s + 12, st)t - s+a—f(s + 12, s1) - 1.
dy
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m Chain Rule: General Version

Suppose that u is a differentiable function of n variables xj,--- , x, and each x; is a
differenbitable function of m variables ¢;,--- ,t,. Then u is a differentiable function of
t, - ,t, and

Ou  Ou 8x1 ou 0x; ou 0x,

+——— -+
3t a)ﬁ 8t 8)(:2 (9l,- 8)6,1 ('h‘i
foreachi=1,2,--- ,m.
Example 14.5.10. Letw = f(x,y,z,t), x = x(u,v),y = y(u,v) and z = Z(u v). Then

ow (9w6x+6w8y+6w02+6_wﬁ

ou  Oxou  dyou 0z 0u O ou // \\
and

ow _owdx owdy dwdz Owt /\ /\ /\ /\

b ——
v Ox v ay v dzdv Ot oy
Example 14.5.11. If u = x*y + y°Z®, where x = rse’, y = rs’e”" and z = r’ssint, find the

Valueofa—uwhenr:Z,s:landt:O.
Ky

Proof.
u
@—4)63 %—x4+2 3%—322
o y,ay— yz,az—yz / ‘ \
X z
and J
o o e JIN /N /N
azre’,azhset,a:rsmt. r s t r st r s t
Then

ou ou ﬁx ou ay ou 0z
s dx 6s 6y ﬁs 07 8s
= 4%y re' + (x* +2y2%) - 2rse” + 3y?2% - P sint.

When (7, s,t) = (2,1,0), x =2,y = 2 and z = 0. Hence,

ou

— =64-2+16-4+0-0=192.
os |l rs.n=02,1,0)

Example 14.5.12. If z = f(x, y) has continuous second-order partial derivatives and x = r? + s°

0 82
and y = 2rs, find 8—Z and — pp

Proof.
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0z 0zdx 9zdy 0z 0z
—=——+—=——==—(2 —(2s).
or 0xor " oy or ﬁx( N 8y( )
and
a_zz—ﬁ(%) = 2r|:a_2Z@+ (?ZZ}_'_Q’%
ot ar\or/ ox? dr  0yodx Ox
0’z Ox 9%z 0y
) a2
" S[axay or " 0y? ﬁr}
9z ,0%7 | ,0%z &z
= 2—4+4r— +4s5°— +8 .
ox A Ox? T 0y? " Sr(?xay
62 2
Note that —— = since f has continuous second partial derivatives.
0xdy  Oydx

0 Implicit Differentiation

219

N\
A

O

Recall that if the two variable x and y have a relation, for example xy*> + xsiny = 1, we can

d
find d_y By differentiating of both sides,
x

d . d
E(xy2 + xsmy) = E(l)

we have
dy ¥y +siny

dx  2xy+xcosy

In general, for the equation F(x,y) = 0 where F' is differentiable, we can regard y as a

dy

function of x. That is, y = f(x) and then F’ (x, f(x)) = 0. To find I
X

%(F(x, ) = %«».

We have
OF dx OFdy _
dx dx dydx
g
and then
oF
dy___ox __F
dx O_F F,’
dy

Note. The “Implicit Function Theorem™ give conditions under which this assumption is valid:
if F' is defined on a dist containing (a, b) where F(a,b) # 0, and F, and F, are continuous on
the disk, then the equation F(x,y) = 0 defines y as a function of x near the point (a, b) and the

derivtive of y with respect to x is
dy F,

dx Fy'
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it f,(a,b)7#0 then the

slope is @ = - ﬁ
dx fu

N
-,
P
|

1 Y C: f(z,y)=0
- \

" C: fle,y)=0
’,\'.)

d
Example 14.5.13. Find d_y if x> +y° = 6xy.
x

Proof. Let F(x,y) = x* + y* — 6xy. Then F, = 3x* — 6y and F, = 3y* — 6x. We have

dx F,

Q_ Fx__3x2—6y__x2—2y
y o 3yr—6x yr-2x

oz 0
Question: If z = f(x,y) or F(x,y,z) = 0, how to find — and = ?

X Oy
For F(x,y,z) = 0, we can regard z as a function of x and y, say z = f(x,y). Then
0
F(x,y, f(x,y)) for all x,y € Dom(f). Find 8—Z Consider
X

0 OF dx OF dy O0Fdz 0
—(F(x,y,2))=— — +— — +——=—(0)=0.
6x< xy Z)) ox dx dy dx 0z Ox ax( )

Therefore,
F
% = F: provided F, # 0.

.. 0z Fy .
Similarly, — = —— provided F, # 0.
dy  F;

oz .9
Example 14.5.14. Find G_Z and 6—Z i3+ +2 +6xyz= 1.
x " Oy

Proof. Let F(x,y,z) = x> +y> + 22 + 6xyz — 1. Then

F.=3x"+6yz, Fy = 3y? + 6xz, F, = 32° + 6xy.

We have
0z F, X+ 2yz 0z F, v+ 2xz
= — = - and —=-—=- .
Ox F, 22+ 2xy dy F, 22+ 2xy
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We give the Implicit Function Theorem here. It will be discussed in the course of Advanced
Calculus.

Theorem 14.5.15. (Implicit Function Theorem) If F is defined within a sphere containing
(a,b,c), where F(a,b,c) = 0, F.(a,b,c) # 0, and F,, F, and F, aer continuous inside the
sphere, then the equation F(x,y,z) = 0 define 7 as a function of x and y near the point (a, b, c)
and this function is differentiable and

0 F, F

x 2 and o =-—=

0x F, ay F,
Homework 14.5. 4,7, 12, 15, 18, 21, 28, 29, 34, 38, 39, 43, 52, 60

14.6 Directional Derivatives and the Gradient Vector

a Directional Derivatives

In Section M43, we studied the partial derivatives for a two variables function z = f(x,y).
The partial derivative

Fulx0,v0) = lim S (xo + h,yo) — f(x0,Y0)
x(X0, Yo ho0 h
represents the rate of change of z in the x-direction (in the direction of the unit vector i). Simi-

larly,
f(xo,y0 + h) — f(x0,¥0)

h
represents the rate of change of z in the y-direction (in the direction of the unit vector j).

fy(xo, Yo) = }ll_{%

Question: How about the rate of change of z at (x(, o) in the direction of a unit vector
u = {a, b).

VA

(X05 Yo)

A unit vector u = {a, b) = (cos 0, sin )

Let P(xy, Yo, 20) lie on a surface S. The vertical plane that passes through P in the direction
of u intersects S in a curve C. The slope of the tangent line 7" to C at the point P is the rate of



222 CHAPTER 14. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

change of z in the direction u.

Let u = (a, b) be a unit vector and z = f(x,y). Consider the quotient difference of z in the

direction u
Az _z—2 _ fxo+ha,yo + hb) — f(xo,y0)

h h h
Taking i — 0, we obtain the rate of change of z in the direction u.

Definition 14.6.1.

(a) Let f : D € R?> — R be a function and (xo, yo) € D. The “directional derivatives” of f at
(x0, yo) in the direction of a unit vector u = {a, b) is

f(xo + ha,yo + hb) — f(xo,y0)
h

D = 1‘
uf(XOa )’o) hHIOl
if the limit exists.

(b) In general, let f: D C R" — R be a function, a € D and u be a unit vector. The directional
derivative of f at a in the direction u is the limit

lim fa+ ) — f(a)
h—0 h

if it exists and is denoted by Dy f(a).

Remark. (1) In the above definition, the direction u is a “unit” vector. Hence, if we want to

compute the directional derivative of f in the direction v, which is not a unit vector, we
) \%
should normalize v by u = W
v

(2) Ifi = (1,0) and j = (0, 1), then D;f(xo,y0) = fu(Xo,y0) and Djf(xo,y0) = fy(x0,¥o). The
partial derivative of f with respect to x; is a special directional derivative in the direction x;.

3) If u = 0,---,0,1,0,---,0), then Dyf(a) = f,,(a). The partial derivative of f with
respect to x; is a special directional derivative in the direction x;.

To compute the directional derivative D, f(xo, yo), there are two common methods:
(i) By the definition
(i) Under certain assumptions, we can use the following theorem.

Theorem 14.6.2. If f is a differentiable function of x and y, then f has a directional derivative
in the direction of any unit vector u = {a, b) and

Dy f(x,,y) = fi(x,y)a + f,(x,y)b.
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Proof. Let g(h) = f(xy + ha,yy + hb) where x = xy + ha and y = yy + hb. Then

f(xo + ha,yo + hb) — f(xo,y0)

Dy f(x0,y0) = lim

h—0 h
. 8 —g0)
- 2 -0

Also, by the Chain Rule,

ofox _0f 0y
dxoh  dy oh

g'(h)

(exists since f is differentiable)

= filxo + ha,yy + hb)a + f,(xo + ha,y, + hb)b

Therefore, putting & = 0,

g'(0) = fi(xo,y0)a + fy(xo,y0)b.

Note. In particular, if f is a differentiable function
of x and y, then f has a directional derivative in the

direction of any unit vector u = {(a, b) and

Dyf(x,y) = fi(x,y)a + fy(x, y)b.

Moreover, if u = {cos 6, sin §), then

Dy f(x,y) = fi(x,y) cos @ + f,(x,y) sin6.

0 X

A unit vector u = {a. b) = {(cos 6. sin )

Proof.

Theorem 14.6.3. If f : D C R" — R is differentiable at a, then f has a directional
derivative at a in every direction u where u is a unit vector and

D.f(a) = Vf(a) - u.

Recall that f is differentiable at a. Then

li

o @+ - fa) - V/@-hl

0.

h—0

|

Let h = ru and then |h| = [¢]|ju] = |f|. We have

fa+rm)-f@ fla+m)-f@-Vf@-h Vi@ h

t

t
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Hence,
lim fla+ tut) —f@) _ Vi) u‘ = lim ‘f(a + tut) —f@) _ Vf(a)l~ (ru)
- lim If(a+h) - f(a)-Vf()-h
h—0 |h|

0. (since f is differentiable at a)

Therefore,

f(a+m)— f(a)
t

Dyf(a) = lim =Vf(a) - u

Remark. If f is differentiable and u is a unit vector, then

Duf(a) = Vf(a) - u.

This means that the directional derivative (the rate of change of f) in the direction of a unit
vector u is the scalar projection of the gradient vector V f(a) onto u.

Example 14.6.4. Find the directional derivative D, f(x, y) if
fOny) =5 = 3xy + 4y
and u is the unit vector given by angle 6 = £. What is D, f(1,2)?

Proof. The gradient of f is
Vf={fof)=3x*=3y,-3x+8y).

Hence, the directional derivative is

Dyf(x,y) fu(x,y)cos 0 + f,(x,y)sin@

= (3x* - 3y)cos % + (—3x + 8y) sin%

= %[3 V322 = 3x+ (8 — 3V3)y]

and Dy f(1,2) = ﬂ
O
1 The Gradient Vector

Note. If f(x,y) is a differentiable function of x and y, then the directional derivative of f at
(x0, yo) in the unit vector u = {a, b) is

Dy f(x0,y0) = fx(x0, ¥0)a + fy(x0,¥0)b = { felx0,¥0)s fy(x0. ¥0) ) - {a, b).
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Definition 14.6.5. If f is a function of two variables x and y, then the “gradient” of f is the
vector function, “V f”, defined by

of

0
VFn) = (o), fie ) = i+ i

Notation: Denote “grad f or ’V f”” and read “del f”.
Remark. (1) The gradient of f, Vf(x,y) is a vector.
(2) If f is differentiable and u is a unit vector, then

Dyf(x,y) = Vf(x,y)-u

This expresses the directional derivative in the direction of a unit vector u as the scalar
prejection of the gradient vecctor onto u.

Example 14.6.6. If f(x,y) = sinx + ¢, then

Vi(x,y)
V£(0,1)

(for fy) = (cos x + ye?, xe™)
(2,0).

Example 14.6.7. Find the directional derivative of f(x,y) = x*y* —4y at (2, —1) in the direction
v = 2i+5j.

Proof. The gradient of f is y

VF = (fo fi = 2y, 305 - 4), / \

v 2 5

Let u=— = —i+ —j. The directional — V(2,1

M~ v Vo e AN
derivative is \V; o

2 5 » =
Dyf2,-1) = fi(2,-1)—+£,2,-1)— = —.
V29 29 V29 \ /

m Function of Three Variables

Let f(x,y,z) be a three variables function and u be a unit vector. The vector function
D, f(x,y,z) can be interpreted as the rate of change of the function in the direction of u.

Definition 14.6.8. The “directional derivative” of f at (xo, yo, Zo) in the direction of a unit vector

u={<{(a,b,c)is

f(xo + ha,yo + hb, zo + hc) — f(x0,Y0, 20)
h

Dy f(x0,¥0,20) = }ll_{%

if this limit exists.
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Note. If we use vector notatin, then the directional derivative can be written as

f(Xo + hu) — f(xp)
h

Duf(XO) = }11—11%

where X = (xo, yo) (or {xo, y0,20))
Remark. If f(x,y,z) is differentiable and u = {(a, b, c), then

Dyf(x,y,2) = fi(x,y,2)a + f,(x,y,2)b + fo(x,y,2)c.
The “gradient” of f is

0 0 o
VFx3,2) = (A0 609 9 = i+ 8—];1 + 5—’;1«

and
Dyf(x,y,2) = Vf(x,y,2) - u.

Example 14.6.9. Let f(x,y,z) = xsinyz.

(a)
VI(x,y,2) = {fo fy» J2) = (sinyz, xz €08 yz, Xy €08 yz).
(b) At (1,3,0), for th t i+2j—k. Th it vect v 1 | + 2 1k
,3,0), for the vector v = i + 2j — k. The unit vectoru = — = —i+ —j— —k.
M V6 V6 V6
Then the directional derivative at (1, 3, 0) in the direction v is
D.f(1,3,0) = <sin0 OcosO 3COSO>~<L i —L>
u 9 b b b vg’ vg’ Vg
1 2 1 3
= <Oa 07 3> : <_,_,__> = ——.
V6 V6 V6 6

0 Differentiability and Partial Derivatives

From Definition T44°6, we can prove that a differentiable function f havs (all) par-
tial derivatives. In fact, it has directional derivatives in every direction. But the converse
is false. There indeed exists a function which has all directional derivatives but it is not
differentiable.

On the other hand, Theorem ?? says that continuity of all partial derivatives implies
differentiability of f. We hope to understand the connection between the partial derivatives
and differentiability.

Theorem 14.6.10. If f : D C R" — R is differentiable at a, then all partial derivatives of f

exist at a and
of of of

V@) = (@, @, o

(@)).
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Proof. Since f is differentiable at a, the gradient vector V f(a) exists and denote
Vf(a) =< ap, Q" Q& >

The partial derivative of f with respect to x; is

8f(a):Vf(a)'<O9"'a091’09"',0>:ai
ax,-
o _(9f of . Of
fori=1,2-+,n. Hence Vf(a) = ( O O ’axn(a)>'

Note. If f is differentiable at a, then we can explicitly write the form of V f(a).

Conclusion: Let f: D C R" — R be a function. Then

’All partial derivatives of f exist and are continuous at a ‘

U
f is differentiable at a and V f(a) exists and Vf(a) = < (?Tf(a), (?Tf(a), s g){ (a) >
1 2 n
U

All partial derivatives of f exist and the directional derivative Dy f(a) = Vf(a) -u ‘

Note. All the converse of the above arrows are false.

0 Maximizing the Directional Derivatives

Suppose that f : D C R" — R is differentiable at a. Then all directional derivatives of f at
a exist and

Dyf(a)=Vf(a)-u

for any unit vector u.
Question: In which direction does f change fastest and what is the maximum rate of change?

Observe that the rate of change of f in the direction u is

Dyf(a) =Vf(a)-u=I[Vf(a)l [ul cost=|Vf(a)cost
~~

=1
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where 6 is the angle between the two vectors Vf(a) and u. Hence, the maximum value of
D, f(a) occurs when 6 = 0.

Theorem 14.6.11. Suppose that f is differentiable at a. Then

(a) The maximum value of the directional derivative Dyf(a) is |V f(a)| and it occurs when u
has the same direction as the gradient vector V f(a). That is, the function f at a increases
fastest in the same direction of V f(a).

(b) Similarly, the minimum value of the direction derivative Dy f(a) is —|Vf(a)| and it occurs
when u has the opposite direction to the gradient vector V f(a). That is, the function f at a
decreases fastest in the opposite direction to V f(a).

(c¢) The function does not change in the direction of w which is perpendicular to V f(a).
Example 14.6.12. Let f(x,y) = xe”.
(a) Find the rate of change of f at the point P(2,0) in the direction from P to Q(%, 2).

— 3 PC 3 4
Proof. The vector PQ= (——=,2) and u = —Q = (——, =). The gradient of f is Vf(x,y) =
2 iy 55
PO B
(e¥,xe’) and Vf(2,0) = (1,2). Hence, the rate of change of f in the direction PQ is
Duf(1,2) = (1,2) - (-, = 1. o

(b) In what direction does f have the maximum rate of change? What is this maximum rate of
change?

Proof. f increases fastest in the direction of the gradient vector Vf(2,0) = (1,2) and the
maximum rate of change is [Vf(2,0)| = [(1,2)| = V5. O

Example 14.6.13. Suppose that the temperature at a point (x, y, z) in space is given by

80
1+ x% 42y + 3%

T(x,y,2) =

where T is measured in degree Celsius and x,y, z in meters. In which direction does the tem-
perature increase fastest at the point (1, 1, —2)? What is the maximum rate of increase?
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160
(1 + 22 +2y? + 32%)?

Proof. The gradientof T'is VT'(x,y,z) =

5, .
3(=1—2j + 6k).

The temperature increases fastest in the direction of the gradient vector VT'(1,1,-2) =
2(—i — 2j + 6k) or —i — 2j + 6k. The maximum rate of increase is

541
8

(—xi — 2yj — 3zk) and then VT'(1, 1, —2) =

5
VT (1,1,-2)| = gl—i—2j+6k| = ~4 (°C/m).

0 Tangent Plane to Level Surfaces

Recall: In Sectionl44, we have learned that the equation of the tangent plane to the surface
S 1z = f(x,y) at P(xo, Yo, 20) 18

Z =20 = fi(x0,Y0)(x = X0) + f,(X0,Y0)(y — Y0)- (14.3)
Define F(x,y,z) =z — f(x,y). Then

S={xy.2|z=fx.n} ={xy.2 | 2= fxy) =0} = {(x.y.2) | F(x,y.2) = 0}

is a level surface of F when the value is equal to 0. Hence, (I43) also interprets the equation of
the tangnet plane to the level surface of F at P.

From the same spirit as above, we consider a differentiable function F(x,y, z) of three vari-
ables x, y and z. Let S be a level surface with equation F(x,y,z) = k and X = {(x¢, Y0, 20) € S. To
find the tangent plane to S at x, it suffices to find the normal vector of S at x.

Theorem 14.6.14. Let F : D C R? — R be continuously differentiable and S C D be a level
surface of F. If X = (X0, Y0,20) € S and Vf(x) # 0, then V f(X) is perpendicular to S at x.

Proof. In order to prove Vf(x) is perpendicular to § at x, it suffices to show that the vector
V f(x) is perpendicular to any curve on S passing X (the tangent vector to the curve at x).

VF (X0, Yo, Z9)

Let C : r(r) = (x(1),y(t),z(t)) be a differen-
tiable curve that lies on S and passes through
X = (Xo,Y0,20) When ¢t = 5. Let S be the level
surface with equation F(x,y,z) = k. Then

tangent plane

F(r(®) = F(x(),y(0),2() = k.

Hence,

OF dx | OF dy OF dz
Oxdt Oydt O0zdt
OF OF OF dx dy dz
ox’ 0y’ dz" ‘dt’ dt’ dt
= VF(r@®) - r'@)

(@]
1
r
i
VS
-
~~~
~
p—
N—r
—_
1
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Taking ¢ = ty, VF(x) L r'(%y).

Note that r'(fy) is a tangent vector lying on the tangent plane. Since C is an arbitrary curve
on S, any vector on the tangent plane (to S at x) is perpendicular to VF(x). Therefore, VF(X) is
the normal vector of the tangent plane to S at x. O

Note. (1) Let S be the level surface with equation F(x,y,z) = k and X = (xo,Y0,20) € S. If
VF(x) # 0, it is natural to define the tangent plane to the level surface S at x as the plane
that passes through x and has normal vector VF(x). The equation of the tangent plane is

VF(xo,y0,20) - {x = X0,y = 0,2 — 20) = 0.
That is,
F (X0, Y0, 20)(x = X0) + F\(X0, Y0, 20)(y — Yo) + F(x0,¥0,20)(z — 20) = 0.

(2) Consider the special case that the surface § with equation z = f(x,y) which is the graph
of a function f of two variables. Let F(x,y,z) = f(x,y) —z. Then S is with the equation
F(x,y,z) = 0. Also,

F(x0,¥0,20) = fx(x0,¥0),  Fy(x0,¥0,20) = fy(x0,¥0), and F.(xo,y0,20) = —1.

The equation of the tangent plane to S at (xo, yo, Z0) 1S

Se(x0, y0)(x = x0) + fy(x0,Y0)(y — yo) + (=1)(z = 29) = 0.
Example 14.6.15. Find the equation of the tangne tplane at the point (-2, 1, —3) to the ellipsoid

2 2
X , 2
—+y +—==3.
I
Proof.
x? z
Let F(x,y,z) = y +y2 + 9 Then the ellipsoid is the level surface
(with k = 3) of F(x,y,,7). Then 41

2_.
by 2z
F,= 3 Fy=2y and Fz:3~

2
Hence, F(-2,1,3) = =1, F\(=2,1,3) =2 and F(-2,1,-3) = -3 z =21
The equation of the tangnet plane is

_4__
2 _
—(x+2)+2(y—1)—§(z+3)20 6 1
M
or ?%; > 0 2
3x—6y+2z+ 18 =0. y X

1 Normal Line

The normal line to S at x is the line passing through x = (x, yo,20) and perpendicular to
the tangent plane. The direction of the normal line is the gradient vector VF(x). The symmetric
equation are

X — X _ Y=o _ <= 20
Fo(x0,¥0,20)  Fy(x0,¥0,20)  Fz(x0,¥0,20)"
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Example 14.6.16. As the above example, the equation of the normal line is

x+2 y—-1 z+3

-1

a Significance of the Gradient Vector

Consider the function f(x,y) of two variables.

A A

E
|
[
|

|
|
|
|
|

flx,y)=k

Level curve
X of height

7

(SN

/,/
( P(x, o)
\'\
\y\_’»/«ﬁ_\
/ N
level curve g
flx,y)=k

e The gradient vector V f(xy, yo) gives the direction of fastest increase of f. Intuitively, it is
because the values of f remain constant as we move along the level curve.

curve of
steepest
ascent

100

A curve of steepest ascent is
with direction V/ /' (x, »).

It is perpendicular to all of
the contour lines.

a gradient vector field for the
function f(x,y)=x*>-y?

o Vf(x0,y0) is perpendicular to the level curve f(x,y) = k that passes througth (x, yo).

e For a plane curve C : y = f(x), define F(x,y) = y — f(x). Then C is a level curve of F. If
(X0, ¥0) € C, then VF(x, yo) is the normal vector of C at (xo, yp).
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Example 14.6.17. Let C be the curve defined by C = {(x,y) | ¥ + y* = 9}. Find the
tangent line of C at (1, 2).

Proof. Let f(x,y) = x*> +y>. Then C is a level curve of f (with k = 9). The gradient
vector V£(1,2) = (3£(1,2), %(1,2)) = (2, 12) is the normal vector of C at (1,2). Hence,
the tangent vector of C at (1,2) is (12, —2) (perpendicular to (2, 12)). The equation of the
tangent line to C at (1,2) is

(x=1,y=-2)-(2,12) =0 or 2(x-1)+12(y-2)=0.

Homework 14.6. 6,9, 12, 13, 16, 19, 21, 24, 35, 39, 45, 47, 51, 57, 60, 64, 67

14.7 Maximum and Minimum Values

In the present section, we will study the extreme values of two variables function f(x,y). Recall
that, of a single variable funciton f(x), we find the critical points as candinates and determine the
extreme values by first derivative test or second derivative test. For a muti-variables functions,
we also want to find the critical points by considering the directional derivatives.

Definition 14.7.1. Let f be a two variables function on D. We say that

(1) f has alocal maximum (minimum) at (a, b) if

fuy) < flab)  (fx,y) = fla, b))

when (x, y) is near (a, b). [This means that f(x,y) < f(a, b) for all point (x, y) in some dist
center (a, b)]. The number f(a, b) is called a “local maximum (minimum) value”.

(2) f has an absolute maximum (minimum) at (a, b)if

fx,y) < fla,b) (f(x,y) 2 f(a, b))
for all (x,y) € D. The number f(a, b) is called an “absolute maximum (minimum) values”.

(3) The maximum and minimum values of f are called the “extreme values of .

ZA absolute
maximum
local
maximum
— /
ey — =
X / y
local
absolute .
minimum

minimum
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Question: How to find the extreme values of f?
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Theorem 14.7.2. If f has a local maximum or minimum at (a,b) and the first-order partial

derivatives of f exists there, then f.(a,b) = 0 and f,(a,b) = 0.

(Vf(a,b)=0)

Proof. Let g(x) = f(x,b). If f has a local maximum or minimum at (a, b), g has a local
maximum or minimum at a. Thus, 0 = g’(a) = fi(a, b). Similarly, f,(a,b) = 0.

O

Note. The geometric interpretation is that if the graph of f has a tangent plane at a local maxi-

mum or minimum, then the tangent plane must be horizontal.

Definition 14.7.3. We call that point (a, b) a “critical point” of f if either (1) f.(a,b) = 0 and

fi(a,b) = 0 or (2) one of fi(a,b) and f,(a, b) does not exist.

Example 14.7.4. Let f(x,y) = x> + y*> — 2x — 6y + 14. Find the critical point of f.

Proof.

The partial derivatives f,(x,y) = 2x — 2 and
H(x,y) = 2y — 6. Therefore, fi(x,y) = 0
when x = 1 and f(x,y) = 0 wheny = 3.
The point (1, 3) is a critical point of f. In fact,
f(x,y) =4+ (x - 1)> + (y — 3) ahs a local and
an absolute maximum at (1, 3).

(1, 3,4)

0 »
e

y

z=x’+y*—2x—6y+14

O

Remark. The above theorem says that if f has a local maximum or minimum at (a, b), then
(a, b) is a critical point of f. However, not all critical points give rise to maximum or minima.

Example 14.7.5. Find the extreme values of f(x,y) = y* — x°.

Proof.

The partial derivatives f, = —2x and f;, = 2y. Then f, =0
when x = 0 and f;, = 0 when y = 0. The point (0,0) is a
critical point of f. But £(0, 0) is neither a local maximum
nor a local minimum.

Indeed, on the x-axis, f(x,y) = —x> < 0if x # 0 and on
the y-axis, f(x,y) = y*if y # 0.

Y
"m

NN /
.“ ‘\\ NS //// /////
s ,',l,',’t‘ffﬂ/

e ——

.M»:e».f
s

Z=y2—x2

Note. Near the origin the graph has the shape of a saddle and so (0, 0) is called a “saddle point”

of f.

1 Second Derivative Test

O
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Theorem 14.7.6. Suppose that fy, fy, fyx and f,, are continuous near (a,b) and f.(a,b) =
fia,b) = 0 (that is, (a,b) is a critical point of f). Let

D = D(a,b) = fula, b)fy(a,b) = [foy(a, b)I*.
(a) If D > 0 and f..(a,b) >0, then f(a,b) is a local minimum.
(b) If D > 0 and f,(a,b) <0, then f(a,b) is a local maximum.
(c) If D <0 and f(a,b) is not a local maximum or minimum.
Note. (1) In case(c), (a, b) is called a “saddle point” of f.

(2) If D = 0, the test is inconclusive, f could have a local maximum or local minimum at (a, b),
or (a, b) could be a saddle point of f.

) fu f
_ | S Ju
D=1

Example 14.7.7. Find the local maximum and minimum values and saddle points of f(x,y) =
oyt —dxy + 1.

= fxxfyy - (fxy)z

Proof. The first and second partial derivatives of f are f, = 4x° — 4y, f, = 4y* —4x, fi, = 1227,
fo =—4 = fyand f,, = 12y*. Then f, = 0 when x* = y and f, = 0 when y* = x. We can solve
the critical points of f are (0,0), (1,1) and (-1,-1), and

D(x, y) = fxxfyy - (fxy)2 = 144X2y2 - 16.

e At (0,0), D(0.0) = —16 < 0. Then f has neither a local maximum nor a local minimum
at (0, 0).

e At(1,1),D(1,1) =128 > Oand f,,(1,1) = 12 > 0. Then f(1,1) = —1 is a local minimum
of f.

o At(-1,-1), D(-1,-1) = 128 > 0 and f,,(—1,—1) = 12 > 0. Then f(-1,-1) = -l isa
local minimum of f.
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Example 14.7.8. Find and classify the critical points of the function f(x,y) = 10x?y — 5x* —
4y? — x* — 2y*. Also find the highest points on the graph of f.

Proof. The first and second partial derivatives of f are
fo = 20xy—10x—4x>, f, = 10x°=8y—8y°, fir = 20y—10-12x%, f,, = fox = 20x, f,y = —8-24y>.
To find the critical points of f by solving f, = Oand f; = 0, we have (x,y) = (0,0), (£2.64, 1.90), (+0.86,0.65).

Critical point | Value of f Jfrx D Conclusion
(0,0) 0 -10 80 local maximum

(£2.64,1.90) 8.50 —55.93 | 2488.72 | local maximum

(+£0.86,0.65) —-1.48 -5.87 | —187.64 saddle point

The highest points on the graph of f are (+2.64, 1.90, 8.50).

O

Example 14.7.9. Find the shortest distance from the point (1,0, —2) to the plane x + 2y + z = 4.

Proof. Let (x,y,z) be a point on the plane x + 2y + z = 4. The distance from (x, y, z) to (1,0, =2)
is

d(x,y,2) = V/(x = 1) +y2 + (z +2)%

Taking z =4 — x — 2y, thend = /(x — 1)2 + 2 + (—=x — 2y + 6)2. Consider f(x,y) = d*(x,y) =
(x — 1)> + y?> + (=x — 2y + 6)%. The first and second partial derivatives of f are

fi=dx+4dy-14, f,=4x+10y-24, fi. =4, f, = fix =4, f,, = 10.

11 5
To find the critical point of f by solving f, = 0 and f, = 0, the point (x,y) = (Z’ 5) is the only
critical point of f. Also, D = 4-10 — 4% = 24 > 0 and f,, = 4 > 0. By the second derivatives
11 5
——. In fact, it is the absolute

3"

11 5
test, f(x,y) has a local minimium at (?, 5)’ Then d(

minimum.
O

Example 14.7.10. A rectangle box without a lid is to be made from 12m? of cardboard. Find
the maximum volume of such a box.
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Proof. Let x,y and z be the length, width and height of the box. Then the volume of the box
is V(x,y,z) = xyz and the area of the four sides and the bottom is 2xz + 2yz + xy = 12. Hence

2
z= a4 and we can rewrite the volume function
2(x+y)
12xy — x*y?
Vix,y) = ————
(x,y) 2t y)
Consider

AV (12 -2xy — x2 AV X212 = 2xy — y?
v _y«( Xy — X°) and _x( Xy y).

0x 2(x + y)? G_y B 2(x + y)?

The critical point of V is (2,2). We can use the second derivative ?
test to check that V has a local maximum at (2,2, 1). Then the
maximum volume of the box is 4m’.

a Absolute Maximum and Minimum Values

Question: Under what conditions does a function f(x,y) have (absolute) extreme values?

Recall that, for a single variable function f(x), we have the “Extreme Value Theorem’ that
if f is continuous on a closed interval [a, b], then f has an absolute maximum value and an
absolute minimum value.

Question: How about two variables function f(x, y)?
Heuristically, corresponding to the “closed interval” in R, a “close set” in R? is a set contains
all its boundary points. Also, a bounded set in R? is a set that is contained within some disk.

o N ==
\ | |
[
| |
\ / | |
N /
(a) Closed sets (b) Sets that are not closed

m Extreme Value Theorem for Functions of Two Variables

Theorem 14.7.11. If f is continuous on a closed and bounded set D in R?, then f attains
an absolute maximum value f(x,y,) and an absolute minimum value f(x,,y,) at some point
(x1,y1) and (x,,y,) in D.

Note. If f(x,y) has an extreme value at (x;,y;), then (x;,y;) is either a critical point of f or a
boundary point of D.
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Question: How to find the absolute maximum value or minimum value of a continuous func-
tion f(x,y) on a closed and bounded set D?

m Strategy:
(1) Find the values of f at the critical point of f in D.
(2) Find the extreme value of f on the boundary of D.

(3) Check the values in (1) and (2). The largest value is the absolute maximum value and the
smallest value is the absolute minimum.

Example 14.7.12. Find the absolute maximum and minimum values of the function f(x,y) =
x? — 2xy + 2y on the rectangle D = {(x,y) | 0<x<3,0<y< 2}.

Proof. Since f is a polynomial on the closed and bounded set D, there exists absolute maximum
and minimum values in D.
First of all, we find the critical points of f in the interior of D. The partial derivatives of f

are f, = 2x — 2y and f, = —2x + 2. Hence, (1, 1) is a critical point of f in D and |f(1,1)=1|.

Next, we consider the candinates of extreme point on the boundary D. The boundary of D
consists of four lines L, L,, L; and L.

e For (x,y) € L;,0 < x <3andy = 0, f(x,0) = x? is increasing. On L;, f has a local
maximum |f(3,0)=9 |and a local minimum | f(0,0)=0|.
e For(x,y) € L,,x=3and0 <y <2, f(3,y) = =4y + 9 is decreasing. On L,, f has a local

maximum |f(3,0)=9 |and a local minimum | f(3,2)=1|.

e For (x,y) € L3,0<x<3andy=2, f(x,2) = x> —4x+4 = (x—2)>. On L3, f has a loca
maximum | f(0,2)=4 |and a local minimum | f(2,2)=0|.

e For (x,y) € Ly, x =0and 0 <y < 2, f(0,y) = 2y is increasing. On L4, f has a local
maximum |f(0,2)=4 | and a local minimum | f(0,0)

Hence, f has an absolute maximum value f(3,0) = 9 and an absolute minimum value f(0,0) =
f2,2)=0.

Il
o

Y4
L 2.2
0,2) e (3,2)
L, D L,
0, 0) L, (3,0) x

flr, y)=x*—2xy+2y

Homework 14.7. 3,5, 9, 13, 17, 21, 35, 38, 40, 45, 51, 55, 59
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14.8 Lagrange Multipliers
In the present section, we will study the Lagrange’s method to maximize or minimize a general
function f(x) subject to a constraint (or side condition) of the form g(x) = k. The method works

for n variables functions but we will only consider 2 or 3 variables functions in this section.

m Geometric basis of Lagrange’s method (for two variables functions)

Let f(x,y) and g(x,y) be two differentiable functions. The goal is to find the maximum (or
minimum) of f(x,y) subject to the constraint g(x,y) = k. For (x,y) satisfies g(x,y) = k, the
point (x, y) lies on the level curve of g(x, y) with the value k.

We want to find a point(s) (xo, yo) on the level curve C = {(x,y) | g(x,y) = k} such that

f(x0,y0) = f(x,y) forall (x,y) € C. (14.4)

Suppose that (xp,yo) € C satisfying (I44) and

f(x0,¥0) = M. Then (xp,y9) is also on the level A

curve Cy = {(x, V| flx,y) =M } Moreover, since

(X0, yo) 1s the maximum point, the two level curve C

and C| must be tangent each other at (xg, o). flx,y)=11

Since C and C; are level curves of g and f respec- i \ flx,y)=10

tively, the gradient vectors Vg L C and Vf L C;. _1 fx,y)=9

Then Vg(xo, yo) is parallel to V f(xo, yo). Therefore, g(x,y)= flx,y)=8

there exists a number A (“Lagrange multiplier”) such =7

that fy) =7
V f(x0,¥0) = AVg(x0, y0)- 0 X

Conclusion: The candidnate point(s) where the extreme values occur must satisfy

{ Vf(x,y) = AVg(x,y) for some number A
g(x,y) =k

m Lagrange methods for three variables functions

For finding the extreme values of f(x,y,z) subject to the constraint g(x,y,z) = k, by the
same argument as above, if the maximum value of f is f(xo, yo,20) = M where (x, yo, 20) lies
on the level surface S = {(x,y, z) | g(x,y,2) = k}. Then the level surface {(x,y,2) | f(x,y,2) = M}
is tangent to S at (xg, Yo, 20). We have

V f(xo0,¥0,20) /| V&(xo0,Y0,20)-

(Intuitive veiwpoint) Let S be the level surface with equation g(x, y, z) = k. For every curve
r(t) = (x(1), y(t), z(¢)) lie on S, the tangent vector r'(¢) L Vg (r(t)) for every t.

Suppose that f has an extreme value at P(xy, yo,20) € S and r(¢) is a curve on S passing P,
say r(fo) = (xo.y0,20). Consider the function A(f) = f(r(r)) which has maximum value at f.
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Then 0 = /(o) = Vf(r(t)) - ¥'(t). We have V£ (r(1)) L r'(fo). Also, r'(19) L Vg(r(t9)). Then
V £ (x0, ¥0, 20) /| Vg(x0, Y0, 20)- This implies that

V f(x0, yo, 20) = AVg(x0, Yo, 20) for some number A.

This number A is called a “Lagrange multiplier”.

Q Method of Lagrange Multiplier

To find the maximu and minimum values of f(x,y, z) subject to the constraint g(x,y,z) = k
(assume that these extreme value exist and Vg # 0 on the surface g(x,y,z) = k). We solve this
problem by following the below steps.

(a) Find all values of x, y, z and A such that
Vf(x,y,z) = AVg(x,y,2) and g(x,y,2) = k.

(b) Evaluate f at all the points (x,y, z) that result from Step(a). The largest of these values is
the maximum value of f; the smallest is the minimum value of f.

Example 14.8.1. Find the extreme values of the function f(x,y) = x>+2y? on the circle x*>+y* =
1.

Proof. Let g(x,y) = x> + y*. Then
Vf(x,y) =(2x,4y) and Vg(x,y) = (2x,2y).
Consider

2x = 2Ax (1)

Vf=av
{ (f; ):5; = 4y=21 )
L&Y 2y =1 ()

By Equation(1), either 4 = 1 or x = 0.

(i) If A = 1, by Equation(2), y = 0. Then x = =1 by
Equation(3).

(i1) If x = 0, then y = +1 by Equation(3) and 4 = 2 by
Equation(2).

Consider

l‘(l,O): 1, f(—l,O):land 5(0,1):2, f(O,—l):%.

minimum maximum

The maximum value of f on the circle x> + y? Iis

f(0,+1) = 2 and the minimum value is f(x1,0) = 1.
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O

Example 14.8.2. A rectangle box without a lid is to be made from 12m? of cardboard. Find the
maximum volume of such a box.

Proof. Let the length, width and height of the box be x, y and z. Then the volume of the box is
V(x,y,2) = xyz.
The area of the four sides and the bottom is
g(x,v,2) = 2xz+ 2yz+ xy = 12.

To find the maximum of V subject to the constraint
g(x,y,z) = 12. The gradient vector of V and g are

VV =(yz,xz,xy) and Vg ={(y+2z,x+2z,2x+ 2y).

Consider
vz = Ay + 22) xyz = Axy + 2x7) (D)
{ VV = AVg ) o= Alx +22) . xyz = A(xy + 2yz) 2)
g(x,y,2) =12 xy = A2x + 2y) xyz = A2xz + 2yz) 3)
2x724+ 2yz+xy =12 2x72+2yz+xy =12 4

The number A # 0; otherwise, we obtain xy = xz = yz = 0 and hence g(x,y,z) = 0 which
contradicts the constraint. Also, Equations(1),(2) and (3) imply that

2xz2+xy =2yz+xy=2x2+2y7 = XZ=YyzZ.
This says that either x = y or z = 0.
(1) If z =0, then xy = 0 and hence x = y = 0 which contradicts g(x,y,z) = 12.

(i) If x = y and z # 0, then 2xz + x*> = 4xz and then x = 2z = y. Also, from Equation(4), we
obtainx=y=2and z = 1.

The maximum volume of the box is 4m?. O
Example 14.8.3. Find the extreme values of f(x,y) = x> + 2y? on the disk x> + y* < 1.

Proof. (1) Find the extreme values of f inside the disk x> + y> < 1.
Consider f, = 2x = 0 and f, = 4y = 0. Then the critical point of f is (0,0). Moreover,
fex =2, fy = fix =0and f,, = 4 and hence D = f.,f,, — (fxy)2 =8 > 0. Also, f., > 0. By
the second derivative test, £(0,0) is a local minimum.

(2) Combining with the previous example, f(0,0) = 0, f(£1,0) = 1 and f(0,+1) = 2. Hence,
the maximum value of f on the disk x* + y?> < lis f(0,+1) = 2 and the minimum value is
f(0,0) =0.
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Example 14.8.4. Find the points on the sphere x> + y* + z> = 4 that are closest to and farthest
from the point (3,1, —1)

Proof. Let f(x,y,2) = (x=3)>+(y—1)>+ (z+ 1) and g(x, y,2) = x*> + y* + z*. Then

Vf=Q(x-3),2(y-1),2(z+ 1)) and Vg = (2x,2y,22).

Consider
2x— 6 =212x 1-Dx=3 (D)
{Vf:/lVg - 2y —2 =21y N 1-Dy=1 2)
g(x,y,2) =4 2z+ 1 =24z 1-Dz=-1 3)
X+y+2=4 2xz2+2yz+xy =12 4

Clearly, A # 1, x # 0, y # 0 and z # 0. Consider

%2£=3:>x:3y and %z}»}é:—lzz:—y.
By (4), we have
Gy +y + ()P =4 oy =t
Vit
Then
6 2 2 6 2 2 \\§SSS

[1]]
[1]

X ;l
i
’I’ I/]]

) or

(-x’yaz):( s s (_ s ) )
VIT Vi1 V11 VIT V1T Vil
Taking these two poinits into f(x,y,z) the closest

2 2
point 18 (—, ,———) and the farthest point is (.L-D
6 V211 V211 V1l

TR ]

Vi
7
i
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Remark. In the example, the line passes through the origin and the point (3, 1, —1) has para-
metric equation x = 3¢, y = t and z = —¢. The line intersection the sphere x> + y* + z> = 4 when

2
t= iﬁ. Then we can also solve the closest and the farthest points.

a Two Constraints

Find the maximum and minimum values of f(x, y, z) subject to two constraints g(x,y,z) = k
and h(x,y,z7) = c.

Let C be the intersection of the two level surfaces
g(x,y,z) = k and h(x,y,z) = c¢. Find P(xo,yo,20) € C
such that f(xy, yo, z0) ahs extreme value along C.

To find the level surface S = {(x,y,2) | f(x,y,2) = M}
which tangnet to C. Then , at the intersection of C and

S,Vf L C. We have

Vf(x0,¥0,20) = AVg(x0, yo, 20) + uVh(xo, yo, 20)-

g=k

Example 14.8.5. Find the maximum value of the function f(x,y,z) = x + 2y + 3z on the curve
of intersection of the plane x — y + z = 1 and the cylinder x* +y* = 1.

Proof. Let g(x,y,z) = x —y+zand h(x,y,z) = x> + y* Then
Vi=(1,2,3), Va=(l,—1,1y and Vh=(2x,2y,0).

Consider
A1=3
(1,2,3) = A1, -1, 1) + u(2x, 2y, 0) 1 =4+ 2ux 1
x—y+z=1 =S¢ 2==A+2uy = x__s/;
¥ +yP=1 () 3=21 _
Y=o
u

Taking into (*), we have u = + . Hence,

*[@
O

2 5 7 2 5 7
s = s ’1 ’ ,1_
T T T Ve Ve

Therefore, the maximum value of f is 3 + V29.

).

Homework 14.8. 5, 10, 14, 20, 21, 23, 25, 29, 33, 39, 47, 56
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In the present chapter, we will extend the idea of a definite integral to double or triple
integrals of functions of two or three variables.

15.1 Double Integrals over Rectangles

Recall: Compute the area under the graph of a single variable function y = f(x) over [a, b]

b —
where f(x) > 0. Dividing [a, b] into n subintervals [x;_;, 7] of equal width Ax = 2-4 where
n

a=xpg<x3<x<---<x,=b.

The Riemann sum is

b X

n b _
I /{ i }\ Zf(x;‘)Ax where Ax = na
| T T i=1
| st B N
| T 8 S
| NI I fe) { : We define the definite integral
i ]

{0 [ A : ,,
I[ % % BN i L T f Fx)dx = lim )" f(x))ax

% y a B

provided the limit exists.
Q Volumes and Double Integrals

243
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Consider a function f(x,y) of two variables defined on a closed rectangle
R =[a,b] x[c,d] = {(x,y) €R* [a<x<b, c<y<d].

Suppose that f(x,y) > 0. The graph of f is a surface with equation z = f(x,y). Let S be the
solid that lies above R and under the graph of f, that is,

S ={(xy2 eR? ‘ 0<z<f(xy), (x,y) €R}.

To find the volume of S. Taking a partition P of R

S

Q

A=Xg <X <Xp<--<Xp=b, Ax;=x;—xi_1 =

m

N

o

c=yo<y1<y2<:<y,=d, Ay;=y;—yj1=

S

Let R;; = [xi-1,xi] X [yj-1,y;] and AA = AA;; = Ax;Ay; = the area of R;;. Let (x;‘j,y;.*j) be a
sample point in R;;.

R;; (% ¥))

o al= |~ |- Al B O O P BT R

|
| | 1 1 1
0 a X X Xioy X

st

Dividing R into subrectangles

The volume of the solid under the graph of f over R;; is approximated by volume of the
rectangular box with base AA;; and height f(x;;, y;;) whose volume is f(x;;,y;;)AA;;. Then the
approximation to the total volume of S is

n

V= Z Z f(x};,y;)aA;;  (double Riemann Sum)

i=1 j=1




15.1. DOUBLE INTEGRALS OVER RECTANGLES 245

Note. (1) The approximation becomes better as m and n become larger. We expect that

V= ml}g}m i i f(x?j’y?j)AA-

i=1 j=1

(2) The double limit is that we can make the double sum as close as we like to the volume V

[for any choice of (x;, y;,) in R;;] by taking m and n sufficiently large.
Definition 15.1.1. Let f be a function defined on a rectangle R = [a, b] X [c, d].
(1) The “double integral” of f over R is

[ reman= tim 1 e o4
R SR
if the limit exists.

(2) A function f is called “integrable” over R if the above limit exists.

Definition 15.1.2. (Precise Definition) The limit L in the equation means that for every
e > 0 there exists an integer N such that

‘L - i Zn: f(xfj,yfj)AA’ <eg

i=1 j=1

for all m,n > N and for any choice of sample points (x;;, y;;) € R;;. Denote the number L by

fj[;f(x, y) dA.

Remark. (1) If f is continuous on R, then f is integrable over R.

(2) If f is integrable over R, then f is “almost” continuous on R (not too discontinuous).

(3) If fis bounded on R and continuous there except on a finite number of smooth curves, then
f is integrable over R.

m Volume

Definition 15.1.3. If f(x,y) > 0O, then the volume V of the solid that lies above the rectangle R

and below the surface z = f(x,y) is
V= fff(x,y) dA.
R
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Example 15.1.4. Estimate the volume of the solid that lies above the square R = [0, 2] x [0, 2]
and below the elliptic paraboloid z = 16 — x> —2y%. Devide R into four equal squares and choose
the sample point to be the upper right corner of eahc R;;. Sketch the solid and the approximating
rectangular boxes.

Proof. Setm=n=2and Ax = %% = 1 and Ay = 5% = 1. We have AA = Axay = 1.

(2,2)

1 (2,1)

The volume is approximated by

2 2
DU fiyyaa

i=1 j=1
f(,DAA + f(1,2)AA + f(2, 1)AA + f(2,2)AA
(13+7+10+4)x 1 = 34.

Vv

X

O

Note. As m and n becomes larger, the approximation becomes better. The exact volume of the
solid is 48.

~

(@Qm=n=4,V=~415 (b)ym=n=8,V=~44.875 (c)m=n=16,V~ 46.46875

The Riemann sum approximation volume under z = 16 — x* — 2y* become more accurate as m and # increase.

Example 15.1.5. If R = [-1, 1] X [-2, 2], evaluate the integral

fmedA
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Proof. Compute the integral by interpreting it as a volume.

Letz = V1 —x2 Tehn x> + z2 = 1 and z > 0. The
solid S lies below the circular cylinder x* + z* = 1
and the double integral is equal to the volume of S.
That is,

1
ff \/1—x2dA:§n(1)2><r=2n.
R

(1,0,0) 0,2,0) Y

 The Midpoint Rule (for Double Integrals)

Xi—1 + X;

Choose the sample points (xjj, y;.kj) as the midpoints in R;;. That is, x;-kj = > = X; and
- + .

[[rwnan~y Y rspma

i=1 j=1

Example 15.1.6. Use the Midpoint Rule with m = n = 2 to estimate the value of the integral

ff(x—3y2) dA  where R=10,2]x[1,2].
R

Proof.
The midpoints are ¥ = 1, % = 2,5 = 2 and , = 7, and
AA = Axay x 3 = 1. The approximation of the double
4 integral is
2 2.2) ) Shu 2
R R ffR(x—3y)dA~;;f(xi,yj) AA  where £(x,y) = x — 3y
21 * R * Ry,
| ' 15 17 35 37
| | = (== - L 22 > 7
| : f(2, 4)AA+f(2, 4)AA+f(2,4)AA+f(2,4)AA
| | .
67 139 51 123 1
0 2 x  _ 2t _ =7 _ 2 _ e 2
1 _[(9516)+( i6) (=76 + (=551 %3
= -2 =-11875.
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Number of | Midpoint Rule '
subrectangles | approximation Note. (1) The exact value of the double inte-
gral is —12.

1 -11.5000

4 -11.8750 (2) f(x,y) is not always positive. The double

16 _11.9687 integral is not the volume.
64 -11.9922 (3) As m and n become larger, the approxima-
256 -11.9980 tion becomes better.

1024 -11.9995

O Iterated Integrals

It is usually difficult to evaluate single integrals directly from the definition. Recall that for
a single variable function f(x), we use the Fundamental Theorem of Calculus to evaluate the

b
integral f f(x) dx.
Question: How to evaluate a double integral?

Suppose that f is a function of two variables that is integrable on R = [a, b] X [c, d].

d
e The integral f f(x,y) dy means that x is held fixed

and f(x,y)is iétegrated with respect to y from y = ¢ to
y=d.

e The procedure is called “partial integration with re-
specttoy”.

X

d
Note. The integral f f(x,y) dy is a number that depends on the value of x. Define

i
AGx) = f oy dy.

If We integrate the function A(x) with repsect to x from x = a to x = b.

b b
fA(x) dx f [ff(x,y) dy}dx
‘ ab z;

f f f(x,y) dydx.

The last integral is called the “iterated integral”.



15.1. DOUBLE INTEGRALS OVER RECTANGLES

Simlarly we can also consider the iterated integral

b d b
f [ renaxty= "] [ s axas

means that fixing each y € [c, d] and integrating the func-
tion f with respect to x from x = a to x = b. After that,
integrating the resulting function of y with respect to y
fromy=ctoy=d.

Example 15.1.7. (a)

I
5—
(95
Q] —
><
3]
<
58]

3 2
f f x%y dydx
o Ji

(b)

2 - 2
fl[%x3yx:2}dy=9f1ydy

B 92’2_27
- LT

2 M3
f f x*y dxdy
1 Jo

249

Remark. (1) In this example, the two iterated integrals are equal under the exchange of the

order of integrations.

(2) In general cases, the two iterated integrals

b b
fff(x,y) dydx and fdf f(x,y) dxdy

may not be equal.

Question: When are the two iterated integrals equal to each other? How to evaluate the double

integral f f f(x,y) dA?
R

a The Fubini’s Theorem

Theorem 15.1.8. If f is continuous on R = [a, b] X [c,d], then

b i b
f f Fry) dA = f f FCx,y) dydx = f f F(x,y) dxdy.
R a c c a

More generally, the equalities are still ture if we assume that f is bounded on R, f is discontin-

uous only on a finite number of smooth curves, and the iterated integrals exists.



250 CHAPTER 15. MULTIPLE INTEGRALS

Intuition: If f(x,y) > 0, the double integral f f f(x,y) dA is the volume V of the solid §
R
the lies above R and under the graph of f with equation z = f(x,y). On the other hand, the

function A(x) = f(x,y) dy is the area under the curve C whose equation is z = f(x,y),

where x is held coilstant and ¢ <y < d. Also, A(x) is the area of a cross-section of S in the
plane through x perpendicular to the x-axis.

In Section 5.2,

b b
fff(% VWdA=V = f A(x)dx = f ff(x, y) dydx.
R a a c

A similar argument, using cross-sections perpendicular to the y-axis, we have

b
ff f(x.y)dA = f f £(x.y) dxdy.
R c a

Example 15.1.9. Evaluate the double integral f f (x - 3y2) dA where R = [0,2] x [1,2].
R

Proof. Since f(x,y) = x — 3y? is continuous on R, by the Fubini’s Theorem,

2 2
x—3y"dA = ffx—?a * dydx 2
jfk g 0o Ji r %/% L R /\§
2 =2 s i .
3|7 X < N |
f [xy—y } dx ‘ ‘
0 y=1
2 1, )
| [x—ydxzix —7x}0

-12.

2 2 2
1

Hx—Sysz = ffx—3y2dxdy:f [—xz—S»xy2
R 1 Jo 12

2
2
fl [—6y2dy:2y—2y3}1:—12.

Also,

x=2

x=0 ] dy

Example 15.1.10. Evaluate f f ysin(xy) dA where = [1,2] x [0, 7].
R

Proof. Since f(x,y) = ysin(x,y) is continuous on R, by the Fubini’s Theorem,
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T 2
f f ysin(xy) dA f f ysin(xy) dxdy
R 0o Ji
" 1
[ Bi-emon 1

= - f cos(2y) —cosy dy
0

x=2

| s

[- % sin(2y) — siny]; =0

2 T
Note. If exchanging the order of the iterated integral, it is difficult to compute f f ysin(xy) dydx.
1 Jo

Example 15.1.11. Find the volume of the solid that is bounded by the elliptic paraboloid x> +
2y? + z = 16 the plane x = 2 and y = 2, and the three coordinate planes.

Proof. The domain of the integarl is R = [0, 2] % [0, 2].

Observe the graph of the paraboloid z = 16— x> —2y?
and the volume of the solid is

ff16—x2—2y2dA

R

2 M

ff16—x2—2y2dxdy l
0o Jo . I-z

2
88
[(% apa -
0o 3 =
48

Vv

m Special Case

Suppose f(x,y) = g(x)h(x) on R = [a, b] X [c, d]. By the Fubini’s Theorem,

b d b
[[ s aa f [ sonerasas = [ [ [ swono) aay
R ¢ a ¢ a ITI

as a constant when
b
f b [ [t d] dy
c a

integratingw.r.t x
a constant number

b i
f o(x) dx f h(y) dy.

Example 15.1.12. Evaluate f f sin xcosy dA where R = [0, 2] x [0, Z].
R
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Proof.

(STE]

%
ffsinxcosydA = f sinxdxf cosydy
R 0 0

Ix1=1.

0 Properties of Double Integrals

Theorem 15.1.13. Suppose that f(x,y) and g(x,y) are integrable over R and c is a constant.

(1) f fR FOny) £ glx.y) dA = f fR Fry) dA + f fR ¢(x,y) dA
2) f f ¢f(x,y) dA = ¢ f f FCx,y) dA.
R R

(3) If f(x,y) > g(x,V) for every (x,y) € R, then

fff(x’)’)dAfog(x,y) dA.
R R

Recall: Suppose that f(x) is a singe variable function on [a, b]. The average of f on [a, b] is
1 b
Javg = mfa f(x) dx.

Similarly, for a two variable function f(x,y) defined on R, we define the “average value” of

f onR by
1 f
avg — (X’ ) dA
f g A(R) 2 f y
where A(R) is the area of R.

Note. (1) If f(x,y) > 0, the equation

AR) X fong = f fR Flx,y) dA

says that the box with base R and height f,,, has the same volume as the solid that lies under
the graph of f.

O Average Value

(2) If z = f(x,y) describes a mountainous re-
gion and you chop off the tops of the moun-
tains at height f,,, then your can use them
to fill in the valleys so that the region be-
comes complete flat.

Homework 15.1. 11, 14, 15, 18, 21, 26, 29, 31, 34, 45, 47, 53, 55
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15.2 Double Integrals over General Regions

In Section 15.1, we have learned the double integrals over a rectanglur region R = [a, b] X [c, d].
In the present section, we consider the double integrals over general regions.

y

Let f(x,y) be defined on a general region D.

D
Question: How to use the techniques for double
integrals in Section 15.1 to find the double integrals
ff f(x,y) dA? 0 !
D )
Choose a rectangle R which contains D. Define »
R
f(x,y) if (x,y)e D D

Flxy) = { 0 if (x,y) € R\D.

Then F is a two variables function defined on R.

0 X

Definition 15.2.1. If F is integrable over R, then we define the “double integral of f over D” by

fff(x’)’)dAZI[F(x,y)dA.
D R

Remark. (1) This definition is reasonable since F(x, y) contributes nothing to the integral when
F(x,y) = 0 outside D.

(2) It doesn’t matter what rectangle R we use as long as it contains D.

(3) If f(x,y) = 0on D, f f f(x,y) dA is interpreted as the volume of the solid that lies above

D
D and under the surface z = f(x,y).

(4) F is likely to have discontinuities at the boundary points of D. If f is continuous on D and
boundary curve of D is “well-behaved”, then f f F(x,y) dA exists and hence f f f(x,y)dA
R D

exists.

V4 z

™, _graphof f

S

|

\\,,, /II

graph of F

m Double Integrals over general regions
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We will consider the double integrals over some nice regions.

Type I: Let D = {(x, y) } a<x<b gx)<y< gz(x)} where g; and g, are continuous on

[a, b].
! y=g:(x) g y=0(%) ! y=ga(x)
|
\ | [ \
[ | | [
l Y=g1(x) I { y=¢i(x) | y=ag1(x) 1
\
0 a p X 0 a b X 0 4 b X

Some type I regions

Choose a rectangle R = [a, b] X [c,d] containing D and let F(x,y) be the function defined as
above. Then

y=¢,(X)

" b dbe——
f f f(x,y)dA = f f F(x,y)dA "™ f fd F(x,y) dydx. \
D R a c

D
Since F(x,y) = 0if y < gi(x) ory > g2(x), \
d 22(x) g2(x) N I I y=g¢,x)]1
f F(x,y)dy = f F(x,y)dy = f(xy)dy 3 : L :
¢ g1®) g1®) “ !

Conclusion: If f is continuous on a Type I region D such that D = {(x, y) ‘ a<x<b, gi(x)<

y < gz(x)} then
b rga(x)
ff fx,y)dA = f f(x,y) dydx.
D a g1(x)

Type II: Let D = {(x, y) | c<y<d, h(y) < x< hz(y)} where h; and h, are continuous on

[c,d].
y y y
d *******
df——— I
x=hy(y) x =, (y) x = hy(y) D xX=hy(y) x=hy(y)

c

0 X Ch———
o S B Vg : A

Some type Il regions

Conclusion: If f is continuous on a Type II region D, then

d  rha(y)
[ rewan= [ [ s asay
D c hi(y)
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Example 15.2.2. Evaluate f f (x +2y) dA, where D is the region bounded by the parabolas
D

y=2x>andy =1+ x°.

Proof.

Find the intersection of y = 2x* and y = 1 + x°.

We have 2x*> = 1 + x? and hence x = +1. The

regionD:{(x,y)‘ -1<x<1,2x*<y< X
1 + x*}. The double integral

1 pled? \
ffx+2ydA ff X+ 2ydydx )
D -1 Jaw

1 142
f [+ N | dx v i

1 )7:2)(2

1
f Bt 2+ x+ 1dx 2 | X

1

32
15
O
Example 15.2.3.
z=x2+y?
Find the volume of the solid that lies under the
paraboloid z = x> + y? and above the region D
in the xy-plane bounded by the line y = 2x and
the parabola y = x°. —3 y=2x
Proof. Find the intersections of the line y = 2x and the parabola y = x*>. We have 2x = x* and

then x = 0 and 2.
(Solution 1) The Type I region D = {(x, y) } 0<x<2 x*<y< 2x} and the volume of the
region is

=2
v o= ff(x2+y2)dA ™3
D 2

y=x
2 2x
= ff x2+y2dydx D
0 x2
2 6
X 4 14 5 216 | ;
= —— X'+ —=—xdx=—. 0 1 2 x
fo 3 Y T3 T s

D as a type I region
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(Solution 2) The Type Il region D = {(x,y) | 0 <y <4, 1y < x < v/x} and the volume of the

region is

vV = f(x2+y2)dA

ff x* +y? dxdy

f‘ F 133d_216
. 3 7Y Ty T a5

x=zy

x=\ly

0 x

D as a type II region

Example 15.2.4. Evaluate f f xy dA, where D is teh region bounded by teh line y = x — 1 and

D
teh parabola y* = 2x + 6.

Proof. If D is expressed as Type I region, we should divide D into two subregions and the dou-

ble integral is

V2x+6
f f xy dA f f xy dydx
D V2x+6
V2x+6
+ f f xy dydx
-1 Jx-1

The iterated integrals are complicated.

We express D as Type Il region and the double integral is

y+1
f xy dxdy
—2

y’

([

y= \/EXT6

_3\\
><— (-1,-2)
y=—v [2x+6

(a) D as a type [ region

(b) D as a type 1l region

O
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Example 15.2.5. Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2,
x=2y,x=0andz=0.

z

(0,0,2)

x=2y x+2y+z=2

Proof. The plane x + 2y + z = 2 intersects xy-plane in the line x + 2y = 2. Then the region
D = {(x, y) | 0<x<1, %x <y<l- %x} and the volume of the tetrahedron is

1 pl-Lx
ffZ—x—ZydA = ff 2 —x—-2ydydx
D 0 1x

2

1, 1
= = -2x+1dy=-.
2f0x rrIAE3

1 pl
Example 15.2.6. Evaluate the iterated integral f f sin(y?) dydx.
0 X

Proof. The iterated integral is expressed as Type I case. We can check that the direct computa-
tion is difficult. Hence, we try to rewrite it as Type Il case

1 1 1 )
f f sin(y?) dydx f f sin(y?) dA = f f } sin(y?) dxdy
0 X D 0 0
1

1
= fysin(yz)dy:—(l—cosl).
0 2

Y y

y=1

1 /
D
y=x x=0| D
x=y
0 1 X 0 X
D as a type | region D as a type 1l region
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0 Properties of Double Integrals

Theorem 15.2.7. Let f(x,y) and g(x,y) be integrable over D and c be a constant.

w [ fD ey = gte)] da = || fD sy dax || fD ¢(x.y) dA.
2) f f ¢f(x.y) dA = ¢ f f f(xy) dA.
D D

(3) If f(x,y) > g(x,y) on D, then

fff(x,)’)dAszg(x,y)dA.
D D

(4) If D = D, U D, where Dy and D, don’t overlap except on their boundaries, then

f f Fr,y) dA = f f Fry) dA + f Fx,y) dA
D Dy D, D, D,

Note. The above equality is also true even if D; and

D, are not Type I or Type II. 0
.‘A -‘v
D,
D 5
0 \ 0 .\_
(a) D is neither type I nor type I1. (b) D = D1v Ds, Diis type I, D:is type 1.

(5) The area of the region D is equal to

0 /:
ffldA = A(D). —
D }1 )

Cylinder with base D and height 1
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(6) If m < f(x,y) < M forall (x,y) in D, then

mA(D) < ff f(x,y) dA < MA(D) «z=m
D 4

Example 15.2.8. Estimate f f " dA where D = {(x,y) ‘ 0<x*+)y* <4}
D

Proof. Since —1 < sinxcosy < 1, we have ¢! < esinxeosy < ol for all (x,y) € D. Then

4 .
_T[ = e—lA(D) < ff ESINCOsy JA < €A(D) = 4dre.
e D

Homework 15.2. 5, 10, 11, 14, 19, 23, 27, 32, 35, 38, 46, 56, 59, 61, 64, 67, 71, 74

15.3 Double Integrals in Polar Coordinates

So far, we can only evaluate the double integrals over rectangles, Type I or Type II regions.
Now, we want to evaluate the double integrals over the region R which is described using polar
coordinates

y y
vty =1 2+ yri=4
R
R
0 X
\ >
Ol x24y2=1 !
@ R={r,0)|0=sr<1,0<s60<2w} bG)YR={r,0)|1=sr<2,0s0< 7}

Recall: The Change of the variables between Carte- .
sian coordinates (x, y) and polar coordinates (r, 6).

P(r,0) =P(x,y)

polar coordinates (r,0) «—  rectangular coordinates (x, y

P = x2+y2, x=rcos6f, y=rsind.

@] X X

Compute the double integral fff(x, y) dA where R = {(r, 0) } a<r<b, a<6< ,8} isa
R

polar rectangle.
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6=6;
\\\\ ?: 0; 1
=1 ) \
P r=>o Rij WAV & TR
R
A0
/ \ // A
/ 7757
/ r=a 0=« ////‘\#//// r=r;
t Uy 0 S
/B /// //////////// r=ri—
>er i
ol 0
Polar rectangle Dividing R into polar subrectangles
e Divide [a, b] into m subintervals and divide [, ] into n subintervals a = ry < r; < -+ <
b—a B—a
rm=banda =6y <60, <---<6,=Lwhere Ar = and AO = .
m n

o LetR;={(r6) | ri1 <r<r, ;1 <6<6;}. Choose r; = 3(riy +r;) and 6% = 3(6;-1 +6)).
The area of R;; is

1, 1
AAij: —r-AH—

1 1
57 Eriz_lAH = E(r? — 17 )AG = E(rl- + ris) (1 — ri) A0 = 1 ArAG.

m Change of Areas between Polar Transformation

(I",H) - (Xa}I)
0
dA
0, de}/ <
P dr
do — ////
61' ////I rdo
dr 4///
z
= ]
’11 ’1 0

Define g(r,6) = rf(cos 8, r sin §). Then the above Riemann Sum is

g(ri, 0,)Arng.

m n
i=1

=
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Then

ffRf(x,y) dA

hm ZZf(r cosej, rising; )r ArAG

ll]l

Il
SP—‘
S e
18
gt
g
=
=,
L
-
>
D

B b
f f g(r,0) drdo

(Iﬁ le
f f f(rcos@,rsinO)r drdo.

0 Change to Polar Coordinates in a Double Integral

If f is continuous on a polar rectangle R given by 0 < a < r < b, @ < 6 < 8 where

0 <B—a < 2n, then
B b
fff(x,y) dA:f f f(rcos@,rsin@)r drde.
R @ a

Example 15.3.1. Evaluate f (3x + 4y*) dA, where R is the region in the upper half-plane
R
bounded by the circles x* + y* = 1 and x* + y*> = 4.

Proof.
y
ff(3x+4y2)dA = ff(Srcos9+4r sin” 0)r C4yi=4
R .

= f [r cos 6 + r* sin 9} do B
0 r=1

= f7cos€+15sin29d9 ol .. X
0 x+y =1

= 1_2571, R={r0)|1=r<2,0<6<m}

Example 15.3.2. Evaluate the double integral

1 V1-x2
f f (x* +y?) dydx
-1Jo

Proof. The iterated integral is a double integral over the region

R={(xy|-1<x<1,0<y< VI-x}.
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1 y=+1-x?

To express R in polar coordinates,

R={(rn0)|0<6<m 0<r<l}.

The double integral is
1 Vi—2 T 1 T4 T
rtyr=1 1 n
(x2+y2)a’ydx:ffr2‘rdrd0:f — d@z—f do = —.
Il fo 0o Jo 0 [4 L:O 4 Jo 4

Example 15.3.3. Find the volume of the solid bounded by the plane z = 0 and the paraboloid
z=1-x*—y

Proof.
1(0 0,1)
The xy-plane intersects the paraboloid in the e
circle ¥’ +y* = 1. LetR = {(x,y) | ¥*+)* < 1}. L
In polar coordinates, D is given by ",,/' ; N
/ O - \\ /3
D={(r0)|0<r<1,0<6<2nx}. & 3y
xu — y
The volume of the solid is
21 1 P
V= ff(l —xz—yz)dA:f f(l —)rdrdf = .
D o Jo 2
O
Note. If using rectangular coordinates,
1 V1-x2
V:ff(l—xz—yz)dA:ff (1 = x* —y*) dydx.
D -1 J-Vi-x2
It is difficult to find f (1- 22?2 dx.
Q Polar Region
If f 1s continuous on a polar region of the form e p p =il
D={(r0)|a<0<B, h®) <r<h®}, .
then
B X =«
B (i) > m\
ff f(x,y)dA = f f(f cos@,rsinf)rdrde. @ r=h(9)
D a Jhi(0)

D={r 0)|a<s0<p, h0)<r=<hy0)}
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In particular, the area of the region D bounde by 6 = @, 6 = § and r = h(6) is

A(D)

fa Lh®) a

()
ffldA f f rdrdf

Example 15.3.4. Find the area enclosed by one loop of the four-leaved rose r = cos 26.

Proof.

The region enclosed by one loop of the four-leaved rose is

D:{(r,Q)‘ —gs@sg,OSrSCOSZH}.

The area of the region is

A(D)

= E[ cos 29d9—4

ENEY

®| X

cos 26
ff 1dA = f f rdrdf
%{

ESE]

[9 + éll sin 49} .

1

r=-cos 26 0=

Example 15.3.5. Find teh volume of the solid that lies under the paraboloid z = x> + y*, above
the xy-plane, and inside the cylinder x> + y* = 2x.

Proof.

The solid lies above the disk

y*—2x < 0} with boundary x* + y*

lar coordinate, the circle bec

D = {(x,y) } X+
= 2x. In po-
omes 2 = 2rcos 6

and this implies r = 2 cos 6. We have

p={ro)|-F<6<%,

The volume of the solid is

2
3
= -

2

721

ffx2+y2dA:f

D —
? 2 1 +cos26\2

4 ‘0do =8 ———) db
[ eos [ (=)

0< rSZcosH}.

2 cos 6
f - rdrdd
0

¥ %
(=1 +y*=1
\
}/
- G \\
X&) y
y
(x—=1)2+y*=1
(or r=2cos 0)
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m|
Example 15.3.6. Evaluate f e dx.
Proof. Consider
(o) 2 (ee) (o) (o9
(f e dx) = (f e dx)(f e’ dy) :f e (@) dxdy
= lim ff e () where D, = {(x, y) } ¥ +y' < az}
a— 00 Da
21 a 5
= lim f e’ -rdrdf
a—oo O 0
2n 1 Va
u=r") = lim —f e dudf = lim (1 — e V%)
a—c Jq 2 0 a—00
= T
Hence, f e dx = Vr. i

Homework 15.3. 10, 13, 15, 18, 22, 26, 33, 36, 41, 49

15.4 Applications of Double Integrals

(Skip)

Homework 15.4.

15.5 Surface Area

Recall: In Sec8.2, we study to find the surface area of a special type of surface - a surface of
revolution. In the present section, we compute the area of a surace with equation z = f(x,y),
the graph of a function of two variables.

Let f(x,y) be a function with continuous partial derivatives. Assume f(x,y) > 0 and
D = Dom(f) is a rectangle Let S be the graph of f which is a surface with equation z = f(x,y).
To find the area of § above D by following steps:
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(1) We divide D into small rectangles R;; with area
AA = AxAy. Let (x;,y;) be the corner of R;;
closest to the origin. Then the point P;; =

Pij((x:, ), f(xi,y))) lieson S .

(2) Let §;; be the part of S that lies above R;; with
area AS;; and T;; be the tangent plane to S at P;;.
Hence, it is an approximation of § near P;;. The
area AT;; of the part of this tangent plane that lies
directly above R;; satisfies

AS,‘J' = ATij

(3) The approximation to the total area of S is

n

AS) = ZZAS,J ~ i AT},

i=1 j=1 i=1 j=1

Definition 15.5.1. The surface area of S is defined by
A(S) = lim Z Z AT;;.
A=)

m To find ATij

Let a;; and b;; be the vectors that start at P;; and lie along the side of the parallelogram with
area AT;;. Then

ATl'j =

a;; X bij‘-

Note. The partial derivatives f.(x;,y;) and f,(x;,y;) are the slopes of the tangent lines through
P;;j in the directions of a and b.

Hence,
a; = Axi+ filx,y)axk
b = Ayj+ filxi,y)ayk
We have
i J k
a;xb; = |[ax 0 filx,y)Aax
0 ay flxiy)oy

_fx(xi’ yj)AXAy i— fy(x,-,yj)Axij + AXAy k
A[_fx(xi’y]‘)i_fy(xi,yj)j+k} ¥
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Then

ATy = |a;; x byj| = \/[fx(xlay] } [f(xy) } +1 AA.

Therefore,

AS) = ml}gleZAT = 1}1r3m22\a,]xb,,}

i=1 j=1 i=1 j=1

im S ) + () + 12 o

i=1 j=1

ff \/ [fe )]’ + [fi(an)]” + 1dA.

Theorem 15.5.2. The area of the surface with equation z = f(x,y) for (x,y) € D, where f, and

fy are continuous, is
as)= | f VI + [fGon)” + 1dA.

Note. In Section 8.1, the arc length formula is

:f\/u(%)zdx

Example 15.5.3. Find teh surface area of the part of the surface z = x* + 2y that lies above the
triangular region 7 in the xy-plane with vetices (0, 0), (1,0) and (1, 1).

Z

(L1

)7 = '\‘

0.0) 1,0 x 0 &;

Proof. The triangular region is T = {(x, y) {O <x<1,0<y< x}. Let f(x,y) = x* +2y. Then
fi(x,y) = 2x and f,(x,y) = 2. The surface area is

ff (2x)2+22+1dA:f V4x2 +5dA
T T
1 X
f f Vax2 + 5 dydx
0o Jo

A(S)

1
1
f xVa4x2 +5dx = E(27—5\/5).
0
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Example 15.5.4. Find the area of the part of the paraboloid z = x> + y? that lies under the plane
z=9.

Proof. The plane z = 9 intersects the paraboloid in the circle x> + y* = 9, z = 9. Let
D ={(x,y) | ¥ +y* <9} and let f(x,y) = x* + y. Then f.(x,y) = 2x and f,(x,y) = 2y.

The surface area is

f f V(2x)2 +(2y)? + 1 dA
D
27 3
f f V4r2 +1-rdrdf
0 0

%(37 V37 - 1),

A(S)

Homework 15.5. 5, 8, 11, 14, 17, 25

15.6 Triple Integrals
Let f(x,y,z) be defined on a rectangular box B = [a, b] X [c, d] X [r, s].

m The Triple integral of f over B

Divide B into sub-boxes by

a=xy<x3<x<---<x;,=>b withequal width Ax =
c=yg<y; <y) <---<y,=>b withequal width Ay =
r=z0<z1<z3<---<z,=s withequal width Az =

Bijx = [xi-1, 5] X [yj—1, ;] X [2k-1, %]

Each sub-box has volume AV = AxAyAz. The “triple Riemann sum” is

 m
Z Z f(x?jk’y;ﬁjk’zjjk)AV

=1 j=1 k=1

* * * . .
where (x;;, ¥i;»2;3) € Bij 1s a sample point.
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Definition 15.6.1. The “triple integral of f over B” is

¢ m n
ff f(xy,z)dV— 11 OOZZ f zjk’y?jk’zfjk)AV
=1 j=1 k=1

if this limit exists.

Remark. (1) If f is continuous on B, then the triple integral exists.

(2) The limit exists for arbitrary choice of the sample points. For the convenience, we can
choose Xjik = Xis Yijk = Y and Zijk = Zk- Then

{ m n
ff fley.2)dV = lim ZZ £ (%3, 26) V.
=1 j=1 k=1

0 Fubini’s Theorem for Triple Integrals

Theorem 15.6.2. (Fubini’s Theorem) If f is continuous on the rectangular box B = [a, b] X

[c,d] X [r, 5], then
s d b
ff fx,y,2)dV = f f f f(x,y,z2) dxdydz.
B r c a

d b
Note. The iterated integral * f f f f(x,y,7) dxdydz” means that when taking the integra-

r C a
tions from inner to outer. Firstly, fix y and z and integrating f with respect to x. After taking
the values of lower and upper limit for x, fixing z and integrating with respect to y. Then, after
taking the values of lower and upper limits for y, integrating with respect to z.

Remark. If f is continuous on B, we can exchange the order of integration. For example,

s b
ff f,y,2)dv = f f ff(x, v, z) dydxdz.
B r a c

and other 5 cases are equal.

Example 15.6.3. Evaluate the triple integral f f f xyz® dV where B is the rectangular box B =
B
[0, 1] x [-1,2] x [0, 3].

Proof. Since f(x,y,z) = xyz* is continuous on B, by the Fubini’s Theorem,

[[[ozav = [ [ [ o tsasa
:ff—m
[ 5
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O Triple Integral over a General Bounded Region

Idea: Suppose that f(x,y,z) is defined on a bounded region E. Choose a rectangular box
B = [a,b] X [c,d] X [r, s] such that E C B. Define F(x,y,z) on B by

_J fCGoy,2) if (x,y,2) €E
Flxy,2) = { 0 if (x,y,7) € B\E.

Define
ff FGxy,2)dV = ff f F(x,y,2) dV
E B

Remark. The integral exists if f is continuous on E and the boundary of E is “reasonably
smooth”.

m Different Types of Regions

From now on, we only consider those functions which are continuous on certain simple
types of regions.

Type I: E = {(x,y,2) | (x,y) € D, u;(x,y) < z < us(x,y)} where D is the projection of E onto
the xy-plane.

us (x,y)
Fix (x,y) € D. Let k(x,y) = f f(x,y,2) dz. Then k is

uy(x.y)

f f k(x,y) dA
D
U2 (x.y)
f f [ f f(x.y.2) dz]dA.
D U(x,y)

In particular, if D = {(x, y) ‘ a<x<bh, gi(x)<y< gz(x)},

then
ffff(x,y,z) av ff k(x,y) dA
E D
b rga(x)
[ [ ke dyax ) |
a Jgi(x) & Y=ag1x) D =g () Y

b 82(%) 12(x.y) A type I solid region where the repjection
f(_x, y, Z) dZdyd.X D is a type | plane region
a

81(x) ui(x,y)

continuous on D.

ff f(x,y,2)dV
E
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Similarly, if D = {(x,y) | ¢ <y < d, hi(y) < x < ()}, e
then

zZ=1u(x, y)

1 x=MIy(y)
y

ho(x)  ua(xy) -
ff f(x,y,z)dV:ff f f(x,y,z) dzdxdy. x :
E ¢ Inw Juley = ty)

A type I solid region with a type
II projection

Example 15.6.4. Evaluate f f zdV, where E is the solid tetrahedron bounded by the four

E
planes x =0,y =0,z=0and x+y+z=1.

Proof. The region D is the projection of the solid E onto xy-plane. Then
D={(xy)]0<x<1,0<y<1-x}

The lower boundary of the tetrahedron is z = 0 and the upper boundary is the plane x+y+z = 1.
Then

E = {(xy2|0<z<1-x-y (x,y) €D}
{(ty,2|0<x<1,0<y<l-x0<z<l-x-yh

The triple integral over E is

Iz

1 1-x 1-x-y
f f f zdzdydx
0 Jo 0
1 1 1-x
—f f (1 - x—v)* dydx
2 Jo Jo

1 (! 1
- 1—x)P dx=—.
6fo( *)"dx 24
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z varies from 0 to xy y varies from 0 to x x varies from 0 to 1.

while x and y are constant. while x is constant.

Type 1I:

E={(xy2|02 €D, mi(y,;2) <x<ur(y,2)}
where D is the projection of E onto the yz-
plane. Then

12 (y,2) \
ff f(x,y,2)dV = ff [f f(x,9,2) dx} dA. Nx=uy00,2)
E D uy,z) z

Type III: = n,2)
‘\
E:{(x,y’Z)‘(va)ED, ul(x’Z)SySMZ(xaz)} 2 " E ]
where D is the projection of E onto the xz- "~ /
0

plane. Then \

/ \ y=1u(x, z) "

1> (x,2) . !

ff f(x,y,z)dV:ff[f f(x,y,z)dy} dA.
E D ucx,z)

Example 15.6.5.

Evaluate f f f v/ x2 + 72 dV, where E is the re-
E

gion bounded by the paraboloid y = x* + z? and
the plane y = 4.

Region of integration

Proof. Solution 1:
D, is the projection of E onto xy-plane. For (x,y,z) € E, (x,y) € D and —\/y—x* < z <

\/y — x%. Then
E={(xy,2)] -2<x<2, X’ <y<4, —\y-2<z< y-x}.
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y=x*+z*
\
" D,
0 . Ll b y = x?
E 4 y
X

Region of integration Projection onto the xy-plane

2 Vy—x2
ﬂf X>+z2dV = f ff vV x? + 72 dzdydx.
E 2 Jx2 J-\ly-x?

The above integral is difficult to evaluate.

The integral is

Solution 2:
Ds is the projection of E onto xz-plane.

Dy={(x2)| —2<x<2, - V4-R2<z< V4-x2},
For (x,y,2) € E, (x,7) € D3 and x> + 7 <y < 4. Then

E:{(x,y,z)| —2<x<2, - V4—-x2<z7< V4—-x2, x2+z2$ys4}.

()
o

N
7

Region of integration Projection onto the xz-plane

2 V42
f f f VX2 + 22 dydzdx
2 J-Va-2 Jx242
2 VA2
f f (4-x* -2V + 22 dzdx
2 Jd-

The integral is

1] v

N
x=rcosé e )
. = @ —-r)Vr2 - rdrde
z=rsinf o Jo
128
= —n.
15

O

Remark. From the above example, formally, an triple integral may have several expressions.
Some are easy to compute but some are difficult.
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1 x> Y
Example 15.6.6. Express the iterated integral f f f f(x,y,2) dzdydx as a triple integral
0. Jo Jo

and then rewrite it as an iterated integral in a different order, integrating first with respect to x

then z, and then y.
1 X2 Y
f f f f(x,y,2) dzdydx = ff f(x,y,2)dV
o Jo Jo E

where £ = {(x,7,2) |0<x<, 0<y<x% 0<z<y}.

Proof.

X 0 1 y

x=1

Projection of £ The solid £

1 1y ol
f f f f(x,y,2) dxdA = f f f f(x,y,2) dxdzdy
D, J 5 o Jo Jw
1 2 pl
ff f(x,y,2) dydA:ff ff(x,y,z) dydzdx.
D3 0 0 Z

Q Applications of Triple Integrals

ff f(x,y,2)dV
E

If f(x,y,2) > 0, it is difficult to visualize the triple integral f f f(x,y,2)dV.
E

m Volume
Let f(x,y,z) = 1 for all points in E. Then the“volume” of E is

vier= [[[ 1

Example 15.6.7. Find the volume of the tetrahedron 7" bounded by the planes x + 2y + z = 2,
x=2y,x=0and z=0.

0,0,2)

x+2y=2
1+ (ory=1— x/2)
é
=2y /,\+2_\'+::2
R - (1-3)

i /

0 0,1,0) y=x/2

. Y
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Proof. Let D be the projection of 7' onto the xy-plane. Then

D={(xy|0<x<]1, gﬁyél—g}.

For (x,y,z) e T, (x,y) e Dand 0 < 7z <2 — x —2y. Then

T={(xy2]0<x<l, S<y<1-50<2<2-x-2}.

The volume of T is

1 1-35 2—x—2y 1
V(T):fffldvsz f | dadydx = x.
T 0o Ji Jo 3

a Application (the center of mass)

(Skip)

Homework 15.6. 6, 8, 11, 14, 17, 20, 23, 27(a), 3136, 37, 41, 57

15.7 Triple Integrals in Cylindrical Coordinates

"
Recall : In plane geometry, )

P(r,0) = P(x,y)
Cartesian Coordinate «— Polar Coordinate

(x,y) — (r,0)

{xzrcos@ {;’2:162+y2
: = y
y=rsinf tan6 = =

a Cylindrical Coordinates

Let P be a point in three dimensional space. Regard the Cartesian coordinate (x,y, z) as
( (xy) .2
| M—

convert
to polar
coordinate
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P(p, 0, ¢)

Write P(r, 6, z) where r ane 6 are polar coordi-
nates of the projection of P onto xy-plane and z
is the directed distance from the xy-plane to P.

The spherical coordinates of a point

rectangular coordinates «— cylindrical coordintes

(x,y,2) — (r,0,2)
X =rcosf rr=x*+y?
y =rsiné = tand = 2

X
=2 =2

Example 15.7.1.

2
(a) Plot the point with cylindrical coordinates (3, ?ﬂ, 1) and
7 e
[

fidn its rectangular coordinates

2 2
Proof. Consider x = 2 cos ?ﬂ =—land y = 2sin ?ﬂ =3
andz = 1. |

(b) Find cylindrical coordinates of the point with rectangular
coordinates (3, -3, =7).

Proof. In the cylindrical coordinates, r = +/(3)% + (-3)> =

7
342, tan 6 = 3 =—-landz=-7. Then 0 = Zn+2nﬂand

7
(r.0,2) = (3 V2, Zﬂ 7). O
Note.

Cylindrical coordinates are useful in problems [
that involves symmetry about an axis, andthe z-

axis is chosen to coincide with this axis of sym-
metry. For example, consider the circular cylin-
der

Cartesian equation:  x“ +y~ =c¢
Cylindrical equation: r = c.

r = ¢, a cylinder
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The graph of the equation 8 = c is a vertical plane through the origin and the graph of the equa-
tion z = c is a horizontal plane.

= ¢, a vertical plane z = ¢, a horizontal plane

Example 15.7.2. Describe the surface whose equation in cylindrical coordinates is z = r.

Proof.

e The coordinate z is the height of the point on
the surface. Hence, from the equation z = r,
each point on the surface has height » which
is the distance from the point to the z-axis.

e The coordinate 6 does not appear (since it can
vary from O to 2r).

e The horizontal trace in the plane z = k (k > 0)
is a circle of radius k.

e The rectangular coordinates 7> = x> = x>+)°.

Z=r,acone
]
Q Triple Integrals with Cylindrical Coordinates
Let E be a Type I region
Z=1,(X, )
E = {(x, v, 2) !(x, V) €D, ui(x,u) <z<ux, y)} \ff/
where D = {(r,0) | @ < 6 < B, hy() < r < (0)}. The
triple integral over E is :\r 4
. : :u\,(.\‘. \'|:
[ | |

ff f(x,y,2)dV
E

ho (60)
f f(rcos@,rsinb, z)r dzdrdf. |
a Jhi(6)

1 (X,y) z
r=h(6) o
fx,y, z) dA > N
ﬂ «fl;u(xy) L~ g A : )



15.7. TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 277

Remark.

Convert a triple integral from rectangular to
cylindrical coordinates. The appropriate limits
of integration for x,y and z are replaced by z, r
and 6. The infinitesimal volume dV is converted
from

dxdydz to rdzdrd®. rde

Volume element in cylindrical
coordinates: dV =r dz dr d@

Example 15.7.3.

Evaluate f f f x> dV, where E is the solid that
E

lies under the paraboloid z = 4 — x> — y* and
above the xy-plane.

Proof. Observe that E is symmetric about the z-axis, we use cylindrical coordinates. Moreover,
the paraboloid z — 4 — x> — y? = 4 — (x* + y?) is easily expressed in cylindrical coordinates as
z=4 -1

The paraboloid intersects the xy-plane in the circle r* = 4or, equivalently, r = 2. We have
the projection of E onto the xy-]plane is the dist » < 2. The region E is

{(n0,2)]0<0<2r,0<r<2,0<z<4-7"}.

z

—f —f
> e > T — = T
y y
x/ x/ 4
z varies from 0 to 4 = r? r varies from 0 to 2 while ¢ varies from 0 to 2.
while r and 6 are constant. ¢ is constant.

and the triple integral is
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27 2 -2
f f f (rcos ) r dzdrdd
o Jo Jo
27 2
f f (r’ cos® )(4 — r*) drdf
0o Jo

21

2
= cos> 0 do f 4r* - r) dr

0

[[[#av

1 1 I (2
> [0+ 3 sm20} [r - grﬂo
l(27r)(16 - —) = E7r
2
O

Example 15.7.4. A solid E lies within the cylinder x> + y> = 1 to the right of the xz-plane,
below the plane z = 4 and above the paraboloid z = 1 — x*> — y>. The density at any point is
paoportional to its distance from the axis of the cylinder. Find the mass of E.

Proof.

In cylindrical coordinates, the cylinder is » = 1 and the 7
paraboloid is z = 1 — r*. The solid is

z=4
(0,0,4) |
|

E={(n62|0<6<m 0<sr<1, 1-r<z<4}.
The density function is
f(x,y,2) = k+/x* + y* = kr.

Thus, the mass is

T 1
ff f(x,y,2)dV = f f f kr - r dzdrd
E 0 Jo
" 6mk
ﬁ f(; kr? [4 -r )] drdf = <

Example 15.7.5. Evaluate f f

M

f (x2 +y%) dzdydx.

Proof.

0
Il

{(y,2)]| —2<x<2, - VA-x2<y< VA—x2, /2 +)2<z<2}

f(r,@,z)|0$9§27r,0§r§2,rSZSZ}.
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The triple integral is :
z=72
2 ~VERZ 2 -
f f f (x* +y?) dzdydx 5
-2 J-Nam2 ey ‘

ff (2 + ) dv i
. i
o 2 2

1
fffrz-rdzdrdezjﬂ.
0 0 r 5 X

Homework 15.7. 9, 11, 17, 19, 23, 26, 31

NS}

N}
<

15.8 Triple Integrals in Spherical Coordinates

Recall:
.\‘
In two dimensions, P(r.60)=P(x.)
Cartensian Coordinates «— Polar Coordinates 4 y
(X, y) — (ra 9) < -
0 Y Y

Question: How about in three dimensions?

In the previous section, we learned the cylindrical coordinate,
(x,y,Z) — (r9 Q’Z)'

Question: Is there any other coordinate system?

0 Spherical Coordinates

_Let P be a point in space, Q be the projection of P onto xy-plane and 0Q be the projection
of OP onto xy-plane.

Denote » P(p, 6, ¢)

o Letp = |ﬁ{ be the distance from the origin to P.

e Let 6 be the angle between the positive x-axis and the
line segment OQ. (the same angle as in cylindrical co-
ordinateds)

e Let ¢ be the angle between the positive z-axis and the
line segment OP.

The spherical coordinates of a point
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Note. In the above variables, we set
p>0, 0<6<2r, 0<¢p<nm.

Remark. The spherical coordinate system is useful in problems where there is symmetry about
a point, and the origin is placed at the point. For example,

0<c<m/2 72 <o<ar

p=c, asphere 6= c, a half-plane ¢ = c, a half-cone

m Relationship between Rectangular and Spherical Coordinates

(x,y,2) «— (,60,9) N
\\ P(x,y,z)
P(p, 0,¢)
Z=pCcos¢
- = osin { x =rcosf
=psmg y =rsinf

\

x=psingcosh, y = psingsinb, z = pcos ¢, p* = x> +y*+7%. '

P'(x,y,0)

p o ¢
Example 15.8.1. The point (2, 5 g) is given in spherical coordinates. Plot the point and find
its rectangular coordinates.

Proof.
Considerp = /x> +y? + 72 = \/02 +(2V3)2 + (=22 = 4.
z =2 1 2n
cosp=="=—=—-—= = ¢=—
P 4 2 3 (2, /4, 7/3)
cosf = x =0 = 9:1%
o sin ¢ 2
—
Check that sinf = — = 1. Therefore, y
P sin ¢
n2n
0,0) =4, =, —).
(0, 0,¢) = ( ' 3)
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A Triple Integrals with Spherical Coordinates

Let E be a spherical wedge. Then

E={(p.0,¢)|a<p<bhb, a<0<pB c<p<d}

wherea > 0,0 < —-a <2r,0 <d - c < n. Evaluate ff f(x,y,2)dV.
E

e Divide E into small sub-spherical wedges by

b—-a
a=py<p1<---<pr=b, Np= 7
@=0y <O << =p s0=P—C

m

d-c
c=¢y<$p1<---<P,=d, 2=

n

e Consider the smaller spherical wedge E;j by
means of equally spaced spheres p = p;, half-
planes 6 = 6;, and half-cone ¢ = ¢;. Then E;j is
approximately a rectangular box with dimensions
Ap, piAg (arc of a circle with radius, p;, angle A¢)
and p; sin ¢, A8 (arc of a circle with radius p; sin ¢y,

angle A6). We have

Pi sin ¢/\. Al

r;=

AVij = (8p)(piad)(pi sin ¢ £0) = pi sin AP AOAS.

\r, = p; sindy

X

—
ri = p;sing;

(a) A spherical wedge (b) Side view

By the Mean Value Theorem,

AVij = P sin gpApAOAD

for some (p;, 6;, ¢¢) in E; . Then

4 m n
ff E Sy, dv ¢ ,%H,floo Z Z Z A C Ny

i=1 j=1 k=1

A

281

pi sin ¢y,

Af

r; =pising;

(©

/r,- A6 = p; sin ¢ AG

Top view

d B b
f f f f(p sin ¢ cos 6, p sin ¢ sin 6, p cos ¢)p2 sin ¢ dpdf@d¢.
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Note.

Convert a triple integral from rectangular coor-
dinates to spherical coordinates by

x=psingcosh, y=psingsind, z= pcosap.

The approximate limt of integration for x,y
and z are replaced with respect to p, 6 and ¢.
The infinitesimal volume dV is converted from
“dxdydz” to “p? sin ¢ dpdOd¢”.

Volume element in spherical
coordinates: dV = p?sin ¢ dpd6 d¢

Note. The integration formula can be extedede to more general spherical region such as

E={(0,6,¢)|a<88, c<¢p<d g1(6,¢)<p<gb¢)}

The triple integral formula becomes

B 8200.4)
ff f(x,y,2)dV = f f f(p sin ¢ cos 6, r sin ¢ sin 6, p cos ¢) p? sin ¢ dpd6de.
E c @

81(6,9)
Example 15.8.2. Evaluate f f f e+ qy where B is the unit ball
B
B={(xy2 | X+y + <1}
Proof. Using spherical coordinates to express

B={(0.0,¢)|0<p<1,0<0<2r,0<¢<n}

and x* + y? + z> = p?. The triple integral is

ff f e gy = f ﬂ f ’ f | & - p? sin g dpdods
B 0 ”0 0 . 1 %
(fosinqbd(p)(fo 1d9)<f0pzen dp)

= §7r(e— ).

Note. It is difficult to evaluate the trple integral by

1 Vi-22 V1-x2-y2 y 2
f f D g dydx.
-1 J=-V1-x2 J-A[1-22-)?
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Example 15.8.3. Use spherical coordinates find the volume of the solid lies above the cone
7= +/x% + 2 and below the sphere x> + > + > = z.

Proof. The sphereical coordinates of the above sphere has equation p> = p = cos¢ and the
L = CoS ¢.

The spherical coordinate of the below cone has equatin

pcosd = \/(psingcosb)? + (psin¢sinh)? = psin .

We have cos ¢ = sin ¢ and this implies ¢ = ;—T Hence the solid E in spherical coordinate is

E={(p.0,¢)|0<0<2r,0<¢<—, 0<p<cosg}.

/s
49

27 i 0S ¢
f f f 1 - p? sin ¢ dpddo
0 0 0

2 T
?ﬂf: sin¢ cos’ ¢ do = %

The volume of the solid is

vy [[[ 1av

p varies from 0 to cos¢ while ¢ varies from 0 to 77/4 while 6 varies from 0 to 27
¢ and 6 are constant. 6 1s constant.

Homework 15.8. 17, 20, 22, 26, 29, 32, 38, 44
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15.9 Change of Variables in Multiple Integrals

Recall: In one dimensional calculus,

y=fx), x=gw), a=gl), b=g.

R
f(
a b

( gc)=a g(d)=b

hu)=f(g(u))

g

+ t u
c d

b
To compute f f(x) dx.

Suppose that g : [c,d] — [a,b] is a one-to-one and onto function. For example
x = x(u) = g(u) = 2u. Consider y = f(g(u)).

Substitution Rule
b d b dx
f f(x)dx = f f(g(u))g’(u) du or f f(x)dx = ff(x(u)) T du.
Remark.
f(x) )
dx S .
The role of T g'(u) is the multiple be-
u
tween the infinitesimal unit vector du — dx
(imagine that dx = e du.) a b
du X
gle) X1 X g(d)
Look at the figures and we want to find the %0 Xn
area of the region below the graph of f and hw

above the x-axis over [a, b] in the xy-plane.
There exists a corresponding region in the uy-
plane. We try to understand the relations be-
tween these two regions and areas.

c ou

o
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f(u) 4 ) 9,

gc) X1 X gd)
n ;l(o ;l(n
h(u) , h(u),
u + = U
c u; u d c u u d

To consider the width of the base in the partition of [a, b] and the one in the partition of

dx Ax ) .. . .

[c,d], we have T ~ That is the approximation of the rate of the sizes of bases with
u u

respect to Ax and Au. Therefore the areas

b n n : d
f F(x) dx ~ Z Fx)ax; = Zh(u,.). i_i INTES f h(u) d—z du = f f(gw)g (u) du.
a i=1 i=1 4 ¢ ¢

Na’x
~ du

m Change of Variables in Two Dimensions

Let z = f(x,y). We consider the transformation from Cartesian coordinate to polar coordi-
nates (see Section 15.3)

rectangular coordinates «— polar coordinates

(x,y) «— (r,6)
re) — Y
4 dA
0; 510}/4
do ////Sf//f .
_ v .
0. /////] rdo
dr 4//
~
>
T 1 0

We have



286 CHAPTER 15. MULTIPLE INTEGRALS

g(r,0)=(rcos0,rsin0) (X9,¥0)=(roc080,r,s1n0)

de

T <
(r0,90) dr

Ty T

dr C r do
r drd©

~ =T

del:l T drd6
dr

as dr,d6 very small

and therefore the double integral

fff(X,y) dA = fff(rcos@,rsin@) r drd®.
R s

In general, T : C' transformation from uv-plane to xy-plane

v y

Note. We want to evaluate an double integral over R by evaluating a corresponding double
integral over S.

Remark. There may have problems if 7" is not one-to-one.

Definition 15.9.1. We say that a transformation 7 : R?> — R? is “one-to-one” if (u;,v) #
(le, V2) then
T (uy,vy) # T(uz,v2)

An equivalent definition is that if T (u;,vy) = T(up, vy) then (uy, vy) = (uz, v2).

Remark. If 7 is a one-to-one transformation, then it has an inverse transformation 7' from its
image in xy-plane to its domain uv-plane and it may be possible to solve x = g(u, v), y = h(u,v)
for u and v in terms of x and y:

(u,v) =T '(x,y), u=G(x,y) and v=H(x,y).
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_4

. T

Example 15.9.2. A transformation is defined by

x=u’ -, y = 2uv.

Find the image of the square § = {(u,v) } O0<u<l1,0<v< 1}.

Proof. Note that the transformation maps the boundearies of S to the boundaries of its image.
Hence, we try to find the image of the sides of S. Consider the four sides of S.

S :(0<u<1l1,v=0). Thenx = u? y = 0and we

have
’
T(S1)={y|[0<x<1,y=0}. "
(0, 1) $—==—1 (1, 1)
e S,:(u=1,0<v<1). Thenx=1-1v>y=2vand 2 @ o
2 >
_q1_ Y ,
we have x = 1 ) and ol s oo >

2
T(S2) = {(xy |x=1-, 0<x <1}, g

2 .
oSg%OSMSLv:I)TMnx:%—I;JSxSO

and we have
3
T(S3) ={xy|[x=7 -1, -1<x<0}.
e S4:(m=0,0<v<1). Thenx=-v*y=0and we Lol 5 Tio

have

TS ={xy | -1<x<0,y=0}.

The image of S is the region R bounded by the four curves. O

Question: How does a change of variables affect a double integral?
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VA YA
u=u,
Av S T
. —_—
(o, Uo) Au
U= v,
0 u 0 x

e The image of S is a region R in xy-plane. Suppose (xy, yo) = T (19, vo) is a boundary point of

_ . . .. X = g(u, V)]
R. Letr(u,v) = g(u, v)i + h(u,v)j be the position vector [y )
e Consider the boundary curve of R, r(u, vo) and its tangent vector at (xo, yo) 18
. . Ox, Oy,
r, = g.(uo, vo)i + h,(ug, vo)j = —i+ _yJ.
ou  Ou
Similarly, the bounde curve r(u, v) with the tangent vector at (xg, yo) is
: . Ox, Oy,
r,= gv(uO, VO)l + hv(uo, VO)J = —1+4+ _J
v ov

e To approximate R = T(S) by a parallelogram determined by the secant vectors.

I (g, Uy + Av)

r(ug + Au, vy) — r(ug, vo) = Aur,

&
Il

b = r(uy, vy + Av) —r(ug, vo) = Avr,

Similarly, R can be approximated by the paral-
lelogram determined by the vectors Aur, and
AV,

Hence, the area of R can be approximated by the area of the parallelogram

‘(Auru) X (avr,)| = |r, X1, |Auny.
The area of R
ox oy
ou Ou oxov  Ox0
A(R) ~ Area of the parallelogram = ‘ ‘AuAv = | DXy
dx Ay oudv 0Ovou

ov Ov
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Note. If regarding r, and r, as vector in three dimensions

. Oy, . Oy,
= Zi+ Zji+0k = i+ 2Zj+0k
r, 8ul+8u']+0 , I, 8vl+6v']+0
and we have
i j Kk
@3_)10 Ou Huk Ou ka
r, Xr, = 0 o = =
v ox 0Oy ay oy
@ 5_}’ 0 ov Ov ou Ov
v Ov
Definition 15.9.3. The “Jacobian” of the transformation 7 given by x = g(u,v) and y = h(u, v)
is
ox Ox
oy) |0 | oxdy _oxiy
ou,v) ay oy T Oudv  Ovou
ou Ov
Remark. An approximation to the area AA of R is
a(x,y)
AA = ‘ AUA
A,y

where the Jacobian is evaluated at (ug, vo).

® The Riemann Sum

Now, we consider the double Riemann sum. Divide R in xy-plane into some subregion R;;
with area AA.

L y
Sij
| +l’
Av
§ Au T
7
(g, v;)
0 u 0 X
ﬂ%mwszZEym%ma
R

1 j=1

s |

ox,) ’ AUAV

(8t v b ) | 5

2
.ME

Il
—_
—_

j=

where the Jacobian is evaluated at (u;, v;).
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Let m,n — oo, the double Riemann sum Z Zf(g(ui’vf)’ h(ui’vj))‘
i=1 j=1

veges to
o(x,y)
f fs f(8(u,v), h(u, b)) ’ ) ’ dudv.

m Change of Variables in a Double Integral

Theorem 15.9.4. Suppose that

(i) the transformation T is a C' map;

X,Y)

OEM, v) AUAV cOn-

is nonzero;

o(x,
(ii) the Jacobian 68, )

(iii) T is a one-to-one and onto map from S in uv-plane to R in xy-plane except perhas on the

boundary of S ;
(iv) f is continuous on R and that R and S are Type I or Type Il plane regions.
*, y)‘ dudpv.
o(u,v)

Then p
[[ romaa= [] rxwn)]

m Compare with the Change of Variables between 1D and 2D

1D: 2D:
v y
u=u,
. / I (i, 1*} -
Av & ’ )
T m —T> (%05 Y0) QR X
(g, o) u \\\
U="0Dg r(u,v, ;4 \/
u
x=T(u) = x(u) 0 ’ ’ \
dx = gx_u dy (¥, ¥) = T(u, v) = (x(u.v), y(u.v))
a(x,y)

dudv

a(u, v)

m Polar Coordinate Transformation

0 Y
0=p
B_____
r=a S r=b
T
—
T —
0=«
| [
| ! N
0 Cll b r 0 X

The polar coordinate transformation
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x=g(r0)=rcosO, y=h(r6) =rsind

ox Ox
o(x,y) ar 00| _|cos —rsin6| _ 2 .2,
2.0) - 6_; G_y = lsing reosd| =708 @+rsin“8=r>0
or 06
Therefore,
. (x,y)
(x,y)dA = ff rcosd,rsinf ‘ ‘drd@
fRf g (A )30

8 b
f f f(rcos®,rsin@) rdrde.

2 — 2,y = 2uv to evaluate the integral

Example 15.9.5. Use the change of variables x = u
f f y dA, where R is the region bounded by the x-axis and the parabolas y* = 4 — 4x and
R

V=4 +4x,y>0.

Proof. v
S,
0,1 1 (I, 1)
The transformation S : [0,1] X [0,1] — R by (u,v) — S, JERESHNNE .
(x,y) = (u?> = v?*,2uv). The Jacobian is o
Sy (1,0) “
ox Ox
0y oy ol _ 12w =2v|_, 5 T
a(r’g)_ @ a_y = 2\} 2u —4(14 +V)>O. ;

or 06
The double integral

1 1
f f f(x,y)dA = f f ydA = f f 2uv-4(u*+v*) dudv = 2.
R R 0 0

—1,0)1 0 (1,0

O

Note. For the original integral f f y dA, the region R is awkward. So we use change of vari-
R

ables.

Example 15.9.6. Evaluate the integral e dA, where R is the trapezoidal region with ver-

tices (1,0), (2,0), (0,-2) and (0, —1). N

Proof.
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DA
(—2,2) v=2  (2,2)
u+v N J
Letu =x+yandv =x—y. Then x = and u=—v¥ 8 > u=uv
—_ _ N> 7’
y = “ 5 Y The Jacobian is e ;U:(ll’ !
0 u
11
d(x,y) _ ? 51 _ _1 £0.
8(”, V) 27 T2 2 T l T T!
The region R is bounded by y = 0, x —y = 2, ik
x =0and x —y = 1. Hence, the corresponding
. . . x—y=1
region S in uv-planeisu =v,v =2, u = —v and \ : )

v = 1. Then

S={y|1<v<2, -v<u<v}.

The double integral

by 2 v 1 1 2
e = dA ev|(—= )dudv = —f ver
ff f] f =2 2,
3

I
N | —
. [\

[N

|

Q

L

o

<

|

~

Q

|

Q

L

N’

A Triple Integrals

Let T be a transformation from a region S in uvw-space onto a region R in xyz-space. Then
x=glu,v,w), y=hu,v,w), z==k(u,v,w).

The Jacobian of T is

ou 0v Ow
ox,y,2) _|dy dy 0y
o(u,v,w) ou Ov Oow

ou odv Ow

m Change of Variables in a Triple Integrals

ff f(x,y,2)dV = ffff(x(u, v, w), y(u, v,w), z(u, v, w)) ’g((x’iz)’ dudvdw.
R s Uu,v,w)

m Spherical Coordinate Transformation
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Let
x=psingcosf, y=psingsinfd, z=pcosq.

The Jacobian is

singgcosf —psingsin€ pcos@dcosb
singsind psingcosd pcospsinb| = —p” sin .
cos ¢ 0 —psin ¢

0(x,y,2) _
d(p, 0, )

The triple integralis

ff f(x,y,2)dV = ffff(psin¢cos9,psin¢sin9,pcos¢)‘ - p? sin¢’ dpdfde.
R s

Homework 15.9. 4, 8, 10, 13, 16, 19, 21, 25, 27, 30
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