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A Preview of Calculus
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1.1 Preliminaries

1 Notation:
m Set of numbers
e N = set of all natural numbers = {1,2,3,...}.
o Z =setof all integers ={...,-2,-1,0,1,2,...}.

e Q = set of all rational numbers = {x ‘x = B, where p,q € Z,q # 0}.
q

Q" ={xeQ|x>0}.
e R = set of all real numbers,

Rt ={xeR|x>0}andR™ ={xeR |x <0} = {-x |x € R*}.

m Intervals

(a,b) = {x |a < x < b} open interval.

[a,b] = {x |a < x < b} closed interval.

l[a,b) = {x |a <x < b}, (a,b]={x|a<x<b}

[a, ) = {x ’x > aj, (a,00) = {x |x > a},

(—0,a] = {x|x<a}, (-,a)={x|x<al.
Note:
(1) oo and —co do not represent real numbers.

(2) R = (—00,00), R* = (0,0) and R™ = (—00, 0).

1



2 CHAPTER 1. A PREVIEW OF CALCULUS
a Functions

Definition 1.1.1. A function f, often called a mapping, is a rule that assigns to each element x
in a set A exactly one element, called f(x), in a set B.

4 —> B

Arrow diagram for f

The set A is called the domain of f and denoted by Dom(f). The number f(x) is the value
of fatx.

The range (also called the image) of f, denoted by Range(f) is the set of all possible values
of f(x) as x varies throughout the domain. That is,

Range(f) = {y | y = f(x) for some x € Dom(f)}.

Note. In the class of Calculus(I), we consider those functions whose domains and ranges form
subsets of R. Thus, functions will be called real-valued functions of a real variable.

Remark.

(1) If f is a function, for each element a € Dom(f) there is exactly one element b € Range(f)
such that b = f(a). The value a is an independent variable and the value b is a dependent
variable.

(i) If Dom(f) = A and Range(f) C B, then the function f from A to B is usually symbolically
writtenas f : A — B.
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Example 1.1.2.
(1) f(x) = +/x:[0,4] — R. Then Dom(f) = [0,4] and Range(f) = [0, 2].
(2) f(x) = x?:(0,00) = R. Then Dom(f) = (0, o) and Range(f) = (0, o).

Remark. If the domain of a function f is not exactly given, then Dom(f) consists of all values
that can have an image under f. That is, we take Dom(f) as the maximal set of real number x
for which f(x) is a real number. In such a case Dom(f) is called the natural domain.

y

Ry

Example 1.1.3.
(1) f(x) = Vx. Then Dom(f) = [0, o] and Range(f) = [0, oo].

X +1

() f(x) = " Then Dom(f) = (=00,0) U (0,0) (or {x | x # 0}) and Range(f) =
(=00, =2] U [2, c0).

m Graph of a function

Definition 1.1.4. Let f(x) be a function with domain Dom(f). The graph of f consists of all
points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f. That is,

Graph(f) = {(x,y) | y = f(x), x € Dom(f)} = {(x, f(x)) | x € Dom(f)}.
Question: Is a curve the graph a function?
m Vertical line test

A curve C in the plane is the graph of a function if and only if no vertical line intersects C at
more than one point.
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y y y
. 3 ) . +3
2 2 -1
1 1 o /
2 1 2 3 x -2 -l 1 2 3 =x -1 A x
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S S, A¥

e |
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In the above diagrams, S| and S ; are graphs of some functions, but S,, S4, S5 and S¢ are
not graphs of any function.

1.2 Bounded Sets and Functions

a Bounded Sets
Definition 1.2.1. (Bounded Sets) Let A be a set of real numbers. We say that

(a) A is bounded above if there is a number M € R such that
a<M forallac€A.

We call such a number M an “upper bound for A”.

(b) A is bounded below if there is a number N € R such that
a>N forallae€A.

We call such a number N a “lower bound for A”.

(c) A is bounded if A is both bounded above and below. That is, there are M, N € R such that

N<a<M forallaceA.
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(d) If A is not bounded, we say that A is “unbounded”.
Remark. If A C R is bounded, then there exists M > 0 such that
O<Ll|lal <M (or —-M<a<M) forallac A
Definition 1.2.2. Let A C R. We call a number a a “maximum of A” (“minimum of A”) if
(1) ap € A and
(i1) ag > a(ap <a) forall ac€ A.

Denoted by “max A” (“min A”).

Remark.
(1) A bounded set may not have a maximum or a minimum. (ex: (0.1)).
(i1) A finite set must have a maximum and a minimum.

(ii1) If ap is a maximum of A, then ay is an upper bound for A.

m Least Upper Bound and Greatest Lower Bound
Definition 1.2.3. Let A C R. We say that M is a “least upper bound” of A if

(i) M is an upper bound for A (i.e. a < M for all a € A) and
(i1) if M, is an upper bound for A, then M < M,.
We denote the least upper bound for A by
“supA”  (supremum of A)
and the greatest lower bound for A by
“infA”  (infimum of A).

Lemma 1.2.4. A least upper bound is unique. That is, if M, and M, are least upper bounds for
a set A, then M| = M.

Proof. Since M, is a least upper bound for A and M, is an upper bound for A, M| < M,. The
converse argument is similar. We have M, < M. Therefore, M| = M,.
O

Exercise. Prove that the supremum of A satisfies
(1) supA >aforallae A
(i1) for any ¢ > 0, there exists a € A such that a > sup A — 6.

A a

sup A- & sup A
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m Least Upper Bound Property

Theorem 1.2.5. (Least upper bound property) Any nonempty set of real numbers that has an
upper bound necessarily has a least upper bound.

Proof. The proof will be postponed until Advanced Calculus.

Remark.

(1) A bounded set of real number may not have a maximum (or a minimum), but must have a
least upper bound (and a greatest lower bound). For example, (0, 1).

(i1)) A maximum of a bounded set must be its supremum, but the couverse is possibly false.

(iii) In order to extend the defintion of sup and inf to more general sets, we define supA = oo
(inf A = —0o0) if A is not bounded above (A is not bounded below).

(iv) Any number is an upper bound (or a lower bound) of . We define sup() = —oo and
inf @ = oo.
Remark.

(1) N,Z,Q and R are unbounded.

1
(i) For every & > 0, there exists n € N such that 0 < — < &.
n

Q Bounded Functions
Definition 1.2.6. (Bounded Functions) Let f : D — R be a function. We say that

(a) f is bounded above (on D) if the set of the values of f(x) on D is bounded above. That is,
“the set { f(x) ‘ x € D} is bounded above”
or
“there exists a number M € R such that f(x) < M for all x € D”.

We call such a number M an “upper bound for f(x)” and “f(x) is bounded above by M.

(b) f is bounde below on D if the set of the values of f(x) on D is bounded below. That is,
“the set { f(x) { x € D} is bounded below”
or
“there exists a number N € R such that f(x) > N forall x € D”.

We call such a number N an “lower bound for f(x)” and “f(x) is bounded below by N”.
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(c) fisbounded on D if f is both bounded above and below on D. That is
“the set { f(x) | x € D} is bounded”
or
“there exists M, N € R such that N < f(x) < M forall x € D”.

(d) If f is not bounded, we say that “f is unbounded.”.

Remark. We usually say that “f is bounded (above, below)” if f is bounded (above, below) on
its domain.

Definition 1.2.7. Let f be a function and D € Dom(f). We say that a number L € R is

(a) “the maximum (value) of f(x) on D” if L is the maximum of the set of the values of f(s) on
D. That is,

L=max {f(x)|xeD} = rilez})xf(x)
or
(1) there is ay € D such that f(ag) = L; and (i1) f(a) < Lforall a € D.

(b) “the minimum (value) of f(x) on D” if L is the minimum of the set of the values of f(s) on
D. That is,

L = min {f(x) | x € D} = min f(x)
or
(i) there is ay € D such that f(ay) = L; and (ii) f(a) > L for all a € D.

Similarly, we can also define the supremum and infimum of a function on a set.
Definition 1.2.8. Let f be a function and D C Dom(f). Define

(a) the supremum of f on D by
sull))f(x) =sup {f(x) | xe D}.
Xe

and
(b) the infimum of f on D by
}Crelgf(x) = inf {f(x) ‘ X € D}.

Remark.

(1) A bounded function may not have a maximum or a minimum.

(i1) If the range of f(x) contains at most finitely many numbers, then f is bounded and contains
a maximum and a minimum.
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1.3 Inequalities

Q Inequalities

m Triangle Inequality Let a, b € R be two numbers. Then
(1) la +b| < |a| + |b|.
(i) |al = 1b| < |a - b|.

(iii) [lal = 1l] < la - b.
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23 Infinife T imaitd

In high school algebra, students already learned some basic concepts of sequence (of num-
bers) and knew some examples of spcific sequences. For instance, arithmetic sequence ({-3,-1,1,3,5,7,9,...]
geometric sequence({1,3,9,27,81,...}), sequence defined by recursion (a,;» = a, + a,4+) etc.
We realize a sequence as a set of numbers with order. In this chapter, we introduce a new view-
point to look at a sequence. A sequence can be regarded as resulting functional values. This
idea will be not only inherited the concept of functions in Chapter 1, but also generalized to the
limit of general functions in Chapter 3.

We can see a sequence everywhere. For example, the irrational number 7 is corresponding
an infinite sequence(series).

3.1415926. ..

1 1 1 1 1 1 1

3
Il

The most basic idea in analysis is the concept of a limit. The simplest version of a limit
appears in the study of sequences. In this chapter, we will study the rigorous definition and
proof about sequences.

In this chapter, we will only discuss Sec2.1-Sec2.3 in the textbook and the remaining sec-
tions will be studied after Chpater 6.
2.1 Convergence
A sequence (of numbers) can be thought of as a list of numbers written in a definite order

ap, dp, az, a4, ..., dy, ...

9



10 CHAPTER 2. SEQUENCES

It can be regarded as a list of values of a function defined on N.

N 1 2 3 4

i R
R J) f@2) f3) f@&)

Note. From now on, we say “a sequence” instead of “a sequence of numbers” for the conve-
nience.

Definition 2.1.1. An (infinite) sequence is a function whose domain is a set of the form {n €
Z | n > m}, when m is a fixed integer.

Remark.
(i) The common choices for m are 0, 1 or 2.

(i1) By convention, we usually write the functional value f(n) as a, and denote the sequence
{a,};7, (or simply {a,} if n begins with 1).

(i11) The values a;, a», a3, ..., a,, ... are called the “term" (first term, second term,. . ., nth
term, ...) of a sequence.

(iv) To distinguish the notation of a set with the one of a sequence, we use {a, ‘ n € N} to
represent a set and {a,} for a sequence.

Example 2.1.2.
4
5

.

b b b

W
Bw

N =

n ) n
(1) {m}n=w ~ ay = = |

(2) {cos%}j’zo, ~ an:cos%,nzo = {1,—3

0,...}.

1
’2,
(3) (Fibonacci sequence)

a=laa=1a,=a,1+arforn>3 = {1,1,2,3,58,13,21,... }.

m Visualization of sequence

(1) Plot all terms of a sequence on number line.

n
E le: a, = —.
xample: a, = -—— 5
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(i) Regard a sequence a a function. f : N — R by @, = f(n). Plot the graph of f.
(15 al)a (29 a2)9 ey (n’ an)-

a, A

n
Example: = —
xample: f(n) B

Sy

Ol1234567
Observation: From the above figures, the functional values a, approaches as close to 1 as
possible when n becomes large.

Note. People studied the limit of sequences over thousands of years. For example, to compute
the are a a circle.

NN

Question: Does A, approach a number as n becomes large?

0 Limit and Convergence

m Intuitive Definition: Let {a,} be a sequence. We say that “the limit of {a,} exists” if there
exists a real number A € R such that we can make the term a,, as clos to A as we like by taking
n sufficiently large. Denote

lima,=A
n—o00
or
a, oA as n—o o
a, a, A
e ————— A4
0 n 0 n

Graphs of two sequences with lim a, = 4

n—=w

Example 2.1.3.
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1 1

yeess=s... }»ay = —. Then lim a, = 0.
n

n n—oo

1
M {13,

W =

2) {1,-1,1,-1,...},a, = (=1)""". Then lim a, does not exist (DNE).

Definition 2.1.4. (Precise) Let {a,} be a sequence.

(a) We say that “the limit of {a,} exists” if there exists a real number A € R such that for every
& > 0 there is a corresponding integer N such that

la, — Al <& foralln > N.

Here A is called “the limit of {a,}” and we write

lima,=A
n—o00

or

a, >A as n—o o

a, as a ag

I”’N+1 (IN+7,\ Ay s as a, a;
0 4—€ A 4—’0—.0
y
y=4+e¢
B N R s . . W W T
y=4—¢&
¢l 123 4 N n
Ay
a,
L)
ag
®
az
®
A+e4+——-—-+-—H-"----" """ —-——-C—C—C—C———— -
94 7 a0
@ ® P
A @
a, *
as ag ag ap2
[ J Y Py
A —E4——-— e -
as
*
[l L L L ¥ L L L 1 1 L L h .
1 1 L] 1 b 1 ] 1 T ¥ T ] Ceadl
1 2 3 4 5 6 7 8 9 10 11 12 2
N

n—oo

(b) If {a,} has alimit A. (i.e. lim a, = A), we say that the sequence “convergs to A”. Otherwise,
we say that the sequence “diverges”.
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Example 2.1.5. Consider the sequence {% };o_] For £ = 0.01, find a positive integer N such
n -
that

-

—1‘ <001 foralln>N
n+2

Proof. From the experience, we know (guess) that the limit, A, of the sequence is 1. Consider

rreRlbr
n+?2 42
2
It suffices to pick a positive integer N such that ‘ " 2} < 0.01 for all n > N.Compute
n

<00l & 200<n+2.

n+2
Then ’ -7—2 - 1’ < 0.01 when n > 198. Hence, we choose N = 199 and
n
‘ " 1‘ <0.01 foralln > N.
n+?2

O

Note. (1) In the above example, we can choose any positive integer N which is greater than
199. For instance, we choose N = 500. Then we stil have

‘ n

—1‘ <0.01 foralln > N.
n+2

(2) The above example does not prove the sequence converges to 1 since the € is a specific
number but not an arbitrary.

Example 2.1.6. Prove that the sequence {% }Zo_ , converges to 1.
" -

Proof.

By the definition, we need to show that “for any given € > 0, there exists a corresponding
positive integer N = N(¢g) such that % -1l <eforalln > N".
n

Given € > 0, W.L.O.G. say 0 < & < 1, consider

n 2 2-2¢&
‘ - ‘: <g & 2-2e<ne <n
n+2 n+2 g
2-2¢
Choose N € N such that N > . Then, for every n > N,
£
’ n ) 2 < 2 -
_ = S = 8.
n+2 n+2 " N+2 XXy
Hence, the sequence {nnj}:; , converges to 1.
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Note. In the book, it provides a new estimate by using

2
< —. It may easily find the positive
) n+2 n
integer N.

n> -2

P — }:_1 converges to 0.
n—-n—1"=

Example 2.1.7. Prove that the sequence {

Difficulty: In this example, it is difficult to find an exact positive integer N such that the
definition holds since we should solve the inequality n> —2 < (2n® —n — 1)e. But it is not
necessary. We only need to find a suitable integer.

Strategy: To find a simpler middle term (%) such that for every large n,

n-2

m—o <(*)<8.

Proof. For n > 2, the numernator (n> — 2) and the denominator (2n* — n — 1) are positive. [We
observe that 2n° —n — 1 > n® when n is large.} Also,

M —-n—-1>n" < nn*-1>1.

2 2 1
Then 2n°—n—1 > n® whenn > 2. | Hence, for n > 2, " Tl < e where (%) =—.
2n3—-n—-1 nd n n

) . 1
Given € > 0, choose a postive integer N > max(2, —). For every n > N,
£

) 2_2 0‘ n’ -2 <n2 1<1
_ e —_— = — — = &.
2n3—-n-1 2nP-n—-1 ndP n 1e
H th { n* -2 }OO converges to 0
ence, the sequence { ———— )
d 2n3 —n—17nm=1 &

Exercise.

1
(i) Prove that the sequence {—} converges to 0
n

1 .
(i) Prove that the sequence {—p} converges to 0 for every p € N. (Hint: you may use the fact
n

1 1
that — < —))
n? n

Recall. The following three statements are equivalent.

e A sequence {a,} converges.

e there is a real number A € R such that lim a,, = A.

n—oo
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e there is a real number A such that for every € > 0 there exists a corresponding integer
N € N such that |a, — A| < € whenever n > N.

Negation of Definition of Convergence:

o A sequence {a,} diverges.

e for every real number A € R, lim a, # A. (Careful for the notation lim)

n—00 n—oo

e For every real number A, there exists corresponding € = €(A) > 0 such that for every
N € N there is n = n(N) > N such that |a, — A| > &.

Example 2.1.8. Prove that the sequence { v/n} diverges.

Proof. (By a contradiction)
Assume that the sequence { v/n} converges. Then there exist a number A € R such that lim \Vn = A.

n—oo

Let £ = 1. It suffices to show that, for every N € N, we can choose n > N such that | Va—A| > 1.

Consider

| Vn—A| = Vn—-|A|
For N € N, we can choose a positive integer n > max (N, (|A| + 1)?). Then
| Vn—A| = Vn— Al > (Al + 1) - ]A] = L.

Hence, the sequence {+/n} does not converge to A. By the contradiction, the sequence {v/n}
diverges. O

Exercise.
(1) Prove that the sequence {(—1)"} diverges.

(i) Let r be a real number with |r| > 1. Prove that the sequence {r"} diverges.

(iii)) For 0 < r < 1, prove that the sequence {r"} converges to 0. (Hint: write r = 5

1
some b > 0. Show that 0 < " < - for all n € N and complete the proof.)
n

Theorem 2.1.9. (Uniqueness of Limit) If lim a,, = A and lim a, = B then A = B.

n—oo

Proof. For a given € > 0, since lim a, = A, there exists Ny € N such that

n—oo

e
. — Al < <
la | 7

whenever n > N;. Similarly, since lim a, = B, there exists N, € N such that

n—oo

£
,— B| < =
la | 7
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fn> Nz.
Let N = max(N;, N;). Then

|A—B| = |A—CZN+CZN—B|
< |A—ay|+lay — B| (triangle inequality)
e €
< j— —
2 2
= &
Since ¢ is an arbitrary positive number, we have A = B. m|

Note. (1) This theorem says that if the limit of a sequence exists, then the limit must be unique.

(2) Itis easiler to prove this theorem by using the method of contradiction.

0 Boundedness of Convergent Sequence
Definition 2.1.10. We say that

(a) asequence {a,}is bounded above if there exists a number M such that a, < M for alln € N.

(b) asequence {a,} is bounded below if there exists a number N such thata, > N forall n € N.

(c) asequence {a,}is bounded if it is both bounded above and below. That is, there is a number
M > 0 such that |a,| < M for all n € N.

(d) asequence is unbounded if it is not bounded.

Theorem 2.1.11. Every convergent sequence is bounded.

Proof.

Idea: Every finite numbers are bounded. We only need to consider the “tail” of a se-
quence. The convergence of a sequence will control all terms of the tail near its limit.

Let {a,} be a convergent sequence with limit A. For € = 1, there exists an integer N € N
such that |a, — A| < 1 for all n > N. We obtain

A-1<a,<A+1

for all n > N. Then
—(Al+ 1) <A-1<ag,<A+1<|Al+1
foralln > N.
Consider the bound of the first N terms. Define M, := max(|a|, |aal, . . ., lay,|), then

—Mﬁal,az,...,aN—l <M.

Let M = max(M,,|A| + 1) > 0. We have -M < a, < M for all n € N. Hence, the sequence
{a,} is bounded. O
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Note.

(1) We could simply choose a specific bound M =1 + |A| + |ay| + |az| + . .. + |ay—1]-
(2) A divergent sequence may be bounded (e. g. {(—1)"}) or unbounded (e. g. {n}).
(3) A bounded sequence may not be convergnet.

Corollary 2.1.12. Every unbounded sequence is divergent.

Theorem 2.1.13. Suppose that {a,} be a sequence which converges to A where A # 0. Then
1
there exists N € N such that a, # 0 for alln > N. In fact, |a,| > §|A|f0r alln > N.

Proof.
by
M_________El_ _____________________________
[ ]
a;
® aﬁ ay
L] °®
A- _______________________________________
a ®
5 a
v “
JAl e e e e e ———— e
bl a,
[ ]
} —+— t } } } t >
] 2 3=N 4 5 6 7 8 x
|A] |A]

Since {a,} converges to A and A # 0, for € = > > (, there exists N € N such that |a, — A| < >
for all n > N. Then

Al A
|an|=|an—A+A|2|A|—|a,,—A|>|A|—%:%

foralln > N. O

Note. Heuristically, if a sequence converges to a nonzero number, then the term a, will be
“bounded away from O for sufficiently large n.

Theorem 2.1.14. The sequence {an} converges to 0 if and only if the sequence {Ianl} converges
to 0.

Proof. Observe that
| laal = 0| = la,| = la, - O] (2.1)

(=) Given € > 0, since lim a, = 0, there exists N € N such that |a, — 0| < e for all n > N. Then,
by (),
|la, -0 | <&

for all n > N. Hence, the sequence {lanl} converges to 0.
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(<) Similarly, if } la,| — 0 ‘ < g for all n > N, we can also use (Z-1) to prove
la, — 0| < &
for all n > N. Hence, the sequence {a, } converges to 0. O

Remark. We can observe that some qualitative problems, such as convergence, divergence,
boundedness etc, of a sequence only depends on the “fails ” of the sequence. Any finitely many
terms do not change those properties

2.2 Limit Theorems

In this section, we will discuss some properties of limits.

a Limit Laws

Theorem 2.2.1. If sequences {a,} and {b,} converge to A and B, respectively and C is a constant
number, then

(a) lim(a, +b,) = A+B. [lim(a, +b,) = lim a, + lim b,].

(b) lim Ca, = CA. [lim(Ca,) = C lim a,|.

(c) lim(a, —b,) =A—-B. |[lim(a,+b,) = lima, - lim b, |
(d) lim(a,b,) = AB. [lim(a,b,) = (lim a,)(lim b,)]

. Ony A . . a, lim, . a,
(e) }}Ln; <b_n) = EprovzdedB # 0. |:r}1_>n;lob—n = m}

(f) lim(a,)” = A? forall p € N.

(g) lim Va, = VA if A and a, are nonnegative for all n with k € N,

(h) ifa, < b, foralln >N €N, then A < B.
Proof. We will prove part(a), (b), (d), (f) and (h) here, and skip (c), (e), and (g).

(a) Since lim a, = A and lim b, = B, for given &€ > 0 there are integers N, N, € N such that

la, — Al <§ foralln > N,

and c
|b, — B| < > forall n > N,.
Let N = max(N;, N,). Then, forn > N,

(@ +b) = (A+B)| = (@, =)+ (ba =B < |a,— 4 + [b, = B[ < S+ =&

Hence, lim(a, + b,) = A + B.
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(b) For C =0, Ca, =0 forall n € N. Then lim Ca, = lim 0 = 0 = CA.

n—oo n—oo

Suppose that C # 0. Since lim,_,a, = A, for given € > 0, there exists N € N such that
la, — Al < — foralln> N
a, — — n>N.
IC]

Then

Ca, — CA| = |C(a, - A)| = [Cl|a, — A| < |c% —¢ foralln> N.

Hence, lim Ca, = CA.

n—o0o

(d)

A priori estimate:
P>

la,b, — AB| = |a,b, — Ab, + Ab, — AB| = |(a, — A)b,| + |A(b, — B)| < ; + >

Since {b,} is a convergent sequence, it is bounded. There exists a number M > 0 such that
|b,| < M for all n € N. Also, since lim a, = A and lim b, = B, for given € > 0 there are

integers Ny, N, € N such that
E
la, — Al < — foralln > N,
2M

and

£
b,— Bl < ———— foralln > N,.
| | A+ D or all n >

Let N = max(N;, Ny). Then, forn > N,

|\a,b, — AB| = |a,b, — Ab, + Ab, — AB|
< |(a, - A)b,| + |Ab, - B)|
< |a,— Allbal + |Al|b, - B|
2M 2(JA1 + 1)
< £4¢
—+=-==c
202
Hence, lim(a,b,) = AB.
(e) (Exercise!) Skip the proof here
A priori estimate: (Hint!)
a, A a,B—-Ab,| |a,B—AB+ AB- Ab,
b, B Bb, | Bb,
‘(an —A)B) N ‘A(B—bn) 3 ’(an —A)‘ N ‘A(B—bn)
- Bb, Bb, | | b, Bb,
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()

A priori estimate:

a’ —bP =(a-b)a" ' +a" b+ a" P + ... +abP> + b)) forall p e N.

Since lim a, = A, for given & > 0, there exists a number N € N such that

n—oo

E
A< — 2
an = Al < A+ D

for all n > N. W.L.O.G, we may assume € < 1. Then |a, — A| < & <1 and
pA]+ D!

hence |a,| < |A|+ 1. Forn > N,

a” — APl = |(a,—A) @ +alPA+al AT+ 4 a, AP+ AP
= la,— Al +al A+ a7 A + .+ a, AP + AP
< lay = Alflaql”™" +laal" 1Al + laalPIAP + ...+ lag|AP 7 + AP
< la, = Al[GAl+ D"+ (Al + D7+ o+ (AL + D7

la, — Al - p(Al + P! < &.

Thus, lim(a,)” = A”.

(h)

Exercise: (by using a contradiction)

A<B & A<B+¢ foreverye>0.

Since lim a, = A and lim b, = B, for given € > 0 there are integers N, N, € N such that

la, — Al <§ foralln > N,

and c
|b, — B| < 3 for alln > N,.

Then, for N = max(N;, N,),

E E
A<(1N+§ and B>bN—§.

We have e e
A<aN+§sbN+§<B+s.

Since ¢ is an arbitrary positive number, we have A < B.
(Note: We can also directly use the method of contradiction to prove this part.)
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Remark.

(1) The convergence of the two sequences is necessary. (Exercise: Give examples that the
laws are false if losing convergence.)

(i1) In part (h), the strict inequality is not preserved by limits.

M —
Example 2.2.2. (1) Does the limit lim n—2 converge? If yes, find the limit.
= V10 +n
Proof.
po 2n—l fim ( on -1 $> i 2~
im——— = lim(——- =) = lim
n— o0 \/m n—oo \/m % n—oo :l_(z) +1
lim, e0(2 — 1 limy, e 2 = limy o0 +
My (/B + 1 (/limy, e 9+ 1im,, o 1
240 _»
VO + 1
O
(2) Find the limit lim( Vn? + 1 — n) if it exists.
Proof.
2+ 1+ 1
im(Va2 + 1-n) = lim [(Va2 4 1 ~n)» ~————"] = lim ——
n—eo e n+1l+n " Vn2+1+n
| L 1
= lim(—m— —— . %) = lim —
""‘x’( n”+1+n %) n—eo ,/1+nl2
lim, e }L lim, e %
iMoo o/1T+ 5 (/limye 1 4+ lim, ey
0
= —=0.
1
O

A Squeeze (Sandwich, Pinching) Theorem for Sequences

Theorem 2.2.3. (Squeeze Theorem) Suppose that {a,}, {b,} and {c,} are three sequences, and
suppose that there exists N € N such that

a, < b, < ¢,

foralln > N. If both {a,} and {c,} converge to A, then {b,} must also converge to A.
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The sequence {b,} is squeezed between the sequences {a,} and {c,}.

Proof. Since both {a,} and {c,} converge to A, for given & > 0, there exist Nj, N, € N such that
la, — Al < e forallm>N; and |c,—A|<eg foralln > N,.
Let N = max(N;, N,). Then, forn > N,
—e<a,-A<b,—-A<c,—-A<e.
Hence, the sequence {b,} converges to A. m|

Corollary 2.2.4. Suppose that {a,} and {b,} are two sequences and |a,| < b, for all sufficiently
large n. If lim b, = 0 then lim a, = 0.

n—oo

Exercise.

A n!
(1) Discuss the convergence of the sequence a, = —, wheren! =1-2-3- --- - n.
n

n

(i) Evaluate lim if it exists.

n—oo N

Theorem 2.2.5. If a sequence {a,} converges to 0, and a sequence {b,} is bounded, then the
sequence {a,b,} converges to 0.

Proof. (Exercise) O

2.3 Infinite Limits

The properties and diversities of divergent sequences are much more complicated than conver-
gent sequences. Divergent sequneces can be subdivided into categories.

0 Infinite Limits
Some types of divergent sequences have nice properties. For example, {n}, {2"}.
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m Intuitive Definition: We say that a sequence {a,} diverges to +co (approaches to +oco) (as
n tends to o) if we can make the term {a,} as large as we like by taking n sufficiently large.
Denote

lim g, = o

n—oo

or

a, > o0 as n—> oo

480 °
440
400
360 .
320 °
280 °
240
200 °
160
120
80 e °

40 °

-10 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

m Precise Definition:

Definition 2.3.1. We say that

(a) asequence {a,} diverges to +oo (approaches to +co) as n tends to oo if for any M > 0, there
exists N € N such that a, > M for all n > N. Denote

lim a, = +o0

n—oo

or

a, — 400 as n — oo
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-10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
I
N

(b) {a,} diverges to —oo (approaches to —oco) as n tends to oo if for any M < 0, there exists
N € N such that a,, < M for all n > N. Denote

lim g, = —o0
n— 0o

or
a, > —00 as n — oo

Note.

(1) If lim a, = oo then lim(—a,) = —co.

n—oo n—00

(2) Since +o0 and —co are not real numbers, if lim @, = +co, we will say that the limit of {a,}

n—oo

does not exist(DNE). (It is different from the note in the book, p81.)

Sn2-2n-10
Example 2.3.2. Prove that the sequence { r men— Y 3 +ZOO } diverges to co.
n

Proof. Consider 5n> — 2n — 10 = (5n* — 5n) + 3n — 10) > Sn(n — 1) for all n > 4. Also,
3n + 100 < 5n for all n > 50. Hence,

5 =2n-10 Sn(n-1) .,

> -1
3n+ 100 S5n

for all n > 50.
Given M € R, we choose N € N such that N > max(50, M + 1). Then, foralln > N,

5n* = 2n— 10
———>n—-1>2N-1>M
m+100 0T
5n% = 2n— 10
Since M is an arbitrary number, lim M Y O

n—co  3n+ 100
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Example 2.3.3. For r > 1, prove that the sequence {r"} diverges to oco.
Proof. Since r > 1, we can write r = 1 + h for some & > 0. Then

nin—1)

=0 +h"=1+nh+ W+...+h >1+nh

M
Given M € R, choose N € N such that N > % Then, forn > N,

M
r”>1+nh>1+|h—|-h:l+|M|>M.

Since M is an arbitrary number, lim 7" = oo.
n—o0
O

Theorem 2.3.4. (Comparison Theorem) If a sequence {a,} diverges to oo and a, < b, for all
n < N, then the sequence {b,} must also diverge to co.

Proof. Exercise! |

Example 2.3.5. Use the Comparison Theorem to prove that above two examples.

5> - 2n—10  5n?
Insight: Observe the rational function % ~ 3% Hence, we have possibility to

5n* —2n - 10 S 4.8n 3 hen n is sufficiently large
=—n W n u :
3n+ 100 32n 2 e

Theorem 2.3.6. Suppose that {a,} is a sequence satisfying a, > 0 for alln € N . Then {a,}

adust it as

diverges to oo if and only if the sequence {—} converges to (.
an

Proof. (Exercise!) O

Question: Suppose that the hypothesis a, > 0 is replaced by a, # 0. Is the theorem still true?
If not, are both sides false or just one side?
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In Chapter 2, we regard a sequence as values of a function whose domain is a set of N and
consider its limit as » tends to infinity. In this chapter, we generalize the concept of a limit to
functions with a domain that can contain values other than integers.

3.1 Limit at Infinity

Consider a function f with domain which contains arbitrarily large values. We want to study
the behavior of the function when x becomes larger and larger.

Ay

| s

3

5 100 150 200 250 300 350

m Intuitive Definition: Let f(x) be a function defined on some interval (a, o). We say that “the
limit of f(x), as x approaches oo, exists” if there exists a number L € R such that the values of

27
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Jf(x) can be made arbitrarily close to L by requiring x to be sufficiently large. Denote
lim f(x) =L

or
f(x) > L as x— o0

0 % 0 x 0 X

Examples illustrating lim f(x)=L

Definition 3.1.1. (Precise) Let f(x) be a function defined on some interval (a, o).

(a) We say that “the limit of f(x), as x approaches oo, exists” if there exists a number L € R
such that for every € > 0, there exists a real number M > 0 such that

|f(x) =Ll <& ifx> M and x € (a, o)
Here, L is called “the limit of f(x), as x tends to c”, and we write

or

f(x) > L as x— o

ST
=
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(b) If f(x) has a limit L as x tends to oo, we say that f “converges” to L (as x tends to o).
Otherwise, we say that the function “diverges” (as x tends to ).

(c) Similarly, let f be a function defined on (—co, b). We write lim f(x) = L if for every € > 0
there exists a real number M > 0 such that

If(x) - Ll <& ifx < —M and x € (o0, b).

Note. In the book, the function f only need to be defined on a set D € R which contains
arbitrarily large values. For example, D = R — Q. In our definition, we only consider the
simpler situation that D contains the interval (a, co) for some number a.

Definition 3.1.2. If lim f(x) = L, then f has a “horizontal asymptote at oo™ and the line y = L

is called a “horizontal asymptote” for the function f.

1
Example 3.1.3. (1) Let f(x) = —. Prove that lim f(x) = 0.
X X—00

1
Proof. Given € > 0, choose a number M > — (e.g. M = zia). Then for x > M,
e

1 1 1
-0l=|--0/=-<— .
-0/ =t-o=t<l s
Hence, lim f(x) = 0. |
1
(2) Prove that lim - = O forall p € N.
X—00 X
Proof. Exercise m|

2

2x° -3
(3) Let f(x) = ——

————— . Does f converge as x tends to co? If yes, find the limit.
+3x-4

Proof. According to our experience, we expect that the limit is 2. Let’s try to prove our
guess is true.

Consider
2x* -3 ’ ‘ —6x+5 ’ 843 for x £ 0
e —— = = X .
x> +3x-4 x> +3x-4 1+3-%
For x > 2,
3 4 1 4
-—-—5=-3--)>0
X X X X
and
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1
Given & > 0, choose M > max(2, —). Then for every x > M,
£

2x2 -3 -2+ 3 L1
2 +3x—4 ‘_‘1 %_i ‘

Hence, lim f(x) = 2. m|

2x* -3

Example 3.1.4. A horizontal asymptote of the function f(x) = ——
x> +3x—-4

isy=2.

Theorem 3.1.5. Suppose that il_)rg f(x) = L. Then

(a) the limit is unique,

(b) lim[f(x)~L] =0,

(¢) lim |f(0)] = ILI

Proof. (Exercise) O

Negation of Definition of Convergence:

Let f be defined on some interval (a, 00). “The limit of f, as x approaches oo does not exist”
if for every number L, there exists € > 0 such that for every M > 0 there exists a number x > M
such that [f(x) — L| > &.

Note. We usually prove the divergence of a function by using the method of contradiction.

Example 3.1.6. Verify that f(x) = sin x has no limit at infinity.

1
Proof. Assume that f(x) has a limit L at infinity. For € = 3 there exists M > 0 such that for

1
every x > M |f(x) — L| < 5 Choose a sufficiently large integer n such that g + 2nm > M. Then
1 3 1
IL—1]= ]f(g +2mm) - L| <5 and |L-(-D)|= }f(g +2nm) - L| < 5
1 | _ e e
We have L < ) and L > > It implies a contradiction and hence f has no limit at infinity.

m Limits of sequences and functions at infinity

Let f be a function defined on [1, ) and a, = f(n) forn = 1,2,.... Consider the limit
lim f(x) and lim a,[= lim f(n)].

Theorem 3.1.7. Suppose that f is defined on [1,0) and a, = f(n) forn = 1,2,.... If
lim f(x) = L, then lim a, = L.
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74 y = flx)

Proof. (Exercise) O

Remark. The converse of the theorem is false. For example, f(x) = sin(rx).

y=sinnx

Question: How about other sequence defined by a function?

Suppose that {x,} € Dom(f) is a sequence with lim x, = co. Define the functional values

b, = f(x,) forn =1,2,.... [Compare with the sequenngeooan = f(n)forn=1,2,---, b, could be
defined at any number x,, € Dom(f) with x,, — oo rather than positive integer n.]

Question: Is Theorem B17 still true for {b,,}?
Answer: Yes. (Exercise)

Theorem 3.1.8. Suppose that f is defined on (1, ). Then lim f(x) = L if and only if for every

sequence {x,} C Dom(f) with lim x, = oo, the sequence { f (x,l)} converges to L.

Proof.
(=) Exercise!

(<)| Idea: If false, we can construct a counterexample.

Assume that lim f(x) # L. Then there exists a number & > 0 such that, for every M > 0,
there exists x,; > M such that |f(xy) — L| > €.

Fix the above number £ > 0. Let M; = 1 and there exists x; > M, such that [f(x;) — L| > &.
Define M, = max(2, x;) and there exists x, > M, such that |f(x;) — L| > €. Continue this pro-
cess, we can define M,, = max(n, x,_;) and we can find a sequence {x,} such that x, > M, and
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lf () — LI = €.
Since x, > M, > n, lim x, =oo. Also, |f(x,) — L| > € foralln = 1,2,.... Then
lim f(x,) # L. It contradicts the hypothesis. Therefore, lim f(x) = L. O

Example 3.1.9. Evaluate lim( Vx? + 2x — x) and lim ( VX2 + 2x + x).

X—00 X——00

a Limit Laws

Theorem 3.1.10. Suppose that the functions f, g are defined on (a, ), and lim f(x) = L and

lim g(x) = M, and C is a constant number: Then
(a) lim(f +g)(x) = lim f(x) + lim g(x) = L+ M.
(b) lim (Cf)) = Clim f(x) = CL.

(c) lim(fg)(x) = [lim f(x)][lim g(x)] = LM.

(d) im[f(x)]" = [lim f(x)]" = L" foralln € N.
(e) }erolo <§)(x) = %providedM # 0.

() lim /00 = ¢/Tim ) = VLif L > 0.and () > 0 with n € N,
(g) }1_)11; C = C where C is a constant.
(h) If f(x) < g(x) for all sufficiently large x, then L < M.
Proof. (Exercise) O
Remark. If }1_{2 filx) = Ly,..., }1_{2 fu.(x) = L,, then
1) }i_}rg(ﬁ +--+f)x)=L +---+L,and
(i) lim(fi - f)(0) = Ly Ly,

Remark. In the hypothesis, the convergence of f and g are important. The limit law (a), (b),
(d) are false if without the condition of convergence.

a Squeeze (Sandwich, Pinching) Theorem for Functions at Infinity

Theorem 3.1.11. (Squeeze Theorem) Suppose that f, g and h are three functions defined on
(a,0), and f(x) < g(x) < h(x) for all sufficiently large x. If lim f(x) = L = lim h(x), then the

limit of g, as x tends to oo, exists and moreover lim g(x) = L.
X—00

Proof. (Exercise)(Postpone until the squeeze theorem for function at a point) O
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a Infinite Limit

Let f be a function defined on (a, o). Observe that if the limit of f, as x tends to oo, exists
then f(x) is bounded above and below when x is sufficiently large. Hence, if f is not bounded
for all large x, it must diverge at infinity. (e.g. f(x) = x.) Some situation may happen. For
example, f(x) = xsinx, f(x) = x°.

AAAAA,
vvvv

Note. That f is bounded above and below for all large x does not imply f converges at infinity
(e.g. f(x) =sinx).

Definition 3.1.12.

(a) Let f be a function defined on (a, o). We say that f tends to oo, as x tends to oo, if for any
K > 0, there exists a number M > 0 such that f(x) > K for every x > M. Denote

lim f(x) = oo

or
f(x) 00 as x— o

(b) Let f be a function defined on (—co, b). We say that f tends to oo, as x tends to —oo, if for
any K > 0, there exists a number M > 0 such that f(x) > K for every x < —M. Denote

lim f(x) = o0

or
f(x) >0 as x— —o0

Remark. If f tends to +oo, as x tends to co, we say that the f diverges to +co and the limit does
not exist(DNE). It is different from the textbook.

Example 3.1.13. For n € N, the n degree polynomial
fX) =a X" +a, X" '+t ax+ag

with a, > 0 has infinite limit at co. That is, lim f(x) = oo.
X—00
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Proof. (Exercise) O

Question: How about the limit of a rational functions at co?

Theorem 3.1.14. Suppose that a function, f, is defined by f(x) = @ where
q

(%)
1

px) = ax"+a, X" +---+ax+ay and

1

q(s) = bux" + by X"+ -+ bix+ by

where a,, b,, # 0, are n and m degree polynomials, respectively. Then
(a) ifn <m, then lim f(x)=0.
X—+00

an

(b) ifn=m, then lim f(x)= P

(c) ifn > m, then lim f(x) is infinite.

Proof. (a) For x # 0,

a a1 ay ag
f( ) xm’in + xmiszrl +-- xmfl + F
x) =
b, + b1 + . 4 by + bo
m X mel XM
Then
dan an—1 ai a0
_An_ S L AT CLR
m—n m—n+1 m— 1 m
lim f(x) = lim = = = =
x—>oof() x—00  h +}M+...+b_1+b_0
m x xm—l XM
li an li an-1 li ai li ao
1My e0 nn + 1m0 S+l + e+ M0 -1 + lImy e o
- . by . b . b
by + im0 == 4+ oo+ 1My o0 i + im0 T
0
= — =0
bm
The proof of (b)and (c) are left to the readers. O

m Oblique Asymptotes

Observe that if a function f(x) has an oblique asymptote L : y = ax + b where a # 0. Then
the graph y = f(x) are as close to L as we like by taking x sufficiently large. This means that

lim[f(x) — (ax + b)] = 0.

xz—

2x+4

Proof. Observe that the degree of the numerator is greater than the degree of the denominator
by 1. Thus, the function may have an oblique asymptote. Consider their leading coefficients
of the denominator and numerator. We expect that the equation of the oblique asymptote is

Example 3.1.15. Find oblique asymptotes for the function f(x) = , if any exists.

1
supposed to be y = >x + b. Then

-2(1 + b)x — (1 + 4b)
2x+4 {

-1 1
-Gx+b)]=|

1
0= Grenl = 15
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In order to obtain the above term tends to O as x tends to co, b should be —1. Hence, we have

2
x =1 1
lim —(zx—-1)| = lim =0
x—>oo|2x+4 (2 ){ x—>oo’2x+4’
. ) 1
Then, the oblique asymptote of fisy = Ex - 1.
| Ay
[}
:
] T 3
l
1 + 2 _x2_-1
: VY= ox+4
( +1 o
I ’I’
1 1 L |_’/| 1 b
Cdl ] T S
5 4 3 b 0 472 3 4 *
B
} ’,'
/I1I/ T _2
- 1
\/"/ - |
z -7 T-3
yoke :
'/\: + -4
I
|
! +-5

3.2 Limit at a Real Number

Consider the function f(x) = x> — x + 2. What is the behavior of f(x) for values of x near 2?

VA

f(x)
approaches -
4.

N

I, I

As x approaches 2,

When x tends to 2, f(x) approaches 4. We can make the value of f(x) as close to 4 as we
like by taking x sufficiently close to 2.
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In the world, lots of problems involve the “tendency” of a function near a number. For ex-
ample, tangent line problem, instantaneous velocity etc.

To study the behaviors of a function near a point, the function should be defined near this
point (possibly except the point itself).

Definition 3.2.1. Let a € R be a real number.

(a) For e > 0, we call the set B(a, &) := {x€eR | |x—al <&} a“ball of a”

O
> Ao

a-—-¢ a a+e X

(b) Wecall aset N C R a “neighborhood of a” if it contains a ball, B(a, ), of a for some & > 0.

. -

x
a-€ a a+e

Note. Any open interval containing a is a neighborhood. Specifically, a ball of a is also a
neighborhood of a.

m Intuitive Definition (limits of functions at a number):

Suppose f(x) is defined in a neighborhood of a (except possibly at a itself). We say that
“the limit of f(x), as x approaches a, exists” if there is a number L € R such that the values of
Jf(x) can be arbitrarily close to L by taking x to be sufficiently close to a (on either side of a) but
not equal to a. We write

lim f(x) = L
or
x—>L asx—a.

Note.

(1) In the definition, if there is no such number, we say that “the limit of f(x), as x approaches
a, does not exist (DNE).

(2) The words “but not equal to a”” means that we never consider the value of f at x = a.

YA VA VA

(a) (b) (c)

lii_m f(x)=L in all three cases.

b=
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Example 3.2.2. (Find the limit by graphing)

YA

N +——— e ——

f(x)=x*—x+2

lim f(x) =

37

y=x2—x+2

Example 3.2.3. (Guess by taking values) Evaluate lir% _—

X

sin x

X

=140
£(),5
+0.4
+0.3
0.2
*0.1
+0.05
+0.01
+0.005
+0.001

0.84147098
0.95885108
0.97354586
0.98506736
0.99334665
0.99833417
0.99958339
0.99998333
0.99999583
0.99999983

sin x

Guess: lim — = 1.

-0 X

|
|
|
|
|
|
!
0 _)é(_ X
—x+2 x#2
f(x)_ { x=2
lirrzlf(x):
sin x
X
u\‘ x
: 8. sin.x

Note. The wrong evaluation may happen by graphing or taking testing values. For example

f00 = sin® forx # 0. Then /(1) = f(3) = f(3) = /75 = I

does not exist.

P |

\

—...=0.Butli
1000000 ~ utlim f(x)

= sin(7/x)

/\

e———
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1
Example 3.2.4. For the function f(x) = x*sin —, it seems that f approaches 0 as x tends to 0.
X

/E\\ /’I f(x) = x*sin %
\k >
g ’%\Jﬂ

We need to check whether we can make f arbitrarily close to 0 by taking x to be sufficiently

close to 0.
e For the error = 1 , how much close to 0 should we choose x such that |x sin -0 < i‘7

Choose |x — 0] < 1, then [x?| < 5. Hence, |f(x) — 0] = [x*sin 1| < x* < £ < 1

how much close to 0 should we choose X such that Ix s1n -0 < 10000 —=7
then |x?| < Hence, |f(x) — 0] = |x*sin 1| < x? < 5.

e For the error = 10000,

Choose |x — 0] < 100, 10000

e For the error = & > 0 to be an arbitrarily small number, choose |x — 0] < +/e. Then
If(x) -0 = [¥*sin 1| < x* < &.
To give a suitable definition of limit at a number g, it is supposed to check that, for every
“error”, the values of f is close to L within this error whenever x is close to a within a certain
range.

Definition 3.2.5. (Precise)(5-& definition)

(a) WL LARADRDIMAFPRE NN PRSRROt ot 91 (FHESRGRAN RN £ LR Bhtistying

for every € > 0, there is a number 6 > 0 such that

|f(x)—L| <& whenever O<|x—al<¢

S@ - mm e e -2 f

e et

L+ 4+ —

| qeamcac—me e
| Y N —— o o

a+3

2
o]
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(b) If f has alimit L as x tends to a, we say that f “converges” to L (as x tends to a ). Otherwise,
we say that f “diverges” (as x tends to a).

Remark.

(1) That the words “O < |x — a|" rather than 0 < |x — a| reflects when we consider the limit of
f as x approaches a, we only concern the values of f “near” a. It is not essential that the
function f be defined at x = a.

(i1)) The number 6 = d(e) usually depends on the chosen number &. For a given € > 0, it
suffices to show that the corresponding number ¢ exists but not necessary to find the exact
number.

(iii) For a given & > 0, if ¢ satisfies the statement of definition, any smaller number 0 < ¢; < ¢
must also satisfy the statement for the same €. In other words, ¢ can be replaced by d; (if
necessary).

Example 3.2.6. Prove that lirr31(4x -5 ="1.

Proof.

In this problem, the limit 7 is given. Otherwise, we should guess a possible limit and
then prove it.

Like the proof of limit of a sequence, we usually need some priori estimates before
proving.

Consider
[(4x =5) =7 =|4x — 12| = 4|x — 3].

Hence, 4jx — 3| < gif [x = 3| < Z For given € > 0, choose ¢ = Z Then, for every |x — 3| < 0,

(4x —=5)="7| = |4x — 12| = 4|x — 3] <4c5:4-§L =e&.
Thus, 1irr31(4x -5 ="7.

y=4x—15

Example 3.2.7. Prove that lin% ¥’ =4,
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Proof.

Consider |x*> — 4] = [(x +2)(x = 2)| = |x + 2||x = 2| < &. If |x + 2| < M for some constant
e e
number M. Then we can choose § = u and |x> -4 <M-|x=2|< M- ” =e&.

To obtain an upper bound of |x + 2|, we consider that if |[x — 2| < 1, then 1 < x < 3 and hence
lx+2| <5.

Given & > 0, 1et5:min(1,§). For all x with |x — 2| < 6,
Xx+2]=x-2+4<|x-2|+4<6+4<5.
Then, for [x — 2| < 6,

|x2—4|:|(x+2)(x—2)|:|x+2||x—2|§5|x—2|<56£5~§:s.

Hence, lim x? = 4.

X%Z

0 2—48 2 246 4

Exercise. Prove that lim x* = ¢° for every a € R.

X—a

Negation of Definition of Convergence:

Let f be defined on some neighborhood of a (except possibly at a itself). “The limit of f,
as x approaches a, does not exist” if for every number L, there exists £ > 0 satisfying for every
0 > 0 there exists a number x with [x — a| < ¢ such that [f(x) — L| > &.

Note. We prove the convergence of a function by using § — & definition. However, in order to
prove the divergence of a function, we usually use the method of contradiction.

1
Example 3.2.8. Prove that lim sin — does not exist.

x—0 X

Proof. (The function f(x) = sin i is defined near 0.)

) o1 )
Assume that there is a number L such that limsin — = L. For ¢ = %, there is a number 6 > 0

x—0 X

such that for 0 < |x— 0] < 6, |sin 1 — L] < 3.
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Let x; = ———— and x, = ————— for some sufficiently large N € N such that x| < &
(2N + 3)m (2N + 3)m

and |x,| < &. Then

! 1 ! 1
}I—L{:|smx—l—L‘<§ and |(—1)—L‘:‘smx—2—L <§.
We have
2=1-(-Dl=[l-L+L-(-D|<|1-L|+|L-(-D]| < % + % =1 (Contradiction).

o1 )
Therefore, lim sin — does not exist.
x—0 X
|

0, xis irrational

) : . Prove that the limit of f does not exist at every
1, x1isrational

Exercise. Let f(x) = {

point.

Theorem 3.2.9. (Uniqueness of a limit)
If the limit of a function exists, as x approaches a, then it is unique.

Proof.

In Sec3.1, we proved that the uniqueness of the limit of a function, as x approaches co by
using the fact that “if two numbers, L and M, satisfy |L — M| < & for every € > 0, then L = M.
Here, we keep the same spirit and use the method of contradiction to prove it.

= m

length ——= length y— o

Let lim f(x) = L and lim f(x) = M. Assume that L # M.
For € = %lL — M| > 0, there exist d;, 6> > 0 such that
lf(x)— Ll <e forall |x—al<d

and
lf(x)— M| <e forall |x—a|<d,.

Let 6 = min(6;, 0,). For 0 < |x — a| < 6,
IL=M|=|L—-f(x)+ ful <IL = fOOI+|f(0Oul <e+e=2e=|L- M|
It implies a contradiction and hence L = M. O

Theorem 3.2.10. lim £(x) = 0 if and only if lim |f(x)| = 0.
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Proof. (Exercise)

Note. In the above thorem, the direction (<) is false if the limit is nonzero. (Why?)

Exercise. lim f(x) = L if and only if lim |f(x) — L| = 0.
a Limit Laws

Theorem 3.2.11. Suppose that the functions f, g are defined on a neighborhood of a, and
lim f(x) = L and lim g(x) = M and C is a constant number. Then

(a) im(f + g)(x) = lim f(x) + limg(x) = L + M.
(b) lim (Cf)(x) = Clim f(x) = CL.
(c) lim(fg)(x) = [lim f()][lim g(x)] = LM.

(d) lim[f(x)]" = [lim f(x)]" = L" for all n € N.
(e) }Cliltll (g)(x) = %providedM # 0.

(f) im / f(x) = #/lim f(x) = VL ifL>0and f(x) >0withn € N.
(g) im C = C where C is a constant.

(h) If f(x) < g(x) for all x near a, then L < M.
Proof. (Exercise) O

Remark. If }Ci_r)r;fl(x) =L..., }Ci_lgfn(x) = L,, then
(1) }Ci_rg(ﬁ +--+f)x)=L+---+L,and
(i) Tim(fi -~ )0 = Ly -~ L.

Example 3.2.12. (Polynomial functions)

(1) Forn=0,1,2,...,

n
n N n

limxnzlim(x-x-x---x) :r(limx)---(limx)\za-a---a:a".

Xx—a X—a X—a Xx—a

(2) Let ¢ be a constant.
lim(cx") = limc - lim x" = ca”.

X—a X—a X—a
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(B) Py(x) = cpX" + Cpmi XN o+ 01X + €.

limP,(x) = lim (cnx” + Cpog X1
X—a

X—a

+"'+C1X+C0)

= lime,x" +lime,_ (X" ' + -+ + limcyx + lim ¢

xX—a xX—a xX—a x—a

= ¢, d"+ ¢ d7 + -+ cra + .

The limits of polynomial functions exist everywhere and the limits are equal to the values
of the polynomial at those points. That is, lim P,(x) = P,(a).

Example 3.2.13. (Rational functions)

P
A rational function has thr form R(x) = ﬂ where P(x) and Q(x) are polynomials. Con-

o Ox)’
sider lim R(x).

X—a

000 <0 w1220

main of R(x), lim R(x) = R(a).

= R(a). For every number a in the do-

(2) fQ(@) =0,
e when P(a) # 0, we will show later that the limit lim R(x) = +co.

e when P(a) = 0, we will factorize P(x) and Q(x). After dividing their common factors,
the problem will reduce to the above two cases.

Example 3.2.14.

(1) Compute ling X +2x—6.

Proof. Since x* + 2x — 6 is a polynomial function,

limx® +2x-6=3*+2-3-6=27.

x—3

]
x*+5
2) C te li :
2) omlf)uexl_r)r313xz_1
. P +5 ) .
Proof. Since e is a rational function defined at 3,
x —
lim X*+5  3F+5 7
—33x2-1 3:32-1 13
]

(3) Compute lim X +2x—6.

Proof. O
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(4) If lim £(x) = 3, lim g(x) = 2 and lim A(x) = 4, compute lim Iﬁg—%

Proof.

im f(X) + g(X) _ hmx—)a (f()C) + g()C)) _ limx—m f(X) + limx—m g(X) _ 5
= B2(x0) = f() lim, (R2(0) = f(0)  limeg h2(00) — lim, f(x) 137

O
327
(5) Compute lim al .
-3 x—3
327 -3)(x* +3x+9 ,
Proof. Forx¢3,x :(x )x 3x ):x2+3x+9. Also, x> +3x+9is a
xX— X —
polynomial functon, then
327
1in31x :1in§(x2+3x+9):32+3-3+9:27.
x-3 X — X—
3 _
Hence, lim X -27 =27.
x—3 x—3
O
1 -
(6) Compute lirrll \/)_C
x— - X
Proof. For x # 1,
I-Vx_(-Vo+vD _ 1-x 1
I-=x  (1-x01++v0) A-00+vV0) 1+ yx
Then,
I VE L 1
1m =11 = —
-1l 1 =x x—1]1 + \/} 2
O

a Squeeze (Sandwich, Pinching) Theorem for Functions at a number

Theorem 3.2.15. (Squeeze Theorem) Suppose that f, g and h are three functions defined on
(a — 0,a + o) (except possibly at a itself), and f(x) < g(x) < h(x) for all numbers near a. If
lim f(x) = L = lim h(x), then the limit of g, as x tends to a, exists and moreover lim g(x) = L.

\ h

9

=Y <h
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Proof.

45

lg(x) - L| < e.

To prove that for given € > 0, there exists 6 > 0 such that for all 0 < |x — a| < d, then

Given € > 0, since lim 4(x) = L, there exists 0 < 6; < o such that for every 0 < |x —a| < ¢y,

X—a

|h(x) — L| < &. Then, for 0 < |x — a| < 81, h(x) < L + . Hence,

gx)<h(x)y<L+¢e forall 0<|x—al<d

Similarly, since lim f(x) = L, there exists 0 < ¢, < o such that for every 0 < |x — a| < 95,

|f(x) — L| < &. Then, for 0 < |x — a| < 65, f(x) > L — €. Hence,
gx) > f(x)<L-¢ forall O0<|x—al<d;
Choose 6 = mino;,0, > 0. For0 < |[x —a| < 6,

L-e<glx)<L+e.

Hence, lim g(x) = L. O
Example 3.2.16.
(1) Find lir% sin x.
Proof. —
) BC — VA
For x > 0, from the figure, sin x = 0: = BC. Then
B
0<sinx=BC<AB<AB=x
Similarly, for x < 0, we have x < sin x < 0. We have B
—|x| <sinx < |x| for every x. 1
Also, 1in3(—|x|) = lir%x = (. By the squeeze theorem, X \ A 5
x— xX— O
lim sin x = 0. c Lo X
O

(2) Prove that lirr(l) cosx = 1. (Hint: cos x = V/1 — sin® x when x is near 0.)

(3) Find lim sin x.

xX—a

Proof. Since }lir% sinh = 0 and }lim cosh =1,

—0

lim sin x = lim sin(a + h) = }lir%(sinacosh+cosasinh) =sina-1+cosa-0 =sina.
— —

x—a h—0

O
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(4) Prove that limcos x = cosa.
X—a
(5) Prove that the limits of all trigonometric functions are equal to the vlues of the trigonometric
functions at that points. That is, assuming that a is in the domain of the below functions,
limtan x = tana, limcotx =cota, limsecx =seca, limcscx = csca.

x—a X—a xX—a X—a

(6) Find lim |

x-0 X

Proof. W.L.O.G, we may assume x > 0 and the case x < 0 is similiar.
From the figure,

1 1
AOAB = 3 sinx, sector OAB = Ex and AOAD = %tan X.

Then,
1sin <1 <1tan o X =
—sinx < —x < —tan x.
2 2 2 1
Hence,
) ) 1
0 Smx g lanx_sinx for x € (0, 2.
X X X  COSX 2
sin x . . .
We have cos x < —— < 1 for x € (0, 5). Since hr% cosx = 1 and hn& 1 = 1, by the squeeze
X x— x—
theorem,
lim 22 = 1.
x—0 X
O
. cosx—1
(7) Prove that lim —— = 0.
x—0 X
in(3
(8) Find lim sin(3x)
Proof.
lim sin(3x) I <sin(3x) 3) 3 I sin(3x) 3
=im(——: =) == -1m = —.
x—0 X x—0 3x 5 5 »~0 3x 5
O

3.3 Sided Limits and Infinite Limits

3.3.1 Sided Limits

Consider the Heaviside function
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0 ifr<0 I
H(t):{l ifr>0

0 [

There is no number that H(#) approaches as ¢ approaches 0. Therefore, lin(} H(?) does not exist.
t—

But if we only consider the number that H(¢) approaches as ¢ approaches 0 from the right (left)
side, such a number exists.

m Intuitive Definition (one-sided limits):

Let f be a function whose domain contains an open interval (a,a + o) for some samll number
o > 0. We say that the “right-hand limit of f(x) as x approaches a from the right, exists” if
there exists a number L such that we can make the values of f(x) arbitrarily close to L by taking
x to be sufficiently close to a with x greater than a. We write

lim f(x) = L

x—a*

or
x—L asx—a'.

Similarly, if we require that x be less than a, we get the “right-hand limit of f(x) as x approaches
a is equal to L and we write

lim f(x) =L

x—a~
or
x—>L asx—oa .

YA ¥y
—-——-\\/
/3
flx) L
0 X — a T 0
(a) lim f(x)=L (b) lim f(x)=L

x-a x—=a

Definition 3.3.1. (Precise) Suppose f(x) is defined when x is near a from the right side (except
possibly at a itself). We say that “the right-hand limit (or limit from the right) of f(x), as x
approaches a, exists” if there is a umber L € R satisfying for every € > 0, there is a number
0 > 0 such that

|f(x) —L| <& whenever() < x—a<2é.

Denote
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lim f(x) =L
or

x—>L asx—a'.
Example 3.3.2. Let H(t) be the Heaviside function. Then lir(1)1 H(@{) =1 and li%l Hr =0
t—0+ t—0~

Remark. If lim f(x) exists, then both lim+ f(x)and lim f(x) exists . But the converse could be

false. For example, the Heaviside function.

Theorem 3.3.3. lim f(x) = L if and only if lim f(x) = L and lim f(x) = L (where L could be

+00),
Proof. (Exercise) O

3.3.2 Infinite Limits

) N
Consider lim = if it exists

x—0 X
1

+1 1

+0.5 4

+0.2 25

+0.1 100

+0.05 400

+0.01 10000
+0.001 1000000

As x becomes close to 0, 1/x> becomes vergy large. In fact, the values of f(x) can be made ar-
bitrarily large by taing x close enough to 0. Thus, the values of f(x) do not approach a number,

so lim — do not exist.
x—0 x2

m Intuitive Definition: Let f(x) be a function defined on a neighborhood of a (except possibly
at a itself). We say that f approaches (tends to) co (—o0), as x approaches a, if the values of
Jf(x) can be made arbitrarily (negative) large by taking x sufficiently close to a, but not equal to
a. Denote

lim f(x) = oo (~c0)
or

f(x) > 00 (-0) as x—a
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_y=f) x=a

> 0 a X
0 a X
\// y=fx)

lim f(x)=co lim f(x)=—oo

Xx—a X—a

Definition 3.3.4. (Precise) Suppose that f is a function defined on a neighborhood of a (except
possibly at a itself). We say that “f approaches co (—), as x approaches a,”’ if for every M > 0
there exists a number ¢ > 0 such that

fx)>M (f(x)<—-M) whenever 0<|x—a|<Gé.

We write
lim f(x) = oo (—o0)
or

f(x) 2 o0(-00) as x—a

Note. We can define the sided infinite limits, lim f(x) = co by replacing “0 < |x — a| < 6” by
“0 <x—a < 6”. The other three limits, lim f(x) = oo, lim f(x) = —coand lim f(x) = —co can

be defined in a similar fashion.

I N
, b

(a) lim f(x)=c0 (b) lim‘ flx)y=c0 (c) lim f(x)=—o (d) liln flx)=—

x=a xral

/.

2x

Example 3.3.5. Find lim

x—=3" X —
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1
Proof. Observe that if 0 <3 —x < > then 5 < 2x < 6 and the quotient x3 1S a negative
x —_—

number. Moreover,

5 1 5
For given M > 0, < —M if and only if x >3 — Y4 Thus, choose ¢ = min(i, M). For

x —
every number x with 0 < 3 — x < ¢,

2
* < > < - > =-M.
x—-3 x-3 5/M
. : o » . 2x
Since M is an arbitrarily positive number, hrgl 3= O
x—37 X —

m Vertical Asymptote: The vertical line x = a is called a “vertical asymptote” of the curve
y = f(x) if at least one of the following statements is true:

lim £(x) = oo lim f(x) = oo lim f(x) = oo

lim f(x) = —oc0 lim f(x) = —oo lim f(x) = —o0

Example 3.3.6. Find the vertical asymptotes of f(x) = tan x.

y

1+

|
4
+

———— 2t

Proof. Check thatlimx — (/2 + nxr)” tan x = oo or lim x — (/2 + nn)™ tan x = —co. Then the

. 7 .
lines x = 5 + nmr, where n € Z are all vertical asymptotes of f(x) = tan x.
O
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Exercise. Let a function f be defined on (0, a) for some a > 0. Prove that either both of the
limits

lim f(x) and lim f(l)

x—=0* t—00 t
exist and are equal, or both of them diverge.

Exercise. If lim g(x) = oo and |f(x)| < M for all x, then lim f(_x; =0.
xX—a x—a g X

(Students are supposed to have the ability of writing down the rigorous proof if a is replaced by
at,a , £00.)
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Continuity of functions is an important concept in physics and mathematics. From the
macroscopic scale, the motion of an object is smooth. By using Euclidian Algorithm to ap-
proach a root of an equation, the continuity is also necessary.

4.1 Continuity of a Function

Heuristically, the graph of a continuous function contains no breaks, jumps, or wild oscilla-
tion. There are many ways which may make a function fail to be continuous. For example,

e fisnot defined at a.

e lim f(x) does not exist.
X—a

e The limit exists but there is a jump at a.

// 474/ \// ‘/'WW‘ .
,, e i/ (/.

c) é

undefined at a limit does not exist at a limit exists but jump at a

Definition 4.1.1. Let f be a function whose domain D contains a number a. We say that

(a) fis “continuous at a” if

lim £(x) = f(a)

33
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(b) if f is not continuous at a, then f is “discontinuous at a.

(c) f1s continuous on a set E C D if it is continuous at every point in E. If f is continuous at
every point in D, we say that f is continuous.

Note. The &-6 expression of the definition is that f : D — R is continuous at a € D if for every
£ > 0, there exists 0 > 0 such that

lf(0) - flal <e
for every x € D with |x — a| < 9.

Remark. If f(x) is continuous at a, then
(1) f is defined at a.
(i1) the limit of f exist at a. (}}_1)1; f(x) exists).
(i11) the limit at a is equal to the value of f at a. (}CI_I)I; fx)=f (}CI_I)I; x)=f (a)).
Example 4.1.2.
(1) Any polynomial function is continuous on R.
(2) Any rational function is continuous on its domian.
(3) f(x) = |x| is continuous on R.
(4) f(x) = +/x1is continuous on R*.
(5) Any trigonometric function is continuos on its domain.

Theorem 4.1.3. Suppose that f(x) is continuous at a and f(a) > 0 (f(a) < 0). Then there is
0 > 0 such that f(x) > 0 (f(x) > 0) for all x with |x — a| < 6.

y
E

. >
0 a—=o0 a+o

i

Proof. Choose € = f(a) > 0. Since f(x) is continuous at a, there exists 6 > 0 such that for
every x with |x — a| < 6, then

If(x) = fla)l <e.
Then, f(x) — f(a) > —e and hence f(x) > f(a) — € = f(a) — f(a) = 0.
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Example 4.1.4. Suppose f(x) is continuous at a and f(a) > 0. Then there is 6 > 0 such that
f(a)

f(x) > — for every x with [x — a| < 6.

m Discontinuities

There are some different types of discontinuities.

y /
1 / 1 1 & 1 —
0 2 X 0 X 0 1 2 X 0 1 2 3 X
O—-I‘
& L ifx0 i e Y
@IW=""=3 (b) flx)=1 »* ©fx)=y x-2 ’ (d) flx)=x]
! 1 ifx=0 1 if x=2
removable mfinite removable jump
discontinuity discontinuity discontmuity discontinuities

0, x<0

1, x>0 is (jump) discontinuous at 0 and

Example 4.1.5. The Heaviside function H(x) = {
continuous elsewhere.

Remark. There are some methods for proving discontinuity at x = a. See Remark 4.1.11 in the
textbook.

a Laws of Continuous Functions

Theorem 4.1.6. (The sums, differences, products, quotients and scalar products of continuous
functions are continuous.)

If f(x) and g(x) are continuous at a and c is a constant , then
(a) (f £g)(x) is continuous at a.
(b) (cf)(x) is continuous at a.

(c) (f - g)(x) is continuous at a.
f : . .
(d) <§) (x) is continuous at a provided g(a) # 0.

Proof. (Exercise) O

Lemma 4.1.7. If f is continuous at b and lim g(x) = b, then lim f(g(x)) = f(b). In other words,

lim f(g(x)) = f(lim g(x)).

Proof. (Exercise) O
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Theorem 4.1.8. (Composite of continuous functions is continuous) If g is continuous at a and
f is continuous at g(a), then the composite function f o g given by (f o g)(x) = f(g(x)) is
continuous at a.

| |

€ L

ot fe(@)
g @
: f';' -
A B R
il f
™ £(4) ~ f(& (4))
Proof. (Exercise) O

€C 9

Note. f(x) is continuous at “g(a)” rather than “a”.

xsin)lc, x#0
0, x=0

3Vx2+3x—1>3
V]|x — 2| cos x '

Proof. Let f(x) = x> +3x—1, g(x) = Vx, h(x) = |x — 2|, k(x) = cosx and F(x) = x>. Since
f, h and k are continuous at 1, g is continuous at 3 and cos 1 which is nonzero there. Also, F' is

Example 4.1.9. Prove that the function f(x) = { is continuous.

Example 4.1.10. Evaluate lim (

x—1

continuous at . Hence,

cos 1

(3 Vx2+3x—1)3_F( 3g(f(x)) )
Vix=2lcosx’  ‘g(h()k(x))

is continuous at 1 and

lim

x—1

(3Vx2+3x—1>3 —F( 3g(f(1)) ) _ 813
VIx=2lcosx/ g(h(Dk(D)) Ccos3 1
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®m One-sided Continuity

We recall the defintion of continuity that the limit of f at a from both sides. But some
functions are only defined on one side. For example, f(x) = +/x is defined on [0, c0). What’s
the continity of f at 0?7

Definition 4.1.11. Let f be a function. We say that f is “right continuous at a” (or “continuous
from the right at a”) if lim f(x) = f(a).

Rephase as -0 defintion that “for given &€ > 0 there exists 6 > 0 such that |f(x) — f(a)| < &,
provided that 0 < x —a < 6”.

Similary, we can define the “left continuous at a” by lim f(x) = f(a) and replacing “0 <
x—a<6'by“0<a-x>09".

m Continuous on an interval with endpoint(s)

Definition 4.1.12. Suppose that f is a function defined on [a, b]. We say that f is continuous
on [a, b] if

(1) f is continuous on (a, b), and
(i) lim f(x) = f(a) and lim f(x) = f(b)
0, x<0

1, x>0
and continuous elsewhere. H(x) is right continuous at O but not left continuous there.

Example 4.1.13. The Heaviside function H(x) = { is (jump) discontinuous at 0

4.2 Properties of Continuous Functions

1 Intermediate Value Theorem

Theorem 4.2.1. (Intermediate Value Theorem) Suppose that f is continuous on the closed in-
terval [a, b] and let L be any number between f(a) and f(b), where f(a) # f(b). Then there
exists a number c in (a, b) such that f(c) = L.

Y A VA
f(b) f(b)
7 y=f)
"
fia) y=Fix) fla)
0 a c b x 0 a ¢ s cs b X

(a) (b)
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Proof.
W.L.O.G, we may assume f(a) < L < f(b). Define A
y=flx)
A={xelab]|f(y)<Lforally< x}. f(b)
Since f(a) < L and f is continuous at a and f(a) < L, L
there exists 0; > O such that f(x) < Lforall x € [a,a+6;).
Hence, A is nonempty.
. fla)
Clearly, b is an upper bound for A. By the least upper . T
bound property, there exists a number ¢ € [a, b] such that 0 a A c h X

¢ = supA.

We claim that ¢ # a,b. Since f is continuous at b and f(b) > L, there exists d, > 0 such that
f(x) > Lforall x € (b—9,,b]. Then b — ,/2 is an upper bound for A and b is not a least upper
bound for A. Thus, ¢ # b. Similarly, ¢ # a.

Now, we want to prove f(c) = L. Assume that f(c) # L, then either f(c) < L or f(c) > L.

(1) If f(c¢) < L, since f is continuous at c, there exists 63 > 0 such that f(x) < L for all
x € (c — 03,¢c + 03). Then there is xo > ¢ such that f(x) < L for all x < xy. Hence, it
contradicts that c is an upper bound for A.

(i1) if f(c) > L, since f is continuous at c, there exists 64, > 0 such that f(x) > L for all
X € (c—0d4,c+64). Then there is x; < ¢ such that x; is an upper bound for A. It contradicts
that c is a least upper bound for A.

Therefore, f(c) = L and the theorem is proved.

Remark. The theorem is false if one of the following condition happens.
(1) f is not continuous.
(i1) f is continuous on (a, b) but not continuous at the endpoint(s).

(iii) f(a) = f(b) (No number is between them.)

Example 4.2.2. Let f(x) = 4x> — 6x> + 3x — 2. Prove that there is a root of f(x) between 1 and
2.

Proof. Since f is a polynomial, it is continuous on [1, 2]. Also,

f() = -1<0
) 1250

By the Intermediate Value Theorem, there exists a number ¢ € (1,2) such that f(c¢) = 0 and c is
aroot of f between 1 and 2.
O
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Exercise.

(1) Let n be an even positive integer. Prove that every positive number has a n-th root.

1

(2) Let n be an odd integer. Prove that the polynomial P(x) = x" + a,_; X"~ +--- +a;x + ag has

aroot.

(3) Let n be an odd integer. Prove that for any number @ € R there is a number ¢ such that
P(c) = a.

1 Boundedness of Continuous Functions

Theorem 4.2.3. If f is continuous at a, then there exists 6 > 0 such that f is bounded on
(a—9,a+09).

Proof. Since f is continuous at a, for £ = 1, there exists 6 > 0 such that |f(x) — f(a)| < 1 for all
|x — a| < 6. Therefore,

fl@)—-1< f(x) < f(a)+1 forall x € (a-d,a+09).
Hence, f is bounded on (a — 6, a + 9). |

0 Extreme Value Theorem

Theorem 4.2.4. If f is continuous on [a, b). Then f is bounded on |a, b].

Proof. Define A = {x € [a,b] | f is bounded on [a, x]}. ’We want to prove A = [a, b] ‘

(i) Stepl: To prove that A has a least upper bound.
Clearly, a € A. Hence, A is nonempty. Since b is an upper bound for A, by the least upper
bound property, there exists ¢ € [a, b] such that ¢ = sup A.

(i) Step2: To prove b = ¢ (= sup A).
Assume that ¢ < b. Since f is continuous at ¢, there exists 6 > 0 such that f(x) is bounded
on (c—0d,c+9) C [a,b). Moreover, since c is a least upper bound for A, there exists x, € A
with ¢ — 0 < xy < c. Hence, f is bounded on [a, xy]. Also, there exists x; € (¢, c + ) such
that f(x) is bounded on [xg, x;]. Then f is bounded on [a, x;]. This implies that x; € A
and we obtain a contradiction that ¢ is an upper bound for A. Then ¢ = b.

bounded bounded

X X
i ( — : >
a CcC—96 c C+96 b X
bounded

(iii) Step3: To prove that f is bounded on [a, b].
Since f is continuous at b, there exists d; > 0 such that f is bounded on (b — 61, b]. That
b = sup A implies that there exists x, € (b — d1,b] and x, € A. Then f is bounded on
[a, x,]. Also, f is bounded on [x,, b]. We have f is bounded on [a, b].
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bounded bounded

] A -
T >
a X2 b X

bounded

O

Theorem 4.2.5. (Extreme Value Theorem) If f is continuous on [a, b), then there exists a number
¢ € |a, b] such that

f(c) = f(x) forall x € [a,b]
That is, f(c) = m[aib(] f(x). Similarly, there exists a number d € [a, b] such that
x€[a,
f(d) < f(x) forall x € |a,b]
That is, f(d) = n%ilg] f(x).

Ay y

TN

TN

Ay

|
: L
a ¢ db

=Y

I
I
( d

a

b

3
>

Q‘_
$

3-:
=Y

Proof. Since f is continuous on [a, b], it is bounded on [, b]. Then the set { f(x) | x € [a,b]}
is bounded and nonempty. By the least upper bound property, the set has a least upper bound,
say M = sup {f(x) } X € [a, b]}.

Assume that there is no number in [a, b] such that the values of f attain its maximum. De-

fine g(x) = Since f is continuous on [a, b] and f(x) # M for all x € [a,b], g is

ATE e
continuous on [a, b], say 0 < |g(x)| < L.

On the other hand, M is a least upper bound of {f(x) | x € [a,b]}. Then there exists
xo € [a,b] and yo € { f(x) | x € [a,b]} such that y; = f(xo) and

1
M- — <y < M.
°L Yo
Hence,

1 1

)f(xo)l—M‘:‘yoiM‘>‘(M_i)_M = 1/2L:2L>L.

lg(xo)l =

The contradiction implies that f must attain its maximum at some number. O
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Remark. In the theorem, the continuity and the closedness of the interval are necessary. The
theorem is false if either

(1) f is not continuous on [a, b], or
(i1) f is continuous on (a, b).
Exercise.

(1) Letn be an even integer and P(x) = X" + a,_;x"' + -+ + a;x + ao. Then there is a number
¢ € R such that
P(c) < P(x) forall x e R.

That is, P(c¢) = min P(x).
xeR
(2) Let n be an even integer and the equation
X +a, X+ v ax+ap = a.

Prove that there is a number m € R such that the equation has no solution for @ < m and the
equation has a solution for @ > m.
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5.1 Derivative of a Function

So far, we have learned the limits and continuity of functions. Some (local) information of
a function can be obtained by studying its limits and continuity. But continuous functions have
many different types.

f(x) = lxi; x>0
f) = % x50
f(x} = |

fx) = Vi

(a) (b) ) (©)

The concepts in the previous chapters cannot reflect how a function changes locally. There-
fore, we will discuss the “rate of change” of a function. Some mathematical and physical
problems such as tangents and velocities involve this topic.

m Tangents

The word tangent is derived from the Latin word tangens, which means “touching.” How to
make the idea that “a tangent to a curve is a line that touches the curve” precise?

63
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(a) (b)
Question: How to find the tangent line of the graph of f(x) at a given point? To find the slope
of the tangent line.

For a curve C : y = f(x) and a point P(a, f(a)) on C, consider the slope of the secant line
PQ. Say Q(x, f(x)) on C. Then

_Jx) - fa)
Mmpp = ——.
X—d
Yy ¥ ¥
o
T T T
o
o
P P P
0 X 0 v 0 X
/ VZ
Q approaches P from the right
¥ y y
T T 4
0 P P P
2 0
0 X 0 X 0 X

O approaches P from the left

Let Q approach P along the curve C by letting x approach a. If mpy approaches a number m,
then we define tha tangent 7" to be the line through P with slope m.
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Definition 5.1.1. The “tangent line” to the curve y = f(x) at the point P(a, f(a)) is

(a) the line through P with slope
o @) - fla)
m=lim ———~
x—a XxX—a

provided that this limit exists, or
J(x) = f(a)

(b) the (vertical) line x = q, if lim M =tooor lim —————~ = +00
x—at XxX—a x—a~ XxX—a

YA
vertical tangent

line

s

Note. An alternating expression of the slope of the tangent line is

. fla+h) - f@)
1m

h—0 h

Q(a+h, fla+h))

65

Example 5.1.2. Find an equation of the tangnet line to the hyperbola y = 3/x at the point (3, 1).
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Proof. Let f(x) = 3/x. The slope of the tangent line at (3, 1) is
f& -3 3/x-1 .. 3-x 1

li —1i = —
T o3 5 x—3  emxx-3) 3

Hence, the equation of the tangent of y = f(x) at (3, 1) is

1
y-l=-3(-3)

or
x+3y-6=0
O
m Velocity
position at position at
time r = a timetr=a+h
0 —
Let f(¢) be the position function of a particle. The average fla+t k)= fia)
velocity fromt=atot=a+ his [e—— fla) —
| fla+h) ——
fla+h) - fa)
7 .
' Ola+h, fla+h))

We define the velocity (or the instantaneous velocity) at
timet = ais

lim L@+ - fl@

h—0 h : I
Remark. The value is equal to the slope of the tangent I I
line at P. 0 y A
_ fla+h)— fla) _ average
Mo = h " velocity
Q Derivative

We observe the “difference quotient” plays an important role when we study the (local) change
of a function and its limit represents the “rate of change ” of a function.

Definition 5.1.3. Let f be a function defined on D which cantains a neighborhood of a.
(a) We say that f is “differentiable at a” if

lim L~ f(@
m—

x—a XxX—da
exists. The limit is denoted by f’(a) and is called the “derivative of f at a .

(b) If f(x) is differentiable at every point of a set I, we say that “f is differnetiable on I”’.
Note. If replacing x by a + h, we have

J) - f(a)
x—a

_ i f@t D)~ f@
= lim .

@) = lim hoo h

X—a
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Jx+h) - f(x)
h

exists). Then we can regard f’(x) as a function and is called the “derivative of f(x)”.

Note. Dom(f’) C Dom(f).

(c) We collect every point x € D where f’(x) is defined (i.e. the limit }lin&

Example 5.1.4. Determine whether the following functions are differentiable at the given point.

(1) f(x) =cx+d,atx =a.

Proof.
. Jcla+h)+d] - [ca+d]

= lim =c.
h—0 h

fla+h - fla)
h

f'(@) =lim
Hence, f’(a) = c. (independent of a) O

(2) fx)y=x*atx=a

Proof.

C(a+h)?-a®> . 2ah+ R
=lim——— =1lim
h—0 h h—0

@) = lim " D= T ~ lim(a + ) = 2a.
Hence, f'(a) = 2a. O

3) f(x) =|xlatx = 0.

Proof.
Consider lim w = lim M
h—0 ]’l h—0 h y

i SO SO b y=lxl

h—0* h h—0* h

lim M = lim __h -1

h—0- h h—0- h

h) - £(0 0 x

Hence, the limit %in(} w does not exist and f is not dif-

ferentiable at O.

O
4x, x<1
@ f@={35,, T5) ax=1
Proof. (Exercise)
O

(5) f(x) = vYxatx>O0.
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Proof.
’ T f(X+h)_f(X)_ . Vx + h \/_ . Vx+h \/_ W+\/_
F = h R }zlﬁmo[ h Vx + +\/_}
1
= i .
T~ T
O

Note. (Tangent line) Suppose that f(x) is differentiable at a. Then the equation of the tangent
line of y = f(x) at (a,f(a)) is

y—fla) = f(a)(x—a)
or

y = fla) + f(@)(x - a).
m Continuity and Differentiability

Theorem 5.1.5. If f(x) is differentiable at a, then f(x) is continuous at a.

f(a+h) f(a)

Proof. Since f is differentiable at a, the derivative f’(a) = l exists. Also,
}er%h 0. We have

h) — h) —
iy (10 0 = @) = fim (R0 ) = g PRI = -0 =0

Then
lim f(a+h) = lim (f(a+h) = f(@)+f@) = lim (f(a+h)= f(@) +1im f(@) = 0+ f(a) = f().
Hence, f is continuous at a. O

Remark. The converse of this theorem is false. For example, f(x) = |x|.

Question: How can a function fail to be differentiable?
f is not differentiable at a if

(1) f is not continuous at a;

+ h) —
(i1) f is continuous at a but };H% fa })z @ DNE;

fla+h) - f(a)

(i11) }ling Y = +oo vertical tangnet.
—
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V4 v/ VA
0 a } 0 a X 0 a X
(a) A discontinuity (b) A corner (c) A vertical tangent

Three ways for f not to be differentiable at a

Remark. Heuristically, if the graph of a function y = f(x) has a discontinuity, a corner(cusp)
or a vertical tangent line at (a, f (a)) , then f(x) is not differentiable at a. On the contrary, if the
graph of f(x) is smooth at (a, f (a)), then f is differentiable at a.

Example 5.1.6. Some continuous but nondifferentiable functions:

(1) f(x) = Ixl;
X, x<0
@ o ={  xso
(3) f(x) = VIxl;
!
@) f(x):{ xsm; ,x#0
0, x=0

1
limy,_,¢(h sin }1—0) /h = }lin(l) sin A does not exist. Hence,
f is not differentiable at 0.

(5) f(x):{ xzsini ,x%0

0, x=0

1
limy,o(h* sin 1 — 0)/h = }lir%h sin = 0. Hence, f is
differentiable at O.

(6) There are functions which are continuous everywhere, but are differentiable nowhere.
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0 Rate of Change
v Olx, flza) Ax =Xy — X1, Ay = f(x2) = f(x1)
/ The quotient differenece
P(x,, f\(jCl)) Ay _ f(x2) = f(x1)
AX X — X1

I . .
| is called the average rate of change of y with
| respect to x over [x, x»].

I
|
I
0 X Xy X

Fi@ = lim =2

average rate of change = mp, A0 AX

instantaneous rate of change =

slope of tangent at P is called the instantaneous rate of change of y

with respect to x.

Hence, f’(a) is the instantaneous rate of change of y = f(x) with respect to x when x = a.

Remark.

0

—

If f’(a) is large, it means

that the curve at x = a P

is steep. Hence, y-value

changes rapidly

/ X

The y-values are changing rapidly
at P and slowly at Q.

a Notation

Let y = f(x). Some common alternative notations for thederivative are as follows:

oy =D oy _
Fw =y === 2= oo f(6) = Df(x) = Dof (%),

d o

The symbols D and o are called “differentiation operators” because they indicate the opera-
X

tion of differentiation.

_4

=2
flay=—| =-

dx

X=a

a0 Higher Derivatives
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Recall the we can regard f’(x) as a new function and consider the differentiability of f”.

d

f AN f derivative of f
d
5 (Y = f” derivative of f/ (second derivative of /)

d
5 (fY """ derivative of f”/ (third derivative of f)

A (nth derivative of f)

m Leibniz notation:

d d 2 d 2 3 d n
p i, 4 & i(ﬂ):d_f N i(d_f):ﬂ. o df
dx dx “dx d’x dx \dx? dx3 dx"

5.2 Differentiation Formulas

Using the definition to find the derivatives of functions would be tedious. We hope to study
some rules to help finding the derivative without using the definition.

Theorem 5.2.1. (Differentiation formulas) Let f and g be differentiable at a, and c be a con-
stant. Then

(a) f + g is differentiable at a and (f + g)’(a) = f'(a) £ g'(a),
(b) cf is differentiable at a and (cf)'(a) =cf'(a);

(c) fg is differentiable at a and ( f g)’(a) = f'(a)g(a) + f(a)g'(a) (Product rule);
(d) ! is differentiable at a provided g'(a) # 0 and
8

f'(a)g(a) - fla)g'(a)

f
( [e(@)]?

8

(Quotient rule)

)@ =

Proof. (Proof of product rule)

i 8@+ )~ (f9)@
m

h—0 h

_ fla+hgla+h) - fla)g(a)

= h

- lim fla+hgla+h)— fla)gla+h) + f(a)gla+ h) — fla)g(a)
h—0 h

_ Im (fla+h) — f(@)gla+h) + fla)(gla+h) - ga))

h—0 h
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Since f and g are differentiable at a, they are continuous at a. Hence,

I fla+h)— f(a)
im

) — gla+h)—gla)
h—0 h

h

= f(a), lim =g'(a), limg(a + h) = ga).

Plugging the above limit, we have

lim 8@+ h) — (f8)@)
1m

h—0 h
o St h) - f)
h—0 h

= fla)g(a) + f(a)g' ().

gla+h) —g(a)
h

limg(a +h) + f(a)lim

Remark. (fg)' # f'¢’ and <§>’ # ((]gl’)
Corollary 5.2.2. If f1, f>, ..., f, and g are differentiable at a, then

(a) fi + fo+---+ f, are differentiable at a and
(it o+ 1)@= f@+ fi@++ fr@);
(b) fifo--- fn are differentiable at a and
(fifae 1) (@ = [@f@- - ful@) + fil@fi@) - ful@) + - fil@)fo(@)- - fi(a).
If fi=fforalli=1,2,...,n, then part (b) can be rewritten as
(") @ = nf"""@f"(@.

Note: This law is true for all n € R. We will discuss in the future.

g'(a)
[g(a)]?

Proof. Exercise m|

(c) (é)I(a) = - provided g(a) # 0.
Exercise.
(i) (constant function) f(x) = c is a constant function. Then f”(x) = 0.
(i) (power function) Let f(x) = x" for n € N. Then f’(x) = nx".
(iii) f(x) = x" forn € N. Then f’(x) = —nx™""'.
(iv) f(x) = x" forn € Q (thatis, n = § where p,q € Z). Then f'(x) = nx""'.
(v) (polynomial function) Let P(x) = a,x" + a,.1 X! + -+ + a;x + ay be a polynomial. Then

n
P'(x) = na,x" '+ (mn—Da,_ X" 2+ +2mx +a; = Z kag X1,
k=1



5.2. DIFFERENTIATION FORMULAS 73

Proof. (iii)

d, .. dg/1 L(xm nx"1 i
ROl o) Al
Problem (i), (ii), (iv), (v) are left as exercise. O

Remark. From (ii), (iii), (iv), we have the power rule that for n € Q
d
— (") =nx""1,
dx( ) =nx

In fact, the rule is true for all » € R and we will discuss it in the future.

Exercise.
d
i) —x*) =20x".
dx

(ii) f(x) = Bx)(5xh).
F1(x) = Bx2)(5xH) + BxH)(5xY) = 6x - 5x* + 3x% - 20x° = 30x° + 60x° = 90x°.
In fact, f(x) = 15x° and thus f’(x) = 90x°.

5x34+2x-3
(i) f(x) = 3241
, B G +2x =3B+ D) -G +2x-3)B2 + 1)
J = G+ 1)
3 (15x* + 2)(3x*> + 1) = (5x% + 2x — 3)(6x)
B (3x2 + 1) '

Q Derivatives of Trigonometric Functions

e f(x)=sinx

f(x+h)f(x) . sin(x+ h) —sinx
m = lim

, )
x) = I
f( ) h—0 l’l h—0 h
. sinxcosh +cosxsinh —sinx
= lim
h—0 h
. sinx(cosh—1)+ cosxsinh
= lim
h—0 ]’l
.. . cosh—-1 . . sinh
= limsinx-lim ———— + limcos x - lim
h—0 h—0 h h—0 h—0
= COoSx
cosh—1 sinh

The last equality follows the fact that }in& — - 0 and lim - 1.

h—0
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f(x)=sin x

N

|
|
|
|
|
|
|
|

i\ ‘ 0

</
N
3
=

e f(x) =cosx. Then f’(x) = —sin x. (Exercise)

sin x .
e f(x) = tanx = ——. By the quotient rule,
Cos X

,,_ (sinx)’ cosx —sinx(cosx) cos? x + sin” x I
f(x)= = = =sec’x
cos? x cos? x cos? x

e f(x)=cotx, f(x) = —csc?x.
e f(x) =secx, f’(x) = sec xtan x.

e f(x)=cscx, f'(x) = —cscxcotx.

5.3 The Chain Rule

So far, we cannot use the differentiation formulas in the previous section to find the derivative

of F(x) = Va2 + 1. Let f(x) = vx and g(x) = x> + 1. then F(x) = f(g(x)).

In general, we want to deal with the differentiation of a composite function. Let F(x) =
(fog)) = f(g(x). Whatis F’(x)?

o ° Y
f< y=f() v e
flut Au) = F(z + Az)
F=fog o o u
u = g(z) u—lll—Au
g< gz + Ax)
o o T
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Heuristic idea: Let u = g(x) and y = f(u) Then y = f(g(x)) = F(x).
F Ax)—F A
F’ (X) = lim (X+ )C) ()C) = lim y
Ax—0 AX A0 A.X
Consider
A A A An) —
oy _ flutaw i &Y o St a0 - f) o
Au Au au—0 AU Au—0 Al
A Ax) —
ﬁ = m = lim ﬁ — lim g(x+ x) g(x) _ g,(x)
Ax AX ax—0 AX Ax—0 AX
Hence,
ar = imar =t (G ) = (im0 Clim 22
- (bﬁhz;>(MH0A ) = fwg ()
dy du )
= == (e)g')

Theorem 5.3.1. (Chain Rule) Suppose that S and T are open intervals in R, g(x): S — T,
f(u): T - Randa € S. If g is differentiable at a and f is differentiable at g(a) then f o g is
differentiable at a and

(fog)(@=f(s@)g' @) (5.1)
Proof. Since f is differentiable at g(a),

f(g(@ + au) ~ f(g(@)

tim SO0 SO (a).
Define a new function
stouy =L (@ + ou) = f(s@) _ /' (g@). (5.2)

AU
Then
f(g@) + au) - f(g@) = auf’(g(a) + rue(ru)

and (BT) implies that e(Au) — 0 as Au — 0. On the other hand, let Au = g(a + Ax) — g(a).
Since g is differentiable at q, it is continuous there. Then Au — 0 as Ax — 0. This implies that

eau) -0 asax— 0
Also, by (52)
f(gla+ ax) - g(a)) = [gla+ ax) — g(@)] f'(g(@) + [gla + Ax) — g(a)| e(aw).
Dividing by Ax,

[g(a+ ax) - g(@)]
AX

f(gla+sx)—g@)  [gla+nx) - g(a)]
AX - AX

f(g(@) +

e(Au)
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Let Ax — 0. We have

f(ga+ ax) - ga)

lim
Ax—0 AX
= lm sa+ AAx))C ~5(@)] f(g@) + Al,iglo s+ AAX; ~ 8@ e(Au)

f(8(@)g' (@) +g'(a) - 0.

Note.

(1) Strictly speaking, the two functions (f o g)'(x) and f’(g(x))g’(x) may not be equal. For
example, f(x) = 0 and g(x) = |x|. The domain of ( fo g)'(x) is R and the domain of
f (g(x)) g’'(x) 1s R\{0}. We don’t worry about this if adding some conditions.

(2) Suppose that S and 7" are open intervalsinR, g : S = T, f : T — R. If g is differentiable
on S and f is differentiable on T, then

(fog) () = f(gx)g ().

Example 5.3.2.

(1) h(x) = sin x>
Let f(x) = sinx and g(x) = x, then A(x) = f(g(x)). Since f"(x) = cosx and g'(x) = 2x, we
have
nWx)=f (g(x))g'(x) = cos x> - 2x

(2) h(x) = sin? x.
Let f(x) = x* and g(x) = sinx, then h(x) = f(g(x)). Since f"(x) = 2x and g'(x) = cos x,

H(x) = f"(g(x))g (x) = 2sinxcos x.

1
2 1
3) h(x):{ X smx, forx #0

0, forx=0

1 1
For x # 0, let f(x) = sinx and g(x) = —, then sin — = (f o g)(x). Since f’(x) = cos x and
x X

1 1
g'(x) = ——, we have (sin —)" = (cos —)(——). Then
X X x x

1 1
h'(x) = 2xsin — + x> cos — - (=—=) = 2xsin — — cos —
X X X X X

Atx=0 "
. h(k)-h©O) . Ksing-0
m———==]lim——

li

k—0 k k—0 k =0.

Thus, A’'(0) = 0.
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m The power rule combined with the chain rule

Theorem 5.3.3. Suppose that g is differentiable at a and n € Q. If f(x) = [g(x)]", then

f'(@) = nlg@]"'¢'(a).
Proof. Let h(x) = x", then f(x) = h(g(x)). Since h(x) is differentiable everywhere and /'(x) =

nx"!', we have

f'(@) =1 (g(@)g'(a) = nlg@)])"'¢'(a).

d
Example 5.3.4. (1) Lety = (x> + 2x + 1), then d—y =30(x> + 2x + DP(Bx* +2).
X

(2) Let f(x) = Vﬁ = +x+ 17" then f/(x) = -1 + x + D75 Q2x+ D).
=29 N 8.(2t+1)—2(t—2)
G) Letg) = (577) - then g0 = 9(377) Q2+ 1)

Corollary 5.3.5. Suppose that h(x) is differentiable at a, g(x) is differentiable at h(a) and f(x)
is differentiable at g(h(a)). If k(x) = (f ogo h) (x), then
K(a) = f'(g(h(a))) g (h(a))H (a).
In Leibniz notation, y = f(u), u = g(w) and w = h(x),
@ _dy dudw

dx  dudwdx’
Example 5.3.6. Let f(x) = sin’(2x? + 1) = [sin(2x> + 1)], then
f/(x) = 2sin(2x* + 1) - cos(2x* + 1) - 4x.

5.4 Implicit Differentiation

Some functions have explicit forms. For example, y = +/x, y = sin x? etc. But not all functions
can be described by expressing one variable explicitly in terms of another variable. Some
functions may have relations(equations) between x and y. For example, x> +y* = 1.

VA VA VA

0

=Y
=Y
=Y

(a) x? + y* =25 (b) f(x)=+/25— ©) gix)=—+25—x*
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Y

Moreover, for some equations such as x*y* + sin(xy*) + o1 1, it is difficult to express y as
X

a function of x (locally).

d
Question: How to find the d—y at a given point?
X

m Implicit Differentiation

If x and y have a “relation” (satisfy an equation), we can regard y as a function of x (locally).
Take “d—‘i” on the both sides of the equation.

Example 5.4.1. Let x> +y* = 6xy.
.o dy
Find —.
(a) Fin o
(b) Find the equation of the tangent line of the curve at (3, 3).
dy

(c) Find the points(s) on the curve such that T =0.
x

YA YA VA

A /

b

The folium of Descartes Graphs of three functions defined by the folium of Descartes

Proof. (a)
E(x +y ) = dx(6xy)
dy dy
3x% +3y*—= = 6y + 6x—
= o Y dx Y xdx
R ﬂ_3x2—6y_x2—2y
dx  6x-3y2 2x—)?
(b) YA
p ; (3,3)
At (3,3), d_y i) = 3 = —1. The equation of the
X 1(x,y)=(, -
tangent line is ’ >
X
y—3=—-(x-3).
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© ay x*-2y x?
—= = =0 = xX-2y=0 ==
dx 2x-—y? o 4 =Y 2

On the curve,
x° 1 4
x3+§:3x2 = x3(§x3—2)20 = x=001‘2§.

At the point (2%/3,25/3), the curve has horizon-
tal tangent line.

Question: How about at (0, 0)? There are two
tangent lines.

d
Example 5.4.2. sin(x + y) = y* cos x. Find d—y.
X

Proof. J
- [sin(x + y)] = - [V* cos x]
d d
= cos(x+y)- (1+ d—y) = Zyd—y cos x — y* sinx
X x
d
= (cos(x+y) - 2ycosx)d—y = —cos(x+y)—y’sinx
x
- dy  cos(x+y)+y*sinx
dx  cos(x+y)—2ycosx

79
4
4 N\
4
O
2
-2 2
-2
O
dy 3
dx 3
Y x*+y*=16
2
0 9 X

d d’
Example 5.4.3. x* + y* = 16. Find d—y and d—i.
X X
Proof.
d 4 47 _ d 3 3dy —
dx[x +y'] = dx(16) = 4x° + 4y - =0 =
d*y
To find —=.
O 111N dx2
Method 1:
i(@) ~ i(_ x_3) ~ _3x2y3 —3x3y2% ~ _3x2y3 + 3yi6
dx‘dx’ — dx* y¥ (?)? - y°
_ _3x2y4 + 3x° _ 3x2(* + x%) _ _48x2
y’ y’ Y’
Method 2:
d dy. d
a(4x3 + 4y3a) =0
dy ,dy d*y d*y 48x?
2 2 3 _ —
= 12x°+ 12y (E)(E)”y E‘O: Ty
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. d
Example 5.4.4. y = xi where p, ¢ € Z. Find d—y.
X

Proof. Consider y? = x”.

d d
0N = ()

d
= qu‘ld—y=pxp‘1
X
p-1 p-1 )
o Y _pxX _p X p oy

d_x - q yq—l - q xP—P/‘I q

Remark. In advanced calculus, we will study the Implicit Function Theorem.

5.5 Related Rates®

Recall: (Chain Rule) Let y = y(x) and x = x(¢). Then

dy dydx a’y / dx /
dr ~ dxdri dx dr

Example 5.5.1.

Air is being pumped into a spherical balloon. The radius
is increasing at the rate of 2 cm per second (2cm/s). What
rate is the volume increasing when the radius is 5 cm?

Proof. Let V be the volume of the balloon with radius r. Then

4 3
V(r) = §7Tr

% d
Our goal is to find s under the condition d—; = 2. By the volume formula,

dv
i 4nr?.

Then
dv  dvVdr

I :EE—Z Arr? = 87,

dv
Hence, —| = 200x (cm?/s). o
dt lr=5

r=

*The reference and examples in this section are from Calculus, J. Stewart 8th Ed.
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Example 5.5.2.
Wall

A ladder 5 m long rests against a vertical wall. dy
If the bottom of the ladder slides away from the o
wall at a rate of 1 m/s, how fast is the top of the 5 y
ladder sliding down the wall when the bottom
of the ladder is 3 m from the wall?

X Ground dx

Proof. Let x(t) be the distance from the bottom of the ladder to the wall. Let y(¢) be the distance
from the top of the ladder to the ground. Then

X +y? =25,

By the implicit differentiation,

d , d dy dy x
— = —(25 2x+2y— =0 - =——.
dx(x ) dx( ) = a ydx = dx y
d 3 d dyd
Lét 'x = 3, then y = 4 and hence d_i)c - = T Therefore, d_)t} = d_ic}d_)tc The top of the ladder is
sliding down the wall at a rate
dy dy dx 3 3
_— = — o —_— = —_—— 1 = —— .
dt |x=3 dxlx=3 dt|x=3 4 4 (m/s)
O
Example 5.5.3. & -
The water is being pumped into the tank at "
a rate of 2 m’/min. find the rate at which the .P T 4
water level is rising when the water is 3 m deep. ,

Proof. Let h be the height of water level and r be the radius of the surface of the water at time
t. Let V(r, h) be the volume of the water when the water level is 4. From the similar triangle

argument, r = Eh Then

1 1

1 1
V(r,h) = V(h) = §7rr2h = gn(ih)zh = Enh3.
1 dv dVv dh
H = =kt _ = — - —, h
ence, T 47rh and o T We have
dh dvV ,dv. 2 8
de — di! dh " lgp2  mh®
. . . dh )
The rate at which the water level is rising when 7 = 3 is — = — (m/min). O

dt ln=3 91
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Example 5.5.4.
A man walks along a straight path at a speed of

1.5 m/s. A searchlight is located on the ground
6 cm from the path and is kept focused on the A
man. At what rate is the searchlight rotating o Lo
6
A

when the man is 8 m from the point on the path
closest to the searchlight?

Proof. Let x be the distance from the man to the point on the path closest to the searchlight.
d

Then —); = 1.5. Let 6 be the angle between the beam of the searchlight and the perpendicular

to the path. Then

d
x=6tanf == ax _ 6 sec 0.
do

6
Wh =8 0=—=—and
en x = 8, cos 9= 5an

dx dxdb df dx ;dx 1.5 |
T = = —cos” 6.
dt dfdt dt dt! d9 6sectd 4
) .. de 1 3.2 9
H the rate of th hlingt rotat — =—(=) = — .
ence, the rate of the searchlingt rotating is Tl = 2 (5) 100 (rad/s) O

m Strategy

(1) Read the problem carefully.

(i1) Draw a diagram.

(i11) Introduce notation.

(iv) Express the given information and the required rate in terms of derivatives.
(v) Write an equation that relates the various quantities of the problem.

(vi) Use the chain rule.

(vil) Substitute the given information into the resulting equation and solve for the unknown
rate.

5.6 Linear Approximation and Differentials®

Motivation: A curve lies very very close to its tangnet line near the point of tangency. To
evaluate the value of a function f near a point q, it is sometimes difficult to compute directly.
Then we may use the tangent line at (a, f (a)) as an approximation to the curve y = f(x).
 Linear Approximation

"The reference and examples in this section are from Calculus, J. Stewart 8th Ed.
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The equation of the tangent line of y = f(x) at 1

(a, f(@) is
y = fla) + f(a)(x - a)

The approximation is

f) = fla) + f(a)(x—a) 1

if x is close to a. 0 *

Remark. This approximation is called the “linear approximation” or “tangent line approxima-
tion” of f at a. The linear function

L(x) = f(a) + f(a)(x — a)

is called the “linearization” of f at a.

Example 5.6.1. YA

7 X
Find the linearization of the function f(x) = Vx +3 y :\Z T3 /

ata = 1 and use it to approximate the number V3.98 1,2) =+ x4+ 3
and V4.05. / g

Proof. Since f'(x) = 5 , the linearization of fata = 11is

x+3

: HPUNE PN
Lx)=f(1)+ f/(1)(x - 1)—2+4(x 1) = 7] + 1
Then
V398 = f(0.98) ~ L(0.98) =2 + %(0.98 —-1)=1.995
V4.05 = f(1.05) ~ L(1.05) =2+ %(1.05 —-1)=13.0125

Question: How good is the approximation?
Example 5.6.2.

For what values of x is the linear approximation

x+3 =~

NN
+
IR

accurate to within 0.5?
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Proof. Consider

7 7
Var3-(3+3)| <05 = Var3-05<2+7<Vxr3+05

See the graph to compute the points P and Q which intersect the curves y = Vx +3 +0.5.

4.3
- 00—
y= \/,\‘+ 3+0.5
/P/ y=Jx+3-05
L(x)
—4 10
J

a Differentials

The idea behind linear approximation is formulated in the terminology and notation of “dif-
ferentials™.

Let f be a differentiable function and y = f(x). V1

Consider the change of x, Ax and the corresponding
change of y, Ay. We have

Ay = f(x+8x) - f(x) = f(x)ax.

|
Let Ax — 0, then dy = f’(x)dx. We regard the “dif- :
ferential” dx as an independent variable and “differ- 0 x x+Ax x
ential” dy as a dependent variable. y=fx)

Let dx = Ax. As Ax is sufficiently small, dy = Ay. Then
fla+ax) = fla+dx) = f(a) + oy = f(a) +dy = f(a) + f'(a)dx.

Example 5.6.3. Let f(x) = x> + x> — 2x+ 1. Find Ay and dy when x changes (a) from 2 to 2.05;
(b) form 2 to 2.01.

Proof. f'(x)=3x+2x—2and f/(2) = 144.
(a) Ax=dx=205-2=0.05

Ay = £(2.05) = £(2) =0.717625 and dy = f/(2)dx = 14-0.05 = 0.7
(b) Ax=dx=2.01-2=0.01

Ay = £(2.01) = f(2) = 0.140701 and dy = f'(2)dx = 14-0.01 = 0.14
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Example 5.6.4.

A metal sphere with a radius of 10 ¢m is to be covered
by a 0.02 ¢m coating of silver. Approximately how much
silver will be required?

Proof. Let V(r) be the volume of the sphere with radius
4
r. Then V(r) = gnr3 and dV = 4nridr.

V(10.02)-V(10) = AV ~ dV = 47-(10)>-0.02 = 87 (cn?®).

m]
Remark. (Relative Error) Dividing the error by the total volume

AV N av Anrdr 3 3dr
V - V B %7{'}"3 B r

Note. The relative error in the volume is about three times the relative error in the radius.
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Some of the most important applications of differential calculus are optimal problems. In

order to obtain the optimization, we can usually reduce these problems to finding the maximum
or minimum values of a function.

6.1 Maximum and Minimum Values

Recall: In Chapter 1, we have introduced the maximum (or minimum) value and the least upper
bound (or greatest lower bound ) of a function. In this section, we will study the extreme values
of a function more deeply.

Definition 6.1.1. Let f : D — R and xy € D. We say that

(a)

(b)

©)

the number x is an “absolute maximum number (or point)” for f on D if
f(xo) = f(x) forall x e D

and the value of f at x is called the “absolute” maximum value of f on D.

the number x is a “local maximu number (or point)” for f on D if there exists 6 > 0 such
that
f(x0) = f(x) forall x e DN (xg— 6, x9+0)

1.e. Xo is @ maximum number for f on D N (xo — &, xo + &). The value of f at x; is called the
“local” maximum value of f on D.

We can also define the “absolute (or lcoal) minimun number” and the “absolute (or local)
minimum value” of f on D by replacing the inequalty “>" by “<”.

87



88 CHAPTER 6. APPLICATIONS OF DIFFERENTIATION

(d) The maximum and minimum values of f are called the “extreme values” of f on D.

v YA

1 loc

6 /l’\ and

T oc abs

a / T | max min

4 loc
f(d) 4 min \/
_ 24
fla) 1 J J K
w ol » . N . ) bt 4 —t— 8 —t— 1:2 I >

Remark.

(1) An absolute maximum or minimum value is sometimes called a “global” maximum or
mumimum value.

(i) An absolute maximum point for f on D is also a local maximum point for f on D.

(iii)) The absolute maximum (or minimum) value of f on D is unique. In constast, a function
may have several or infinitely many maximum (or minimum) points.

Exercise. If A C B, and ma}\x f(x) and man f(x) exist, then
XE X€
max f(x) < max f(x)
x€eA xeB

Similarly, min f(x) > min f(x), sup f(x) < sup f(x), inf f(x) > inf f(x) if the above quantities
x€A xeB xeA x€B xX€A xeB
exist.

Example 6.1.2.

f(x) = x> on R.

The local and absolute minimum value is O but there is
no maximum value.

Remark. The existence of absolute (or local) maximum (or minimum) values not only depends
on functions, but also depends on the domains.

f(x)=x* on [-1,3].

The local and absolute minimum value is 0 and the local
minimum is f(—1) = 1 and f(3) = 9.

m Extreme Points and Derivatives

We can observe that the tangent lines (if
they exist) of the graph of f at the maximum
and minimum points are horizontal. Hence the
slopes are 0.
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Theorem 6.1.3. (Fermat’s Theorem) Let f be a function defined on (a,b). If xq is a local
maximum or local minimum point for f on (a,b) and f is differentiable at x,, then f’(xy) = 0.

Proof. W.L.O.G, we assume that x is a local maximum point for f on (a, b). Then there exsits
0 > 0 such that (xg — 6, xp + 8) C (a, b) and

f(xp) = f(x) forall x € (xg— 6, xo + 0).
For0 < h <9, f(xo +h) — f(x9) <0. Hence,
Jf(xo +h) — f(xo) <o

1
Y (6.1)
Similarly, for =6 < h < 0, we have f(xo + h) — f(xo) < 0 and hence
h) —
Jlno })l f (%) > (0 (since h is negative.) (6.2)
Since f is differentiable at x,
oo o Jot ) = f(xo) . flo+h)— f(xo) .. flxo+h)— f(xo)
f'(xo) = lim I = h = jim. I
By (6-1) and (B2),
h) — h) —
£y = tim LD =IO o g () = fim LD 2T
h—0+ h h—0~ h
Therefore, P B - f
/ 1 (XO + )_ (-x()) _
f'(x0) = lim p =0.
O

Remark. The converse of the theorem is false. That is, it is possible that there exists a function
f with f’(xo) = 0 but f has not maximum nor minimum at x,. For example, f(x) = x> at 0.

Corollary 6.1.4. Let f be a function defined on (a, b) and x is an extreme point. Then either
f'(x0) = 0 or f is not differentiable at x,.

Definition 6.1.5. Let f be a function defined on (a,b). We say that the point xy € (a,b) is a
critical number (point) of f if either f'(xy) = 0 or f is not differentiable at x,. We call f(x) a
critical value of f.

Remark. If f has a (local) maximum or minimum at x,, then x; is a critical number of f. But
not every critical number gives rise to a maximum or minimum. For example f(x) = x° at
x=0.

m Global Extreme Values for f on [a, b]

Recall: Theorem B29 says that a continuous function defined on [a, b] must have global max-
imum and minimum. The Fermat’s Theorem gives a method to find the extreme values of a
continuous function.

e The closed interval method
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(1) Find all critical numbers of f in (a, b).
(2) Find the values of f at those ciritical points and endpoints.

(3) The largest value in the above steps is the absolute maximum value and the smallest value
is the absolute minimum value.

Example 6.1.6.
1
Let f(x) = x> — 3x*> + 1 defined on [—5,4]. Find the

-y
absolute maximum and minimum values of f. 5 oy
201 y=x"—3x"+1
Proof. The derivative of f is f’(x) = 3x(x — 2). Since (4,17)
f 1s a polynomial, it is differentiable everywhere and the 57
critical numbers of f are 0 and 2. The values of f at 10+
critical numbers and endpoints are |
1.1 . i A
JO =1 f@=-3 f-3)=g5 [&)=17 ) NG S
-5 (2,-3)
Hence, f has the absolute maximum value f(4) = 17 and

the absolute minimum value f(2) = -3. |

Theorem 6.1.7. If f is differentiable at xy and f'(xy) > 0, then there exists a number 6 > 0 such
that

f(x) < f(xg) forall x € (xo— 9, xp)

and
f(x) > f(xg) forall x € (xg, X9 + 0)

Proof. Since f’(xp) = lim J(0) — f(xo)

1
> 0, for e = = f’(xp), there exists § > 0 such that
x-x X — X 2

Jf(x) - f(xo)

X — Xo

1
- fxo)| <e= Ef'(xo)

whenever 0 < |x — x¢| < 8. Then

() = fG0)

X — Xo

74 1 /4 1 4
Sf'(xo) = Ef (x0) = Ef (x0) >0
If x € (x¢ — 6, xp), then x — x¢ < 0 and

1
f(x) = f(xo) < Ef'(xo)(x —xg) < 0.

1
Similarly, if x € (xg, xo + 9), then x — xo > 0 and f(x) — f(xo) > Ef’(xo)(x —x9) > 0. |
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6.2 Rolle’s Theorem and Mean Value Theorem

ﬂ@v

(a) (b) (c) (d)

Observe a continuous function defined on [a, b] with f(a) = f(b). There must be a number
¢ € (a, b) which is either a maximum point or a minimum point. Then f’(c) = 0.

Theorem 6.2.1. (Rolle’s Theorem) Let f be a function that satisfies
(i) f is continuous on |a, b],

(ii) f is differentiable on (a, b) and
(iii) f(a) = f(b).

Then there is a number c € (a, b) such that f'(c) = 0.

Proof. If f is a constant function on [a,b] (i.e. f(x) = f(a) = f(b) for all x € [a,b]), then
f'(x) = 0forall x € (a,b).

If f(x) is not a constant function on [a, b], then there exists a number x, € (a, b) such that
f(xo) # f(a). W.L.O.G, say f(xo9) > f(a). Since f is continuous on [a, b], by the extreme value
theorem, there exists ¢ € [a, b] such that f(c) = max,e.p) f(x). Then f(c) > f(xo) > f(a) =
f(b)and hence c # aand ¢ # b (i.e. ¢ € (a,b)).

Since ¢ is a maximum point of f on (a, b) and f is differentiable at ¢, by Fermat’s theorem,

f'(e)=0. O

Example 6.2.2. If s = f(7) is a differentiable function which represents the position of an object.
Suppose that the object locates at the same position at time a and b. That is, f(a) = f(b). Then
three exists some time ¢ € (a, b) such that the velocity is O at time ¢ (i.e. f’(c) = 0).

Example 6.2.3. Prove that 3x> + 2x — 1 = 0 has exactly one solution.

Proof. Let f(x) = 3x> + 2x — 1. To prove that there exists exactly one number ¢ such that
fle)=0.

(1) (Existence: at least one root) By Intermediate Value Theorem (exercise!)

(i) (Uniqueness: at most one root)
Assuem that there are two distinct numbers a and b such that f(a) = f(b) = 0. Since
f(x) is a polynomial function, it is continuous on [a, b] and differentiable on (a, b). By the
Rolle’s theorem, there exists a number ¢ € (a, b) such that f’(c) = 0. But f'(x) = 3x*> + 1
for every x. It contradicts the conclusion of Rolle’s theorem. Hence, f cannot have two or
more roots.
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The following theorem is a generalized result of the Rolle’s theorem.

Yy y
P(c, f(c))
\
AN Ala, fla))
B(b, f(b))
of 4 C b X 0] 4 c [.) X

Theorem 6.2.4. (Mean Value Theorem) Let f be a function that satisfies

(i) f is continuous on [a, b] and V4

(ii) f is differentiable on (a, D).

Then there exists a number c € (a, b) such that

A
b) —
fro = fO=1@
—-a
or 5 >
f) = fla) = f(c)b - a) ¢
Proof. Let
b) —
h(x) = f(x) = (fl@)+ wu ~a)).
-a
Since f is continuous on [a, b] and differentiable on (a, b), so is h(x).
Moreover, hi(a) = 0 = h(b) and d
b) —
h'(x):f'(x)—f(; fa) A
-a
Then, by the Rolle’s theorem, there exists a number c € (a, b)
such that #’(c) = 0. Hence,
0
Fo =i+ 0@ _[O-/@
—a b-a

Corollary 6.2.5. If f is continuous on [a, b] and f'(x) = 0 for all x € (a,b), then f is a constant
function on [a, b].
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Proof. Let ¢ and d be any two points in [a, b]. It sufficies to show that f(c) = f(d).
Since f is continuous on [a, b] and differentiable on (a, b), it also continuous on [c, d] and
differentiable on (c,d). Then, by the mean value theorem, there exists @ € (c,d) such that

f(c) - £(d) = f'(a)(c —d) = 0since f'(a) = 0. Therefore, £(c) = f(d).

That ¢ and d are arbitrary two points in [a, b] implies f(x) is a constant function on [a,b]. O

Corollary 6.2.6. If f is differentiable on (a,b) and f'(x) = 0 for all x € (a,b), then f is a
constant function on (a, b).

Proof. (Skip) O

Note. The difference condition from the above corollary is that f is no longer continuous on
[a, b].

Corollary 6.2.7. If f and g are continuous on [a, b] and f'(x) = g’(x) for all x € (a, b), then
f(x) = g(x)+ C for some constant C and for all x € [a, b].

Proof. Let h(x) = f(x) — g(x). Since f and g are continuous on [a, b] and f’(x) = g’(x) for all
x € (a,b), h is continuous on [a, b] and A'(x) = O for all x € (a,b). Then h(x) is a constant
function on [a, b]. Hence,

h(x) = h(a) = f(a) — g(a).
Then
f(x) =g + (fla) - ga)).

O

x 1 ifx>0
Note. f(x)—m = {_1 Fx<0

Dom(f). It is because Dom(f) is not an interval. However, f is constant on (—oo, 0) and also on
(0, ).

Remark.

is not a constant function. But f'(x) = O for all x €

(1) If f is constant on (a, b), then f'(x) = O for all x € (a, b).
(1) If f(x) = g(x) + C on (a, b), and either f’(x) or g’'(x) exists for all x € (a, b), then

f'(x)=g'(x) forall x € (a,b)

Theorem 6.2.8. (“Cauchy’s Mean Value Theorem” or “Generalized Mean Value Theorem”)
Let f and g be two functions which are continuous on [a, b] and differentiable on (a,b). Then
there exists a number c¢ € (a, b) such that

f©[gb) - g@] = g fb) - f@)]. (6.3)

Proof. Define k(x) = f(x) [g(b) - g(a)] —g(x) [ fb)—-f (a)] . Then k is continuous on [a, b] and
differentiable on (a, b). Moreover, k(a) = f(a)g(b) — f(b)g(a) = k(b). By the Rolle’s Theorem,
there exists a number ¢ € (a, b) such that k’(c) = 0 and this implies (B3). O



94 CHAPTER 6. APPLICATIONS OF DIFFERENTIATION

Remark. The generalized mean value theorem has a geometrical interpretation similar to that
of the mean value theorem. Suppose that a smooth curve C can be represented as a parametric
equation (f(r), g(t)) for a < t < b. There exists a tangnet line at t = ¢ whose slope is equal to
the secant line connecting (f(a), g(a)) and (f(b), g(b)). The slope of the tangent line is

0 -f@
sb) - g@’

S (o)
g'(to)

Furthermore, the slope of the tangent line to the curve at any point ¢ = ¢, is

y=g(t)A

B(f(b),g(b))

C(f(c).gle

A(fta),gta))

P

0 | x=A(t)

6.3 How Derivatives Affect the Shape of a Graph

0 Increasing and Decreasing

Definition 6.3.1. We say that

(a) afunction f(x) is “(strictly) increasing” on an interval [ if

f(x) < f(y) whenever x,y € [ with x < y.

(b) afunction f(x) is “(strictly) decreasing” on an interval I if

f(x) > f(y) whenever x,y € [ with x < y.

(c) afunction f(x) is “nondecreasing” on I if

S < f(y) whenever x,y € [ with x < y.

(d) afunction f(x) is “nonincreasing” on I if

S = f(y) whenever x,y € [ with x < y.

(e) afunction f(x) is called “monotonic” on [ if it is either nondecreasing (increasing) or non-
increasing (decreasing) on /.
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Theorem 6.3.2.
(a) If f'(x) > O for all x € (a,b), then f is increasing on (a, b).

(b) If f'(x) < O forall x € (a,b), then f is decreasing on (a, D).

Proof. We will prove (a) here and the proof of (b) is similar.

Let ¢ and d be two numbers in (a, b) with ¢ < d. It sufficies to show that if f(c) < f(d).
Since f’(x) > O for all x € (a, b), f is continuous on [c,d] and differentiable on (c, d). By the
mean value theorem, there exists a € (¢, d) such that

fO-I@D _
c—d
Then
@)= fld) = f@)c—-d) <0

because f’(a) > 0 and (c —d) < 0. We have f(c) < f(d). Since ¢ and d are arbitrary two
numbers in (a, b), f is increasing on (a, b). O
Corollary 6.3.3. If f'(x) > 0 for all x € (a,b) and f is continuous on [a, b], then f is increasing
on la,b].

Proof. (Exercise) O
Remark.
(1) The converse of the above theorem may be false. That is, even if f is differentiable and

increasing on (a, b), it cannot imply that f” is always positive. For example, f(x) = x> is
increasing but f’(0) = 0.

(i1) Suppose that the derivative of a function is positive at one point but not on an interval. It
cannot guarantee that f must be increasing on this interval. For example

1
2 . - .
f(x):{x+2x smx ifx+0

ifx=0
Then

X X
ifx=0
f'(0) =1 > 0 but f'(x) is not positive on any neighborhood of 0. The function f is not
increasing on any neighborhood of 0

1 1
f’(x):{ 1+4xsin— —2cos— ifx#0

0.05 +

| —+ |
-0.1 -0.05 o 0.05 0.1 *

-0.05 +
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Example 6.3.4. Find where the function f(x) = 3x* — 4x> — 12x? + 5 is increasing and where it

is decreasing.

CHAPTER 6. APPLICATIONS OF DIFFERENTIATION

Proof. f'(x) = 12x(x — 2)(x + 1). To find where f’(x) > 0 and where f’(x) < O.
f is increasing on (—1,0) U (2, o) and decreasing on (—oco, —1) U (0, 2). (See the table.)

Interval 12x r— 2 v+ 1 f'(x) F
x< — — — — — decreasing on (—%=, —1)
—1=x<0 — = + + increasing on (—1, 0)

0~ + — + — decreasing on (0, 2)

x>2 + - - + increasing on (2, =)

20
e o ] R
L \_/ )

O

Remark Bl says that maximum or minimum value must occur at a critical point. But not
every critical point gives rise to a maximum or minimum. How to determine whether a critical
point gives an extreme value?

a First Derivative Test

Suppose that c is a critical number of a continuous function f.

(a) If f'(x) changes from positive to negative at c, then f has a local maximum at c.

(b) If f’(x) changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f does not change sign at c, then f has no local maximum or minimum at c.

f'x)>=0

fix)<0

fly<0 fx)y>0

flx)=0

fix)>0

fix)y<0

[=]

/

C

\

(a) Local maximum

0 ¢

(b) Local minimum

0 1

¢ x 0 ¢

(¢) No maximum or minimum

(d) No maximum or minimum

Note. To apply the first derivative test, it only needs that f is continuous at ¢ and f” exists near
c. That f’(c) = 0 is not necessary.
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Example 6.3.5. Find the local minimum and maximum values of the function f(x) = 3x* —
45 —12x + 5.

Proof. The derivative of f is f'(x) = 12x(x — 2)(x + 1) and hence the critical points of f(x) are
—1,0 and 2.

Since f'(x) > 0 on (—1,0) U (2, 00) and f’(x) < 0 on (o0, —1) U (0,2), f'(x) changes from
negative to positive at —1 and 2 and from positive to negative at 0.

By the first derivative test, f(—1) = 0 is a local minimum, f(0) = 5 is a local maximum and
f(2) = =27 is a local minimum. O

0 Convexity and Concavity

Observe that two increasing functions
may have different shapes.

Question: How to distinguish them?

(a) (b)
Definition 6.3.6.

(1) A function f(x) is “concave upward” (or “convex’) on an interval I if for any a,b € I, the
segment joining (a, f(a)) and (b, f(b)) lies above the graph of f.

(b.fb)

(2) A function f(x) is “concave downward” (or “concave”) on an interval [ if for any a,b € I,
the segment joining (a, f(a)) and (b, f(b)) lies below the graph of f.
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Example 6.3.7.
VA
D
B \/ P
c /
0| a b c d e P q %
I CD | CU l<— CD —}«— CU —}« CU =}« CD |
(Concave) (Convex) (Concave) (Convex) (Convex) (Concave)

Example 6.3.8. f(x) = x* is convex.

Remark. An equivalent statement of the convexity is that f is convex on [ if for every a,b € I
and every x € (a, b)

i+ LO=@,
—a

The alternating statement of concavity of f is by replacing the inequality “>" in (B4) by
6‘<”.

x—a) > f(x). (6.4)

Remark.

(1) If f is convex, we can rewrite (b4) by

fO) = f@ _ [~ f@ _ )= f®)

xX—a - b-a - x—-b

(6.5)

for every a,b € I and x € (a,b). This implies that the slope of the segment joining
(a, f (a)) and (b, f (b)) is greater than or equal to the slope of the segment joining (a, f (a))
and (x, f (x)) for every x € (a, b).

(ii) Similarly, the slope of the segment joining (a, f(a)) and (b, f(a)) is less than or equal to
the slope of the segment joining (x, f(x)) and (b, f(b)).

N
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(iii)) For any x € (a, b), there exists A € (0, 1) such that x = Aa + (1 — A)b. Then (B4) impliles
that

Af(a) + (1 = D) f(b) = f(a) + w((l — (b -a) = f(la+(1-2)b).

(iv) If replacing “>" by “>" we call the function f “strictly convex”.
Exercise. If f is convex on /, then —f is concave on /.
Theorem 6.3.9. Let f be convex and differentiable at a.
(a) The graph of f lies above the tangent line through (a, f (a)), except at (a, f (a)) itself.

(b) If a < b and f is also differentiable at b, then f'(a) < f'(b).

\

Proof.

(a) Define
Fh) = flat h;l — @ for every h # 0.

The inequality (b3) says that F is a nondecreasing function and %ir% F(h) = f'(a) since f

is differentiable at a. Note that F'(h) equals the slope of the secant line connecting (a, f (a))
and (a + h, f(a+ h)).

Fix h > 0 and for O < h; < h, since F is nondecreasing,

fla)= Jim F(h) < F(h).

Hence, when & > 0, the slope of the secant line connecting (a, f(a)) and (a + h, f(a + h))
is greater than the slope of the the tangent line through (a, f (a)). Then the point (a +h, fla+ h))
on the graph of f is above the point (a +h, L(a + h)) on the tangent line (where y = L(x) is
the equation of the tangent line throuth (a, f (a)) 2

On the contrary, we can use similar argument to show that F(h) < f’(a) when h < 0.
This also implies that the graph of f is above its tangent line.
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1 i I - - }
2 a—|l-h,a-0‘-.':, a+hk ath a

The slopes of the secant lines are nondecreasing.

(b) From (B3), we have

fO) = f@) _ fb) = f@ _ f0) = fb)

—a < - S for every x,y € (a, b).

Let x - a” and y — b™. Since f is differentiable at a and b,

ra < IO LD < gy
—a

Note. If f is differentiable and convex on an interval /, then f”(x) is nondecreasing.

Question: Is the converse of the statement true?

Lemma 6.3.10. Suppose f is differentiable on I and f’ is nondecreasing. If (a,b) C I and
fla) = f(b), then f(x) < f(a) = f(D) for every x € (a, b).

Proof.

Assume that there exists some number x € (a,b) such

that f(x) > f(a) = f(b). Since f is continuous on [a, b],

by the extreme value theorem, there exists a number x; €

(a,b) such that f(xg) = rr%ai(] f(x). Hence, f'(xp) = O.
x€la,

By the mean value theorem to the interval [a, xy], there is

x1 € (a, xp) such that

f(xo) — fla)
Xo—a

fe) = > 0= f"(xo).

B o
-
=4
o

It contradicts the fact that f’ is nondecreasing and the
lemma is proved.

Notice that if the hypothesis “nondecreasing” is replaced by “increasing”, the inequality “<”
in the conclusion will be replaced by “<”. Otherwise, there exists a number ¢ € (a, b) such that
f(c) = f(a) = f(b). Then, by the mean value theorem, there is x; € (a, ¢) such that f"(xy) = 0.
Similar contradiction as above will be obtained.

O
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Theorem 6.3.11. If f is differentiable on I and f’ is nondecreasing (increasing), then f is
convex (strictly convex).

Proof. Leta,b € I and a < b. Define

g(x) = f(x) -

fb) - f(a)
———(x-a).
b-a

Then g(a) = g(b) = f(a) and g'(x) = f'(x) — w is nondecreasing since f’(x) is non-

decreasing. By Lemma 6310, for every x € (a, b), -

g(x) < gla) = g(b) = f(a).

Hence,

f(x) < fla) +

f(b)—f(a)(
— " (x—a)
b-a

and thus f is convex.

a Convexity and Concavity v.s. Differentiation

Question: How does f” affect the graph of f?
Theorem 6.3.12. (Concavity Test)

(a) If f has second derivative on I and " (x) > O for all x € I, then the graph of f is concave
upward on 1.

(b) If f has second derivative on I and " (x) < O for all x € I, then the graph of f is concave
downward on I.

Proof. (Skip) O

Definition 6.3.13. We call a point P on a curve y = f(x) an “inflection point” (or “point of
inflection”) if f is continuous there and the curve changes concavity there (i.e. either changes
from CU to CD or from CD to CU).

V4 IP not IP
‘ IP

IP u i
B P
C /

Remark.



102 CHAPTER 6. APPLICATIONS OF DIFFERENTIATION

(1) An inflection point is a point on the curve y = f(x).

(ii) The definition of an inflection point is NOT f”(c) = 0. For example f(x) = x*, but (0, 0)
is not an inflection point.

(i) If (c, f(c)) is an inflection point for f(x), then “f” ” has an local extreme value at c.
It is becasue f” is either from increase to decrease, or from decrease to increase. The
conclusion is followed by the first derivative test on f”.

Theorem 6.3.14. If the point (c, f(c)) is an inflection point for f, then either f"(c) = 0 or
" (c) does not exist.

Proof. If f”(c) does not exist, the proof is done. We may assume that f”’(c) exists.

Since (c, f(c)) is an inflection point for f, the graph of y = f(x) changes concavity at
(c, f (c)). Hence, f’(x) has a local maximum or a local minimum at c. Since f”(c) exists, by
the Fermat’s theorem, f”(c) = 0. |

m Stategy of finding Inflection Points

(1) Find all points where f”(x) = 0 or f”’(x) does not exist.
(i) determine whether the concavity changes at those points.
Example 6.3.15. Find all inflection point for f(x) = x* — 6x% + 9x + 1.
Proof. Since f is a polynomail function, f”'(x) exists everywhere. Hence, the possible inflec-

tion points happen when f”'(x) = 0.

The second derivative of f is f”/(x) = 6(x —2). We have f”(x) < 0 for x € (—o0,2) and
f”(x) > 0 for (2,00). Hence, the graph of f is concave downward on (—o0,2) and concave
upward on (2, c0). It implies that the graph of f changes concavity at x = 2. Therefore, the
point (2, 3) is an inflection point for f. O

Example 6.3.16. Find all inflection points for f(x) = 3x°% — 5x.
Proof. The first and second derivatives of f are f"(x) = 5x** =5 and f”(x) = Lx7'/3. Hence,

f”(x) does not exist at x = 0.

Since f”'(x) is negative for x < 0 and positive for x > 0, the graph of f is concave upward
on (—o0,0) and concave downward on (0, o0). It implies that the graph of f changes concavity
at x = 0. Also, f is continuous at 0. Then (0, 0) is an in flection point for f.

]

Question: What does f” say about f?

1 Second Derivative Test

Suppose f”'(x) is continuous near c.

(a) If f'(c) =0and f”(c) > 0, then f has a local minimum at c.
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(b) If f’(¢c) =0and f"”(c) <0, then f has a local maximum at c.

(c) If f”(c) = 0, the second derivative test is inconclusive. There might be a maximum (f(x) =
—x*), a minimum (f(x) = x*) or neither (f(x) = x°).

Proof. We will prove part(a) here and the proof of part(b) is similar. By the definition of second
derivative,

. filc+h)
=lim ——.

0<.) = iy iy =

f'le+h)—f'(c)
h
Hence, there exist 6 > 0 such that for 0 < |A| < 6,

—f'(Ch+ h > 0.

Then f'(c + h) < 0 when -6 < h < O and f'(c+ h) > O when 0 < h < 4. Also, f is
continuous at ¢ since f”(c) exists. By the first derivative test, f(x) has a local minimum atc. O

Remark. To find the extreme values of a function, the first deriveative test is usually easier than
the second derivative test. The former can deal with more general functions than the latter. For
example, the second derivative test cannot apply when f”’(c) = 0, f”(c) DNE, or f’(c) DNE.

Example 6.3.17. Find all extreme values of the function f(x) = 3x* — 4x* — 12x* + 5.

Proof. The first and second derivatives of f is f'(x) = 12(x* — x*> — 2x) = 12x(x + 1)(x — 2) and
f”(x) = 12(3x*> — 2x — 2). Then f has critical points —1, 0 and 2.

Check the values of f”’(x) at those critical points. f”/(—-1) = 36 > 0, f”(0) = —24 < 0 and
f"”(2) =72 > 0. By the second derivative test, f(—1) = 0 and f(2) = —27 are local minimum
of f,and f(0) = 5 is a local maximum of f. m|

The next theorem gives some result of the converse of second derivative test.
Theorem 6.3.18. Suppose f”'(x) is continuous near c.
(a) If f has a local minimum at c, then f”'(c) > 0.
(b) If f has a local maximum at c, then f"(c) < 0.

Proof. We will prove part(a) by a contradiction and the proof of part(b) is similar. Assume that
f"(c) < 0. Since f”(c) exists , so does f'(c). By the Fermat’s theorem, f’(c) = O since f has a
local minimum at c.

We apply the second derivative test, f has a local maximum at c. Hence, f is constant near c.
This implies f”’(c) = 0 and it contradicts the hypothesis f”'(c) < 0. Therefore, f”’(c) > 0. O

(13 2 (13 2

Remark. For Theorem 318, we cannot get “>" or “<” respectively. For example, f(x) = x*
or f(x) = —x* respectively.
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6.4 Sketch the Graph

So far, we have learned some topics of curve sketching, for exampe domains, ranges, symme-
try, limits, continuity, asymptotes, tangents, extreme values, intervals of increase and decrease,
concavity, point of inflection etc. Now, we may try to drawing the graphs of functions without
using graphing devices.

m Guidelines for Sketching a Curve

(i) Domain

(i) Intercepts
x-intercepts: find x such that f(x) = 0.
y-intercepts: if 0 € Dom(f), y-intercept is f(0).

(iii) Symmetry
(i) Even function: Check the domain is symmetric about 0 and f(—x) = f(x). If f is

even, the graph of f(x) is symmetric about the y-axis.

(11) Odd function: Check the domain is symmetric about 0 and f(—x) = —f(x). If f is
odd, the graph of f(x) is symmetric about the origin

y

Even function: reflectional symmetry Odd function: rotational symmetry

(i11) Periodic function: If there is a positive number p such that f(x + p) = f(x) for all

x € Dom(f).

a—p 0| a at+p a+2p X

(iv) Asymptotes

(i) Horizontal asymptotes: If lim f(x) = L, the line y = L is a horizontal asymptote of

y = f(x). If lim f(x) = *oo, there is no horizontal asymptote.

(ii) Vertical asymptotes: If lim f(x) = oo, then the line x = a is a vertical asymptote
of y = f(x).
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(iii)) Oblique (slant) asymptotes: If lim [ f(x)—(ax+ b)} =0, then the liney = ax+ b
is an oblique asymptote of y = f(x).

(v) Intervals of Increase or Decrease Check the intervals of x where f’(x) > 0 and f'(x) < 0.
(vi) Local Maximum and Minimum Values

(1) Find all critical numbers.
(i1) Use the First Derivative Test or the Second Derivative Test to find the local maximum
and local minimum values.
(vii) Concavity and Points of Inflection
(i) Compute f”(x). The graph of y = f(x) is concave upward if f”’(x) > 0, and the
graph is concave downward if f”(x) < 0.

(i1) Points of Inflection: the point where the concavity changes.
(viii) Sketch the Curve

m Examples

2 2
Example 6.4.1. Sketch the curve y = — il 1= f(x).
x —

Proof. (i) Domain: The domain of f is {x | X # il}.

2

> al 7 = 0if x = 0, then O is a x-intercept. Taking x = 0, then y = f(0) =
x —

(i1) Intercepts: y =
0 is y-intercept.

2(=x)? 2

(iii) Symmetry: f(—x) = (_)(C)zxil = xzil

graph of y = f(x) is symmetric about the y-axis. On the other hand, the function is not
periodic.

= f(x). Thus, f is an even function and the

(iv) Asymptotes:

2 2
() Horizontal Asymptote: lim — =2and lim — i T = 2. The graph y = f(x) has
X—00 X% — X——00 X° —
only one horizontal asymptote y = 2.
.. . . 2x . 2x . 2x?
(i1) Vertical Asymptote: xlg}l 2 1" 00, }L‘P_ o1 —0o0, x_)l(r_l})+ 21" —oo and
2 2
1(rr%) 5 a 7= Thus the graph of y = f(x) has two vertical asymptotes x = 1
x—=(=1)" xXc —
and x = —1.
-4
(v) Intervals of Increase or Decrease: The derivative of f is f'(x) = ﬁ Then
x —_—

f'(x) >0 when x <0 (x # —1) and it implies f is increasing on (—co, —1) U (-1, 0)
f'(x) <0 when x>0 (x# 1) and it implies f is decreasing on (0, 1) U (1, co0)
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(vi) Local maximum and minimum values Compute f'(x) = ﬁ = 0 when x = 0. The
2 —
critical number of f is x = 0. Since f’(x) changes from positive to negative at x = 0,

hence, f(0) = 0 is a local maximum by the First Derivative Test.

12x> + 4
(vii) Concavity and Points of Inflection Compute f”(x) = (ZX—I)S Then f”’(x) > 0 when
x —
x*-1>0(x>1orx<-1),and f/(x) < Owhen x> =1 < 0 (=1 < x < 1). We have

the graph of f is concave upward on (—oco, —1)U (-1, 0) and concave downward on (-1, 1).

On the other hand, the graph of f does not have any point of inflection since the concavity
changes at x = +1. But =1 are not in the domain.

(viii) Sketch the graph

x S| ) f(x)
—o0o<x< -1 + + increasing and CU
-1<x<0 -+ - increasing and CD
O0<x<1 - - decreasing and CD
I <x<oo - + decreasing and CU
YA
Yt N I I
|| ]
U S b
y=2 | I Y= | |
| | o] 1
| O | X I I X
| | | |
r=-1y l[x=1 x=—l: :x=l
Begin with the curve near the asymptotes Connect points by following the above
and point out all special points characters
O
COS X

E le 6.4.2. Sketch th h of = —.
xample etch the graph of f(x) 7 sinx

Proof. (i) Domain: Dom(f) = R.

(i) Intercepts: f(x) = ;ﬂ = 0 when x = 7 + nr for every n € Z and those numbers are

+ sin x

1
x-intercepts. Since f(0) = o y-intercept is >
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cos(—x)  cosx

(iii)) Symmetry: The domain of f is symmetric about 0. Consider f(—x) = - = —.
2+sin(—x) 2-sinx
Hence, f is neither even nor odd. On the other hand,

f(x+2nm) = f(x) forall x.

Thus, f is a periodic function with period 2.

(iv) Asymptotes: Since f is periodic and continuous on R, there is no veritcal or horizontal
asymptote.

(v) Intervals of Increase of Decrease: It only suffices to discuss the case on [0, 27r]. Consider

2sinx + 1 7 11
f(x)= —(zsj_ns+x)2. f'(x) > 0 when 2sinx + 1 < 0 and hence Fﬂ <x< ?ﬂ, and
7 11
f'(x) < 0 when 2sinx + 1 > 0 and hence 0 < x < g or ?ﬂ < x<2n. Then f is
T 11 7 11
increasing on (—n, —ﬂ) and decreasing on (0, —) U (—ﬂ, 27).
6 6 6 6
(vi) Local maximum and minimum values: To find all critical numbers (in [0, 27]). f/'(x) =

. . . n n 1
0 when x = %’r and “T”. Since f’(x) changes from postive to negative at ra f (F) = —7
3
is a local maximum value. Also, since f’(x) changes from negative to positive at 11X,

11 1
f (—ﬂ) = — is a local minimum value.

'~V

(vii) Concavity and point of inflection on [0, 2] Consider

2 cos x(1 — sin x)
(2 + sin x)3

fr =

Since 2 + sinx > 0 and 1 — sinx > O for all x, it suffices to consider the sign of cos x.

3
f”(x) > 0 when cosx < 0 (hence g <x< jﬂ) and f”(x) < 0 when cosx > 0 (hence

n 3n
=03

O<x<7Zor 37” < x < 2m) We have the graph of y = f(x) is concave upward on (2, >

3

and concave downward on (0, 7_2r) U (7, 27).

3
The concavity changes at (g, 0) and (;, 0) and they are points of inflection.

(viii) Sketch the graph: It suffices to draw the graph on [0, 2] and then extend to whole real
line since f is periodic with period 2.

x fx | [ f(x)
0<x<m/2 - - decreasing and CD
/2 <x<Tn/6 - + decreasing and CU

Tn/6 < x < 3m/2 increasing and CU
3n/2 <x<11n/6 - increasing and CD
11n/6 < x < 2r - - decreasing and CD

+ |+
+
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3
Example 6.4.3. Sketch the graph of f(x) =

2+1
(i) Domain: Dom(f) =

(i) Intercepts: f(x) = 2x 7= 0 when x = 0 and thus x-intercept is 0. Since f(0) =

y-intercept is 0.

(_ x)3 B X3
(=2 +1  x2+1
graph is symmetric about the origin.

(iii)) Symmetry: Since f(—x) = = —f(x), f is an odd function and the

(iv) Asymptote: Since the denominator x> + 1 # 0 for all x, the graph of y = f(x) has no
' ' . x2+1.Hence,f(x)—x:—
Therefore, the line y = x is an oblique asymptote.

vertical asymptote. But f(x) = x — — 0 as x — +oo.

x2+1

(v) Intervals of Increase or Decrease:

2()c +3)

(2 7 >0 forall x.

J(x) =
Thus f is increasing on (—oo, o).

(vi) Local maximum and minimum values Since f’(x) exists and f’(x) = 0 when x = 0, the
only critical number is x = 0. Also, f’(x) > 0 for all x. Thus, f” does not change sign at
x = 0. There is no local maximum or minimum.

(vii) Concavity and points of inflection The second derivative of f is

2x(3 = x?)

P =y

f7”(x) > 0 when x < —V3 0or0 < x < V3 and f’(x) < 0 when —V3 < x < 0 or
x > V3. The graph is concave upward on (—co, — V3) U (0, V3) and is concave downward
on (= V3,0) U (V3, ).

. 143 343
The concavity changes at (— V3 ,———),(0,0) and ( \/_ —) They are points of inflec-
tion.
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(viii) Sketch the curve

109

Interval b s 3 — x? (x*+1)° () i
ey = — gin =2 CU on (—2=, —\/'%_)
-3 <x<0 +F 4 = CDon (—+/3.0)
= ] + + + + CU on (0, +/3)
x> ﬁ + = + = CD on {\/'%_ x)

6.5 Inverse Functions

Recall: Functions

“inflection
points

f never takes on the same value twice. If x; #
X then f(x;) # f(x2).

f(2) =4 = f(Q3). f takes two different numbers
to the same value.

Question: For every number b € B, can we find a “a € A such that a function assigns a to b? In
general, it is impossible since two different numbers may be assigned to one number.

m One-to-one and Onto Functions
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Definition 6.5.1. Let f : A — B. We say that
(1) fis “one-to-one (or 1-1, or injective)” if f(x) # f(y) whenever x # y
(2) f 1s “onto (or surjective)” if for every b € B, there exists a € A such that f(a) = b.

Remark.

(i) An equivalent definition of one-to-one function is that if f(x;) = f(x,) then x; = x,.
(i1) A function which is both one-to-one and onto is called “bijective”.
(ii1) If f is increasing or decreasing, then f is one-to-one.

m Horizontal Line Test

y

A function is one-to-one if and only if no hori-
zontal line intersects its graph more than once.

/|

Example 6.5.2.

(1) f(x) = x° is one-to-one.

If f(x1) = f(x2), then y ,
5
3_3 2 2
0 =x; — x5 = (X1 — x)(X] + X1X2 + X3). -/
(0] X
Since x? + x;x, + x3 > 0 if x; or x, is nonzero, x; = x.
Hence, f is one-to-one. /

(2) g(x) = x? is not one-to-one.

g =1=g(=1). \ /

m Inverse of a Function

Definition 6.5.3. Let f be a function with domain A and range B. The “inverse” of f, denoted
by 7!, is a rule that assigns each element in B to a set in A which reverses f. More precisely,
forbe B

')y ={acA| fla)=1b}.

The set f~!(b) C A is usually called the preimage of f at b.
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Note. In general, the inverse, f~!, of a function f may not be a function. It sends every point b
in the range of f to a set, f~!(b), in the domain. Every number in the set is assigned to b by f.

Definition 6.5.4. A function f is “invertible” if its inverse is a function.

Heuristically, if £~! is a function, by the vertical line test, no vertical line will intersect the
graph of f~! more than one point. This implies that no horizontal line intersects the graph of f
more than one point. Hence, f is ono-to-one.

Theorem 6.5.5. A function f is invertible if and only if f is one-to-one.

Proof. (=) Suppose that f(x;) = f(x;) = z for some x;,x, € Dom(f). Since f is invertible,
f~!is a function. A function assigns an element in the domain to a unique number. Hence,

x1 = f7(2) = xa.

(&) If f is one-to-one, for every element b in the range of f, there is a unique element a in the
domain of f such that f(a) = b. Hence, a is also the unique element which is assigned by f~!
from b. Then, f~! is a function. |

Remark. If we call f~! the “inverse function of {7, then it is automatically regarded as a func-
tion. We have

(1)
Dom(f™") = Range(f)  and  Range(f™") = Dom().
(ii)
f'9)=x < f(x)=y foranyy € Range(f).
Example: f(x) = x* and f~!(x) = x!/3. If y = x? then

=)= =x

1
(iii) Caution: Do not mistake the —1 in f~! for an exponent. That is, f~' # —.

f
(iv) 1 Domain of f Range of f
7 (f(®) = x for every x € Dom(f) () g
f(f'(») =y forevery y € Dom(f™") -
Hence, (fH)! = f.
Range of f~* = Domain of {1

Domain and range of a function and its inverse

m Graph of !

Graphof [ = {(a,f(a)) ‘ ac Dom(f)}
Graphof f~ = {(b,f™'(b)) | b € Range(f)} = {(f(a),a) | a € Dom(f)}.

The graph of f~! is obtained by reflecting the graph of f about the line y = x.
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y
oy /
/ =]
/ f
/ /
/ _-1, b)

Example 6.5.6. Sketch the graph of f(x) = V-1 — x and its inverse function using the same
coordinate axes.

Proof. }
y=f)
(i) Sketchy = V-1 -—x. \ y=1x
(ii) Reflecting the graph about the line y = x. — 0 .

m How to Find the Inverse Function of a One-to-one Function f?

1 Write y = f(x).
2 Solve the equation for x in terms of y (if possible)

3 Interchange x and y to express f~! as a function of x.
Example 6.5.7.

(1) Find the inverse function of f(x) = x> + 2.
Proof. Lety = x* +2. Then x = {/y — 2. Consider
y= Vx-2 (interchange x and y.)
Then f~'(x) = Vx - 2. O

4x -1

2) Find the i f = .
(2) Find the inverse of f(x) x13

4x -1 —3y —
Proof. Lety = 2i—+3 Then 4x — 1 = 2xy + 3y and hence x = Zyy— T Interchange x and

y and we have
_ —3x-1

YT k-4

3x-1
Thus, f~}(x) = 2;_4 : O
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a The Calculus of Inverse Functions

m Continuity of f~!

Lemma 6.5.8. If f : [a,b] — R be continuous, one-to-one and f(a) < f(b), then
(a) f(a) < f(c) < f(b)forall c € (a,b).
(b) f isincreasing on |a,b].

Proof. (a) If false, there is a number ¢ € (a, b) such that either f(c) < f(a) or f(c) > f(b).
Since f is one-to-one, the equality will not occur.

Suppose that f(c) < f(a). Choose L € R such that f(c) < L < f(a) < f(b). By the
intermediate value theorem, there exist x,y € (a,b) where a < x < ¢ < y < b such that
f(x) = L = f(y). It contradicts the hypothesis that f is one-to-one.

Similarly, if f(c) > f(b), we can obtain a contradiction to the one-to-one hypothesis by
using the intermediate value theorem.

f(c)
L

®) f(b)

f(a) f(a)
L

f(c)

(b) Assume that f is not increasing on [a, b]. There exist a < x < y < b such that f(x) > f(y).
Since f is continuous and one-to-one on [a, y] and also by part(a), f(a) < f(y). Then for

x € (a,y), f(x) < f(y). It contradicts the assumption.
O

Theorem 6.5.9. Let I be an interval and f : I — R is continuous and one-to-one, then f is
either increasing or decreasing on 1.

Proof. By Lemmab3.8, since f is continuous and one-to-one, it is either increasing or decreas-
ing on any closed and bounded subinterval of 1.

Assume that f is not increasing or decreasing on /. There are a, b, c,d € I with a < b and
¢ < d such that f(a) < f(b) and f(c) > f(d).

Let @ = min(a, b, c,d) and B = max(a,b,c,d). Then a,b,c,d € [a,B] and f is either
increasing or decreasing on [a,]. Hence, one of the arguments that f(a) < f(b) and f(c) >
f(d) is false. Thus, f is either increasing or decreasing on /. O
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Corollary 6.5.10. If f is continuous and one-to-one on (a, b), then the range of f is an open
interval.

Proof. (Exercise) O

Heuristically, if the graph of a continuous function has no break in it, the graph of f~! also
has no break in it (since it is obtained from the graph of f by reflecting about the line y = x).
Hence, we expect that f~! is also continuous.

Theorem 6.5.11. If f is continuous and one-to-one on an interval, then f~' is also continuous.

Proof. By Theorem B39, we may assume that f is increasing. For b € Dom(f™"), there exists
a € Dom(f) such that f(a) = b (f~'(b) = a). We will prove that f~! is continuous at b.

Given € > 0, we will find 6 > 0 such that if |y — b| < 9, then
o) —a| <e.

Since f is increasing, f(a —€) < f(a) = b < f(a + €). Let fla) + 3
fa) = b
6 = min(|f(a — &) - f(a)|,|fla+ &) - fa)]). =

Forly—b| < 6, fla—¢&) <y < f(a+¢g). By LV.T for f,

there exists x € (a — &,a + €) such that f(x) = y. Such x is the
unique number satisfying f(x) = y becasue f is one-to-one.
This implies that

|f' ) —a| <& forevery|y—b| <6.

Hence, f~! is continuous at b. Since b is an arbitrary number in Dom(f~"), f~! is continuous.
O

m Differentiability of 7!

Lety = f'(x) and b = f7!(a) & f(b) = a. Heuristically, y=x

(f~1Y(a) is the slope of the tangent line L of f~! at (a, b). The
tangent line L is obtained by reflecting the tangent line ¢ of f
at (b, a). Hence

Sy BY 1
O = = axiay ~ 70

Theorem 6.5.12. Let f be continuous and one-to-one on an open interval 1. If f’ ( f ‘l(a)) =0,
then f~' is not differentiable at a.

Proof. Assume that (') (a) exists. Since f(f~'(x)) = x, by the chain rule,
(@) () @=1.

Then 0 (f~')'(a) = 1. It is impossible to obtain this equality. O
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Theorem 6.5.13. Let f be continuous and one-to-one on an open interval I and f(a) = b.
Suppose that f is differentiable at f~'(b) with f'(f~'(b)) # 0. Then f~" is differentiable at b

and
1 1

) = = —.
(F® (o) @

Proof. Since f is continuous and one-to-one, for 0 < |h| < 1, there exists a corresponding
k = k(h) such that b + h = f(a + k). Then h = f(a + k) — f(a). Also, by Theorem B511, ! is
continuous. Thus # — 0 if and only if k — 0.

Consider
-1 -1 -1
v e =) ot —a
R -
(a+k)—a ) k
= m = 11m
=0 fla+ k)= fa) -0 fla+k) - fla)
= I @
k
1 1
@ ()
The equality in the last line is because f is differentiable at a and f’(a) # 0. O

Example 6.5.14. Find the derivatives of f(x) = x!/* where n is odd.

Proof. Let g(y) =y". Then f = g7! and g’(y) = ny"\.

’ _ 1 _ 1 _ 1 1/n—1
F= g (g7 (x)  nlxtmy=t A

6.6 Inverse Trigonometric Functions

Note that the only functions that have inverse functions are one-to-one fucntions. But the
trigonometric functions are not one-to-one. For example f(x) = sin x is not one-to-one (by the
horizontal line test). Thus, to discuss the inverse of trigonometric functions, we should restrict
those trigonometric functions on certain domain such that they are one-to-one there.
mf(x)=sin"'x
The function f(x) = sin x, —g <x< g, is one-to-one. The inverse function of this restricted

sine function f exists and denoted by “sin”"

or the “arcsine function”.

” or “arcsin”. It is called the “inverse sine function”
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|
3
=3
BN
<
=
&
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Note.

(1) sin"' x =y © siny = x for —

1
(2) sin'x # —.
sin x

(3) The domain of sin"! xis [-1, 1] and its range is [—g, g].

(4) For x € [-1,1], sin™! x is the number(angle) between —g and g whose sine is x.

(5) sin (sin_1 x) = xfor x € [-1,1] and sin™"' (sinx) = x for x € [—g, g].
Example 6.6.1.
sin_l(l) . sin"l(=1) = - = sin~!( y= -2
276 N R
1 1 3 1
tan ( sin_l(z)) = ﬁ, cos (sin_l(T)) =5
e Graph of sin”' x
by ot Y
g(x) = sinl(x) , P

e Derivative of sin”! x
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f(x) = sin"" x. Let g(y) = siny. Then f = g™! and g'(y) = {
COS y.

f/(x) — 1 — 1 — 1 Sinil.\'

g (g'(®) cos(sin'(x))  VI-x2 J1- 22

Consider the implicit differentiation, y = sin™' x. Then siny = x.

d . d dy dy _ 1
a _ 9 L= 1 _— = = .
dx(sm y) P (x) = cosy dx = dx cosy 1-x2

Example 6.6.2. f(x) = sin"'(x*> — 1)
(@) Dom(f)={x| -1<x-1<1}={x[0<x? <2} ={x]| - V2<x< Vx}.

! rr= 2 forxe(=v3.0)U 0, V).

JI—(2-12 22—

(b) f'(x) =

mf(x)=cos'x

Similar as the arcsine function, we should determine a region where cosine function is one-to-
one there. The function f(x) = cosx, 0 < x <, is one-to-one. The inverse function of this
restricted sine function f exists and denoted by “cos™'” or “arccos”. It is called the “inverse
cosine function” or the “arccosine function”.

Note.

(1) cos'x=ye cosy=xfor0<y<n.

(2) The domain of cos™" x is [—1, 1] and its range is [0, ].

(3) For x € [-1,1], cos™! x is the number(angle) between 0 and 7 whose cosine is x.
(4) cos (cos_1 x) = x for x € [-1, 1] and cos™ (cos x) = x for x € [0, 7].

e Graph of cos™ ' x
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A y
_ -1
g(x) = cos™(x) 1
T
/ :
. 4
‘t l', ! >
p : -
y :,)’(, -n/2 -1 0 1 X
Y= cos 'z

1

e Derivative of cos™ x

Following the similar steps as the derivative of arcsine, it is easy to find

1
V1 — x2

Remark. Another point of view to look at the derivative of arccosine is that

for —1<x<1.

a(cos_1 x) = -

~ T d _ d . _
coslx:E—smlx = a(cos‘x):—a(smlx):—

mf(x)=tan'x

. m T, ) ) . .
The function f(x) = tanux, ) <x< > is one-to-one. The inverse function of this restricted

—19

sine function f exists and denoted by “tan™"" or “arctan”. It is called the “inverse tangnet func-

tion” or the “arctangent function”.

Note.
(1) tan"'x =y © tany = x for —g <y< g
(2) The domain of tan™! x is (—o0, 00) and its range is (—g, g).

(3) For any x, tan™! x is the number(angle) between —g and g whose tangent is x.

(4) tan (tan_1 x) = x for x € (—c0, o0) and tan™! (tan x) =xforxe (—g, 7—T).

(5) lim tan'x = —g and lim tan~! x = g

X—>—00 X—00

Example 6.6.3. Evaluate cos (tan™" x).
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Proof. Lety = tan™! x. Then

1 1
tany = x = sec’y =l +tan’y = 1 + x* = cos (tan"' x) = cosy = =

secy VIt 2
m]
e Graph of tan™! x
r | "
| ] N
| |
| |
| |
: ! 0
i P X
| |
| |
| e
| | _m
I I 2
Yy =tanx y=tan 'z
o Derivative of tan! x
f(x) = tan"'x. Let g(y) = tany. Then f = g7 and g'(y) =
2 \/1 + x?
sec” y.
) = 1 _ 1 _ 1 . anlx
g(g7'(®) sec? (tan”'(x)) 1+x? 1
Consider the implicit differentiation, y = tan™! x. Then tany = x.
d d , dy dy 1 1
—(tany) = — = sec’y-—=1 = —= = .
dx( Y) dx(x) Y dx dx sec’y 1+ x?

e Other inverse of trigonometric functions
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Functions | Definition Domain Range

y= COt_1 X X =coty (—oo, OO) (0’ 7T) NIESS J l
-1 T T X 7

y=sec x| x=secy | (—oo,—1)U(1,00) | (O, E)U(E’ﬂ) ES

5
1

-1 T i x

y=csc x| x=cscy | (—oo,—1)U(1,00) (_E’O)U(O’ 5) |

Va1
Remark.

(i) The ranges of sec™! x and csc™! x are not universally agreed.

(i) The following is the derivatives of all inverse of trigonometric functions

oi(sin_lx): ! oi(cos_lx):— !

5 h=x a Vi-
0—(tan_1x): 0—(cot_]x):—

cgc 1+)i2 céx 1+ x2
0—(sec_1x): 0—(csc_1x):—

dx xVx2 -1 dx xVx2 -1

Example 6.6.4. Let f(x) = xtan™'(+/x). Then

1 1 \Vx
"(x) = tan” ' (Vx) + x - ) — tan~' (V) + _
e (V9 1+ (Vx)? 2+x (Vo) 2(1 + x)
Example 6.6.5. Prove that tan™' x + cot ' x = g
Proof. Let f(x) = tan™" x + cot”! x and compute f’(x) = 0. 0

6.7 Optimization Problems®

The goal of this section is to solve some practical optimization problems.

m Strategy

*All the materials and examples in this section are from Calculus, J. Stewart 8th Ed.
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1. Understand the problem
2. Draw a diagram

3. Introduce notation

4. Express the quantity in Step3, say Q, in terms of other symbols.

5. Express Q as a function of a single variable.

6. Use the techniques discussed in this chapter to find the extreme values.

Example 6.7.1.

A cyclindrical can is to be made to hold 1L of
oil. find the dimensions that will minimized the
cost tof the metal to manufacture the can.

Proof.

Let r be the radius of the top of the can (in cm)
and £ be the height of the can. Then the surface
area of the can is

A =211’ + 2nrh

The volume of the can gives rise to nr’h =
1000
1000. We have h =

nr?
can be expressed as

and the surface area

A(r) = 2nr? + 2nr -

To find the minimum of A, we compute the critical num-

bers of A.

A'(r) = dnr —

2000 3 4(nr® = 500)
2 72 :

Then A’(r) = 0 when r = W%. Since A’(r) < 0 on
0, 1/ %) and A’(r) > O on (4 %, 00), A(r) decreases on

(0, v/22) and increases on ({/22, o).

/500
Hence, A(r) has an absolute minimum at r = \/ = and then h = 2{/ —.
T

e Alternating Method

1000

nr?

<

— —_

Area 2(mr?) Area (27r)h
2000
.
y
1000 4 y=A(r)
0 1'0 7

500

T

121

h
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Since A = A(r, h) = 2nr* + 2nrh and nir*h = 1000, we can compute the derivative of A and find
the critical numbers of A by using the implicit differentiation and solving

d dh dh
—A=dar+2nh+2nr— =0 and 2nrh+ nr*— = 0.
dr dr dr

Then we obtain that A has critical number when 4 = 2r. Plugging into 77k = 1000, we have

3/500 ) .
r= 4\ —. Following the same analysis, we get the same result as above. O
n
From the above example, we use the first derivtive test to check that the minimum value
occurs at the critical point. But the first derivative test is to use to verify the “local” extremem

values. Why can we use it here?

m First Derivative Test for Absolute Extreme Values

Let f be a continuous function on an interval and ¢ be a critical number of f.

(a) If f'(x) > O for x < cand f'(x) < O for x > ¢, then f(c) is the absolute maximum value of

f.

(b) If f'(x) < 0 for x < cand f’(x) > O for x > ¢, then f(c) is the absolute minimum value of

f-
Proof. Skip |

Example 6.7.2. Find the point on the parabola y*> = 2x that is closest to the point (1, 4).

Proof.

Let (x,y) be a point on the parabola. Then y*> = 2x. The (L4) yi=2x

distance from (x,y) to (1,4) is

d=/x- 1)+ (y-42= \/(%y2—1>2+(y—4>2.

To find the minimum of \/(%y2 -1+ (y—4)? is
equalivent to find the minumum of (3y* — 1)* + (y — 4)*.

Let f(y) = (33°—1)*+(y—4)*. Then f’(y) = 2(3y*—1)-y+2(y—4) = y*-8. Hence, f'(y) = 0
when y = 2 which is the critical number of f. Since f’(y) < 0 wheny < 2 and f’(y) > 0 when
y > 2, f(y) has an absolute minimum at y = 2 and thus x = % .22 = 2. Therefore, the point on
the curve y? = 2x that is closest to (1,4) is (2, 2). O

Example 6.7.3. Find the largest rectangle that can be inscribed in a semicircle of radius r.

Proof.
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y
Consider the semicircle to the upper half circle
x> +y*=7r> Let (x,y) be the point on the semicircle
which is the vertex of the rectangle in the first quadrant. x, y)
Hence, x> + y> = r?. The area of the inscribed rectangle oy y f
is )
A=2xy=2xVr2—x* forO0<x<r - 0 F 4

To find the absolute maximum of A, we evaluate

We have A’(x) = 0 when x = ——. Since A'(x) > 0 when 0 < x < = and A’(x) < 0 when

\2 V2

\/Lj < x < r. Then A(x) has an absolute maximum at x = % The area of the largest inscribed

rectangle is A(r/ \/5) =r.
e Alternating Method

We express the vertex of the rectangle in the first quadrant
as (x,y) = (rcos 6, rsin#). Then the area of the inscribed
rectangle is

rsin @

n 2 \

A(9) = (2rcosH)(rsin@) = r*sin(20) for 0 <6 < 5 T reos6

Since sin(26) has a maximum value when ¢ = 7, the area of the largest inscribed rectangle is
A(n/4) = .
O
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7.1 Areas

In this section, we will try to find the area under a curve.

a The Area Problem
Let f(x) > 0 and S be the region that lies under the curve y = f(x) from a to b. We try to

find the area of §.

YA

= flx)
x=a
S x=5b
0 a b X

125
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Recall that the areas of some special regions are easily obtained. For example, the polygons.

A, | 4,

[ b
A=lw A=Lph A=A +A, +As+ A,
Question: How about the areas of the general regions?

We try to approximate the area of the region S by rectangles and take the limit of the areas
of these rectangles as we increase the number of rectangles.

If the function f is nonnegative on [a, b], we indicate the region bounded by the x-axis, the
vertical lines x = a and x = b, and the cruve y = f(x) by R(f, a, b) and want to evaluate the area
of R(f, a, b). In order to study the integrals of more general functions, we no longer assume that
f is nonnegative. The area problems will be discussed later.

Definition 7.1.1.

(a) Let P be a finite collection of points {x;};_, that satisfies a = xp < x; < x; <-+- < x, = b.
We call such P a “partition of [a,b] ”.

(b) The norm (mesh) of a partition P is defined by

|P| = max Ax; where Axy = X; — Xp_1.
1<k<n

(c) If P, and P, are two partitions of [a, b] and P, C P,, we say that P, is a refinement of P;.

(d) If P, and P, are two partitions of [a, b], then P = P, U P, is called a common refinement of
P, and P,.

m Upper sums and Lower sums

Definition 7.1.2. Suppose that f is bounded on [a, b] and P = {x¢, x1,-- - , x,} is a partition of
[a, b]. Denote m; = inf ] f(x)and M; = sup f(x). We say that

XE[Xi-1.x; X€E[xi-1,%;]
L(P, f) = Z m( X = Xp-1) = Z My A Xy
k=1 k=1
is “the lower (Darboux) sum of f for P” and
U(P, f) = Z M (X — Xi-1) Z M Ax;
=1 k=1

is “the upper (Darboux) sum of f for P”.
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A “Riemann sum” of f for P is defined by

S(P.f) =) fledsx
k=1

with any ¢ € [x¢_1, X¢].

upper sum lower sum Riemann sum

Remark.
(1) The lower sum and uppoer sum of a bounded function f for P is well-defined.

(i) Letm = i{lf;7 ] f(x)and M = sup f(x). For any partition P of [a, b],
x€la,

x€la,b]

m(b—a) < L(P, f) < S(P, f) < U(P, f) < M(b - a).

Example 7.1.3. Let f(x) = x> on [0, 1] and a particular partition P given by

12 1

P = {0, RIEEYS

n'n’
.. k 1 ) .. ) .
For the partition P, x; = — and Ax; = — where k = 0, 1,--- ,n. Since f is increasing, f(x;) is

n n
the maximum value for f and f(x;_;) is the minimum value for f on each interval [x;_;, x;].
Then

UP.f) = Zn:MkAxk:Zn:(S)z-%:%Zn:kz
k=1 k=1 k=1
1 oam+ D@a+1)  (n+ D2n+1)
T o 6 B 61’
and
- k=12 1 1 ¢ s
LPf) = ) mox=) (——) ~=—3 k-1
k=1 k=1 k=1

I (n=Dn@n-1) _(n-DH@2n-1)

3 6 6n2
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) _7 y 1
n=10 7 n=130 7 n=>50 i
— A
Uy = 0.385 Uy ~ 0.3502 777 U =0.3434 A
0 1 X 0 1 X 0 1 x
y Y / Y Y
n=10 n=730 ZZ n=>50 tf
Ly ~0.3169 i Ly, =0.3234 A
0 R 0 1 X 0 1

Lemma 7.1.4. Suppose that f is a bounded function on [a,b). If P, and P, are two partitions
of la, b] and P, is a refinement of Py, then

L(Pl’f)SL(PZ’f) and U(Pz’f)SU(Plsf)

Proof. 1t suffices to show that L(P, f) < L(P,, f) and the proof of U(P,, ) < U(Py, f) is sim-
ilar.

Step1: Suppose that P, contains only one point more than P;. Say

P, = {xo,xl,---,x,,} where xo < x; < --- < X,
P, = {xo,xl,--- s Xpels Xy Xpey * ,xn} where xo < - - < x, <X < xp41 <--- < X,
Letw; = inf f(x)andw, = inf f(x). Then m; < w; and m; < w,. We have
X€E€[Xp—1,Xx*] xe€[x*,x ]
k-1 n
LPLf) = D milxi—x) +mixe = x) + ) milxi = xi)

i=1 i=k+1
k-1 n

= ) mibxi+m[(x7 = x) + (g = X)) + Z mi(X; = Xi-1)

i=1 i=k+1
k—1 n

< miAX; + wi(x" — xp_1) + wo(xe — x7) + Z mi(x; — Xi_1)
i=1 i=k+1

= L(P, f).

Step2: If P, contains m points more than P;, we can repeat the procedure of Stepl m times and
the lemma is proved. O
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Lemma 7.1.5. Let P, and P, be partitions of [a, b] and f is bounded on a, b]. Then
L(Py, f) < U(Pa, f)
Proof. Let P* = Py U P,. Then P is a common refinement of P; and P,. By Lemma [ 14,
L(Py, /) < (P, /) S U(P, f) < U(Py, f).
O

Remark. Lemma [ T4 says that any upper sum U(Q, f) is an upper bound of all upper sum
L(P, f) and any lower sum L(Q, f) is a lower bound of all upper sum U(P, f). Hence, any upper
sum is greater than sup U(P, f). That is, let Q be a partition of [a, b]

P

sup L(P, ) S U(Q.f) and L(Q.f) < inf U(P, f).
u

Then
sup L(P, f) < i1}1)f UP f).
P

Remark.

(1) If sup L(P, f) = ir}f U(P, f) = c, then c is the unique number which is greater than all
P

lower sums and is less than all upper sums.

. ) . . 1, x€[0,1]nQ
(i1) It is possible that 5111)p L(P, f) < 12f U(P, f). For example, f(x) = { 0. xe[0.1\Q

Then m; = inf ]f(x) =0and My = sup f(x)=1foreveryk=1,2,---,n. Thus,

XE[X-12 X x€[xp—1,%]

LPf) = ) mbxc=0
k=1

UPS) = ) Moax =1
k=1

Since P is an arbitrary partition of [0, 1],

sup L(P,f)=0<1= if},f U(P, f).
P

(iii) If P, C P,, then
U(th)_L(Pl’f) > U(P29f)_L(P2’f)

Definition 7.1.6. We write

b T b
f f(x)dx =sup L(P,f) and f f(x)dx = iI}f UP f)
a P a

which are called the “lower integral” and “upper ingegral” of f over [a, b], respectively.
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Remark.

(1) Suppose that f is a bounded function on [a, b] and P is any partition of [a, b], then
b T b
wrp s [ fwdss [ gwar<ven.

(i1)) We usually write the lower and upper integral as

jjf, j;bfdx, andff, ffdx.

Definition 7.1.7. Let f be a bounded function on [a, b]. We say that f is “(Riemann) integrable”

on [a, b] if L
b b
f f(x)dx = f f(x)dx = A.

We call this number the “definite integral” of f on [a, b] and denote
b
f f(x) dx.

(1) The symbol f is called an integral sign and f(x) dx is called an integrand. The procedure
of calculating an integral is called “integration”.

Remark.

(i1) If f is integrable on [a, b] if and only if sup, L(P, f) = infp U(P, f) = A.

b
(i11)) A definite integral f(x) dx is a number. The variable x in the preceding is a “dummy

a
variable”. That is, we can write

b b b
ff(x)dx:ff(l)dl=ff(r)dr.

(iv) When f(x) > 0 on [a, b], the integral of f on [a, b], fab f(x) dx is the area of R(f,a,b).
That is, the area of the region R(f, a, b) that lies under the graph of f between a and b is
the limit of the areas of approximating rectangles.

Example 7.1.8. Let f(x) = con [a,b] and P = {a =X < X << Xy < xn} be a partition
of [a,b]. Thenm; =c = M;fori=1,2,--- ,n. Thus

L f)= ) m(xi-x)=c ) (xi-x1)=clb-a)= ) Mxi—x.1)=UP,f).
i=1 i=1 i=1

Since P is an arbitrary partition of [a, b],

sup L(P, ) = e(b - a) = inf U(P. /).
P

b
Then f is integrable on [a, b] and f f(x)dx =c(b - a).
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I, x€la,b]NQ

Example 7.1.9. If f(x) = { 0, x¢€l[a,b\Q

. Then, for any partition P of [a, b],

LP,f)=0<(b—-a)=U®,)).

Hence, sup L(P, f) =0<(b—a) = ir}gf U(P, f) and f is not integrable on [a, b].
P

Example 7.1.10. Let f(x) = x on [a,b]. Find [ f(x) dx.

Proof. Let ax = 2% and P, = {x; | x; = a + iax fori = 0,1,2,---,n}. Since f is an
1ncreas1ng function on [a, b], on each subinterval [x;_, x;], M; = f(x;) = a+irx = a+— ’(h 9 and

=fxi)=a+@G-Dax=a+ = l)r(lb 9 Then

U, f) = Z”wl(“i(b—a)).b—a

n n
i=1

alb - a)+(b “) Z :%(bz—a2)+(b_a)2

i=1 Zn

n (i-D)(b-a)\ b-a
LP,.f) = ;(a+ . )- .
Y
— a(b- a)+( ) 2(1—1) (bz—az)—(bz—na).
We have ) )
-y - 20 f o des 307 -ay+ L
2 2n

for every n € N. The unique number makes the above inequality hold is %(b2 —a®). Hence,

b 1
f f(x)dx = E(b2 — ).

m Areas

Heuristically, for f(x) > 0 on [a, b], the area of R(f, a, b) under the graphy = f(x) fora < x < b
is greater than any lower sum and less than any upper sum. That is, for any partition P of [a, b],

L(P, f) < the area of R(f,a,b) < U(P, f).

Then
sup L(P, f) < the area of R(f,a,b) < irlgf UP f).
P

Hence, if sup L(P, f) = irlgf U(P, f), we have
P

the area of R(f,a,b) = sup L(P, f) = ir}gf UP ).
P
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But, if sup L(P, f) < inf U(P, f), we cannot determine the area of R(f,a, b).

m Distances
If the velocity of an object remains constant, then
Distance = velocity X time.

But if the velocity varies, it is not easy to find the traveled distance.

v : :
0 velocity functuion

0 20 40 60

To estimate the distance over the time period [a, ], we may divide [a, b] into n subinterval
—-a

b
with width At = . The distrance traveled over [f;_y, #;] is approximated by

n

v(t;)At.

Hence, the total distance is the limit of the sum of approximating rectangle

n n
. . . b-a
distance = lim E v(t))at = lim —— E v(t).
n—oo n
i=1 i=1

n—oo

7.2 Integrable Functions

Question: For a given function f on [a, b], how to determine whether f is integrable?

b
Question: If f is integrable on [a, b], how to find f f(x) dx?

Theorem 7.2.1. If f is bounded on |a, b), then f is integrable on [a, b] if and only if for every
g > 0, there is a partition P of |a, b] such that

U(P,f) - L(P.f) < &.
Proof. (=) Since f is bounded and integrable on [a, b], by the defintion,

sup L(P, f) = iI}f UP f)=A < oo.
P
Given g > 0, there exist two partitions of [a, b], P; and P,, such that

LP,, f)> A - g and U(Py, f) <A+ g



7.2. INTEGRABLE FUNCTIONS 133

Let P = P; U P, be a common refinement of P and P,. Then

A- g < L(P\,f) < L(P,f) and

A+ g > U(P,, f) > UP, f).
Therefore,

0SUPRN-LPH<A+3)-(U-3) ==
(&) Given € > 0, let P, be a partition of [a, b] such that
U(P,, f) — L(P,, f) < &.
Then
inf U(P, f) - sup L(P, ) < U(Pe, f) = L(P,, f) < €.

Since ¢ 1s an arbitrary positive number, ir}f UPP )= Sl}l)p L(P, f) and hence f is integrable on
[a, b]. O
Theorem 7.2.2. If a function f is monotonic on |a, b, then it is integrable on [a, b].

Proof. W.L.O.G, we may assume that f is increasing on [a, b]. Then f is a bounded function
with f(a) = rr[lirg] f(x)and f(b) = rr%a>b(] f(x).
x€la, €la,

X

Given £ > 0, we wan to choose a partition P of [a,b] such that U(P, f) — L(P, f) < . Let
b-a

AX = and P = {x; =a+iax|i=0,1,2,---,n} where n will be determined later. On

n

each subinterval [x;_1, x;], M; = f(x;) and m; = f(x;_;). We have

Z M;Ax — Z m;Ax = Z(M,» — m;)AX
i=1 i=1 i=1

b—a < b—
= 22N @) - fal = L 10) -
n i=1 n

U(P, f) = L(P, f)

b — b) —
We can choose 7 sufficiently large such that (b~ alf®) - fl@) <egandthus U(P, f) - L(P, f) < .

n
Since ¢ is an arbitrarily positive number, f is integrable on [a, b]. O

Q Uniform Continuity

Review: A function f is continuous on [a, b] if for every x € [a, b] and given & > 0, there exists
0 = 8(g, x) > 0 such that
lf(x) = fl <e
for every y € [a,b] and |x — y| < 4.
Note that the number ¢ depends not only on € but also on the point x. It could be different
when x varies. For example, f(x) = x* is continuous on R. We can show that

{xz - az‘ <& whenever [x —al <6 = min (1, 1 +82|a|>.

On the other hand, we consider f(x) = x*> on [-2,2]. For every point a € [-2, 2], we can choose
0 = min (1, §> which is independent of the point in [-2,2]. Then |x> — a?| < & whenever

|x — y| < 6. Hence, the function f(x) = x*> may have different behaviors if the domain varies.
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Definition 7.2.3. Let f be a function defined on D C R and E C D. We say that f is “uniformly
continuous” on E if for any £ > 0 there exists 6 = (&) > 0 such that

lf() = fO)l <e
for all x,y € E satisfying [x — y| < 6. If f is uniformly continuous on its domain D, we simply
say that f is uniformly continuous.

Remark.
(1) If f is uniformly continuous on E, then it is also continuous on E.

(ii) If f is not uniformly continuous on E, there exists € > 0 such that for every ¢ > 0 there
exist x,y € E with |x — y| < ¢ satisfying |f(x) — f(¥)| > &.

This statement is equivalent that “there exists & > 0 such that for every n € N we can
choose a sequence of pairs of points x,,y, € E such that |x, —y,|] = 0 asn — oo, but

|f(xn) - f(yn)l >&”

Example 7.2.4. Prove that f(x) = x? is not uniformly continuous.

1
Proof. Lete = 1. We want to find x,, y, such that |x, — y,| < — and |xﬁ —yﬁl > 1 foreveryn € N.
n
Consider
|xi _y;21| = |xn + yn”xn _ynl-

1
Choose x, = nand y, = n+ —. Then
n

1 1 1
-y l==-Qn+-)= ‘2+—2‘ > 1.
n n n
Hence, f(x) = x? is not uniformly continuous on R. O

Exercise.

1 1
(1) Prove that f(x) = — is uniformly continuous on (—, co) for every n € N but not uniformly
n

continuous on (0, c0).
(i) Prove that f(x) = sin x is uniformly continuous on R.
Theorem 7.2.5. If f is continuous on |a, b), then f is uniformly continuous on |a, b].

Proof. We will prove this theorem by a contradition. Assume that f is not uniformly continuous

on [a, b]. There exists € > 0 and pair of sequences {s,} > |, {f,},, C [a, b] such that |s, — 1,| < —
n

n=1°
and ‘ f(sp) — f (tn)‘ > €. We want to prove that [a, b] cannot contain such pair of sequences.
Define
A= {x € la, b] ’ [a, x] contains infinitely many Sn}-

Stepl: To show that a € A. (That is, {s,} contains at most finitely many “a”.)
Since f is continuous at a, for the givne &, there exists 6 > 0 such that for x € [a, b] and

|x —al < 6 then |f(x) — f(a)| <e. Hence, if s, = aand |t, — s,] = |t, —al < }l such that




7.2. INTEGRABLE FUNCTIONS 135

|f(tn) - f(sn)| = |f(tn) - f(a)‘ > g, we have 1/n cannot be less than 6. Hence, n < 1/6.

Since A is nonempty and b is an upper bound for A, by the least upper bound property, there
exists ¢ € [a, b] such that ¢ = sup A.
Step 2: To show that ¢ = b.

Assume that ¢ < b. Since f is continuous at c. For the given &, there exists ¢; > 0 such that
for every y € [a,b] and |y — c| < ¢, then

1fO) = f(e)] < ;

Note that we can choose ¢, sufficiently small such that (¢ — 6;,¢ + 61) C (a,b). We claim that
(c - %1, c+ %1) contains infinitely many s,. Suppose that the claim is false (that is, it contains
finitely many s,). Since ¢ = supA, [a,c — %‘) contains finitely many {s,}. Combinig the above
two results, the interval [a, c+ 62—1) also contains finitely many s,. This implies supA > c+ 62—1 > c.

Now, we will show that the inequality ¢ < b is false. Since (¢ — 5—2‘, c+ %‘) contains infinitely

)
many s,, we can choose sufficiently large N € N such that N < El and sy € (¢ — %‘,c + %]).

1 6
Since |ty — syl < N < El’ we have |ty — c| < 0;. Then

) = Fsw)] < [ o) = FO] + [f© = fsw)| < 5 +5 = =

It contradicts the choice of {s,} and {z,}. Hence ¢ = b.
Step 3: To show that A = [a, b]. It means that [a, b] contains only finitely many {s,} and hence
such choice of pair of sequence {s,} and {z,} does not exist.

For Stpe 2, b = supA. We will show that b € A. The process is similar as the proof of Step
1. Since f is continuous at b, for the given & there exists 9, > 0 such that for y € [a, b] and
[y — b| < 6,, then | f(y) — f(b)‘ < £. Also, since b = sup A, we can show that (b — %2, b] contains
infinitely many s,. Choose a sufficiently large M € N with i < %2 such that sy, € (b - %2, b].
Then |ty — b| < |ty — Syl + |sy — b < 9, and

£ &
[FGsw) = ft)| < |fGsun) =SB + | B) = fltan)| < 5+ 5.
It contradicts that choice of {s,} and {t,}. We have b € A and the theorem is proved.
O

Remark. In Theorem 29, the hypothesis that closedness and boundedness of the interval
are necessary. For example, f(x) = 1/x on (0,1) and g(x) = x* on (1, c0) are not uniformly
continuous.

Theorem 7.2.6. If a function f is continuous on [a, b), then it is integrable on [a, b].

Proof. Since f is continuous on [a, b], it is also uniformly continuous on [a, b]. Given £ > 0,
there exists 6 > 0 such that

f() - fO)] < ﬁ

whenever |x — y| < . Choose a partition P = {xo, Xi, - ,xn} of [a, b] with |P] = max Ax; < 6.

1<i<n

On each subinterval [x;_;, x;], by the extreme value theorem, there exists s;,# € [x;_, X;] such
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that M; = f(s;) and m; = f(¢;). Since |s; — t;| < 9, we have M; —m; < 5 £ fori=1,2,---,n.
—-a
Then
U f)=LPf) = D (Mi=m)(xi = xi-1)
i=1
8 n

< h—a ;(xi - Xi-1)

= bfa-(b—a)ze.
Hence, f is integrable on [a, b]. O

Theorem 7.2.7. If f is bounded on |a, b] and is continuous on [a, b] except at one point, then f
is integrable on [a, b]. Moreover,

b C b
ff(x)dx:ff(x)dx+ff(x)dx,

Proof. Since f is bounded on [a, b], there exists M > 0 such that | f(x)| < M for every x € [a, b].
For given & > 0, we will prove that there exists a partition P of [a, b] such that

UP, ) - L(P.f) <e.

Suppose that f is discontinuous at only one point ¢ € [a, b]. Then f is continuous on [a, ¢ — ﬁ] Ulc+ ﬁ,

Hence, f is integrable or; [a,c — I 28M] and on [c + ﬁ,b]. There exist; a partition P; =
{to,t1,--- ,t,} of [a,c — 12M] and a partition P, = {sg, §1,- - , S} of [c + W’b] such that
e &
U(Py, f)—L(Py, f) < 3 and U(P,, f)—L(Py, f) < 3
Note that, in the parti.tions Pl' ‘and Py, to=a,t,=c— ﬁ, So=cC+ I ng and s,, = b. Let
P = P, U P,. Then P is a partition of [a, b].
tg t1 ce th-1 tn So S1 cee Sm—1 Sm
a I Il
_ - ‘ i + b
“T1om 12M
P P,
P=PUP

Define
M; = sup f(x) and m; = inf ] f(x)

xe[ti-1.1i] Xe[ti-1.ti

M, = sup f(x) and m’; = inf f(x)

I J
XE[Sj,l,Sj] XG[SI’,I,SI']
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Then

U(P, f) = L(P, f)

X€Eltn,50]

Z”] Mi(t; = 1) + (sup f(x))(s0 = 1) + Z Mi(s; = s;1)
i=1

J=1

B i(ti = ti) + { inf — 1) + "(si— 5.
;m( ) (xel[g,m]f(X))(so ) ;ml(sj Sj-1)

(UPL )= L(Pr )] + [UP. /) - Ly, )]
+[ sup f0) = inf f()](so~ 1)

X€[tn,50]
e € £
< -+-4+2M-— ==
373 oM~ °
Hence, f is integrable on [a, b]. m]

Definition 7.2.8. A function f is called “piecewise continuous” on an interval I if there exists

finitely many points x;, x,, - - - , x, in I such that f is continuous on / except at xi, x,, - - - , x,, and
Jf has removable or jump discontinuities at x, x5, - - , X,.
VA

Corollary 7.2.9. If f is piecewise continuous on [a, b), then f is integrable on [a, b].

Proof. Exercise! m|

7.3 Properties of the Integrals

Theorem 7.3.1.

(a) If f is integrable on [a, b] and [c,d] C [a, b], then f is integrable on [c, d].

(b) Fora < b < c, if f is integrable on [a, b] and is integrable on b, c], then f is integrable on

la, c]. Moreover,
C b c
ff(x)dx=ff(x)dx+ff(x)dx.
a a b
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(c) If f and g are integrable on [a, b), then f + g is integrable on [a,b]. Moreover,

b b b
f (f £ () dx = f £ dx + f o) d.

(d) If f is integrable on [a,b] and a € R, then af is integrable on [a, b]. Moreover

b b
f (af)(x)dx = af f(x) dx.

(e) faf(x) dx=0.

Proof. We will prove (c) here and the proofs of other parts are left to the readers.
Since f and g are integrable on [a, b], for given & > 0, there exist partitions, P and P,, of [a, b]
such that
£ g
UPy, f) = L(Py, f) < 5 and U(Pp,8) — L(P,8) < ok

LetP=P,UP, = {a =X <X << X1 < X, = b} be the common refinement of P; and
P>. Then
UPH-LPH<> and UPg-LPg.5.

Define
M;= sup (f+g)(x), M= sup f(x)and M = sup g(x)
x€[xi-1,%;] x€[xi-1,x;] x€[xi-1,x:]
m; = inf (f+g)(x), m;= inf f(x)andm = inf g(x).
x€[xi-1,%;] x€[xi—1,x:] X€[xi—1,x1]
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Then M; < M + M!” and m; > m] + m;’. We have

Zn: M(x; — xi_y) — Zn: mi(x; — X;_1)
i=1 i=1

D UM+ M) = xii) = )+ mi ) = xi)
i=1 i=1

= UWPf)—LP )+ UPg) — L(P,g)
E E
< E +§ =é&.

UP f+g—-LP f+g)

IA

Hence, f + g is integrable on [a, b]. Moreover, since

b
L(P,f)SI J@) dx<U(P f)  with U(P,f)—L(P,f)<§ and

b
LPg < f (W dx<UPg)  with URg) - LA <o,

we have i i
L(P.f)+ L(P.g) < f £ dx + f (¥ dx < UP.f) + U(P.g).

Also,

b
L(P, )+ L(P,g) < L(P, f + g) < f (f+&)dx<UP, f+g) <UP )+ UPQ.

Hnece,

b b
| (e da( [ rrans [ ewan)| < | (v s e)-(LeprLe)| <e.

b b b
f (f +8)(x)dx = f f(x) dx +f g(x) dx.

Exercise. If f is integrable on [a, b], prove that | f(x)| is also integrable on [a, b].

Example 7.3.2. Leta < ¢ < d < b. If f is integrable on [a, b], f(x) > 0 on [a,c] U [d, b] and
f(x) <0on [c,d] as the figure. Then

Thus,

b VA
SO0 dx y=fx)
C b
- ff(x)dx+fdf(x)dx+f f(x)dx ’f\ I
3 c a“ 0] a ¢ 1l @
= f fydx— [ (=Dfx)dx+ [ f(x)dx
a ¢ d

Areaof I — Areaof I + Areaof I11.

=Y
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Moreover, the area between the graph of f and x-axis is

b C i b
f )] dx f ] dx + f ] dx + fd )] dx

= Areaofl+ Areaof Il + Areaof Ill.
1
Example 7.3.3. Evaluate f V1 — x% dx.
0

Proof.

If we try to find the upper sum or lower sum, it is not
easy to evaluate the form

)7
. y= \/’1 —x*
Z v 1= xiAx;.
i=1 1
1
Hence, we try to think that f V1 — x? dx repre-
0
sents the area under the curve y = V1 — x? from 0 to
1. Hence, .
0 1 X
: 1 , T
f Vi-xX?dx=-n-1"= -,
0 4 4

O

b a
Remark. So far, we only consider the integral f f(x) dx fora < b. Can we define f f(x)dx
a b

for a < b? If the integral f f(x) dx is well-defined, by the part(2) of Theorem [Z31],
b

b a
ff(X)dX+ff(X)dx:f f(x)dx =0.
a b a

Then fba f(x)dx = - fa b f(x) dx. Therefore, for any a, b € R, we define

f:f(x) dx = —fabf(x) dx.

m Comparison Properties of the Integral

b
() If £(x) > 0 on [a, b], then f F)dx > 0,

(g) If f and g are integrable on [a, b] and f(x) < g(x) for all x € [a, b], then

b b
f f(x) dxsf g(x) dx.
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(h) If f is integrable on [a, b] and m < f(x) < M for all x € [a, b], then
b
m(b —a) < f f(x)dx < M(b - a).

y
M-

mr-

Corollary 7.3.4. (Mean Value Theorem of Integarls) If f is continuous on [a,b], then there
exists a number c¢ € [a, b] such that

1 b
O = fue = 7= f £ d,

that is,

b
f J) dx = f(c)(b - a)

F(€) = fave
l

Proof. Since f is continuous on [a, b], by the extreme value theorem, there exist o, € [a, b]
such that M = f(a) = m[a)bfl f(x)and m = f(B) = I’I%illl)] f(x). By the property(h),
x€la, X€la,

1

b
mS—ff(x)deM.
b—a],

1 b
P f f(x) dx is a number between f(a) and f(5). By the mean value

theorem for continuous functions, there exists a number ¢ between a and 8 such that

That is, the value

1 b
fle) = P f Jf(x) dx.
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7.4 Riemann Sums

Suppose that P = {xy, X1, -+, X,} is a partition of [a, b], and that for each i we choose some
point x? in [x;_1, x;]. Then we have

L(P, f) < ) fOD(i = xi1) < UCP, f).
i=1

Any sum Z f(x)(x; — x;_y) is called a “Riemann sum” of f for P.

i=1

Theorem 7.4.1. Suppose that f is integrable on [a, b). Then for every € > 0, there exists 6 > 0
such that if P = {xo, - - , x,,} is any partition of [a, b] with ||P|| < 6 then

S = 3 - [ o <
i=1 a

forany x7 € [x;_1, x;].

Proof. Firstly, we consider that f is continuous on [a, b]. Hence, it is integrable and uniformly
continuous on [a, b]. For given & > 0, there exists 6 > 0 such that if |x — y| < 9, then

0= F0)] < 57—

Let P = {xo, x1,- -+, x,} be a partition of [a, b] with ||P|| < 6. Then M; —m; < 5 £ fori =

—-a
1,--+,n. We have

UP, f)— LR f) = Z(Mi —m)(x;i — xi-1) < £ Z(Xi - Xi-1) = €.
i=1

. b—a‘
i=1

b n
Also, since L(P, f) < f f(x)dx < U(P, f)and L(P, f) < Zf(x;k)(x,» —x;.1) < U(P, f), we have
a i=1

S A = i) - | oo d <
i=1 a

Moreover, for a general integrable function f, we will use a known fact that there exist contin-
uous functions g and % on [a, b] satisfying g < f < h and

b b
f h(x) dx — f g(x)dx < e.

D80 = xi) < ) FOD = x) < ) A = xio1)
i=1 i=1 i=1

We have
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Since g and h are both uniformly continuous on [a, b], we can choose 6 > 0 such that for a
partition P with ||P|| < 6,

) Zn: g(x)(x; — xi1) — f” g(x) dx‘ <& and ’ Zn: h(x;)(x; — xi-1) — fb h(x) dx‘ <e&
i=1 a i=1 a

Hence,
‘ anlg(ﬁ)(xi — Xi-1) = Z; h(x;)(xi = x,._l)‘
= ‘ ang(xf)(xi = i) = fab g(x) dx) + ( f g(x) dx - fab h(x) dx’
+) B f hw) di- Z hOx) i = xi-1)| < 3e.
a i=1
Hence,

i=

+‘ Zn:g(x}k)(xi — Xj—1) — fbg(X) dx‘ + ‘ fbg(x) dx — fbf(x) dx‘
i=1 a a a

< ‘ zn: 8(x)(xi = xim1) = Zn: h(x)(xi = x,-_l)) +2¢
i=1 i=1

| = ) - | oo da] <] D0t - 50 - s - x|
i=1 a i=1 1

< Se.

Remark. If f is integrable on [a, b], then

n b
tim A0 =5 = [ f0dx
i=1 a

1PlI—0

The above sample point x7 and Ax; vary as the partitions change.

7.5 The Fundamental Theorem of Calculus

Suppose that f is integrable function on [a, b]. For every number x in [a, b], we can define a
new function by

F(x) := f ) £(t) dt.

If f(r) > 0 on [a, b], then the function F(x) represents the area of the region under the graph
y=f()fromr=ator=x
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~

In fact, the function F(x) is continuous on [a, b] and the proof is left to the readers.

Exercise. If f is integrable on [a, b] and F(x) is defined as above, then F(x) is continuous on
[a, b].

Question: Is F(x) differentiable?
In order to compute F’(x) from the definition of a derivative, we first observe that, for 4 > 0,

F(x+ h) — F(x) is obtained by subtracting areas, so it is the area under the graph of f from x to
x+h.

h
J(x) |
/N b t
X X

c+h

For small A, the area is approximately equal to the area of the rectangle with height f(x) and
width A.

F(x+h)—F(x) = hf(x)
an so
F(x+h) - F(x)
h

= f(0).
Intuitively, we expect that

F(x+h)— F(x)
h

= f().

Fo =i

Theorem 7.5.1. (Fundamental Theorem of Calculus, Part 1) If f is integrable on [a,b) and is
continuous at c for some c € |a, b] then

F(x) = f ) f(t)dt

is differentiable and F’(c) = f(c).
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Proof. We will prove the theorem for ¢ € (a, b) and the proof is similar for c = a or ¢ = b.
Since f is continuous at ¢, for given &€ > 0, there exists 6 > 0 such that for all | — c| < ¢,

(@) = flo)l < e.

This implies that
fle)—e< f(t) < f(c)+€& forte(c—0,c+0).

For0 < h <6,
c+h ¢ c+h
F(c+h)—F(c):f f( a’t—f f(® dt:f f(p) dt.
Hence,
(f(c)—€)h < F(c+h) = F(c) < (f(c) + &)h.
‘We have

F((c+h)-F(c)

flc)—e< -

< f(c) +&. (7.1)
Similarly, for -6 < h < 0,
c+h C C
(=h)(=f(c)—¢) < F(c+h)=F(c) = f f@dt = - f fdt = f - f(0) dt < (=h)(—f(c)+e).
¢ c+h c+

Then

o< DEDTIO iy v
We have P - F
Floy—e < FEF ;l O o ve (72)
By (1) and ((Z22), for 0 < |h| < 6,
Flesh=F@) o1

h

Hence,
F(c+h)—F(c)

h

Fo =iy

= f(o).

Remark. Suppose that f is integrable on [a, b] and is continuous at c.

(1) For x € [a, b], let

b b X b
Fio) = f () di = f £ di - f F@y di = f ) di — Fo.
Fax) = f o) di = f ) di = ~F ().

b b
Fax) = f ey df = - f ) dt = —Fy ().

Then
Fi(c) =-F'(c)=~f(c), Fyc)=~F(c)=-f(c) and Fi(c)=-F(c)= f(c).
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(i1) If f is continuous on [a, b], then F(x) is differentiable on [a, b] and F’'(x) = f(x).

Corollary 7.5.2. If f is continuous on [a,b] and f = g’ for some function g, then

X b
f ) di = g(x) - g(@) and f £ dx = g(b) - g(a).

Proof. Let F(x) = fa * f(®) dt. Then F’(x) = f(x) = g'(x). Hence, F(x) = g(x) + C for some
constant C. We have 0 = F(a) = g(a) + C and then C = —g(a). Thus
X b
f f(O)dt = F(x) = g(x) —g(a) and f f(x) dx = g(b) - g(a).
O

Remark. This corollary seems to be useless. If g(x) = f f(t) dtthen g’(x) = f(x) and g(a) = 0.
‘We have ‘

b
f f(@) dr = g(b) = g(b) — g(a).

But the useful point is that for any g satisfying g’ = f, then

b
f f(@) dt = g(b) - g(a).

Example 7.5.3. Let g(x) = 3x° and f(x) = x*. Then g’(x) = f(x) and

b b 1 1
f f(x)dx = f x*dt = 5[93 - §a3 = g(b) — g(a).

On the other hand, let g;(x) = %x3 + 5 then g} (x) = f(x) and

b b
f ) dx = f 2 dx = g1(b) - 21(a).

a

Theorem 7.5.4. (Fundamental Theorem of Calculus, Part II) If f is integrable on [a, b] and
f = g for some function g, then

b b
f f(x)dx = g(b) — gla) (denoted by g(x) a)-

Proof. Let P = {xg,x1,---,X,} be a partition of [a,b]. By the mean value theorem, for each
i =1,2,-2,n, there exists ¢; € (x;_1, x;) such that

8(x;) — g(xim1) = &'(c)(x; — ximy) = fle)(xi — xi21).
Since m; < f(c;) < M,

LPf) < ) mi(x = x1) £ ) fled(xi = x1) < ) Mi(xi = xi1) = U(P, )
i=1 i=1 i=1

- -

=X 8(xi)—g(xi-1)
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Hence, L(P, f) < g(b) — g(a) < U(P, f) for any partition P. Since f is integrable, we have

b
f f(x) dx = g(b) - g(a).

Example 7.5.5.

(1) Let f(x) = sinx and define F(x) = f sint dt. Then F’(x) = sin x.

x2
(2) Suppose that f is continuous on [a, b] and x* € [a, b]. Let F(x) = f f(t) dt. Find F’'(x).

X )Cz

Proof. Define G(x) = f f() dt. Then F(x) = f f(H)dt = G(x?). By the Fundamental
Theorem of Calculus, Gg(x) = f(x) and by the chatin rule,

F'(x) = %(G(xz)) =G'(x) 2x = f(x) - 2x.

O
hi(x)
(3) Suppose that f is continuous on [a, b] and h(x) € [a, b] is differentiable. Let F'(x) = f(v) dt.
Find F'(x). ’
Proof. Define G(x) = f f(¥) dt and then F(x) = G (h(x)). Hence
F(x) =G (h(x)) - ' (x) = f(h(x)) - I’ (x).
O
h(x)
(4) Suppose that f is continuous on [a, b] and g(x), h(x) € [a, b] are differentiable. Let F(x) = f(r) dt.
(%)
Then ’
hi(x) h1(x)
F(x) = f(dt = f(@) dt + f() dt
8(x) a g(x)
/1(x) g(x)
= f(t) dt - f(v) dt.
Therefore,

F'(x) = f(h() - 1'(x) = f(g(x)) - &' (%)

o 1
(5) Let F(X) = f P dt. Then
a l+sint

1

— .3x%
1 + sin®(x®)

F'(x) =
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3

(6) Let G(x) = f !t dt. Then

2

2¢ 1 +sin“¢
3 3
X 1 0 1 X 1 2x 1
G(X):f —.zdl—f—.zdl:f —.2dl—f —zdl
o l+sin¢ 2 1 +sin" ¢ o l+sint o l+sin"¢
and { {
G'(x) = g

—_— . x —_——_—_— .
1 + sin*(x3) 1 + sin*(2x)

m Differentiation and Integration as inverse process

By the Fundamental Theorem of Calculus,

f” dt

q fa
- f foldi=foo,  f 5 f fod g
X Ja a

¥ “ 5 Fb) - Fla).

b
f F'(x) dx = F(b) — F(a), F —

7.6 Antiderivatives

p(t) : position function v(t) : velocity function v(z) = p’(t)

[ERES

v(t) : velocity function p(t) : position function ?

Question: For a given function f, can we find a function F such that F’(x) = f(x)?

Definition 7.6.1. A function F is called an “antiderivative” of f on [a, b] if F'(x) = f(x) for all
X € [a,b].

Example 7.6.2.
(1) Let f(x) =xand F(x) = %xz. Then F is an antiderivative of f since F’(x) = f(x).

(2) Let f(x) = sinx. Then F(x) = —cos x is an antiderivative of f. In fact, G(x) = —cosx + 5
and H(x) = —cos x — 100 are also antiderivatives of f.

We recall that if G(x) = F(x) + C then G’(x) = F’(x). Hence, if F is an antiderivative of f,
then G is also an antiderivative of f where G(x) = F(x) + C for any constant number C.

Theorem 7.6.3. If F(x) is an antiderivative of f(x), then F(x) + C is also an antiderivative for
any constant C.

Proof. (F(x) + C)/ = F'(x) = f(x). O
Example 7.6.4. Find the most general antiderivative of the given functions.

(1) f(x) =cosx,then F(x) =sinx + C.
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+1

2) f(x)=x",neQandn >0, then F(x) = n
n

(3) f(x) = x7%, then F(x) = —55 is an antiderivative of f. But f(x) = x~ is not defined at

x = 0. The general antiderivative of f is —ﬁ + C on each interval that does not contain 0.

Hence the general antiderivative of f(x) = x~° is

1
—2—xz+C1 ifx>0
F(x) =
1
_2_)(j2+C2 ifx<O

Remark. If F(x) and G(x) are antiderivative of f(x) and g(x) respectively on an interval, and a
and b are two constants, then

(aF(x) + bG(x))" = af(x) + bg(x).

Hence, the general antiderivative of af(x) + bg(x) is aF(x) + bG(x) + C where C is an arbitrary
constant.

o Antiderivative Formulas

Functions Antiderivative Functions | Antiderivatives
cf(x) cF(x) CcoS X sin x
f(x) + g(x) F(x) + 1G(x) sin x —COoS X
xl’H—
X*(neQ,n#1) +1 sec’ x tan x
n
1 . 2
sin X CSC™ X —Ccotx
V1 — x2
1 -1
s tan " x sec xtan x sec x
csc xcotx —CSCx
Example 7.6.5.
2% —
(1) Find all functions g such that g’(x) = 4sinx + x—\/}
X
Proof.
g(x) = 4sinx+2x*—x1?
1 1/2 2 5
glx) = 4(—Cosx)+2-§x5 - TW +C=—-4cosx+ % -2vVx+C

(2) Find fif f/(x) = xyxand f(1) = 2.
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Proof. The general antiderivative of f(x)is f(x) = 2x°/* + C. Since 2 = f(1) =  + C, we
have C = ¢ and

_ 20,8
f)=3x"+ 2.

b
Note. The definite integral f f(x) dx was defined by a complicated procedure. If we know an

antiderivative F of f, the definite integral can be found by the values of F(x) at only two points,
a and b.

Example 7.6.6.

1

(1) Evaluate f X dx.

-2

Proof. Let f(x) = x*. Then F(x) = ;x* is an antiderivative of f. We have

1
fx dx=F(l)-F(- 2)——1—5

) 4
O
(2) Find the area under the cosine curve from 0 to » where 0 < b < g
Proof. Let f(x) = cos x. Then F(x) = sin x is an antiderivative of f. The area is
b b
A= f cosx dx = sinx 0" sinb — sin0 = sin b.
0
O

Caution: The following computation is wrong.

[a=-il =5 =

1
The integrand f(x) = — is nonnegative but the definite integral is negative. What’s wrong with
this? |
Itis because that f(x) = — is not continuous on [—1, 3]. The Fundamental Theorem of Calculus
x?

is not applied.
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7.7 Indefinite Integrals

151

From the Fundamental Theorem of Calculus, we observe that there are connections between
integration and differentiation(antiderivatives). We need good notation for antiderivative.

X b
From the Fundamental Theorem of Calculus, f f(t) dt is an antiderivative of f and f f(®)dt=F(®b)-F

where F is an antiderivative of f. Therefore, the symbol “ | f(x) dx” denotes the antiderivative

of f and is called “indefinite integral” of f. Thus,

ff(x) dx=F(x)+C means F'(x)= f(x).

Remark.

(1) We regard an indefinite integral as representing an entire family of functions (one an-

tiderivative for each value of the constant C).

b

(i1) A definite integral f f(x) dx is a number and an indefinite integral f f(x) dx is a func-

tion (or a family of ffmctions).

TABLE OF INDEFINITE INTEGRALS

| [fW) + gldy = [ fWdx + [ gax | ef@dx = ¢ [ f(x)dx

n+l

X

| "dx= :
J n+1

i e*dr=¢e"+C

i sinxdx= —cosx +C

| sec’xdx =tanx + C

i secxtan xdx=secx + C

‘ sinh x dx = coshx + C

1

b ol

l dy=tan"'x + C

Example 7.7.1. Find the general indefinite integral

+C (n#—1)

. atdy =

& I :
' —de=ln kx| iC
w X

. a

axd &

Ina

| cos xdx = sinx + C

*

| esc’xdx = —cotx + C

] csexcotxdx=—cscx + C

| :
i —m— dy=gin~ x4 C

!

Y | AT

] cosh x dx = sinhx + C

1
fx4—2secxtanxdx:fx4ds—2fsecxtanxdx:gxs—Zsecx+C.
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7.8 The Logarithmic and Exponential Functions

In the present section, we will discuss two families of functions, the logarithimic and expo-
nential functions. They are very useful not only in mathematics but also on physics and other

fileds.

7.8.1 The Logarithmic Function

Consider the number
10".

(i) Forn =0,
10° = 1.

(i1) Forn e N,

n

10" =10x 10 % --- x 10.

(ii1) Form,n € N,

10™" = 10" x 10"
10" = (10m)".

(iv) Forn € N, 10™ x 10" = 10™* = 10° = 1. Then

1
107 = oo (7.3)
(v) ForneN, (10%)" = 105" = 10" = 10. Then
107 = Y10.

Hence 107 is defined for n € N. Moreover, by ((Z3), 107 is defined for n € Z\{0}.

(vi) Form,n € Z, ]
107 = (107)" = (V10)".

Hence, 10* is defined for k € Q.

Question: Can we define 10* for k € R\Q?

If yes, we can consider the function f(x) = 10* on R. Suppose that the function f(x) = 10*
is defined. We hope that it satisfies

f(x+y) =10 =10"- 10" = f(x)f(y) forevery x,y € R.

Moreover, assume that such a function is differentiable

Jx+h) - f(x) flh) -1
h

h —
Ff( ; fx) _ f(x)(}}gg ; ) = FOf(0).

= lim

) = i
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On the other hand, assume that f(x) has an inverse, say f~'(x) = log,, x and hence f~'(1) = 0.

Then
1 1 1

1
FA@) - FOF(F@) O

This gives an idea to define f~'(x) = log,, x. We expect that

B X e B X 1 1 B 1 fxl
loglox—ﬁ(f )(t)dt—f1 f’(O)tdt_f’(O) 1 tdt.

X
. . ) . 1
This suggests us investigate the function f " dt.
1

(F ) @ =

+1
for

o . o
Note. Another motivation to make us study the function f 7 dt is that f xX'dx = 3
1 n

every n # —1. Hence, we want to understand the antiderivative of —.
X
Definition 7.8.1. The “natural logarithmic function” is the function defined by

1
lnx:f—dt x> 0.
Lt

Note. In some articles, the natural logarithmic function is usually denoted by “log x”.

Remark.

(@) If x > 1, Inx is the area of the region

1
bounded by y = o t-axis,t =1l and t = x.

0
.o y
W ro<x<t,
1 "1
lnx:f —dt:—f —dt
1 t X t
is negative area of the region bounded by
y:;,t—axis,t:xandtzl. 0
(i) By the Fundamental Theorem of Calculus, y
for x > 0,
1 y=Inx
(ln x)' = —->0
. 0 1 X
% L., 1
1 = (=) =-=<0
(n)" = (3)'=—

Hence, In x is increasing and the graph of y =
In x 1s concave downward.
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m Laws of Logarithms

Theorem 7.8.2. If x and y are positive nubmers and r is a rational number, then
(a) In(xy) =Inx+1Iny
(b) In () = Inx+1Iny

y

(c) In(x") =rinx
Proof. (a) By the Fundamental Theorem of Calculus, (In x)" = % Let f(x) = In(xy). Then
, 1 1 ,
f=—-y=—-=(nx)"
Xy by

Hence, f(x) =Inx+ C. Since Iny = f(1) =In1 + C = C. Therefore,

In(xy) = f(x) =Inx +Iny.

(b) Let x = 1/y. Then
1 1
In=+lny=In(=-y)=In1=0.
y y

1
Hence In— = —Iny and
y

ln(%) :ln(x-i) :lnx+ln§:lnx—lny.

r
-

(©) IfreN,thenlnx’:ln(x-x---x):inx+1nx+---+ln)2:rlnx.

r

1

Ifr= %, then Inx = ln(x%)” = nlnx Hence, Inx" = Inx' = —Inx = rlnx.
n

If r = 2. Then

1 1 m
Inx"=In(x")" =mlnx» = —Inx = rln x.
n

Example 7.8.3.

(x*> +5)sinx

e e In(x* + 5) + In(sin x) — In(x* + 1).

In

Corollary 7.8.4. lim Inx = co and lim In x = —o0

X—00 x—0*

2
1
Proof. ConsiderIn2 = f —dx > 0. Bythe Law(3), wehaveIn2" = nln2andIn2™" = —nln2.
1 X

Given M > 0, we can choose ny € N such that npIn2 > M. Also, since In x is increasing,

for x > ny,
Inx>1n2" =nyln2 > M.
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Hence, lim In x = co. On the other hand, for given N > 0, we choose n; € N such that —n; In2 <

X—00

—N. Again, since In 2 is increasing, for 0 < x < 27"
Inx<In2™ = —n;In2 < =N.

Thus lim In x = —co0. O

x—0*

Q Derivatives of Logarithmic Functions and Logarithmic Differentiation

1
dx t x
For f(x) > 0, we compute the derivative of In f(x). Let u = f(x) and y = In f(x) = Inu. By the

chain rule,

d d (1
Recall that the Fundamental Theorem of Calculus implies that d—(ln X) = — f —dt = —
X 1

_@_Qd_u_l du  f'(x)

d
Emﬂm_w_wm_lﬂ_ﬂw

Example 7.8.5.

(1) Differentiate y = In(x* + 1)

d
Proof. Letu = x> + 1, then d_u = 3x% and y = In u. By the chain rule,
x

Q_dyd_u_l32 3x°

dx dudx u TR+
O
.. d .
(2) Find — In(sin x).
dx
Proof.
d ) 1
— In(sinx) = —— - cos x = cot x.
dx sin x
O
(3)
d x+1 d d 1 1 1
—1 =—11 I)-In Vx-2 | = —|1 )—=In(x-2)| = - .
=5 = e e DoIn V-2 ] = e InGe D= g In(-2) | = s

Example 7.8.6. Find f'(x) if f(x) = In|x].

Proof. Since
In x ifx>0

f”*:{mem ifx <0
then
ifx>0

J'(x) = 1
(=1)=- 1fx<0
X X

||,_‘><I>—‘
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Note.
d (In]x) ! for every x # 0
— x|) = - very x .
dx X Y
and hence
1
f—:mm+c
X
We have

n+l1

X .
f;““: ——+C ifn#-1
Injx+C ifn=-1.

Example 7.8.7. Differentiate y = ﬁ
x

Proof. Taking Logarithms of both sides, we have

3 1
lmﬂzzhnﬂ+§mu?+u—5mux+m

To find Z—y, we take derivatives of both sides. Then
X

1 dy 3 2x 15

+ —_
y dx 4x 2(x*+1) 3x+2

Hence,
dy 3 2x 15
Z}"yﬁ}+mﬁ+n_3x+9
B x4 x2+1(3+ 2x 15 )
T Bx+2) VMdx 22+ 1) 3x+2/°

m Properties of Logarthmic Function

(a) lnx:f la’t.
Lt

(b) Dom(In x) = (0, c0) and Range(In x) = (—co, )

(c) In x is continuous and strictly increasing.

d 1
(d) E(ln x) = <
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7.8.2 The Exponential Function

Recall that the natural logarithmic function In x is one-to-one from (0, o) onto (—co, o). Hence
it has an inverse function denoted by “exp(x)”.

Definition 7.8.8. The inverse function of (Inx)~! is denoted by “exp(x)”. It satisfies
exp(x)=y &= Iny=nx.
This function is called the “(natural) exponential function”.

Y
y=expx

Proposition 7.8.9. (Properties of natural exponential function)

(a) Domain of exp(x) = (—o0, 00) and Range of exp(x) = (0, o).

(b) exp(In x) = x for x € (0, ) and In (exp(x)) = x for x € (—o0, 00). In particular,
exp(0) =1 since In1=0
exp(l) =e since Ine = 1.

(c) lim exp(x) = co and lim exp(x) = 0.

d 1
(d) Since In x is differentiable and d—(ln x) = — # 0 for every x € (0, ), the exponential func-
X X

tion exp(x) is also differentiable everywhere. Moreover,

1
£ (900 = T = T = P

dx
Notice that
d(n)

dx"
The property(d) implies that the first and second derivative of exp(x) are always positive.
Hence, it is an increasing function and its graph is concave upward.

exp(x) = exp(x) foreveryn e N.

Theorem 7.8.10. For x,y € R,

exp(x +y) = exp(x) - exp(y).
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Proof. Let x; = exp(x) and y; = exp(y). Then Inx; = x and Iny; = y. Thus,
x+y=Inx; +Iny; = In(x;y,).

‘We have
exp(x +y) = x;y; = exp(x) - exp(y).
m|

Definition 7.8.11. We denote the number e = exp(1). This number is called “Euler’s number”.

Remark. (i) Ine =In(exp(1)) = 1 and e is a number such that

‘1
1:f—dx:areaofA
1 X

0 1 e X

area=Ine=1

y=Inx

n

(ii) e"=%-e---€=exp(l)---exp(l) = exp(n).
(iii) e™-e" =€ = 1 = exp(0) = exp (n + (—n)) = exp(n) - exp(—n). Hence,
e = exp(—n).
: 1 1
+ .- —) = [exp(—)}n. Thus,
n n

S | =

(iv) e =e= exp(1l) = exp (
1

e = exp(—).
n

q 2

~

1 1 1 1 q
—er---epr = exp(—) “es exp(—) = exp(—). Hence,
p p p

(v) er

ek = exp(k) forevery k € Q.

Note. The function exp(x) is defined on R but e* is only defined on Q.
Question: Can we define ¢* on R\Q?

Definition 7.8.12. For any x € R, we define

e’ = exp(x).
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From Proposition [Z89, if f(x) = e* then
(1) Dom(f) = R and Range(f) = (0, o).
(2) e™* = x for x € (0, c0) and In ¢* = x for x € R.

(3) lime* = o0 and lim e* = 0.

X—00 X—>—00
d
4) —(e') =e".
4) dx( )
This means that the function f(x) = e* is its own derivative. The slope of a tangent line to
the curve y = ¢* at any point is equal to the y-coordinate of the point The exponential curve

y = e* grows very rapidly.

YA y

slope = e

slope =1

‘,// y=e"*

0 1 X 0 X

(5) The antiderivative of ¢* is itself. That is,

fexdx:ex+C.

Example 7.8.13. Differentiate the function y = "+,

d
Proof. Letu = tan x. Then y = ¢* and d_u = sec? x. Thus, by the chain rule,
X

dy _dydu _
dx dudx

tan x

e - sec’ x = ™ ¥ sec? x.

7.9 General Logarithmic and Exponential Functions

In the present section, we use the natural exponential and logarithmic functions to study expo-
nential and logarithmic functions with base a > 0.
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7.9.1 General Exponential Functions

Question: For a > 0, can we define a* for every x € R?

Notice that a = exp(Ina) = ™.

Definition 7.9.1. For a > 0, we define
a’ = (em“)x =" for x e R.

The function f(x) = a* is called the “exponential function with base a’.

Note. For every a > 0,
(1) Dom(a*) = R and Range(a*) = (0, c0).

(2) Ina* =In (¢*™*) = xIna forevery x € R.
Theorem 7.9.2. Ifa,b > 0 and x,y € R, then

(@) a™ =a'a (b)a™ = % (¢) (@) =a” (d) (ab)* = a'b*
Proof. Exercise O

m Derivative of ¢* and Graph of y = a*

d d
a(ax) = Ec(e”"“) = e Ing=a*lna.
Note.
(1) If a > 1, then Ina > 0 and hence y = a* is increasing since %{(ax) > 0. Also,

xlna xlna =0

lima*=lime =lime =00 and lim ¢' = lim e

X—00 X—00 1—00 X——00 X——00

(2) If a =1, then y = 1 is a constant function.

(3) If 0 < a < 1, then Ina < 0 and hence y = a* is decreasing since %(ax) < 0. Also,

limag*=0 and lim a° = co.

X—00 X——00

G\ oy e g

()

| —

1.5¢

1"
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X

d
Since d—(ax) = a* In a, the antiderivative of a” is la fora > 0and a # 1. Thus,
X

na

faxdx: a +C, a>0anda # 1.
Ina

502 1 31

o In2 In2 In2

2)(
In2

5
Example 7.9.3. f 2% dx =
0

m The Power Rule versus the Exponential Rule

Theorem 7.9.4. If n is any real number and f(x) = x", then
f/(x) =nx"".

Proof. Lety = x". Then
Inly=In|x|"=nln|x|, forx#0

Taking differentiation of both sides,

y d d n
—=—( =n—1 =-.
y dx( n|yl) n— n |x| <
Then n n
Y=y —=x"—=nx"".
X X
O
m Four cases for exponents and bases
d
(D d—(b") = (0 (constant base, constant exponent)
X

(2) %[ FOI" = n[f(x)I""'f'(x) (variable base, constant exponent)

(3) %[bg(x)] = b*“(Inb)g’(x) (constant base, variable exponent)
d g(x)7 — gx) (7 S'(x) . .

@) —[f(x)*7] = f(x) (g () In[f(x)| + g(x) - ) (variable base, variable exponent)
dx [

Proof. We only prove (4) here. Let y = f(x)*™. Then Iny = g(x) In f(x). Taking differentiation
on both sides,

/ d d ’
== iy = Tl 0] = g0l ) + g0 .
Then
yl — y(g/(x) In |f(-x)| + g(x) . “];:((x‘x))) — f(x)g(X) (g’(X) In |f(x)| + g(X) . ‘];:((;C)))

Another method: f(x)$® = /W1 = g@WINfW) Thep

d d w
a[ Fx)@9] = _[eg(x)lnf(X)} — I f() a<g(x) In f(x))

dx
_ IS ( g (x)In f(x) + g(x) - ];((;)) )
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Example 7.9.5. Differentiate y = x V¥,

Proof. Taking logarithm on both sides, Iny = +/xIn x. Then

Y _ 4 gy = 10X VX
Y (Iny) 2\/_+
Then | N | N -~
, nx X nx X ~/2+1Inx
y:y(Z_\/}_i_—): ((2\/— )_x‘f( 24/x )

7.9.2 General Logarithmic Functions

Ifa>0anda # 1, then f(x) = a* is a one-to-one function and thus its inverse function exists.

Definition 7.9.6. For a > 0 and a # 1, the inverse function of a* is called the “logarithmic
function with base a” and is denoted by log, x.

Note. Fora >0anda # 1,

(1) Dom(log, x) = (0, c0) and Range(log, x) = R

(2) log,1=0.

(3) log,x =yif and only if @’ = x.

(4) a"°%* = x for every x € (0, o) and log,a* = x for every x € R.

(5) log, x =Inx.

(6) (Change of Base Formula) For any positive number a (a # 1), we have

Proof. Lety = log, x.

yIna = In x and thus

(7) Fora>1,

andforO<a<1,

m Graph of log,, x

1 In x
0 = —.
8t na

Then @ = x. Taking natural logarithms of both sides, we obtain

Inx

Y na

limlog,x=c0 and lim log,x = —co.
X—00 x—0+

lim log, x = —c0 and li%l+ log, x = o0

X—00

Heuristically, for a > 1, the fact that y = a* is a very rapidly increasing function for x > 0 is

reflected in the fact that y =

log, x is a very slowly increasing function for x > 1.



7.9. GENERAL LOGARITHMIC AND EXPONENTIAL FUNCTIONS 163

y=ux y=log, x

y=log;x
AN

— a,\" a>1

y \
| T Ten |

0 > y=logsx

y=log,x
y=log, x, a>1

m Derivative of log, x

Fora>0anda # 1,

d d /Inx 1
B — 1 = —|— = .
dx( 02, %) dx<lna) xIna
Example 7.9.7.
1
= nya(2 + si = . .
dx io(2 + sin.x) (2+sinx)In10 cosx

m The Number ¢ as a Limit

1
Let f(x) = Inx then f'(x) = — and f'(1) = 1. By the definition of f’(1),
X

o SAED = fQ) L f ) = ()
h—0 h x—0 X

. In(l+x)—Inl
= lim
x—0 X

[y =

1
= lim—In(1 + x)

x—0 X

= lim =In(1 + x)/x

Since f’(1) = 1, then

limIn(1 + x)"/* = 1.
x—0
Since e* 1s continuous, we have

: 1/x . 1/x .
lim,_,q In(1+x) = lim eln(1+x) — llm(l + x)l/x.
x—0

x—0

e=e =e
Note. If we putn = 1/x, then n — oo as x — 0*and we have

e = lim (1 +1)".

n—oo n
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7.10 L’Hopital’s Rule

In Chapter3, we have computed some limits with special form like

im Jf)
x—a g(x)
where f(x),g(x) — 0 as x — a. When f and g have common factor (x — a), we can evaluate

the limit by dividing this common factor. We can also compute some specific limit such as

smx
lim — = 1.
-0 X

On the other hand, the generalized mean value theorem some ideas to compute the above
limit. Recall that a curve C on the plane can be represented as ( f(t),g(t)) where f and
g are differentiable. The slope of the secant line connected ( f(a), g(b)) and ( f(t),g(t)) is

t —
= M for any ¢ € (a,b). G.M.V.T says that there exists ¢, € (a, t) such that
g1 - ga)
fe) _ f0 - f@)
gy g —-gla)

Suppose that f(¢), g(f) — 0 as x — 0 and then f(a) = g(a) = 0. Heuristically, as t — a,
f@ . fllec)y . fO-fl@ .. f@
= lim =lim ———— = lim —.
ga) agc) agl)—gla) ag)
In this section, we will study the limit with some specific form.
Note.

(1) The limit lim % where f(x) — 0 and g(x) — 0 as x — a is called an “indeterminate

x—a g X
0
form of type (6)”.

(2) The limit lim % where f(x) — +oo and g(x) — +oo as x — a is called an “indeterminate
x—a g X

form of type (g)”.

1 0 1
Example: }g}l xn_xl is of type (6) and lim nxl is of type (g)

x—00 X —

Theorem 7.10.1. (L’Hopital’s Rule) Suppose f and g are differentiable on an open interval 1
containing a (except possibly at a itself), and g’(x) # 0 near a. Suppose that

lim f(x) =0 = lim g(x)

or that
lim f(x) = tco and lim g(x) = *co.

If the limit lim ! (x; exists (or equals o), then

x—a g'(X

lim 29 i £
x—a g(x)  voa gl(x)
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Proof. We will show the case a € R and the case a = +co will be left to the readers.

Casel: —c0o < L < o0

Suppose that lim ! Ex; = L. Then, for given &€ > 0, there exists 6 > 0 such that for all
x—)ag X
O0<|x—a|l <o,
S _ L <e. (7.4)
g'(x)

Fix a number s € (a,a + 6). By Cauchy Mean Value Theorem, for any ¢ € (a, s), there exists
c; € (1, 8) C (a,a + 0) such that
fGs) = f(@) _ f(cr)

gs)—gt) g

Then, by (IZ4)
M—L‘: ——L’<s. (7.5)
8(s) — g() g'(cr)
(1) For lim f(#) = 0 = lim g(7), by (3)
t—a t—a
O L‘
—at g(s)
Since s is arbitrary number in (a, a + 6), we have
& - L’ <e
8(s)
for every s € (a,a + 9). This implies that lim % = L. Similarly, we can also prove that
x—at g X
lim @ = L and thus
x—a g(x)
lim I =
x—a g(x)
(i) For hm f(x) = coand hm g(x) = oo, we can choose ¢ > 0 such that for every x € (a,a+9),
(x) > O and
ECON L’ s
g'(x)

Fix s € (a,a + 9), since lim g(x) = oo, there exists 0 < 6; < ¢ such that for every ¢ €
(a,a + 61), g(t) > g(s) > 0. By the Cauchy Mean Value Theorem, for every ¢ € (a,a + 6,),

there exists ¢; € (, s) such that
f&) = f@®) _ fe)
g(s)—gt) glc)

Then

gy —g(s) _ f(®)— f(s) g®)—g(s)  /f(co) g(1) — g(s) g(1) — g(s)
—c- -L)- = -L)- . .
© I{0) : <g(t) —8(s) ) I{0) <g’(c,) ) I{0) = I{0)
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Hence,
Lo(1-80) SO SO 80 g s
gy’ g g g(1) 8(1)
for every t € (a,a + 6,). Since s is fiexed and g(f) — ooas t — a, when ¢ is sufficiently
close to a from the right, we obtain ‘& < gand ‘& < &. Therefore,
(1) ()
t
-2e< (&_Q_ (&+@) <2e
g() g g
Then
4e < & - L <4e.
8(1)
t t t
This implies that lim AU = L. Similarly, we can evaluate lim AU = L and thus lim AU =L.
i—at g(t i—a g(1) i=a g(1)

Case2: L = +oo, left to the readers.

Note.

(1) The L’Hopital’s Rule says that

(i) Check the indeterminate form (3) or (£) is satisfied.

(ii) Check lim :Ex)

x—a g'(X

exists (or equals +00).
(iii) the limit of a quotient of function is equal to the limit quotient of their derivatives.

(2) The rule is also valid for sided limits. That is “lim”, “lim”, “ lim ” and “lim”.

x—at x—a~ X——00 X—00

1
Example 7.10.2. Determine whether the limit lim i exists.

x—1 x —

Proof. Since linll Inx=0= linll(x — 1), the limit is of type ((9)). Consider

%(ln X) o

m d
x—1 E(x— 1) x-ol

By the L’Hopital’s rule,

X

Example 7.10.3. Determine whether the limit lim ¢ exists.

x>0 x2
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Proof. Since lim ¢* = oo = lim x, the limit is of type (£). Consider
X—00 X—00
d (,x
. one) e
lim izx - = lim —.
X—00 a(x ) 2x
ex
Again, since lim e* = co = lim 2x, the limit lim — is of type (g) Consider
xX—00 xX—00 x—00 2X
20
~
d[_lx(ex) e
= — = 0.
X—00 i(zx) X—00 2
By the L’Hopital’s rule, y=&
X~
e’ e’ e’
lim — = lim — = lim — = oo. - J
X—00 x2 x—00 2x X—00 2 0 10
]

Remark. The exponential functions grow much more rapidly than any power functions as x —
0o,

|
Example 7.10.4. Determine whether the limit lim E.

X—00 \/}

X—00 X—00

Proof. Since lim Inx = co = lim x, the limit is of type (£).

: 2
Consider
4(In x) 1 1 _Inx
lim £ = lim —*— = lim =0. T
xooo () wme 1y 23 koo 34103 v
0 10,000
By the L’Hopital’s Rule,
J
. Inx . 1 .
Iim — = lim =0.

X—00 \3/} X—00 3x1/3

Remark. The logarithms grow slowly than power function as x — co.

. .. .. tanx — .
Exercise. Determine whether the limit hn(l) 2 exists.
X—> X

Remark.

(i) If the limit lim % is not of type (3) or (£), then the L’Hopital’s rule could be wrong.
x—oa g(x
For example,
sin x 0
lim —2% _ 2,
it I -—cosx 2
But

d .
4> (sin x)

COS X
. .= 1m — = —0Q.
x—n a(] —COsSXx) xom SINX
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(i1) If the limit lim f (x; DNE, then the L'Hopital’s rule could be wrong. For exmaple,
xX—a g X
1
lim = 1 but lim —— DNE.
x—o0 X — SN X x—e | —cosx
a Applications

The L’Hopital’s rule can be applied some speical forms of limits.

(I) Indterminate products: the limit lim[ f(x)g(x)] is of the type O - oo or oo - 0. Either

f(x) # 0 near a (except possibly at @), f(x) — 0and g(x) — +o0

or
g(x) # O near a (except possibly at a), f(x) — oo and g(x) — 0

Express hm f(x)g(x) as hm & r lim HE)

im .
—a 1/g(x) — xoa 1/ f(x)
Example 7.10.5. lim xInx.

x—0*

Proof. Since llI(I)l x =0and lim In x = —oo, the limit is of type (0 - c0). Consider

x—07*
anx)  1/x
im ———— = lim ——
x—0+ %{(i) x—0* —1/)(,'2 x—0t
By the L’Hopital’s rule,

. ! y Inx . I/x
xir(l)l*x HX—XLI’(I; 1/X _er(I)l‘r —l/x2 B

Note.

(1) If we rewrite xInx as 1/%, then the limit is of type (2). But it is difficult to use
nx

L’Hopital’s rule to solve it.
(2) When x — 0%, the rate of power functions (x*, a > 0) which decay to 0 is more rapid
than the ralte of logarithms (In x) which grow to oo,

(II) Indeterminate differences: the indeterminate form is of tyep (co — o)
lim[ f(x) — g(x)] where lim f(x) = co and lim g(x) =

Example 7.10.6.
. ) 1 sin x . 1l-=sinx O
lim (secx—tanx) = lim ( - )= lim (=)-type
x—(5)" x=(5)” COSX COSX  x—(Z) COSX 0
Consider .,
2-(1 —sinx) . —cosx
dxd— = lim =0.
x—(3)" a(COS X) x—=(5) — sin x

By the L’Hopital’s rule,

. —COSX
lim (secx —tanx) = lim - =
x—=(5)" x—(3)” —SsInx
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(III) Indeterminate powers the limit }Cl_l)lbll[ F(x0)1¥® is of the form 0°, co® or 1%,
(@) lim f(x) = Oand limg(x) =0 (type 0%
(b) lim f(x) = co and limg(x) =0 (type oo?)
(c) lim f(x) = Land lim g(x) = £co  (type 1%)
Strategy:

(i) Taking “In“ on [£(x)]** and then taking “lim”, we have

(a) = type0-oo
limIn[f(x)*W] = limg(x)In f(x){ (b) = type0- oo
e e (c) = typeoo-0

.. . _1: O limysg In[£(x)]$®
i) lim[f(x)]¥® = lim "W = ¢ .
(if) Hm[f(0] = lim

Example 7.10.7. lir(r)l+ (1 + sin4x)~* (1)

Proof. Lety = (1+sin4x)*, Then Iny = (cot x) In(1+sin 4x) and our goal is to compute

limy.
lir(r)1+ y = lir(r)l+ (cot x) In(1 + sin4x) (00 - 0)
. (cosx)In(1 + sin4x) 0
= lim - (_)
x—-0* sin x 0
Consider
d ) ) . 1
lim dxLcos xdln(.l + sin4x)] i o sin xIn(1 + sin4x) + cos x - 7=— - cos4x -4 .
x—0t EC(Sln X) x—0t COS X

By the L’Hopital’s rule, lim,_,o+ Iny = 4. Hence,

. . - 1 cot x
lim (1 + sin4x)* = 1im eM(I+sin40™]
x—0t x—0*
— elimx_,m In[(1+sin 4x)°°t¥]

elimxaoéf Iny _ 64.

Example 7.108. lim x*  (0°).

x—0*

Proof. Lety = x*. Then Iny = xIn x and our goal is to compute lim,_,p+ y.

1ir(1)1+1ny = lirgxlnx (0 - o)
. Inx 00
= Jlm 7= (3)

X
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Consider .,
2(Inx) . 1/x

1 d 1 ! + 2 +
+ —
x—0 EC(;) x>0 l/x x—0

By the L’Hopital’s rule,
lim Iny = 1ir61+(—x) =0.

x—0*

Hence,
lim x* = lim y = lim €™ = M=oy = 00 =

x—0* x—0* x—0*t
Exercise. Use the L’Hopital’s rule to show

. 1h _
;}Lr(%(l +h)'"" =e.
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The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b]

then the function F(x) = f f(t) dt is differentiable on [a, b] and F’(x) = f(x). The indefinite

f f(x) dx indicates the family of antiderivative of f. The differentiation and integration are

inverse operations.

Differentiation — Integration
Chain rule —> Substitution rule

Product rule — Integration by parts

8.1 The Substitution Rule

So far, our experience does not tell the antiderivative of the function f(x) = 2x V1 + x2. By the
chain rule, the derivative of F (g(x)) is F’ (g(x)) g’(x). Hence, the antiderivative of F’ (g(x)) g'(x)
is F (g(x)).

Chain Rule:
Flg) 5 F(sx))g®
F'(g(x)) g (x) f—d> F(g(x))
For F' = f,

jVMMﬂwmszwmﬂmm:f%VQmﬂmz

171
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du
Let u = g(x), then T = g'(x) and du = g’(x)dx. Hence,
X

fF’(g\(x/)) g'(x) dx:fF’(u) du=Fu)+C =F(gx) +C.

u du

Substitution rule (z-substitition)

Theorem 8.1.1. If u = u(x) is a continuously differentiable function whose range is an interval
I and f is continuous on I, then

f f(u(x))u' (x) dx = f f(u) du.

Moreover, if F' = f then
ff(u(x))u’(x) dx = F(u) + C.

Proof. Since f is continuous and F” = f, by the chain rule

f £ (u(0) ' (x) dx = f F’ (u(x)) ' (x) dx = f %(F(u(x))) dx = F (u(x)) + C.

|
Example 8.1.2.
(1) Evaluate f x cos(x +2) dx
4 du 3 3 1 3
Proof. Letu = x* + 2. Then T 4x” and du = 4x’ dx. Thus Zdu = x’dx. We have
X
3 " 1 1
x'cos(x"+2)dx = cosu-Zdu:Z cosu du
- 1y +C—1 in(x* +2)+C
= 3 sin u =7 sin(x
O

(2) Evaluate f V2x + 1 dx.

d 1
Proof. Solution 1: Let u = 2x + 1. Then @ _ 5 and du = 2dx. Thus du = de. We have

dx
1 1
f\/ﬁ'iduzifumdu

12 1
= = 5(5”3/2 +C) = §I/£3/2 +C

1 3
5(2)6 +1)2 +C.

f V2x + 1 dx
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Solution 2: Let u = V2x+ 1. Then du =

Hence,
f V2x+1dx
X
(3) Evaluate f ———dx.
V2x2 + 1

d 1
Proof. Letu = 2x* + 1. Then d_u = 4x and du = 4xdx. Thus xdx = Zdu. We have

X

[
V22 + 1

(4) Evaluate f cosSx dx.

Proof. Letu = 5x. Then du = 5dx.

fcos Sx dx

(5) Evaluate f X V1 + 22 dx.

1
V2x + 1

fu-udu:fuzdu

1 1
§u3 +C =3+ 1)? +C.

11 1 ( s

L P 3502 3

- — +C==-2x"+1): +C.
4 273" g+l
Hence,

1 1
fcosu-gdu—gfcosudu

1 1
gsinu+C: gsin5x+C.

Proof. Letu =1+ x*. Then du = 2xdx and x> = u — 1. Hence,

f\/1+x2-x5dx

f\'1+x2-(x2)2-xdx
%f\/ﬁ(u—l)zdu

%fu5/2—2u3/2+u1/2 du
1,2 4 2
—(51/{% - gll% + gl/t%) +C

~(1+x)7 - %(1 +x0)7 + %(1 +x) +C.

173

dx and dx = V2x+ 1 du = udu.
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(6) Evaluate f tan x dx.

sin )
Proof. We observe that tan x = . Let u = cos x. Then du = —sin x dx. Hence,

COS X
i 1

ftanxdx fsmx dx:—f—du:—ln|u|+C
COS X u

= —In|cosx|+ C =In|secx| + C.

m|
m Definite Integral
Example 8.1.3.
f Vox + 1dx = f Vax+ 1 dxr _Loxs 1)1/2‘4 Lo
0 o 3 o 3 3
Theorem 8.1.4. If f and u’ are continuous, then
b u(b)
f f(u(x))u'(x) dx = " f(u) du.
Proof. Let F(x) = ) f(t) dt, then F'(x) = f(x). Hence,
u(a)
4 (F(u))) = F (u(0)' (x) = f(u(x)u'(x)
dx ’
Then
b b d u(b)
f £ ()i (x) dx = f E(F(u(x))) dx = F(u(b)) - F(u(a)) = ,, fwdu
m|

Note. The theorem notices that the upper and lower limits of the integral will change when we
take the change of variables. The readers sholud carefully deal with this.

Example 8.1.5.
1/2

(1) Evaluate f cos’(mx) sin(mx) dx.
0

Proof. Let u = cos(nx). Then du = —n sin(mrx) dx. Hence,

12 1 (0 1,1 40y 1
f cos®(nx) sin(nx) dx = ——f w du = ——(—u4) ) = —.
0 1 1

Vs
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‘1
(2) Evaluate f —nxdx.
1 X

1
Proof. Let u = Inx. Then du = — dx. Hence,
X

1 1 1 1
fﬁdx—fuduziuz‘ozi.

O
m Integral of Symmetric Functions
Proposition 8.1.6. Suppose that f is integrable on [—a, a].
(a) If f is even, then ff(x) dx = 2f f(x)dx.
—-a 0
(b) If f is odd, then fgf(x) dx=0.
VA YA
—a 0 -
a x
—it 0 a x
a) feven, | flx)dv=2 "O Flx) d (b) fodd, | fx)dr=0
Proof. (a)
a 0 a
f(x)dx = f f(x)dx+ f(x)dx
—a —a 0
0 a
(letu = —x) = —f f(—u) du + f(x)dx
a 0
= f f(u) du + f(x) dx
0 0
= 2 f(x)dx
0
(b) Skip
O

Example 8.1.7.
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(1) The function f(x) = x® + 1 is an even function on [-2, 2] since f(—x) = f(x). Then

2 2
1 2 284
fx6+1dx=2f x6+1dx:2(?x7+x)0:—.
— 0

2

tan x

(2) The function f(x) = 1+ 2+

T is an odd function on [—1, 1] since f(—x) = f(x). Then

1
tan x
———dx=0.
‘[11+X2+X4 x

8.2 Integration by Parts

In the present section, we will study another technique of integration which is an inverse oper-
ation of product rule of differentiation.

Productrule «— Integration by parts
Let u(x) and v(x) be differentiable functions. By the product rule,
d ’ 4
— (u(x)v(x)) = u' (x)v(x) + u(x)v'(x).
dx
By the fundamental theorem of calculus,
d
u(x)v(x) = fd— (u(x)v(x)) dx = fu'(x)v(x) + u(x)V'(x) dx + C.
X

Then
f u(x)v' (x) dx = u(x)v(x) — f u' (x)v(x)dx+C

The process is called the “integration by parts”.

By using the symbols of differential, du = u’(x)dx and dv = v'(x)dv. Then

fu(x) V(x) dx = u(x)v(x) — fv(x) u'(x) dx +C.
~—— N——

dv du

Another form of the integration by parts is

fudv:uv—fvdu.

(1) Obersve the integrand as a product of two functions

Strategy:

(i) One will be differentiated and the other will be integrated

(iii)) Convert the integral of f u dv into f v du and to solve the latter integral.
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Example 8.2.1.

(1) Evaluate f xe* dx.

Proof.
Solution1:
f xe* dx "E' xet — f e*dx [where x = u(x), e* =Vv'(x)]
= xe'-e'+C

Solution2: Letu = x and dv = e*dx. Then du = dx and v = ¢*. Hence,

fxexdx fudvllépuv—fvdu

= xex—fexdx:xex—ex+C.

O
(2) Evaluate f xIn x dx.
1
Proof. Letu =1Inxand dv = xdx. Then du = —dx and v = Exz. Hence,
X
fxlnxdx = fudv :I'gPuv—fvdu
1 1 1 1 1
= (lnx)-ixz—j‘ix2 g dx = §x2lnx— Efxdx
1 1
= Elenx— sz +C.
i

(3) Evaluate f x*e* dx.

Proof. Use the integration by parts twice,

f Xe“dx = xPet— f 2xe* dx [where u(x) = x2, Vv'(x) = €]
= X -2 fxe" dx
= xle' — 2( xe* — f er a’x> [where u(x) = x, v'(x) = e*]

= X’ - 2<xex - ex> +C
= X" —2xe" +2¢" + C.
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(4) Evaluate f In x dx.

Proof.

CHAPTER 8. TECHNIQUES OF INTEGRATION

flnxdx:flnx-ldx:xlnx—fl-xdx:xlnx—fldx:xlnx—x+C.
X

(5) Evaluate f e*sinx dx.

Proof. Use the integration by parts twice,

fe" sin x dx

Then

exsinx—fe"cosxdx
e’ sinx — (excosx+fexsinxdx)

e"sinx—e"cosx—fexsinxdx

1
fe" sinx dx = Ee"(sinx —cosx) + C.

(6) Evaluate f x> cos x> dx.

Proof. Letu = x> then du = 3x’dx. We have

f X cos x> dx

(7) Evaluate f (In x)? dx.

1
fx3cosx3~x2dx:§fucosudu
1 ) .
g[usmu—fsmudu}

1 )
g[usmu+cosu+C}

1
g(x3 sinx® + cos x°) + C.

Proof. Letu = Inx. Thenx = €" and du = idx. Thus dx = xdu = e“du and we have

f (In x)* dx

f we' du=--- (I.B.P twice)

ure' — 2ue' + 2" + C
x(Inx)?> = 2xInx + 2x + C.
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Example 8.2.2. For n € N, evaluate f sin” x dx.
Proof.

Forn = l,fsinxdx:—cosx+C.

) 1 —cos2x 1 1 . 1 1 .
Forn—Z,fsmxdx—dex—E(x—ism2x)+C—Ex—zs1n2x+C.

For n > 3,
fsin”xdx = fsin"_lx-sinx dx
= sin" ' x-(=cosx) — f(n — 1) sin" 2 xcos x - (- cos x) dx
= —sin"'xcosx+(n—1) f sin"2 x(cos® x) dx
= —sin" ' xcosx+ (n— l)fsin"_z x(1 — sin’ x) dx
= —sin" ' xcosx+ (n— l)fsin”_2 xdx—(n-1) fsin”x dx.

Then

) 1. _ n—1 .
fsm”xdx:—— sin"!' cos x + sin"2 x dx.
n n

m Definite Integral

b b
f u(x)v'(x) dx = u(x)v(x)’b - f u' (x)v(x) dx.
Example 8.2.3.

1 1 1
X
ftan_lxdx = xtan_lx’ —f 2a’x
0 0 o 1+x

|
—f—du (letu=1+x%)
1 u

Il
=
[
&
=,
=

8.3 Trigonometric Integrals

In the present section, we will study the integrals of combination of trigonometric functions
with some specific forms.

(I) Product of sine and cosine:

fsinmxcos”xdx form,n e N
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Casel: Either m or n is odd.

For example m = 2k + 1, then taking u = cos x.

Example 8.3.1. f sin® x dx.

Proof. Let u = cos x. Then du = — sin xdx.

f sin’ x dx

fsinzxsinxdx: f(l — cos? x) sin x dx

1
—fl—u2du:—(u—§u3)+C

1
—cosx+§cos3x+C.

O
fsinﬁxcossxdx
Proof. Let u = sin x. Then du = cos xdx.
fsin(’cosSxdx = fsin6xcos4xc0sxdx:fsinéx(l—coszx)zcosxdx
= fu6(1—u2)2du:fu6—2u8+ulodu
1, 24 14
= zu'——u+—u +C
7" Tt T
1 2 1
= 7sin7x—§sin9x+ﬁsin“x+c.
O

Case2: Both m and » are even.

Using the half-angle identity, either we can reduced the integrand sin™ x cos” x to the form
of Casel, or it can be coverted into another form of Case2. Then taking the half-angle identity
until it can be coverted into the form of Casel.

Example 8.3.2.

(1) fsin4 xdx.

Solutionl : Using the integration by parts to lower down the power of sine function by 2
each time.
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Solution?2 :

f sin* x dx

1 - cos? !
f( cos X) x:Zf1—2cos2x+00522xdx

1 +cos4
20052x+$dx

f— —2cos2x + %cos4xdx

1
- Zsm2x+ 3—251n4x+C.

OOIUJ-PIH-PIH

2)

1+ cos2x B (l +0052x>2+ (1 +c052x)3dx

2 2 2

1
= gfl—cos2x—cos22x+00532xdx
1 I +cos4x )
= g[fl-COSZX-(T> dx+fcos 2x-cos2xdx}

1 1 1
= Ex—6—4$1n4x—@sm 2x + C.

fsin4xcoszxdx = f(l—coszx)2cos2xdx:fcoszx—200s4x+cos6xdx

(I1) Product of tangent and secant:

ftan’"xsec”xdx form,n e N

Casel: n is even.
Let u = tan x. Then du = sec? xdx.

Example 8.3.3.
f tan’ xsec® xdx = f tan’ x sec* xsec’ x dx

= f tan® x(1 + tan® x)* sec? x dx

= f w1 +u?) du (let u = tan x)
= fu9—2u7+u5du

1 1 1
= EM10—1M8+6M6+C
= 1t 1t +1t + C.
= 10 an x 4anx 6anx

Case2: m is odd.
Let u = sec x. Then du = tan x sec x dx.
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Example 8.3.4.

(1

f tan’ x sec® x dx f tan* x sec® x tan x sec x dx
_ 2 2 5
= f(sec x — 1) sec’ x(tan x sec x) dx

= f(u2 - 1)2u5 du (let u = sec x)

= fu9—2u7+u5du

I o 15 154

= —u —-u'+-u+C
0" " T "

= iseclox—lse08x+1sec6x+c
10 4 6

(2) Recall that f tan x dx = In|sec x| + C.

ftan3 xdx = ftan x(sec’ x — 1) dx

j‘tanxsec2 x—tanx dx

f sec x(tan x sec x) dx — f tan x dx

fudu—lnlsecx|+C (let u = sec x)

1
Ef—mme+C

1
Eseczx—lnlsecx|+C.

Case3: Others, m is even or 7 is odd.
Notice that if m = 2k, we can convert the term tan* x into (sec? x — 1)*. Hence, the integral

ftanZk xsec" xdx = f(sec2 x — 1)*sec” x dx.

Suppose that we can compute f sec® x dx for any k € N. Then every integral in Case3 can be

evaluated.
1 (k=1

sec x + tan x 1
fsecxdx = fsecx-—dx:f—du (let u = sec x + tan x)
u

secx + tan x

Inju|+ C
ln]secx+tanx + C.
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(i) (k=2)
fseczxdx =tanx + C.

(111) (k > 3, integer) By the integration by parts,

1 n-—2
f seck x dx = 7 tan x sec2 x + 7 f sec*? x dx.
n —_—

n—

(IID)
f sin mx cos nx dx, f sin mx sin nx dx, f COS mx cos nx dx.

By the identities,

1

sinAcosB = E[sin(A — B) + sin(A + B)]
1

sinAsinB = E[COS(A — B) —cos(A + B)]
1

cosAcosB = E[COS(A — B) + cos(A + B)]

8.4 Trigonometric Substitution

Recall that the substitution method says that if u = g(x) then du = g’(x)dx and

f f(ex) g'(x) dx = f f(w) du.
——

S du

In the formula, “x” is the old variable in the left hand side and “u” is a new variable in the right
hand side. The new variable u is a function of the old variable x. Conversely, assume that the
old variable x is a function of a new variable 7, say x = g(f). Then dx = g’(¢)dt and we have the

“inverse substitutuion”
f f(x)dx = f f(g®) '@ dt.
d
[ x

Note. The inverse substitution provides a new method to evaluate the integral f f(x) dx. Sup-
pose that we can find a suitable function x = g(#) such that we could compute the integral
f (g(t)) g’ (¢) dt and the problem would be solved. In general, the suitable function g is not

easy to find. But, it is effective for the given radical expression because of the secified trigono-
metric identities.

a Trigonometric Substitutions

In the present section, we will set x = asinf, x = atanf and x = asec to deal with the
integral with integrand Va2 — x2, Va2 + x2 and Vx2? — a2 respectively.
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Expression Substitution Identity
a )
5 2 c = asin 0 _'_’T<9<E ] sin’f = ) i
qa? — x2 X =asin 6, oy SlS sin“f = cos 9 .
JaP= x?
X 2 2
Vat—a®
— e L | + tan’0 = sec’6
% + x2 X =atan 0, 5 > 7 =
d
Vit a?
- 1 1 X
Jxi—a? X =asec 0, 0<H<?mw 9<— sec’d — | = tan’0 9 o
a
Example 8.4.1.
— 2
(1) Evaluate f > dx.
X
Proof.
Let x = 3sin6, —~ < @ < ~. Then dx = 3 cos § d6
et x = 3sind, S S0z en dx = 3 cos . -
3
o \
V9 — x? 3cosf g
f — dx = -3cos8df= | cot?6de L.
9 sin’ -
AY 9 — 1'3
= fcsc 0—1d0=—-cotd—-6+C
sin 8=+
Vo -
= - -sin~ (=) +C.
X (3)
O
1
(2) Evaluate f —— dx.
xX2Vx2 +4

Proof.
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Let x = 2tan#, —g <0< g Then dx = 2 sec? 6 d6.

1 1
——dx = - 2sec’ 0 do X
2V +4 * f 4tan’ 0 - 2secd
1 sec 6 1 [ cos6 il N
f tan” 0 4 f sin® @ 2
X
(letu =sinf) = f—du_——+C tan 6 = 7
_ . Vx2+4
4 s1n0 B 4x
|
(3) Evaluat f ! d >0
valuate | ———— dx, a .
V2 — 2
Toon
Proof. Letx =sech,0 <6< 5 or 5 < 0 < m. Then dx = atan8sec 6 dé.

f L4 f ! tan 0 sec 6 df | pere
———dx = -atan#fsec o
) atan@ L —

" i e
- fsec9d9:1n|sec0+tan9|+C ’/H/
2_ 2 y d
= h’] f * a ‘ + C "
a a sec @ = Z
= In|x+ sz—az‘—lncH-C %
= In|x+ sz—az‘ +C.
O
2 3
(4) Find the area enclosed by the elhpse — + = 7 =1.
Proof. YA
(0, b)
Area = 4be l—x—dx——f Va2 — 2 dx
0 (a, 0) -
4b 0 X
= — acosf-acos@df (let x = asinf)
a Jo

31 +cos?f
= dab f ST T e

0 2

ARG Py

= 2ab(60+ 5smze)) = nab. ERarl
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¥
(5) Evaluatef(; m dx.

Proof. Let x = % tan @, then ds = % sec? 6 db.

33 z 27 3 z
> % i ytan’e 3 3 (5tan’6
L N - Zsec?0df = — de
. @e+opr fo 27seci6 2 16 J, seco
_ 3 5 sin’ @ :i %l_uz(—du)
16 J, cos?6 16 J, u?
_ 3 -2 _ 3 -1 !
= 16| —1du—E<—u —u));
_ 3
-3
m|
X
(6) Evaluate f — dx.
V3 —2x—x?
Proof. Let x+ 1 =2sinf. Then dx = 2cos 6 d6.
==~ |75
F— X — - 5
3-2x—x% 4—(x+1)>2 =y ;
2sinf — 1 £
= IL-Zcosedé
2cosf P il n
= stinO—ld@z—ZcosH—0+C V4~(x+1y
_ - 5 x+1
= —\/4—(x+ 17 —sin > )+C.
m|

8.5 Partial Fractions

In this section, we will try to solve the integral of rational functions. Let’s observe the following
example that

2
f dx 2In|x+ 1|+ C and
x+1

1
f 2dx In|x-2|+C.

X —

Then

x=5 2 1
fmdx:fx_l_l—x_zdx:21n|x+1|—ln|x—2|+C.
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Question: For a general rational function f, can we express f as sum of several fractions such
that we can evaluate the integral of each fraction?

m Breaking a rational function into several fractions

Consider
P(x)

O(x)

fx) =

where
Px)=a,x"+---+a1x+ ap,
Ox)=b,x"+ -+ bx+ by,

P(x)
0(x)

an’ bl’ll ¢ 0

Definition 8.5.1. If n < m, we call f(x) ( =

call f a “improper” rational function.

) a “proper” rational function; if n > m, we

Notice that in high school algebra, we can use long-divison to express a rational function as
a sum of a polynomial and a proper rational function. That is,

P(x) R(x)
= S

0w - X2 7 o)

polynomial T~

proper rational function

m Strategy of the integration of ration functions

P(x)
dx
0(x)
Stepl: By using the long-divison to express P =S(x)+ Q Hence,
Q0(x) O(x)’
P(x) B R(x)
o) dx-fS(x) dx + o) dx.

Step2: Factorizing the denominator Q(x) as far as possible. For example,

0x) = x*-16="+4)x+2)(x-2)

3 3-145
0x) = X =52 +Tx-2=(x—-2)(x— ’ \/_)(x— 2\F)
0(x) = ¥ -2x*+6x+32=(x-2(x+ 2)(x +4)
0(x) = ¥ =5 +12x-12=(x—-2)(x> - 3x+6)
R(x)
Step3: To express m as a sum of several terms of the forms
X
A Ax+B
S E——— or S EEE——
(ax + b)! (ax* + bx + ¢)

Note. Not all improper rational functions can be expressed as a sum of the above terms.
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Step4: Take the integral of each of the above terms and use the techniques in the previous sec-
tions to solve them.

m Different Cases

e Casel: Q(x) = (a1x+ by)(axx + by) - - - (arx + by) all distinct (i.e. no factor repeated). Express
R(x) Ay As Ay
= + +ot —
0(x) (aix+by) (axx+by) (arx + by)

and solve Ay, --- , A;.

X2 +2x—-1

Example 8.5.2. Evaluate fm X.
Proof. Consider the factorization 2x> + 3x% — 2x = x(2x — 1)(x + 2). We can express

2 +2x—1 _A+ B .\ c 1 1+1 1 1 1
233 +3x2-2x x 2x—-1 x+2 2 x 5 2x—-1 10 x+2°

2 42x—1 1 (1 1 1 1 1
X FET . gy = = | Zdrs- dx— — d
f2x3+3x2—2x o 2fx o 5f2x—1 T0) x+2 4

1 1 1
= Eln|x|+l—olnl2x— 1|—E1n|x+2|+C.

Hence,

e Case2: QO(x) = (a1x + by)"(ayx + by)? - - - (arx + by)'*. Express
Rx) _  An A A

= + + ooy —
o) aix+b;  (ayx+b)? (a;x + b))n
+
A A Ay
k1 + k2 + oo + #
apx + bk (akx + bk)2 (ClkX + bk)r"
and solve Ay, -+, Ay,
4x
E le 8.5.3. Evaluat — —dx.
xample Vauaefx3—x2—x+1 X

Proof. Consider the factorization x> — x> — x + 1 = (x — 1)*(x + 1). Then

4x _A+B+C_1+2+—1
B-x2—-x+1 x-1 (x-=-1D> x+1 x-1 (x-=-12? x+1

dx 1 1 1
——dx = dx+2 | ——dx - d
fx3—x2—x+1 x fx+1 x f(x—l)z o fx+1 o

2
1n|x—1|——1—1n|x+1|+C.
x_

Hence,
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e Case3: O(x) = (a1 x> + bix + ¢))(ayx* + brx + ¢3) - - - (g x* + byx + by). Express

R(.X) _ Aix+ By + Arx+ By + + Aix + By
0x) (@xX2+bix+c) (ax®+byx+co) (X% + bex + ¢’
2 2 _ 4
Example 8.5.4. Evaluate f )g Al
x> +4x

Proof. Consider the factorization x> + 4x = x(x> + 4). Then

2x>—x+4 A Bx+C 1 x-1
_ = — 4 =+ —-—.
X3 +4x x xX*+4 x xX*+4

Hence,
2x> —x+4
—dx = d +
f Brdx *
1
= dx + dx — d
fxx 2fx2+4x fx2+4x
1
= Inpd+=Inp2+1—tan” (3) +C.
2 2
O
Remark.
(1) In this case, we usually use the trick
Cx+D 1 C s 9 X
fm _—fxz_’_azdx-f'Dfmdx:Elan + a”| + Dtan (5)+K
. . ) ) Ax+ B
(i) As long as the denominator ax” + bx + ¢ cannot be factorized, —————— must can be

ax* + bx + ¢
expressed as

A 2ax + b) Ab 1 A 2ax+ b 1
Larth) g LA b 2

2a ax?+bx+c 2a"ax* +bx+c 2a ax*+bx+c 2a  (ax + B)?* + %

For example,

f -1 1f 8x—4 f
3™ T 3 a3 (2x—1)2+2

gln‘4x —4x+3}——fu2+2du (u=2x-1)

1 1 ,u
= g1n\4x2—4x+3}—Ztan ! ($) +C
2x—1

1 [
gln‘4x2—4x+3}—ztanl( ) +C.

V2
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e Cased: O(x) = (a1 x> + bix + )" (ayx* + brx + ¢3)? - - - (g x* + byx + b)™. Express

R(X) _ A11X+Bll + A12X+Blz + A1r|x+Blr1
o(x) (a1 x2+bix+c)) (a1x*+bix+c)? (a]x2 +bix+c)n
+
Aklx + Bkl Ak2X + Bkg Akrkx + Bkrk
(apx® + bpx + ) (apx? + bex + ¢x)? (akx2 + bix + )

l—x+2x*=x°

x(x2 + 1)?

Example 8.5.5. Evaluate f

Proof.

fl—x+2x2—x3 fAd +Bx+Cd N Dx+ E J
—dx+ ——dx ——— dx
x(x? + 1)? 2+1 (x2+1)2

f J fx+1 f
SR B (x2+1)2
fxdx+2fx2+ldx

1
In [x| - E111\x2+ 1| —tan™' x -

f(xz + 1)2

2(x2 T
O

o Case5: O(x) = (a;x + b)) -+ - (agx + bp)*(c1x* + dyx + e))*" -+ - (cox* + dpx + e)* . Express

R(x) An e Ay,
O(x) a1 x + by (a1x+ b
+
LA A
aix + by (ClkX + bk)r/\
N Cux+ Dy, - Cis,x + By,
(cix2+dix+e) (c1x* +dix +ep)"
4
Crx+ Dp C&{x + ng
(ckXx? + dix + ex) o (ch2 +dpx + ep)’

m Rationalizing Substitutions

Vx+4d
x

Example 8.5.6. Evaluate
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1 1
dx = — dx.

2Vx+4 2u

Proof. Letu = Vx+4. Then x = u> — 4 and du =

Vx+4 u 4
f —dx = fu2_4-2udu:2f1+u2_4du
1 1
2u+2 -——d
“r fu—Z w2

2u+21n’u_2‘+C
u+2

Vxtd-2
2Vitd+2In L‘+C.
Vx+4+2

Remark. Since every polynomial function Q(x) can be factorized into products of several 1-
degree or 2-degree irreducible polynomial functions, by following above steps and cases, we
can deal with the integrations of all rational functions.

8.6 Strategy for Integration

Momorized the following table
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Tuble of Integration Formulas Constants of integration have been omitted.
‘.Jr+l e 1
1.Jad_r—n+1 (n# —1) 2. [ —dx=In|x
3. j e'dx = e" 4, ‘ a‘dx = S
J Ina
X J sin xdx = —cos x 6. ‘ cos xdx = sinx
7. j sec’y dx = tan x 8. ‘ csc’x dx = —cot x
9, J sec x tan x dx = sec x 10. ‘ csc x cot x dx = —csc x
3 B Jsec xdx =In|sec x + tanx| 12 ‘ csc xdx = In|csc x — cot x
13. J tan x dx = In|sec x| 14. ‘ cot x dx = In|sin x|
15. J sinh x dx = cosh x 16. | cosh x dx = sinh x
dx 1 i - dx x
17. —=—tan | — 18. | ——=ssin"!| —
J.x‘+a‘ a (a) J Jat— 5 (a)
¢ odx L. | %8 dx
e § ————"Tn *20. = In|x + x% * a?
—I.x'—a' 2a !A+a ~‘ x2*+q? |l ' a
m Strategy

(1) Simplify the integrand if possible.
(2) Look for an obvious substitution.
(3) Classify the integrand according to its form

(a) trigonometric function: products of powers of sinx, - - -, csc x.
P(x)
Q(x)

(c) Integration by parts: f u(x)' (x) dx = u(x)v(x) — f u' (x)v(x) dx

(b) rational functions:
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(d) radicals: Va2 + a2, Va? + x? (trigonometric substitituion); Vax + b (rationalizing sub-
stitution)

(4) Try again!

Question: Can we integrate all continuous functions?
Answer: No, the majority of elementary functions don’t have elementary antiderivatives. For
example, f(x) = ¢* has no antiderivative which is an elementary function.

8.7 Improper Integral

b
In the previous sections, we discuss the definite integral f(x) dx of f under the assumptions

that f is defined on a finite interval [a, b] and f does notahave an infinite discontinuity. In the
presect section, we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where f has an infinite discontinuity in [a, b]. In either case the
integral is called an “improper integral”.

Q Typel: Infinite Intervals

Let f be a function defined on an infinite interval such as [a, co], (-0, a] or (—oo, 00).

1
Example 8.7.1. Let f(x) = — be defined on [1, o). Y
X

So far, we can only evaluate the integral of f on an finite in-

terval. Fix r > 1, we have the area of the region bounded by

1 .
y:—z,x—ax1s,x:1andx:t
X

t
=1--. 0
1 t

"1 1
A(t):f—zdx:——
1 X X

To evaluate the area of the region bounded by y =

= x-axis and x = 1, we let ¢ tend to infinity
X

and consider the limit

i

1 1
limA@#) =lim | —dx=1lm(l--)=1
X

t—0co 1= )y t—o00 t

VA VA

\ o I\ 1\

!
1
Note. In the above process, the integral f — dx should be defined for all 7 > 1.
1 X

Definition 8.7.2. (Improper Integral of Typel)
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(a) If fa ' f(x) dx exists for every number ¢ > a, then

f°° f(x)dx = tlim ftf(x) dx

provided this limit exists.

(b) If ft ’ f(x) dx exists for every number ¢ < b, then

b
f f(x)dx = tlir_n f(x)dx

proveided this limit exists.
00 b

We call the above improper integrals f(x) dx and f(x) dx “convergent” if the cor-

a —00
responding limit exists and “divergent” if the limit does not exists.

(c) If both fa * f(x) dx and f_ aoo f(x) dx are convergent, then we definte

f Ctwdr= [ fedx+ f " d.

In part (c) any real number a can be used.

Remark. If f(x) > 0 and the integral fa - f(x) dx is convergent, we define the area of the region
S={(xy) |x>a,0<y<f(x)}tobe

A(S) = foof(x) dx.

YA
y=f(x)
S
0 a x
Example 8.7.3.

(1) Discuss for what values of p the integral f = dx is convergent or divergent.
1 X
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Proof.

(. 1 1 !
lim (- 7], p#1
lim (1 ’ -1
\[Lrpm<HIXI)1 p
( | 1
lim Int p=1
\ [—00
( 00 p<l
1 ( 1
__1) -
_ oo Pl 1
= I=plime 1 — p>1
p—1
[ o p=1

Conclusion: f = dx is convergenet if p > 1 and divergent if p < 1.
1 X

YA VA

. infinite area
finite area

0 1 X 0 1 X

©

1

[” (1/x? dx converges. |7 (1/x) dx diverges.

0
(2) Evaluate f xe* dx.

o0

Proof.

0 ‘ ) 0 v, LBP .. «|° 0 B
xe*dx = lim xe*dx = lim |xe*| — et dx
—oo t——00 ¢ t——00 t ¢

= lim [—te’—ex

t——00

= L.

r——00

?] — lim [—te’—1+e’}
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O
(3) Evaluate I T dx.
Proof.
] S| ]
dx = dx + dx.
[O<,1+)c2 o ‘[m1+x2 o f(; 1+ x2 o
Consider
00 1 ! 1 t
f dx = lim dx = limtan™' x
0 1+x2 =0 ) 1+)C2 t—0o0 0
= limtan™'7 = z.
>0 2
O 1 . O 1 . _1 0
dx = lim dx = lim tan™ " x
oo L+ X7 =0 J, 1+ x2 100 '
= T (—tan-lp) =
= tl_l)r_lgo( tan”" 1) >
Hnece, .
| 1 | T
dx = dx + dx=—-+—-=m.
Lo1+x2 * Lolm2 * fo 1+ 277"
1
Note that f(x) = is an even function.
1 +x2
YA
1
0 ¥
O

a Type2: Discontinuous Integrands

Let f be a function defined on a finite interval [a, b) but has a vertical asymptote at b.
y

In typel integrals, the regions extended indef-

initely in a horizontal direction. In type2 inte-

grals, the regioin is infinite in a vertical direc-

tion.
0 a th X

For a < t < b, the area of the region S under the graphy = f(x) fromx =atox =1t1is

At) = f t f(x) dx.
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!

If the limit lirgl A = lirgl f f(x) dx = A exists, we say that the area of the region § is A.
t—b~ >0~ a

Definition 8.7.4. (Improper Integral of Type 2)

(a) If f is defined on [a, b) and fa ' f(x) dx exists for all a < t < b, then

b 1
ff(x)dx=tlirglff(x)dx

if this limit exists.

y

(b) If f is defined on (a, b] and f[ b f(x) dx exists for all a < t < b, then

y

b b
ff(x)dx:}iqff(x)dx

if this limit exists.

b
We call the improper integral f f(x) dx “convergent” if the corresponding limit exists and

a
“divergent” if the limit does not exist.

(c) For a < ¢ < b, if f has an (infinite) discontinuity at c, if

C b
both f f(x) dx and f f(x) dx converge then we say that ~
b a c
f f(x) dx converges and
b c b 5 -
f f(x)dx = f f(x) dx + f f(x) dx. “ ¢ b
Example 8.7.5.

5
1
(1) Evaluate f dx.
2 Vx=2



198 CHAPTER 8. TECHNIQUES OF INTEGRATION

1
Proof. The function f(x) = has the vertical
y Vx =2
1 asymptote x = 2. Thus,
-2 5 5
1 1
dx = lim dx
ﬁ x—=2 =2 Vx =2

lim2Vx -2

t—2+

tlir%lZ(\/_— Vi—2)=23.

5
t

area=2\ﬁ
o0 1 2 3 4 5

=Y
Il

s

2
(2) Evaluate f sec x dx.

0

Proof. The function f(x) =secx has the vertical
TV asymptote x = 5. Thus,

(S]]

y=sec x

n
> !
2
f secxdx = lim sec x dx
0

=3 Jo

)]

t
= lim In|secx + tan x|
t—=(%)” 0

wA

= lim [In|secx+tanx| —In1] = oo.
1=(3)”

O

dx.

3
(3) Evaluate f
0

x—1

Proof. The function f(x) =

1
1x has the vertical

=y asymptote x = 1. Thus,
10 | |
f dx = lim dx
5 g x—1 —1-Jog x—1
t
—3 - lim(lnlx—ll)‘
t—1 0
-5 = lirlrllnlt—II:—OO.
-10 i
1
Hence, f dx is divergent. O
0o X— 1

1 3
I dx = (In|x - 1|)‘0 =In2-Inl =1In2.

X —

3
Wrong method: f
0

1
(4) Evaluate f In x dx.
0
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¥4 Proof. The function f(x)=Inx has the vertical
asymptote x = 0. Thus,
N 1 1
0 1 x f Inxdx = lim Inx dx
0 =07 Jy
area=1 ) 1
= lim[xIlnx — x]
t—0* t
= lim(-tlnr—1+n "= -1,
y=Inx i
m]
1
(5) Discuss for what values of p the integral = dx is convergent or divergent.

0 X

Proof. When p <0, f(x) = xi,, is continuous on [0, 1]. Hence, the integral is convergent

1
1 1
andf—dx:
o XP l-p

——. Consider the cases p > 0, then function f(x) = xi, has a vertical

asymptote x = 0. Then

Conclusion:

— dx
o XP

1

o XP

0 Comparison Theorem

N BT iy
1 1 1 — p tl)r(l)"l* xp—l t p
limf — dx =
1=0* J, xP 1
lim(lnlxl)’ p=1
t—0* t
( 1
— p<l
lim(1-77) ={ 7P
1 - p t—0*
00 p>1
\ tlirgl(—lnt):oo p=1

— dx is convergent if p < 1 and divergent if p > 1.

Note. For some definite integrals, it is impossible (difficult) to find their exact values but we
can still determine whether these integrals are convergent or divergent.

Theorem 8.7.6. (Comparison Theorem) Suppose that f and g satisfy 0 < g(x) < f(x) for every

X 2 a.
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YA
(a) If f f(x) dx is convergent, then f g(x) dx is con-
vergent. ¢
(b) Iff g(x) dx is divergent, then f f(x)dx is di-
vergent. ¢ 0
Example 8.7.7.

(1) Determine whether the improper integral f e dxis convergent or divergent.
0

Proof.

Since f(x) = e~ is continuous on [0, 1], it is integrable on
[0, 1]. On the other hand, 0 < e < e for every x > 1 and

00 t [ YA
f edx=lim [ e*dx=lim(—e")| =e.
1 1

t—o00 1 f—o0

By the Comparison Theorem, the improper integral f e dx
1

is convergent. Hence,

0 2 ! 2 © 2
f e dx:f e dx+f e " dx
0 0 1

Vr
=

is also convergent. In fact, f e dx =
0

O
: : . “l-e* . :
(2) Determine whether the improper integral dx is convergent or divergent.
1 X
. 1 —et
Proof. Since 0 < — < forevery 1 < x < co and
2x X
f —dx——hmf dx——hmlnt—
1 2x t—00
By the Comparison Theorem, the improper integral f — dx is divergent. O
1 X
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9.1 Areas Between Curves

In the present section, we try to evaluate the integrals to find areas of regions that lie between
the graphs of two functions.

Let f and g be two continuous functions satisfying f(x) > g(x) for every x € [a, b]. Let S
be the region between the two curves y = f(x) and y = g(x), and the vertical lines x = a and
x = b. We use the approximating rectangles method to evaluate the area of §.

v
y=fx) y - y |
| alliin
|| 1 il
sern il IR EE
S ) —gla) ol H | I
I [0 [ |
I ; A I l |
a N : Y a N e X
0 il boox ’ —g(H) {1 { b ’ | } } 'Jé b
y=g) ~ T
Ax
S={xy la<x<bg)<y<flx)} (a) Typical rectangle (b) Approximating rectangles

Let P be a partition of [a, b]. The Riemann sum

n

D LA - g(elax,

i=1

201
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is an approximation to the area of S. We define the area A of the region S as the limiting value
of the sum of the area of these approximating rectangles

IPII—0

A= lim > [f(x) = g(x)]ax.
n=1

Theorem 9.1.1. The area A of the region bounded by the cruve y = f(x), y = g(x) and the lines
x = aand x = b, where f and g are integrable and f(x) > g(x) for all x € [a, b], is

b
A= f (0 — g(0)] dx

Note. (1) If g(x), S is the region under the graph of f. The area of S is

b b
A= f [f(x)-0]dx = f f(x)dx
is the same as the area we discussed before.

(2) If f(x) = g(x) > 0 forall x € [a, b]

A = [areaunder y = f(x)] — [area under y = g(x)]

b b
= ff(x)dx—fg(x)dx

0 a h X

b

b
f L) — g1 dx. ,,
a A= ) flx)dx — i g(x)dx

Example 9.1.2. Find the area of the region bounded above by y = ¢*, bounded below by y = x
and bounded on the sides by x = 0 and x = 1.

Proof.

y

S
I
N

=
|
Rat
Y
=

0 { X
O

Example 9.1.3. Find the area of the region enclosed by the parabola y = x> and y = 2x — x%.

Proof. The points of intersection of y = x> and y = 2x — x* are e

given by solving the equation x> = x — x>. They are x = 0 and
x = 1. The graph y = 2x — x? is above the graph of y = x* for all
x € [0, 1]. The area of the region is ' \

y

(1, 1)

1 1 Ax

1
2

_ N _ 2 | R

A—jo‘[(2x xX)—=x]dx=x"+x 3x0 3 .
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To find the area between the curves y = f(x) and y = g(x) where f(x) > g(x) for some
values of x but g(x) > f(x) for other values.

We splits the region S into several subregions S,S,,:--S,
with areas A, A,, - - - A,. Then the area of S is Y
y=gx)

A=A +A+---+ A,
Since

f(x) - g(x) when f(x) > g(x)

lf(x) =gl = {

() a b

g(x) — f(x) when f(x) < g(x),

we have the following results.

Theorem 9.1.4. The are between the curves y = f(x) and y = g(x) and between x = a and
x=bis

b
A= f lf(x) = g(x0)l dx.

Example 9.1.5. Find the area of the region bounded by the cruves y = sinx, y = cosx, x = 0

T
and x = —.
2 T,
Proof. The points of intersection of two curves in [0, 5] 18 T
Also, cosx > sinx when 0 < x < % and sinx > cos x when y
7 < x < 7. The area of the region is | Yy =cosx ¥ = sin
T r /’ \H\\
2 . A, \_.1. s
A = | cos x — sin x| dx 0 \ 7
L\ L \
0 T g \ -‘
3 . L N\
= cos x —sin x dx + sinx — cos x dx 5 + 1y -
0 Z 4 e
= 2V2-2
|

Some regions are treated by regarding x as a function of y. Suppose that the region S is
bounded by curves with equation x = f(y), x = g(y), y = cand y = d where f and g are
continuous and f(y) > g(y) for all ¢ <y < d. The area of the region § is

A= fd /() — g1 dy.

y i
x=g(y)
y=d d+
=== Xy, xR
}Ay
| A
~—x = f(y) -%_,} ¥
XR — XL
b
y=c o
0 % 0 X
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Example 9.1.6. Find the area enclosed by the line y = x — 1 and the parabola y*> = 2x + 6.
Proof. The points of intersection is obtained by solving y* =
2y + 8. Hence, those points are y = 4 and y = 2. The area of
the enclosed region is

1
A = f(y+1)—(§y2—3)dy
-2

1
f——yz +y+4dy
o 2

18

Note. We can also obtain the area of the above region by
integrating with respect to x instead of y.

Splitting the region into two subregions A; and A, and com-
puting each area and adding them up. But it is very compli-
cated.

9.2 Volume

In the present section, we wnat to find the volume of a solid by using the techniques of integral to
give an exact definition. We start with a simple type of solid called a “cylinder (right cylinder)”.

, .
B, J

! h |
3 h R 4
/// ~3 S / \w
4 B, ~4 ¢« _ T ey 4 ;
) — \"—,,_ 7777”7’,/ l
(a) Cylinder V= Ah (b) Circular cylinder V = 77%h (c) Rectangular box V = [wh

For a general solid S (not a cylinder), we cut it into several slices and approximate each slice
by regarding them as cylinders. We estimate the volume of S by adding the volume of those
approximating volumes of slabs.

(1) The intersection of S with a plane and obtaining a plane region that is called a “cross-
section” of §. Let A(x) be the area of the cross-section of S in a plane P, perpendicular to
the x-axis and passing through the point x where a < x < b.
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(i1) Dividing S into n “slabs” of equal width Ax by using the planes P,,, P,,,--- to slice the
solid.

(iii) Choosing sample points x! in [x;_, x;], we can approximate the ith slab §; by a cylinder
with base A(x}) and “height” Ax;. The volume of this cylinder is A(x])Ax;. Hence, the
volume of §; is

Vi = A(x])Ax;.

(iv) Adding the volumes of these slabs, we get an approximation to the total volume of S,

V=~ i A(X7)AX;.
i=1

(v) Let n tends to infinity, we define the volume of S as the limit of these sums.

Definition 9.2.1. Let S be a solid that lies between x = a and x = b. If the cross-sectional area
of S in the plane P, through x and perpendicular to the x-axis, is A(x), where A is a continuous
function, then the volume of S is

n b
V = lim ZA(x:-‘)Axi = f A(x) dx.
i=1 a

n—oo

Note. For a (right) cylinder, A(x) = A for all x. Then the volume is

b b
V:fA(x)dx:fAdx:A(b—a).

Example 9.2.2. Find the volume of a sphere of radius r.



206 CHAPTER 9. APPLICATIONS OF INTEGRATION

Proof. The plane P, intersects the sphere in a circle whose
radius is y = Vr? — x2. Hence, the cross-sectional area is

A(x) = (V2 = x2)? = n(r? = ¥).

The volume of the sphere is

frA(x) dx = fr n(r* — x%) dx

r

Vv

1
= n(r*x - §x3)
4
= —ar.

3

=r

O

Example 9.2.3. A solid with a circular base of radius 1. Parallel cross-sections perpendicular
to the base are equilateral triangles. Find the volume of the solid.

(a) The solid (b) Its base (c) A cross-section
Proof. Each cross-section is an equilateral triangle, the base is 2y and the height is V3y. Hence
the area of the cross-section is
A(x) = V3y* = V3(1 = 22).

The volume of the solid is

1 1
V:fA(x)dx:f \/g(l—xz)dx:43—\/§.
1 .

Example 9.2.4. A wedge is cut out of circular cylinder of radius 4 by two planes. One plane
is perpendicular to the axis of the cylinder. The other intersects the first at an angle 30° along a
diameter of the cylinder. Find the volume of the wedge.
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Proof. Each cross-section is a right triangle with base y =

V16 — x%. The intersection angle 30° implies that the height
V16—x2

Nl The area of the cross-section is

is ytan 30° =

A(x) = %'\/16 —x%- 16\/; X = 21/5(16—)62).

The volume of the solid is

1
A(x) dx = ——16-x)d
ﬁ(x)x ﬂzx/??( )

1 1,4 128
——(16x--x)| =——.
2V3 3 ’-4 3V3

Vv

302

9.3 Solid of Revolution

In the present section, we wnat to find the volume of the solid which is obtained by rotating a
region about a line. We calculate the area of cross-section. The the volume is

b
V:fA(x)dx or V:fdA(y)dy.

To find the area of each cross-section.

(1) If the cross-section is a dist, the area is
A = n(radius)
(i) If the cross-section is a washer, the area is

_ 2 2
A= T outer — T inner-

Example 9.3.1. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y = +/x from 0 to 1.



208 CHAPTER 9. APPLICATIONS OF INTEGRATION

y=vx

Proof. The cross-sectional area is

A(x) = n(Vx)* = 7x.

The solid lies between x = 0 and x = 1 has volume
1 1 21
V:‘[A()c)dx:j‘7Txdx=ﬂ :E.
0 0 2 lo 2

Example 9.3.2. Find the volume of the solid obtained by rotating the region bounded by y = x°,
y = 8 and x = 0 about the y-axis.

O

Ay { (x,)
x=0— !
y=x° \
or \
x=3y |
|
0 X 0 %
Sl

Proof. The region is rotated about y-axis. It makes to slice the solid perpendicular to the y-axis
obtaining circular cross-sections. The area of a cross-section through y is

AG) = 1 = 1(3) = 1y,

The volume of the solid is

8 8
3 8 96
V:f A(y) dy :f ﬂ_y2/3 dy: 7Ty5/3 — ﬂ"
0 0 5 0 5
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1 Washer Method (Method of Washer)

Example 9.3.3. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x*, about the x-axis.

b ’ pA

N P
(0, 0) X

/

Proof. The points of intersection is obtained by x = x*> and hence those points are x = 0 and
x = 1. The area of the cross-section perpendicular to x-axis is

Ax) =nr  —arr = nax)? - 1(x?)? = 7(x* - xY).

outer inner
The volume of the solid is
1 1
1 1 1 27
V= A dx = 2_4d: -3 _ .5 =
fo (x) dx ﬁﬂ(x X)) dx 7T(3x Sx)o 15
O

Example 9.3.4. Find the volume of the solid obtained by rotating the region which is enclosed
by y = xand y = x?, about the line y = 2.

y
44

Proof. The cross-section is a washer and its area is
AX) = A2 = Ty = T2 = X2)7 = (2 — x)* = m(x* — 5x% + 4x).

inner

The volume of the solid is

1 1
1
V:fA(X)dx:nf x4—5x2+4xdx:7r(§x5—
0 0
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Example 9.3.5. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x?, about the line x = —1.

Proof. The area of the cross-section is

ﬂrgut@r _nriznner = K(W_ (_1))2 —7T(y— (_1))2 = ﬂ(z\/y_y_);)'

The volume of the solid is

1
4 1, 1 x
V:fﬂ(2\/§—y—y2)dy=ﬂ(§y3/2——yz——y3)( =
0

a Method of Cylindrical Shells

For some solids of revolution, it is difficult to find their volumes by using the washer method.
’ y=2x>—x*
For example, the solid obtained by rotating the region which
is enclosed by y = 2x*> — x* and x-axis. If we want to use =1
the washer method to find the volume of the solid, we have to
evaluate the areas of each cross-section, A(y), for every 0 <

y < 32 But it is not easy to solve the equation y = 2x* — x°.

- 27 0 é x
=

Hence, we study a different method, called the method of ““cylindrical shells”, to find its volume
here.

Ar
Consider a cylindrical shell with inner radius r;, outer radius

r» and height /4. Then the thickness of the shell is Ar = r, — rl. ‘
The volume of the shell is

\
\
|| h
\
\

V = m’%h - m’fh = 7r(r§ - rf)h
r,+r; ///// __________ -y~
= 7(ry+ r)(ry — r))h =21 - h(ry—r) /P/ \\T\
\_v_/ =Ar \\ //

xr ————

2nrhAr.

X
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The approximating volume of the cylindrical shell is 2zrhar B

Let S be the solid obtained by rotating about the y-axis the region bound by y = f(x),y =0,
x=aand x =b where 0 < a < b.

Vi

A\

Dividing [a, b] into n subintervals [x;_;, x;] of equal width Ax and choose X as the midpoint
of the ith subinterval. Consider the rectangle with base [x;_1, x;] and height f(x). The solid
whcih is obtained by rotating the above region about the y-axis has volume

Vi~ Qrx)(f(X)Ax.

The approximation to the volume of S is

V= Z V= Zanif(fi)Ax.

y 5
y=fx) y=fix)
S, . .
i - =1 $
= —_1__.’ B ; ()| a b X
VAR |
A 7

Let n — oo, the volume of the solid is,
n b
lim Z 2E f(F)Ax = f 2rxf(x) dx.
n—oco P a

Theorem 9.3.6. The volume of the solid obtained by rotating about the y-axis the region under
the curve 'y = f(x) froma to b is

b
V:f 2rxf(x) dx.

It can be remembered as V ~ [circumference][height][thickness].
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Note. Flattening a cylindrical shell with radius x, circumference 27, height f(x) and thickness
Ax (or dx). Hence, the volume of S is

b
v e

* circumference height thickness

YA
I
flx) fx)
.
X 27X Ax

Example 9.3.7. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = 2x*> — x* and y = 0.

Proof.

2
V = f 2x(2x* — x°) dx
0

1 1 2
= 2n(yx' - 5O,
. 1o

Example 9.3.8. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = x and y = x%.

Proof. The points of intersection of y = x and y = x? is (0, 0)
and (1, 0). Therefore, the volume of the solid is

y=x
y=x?

shell
" height = x — x*

! b
V= f 2rx(x — x}) dx = =.
0 6

0 X X

Example 9.3.9. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y = +/x from 0 to 1.

Proof.
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shell height =1 — y?

shell
radius =y

l

1
v:f 27y(1 = ) dy = 2n(% — L)
0 2 4

2 4 1

0

213

>

O

Example 9.3.10. Find the volume of the solid obtained by rotating about the line x = 2 the

region bounded by y = x — x> and y = 0.

Proof.

=
/
=Y

=

I‘ —
4—_x—>|4—2—x—>

! T
v:f 2712 = x)(x = x*) dx = =.
0 2

9.4 Arc Length

-

In the present section, we want to evaluate the arc length of a curve which is the graph of a

smooth function.

Question: For a given curve C, what is the length of C?
If the curve is a polygon, it is easy to find its length.

Question: How about the length of a general curve?
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We try to approximate the length of a general curve by polygons and take a limit as the
numbers of thy polygon is increased.

Suppose that f is a function defined on [a, b] and C is the graph of f with equationy = f(x).
Let P = {xo,x], --- ,xn} be a partition of [a, b] and the point P; (x,-, f(x,-)) are points on C.
Consider the polygon with vertices Py, Py, - - - , P,. The number ¢(P, f) represents the length of
a polygonal curve inscribed in the graph of f. Then the length L of the curve C is approximately
the length of the polygon

(P =Y PPl = Y A (=0 + [f0) — )
i=1 i=1

As n increases, the approximation gets better

Y4

Exercise. Let P and Q be two partitions of [a, b]. If Q is a refinement of P, then

0P, f) < UQ. ).

Definition 9.4.1. We define the length of f on [a, b] to be the least upper bound of all £(P, f)
for all partition P (provided that the set of all such £(P, f) is bounded above). That is, the length
of f on [a,b] is
L = sup{(P, f).
P

Unfortunately, for a general function f, the approximating length £(P, f) is not easy to
obtain. Therefore, from now on, we assume that f has a (continuous) derivative.

The length of the segment P;_; P; is y
V(ax)? + (ay;? 7o)
= V- x)? + ) - fxio)P Flxi)

MYT \/(xi —xi-)* + [ () = xiD)?

=\ 1+[fG)PAx;. 0 Xi_1 *;

The length of the curve C with the equation y = f(x) on [a, b] 1s

n b
L(P. — 1 (x*)]2 ;= 1 ’ Zd .
sup E(P. ) sgp;\/ I GPAx f YO dx
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The last equality is followed the hypothesis that f is continuously differentiable.

m Arc Length Formula

If f’(x) is continuous on [a, b], then the length of the curve y = f(x),a < x < b, is

b
L= f 1+ [f"(x)]? dx.

The expression in Leibniz notation is

L:fb \/1+(%)2dx.

Example 9.4.2. Find the arc length of the semicubical parabola y* = x* between (1,1) and

4, 8).
y
Proof. The curve between (1, 1) and (4, 8) satisfies the equa-
d (4,8)
tion y = x*/2. Then d_y = —x!2. The arc length of the curve
x
is
yz =
/ 3, 8 110 1
L= 1+(z=x2)?dx=—u?|  =—(80VI0O-13VI13).
f (2x2) X 774 5 27( V10 V13)
(L 1)
O 0 X

Suppose that the curve C has equation x = g(y), ¢ <y < d. Then the arc length of C is

d
d
L:f \/1+[g’(y)]2dy:fd 1+<d—;)2dy.

Example 9.4.3. Find the arc length of the curve C with the equation y*> = x from (0, 0) to (1, 1).

d
Proof. Since the curve has equation x = y?, then d_x = 2y.
y

The arc length of the curve is y

1
f VT+ @7 dy
0

tan~! 2
1 1
\/1+tan20~§sec20d0 (y:EtanH)

tan~! 2

L

0

1
Z(sec@tan0+ln|sec6+tan0|)

0 t
0 1

In(V5 +2).

+

NP
e
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m Arc Length Function

Suppose that a smooth curve C has the equation y = f(x), a < x < b. Let s(x) be the
distance along C from the initial point Py (a, f(a)) to the point Q(x, f(x)). Then s is a function,
called the “arc length function” and

s(x) = fx V 1+ [f(@)] dr.

Py

By the Fundamental Theorem of Calculus,

ds dy2

— = V1I+[ffP=\/1+(—).

= VIHIFWP =1+ (5)
This shows that the rate of change of s with respect to x is

always at least 1 and is equal to 1 when f’(x), the slope of the
curve, is 0. The differential of arc length is

y
dy\2
ds=\/1+( d—) dx.
It is sometimes written in the symmetric form
(ds)* = (dx)* + (dy)*.
Similarly, 0

ds= 1+ (Z—;C>zdy.

Hence, the arc length along the curve C from (a, f (a)) to (t, f (t)) is
! d 2 t
L= f Vi+(2) ax= fl ds = s(x)’ = 5(t) - s(a) = s(0).
0 dx P a
ds

Example 9.4.4. Find the arc length function for the curve y = x> — é In x taking Py(1, 1) as the
starting point.

Proof. The rate of change of y with respect to x is
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The arc length function is

s(x)

* 1 * 1
1+Qt——)2dt= 2t + —)2 dt
flv rermgy) flv( t8)
* 1 1

= 2+ —dt=x*+-Inx—1.
f; Y X 8nx

The arc length from (1, 1) to (3, f(3)) is

1 In3
s(3):32+§ln3—1:8+%.

s(x) = x2 +% Inx—1

9.5 Area of a Surface of Revolution

In the present section, we want to evaluate the area of a surface of revolution which is formed
when a curve is rotated about a line. Let’s look at some simple cases.

|
|
: h Area = 2nrh.
|

27rr

g = 2nr
¢
1,
Area = 55 0 = nrt.
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(R + r)f.

ro_ 4
\ R~ (+4 Area = gR((+ ) —nry
( l———_/»\ S of = rt = (R -r)t, +nRE
f R-r

~

Consider the surface which is obtained by rotating the curve y = f(x), a < x < b, about the
x-axis where f is positive and has a continuous derivative. Let P = {x¢, x, - - - , x,} be a partition
of [a, b]. The points Py (xo, f(xo)), - Py, (x,l, f(x,,)) are on the curve y = f(x).

y

y=fx)
i -

(a) Surface of revolution (b) Approximating band

YA

o ‘

The surface of revolution S is divided into several “belts”. The surface area of one belt can
be calculated in terms of its radius and its arc length.

7 (FO) + Fi0) V02 = 22 2 [Fx) — fxi)]?
7 (FO0) + fOin) /2 [

m(fO) + f(xi) A/ 1+ [/ ()PAax;
2nf(x)) /1 + [f(x)]Pax;

Hence, the sufrace area of the revolution is

lim > 2mf(x) /1 + [/ ()Pax
i=1
b
f 2nf(x) /1 + [f'(x)]* dx

b dy 3
(Leibniz notation) = f 2my\[1+ (=) dx
P dx
b

dy\2
f27ryds (ds = 1+(d—z) dx )

S

(arc length notation)
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Example 9.5.1. The curve y = V4 — x2, =1 < x < 1, is an arc of the circle x*> + y*> = 4. Find

the area of the surface obtained by rotating this arc about the x-axis.

d _
Proof. Since y = V4 — x2, then Y a . The sur-
dx 4 — 2

1 dy~2
I]Zﬂy\/1+(a> dx

1 —X >
2n‘f‘ V4 — x2 1+—( ) dx
-1

1
Mf2M:M
-1

Similarly, the surface is obtained by rotating the curve x = g(y), ¢ <y < d, about the y-axis.
The surface area is

face area is

%)
Il

Y

d
Area = f 2mg(y) v 1+ [gOD]* dy
d dx\2
= fc27rx 1+(d—y) dy

fd27rxds ds= 1+ (@)zdy )

Note. Thinking of 27y or 2nx as the circumference of a circle traced out by the point (x, y) on
the curve as it is rotated about the x-axis or y-axis respectively.

YA y
A
y
(_x7 y? //,,,,r “J’ \‘
A L
[ | 1
_—‘,,‘,, e Llf 3 ‘—>
0 \ | R BE
\_L‘\‘WWVV/\L / “‘
circumference = 27y \ / Warcumference =2mx
\¥4/'
0 ’ X
(a) Rotation about x-axis: S = [ 27y ds (b) Rotation about y-axis: S = | 27x ds

Example 9.5.2. The arc of the parabola y = x* from (1, 1) to (2,4) is rotated about the y-axis.
Find the area of the resulting surface.
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Proof.
d )
Method 1: Since y = x2, then d_y = 2x. The surface area g
X
is (2, 4)
1
2
/ dy\2 ‘
S = 2nx dx = 2 1+(—) d 2
f X dx f X <dx) X y=ux
2 .
= 27rfx\/1+4x2dx (/‘\'
1
T2 37 W ol . . »x
= ~[Zu?], = =(17V17 - 5V5). 12
Method 2 : Since /Y, then dx ! The surface area is
: X = 1p, —_— = —.
dy 24fy

dx~2
S = fznxds:fzm/y 1+(d—;‘) dy
= nf\/4y+1dy
1

T 17 T
Z Vi du = 6(17«/17—5\/5).
5

O

Example 9.5.3. Find the area of the surface generated by rotating the curve y = ¢*, 0 < x < 1,
about the x-axis.

. d .
Proof. Since y = e*, then d—y = ¢"*. The surface area is

X
fz d flz x\/1+(dy)2d
JT S = Jte e X
y 0 d.x
1
= 27rf e V1 +e2* dx
0

(u=¢e = 27Tf V1 + u? du
1

tan~! e
2 f sec® 0 do
T

/4

th
Il

—~
<
Il
—
o
=
o)
~
Il

,le

.
= n[sec@tan6+1n|sect9+tan9|} "

= nleVi+e2+Ine+ Vi+e) - V2-In(V2+1)].
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So far, we have studied the plane curves which are the graphs of explicit functions (y = f(x)
or x = g(y)) or implicit functions (f(x,y) = 0). In the present chapter, we will discuss those
curves which are given in terms of a third variable ¢ (x = f(¢) and y = g(¢)).

10.1 Parametric Curves

YA C

(x, y) = (f(), g(0))

When a particle moves on a plane along the curve C, in gen-
eral, the path may not be described as an equation of the form
y = f(x) (or x = g(y)). Suppose that x and y are both given

as functions of a third variable ¢ (called a “parameter”). The C
equation /

x=f®, y=g®
is called a “parametric equation”. / 0

=Y

Each value of ¢ determines a point (x,y) which we can plot in a coordinate plane. As ¢
varies, the point (x,y) = ( f(), g(t)) varies and traces out a curve C. We call the curve C :
(x,y) = (f(t), g(t)) a “parametric curve”.

Example 10.1.1. Sketch and identify the curve defined by the parametric equation
x=-2t y=t+1
t=y—-1=x=(-12=-2(y—1)=y*—4y+3 (Cartesian equation)

221



222 CHAPTER 10. PARAMETRIC EQUATIONS

—_

=

e
<

|
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Il

AND POLAR COORDINATES

oo W O —

We sometimes restrict ¢ to lie in a finite interval.

Example 10.1.2. Consider the parametric equation

x=£-2t y=t+1 0<t<
y
=4
t=3 (8,5)
=2
=1 {01
t=0 8
0 s

Example 10.1.3. Observe the parametric equation

x=cost y=sint 0<t<2n

represents the circle x> + y* = 1. As t increase from O to 2,
the point (x,y) = (cost, sin ) moves once around the circle in
the counterclockwise direction starting from the point (1, 0).

Example 10.1.4. The parametric equation

x=sin2t y=cos2t 0<t<2n

still represents the unit circle x*> + y?> = 1. But as 7 increases
from O to 27, the point (x,y) = (sin?2t,cos 2¢) starts at (0, 1)
and moves twice around the circle in the clockwise direction.

o W — S —
-
Il
o
o0

t=-2
4
=7
2
\ .
(cos t,sin t)
|
| t=0
1= t d Y .
0 \(1,0> x
t=2ar
_ 3.
1=
t=0, 7, 2

y
0. 1)
O/ |
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Example 10.1.5. Find parametric equations for the circle with center (4, k) and radius r.

Proof. We start from the circle x = cost, y = sint. Multiplying the expressions for x and y
by r, we get x = rcost, y = rsint and it represents a circle with radius r and center the origin
traced counterclockwise. Then we shift / units in the x-direction and k units in the y-direction
and obtain parametric equations of the circle with center (h, k) and raidus r.

y y y
/ 1 /‘ 1
t t
0 X = 0 X ==
0 X
x=cost, y=sint xX=rcost, y=rsint x=h+rcost,y=k+rsint
]
Example 10.1.6. (Straight Line)
YA
The parametric equation of a straight line per-
pendicular the x-axis and passing (xp, 0) is
X=Xx) y=t=t
0 %
Example 10.1.7. (Ellipsoid) y
The parametric equation of an ellipsoid with -
center (h, k) and two axes with lengths a and b
is
x=h+acost y=k+bsint 0<t<2n. .
0 X

x=h+acost,y=k-+ bsint

Example 10.1.8. (The Cycloid #4%) The curve traced out by a point P on the circumference
of a circle as the circle rolls along a straight line is called a “cycloid”.
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100 x = |OT|—|PQ|=r0—rsinf = r(@—sinh)
PY=———410 = |CT|-|CQ|=r—rcosf =r(l —cosb).
1y
X |
o T X
10—
P
N IO N N
P

Example 10.1.9. Two particles move along the curves C; and C,, respectively, with parametric
equations

1
y = E _ §t x = 2s8in(=m1)
C: 3 37 ,t>0 C: 21 , >0
y=4t-5 y=-3 cos(im)

(a) Do the two curves intersect?

Proof. The Cartesian equations of C; and C, are

PR
C,:3x+2y—-6=0 and C2:Z+3:1. We can solve

the two equations and find the points where the the curves C:/ 9
intersect at (2,0) and (0, 3). O |
(b) Do the two particles collide? 4 4
) 16 8 1
Proof. Find t > 0 such that both 3 §t = ZSln(Eﬂ't) and G
1
44-5=-3 cos(im‘). We have t = 2 and the two particles
collide at (0, 3) when ¢ = 2. O

10.2 Calculus with Parametric Curves

In the present section, we will apply the methods of calculus to the parametric curves. We will
solve problems involving tangents, areas, arc length, and surface area.
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0 Tangents

Suppose that f and g are differentiable functions and C is a curve with parametric equation
x = x(7), y = y(t). We want to find the tangent line of the curve C at a given point. In order to

find the equation of the tangent line, it suffices to obtain its slope T
X

The slope of the secant line connecting

X(to+ h), y(to +h)
< ) (x(10), y(to)) and (x(to + h), y(to + h)) is

Yo+ =y(to)
h
X(to+h)—x(t9)
h

-0 Y'(ty) dy/dt
—_ =
X'(ty) dx/dt

y(to + h) — y(to)
x(to + h) — x(to)

1=tgy

(X(to)ay(t0)>

By the Chain Rule,

dy dy dx
dt — dx dt’
dx
If o # 0, we have
dy dy/dt
dx  dx/dt
Remark.

d
(1) The rate of change of y with respect to x, d—y, is followed by the Chain Rule. It is not
X

necessary to express y in terms of x.

d
(i) The curve has a horizontal tangent line when I =0and d—: # 0.

d d
(i11)) The curve has a vertical tangent line when d_)t) # 0 and d—); =0.

d d
(iv) How about d—: =0= d—);? It may need further discussion.

(v) To discuss the concavity of a curve, we consider

d'
&y i(ﬂ)_%@)
dx>  dx\dx’ = i’i—" '
t
Notice that .
&y, @
arr = Lx

dr?
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Example 10.2.1. A curve C is defined by the parametric equations x = 12,y = £ — 3¢.

(a)

(b)

(©

(d)

Show that C has two tangents at the point (3, 0) and find their equations.
Proof. Find the value(s) of ¢ at which the curve passes (3, 0). Consider
£=3 = t=+V3 and £-3t=0 = t=0,+V3.

d d
Hence, when ¢ = + V3, the curve passes (3, 0). Also, d_)t} =3 -3 and d—j = 2¢. Then

dy dy/dt 3 1
— = =—(t-- =-V3.
dtl=—v3 dx/dt|i=+3 2( t) =—\3 \&
The equation of the tangent line is y = — V3(x — 3). Similarl ﬂ’ = §(t - 1) =3
1 & Y= ' PaxlviT 2 T Ve T
The equation of the tangent line is y = V3(x — 3). O

Find the points on C where the tangent is horizontal or vertical.

Proof.

d d
(i) Horizontal tanglent line: Let d—f =32 -3=0, then 7 = +1. Also, j); =2t #0

when t = +1. Hence, whent = 1, (x(l),y(l)) = (1,-2). The curve has a horizontal
tangent line y = —2. When ¢ = -1, (x(—l),y(—l)) = (1, 2). The curve has a horizontal
tangent line y = 2.

d d
(ii) Vertical tangent line: Let ?): —2¢=0. Thent = 0. Also, d—i =37 -3 #0 when
t=0and (x(O), y(O)) = (0,0). The curve has a vertical tangent line x = 0.

O
Determine where the curve is concave upward or downward.
Proof. Consider
d ( dy/di
&y _ i(@) 3 E(dfc/dt) _GBe=D1 3@+
dx> dxl\dx/ & 4P
Then ) )
d d
d_);>0 when >0 and d—x)z;<0 when <0.
The curve is concave upward when ¢ > 0 and concave downward when ¢ < 0. O

Sketch the curve

Proof.
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y=V3(x-3)

O

Example 10.2.2. (a) Find the tangent to the cycloid x = (6 — sinf), y = r(1 — cos6) at the
point where 8 = g
Proof. Consider
dy dy/d0  rsinf  sin6
dx dx/dd  r(l1-cos@) 1-cosf
V3 r 4 V3/2
dx 1

4 v/
When 6 = 3 (x(@),y(@)) = (r(g - 7)’ 5) an dxle=s  1-1

= /3. Therefore, when

Vs o
0 = 3 the tangent line is

, R
y—E— \/§<x—r(§—7)).

(b) At what point(s) is the tangent horizontal? Where is it vertical?
d
Proof. (1) Whenn = 2m — 1 is odd, d_t); =r(l —cos#) # 0. The curve has horizontal
tangent lines at (x((2m — D)), y(@m - Dr)) = (@m - Dar,2r), m € Z.

d
(i1)) When n = 2m is even. d—z = 0. Consider the limit

sinf@ .H . cos 8

m —= Ilm ——— = 1m - =
6—2mrt dx 6—2mnt 1 — cos @ 6—2mn* SIn @

d
Similarly, , lizm % _ _co. The curve has vertical tangent line at (x(2mn), y2mn)) =
—2mn~ AX

2mnr,0), m € Z.

(—r, 21) Y (mn, 2r) (37 2r) (571, 2r)

=Y

0 27r dar
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Q Areas

Recall that, for a function F(x) > 0, the area under the cruve y = F(x) from a to b is

b
A= f F(x) dx. Suppose that a curve has the parametric equation x = f(¢) and y = g(¢),

a
a <t < 8, we want to calculate an area formula. Let a = f(a) and b = f(8). Then the area of
the region under the curve is

b B B
A:fydx:fy%dt:fg(t)f’(t)dt.

Example 10.2.3. Find the area under one arch of the cycloid
x =r(0—sinf) y=r(l—-cosb)
Proof.

Using the Substitution Rule with y = r(1 — cos 6)
and dx = r(1 — cos 0) d6, the area of one arch is y

2rr 2
A = f ydx = f r(1 —cosO)r(l —cos8) db
0 0 >
0 27r X
2,3 2
= r(=-2m) = 3ar’.
2
O
a Arc Length

Let C be a curve with equation y = F(x), a < x < b. If F’(x) is continuous, the arc length of

Cis
L:fb\/1+(%)2dx:fb 1+ (F'(x))” dx.

We want to calculate the arc length of C with parametric equation x = f(),y = g(f), a <t <.

(1) If C can be expressed as the graph of a function y = F(x), it is traversed once from left to

right as ¢ increases (i.e. d—’: = f'(¢) > 0). The arc length is
[re(my (@
[V (@) a

(i) If C cannot be expressed in the form y = F(x), we take a partition P = {ty,t;,--- ,t,} of
[a,B]. Let P; (f(t,-),g(t,-)), i =1,---,n, be point on the curve C. Then the length of the

segment P, P; is

L

V@) = faDP + [8(6) — gt )P
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By the polygonal approximateions and the mean value theorem,

S PP
i=1

D V@) = fa)P + (g — gt
i=1

Z VIF @M + (g1 s1:)

- Z V@R + [g()Par 0 x

The arc length of C 1s

lim > /LGP + g6 )P,

1Pl —0 £
i=1

™~
Il

Il
™
<

[f®OF + g @ dt

—dt
x

Il
—
Q
Q.

Theorem 10.2.4. If a curve C is described by the parametric equation x = f(t), y = g(1),
a <t < B where f' and g’ are continuous on [a,B] and C is traversed exactly once as t
increases from « to 3, then the arc length of C is

f\/ (D) dt—f VIFOF + [P dr.

Note. The formula is consisent with the general formulas L = f 1 ds and (ds)? = (dx)* + (dy)>.

Example 10.2.5. Compute the circumference of a unit circle by expressing it as the parametric
equation

X =cost y = sint 0<t<2n

d d
Proof. We have d_j = —sint and d_}t; = cost. Then the arc length is

2 2 y 27
f \/ — dt = Vsin’t + cos?t dt = 2n
0

O

Example 10.2.6. Find the length of one arch of the cycloid x = (6 —sin#) and y = r(1 —cos 6).

d d
Proof. We have d—z =r(1 — cos#) and d_g = rsin 6. The arc length of one arch is
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27 d 2 d 2
L= [TV (D)

21
f \/r2(1 — cos6)? + r2sin’ 6 df
0

27

= r 2(1 —cos 6) db
0

27 ‘ 0
= rj; 231n(§>d9

= 8r

0 2ar

a Surface Area

Recall that the surface area of the surface obtained by rotating a curve, C : y = F(x) where
F(x) > 0 fora < x < b, about x-axis is

= [+ (2 a

Suppose that C has the parametric equation x = f(¢) and y = g(¢), @ < t < 8 where f’ and g’ are
continuous and g(¢) > 0. Then rotating the curve C about x-axis and the surface area is

f2yry\/l+ dx
fa 2ny 1+(dyf;) (%) ar
[ (%) +(2) a

Note. Let s(¢) be the arc length function. Then

= \/1+ <%)2dx: \/(%)2+ (%)Zdt-

The surface area formula is
S = f 2ny ds

Example 10.2.7. Find the surface area of a sphere of radius r.

S

Proof. The sphere is obtained by rotating the semicircle
X =rcost y =rsint 0<t<nm

about x-axis. The surface area of the sphere is

S

f 2nrsint \/(—rsin1)? + (rcos £)? dt
0

T
= Zﬂf rsint-rdt = 4nr’
0

=Y
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10.3 Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called co-
ordinates. In the present section, we will study a coordinate system which is called the “polar
coordinate system”. The coordinate is established by the following steps

(1) We choose a point in the plane that is called the “pole” (or origin) and is labeled O.

(i1)) We drwa a ray starting at O called the “polar axis” . It is usually horizontal to the right
and corresponds to the positive x-axis in Cartesian coordinates.

(i11) If P # O 1s an point in the plane, let r be the distance
from O to P and let 8 be then angle between the polar
axis. We use the convention that an angle is positive if
measured in the counterclockwise direction from the
polar axis and negative in the clockwise direction.

polar axis

Then the point P is represented by the ordered pair (r, ) as well as r and 6 are called “polar
coordinates” of P.

Note. The origin O = (0, 6) for any 6.

Now, we extend (r, ) to the case that in which r is negative. The point (-r, §) means the
point which is opposite to (r, 8) about the origin. Hence, (-r, 6) = (r, 0 + m). Moreover, we can
also extend (7, 0) to the case where r € R (not only on [0, 27]). We have

(r,6) = (-r,0+m)=(r06+2n)

(=r,0+3m) = (r,0 +4m)
( -0+ 2k + l)n) = (r,@ + 2k7r) for every k € Z.

Remark. In the Cartesian coordinate system, every point has only one representation, but in
the polar coordinate system, each point has infinitely many representations.

m The connection between polar and Cartesian coordinates

cosfl =

2 _ 2 2
X =rcosf r=xty

y=rsinf sinf = tanf =

S I

’\0

o X X

Example 10.3.1. (1) Convert (2, ;—T) from polar to Cartesian coordinates.

g = V3. Then (x,y) = (1, V3).

Proof. From the above formulas, x = 2 cos 73—T =landy = 2sin
O
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(2) Convert (1, —1) from Cartesian to polar coordinates.

3 7
Proof. Again, r = /12 +(-1)> = V2 and tan 6 = ‘Tl = —1. Then 8 = Zﬂ or Zﬂ Since

7 7
(1,—1) is a point in the fourth quadrant, 6 = Iﬂ and (r,6) = ( \/5, Iﬂ). O

a Polar Curves

Definition 10.3.2. A polar curve is the graph of a polar equation, r = f(6) or F(r,0) = 0,
consists of all points P that have at least one polar representation (r, 8) whose coordinates satisfy
the equation.

Example 10.3.3.

}":2 9:1

Example 10.3.4. (a) Sketch the curve with polar equation » = 2 cos 6.

Proof.
7 =2 bs) D25 (s

0 2
m/6 \/§ NN\
/4 \2 AN\ 2,0)
/3 1 - >
/2 0 03
27/3 -1
3n/4 -V2 sm
57/6 -V3 (1.3 (_@377)< )
T -2

Table of values and graph of r =2 cos 6
O

(b) Find a Cartesian equation for this curve.
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Proof.
y
P
Consider » = 2cosd. Then r* = 2rcosé. L
Convert this polar equation into Cartesian 9
equation x> + y*> = 2x and we have 0 ) 0 >
(x—1*+y* = 1.

Example 10.3.5. Sketch the curve r = 1 + sin 6.
Proof.

(a) Sketch the graph of r = 1 + sin 6 in Cartesina coordinates (6-r plane). That is a shift of the
curve of sine function up by one unit.

T4

2l

11 /

0 m T 3w 2 0
2 2

r =1+ sin @ in Cartesian coordinates, 0 < <2

3
(b) Sketch the polar curve as 6 increases 0 — g > > 2 — 2.

(Cardioid)
_ T
6=% g=5
2
l 0 0
Ol=1— ¢=0 0= 0 0= 0="2g
3w 3r
9:7 GZT

() (b) (©) (d)

Stages in sketching the cardioid r =1+ sin €
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Example 10.3.6. Sketch the curve r = cos 26.

Proof.

r =cos 26 in Cartesian coordinates

® Symmetry

()

If f(0) = f(=0) or F(r,0) = F(r,—0), then the
curve is symmetric about the polar axis.

(b)
If f(6) = f(B+nr) or F(r,0) = F(r,0+m), then
the curve is symmetric about the pole.

©) If £(6) = f(x—6) or F(r,6) = F(r, 7 — 6), then
the curve is symmetric about the vertical line

m
0=~
2

O
e TG
9_2
_ 3T ==
2 AN ®© /¢
@ . S @
A\ £
- 9:.77- -
0 AN 6=0
® // &

Four-leaved rose r = cos 26

(=7, 0)

(b)
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0 Tangents to Polar Curves

We want to use the techniques of finding the tangent lines of parametric curves to obtain the
tangents of polar curves. Consider the curve with polar equation r = f(6). Then

{x:rCOSQ:f(H)COSH dy _ dy/d9 _ Fsin6+rcosd

y =rsinf = f(§)siné dx — dx/d6 ~ 2cosh-rsing

: . . dy dx .

(1) Horizontal tangent line: When 70 =0 and 0 # 0, the polar curve has a horizontal

tangent line.

d d
(i1) Vertical tangent line: When d_z # 0 and @ 0, the polar curve has a vertical tangent

. de
line. J J dv/do
(Special case: d_)H) =0= d_;’ we should further consider the limit eli_)rgz dic} / de)'
(iii)) Tangent line at pole:
dy ;1—; sin @ .. dr
— = =t 0, f — 0.
dx % cos @ an ! dé *
0
Example 10.3.7. The cardioid has polar equation r = 1 + sin 6.
(a) Find the slope of the tangent line when 6 = g
., dr
Proof. Consider i cos §. Then
dy cos@sinf+ (1 +sinf)cosd®  cosO(l +2sin6)
dx  cosfcosf— (1 +sinf)sind (1 +sind)(1 —2sinf)’
. m. dy
Hence, the slope of the tangent line when 6 = — 1s — =-1. O
3 dxle=%

(b) Find the points on the cardioid where the tangent line is horizontal or vetical.

Proof. We have

d 31 In 11 15,5
d—z:cos6(1+2sin0)20 == H:g,j,?ﬂ,?ﬂ. < } ;)
d 3 5 3
5= (L+sin)(1-2sin6) =0 = 6=7.2.°. %)

0,0)

The curve has horizontal tangent lines at (2,7/2),
(1/2,77/6) and (1/2,11xn/6) and has vertical tangent (1 777) <; M)
lines at (3/2,7/6), (3/2,57/6). 276

Tangent lines for 7 =1+ sin 6
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3n d d
For 6 = Tﬂ d_g = d—; = 0. Consider
) dy 1+ 2siné cos \rm 1 . —siné
lim —:( im —)( 1m - ):—— im = 00,
0—Gr/2)” dx 6—-Gr/2” 1 —2sin6/ \o-3r/2- 1 + sin 3 6-Gr/2)- cos6
.. ) dy .. ) )
Similarly, . lén’/lz) T = —oo. Hence, the cardioid has a vertical tangent line at (0, 37/2).
—Br/2)" dX

10.4 Areas and Lengths in Polar Coordinates
 Areas

We try to find the area of a region whose boundary is given by a polar equation. Let’s start
with an easy case that the area of an sector of a circle with radius r and central angle 6.

1
Area = Erze.

/o)

Let R be the region bounded by the polar
curve r = f(0) and by the rays 6 = a and 6 = b,
where f is a positive continuous function and
where 0 < b —a < 2n. We will use the approxi-
mating sectors to estimate the area of R.

Let P = {6y,0y,---,6,} be a paratition of
[a, b] with A8; = 6; — 6,_;. The region R is di-
vided into n subregions by the rays 6 = 6;. The
area of each subregion denotes AA;. Choose a
sample point 8} € [6;_;, 6;]. Then

2 % SUAE)I 06,

Then an approximation to the total area A of R is

1
Area~ ) S LFE)F 26,
i=1
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Taking ||P|| — 0, then

IPI—0

_ ! ’ ) do
—zj;[f()]

1 b
= 3 f r*df where r = f(6).

o
Area = lim Zz[f(e;‘)]mi
i=1

Note. The area formula is to compute the area of the region which area enclosed by a polar
curve and two straight lines connecting the origin and their intersections of the polar curve

Example 10.4.1. Find the area enclosed by one loop of the four-leaved rose r = cos 26.

Proof.

Area

1]
| p)
IS
N =
<
o
QU
)

IS

1 (:
= EIZCOSZZQdQ
1 (5 1+cos4d
= = ——de
2]; 2
4
o
= 3

The area of R is

b1 b 1
f SUOF do- f SO do = § f £0) - §0) do.
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Example 10.4.2. Find the area of the region that lies inside the circle r = 3 sin and outside
the cardioid r = 1 + sin 6.

r=3sin6 Proof. The points of intersection of the two polar curves
are obtained by solving 3sinf = 1 + sinf and hence

6 =", 2" The area of the region is
\\ //
0_5_77_\ - /0:% S )
6 e A:f —(SSlnH) ——(1+smt9) do = .
> 3
O| r=1+sin6

O

Note. The origin O is also a point of intersection of the two polar curves. But it cannot be

obtained by solving the equation 3sinf = 1 + siné since r = 3sinf = 0 when 8 = 0 and 7 and
3n

r=1+sin6 =0 when 6 = >

Remark. It is usually difficult to find the points of intersection of two polar curves since a single
point may have many representations in polar coordinates. Suppose we want to find the points
of intersection by solving f1(#) = r = f>(6). The point of intersection has polar coordinate
(f1(61),61) = (f>(62),62). But, in general, the angles 6, may not equal 6,.

1
Example 10.4.3. Find all points of intersection of the curves r = cos 26 and r = 5

1 St Tn 11
Proof. Let 00529—5 Then@—g 6” 6”’ 67T. The
oints of intersection are ( ﬂ) (1 Sﬂ 1 In
) p1 o 26" ‘276
T
27

However, the points (

1 2 14 15
)( ”)( = i

23

r=cos 260 are also points of mtersectlon of the two polar curves.

Those points can be found by solving cos 26 = ~5 O

a Arc Length

To find the length of a polar curve r = f(6), a < 8 < b, we regard 6 as the parameter if we
write the polar equation of the curve as

dx dr .
X =rcosd = ggcosd—rsmd
(oo gy
y=rsinf e = —sin@+ rcosé

do ~ do

The arc length is

Example 10.4.4. Find the length of the cardioid r = 1 + sin 6.

b
f\/ 2 _y dG:f r2+(j—;2

)" do.
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\

r=1+sin 6

Proof. The arc length fo the cardioid is

0 do 0

21 27 4_4 . 29
V2t 2singdo= | Y2 Sm Y

L

0 0 V2 —2siné
T 3r
T 2 5 2

_ I2Lsgd9_ _ 2c0s0
-1 V2 —2sinf . VY2 -2sinf

Il
&
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In Chapter 2, we have learned some basic concepts of infinite sequences. In the present
chapter, we will further study some important facts of sequences. Based on the ideas of infinite
sequence, we will introduce an important mathematical object, “(infinite) series” in the rest
sections.

11.1 Monotonic Sequences and Cauchy Sequences

Before revisit the infinite sequences, the readers should review and make familiar with all re-
sults of sequences in Chapter 2, such as “convergence and divergence of a sequence”, “bounded

29 ¢ 29 ¢

sequence”, “limit laws”, “squeeze theorem”, “infinite limit” etc.

[ Monotonic Sequence

Definition 11.1.1. Let {a,} be a sequence.

(a) We say that {a,} is “increasing ( and “decreasing”) if for every n,m € N with n < m then

a, < dap (and a, > a,).

(b) We say that {a,} is “nondecreasing” (and “nonincreasing”) if for every n,m € N withn < m
then
a, < ap, (and a, > a,,).

241
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(c) If a sequence is either increasing (nondecreasing) or decreasing (or nonincreasing), we call
it is a “monotonic” seqnence.

Example 11.1.2. (1) The sequence {1,1,2,2,3,3,---} is an example of a nondecreasing se-
quence

(2) The sequence {1 — %} is an increasing sequence.

1
T
I
!
1
I
!
1
i
I
1
I
1
1
I
1
i
i
1
I
I
1
1
I
1
1
1

L
-]
-

n

L
¥
uips e
@
By
1
X e o h

-
.
&

I

ﬂ-l=0

Remark. For a sequence {a,} where a, > 0 for all n, the following statements are equivalent
(1) {a,} is nondecreasing.

(i1) a, < a,, for all n.

aptl
an

> 1 for all n.

(i11)
(iv) a4 — a, > 0 for all n.

Notice that an increasing (nondecreasing) sequence {a,} -, is bounded below by a;. But it
may not be bounded above.

Theorem 11.1.3. Let {a,} be an increasing (nondecreasing) sequence.

(a) If{a,} is bounded above by M, then there exists a number L < M such that lima, = L.

(b) If{a,} is unbounded, then lim a, = oo.

n—oo

Proof. (Exercise) O

Note. The similar results for a decreasing (nonincreasing) sequence hold if replacing “above
boundedness” by “below boundedness” in part(a), and “lim g, = c” by “lim g, = —0c0” in

part(b). e

h'lf
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Example 11.1.4. Determine whether the sequence {a,} with a, = Vn + 1 — +/n converges or
diverges.

Proof. Consider

1 1
- <
Vn+2+Vn+1 Van+l++n

Ape1 —ay=(Vn+1=Vn+1)—(Vn+1-+n) = 0

Then {a,} i1s a decreasing sequence and is bounded below by 0. The sequence is convergent.

Moreover, lim a, = lim O

—————
n— oo n—oo 1/n+1+ \/ﬁ

Q Subsequence

Example 11.1.5. The sequence {a,} ., with a, = (=1)" is a divergent sequence. But if we
restrict our attention on the sequence {ay,}., = {1,1,1,---}, it is a convergent sequence. Con-

versely, for a given sequence {b,} . |, if we know that {,,}* | diverges, then the orginal sequence

{b,};7, must be divergent which can be proved by the definition of convergence of a sequence.

It seems that a “subsequence” which comes from a certain sequence, {a,}, may give some
information of the sequence {a,}.

Definition 11.1.6. Let {a,} ", be a sequence and we say that a sequence {b,} , is a subsequence
of {a,} if there exists a strictly increasing function f : N — N such that b, = ay,. for all n € N.

Note. Since f : N — N is a strictly increasing function, we can prove that f(n) > n.

Example 11.1.7. Let {a,} = {1,5,8,3,6,2,1,4,---} be a sequence.

ay d d4az ag das dg ay das
Il Il Il Il Il Il 1] 1]
1 5 8 3 6 2 1 4

If f(1) =3, f2)=5, f3)=8,---,thenby =a3 =8, b =a5s =6, b3 =ag =4, ---. The
sequence {b,} = {8, 6,4, ---}is a subsequence of {a,}.

Note. It is customary to write a subsequence {b,} obtained from the sequence {a,} as b; =
ay,,, since the terms of the subsequence come from a,. That is, f(k) = n; and we write the

subsequence as {a,,};7 .

Remark. Let {a,,};7, be a subsequence of {a,}, . Then
(1) {an}, 18 a sequence.
(ii) {a, | k € N} is a subset of {a, | n € N}.

(i11) The order of a,, follows the order of a,,.
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Remark. Let {a,} be a sequence. Then
(1) {a,} is a subsequence of itself .

(i1) If {b,} is a subsequence of {a,} and {c,} is a subsequence of {b,}, then {c,} is a subsequence
of {a,}. That is, a subsequence of a subsuequence of {a,} is also a subsequence of {a,}.

Lemma 11.1.8. Any sequence {a,} contains a subsequence which is either nondecreasing or
nonincreasing.

Proof. We call the positive integer n “peak point” if
a, > a, for all m > n.
Case 1: {a,} contains infinitely many peak points, say {a, }. By the definition of peak point,
Ay, 2 Qyy 2 Apy 200
Hence, {a,,} is a nonincreasing subsequence of {a,}.

Case 2: {a,} contains finitely many peak points. Then there exists a number N € N such that
for every n > N, a, is not a peak point.

Leta,, > ay. Since a,, is not a peak point, there exists a number n, > n; such that a,, > a,,.
Also, a,, is not a peak point and hence there exists n3 > n, such that a,, > a,,. Continue the
process, we can obtain a sequence {a,, } such that

a, <an2<an3<~~-

1
Hence, {a,,} is a nondecreasing subsequence of {a,}. O

Heuristically, a subsequence {a,,} is a portion of the sequence {a,}. If {a,} has a certain
property, every subsubsequence of {a,} is supposed to keep this property. But the converse is
usually not true unless every subsequence has this property.

m Bounded Subsequences

Recall that a convergent sequence must be bounded. But the converse is false, that is, a
bounded sequence may not be convergent. For example, {(—1)"} is a bounded and divergent
sequence. If a sequence has some nice hypothesis, the convergence of this sequence would
be obtained. For example, “a bounded and monotonic sequence is convergent”. In general,
we cannot expect that a bounded will be convergent. But we can still get some results of the
subsequence of a bounded sequence.

Lemma 11.1.9. A sequence {a,} is bounded, say |a,| < M for all n € N if and only if every
subsequence {ay,} of {a,} is bounded and |a,, | < M for all k € N.

Proof. (Exercise) O

The sequence in Example TTT3 is bounded and divergent but it contains one (or some)
convergent subsequence. In fact, this phenomenon is true for any bounded sequence.
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Theorem 11.1.10. (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent
subsequence.

Proof. Let{a,} be a bounded sequence. By Lemma [TT°R, {a,} contains a monotonic sequence.
W.L.O.G, say {a,,} is a nondecreasing subsequence of {a,}.
Since {a,} is bounded, {a,,} is bounded above. By the Least Upper Bound property, the set
S = {ay, | k € N} has a least upper bound, say L = sup S. For given & > 0, there exists ky € N
such that Ia,,ko — L] < &. Since {a,,} is nondecreasing, for every k > ky, |a,, — L| < |ank0 -ILl<e.
Hence {a,,} converges to L.
O

Theorem 11.1.11. If {a,} converges to L if and only if every subsequence of {a,} converges to
L.

Proof. (=) If {a,} converges to L, for given £ > 0, there exists Ny € N such that
la, — L| < & whenever n > Nj.

Let {a,} be a subsequence of {a,}. Thenn; < n, < n3 < --- and n; > k for every k € N.
Thus there exists K, € N such that n, > N, for every k > K. We have

la, — Ll <& whenever k > K,.
This implies that the subsequence {a,,} converges to L.

(<) This direction is clear since {a,} is a subsequence of itself.

O
Remark. There exists a divergent sequence contains convergent subsequences.
1 ifnisodd 1
Example 11.1.12. For example a, = 1 ... and a,, = ay = —. Then the se-
— ifniseven 2k

quence {a,} diverges but the subsequence {a,, } converges to 0.

Remark. The importance of Theorem [TTTT is that if one subsequence of {a,} diverges, then
so does {a,}. Hence, if we can prove that two subsequences of {a,} converge to different values,
then {a,} diverges.

a Cauchy Sequence

Theorem 11.1.13. If{a,} converges, then for given € > 0, there exists N € N such that
law —anl < €

for every m,n > N.
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Proof. Since {a,} converges, say lim a, = L, for given & > 0, there exists N € N such that
n—-0o0

E
. — L < =
la | 3

for every n > N. Hence, for m,n > N,
e €
lay, —anl <lap — LI+ |L—a,| <=+ = =¢.
2 2
O
Remark. When we consider the sequence in the real-valued field R, the converse of Theorem
ITTT13 is also true. We will prove this statement later. However, if we discuss a sequence

in a different field (for example, rational number field Q), Theorem ITTT3 still holds but the
converse will not be true.B

Definition 11.1.14. A sequence {a,} is called a “Cauchy sequence” if for every £ > 0 there
exists a number N € N such that
|am - anl <&

for every m,n > N.
Lemma 11.1.15. A Cauchy sequence is bounded.

Proof. Let {a,} be a Cauchy sequence. Given & = 1, there exists N € N such that for every
m,n> N,

la,, —a,| < 1.
Hence, for every n > N, |a, —an.1| < 1.
Let M = max (Iall’ lazl, -+, lanl, lansi| + 1)- Then
la,| < M for every n € N.
Therefore, {a,} is bounded. O

Theorem 11.1.16. A sequence {a,} converges (in R) if and only if {a,} is a Cauchy sequence.

Proof.

(=) This direction is proved in Theorem ITT-T3.
(&) Since {a,} is a Cauchy sequence, it is bounded. By Bolzano-Weierstrass Theorem, {a,}
contains a convergent subsequence {a,, }, say ]}im a,, = L. We claim that the sequence {a,} con-

verges to L.

Since the subsequence {a,, } converges to L, for given € > 0, there exists K € N such that for
every k > K

&
|Clnk - Ll < 5

“If a set has the property that every Cauchy sequence converges, we called the set “complete” and we will
discuss it in the future.
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Since {a,} is a Cauchy sequence, there exists N € N such that for every m,n > N
e
la, — a,| < >
Choose a sufficiently large number &y € N such that ky > K and ny, > N. Then for every n > N,
g €
la, — LI < la, — ay, | + @y, — LI < §+§ =¢.
Hence, the sequence {a,} converges to L. m|

11.2 Infinite Series

Every real number can be expressed as a digital number. Especially, most numbers have the
expression of infinite deciamls. For example,

3.1415926...
3+1+4+1+5+9+2+6+
~~ 10 102 103 10* 105 105 107
a NN N NN NN

ap as as as ag ar ag
= at+tar+az+---

T

Heuristically, for a given sequence {a,}, we want to consider whether the sum of all terms makes
sense. But, in mathematics, adding infinite numbers is not doable. Hence, the sum

a+a+az+---+a,+---

does not make sense.
Question: How to define the sum of infinite numbers (terms)?

Consider the “partial sum” of {a,}

S1 = aq (first partial sum)
S =d; + a (second partial sum)
S3=a; +ay +az (third partial sum)
. n
S,=ar+a, +---+a, = Z ai (nth partial sum).

k=1

Then, for every n € N, s, is well-defined and {s,} > | forms a new sequence. Suppose that sum
of the infinite terms of {a,} is well-defined. It is supposed to be the limit of {s,}.

Definition 11.2.1. We say that a sequence {a,} is “summable” if the sequence {s,} converges.

The symbol Z a, denotes the limit lim s, and we call it the sum of the sequence {a,}. If

n—00
n=1
[ee]

lim s, = 5, we write Z a, = .
n—oo

n=1
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Remark.

() Z a, is usually called an “infinite series”.

n=1

CHAPTER 11. SEQUENCES AND SERIES

(ii) The statement “{a,} is summable” is conventionally replaced by the statement “Z a,

converges”. That is,

n=1

[Se]
“the series Z a, converges” if and only if “the sequence {s,} ., converges”.

n=1

(o)

(ii1) If the sequence {s,} is divergent, we say that the series Z a, is divergent.

n=1

Example 11.2.2.

(1) Let 1 Th 1 1 1 1 1 n Sum of first n terms
eta,=—.Thens, ==+ —=+--+—=1—- —.
"o "o 2 on on | 0.50000000
2 0.75000000
3 0.87500000
Hence, 4 0.93750000
5 0.96875000
0 n 1 6 0.98437500
Dla,=1im > ag=lims, = lim 1 - - = 1. 7 0.99218750
n—o0 n—o0 n—oo n 10 0.99902344
n=1 k=1 15 0.99996948
20 0.99999905
25 0.99999997
) . 1
(2) (Telescoping series) Let a, = . Then
nn+1)
a 1 1 1 1
S, = Z = + + 4 1
k=1k(k+1) 1-2 2-3 nn+1) S e
1 {S"}
( )+ ( ) ( p— 1)
1
= 1-
n+1
1 . {a,}
Since lim s, = lim 1 — = 1, the series Z =1. The o .
n—eo n—oo n+1 “—in(n+1)
) = . 1 )
series Z is convergent and the sequence { } 18
— nn+1) nn+1)
summable.

(3) Leta, = (—1)". Then

DH+1+CEDH+1+---+1=0
D+1+CD)+1+---+1+(-D)=-1

S$2n

o+l =
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Hence, the limit lim s, does not exist. (That is, {s,} is divergent, {(—1)"} is not summable
n—oo

or Z(— 1)" is divergent. )

n=1

m Geometric Series

A geometric series with ratio r is a series of the form
[s+]
ar"=a+ar+ar’ +---+ar +---, a+0
=0

n

Note: The series starts with the Oth term rather than 1st term.

(1) Forr=1,s,=g+a+---+a=na— oo asn — oo. Hence lim s, is divergent.
\_\/_/ n—oo
n

(2) Forr # 1,

S, = a+ar+---+ar"

rs, = ar+---+ar" + ar"*!

We have (r — 1)s, = a(r"*' = 1) and hence

a(r! - 1)
Sy = —————.
r—1
-1
Consider the limit lim s, = lim a(—l) provided r # 1.
n—o0 n—o0 r —

(9]

(i) If|r] < 1, then lim "' = 0. Hence, Z ar = lim s, =

n—oo n—oo 1 —-r ’
n=0

o0

(i) If || > 1, then lim r**' diverges. Hence, Z ar" = lim s, diverges.

n—oo
n=0

(o9

(iii) Ifr=~1,5, = a—a+a—a+---+(-1y"la = { 0 miseven Hence, y  ar" = lim s,

a nisodd. n—oo
. n=0
diverges. _
arS
b 2
Conclusion: The geometric series Z ar",a # 0 “
n=0 ar?
o0 ar
. 1
(1) converges if|r] < 1 and Z ar' = T a—ar ar .
n=0 -r
(2) diverges if |r| > 1.
a a
s a
In the figure, — = . Then s = .
a a-ar 1-r P
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Example 11.2.3.
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term a = 5 and the ratio

10 20 40
1) Evaluate 5 — — + — — —+---
(1) Evaluate 3+9 27+
Proof. For the series, the first
r = —%. Since |r] = | - %l

convergent and

>s(-3y' =

n=0

(2) Evaluate Z 2. (g)n
n=0

Proof. Since the ratio of the geometric series is r = % > 1. The series is divergent.

=3
)

2 < 1, the series is

5

(3) Write 0.1232323--- = 0.123 as a ratio of integer.

Proof.

0.123

[Se]

0.1 +0.023 + 0.00023 + 0.0000023 + - - -

1 23 23 23
—t—+t—+ =+
10 103 105 107
1 23 ( . 1 . 1 o)
10 103~~~ 102 104
a ~~
1 N 23 1
10 103 1—-ﬂ§
122
99

(4) Find the sum of the series Z x", where |x| < 1.

n=0

Proof.

[0

Zx”+l+x+x2+x3+~--.

n=0

The first term of the series is @ = 1 and the ratio r = x with |r| = |x] < 1. Hence, the series

[se]
. 1
1S COIlVCI'gCIlt and Z X' =
n=0

1—x

O
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m Harmonic Series

A harmonic series has the form

1 |
We claim that Z — = oo, It sufficies to show that for any number M > 0, Z — > M. Consider
n n

n=1 n=1

1 1 1 1 1
Z—— l+s+z+-+ o+t —+ 7
“in 2 3 4 8 16 2
1 1 1 I 1 1 1 1
> l+-+(-+-)+(s+s++)+(—=++—= )+
2 (4 4) (8 8 8 8) (16 16)
8 times
1 1
+(?+ +§)
~—
21 times
1 1 1
> l4+-+-+-+=
272 2
k times
k
= 1+=
2
2 1S
Choose k > 2M. Then Z — > M. Hence, - > Z — > M. Since M is an arbitrary positive
n n :]n

n=1 n=1
number,

o 1
AR

n=1

1 Laws of Series

Theorem 11.2.4. If Z a, and Z b, are convergent series and c is a constant. Then

n=1 n=1

(1) i(an + b,) converges and i(an +b,) = i a, + i b,.
n=1 n=1

(2) Z(can) converges and Z(ca,,) =c Z a,.
n=1 n=1 n=1
Remark. The result of Theorem IT24 is false if one of the series Z a, and Z b, is divergent.
n=1 n=1
Example 11.2.5. Evaluate i [ SE i}.
o nn+1) 27




252 CHAPTER 11. SEQUENCES AND SERIES

SR >3 o1
Proof. Since ,,Z:; Y = 1 (converges), we have ; PP =3 2 pYPE = 3. For the
1
series Z > it is a geometric series with the first term a = % and the ratio r = % Then it
n=1 . . 1
2
converges and nz:; o = - % = 1. Hence,
N 3 1 = 3 |
Z[ +—}:Z +Z—:3+1:4.
— nn+1) 27 — nn+1) — 2n
O

11.3 Test for Divergence

For most series, it is difficult to find their limit even if they have nice patterns. Therefore, we
usually don’t expect to compute the exact limit of a convergent series. Instead of this, we want
to study some tests for convergence or divergence of a series and estimate their limits if they
converge in the present and next sections.

Theorem 11.3.1. (Cauchy Criterion) Let {a,} be a sequence and {s,} be the sequence of partial
sums of {a,}. Then the following statements are equivalent.

(a) {a,} is summable. ( Z a, is convergent.)

n=1

(b) {s,} converges.

(c) lim s,—s, =0.

m,n—oo

(d) lim a,, +a+---+a,=0.

m,n— oo

Proof. (Exercise) O

Theorem 11.3.2. If the series Z a, is convergent, then lim a, = 0.
i n—oo

Proof. Since Z a, is convergent, the sequence {s,} is convergent. Consider a, = s, — 5,_1.

n=1

Then
lim a, = lim(s, — §,-1) = lim s, — lim s,_; = 0.
n—oo n—oo n—oo

n—oo

Remark.

(1) The converse of Theorem is false. That is, even if lim a, = 0, it cannot imply that
n—o00

[ee]
the series Z a, converges. For example, a, = —. Then a, — 0 as n — oo but Z a, = co.
n

n=1 n=1
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(i) That Z a, diverges cannot imply ll_)n.}o a, # 0. (For example, a, = %.)

n=1

m Test for Divergence

Theorem 11.3.3. (Test for Divergence) If lim a, does not converge to 0 (either lim a, DNE or

lim a,, = L # 0), then the series Z a, is divergent.

n—oo

n=1
Example 11.3.4. Determine whether the series Z = s convergent or divergent.
i 5n* +4
Proof. Consider the limit
2 1 1
lim —— = lim =~ #0.

oo S+ 4 s 544 5

2

. I R L
By the test for divergence, the series E ——— is divergent. O
£ 5n + 4

Remark. In Chapter 2, we understand that, for a sequence {a,}, a finite number of terms of {a,}
doesn’t affect the convergence or divergence of the sequence. A series has similar results. If we
only concern whether a series a, 1s convergent or divergent (but not the exact value of the
sereis), the sum of a finite number terms does not change its convergence or divergence. That

(o)

is, for any number ny € N, the series Z a, and Z a, both converg or both diverge.

n=1 n=nyg

11.4 Tests for Convergence

So far, we can compute the sum of some special series (for example, the geometric series with
ratio |r| < 1, ), ﬁ etc). But even for a simple series, like )| n%, it is not easy to find its sum
since the formula of its partial sum is difficult to be obtained.

In the present section, we will introduce some methods to determine whethere a series is
convergent. First of all, we consider the sequence {a,} whose all terms have the same sign.
Because of this, its partial sum {s,} is a monotonic sequence and we can use the bounded
criterion to determine whether the sequence of partial sum is convergent or not.

Definition 11.4.1. We say that {a,} is a “nonnegative sequence” ("nonpositive sequence’) if
a, >0 (a, <0)foralln e N.

Remark. If {a,} is a nonnegative (nonpositive) sequence, then the sequence of the partial sum
{s,} 1s a nondecreasing (nonincreasing) sequence.

Theorem 11.4.2. (Bounded Criterion) A nonnegative sequence {a,} is summable if and only if
the sequence of partial sum {s,} is bounded (above).

Proof. (Exercise) O
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11.4.1 The Integral Test

[ee)

1
Observe the series Z — . The nth partial sum
n

n=1

1 1 1 1
Sn:;ﬁzl‘i'?ﬁ'?'i' +;

is an increasing sequence. To determine whether the sequence {s,} > converges, it sufficies
to show that the seqnence is bounded above since it is increasing. Let’s consider the function

flx) = l on [1, o). We have

n=1

X 1 Sp =

=] 1.4636
area = L 10 1.5498
12 50 1.6251

| 100 1.6350

500 1.6429
1000 1.6439

5000 1.6447

f>
b

(o8]

nP

9]
=¥

1
is an increasing sequence. Consider the function f(x) = 7 on [1, o). We have

1
—Z 7ic \/_ N f —dx—2\/m—l

Then
lim s, > hm(2\/n -1-1=

n—oo

(9]

and the series Z — is divergent.

n=1 n
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y ol ‘
Vx n S = 2 .
i=1 V1
5 3.2317
10 5.0210
— 50 12.7524
100 18.5896
i ) 4 I 500 43.2834
0 1 ‘ > ‘ 3 ‘ a ‘ 5 x 1000 61.8010
1 1 1 5000 139.9681
area=—= area=——= area=—— area= ——=
V1 V2 V3 V4

Theorem 11.4.3. (Integral Test) Suppose that f is a positive and decreasing function on [1, o)
and f(n) = a,. Then

Z a, converges if and only if f f(x)dx converges.

n=1

(o)

That is, the series Z a, and the improper integral f f(x) dx either both converge or both

n=1
diverge.

Proof. Since f is decreasing, for every k € N,
k+1

flk+1)-1< f(x)dx < f(k) - 1.

k

Since f is positive, for every n € N,

n—1 n—1 n—1 k+1 n—1 n—1

0< Y aw =y flk+1) < Y fyde <Y f) =) a.
k=1 k=1 k=1 vk k=1 k=1

~ ~~ ~ N~
Sp—aj f! fx) dx Sn—1

Hence,

Zansfl f(x)deZan.

n=2 n=1

This inequality implies that Z a, and f f(x) dx either both converge or both diverge.
n=1 1

Remark.

(1) To determine whether a series is convergent or divergent, it is not necessary to start with

the first term. That is, the series Z a, and Z a, either both converge or both diverge.

n=1 n=ng
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YA

. Y=fx) ~—y = f(x)

dr | d3 | dy | ds a, a, la,|asz|ay ﬁ%‘

Hence, to use the integral test, it sufficies to compute the integral with lower limit at x = n
instead of x = 1. That is,

f f(x)dx converges (diverges) Z a, converges (diverges)
no

n=nq

— Zan converges (diverges).

n=1

(i1) It is not necessary that f is “always” decreasing. We can use the integral test as long as
the function f is positive and decreasing on (n(, o) and f(n) = a, for some large number
no and n > ny.

|
Example 11.4.4. Determine whether the series Z o is convergent or divergent.
n=1
. . o ) 1
Proof. The function f(x) = — 7 is positive and decreasing on [1, ). Also, f(n) = — 1
X n
for all n € N. Since the improper integral
00 1 . ! 1 . ) t A _1 -1 T T T
fl a7 dx:,lgg e dx:tll)rgtan x]:tllg(tan t—tan”' 1) =577
by the integral test, the series Z ] converges. O

n=1

1
Example 11.4.5. (p-series) For what values of p is the series - convergent?
n

[ee)

1 1
Proof. If p <0, — = n? > 1 for all n € N. Hence Z - diverges.
n n

n=1

1
Consider the cases 0 < p < co. The function f(x) = - is positive and decreasing on [1, 00),
X

1
and f(n) = -l Since

f 1 { o when0O< p<1 (divergent)
—dx = 1
. xP 1 when p > 1 (convergent).
o 1
By the integral test, the series Z — converges when p > 1 and diverges when p < 1. O
n

n=1
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Example 11.4.6.

1) Z — converges (p-series with p =3 > 1)

n=1
(i1) Z 73 diverges (p-series with p = % <1

Note. The integral test can only determine whether a series is convergent (or divergent). But it
cannot give the sum of the series.

Example 11.4.7. Determine whether the series Z —— converges or diverges.

n=1

l—lnx

1
Proof. Let f(x) = —~. Then f'(x) =
X
decreasing on (e, o). Since the integral

“Inx ln X (ln )21 . (Inp*-1
—dx—l = lim ——— = oo,
e >0 t—)oo 2 e [—o0 2

. Inn
by the integarl test, the series Z — diverges. O
n

n=1

< 0 when x > e. Hence, f(x) is positive and

m Estimating the Sum of a Series

Although it is difficult to use the integral test to find the limit of a series ) a,, it can still

[0e]

help us to approximate the sum of the series. Recall that “s = Z a, converges” means that

n=1
n

the partial sum s, = Z a; — s as n — oo. Hence, in order to evaluate the sum s, we want to
k=1
estimate the differenece s,, and s. Define

o0
R, =s—s,=a,.1 ta,.0+ = Z ay as the "remainder”.

k=n+1

Theorem 11.4.8. (Remainder Estimate for the Integral Test) Let f be a positive and decreasing
function for every x > ny, and f(n) = a, for everyn € N and n > ny. Then

f f(X)dx<

s,,+foof(x)dx§sSsn+foof(x)dx.
n+l n

[

ak:RnSfoof(x)dx

k=n+1

Note.

Example 11.4.9.
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()

1
(a) Approximate the sum of the series 2—3 by using the sum of the first 10 terms. Estimate
n

n=1
the error involved in the approximation.

1 | 1
Proof. Let f(x) = —. Then f — dx=— and
x3 . X 2n?

= 1
Ro< | =dr=—.
1°—f10 @ T 200

O
(b) How many terms are required to ensure that the sum is accurate to within 0.0005?
Proof. Consider
“1 1
Then n* > 1000 and hence n > 31.6. We need 32 terms to ensure accuracy to within
0.0005. m]
(c) Use n = 10 to estimate the sum of the series ot
n
n=1
Proof.
1 R SR AR 1
+— = — + —dx<s< — + —dx =50+ —"=.
TEENE Z‘ o f” B R4 flo B TR 00y
Since 510 = 1.197532, we have 1.201664 < 5 < 1.202532. m]

Note. In fact, to make the error smaller than 0.0005, it only needs 10 terms by part(c) instead
of 32 terms by part(b).

11.4.2 The Comparison Test

1

o is convergent.

In Section 11.3, we know that the geometric series Z

n=1
(o]

Question: Does it say the convergence or divergence of the series Z

n=1

! ?
2"+ 1

1

Observe that the sequence of the partial sum s, = Z T

k=1

is an increasing sequence. Since

1
< — for every k € N, we have

0
Syl 2k
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(o)

Hence, {s,} is bounded above. By the bounded criterion, the series Z

n=1
= 1
, <1
over Zl T

Heuristically, we may have the insight of two nonnegative series.

converges. More-
2k + 1

(1) If every term of one series is smaller than the corresponding term of another convergent
series, then the former series is also convergent.

(i1) Ifevery term of one series is larger than the corresponding term of another divergent series,
then the former series is also divergent.

m The Comparison Test

Theorem 11.4.10. (The Comparision Test) Suppose that Z a, and Z b, are series with non-

n=1 n=1
negative terms and 0 < b, < a, for all n € N.

(1) If Z a, is convergent, then Z b, is convergent.

n=1 n=1
(2) If Z b, is divergent, then Z a, is divergent.

n=1 n=1
Proof. Lets, =a;+a,+---+a,andt, = by + b, +---+ b,. Then the sequences {s,} and {¢,}
are increasing and 0 < ¢, < s, for every n € N.

(1) If Z a, is convergent, {s,} is convergent. Since {¢,} is increasing and bounded above, it is

n=1

convergent and thus Z b, is convergent.
n=1

o0

2) If Z b, is divergent, then I}Lrg t, = co. Therefore, ’11_{{)10 s, = oo and thus Z a, 1s divergent.
n=1 n=1

O

Remark.

(1) In order to use the Comparison Test, the “nonnegative” condition is TNecessary. For exam-

1
ple,b, = —landa, = — foralln € N. Then b, < a,. But the serlest = E (=1) = -o0
n=1 n=1
- . |
is divergent and the series Z a, = — is convergent.

n=1

(i1) In the use of the Comparsion Test, we need to know some convergent or divergent series.
Some important series are:
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© converges when p > 1
e p-series Z -

n=1 diverges when p < 1
- converges when |r| < 1
e geometric series Zarﬂ
n=1 diverges when |r| > 1
. RS 5 . .
Example 11.4.11. Determine whether the series Z >— 5 is convergent or divergent.
= 2n* +4n +3

| 5
Proof. That the series Z — Is convergent (p-series, p = 2) implies the series Z o is also
n n
n=1

n=1

5 5 1
I dAn a3 < 3 for every n € N, by the Comparison Test, the series

——— is convergent.
; 2n +4n+3 g

convergent. Since

O

Remark. To determine whether a series is convergent, it sufficies to consider the convergence

of the “tail ” (Z a,) of the series. Therefore, in the use of the Comparison Test, we can replace
n=ngo
the condition 0 < b, < a, “for every n > 1” by “ for every n > ny” and for some integer n,, and

the test still holds.

1
Example 11.4.12. Determine whether the series Z an is convergent or divergent.
n

n=1

| 1 1
Proof. Since Inn > 1 for n > e, we have nn > — when n > 3. Also, the series Z — diverges
n

n n
n=1
(o]

1
(p-series, p = 1). By the Comparison Test, the series Z an diverges and thus the series
n

n=3

> Inn )
E —— also diverges. O
n
n=1
[

Example 11.4.13. Determine whether the series Z

n=1

1

35,5 is convergent or divergent.

Proof.

Observe that

(i) Not all terms are positive

2
< — for all n > ng. To find ny, consider

(i1)) We guess the series is convergent and hope ——
mw-5n-2 n

M —1n—-4>n — nrn’>1n+4 =n>4.
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1 1 2 2
When n > 4, the term PER-—] >0and —— < —. Also, Z — converges (p-series,
n
n=4

nd—-5n-2 n-5n-2 n¥
- 1
p =3 > 1). By the Comparison Test, the series Z ———=—— converges. Therefore, the series
i n’—5n-12
i : converges ]
n—5n-2 ges.

n=1

Note. Recall that for Z a, and Z b, with 0 < b, < a,, for all n € N, the Comparison Test says
that

(D) Z a, converges — Z b, converges;

) Z b, diverges — Z a, diverges.

But the converse is false. That is,

(1) Z b, converges ==x Z a, converges;

2) Z a, diverges === Z b, diverges.

S
Example 11.4.14. Consider the series Z TR In order to use the Comparison Test to
n=1

1 . 1
show Z 1 converges, we cannot choose the known convergent series Z > because

1 1
—. H
] > T OWeVver, ]

1
ries Z T also converges.

1 .
looks very close to o It is reasonable to guess that the se-

m The Limit Comparison Test

Theorem 11.4.15. (Limit Comparison Test) Let {a,} and {b,} be two nonnegative sequences. If

lim & = [

n—oo n

o0

for some 0 < L < oo, then Z a, converges if and only if Z b, converges. That is, either both

n=1 n=1
(o8] (o)
series E a, and Z b, converge or both diverge.
n=1 n=1

Proof. (Exercise) O

S 3
Example 11.4.16. Determine whether the series Z T

n=1

is convergent or divergent.
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. : RS . Sl
Proof. Consider the geometric series Z . Since Z o COnverges (geometric series with

_ 1
=5 < 1) and

by the Limit Comparison Test, the series Z 1s convergent. m|

n=1

2n -1

2n® +3
Example 11.4.17. Determine whether the series Z " " s convergent or divergent.

=1 5 +‘n

[ [

1 1
Proof. Consider the series Z pYER Since Z 72 diverges (p-series, p = 5 < 1) and

n=1 n=1

2n°+3n o 3
. V5415 . n
lim T = lim —Z— =2,
n—o00 _l_ n—o00 5
PRy =

n® +3n

. . . 2
by the Limit Comparison Test, the series E — diverges. O
- V5+n
n=1

m Estimating Sums

Suppose that Z a, and Z b, are two convergent series with nonnegative terms and 0 < b, < a,

n=1

n=1
for all » € N. Let

(o] n
s = E a,, sn=Zak and R, =5—58,=a,1 +apr + -+

n=1 k=1
o0 n

z:an, z,,:Zbk and T, =1—1,=by.  +by+ -
n=1 k=1

then 0 < 7, < R, for all n € N. Hence, if we can estimate R,, then we have an upper bound of
T,.

Example 11.4.18. Use the sum of the first 100 terms to approximate the sum of the series

1 . . o o
Z T Estimate the error involved in this approximation.
n

1
< — for all n € N, we have

Proof. Since

nw+1 nd
1
Ty = f — .
Zl(;l P Zl(;l 2 S @ T 21000
Th is less th ! and i ! ¥ ! 0.6864538
e error is less than ——— ~ ~ 0. )
201002 " L1 T Lo
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11.5 Alternating Series

In the previous section, we consider the convergence tests for the nonnegative series (because
of the bounded criterion). In the present section, we want to relax the condition and discuss the
convergence for some special series which includes positive and negative terms alternatively.

O Alternating Series

(o)

Definition 11.5.1. An alternating series Z a, 1s a series whose terms are alternatively positive
. n=1
and negative.

Let b, = |a,|. The general form of an alternating series is

( (o]
Z(—l)“bn ifa; <0
n=1

[Se]
2=

n=1 hnd

Z(—l)”’lb,, ifa, > 0.

\ 7n=1

Example 11.5.2. The series Z(—l)” is an alternating series.
n=1

m Alternating Series Test

Theorem 11.5.3. If the alternating series

Z(—l)”‘lbn —by—by+bs—by+--- whereb, >0

n=1
satisfies
(i) b1 < b, foralln e N

(ii) lim b, = 0.

n—oo

then the series is convergent.

Proof.
b,
i b2
+ b,
— b,
+ b,
bs
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Let {s,} be the sequence of the partial sums of the alternating series. The condition (i)
implies that, for every n € N,

Sons2 = Sop + (Dops1 — bansn) > Sy
~—_———
>0
and
Sop = by — (by = b3) — -+ — (bay—1 — bay) < by.
——— ~——
>0 >0
We have
0<$ <su<s6< < 8§, <---< b

which is increasing and bounded above by b;. By the bounded criterion, lim s,, = s is conver-
n—oo

gent. Since $5,41 = S2, + ba,41, by condition (i),

lim $5,,; = lim 55, + lim by, = s+ 0 = s.
n—0o0 n—0o0 n—-oo

Hence lim s, = s and the alternating series is convergent. O
> -1 n—1
Example 11.5.4. (alternating harmonic series) Determine whether the series Z is con-
n=1
vergent or divergent.
1 4
! DN I. {s.
Proof. =-. = . .
roof. Let b, " Then Z " Z b, Do,
1 1 n=1 n=1 4
Since b, = <—=b, for all n € N and
n+l n
lim b, = lim — = 0, by the alternating series test, the . {a,}
n—oo n—oo 11 e e et e e e e e g
) _1 n—1 0] L . eeeseririTrE
series Z ( is convergent. O 1 !
n=1 n
: o =1)"3n :
Example 11.5.5. Determine whether the series Z pP— is convergent or divergent.
n —
n=1
3 -1)"3
Proof. Letb, = and a, = (=1)"3n = (-1)"b,. Then |a,| = b, for every n € N.
4n -1 3 34n -1
Since lim b, = lim ) " 1 = 7 # 0, the limit lim a,, is not equal to O (in fact, the limit does
n—oo n—oo 49 — n—oo
. . . o (=D3n o

not exist). By the test for divergent, the series = lim a, is divergent. O

n — 1 n—oo
n=1

[

Example 11.5.6. Determine whether the series Z

n=1

(_1)n+1n2

is convergent or divergent.
n +
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(o)

Proof. Let b " hen i rn? Z( 1Y"*1p,. Since
roof. n = — = - n-
n+1 g nw+1 o

B (n+1)7? n? _—n4—2n3—n2+2n+1
T+ 1D¥+1 md+1 [(m+ 13+ 13+ 1)
2

bn+1 — Un <0 forallneN,

we have b,,; < b, for all n € N. Also, lim b,, = lim
n—oo n—oo n3 —+
i (_1)n+1n2
the series Z ———— is convergent. m|
n+1

n=1

T = 0. By the alternating series test,

d x? x(2 = x%)
(557)

Note. In this example, we can compute i = C 112 < 0 for x > 2 to obtain b,,,; <
b, for alln € N.

Remark. As the similar discussion as before, in the use of the alternating series test, it only
needs that the series satisfies conditions (i) in Theorem for every n > ng for some fixed
integer n.

m Estimating Sums

by
=y Observe the structure of an alternating se-
b, ) ries satisfying the two conditions (i) and
- by (ii) in Theorem ITA373. Let R, = s — s,
+b, be the remainder of the series, then
— b6
‘ e IRl = 15 = $ul < bpar.

[e9)

Theorem 11.5.7. (Alternating Series Estimation Theorem) If s = Z(—l)"_lbn is the sum of an

n=1

alternating series that satisfies

(@)0< b, <b, foreveryneN and (ii) limb, =0

then
IRal = |5 = 84l < bps

. .o (=D .

Example 11.5.8. Find the sum of the series Z correct to three decimal places.
n!
n=1

> (=1) 1 1 1

Proof. The series Z ( n!) is an alternating series. Let b, = k Then b, = TR < — =b,

n=1

1 1
and lim b, = lim - = 0. To find n such that b, = - < 0.001, we have n > 7. Hence, by the
n!

n— o0 n—oo p!

alternating series estimation,

|Rs| = |s — 56| < b7 <0.001 (in fact, b7 < 0.0002).

1 1 1 1 1 1
Then S = 1-1+ E - 6 + ﬁ - m + % ~ 0.368056. In fact s = z ~ 0.36787944.
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11.6 Absolute Convergence

In the present section, we will continue to discuss the convergence of general series (without
alternating patterns). Intuitively, it is difficult to give a nice test for every series because they
may have too many varieties. Therefore, we hope to use some known results (discussed in the
previous sections) to deal with the convergence of certain general series.

0 Absolute Convergence

[

Definition 11.6.1. (a) A series Z a, is called “absolutely convergent” if the series of absolute

n=1

(o)
values Z |a,| is convergent.

n=1

o0

(b) A series Z a, 1s called “conditionally convergent” if it is convergent but not absolutely
n=1
convergent.

Example 11.6.2.

[0e]

-1y & -1y & 1
(1) The series Z ) is convergent by the alternating series test. But Z ‘( ) = Z - =00
n n
n=1 n=1 n=1
- . . . . B =D". .
is divergent (harmonic series, p-series with p = 1). Therefore, Z is a conditionally
n
n=1
convergent series.
(2) The series i U is convergent by the alternating series test and i SO i 1 is
nz g y g n2 - n2
n=1 =1 n=1

& n

also convergent (p-series with p = 2). Therefore, Z —

3 is absolutely convergent.

n=1

[ee] oo

Question: For the two series Z a, and Z la,|, can the convergence of one series imply the
n=1 n=1

convergence of the other one?

(o)

Theorem 11.6.3. If a series Z a, is absolutely convergent, then it is convergent. That is, if

n=1
(o] (o)

Z la,| converges then E a, converges.

n=1 n=1

Proof. Observe that 0 < a, + |la,| < 2|a,|. If Zan is absolutely convergent, then Z 2|a,|

n=1 n=1
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converges. By the Comparison Test, the series Z(a,, + |a,|) converges. Hence, the series

n=1

[0 (9] (o) (o)
D= (@+lad—la) = D (@ +la) = Y lail
n=1 n=1

n=1 n=1

converges.

Note.

(1) The converse of Theorem is false. That is, the convergence of Z a, cannot imply the

n=1
N o (=) O D
convergence of E |a,|. For example, E is convergent but E ‘ is divergent.
n n
n=1 n=1 n=1

2) If Z a, is divergent, then Z |a,| must be divergent.

n=1 n=1

Example 11.6.4. Determine whether the series Z Coszn
n

is convergent or divergent.

o COS 71 n=l
Proof. The series Z >— 1s not an alternating series. Con- A
| n=1 n .
) cosn 1
sider ’ 3 ‘ < — foreveryn € N. 0.5 .
n n
S {s.}
Since Z — converges (p-series, p = 2), by the Compari- B
n=1 n
.\ |cosn ,
son Test, the series Z ) ‘ converges. Hence, the series {a,}
n=1 n . >
o COST L - 0 "
Z 5— 1s absolutely convergent and this implies that it is
n
n=1
convergent. O

Exercise. Let {a,} be a sequence and define

0, ifa,>0

. {an, ifa, >0
a,, ifa, <0

0. ifa, <0 “5:{

(o)

Prove that the series Z |a,| converges if and only if both of the series Z a’ and Z a, converge

n=1 n=1 n=1
and moreover,

Hint: (=) Using the Comarison Test with the fact O < |a;| < |a,| for every n € N and moreover,
the equality holds from the laws for series.
(<) Using the laws for series with the fact |a,| = a; — a,, for every n € N.
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0 Rearrangement

Consider an example of a paradox. Let

1 1 1 —1)m+t
- +---+( ) -

[l
—
—_
—_
—_
—_
—_
—_
—_

=

Hence x = %x and we obtain a contradiction that x = 0.
Question: What’s wrong with this?

For a sum of finitely many numbers, we obtain the same value if arbitrarily rearraneging the
order of those numbers.

Question: Can we get the same value of the sum of infinitely many numbers if we arbitrarily
rearrange the order of these numbers?

Definition 11.6.5. Let {a,} and {b,} be two sequences. We say that {b,} is a “rearrangement” of
{a,} if there exists a one-to-one and onto function f on N such that b, = a,, for every n € N.

Note. In general, Z a, * Z b, if {b,} is a rearrangement of {a,}.

n=1 n=1

Theorem 11.6.6. If Z a, is conditionally convergent then, for any number L € R, there exists

n=1

a rearrangement {b,} of {a,} such that Z a, = L.

n=1

Proof. We only sketch the proof by the following steps.
(I) Let{p,}be the nonnegative subsequence of {a,} and {qn} be the negative subsequence of

{a,}. Since a, is conditionally convergent, we have Z la,| diverges. Hence, at least

n=1 n=1

one of the series Z pn and Z g, 1s divergent. Moreover, the fact that Z a, converges

nl nl n=1

implies both series Z pn and Z q, are divergent. We have that

n=1 n=1
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(II) W.L.O.G, say L > 0. We construct a sequence {b,} from {p,} and {g,} by the following

process. Since Z pn = 00, there exists n; € N such that

n=1

ny
Let S, :an. Then S| > Land S| — p,, < L. Hence, S| — L| < p,,.

n=1

Since Z qn = —o0, there exists m; € N such that

n=1

mp—1

ipn+2qn>inpn+iqn.
n=1 n=1 n=1

n=1

ny mi mi
LetTi= ) pu+ > qu=S1+ ) g Then Ty < Land Ty - g, > L. Hence, |T) - L] <

n=1 n=1 n=1

qm, -
Continue this process, we have 1 < ny <ny <---and 1 <m; <my <--- and {S;} and
{T} such that for every k € N,

g

Sk=Tiri+ > puo Si2L Si—pu<L = ISi-LI<p,

n=nj_1+1
and e
Te=Si+ D, qn TusL Ti—gu>L = ITi-L<gu.
n=my_1+1
Define {b,} = {p1. P2+ Puis@1s @2+ Qs Pyt » Prgs Gyt Gy }

(IIT) To check that {b,} is a rearrangement of {a,}, we have to show that

(i) To show that each a, appears at most once in {b,}. Since each a, is either in {p,} or
in {g,}, and each p, or each g, appears in {b,} at most once by the construction of
{b,}, we have each a, appears in {b,} at most once.

(i) To show that each a, appears at least once in {b,}. For K € N, ax must appear in

{pa}X_, orin {g,}* . Hence, ax appears in {b,} at least once.

(o)

(IV) Check that S; —» Land T, — L as k — oo. Since the series Z a, converges, a, — 0 as

n=1
n — oo. Then p, — 0 and g, — 0 as n — oo. Hence, by part (II), Sy — Land T, — L as
k — oo,

By the above argument {b,} is a rearrangement of {a,} and Z b, = L.

n=1
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Theorem 11.6.7. If Z a, is absolutely convergent and {b,} is a rearrangement of {a,}, then

n=1

(a) ian = ibn and
n=1

n=1

(b) Z b, is absolutely convergent.

n=1

n

Proof. Let s, = Z ayand t,, = Z by.
k=1

k=1
(o8] (o8]

(a) Since Z a, is absolutely convergent and hence it is convergent, the series Z a, is a finite

n=1 n=1

< g as m is sufficiently large.

(o]
number. Given € > (0, we want to prove ‘tm - Z a,

n=1

Since Z |a,| converges, there exists N € N such that

n=1

lansi] + lans] + -+ <

N M

Since {b,} is a rearrangement of {a,}, there exists M € N such that {a;,as,--- ,ay} C
{bl’bZ’ Tt ,bM}. Form > M

&
|t = syl < laysi| + layso| + -+ - < 53
Then
[ee) (o)
e &
|tm_Zan| < |tm_SN| +|SN_Zan| <z-+=-=e
2 2
n=1 n=1
Hence, {t,,} converges to Z a, and we have Z a, = Z b,.
n=1 n=1 n=1

(5]

(b) Consider the sequence {|a,|}. Since Z a, 1s absolutely convergent, Z la,| is also absolutely

n=1 n=1
convergent. On the other hand, since {b,,} is a rearrangement of {a,}, {|b,|} is a rearrangement

of {la,|}. By part(a),

[oe]

i @l = > bl
n=1

n=1

Hence, Z |b,| converges; that is, Z b, is absutely convergent.

n=1 n=1
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m Product of two sequences

Suppose that {a,} and {b,} are summable sequences. We recall that

Seb) = Yasds,
n=1

(o]
Z(can) = ¢ Z a, Wwhere cis a constant.

n=1 n=1

Question: Can we express (Z an)(z b,) as a form of series? If yes, what is the expression?

n=1 n=1

Heuristically, we observe the product of two finite series.

(Zi;an)(zzbm) :Z;ck.

where {c;} contains all products of a,b,,.

Question: Is the formula still true for the product of two arbitrary infinite series?
Anserer: In general, it is not true for two summable sequences.

Exercise. Find two summable sequences {a,} and {b,} such that there is no summable sequence

{c,} satisfying
(e (o) =D en

n=1 n=1

Me

S
1l
—_

(e8]

Theorem 11.6.8. If Z a, and Z b, converge absolutely and {c,} is any sequence containing

n=1 n=1
all products a;b; for each pair (i, j), then

Y=

n=1 n

an)(ibn).

n=1

Ms

1l
—_

Proof. (Exercise) O

11.7 The Ratio and Root Tests

In the previous section, we study that an absolutely convergent series is also convergent. How-
ever, it is not easy to check whether a general series is absolutely convergent. In the present
section, we will introduce two methods which can determine whether certain series are conver-
gent or divergent. The spirit of these two methods is from the comparison with geometric series.

1 The Ratio Test

Ap+l

ay

Theorem 11.7.1. (Ratio Test) For the series Z a,, suppose that lim = L.

n—oo

n=1
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(o)

(a) If L < 1, then the series Z a, is absolutely convergent (and therefore it is convergent).
n=1

(o8]

(b) If L > 1 (or L = ), then the series Z a, is divergent.

n=1

1 1
(c¢) If L = 1 the Ratio Test is inconclusive. (For example, Z — diverges and Z — converges).
n n

Proof. (Postponed) O

Example 11.7.2. Determine whether the following series are convergent or divergent.
o 1
M D
n=1

1
Proof. Leta, = = Then
n!

1
. |a : 3] : 1
lim |~ | = lim ("J;) = lim =0<1.
n—00 an n—00 = n—oo N + ]
n:
By the ratio test, the series Z — is convergent. m|
n=1
> 1
@ D
n=1 n
1
Proof. Leta, = - Then
n!
g 1
. . D! .
lim 2| = lim ("Jrl) = lim =0<1
n—oo a, n—o0 = n—oo N +
n:
By the ratio test, the series Z — 1is convergent. O
n=1
3 Z for some r € R.
) — (n+ 1!
rl’l
Proof. Leta, = ———. Then
) "o+ 1)
rn+l
. |a . 2)! ) r
lim ’ 21 = lim (":,,) = lim 5= 0<1.
n—oo an n—oo (n+_l)' n—oo N +
(e8] rn
By the ratio test, the series Z is convergent. O

£ (n+1)!
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> 3
@ Y3
n=1

3
Proof. Leta, = (—1)”%. Then

1 3
g | L CDMEEE L pls ]
li = lim —3‘:11m—< ):—<1.
n—eo | a, n—co (—1)"% n—oo 3\ p 3
By the ratio test, the series Z(—l)”y is convergent. O
n=1
[s] nn
P
n!
n=1
nn
Proof. Leta, = - Then
n!
o 1 1
. a . ! . n n .
lim |~ | = lim ‘ as) ‘ = lim ( ) =lim(1+-)"=¢e> 1.
n—oo an n—oo :ll_' n—oo n n—oo n
(e8] nn
By the ratio test, the series Z — is divergent. O
n!
n=1

n

. n n-n--n . .
Note. Consider =12 >n — oo as n —. By the Test for Divergence, the series
n‘ . ... n
n

no. ..
Z — is divergent.
n!

n=1

[ee)

Proof of Ratio Test

(a) Since lim | 22!

n—oo |,

such that for every n > N

= L < 1, choosing a number s such that L < s < 1, there exists N € N

|an+1|

s<1.
|a,|

Hence, |a,,1| < |a,|s for every n > N. We have

lanol < lansils

2
lansl < lansols < laysils

k—1
laysel < laysr-ils < -+ <lansils fork=1,2,3,---
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For every n > N, the partial sum s, of Z |a,| satisfies

n=1

Sp = lail +laz| + -+ +lay| + lanai| + -+ + |a,l

N
= D lad+layal + - +al
k=1

N
2
< D lail + layal + layals + lay.als + -+ + lay.ls
k_
N

n—(N+1)

=1
layi1(1 = ")
- Z laid + 1—
k=1 §
N
lan.1 .
< Z|ak|+ I since 0 < s < 1.
-8

>~
Il

1
Since {s,} is an increasing sequence and bounded above, by the bounded criterion, {s,}

converges and hence Z a, 1s absolutely convegent.

n=1

. . a . .
(b) Since lim ALY I S 1, choosing a number s such that 1 < s < L, there exists N € N
n—oo a}’l
such that for every n > N
a
| n+l| § > 1
la|

Hence, |a,+1| > |a,|s for every n > N. We have

lan2l > lansils

2
lansl > lansols < laysils

lanl > laysi-ils > - <layals™ fork=1,2,3,--
W.L.O.G, we may assume that |ay.| > 0. Then

lim |a,| > lim |ay.]s"™ VD = 0o (since s > 1).
n—0oo

n—oo

(o)

Hence, lim a, # 0. By the Test for Divergence, the series Z a, is divergent.
n—oo

n=1

1 The Root Test

(o8]

Theorem 11.7.3. (Root Test) For the series Z a,, suppose that lim +/|a,| = L.

n=1

[

(a) If L < 1, then the series Z a, is absolutely convergent (and therefore it is convergent).

n=1
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(b) If L > 1 (or L = o), then the series Z a, is divergent.
n=1

1 1
(c) If L = 1 the Ratio Test is inconclusive. (For example, Z — diverges and Z — converges).
n n

Proof. (Postponed) O

Example 11.7.4. Determine whether the following series are convergent or divergent.
(1) i 1
£ (Inny

1
Proof. Leta, = ——. Then

(Inn)"
. n . n 1 n 1
lim +/|a,| = lim ’— =lim—=0<1.
n—oo n—o0 (hl l’l) n—co Inn
By the root test, the series i ! is convergent m|
’ | & Ty =R
2 —.
(2) 2477
2n
Proof. Leta, = —. Then
n
lim \/|a,| = lim { - 2 2>1
im +/|a,| = lim —| = — = .
n—oo n—oo n3 n—oo 1"/n3
By the root test, the series Z — is divergent. O
n=1 n
> 20+ 3\n
3 .
o 3 E)
2n + 3\n
Proof. Leta, = <3n " 2) . Then
lim ] = li W20+ 3|7 2n +3 2<1
im v/|a,| = lim = lim == .
n—oo n—oo 3n+2 n—oo 3 + 2 3
o 2n+ 3\,
By the root test, the series Z (3n " 2) 1s convergent. m|

n=1

Proof of Ratio Test




276 CHAPTER 11. SEQUENCES AND SERIES
(a) Since lim v/|a,| = L < 1, choosing a number s such that L < s < 1, there exists N € N

Vl0a, < s < 1.

Hence, |a,| < s" for every n > N. The partial sum s, of Z |a,| satisfies

n=1

such that for every n > N

Sp = lail +lasl + -+ +lay| + laysi| + - - + |ay,]

1-y+

N
s )
< Z|ak|+ since 0 < s < 1.
S

Since {s,} is an increasing sequence and bounded above, by the bounded criterion, {s,}

converges and hence Z a, is absolutely convegent.

n=1

(b) Since lim +/|a,| = L > 1, choosing a number s such that 1 < s < L, there exists N € N
such that for every n > N
l0a,| > s > 1.

Hence, |a,| > s" for every n > N. We have
lim |a,| > lim s" = o0 (since s > 1).
n—oo n—oo

(o)

Hence, lim a, # 0. By the Test for Divergence, the series E a, is divergent.
n—oo
n=1

11.8 Strategy for Testing Series

In the present section, we will organize all tests introduced in previous sections. The following
steps are some strategies for convergence or divergence for series.

(o]
2
n=1

1. p-series:
convergent when p > 1

@
Zn—pls

n=1 divergent when p < 1.
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2. geometric series:

o convergent when |r| < 1
Z ar" (a # 0) is
n=1 divergent when |r| > 1.

3. When the form of the series is similar to a p-series or a geometric series (for example,
2 2n+1 _
————or Z , we could determine the convergence or divergence by usin
Zn2+3n,+1 712 & gence by using

the comparison test (or limit comparison test).

4. Test for Divergence:

(o)

lima, #0 = E a, 1isdivergent.
n—oo
n=1

5. Alternating Series Test: If the series has the form Z(—l)”bn for b, > 0 satisfying

n=1

(1) byr1 < b, foralln e N and (1) lim b, =0

n—oo

then the series Z(—l)”bn is convergent.

n=1

6. Ratio Test: Suppose that lim G| _ .
n—eo | @,
) absolutely convergent if L <1
Z a,is ¢ divergent if L>1
n=1 inconclusive if L=1

7. Root Test: Suppose that lim +/|a,| = L.

o0 absolutely convergent if L <1
Z a, is divergent if L>1
n=1 inconclusive if L=1

8. Integral Test: Suppose that f is positive and nonincreasing on [1, 00), and a, = f(n). Then

Zan is convergent (divergent) < f f(x) dx is convergent (divergent).
1

n=1
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12.1 Approximation by polynomial functions

Although most elementary functions have nice differentiable and integrable properties, it
is not easy to compute their exact values like sin 1, €%, In3 etc. Polynomial functions are a
family of best functions. For a polynomial function P(x), we can easily find its value P(a) by
basic algebraic algorithms. Naturally, we want to study whether a function can be approxi-
mated by polynomial functions. In Section 5.6, we knew that a differentiable function can be
approximated by a 1-degree polynomial, at least near a certain point. We expect to (locally)
approximate elementary functions by higher degree polynomials

m Coefficients and Derivatives of P(x)

Lemma 12.1.1. (a) Let P(x) = ¢y + ¢1x + x> + ¢, x". Then

_ PW(O)
*= T

for k=0,1,2,--- ,n

(b) Let P(x) = cy + c1(x —a) + co(x — a)* + - - + c,(x — @)" be “polynomial in (x — a)”. Then

PP (a)
k!

Ck = for k=0,1,2,--- ,n.

Proof. Compute them directly. O

m Taylor Polynomial

Question: For a given function f(x) (for example, ¢*), can we find a polynomial function P(x)
such that P(x) is close to f(x) for every x € R?

279
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In general, it is impossible to obtain such a nice approximation “for every x”. Therefore, we
will usually consider an approximation by polynomial functions “near a given point”.

Question: Which polynomial function will give nice approximations (near a given point a)?
How to find such a polynomial function?

Heuristically, for a given function f(x) with sufficiently many times derivatives at a, we
expect that P(x) is an appropriate polynomial to approximate f (near a) if both f(x) and P(x)
have the same first n times derivatives at a. That is, f®(a) = PP(a) for k = 0,1,2,--- ,n.
Therefore, if we write P(x) = ¢y + c1(x — a) + c2(x —a)* + - - + c,(x — a)", then

3 PY(a) _f ®(a)
e

fork=0,1,2,--- ,n.
Definition 12.1.2. Suppose that f is a function such that f'(a), f”(a),--- , f*(a) exist. Define

- D)
Par(x) =co+ci(x—a)+cx— a)2 +-te(x—a) = Z (x - Cl)k
— k!
f®(a) . . « .
where ¢;, = T fork =0,1,---,n. The polynomial P, , ¢(x) is called the “Taylor polynomial

of degree n for f at a”.

Remark.

(i) If there is no confusion, we may replace P, , ¢(x) by P, ,(x).
(i) PP(a) = fP(a) forevery k =0,1,2,--- ,n.
Example 12.1.3. Find the Taylor polynomial of degree n for f at the given point.

(1) f(x)=sinx,ata =0.

Proof.
0 =0, PO =1, fP0) =0, fH0) = -1,
Then
30,5 oy
Popiro(x) = X—§+§+"'+(—1) il

Pruioo(x) = Payyro(x)

(2) f(x) =tan"!x, ata = 0. Find P3(x)
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Proof.
1 —-2x “2(1 4+ x2)? +2x-2(1 + x»)? - 2x
/4 — , 44 — d 1444 — .
F@W=1ra 0=y ad /7@ 1+ 2
Then £(0) = 0, f/(0) = 1, £(0) = 0 and f"(0) = —2. Hence,
2 3 3
Pyo() = x= S-=x- 3
o
(3) f(x)=e",ata =0. Find P, o(x).
Proof. Forevery k=0,1,2,---, f®(x) = ¢*. Hence, f®(0) = 1. We have
P X"
P,o(x) = 1+x+5+§+-~-+a.
o

Exercise. If f(x) is a n-degree polynomial in x —a, say f(x) = co+c;(x—a)+cy(x—a)> +--- +
c,(x —a)*, then

(1) Pra(x) =co+ci(x—a) +cy(x—a)* + -+ c,(x —a) forevery 0 < k < n.
(2) f(x) = Pr(x) for every k > n.
(3) f(x) = Pyp(x) for every k # n and every b € R.

O Approximation of f(x) by P, ,(x)

So far, we only know that the Taylor polynomial P,,(x) is defined by the first n times
derivatives of f at a. But we don’t figure out the connection between f(x) and P, ,(x).

Observe that Py ,(x) = f(a) + f’(a)(x — a) is the linear approximation (introduced in Section
5.6). Then

) = Pra) _ f) - fl@) - f@G-a) _ f() - f(@)

—f'(a)— 0 as x— a.

X—da X—da X—d
Consider P, ,(x) = f(a) + f'(a)(x — a) + @(x —a)*. Then
FO) = Pogx)  f0) = fl@) = fra)(x - a) — L=
x-a? (x—a)
f) - f@-f@x-a) f'a)

(x —a)? 2

Therefore,
lim J(xX) = Pru(X) Lu lim S -f@ [fa) _
x—a  (x—a)  xea 2x—a) 2

provided f’(x) exists as x near a.

0

Question: Is there similar result for every n € N?
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Theorem 12.1.4. Suppose that f is a function such that f'(a), f”(a),--- , f"(a) exist. Then

lim M -0
w—a  (x—a)

Proof. Consider

f@) = Pua) _ fO =TS 00—t @
(x—ay (x-ay nt
T M@
Let Q(X)=f(X)—Z 7 (x— )" and g(x) = (x —a)". Then, for I <i<n-1,

k=0

~ f(n—l)(a)(x _ a)n—i—l

O(x) = FO0x) — FD(a) — F*Da@)(x — @) — - -
0" (x) = f(x) = fPa) - [T @) (x ~a) (2 oi D

Hence, lim Q”(x) =0 fori = 0,1,2,--- ,n — 1. On the other hand,
P =nmn-1)--(m—i+Hx-a)"
and hence lim g”(x) =0 fori=0,1,2,--- ,n— 1. By applying L’Hopital’s Rule n — 1 times,

. f() = Pua(x) o)  f"(a)
m =~ T nat) —_

1 = 1l
= (x—a)y > g(x) n!
’ (1)
LH .o Q'(x) _ (@)
x—a g'(x) n!

g IS

L0 @

x—a g=D(x) n!

lim J' () = ") B f"(a)
x—a n!'(x —a) n!

= 0.

O
Note. Theorem 214 says that the more differentiabilities of f at a has, the better approxima-
tion of f by P, ,(x) is when x is near a.

0 Local behaviors of functions
We recall the Second Derivative Test: f’(x) is continuous near a and f”(a) = 0.

(1) If f”(a) > O then f has a minimum at a.
(i1) If f”(a) < O then f has a maximum at a.

(iii) If f”(a) = O then the test is inconclusive.



12.1. APPROXIMATION BY POLYNOMIAL FUNCTIONS 283

Heuristically, we follow the same idea that if f’(a) = f”’(a) = --- = f®Y(a) = 0 and
f™(a) # 0, then the sign of £ (a) might give some information about the local behavior of f
near a. For example

17 1" 4) (5)
f ( )( a)2+f (a)(x_a)3+f (a)(x_a) f ( )(x_ )5

Ps(x) = f(a) + f(@)(x—a) + 31 41

Then

f(X) Psa(X) x—>a

Gy 0 = |f(x)=Ps.(x)| <Ix—af asxisclosetoa. (12.1)

Suppose that f'(a) = f”(a) = 0 and f®(a) # 0. Then

117 (4) (5)
Pso(x) = f(@) + (x = 3)? [f @ J 4?“)(x— a) + %(x— a). (12.2)
For the bracket in (I’Z72), the term is dominated as x is near a. Hence, )(x —a)

! 3!
determines the behavior of Ps a(x) when x is near a. Also, we may obtain that the behavior of

fll/
(x — a)’ by (T20).
Roughly speaking, if a functlon f has sufficiently many derivatives at a, the first nonzero
derivative f¥(a) will dominate the behavior of f when x is near a.

f(x), as x is near a, is like ——

Theorem 12.1.5. Suppose that a function f(x) satisfies
f@=f'@=-=f""%a=0 and f"(a)0.

(1) If nis even and f™(a) > 0, then f has a local minimum at a.

(2) Ifnis even and f™(a) < O, then f has a local maximum at a.

(3) If nis odd, then f has neither a local maximum nor a local minimum at a.

Proof. W.L.O.G, we may assume that f(a) = 0. Otherwise we may take f(x) — f(a).

f”( ) 2 VA (O) )

(x—a) +---(n_1)!(x—a)" +T(x—a)”

Py a(x) f@)+ f(@)(x-a)+

f (”)(a)

(x-a).

J(x)

By Theorem T214, 0 = lim - f"a )} Then ( ) has the
x—a)t

x—a (_x — a)n
same sign as f™(a) when x is sufficiently close to a.

J(x) = Pua(x) lim[ f(x)

(x—a)

(I) If n is even, then (x — a)" > O for x # a and therefore f(x) and f"™(a)(x — a)" have the
same sign when x is close to a.

(i) For f™(a) > 0, f(x) > 0 = f(a) when x is close to a. Hence, f has a local minimum
at a.
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(ii) For f™(a) <0, f(x) < 0 = f(a) when xis close to a. Hence, f has a local maximum
at a.

. . J >0, whenx>a
D) If nis odd, (x — a) { <0, whenx<a

sign for x > a and different sign for x < a. That is,

, then f(x) and f™(a)(x — a)" have the same

> (0, whenx > a,
<0, whenx<a.

(i) For f™(a) >0, f(x) {

<0, whenx>a,
> (0, when x < a.

(ii) For f™(a) < 0, f(x) {

Hence, f has neither maximum nor minimum at a.

Note. Theorem [2T3 is inconclusive if f®(a) = 0 for every k € N. For example,

»
-1
yze.’l,'z
' 1
e ifx#0
f(x)_{o ifx=0
X
f®@©)=0 forallkeN. 3 % 4 =2 5
»

1
_ ) —e 2 ifx#0
f(x)_{o ifx=0

f®0)=0 forall keN.

e ifx>0 !
@) =4{ —¢ 2 ifx<0
0 ifx=0

f®0)=0 forall ke N.

0 Uniqueness of P, , ¢

Definition 12.1.6. Let f and g be two functions. We say that f and g are “equal up to order n
ata” if
o S0~ 8 _

x—a (X — a)n

0.
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Remark. If f(x) has nth derivative at a, then f(x) and P, , s(x) are equal up to order n at a.

Question: Is there any polynomial Q(x), different from P, , ¢(x), of degree less than or equal to
n such that f(x) and Q(x) are equal up to order n at a?
Answer: No, by the following theorem.

Theorem 12.1.7. Let P and Q be two polynomials in (x — a), of degree less than or equal to n.
Suppose that P and Q are equal up to order n at a. Then P = Q.

R
Proof. We claim that if R(x) is a polynomial of degree less than or equal to n and lim @) =0,

x—a (x —a)t
then R(x) = 0.

Proof of claim: Expressing R(x) as a polynomial in (x — a)

R(x) = by + bi(x —a) + by(x —a)* + - + b,(x — a)",
we want to show that b; = 0 fori =0, 1,2,---,n by induction.

R
Since lim (x)
x—a (X — a)”

= 0, we have
0 <lim|R(x)| < lim|(x —a)|* = 0.

Then R(a) = lim R(x) = 0. Thus, fori =0, by = 0and R(x) = by(x —a) + --- + b,(x — a)".
Ifby=by =---=b;=0for1 <i<n,then R(x) = by ;(x —a)™ +--- + b,(x —a)". By

. . . R
using the similar argument as above, since lim "
x—a (X —d

= 0, we have

R .

lim L). < lim|x — a" Y = 0.

x—a (x - a)”'l x—a
Hence,

R .
0 = lim % = lim by + bip(x —a) + -+ + by(x —a)" "D = by,
x—a (X — a)' x—a

By the induction, we have by = by = --- = b, = 0 and the claim is proved.

Now, define R(x) = P(x) — Q(x). Since P and Q are equal up to order n at a, R(x) is a
polynomial of degree less than or equal to n and

RO _ . PO -0W) _

x—a (x —a)' x>a (x—a)

By the claim, R(x) = 0 and hence P(x) = Q(x). O

0.

Corollary 12.1.8. Suppose that f has nth derivative at a and P is a polynomial in (x — a) of
degree less than or equal to n which equals f up to order n at a. Then P(x) = P, 4 ¢(x).

Proof. Since

P(x) - Pn,a,f(x) - lim P(X) - f(x) + lim f(x) - Pn,a,f(x) ~0

x—a (_x — a)" x—a (_x — a)" x—a (_x — a)"

b

P(x) and P, , s(x) are equal up to order n at a. Also, P and P, , ¢(x) are polynomials of degree
less than or equal to n. By Theorem T2Z174, P(x) = P, 4 (x). O
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Remark. In Corollary T2ZT8, the hypothesis that “f has nth derivative at a” is necessary. There
exists some function f such that some polynomials are equal to f of order n at a, but f does not
have n times derivatives at a. Hence, P, , r(x) does not exists. For example,

X1 if x is irrational

fx) = { 0  if xis rational.

Then P(x) = 0 and f are equal up to order n at 0. On the other hand, f(0) exists but f”(x) does
not exist for every x # 0. Hence, f”’(0) does not exist.

Remark. Corollary I2T8 gives another method to find the nth degree Taylor polynomial of f.
That is, to find a polynomial P(x) of degree n such that
-P
i fO PO

x—a (_x — a)”
Then P(x) = P, 4 ¢(x). For example,

_1 X 1 X 5 A 6 o (_1)n+lt2n+2
tan” x = dt = 1-r+t-+---+(-1D)"t"+ ——— dt
o 1+12 0 1+ 7

X3 x5 X7 (_1)nx2n+l X t2n+2
— _—t — - — 4+ e — 4 —1 n+l dt
S TSI f 1+

-

A -

P(v) : 2n+1 degree polynomial

Consider
X 2n+2 "X
tan!(x) — P(x) 3 fo t1+_z2 dt fo 22 dt ! 23
2n+l - ‘ x2n+l ‘ = ‘ 2+l ‘ - o+ 3‘x2n+1 — 0 as x—0.
Since P(x) is equal to tan~! x of order 2n + 1 at 0,
)C3 XS X7 (_1)nx2n+1
Pn = —_— 4 — — — 4 e —
mr1,0(X) = X 3 3 7 T 1
Observe that
x3 xS )C7 (_1)nx2n+l X t2n+2
tan'x = x—- =+ = - 4. 42 +_1n+1f dt
R T a1 POV T
| X 2n+2
= Py, x)+ (=)™ dt.
A
Then
t2n+2 |x|2n+3

}tan‘lx— P2n+1,0(x)} = ’f
0

Hence, for some |xy| < 1,

t < .
14172 ‘ 2n+3

| p (o) < |xo[>"+3 - 1
xg — Pa, Xp)| < .
0 Tl O = v 3 T 2n+3

| tan™

We can estimate tan™! xo by computing P»,,3,0(xo) with error less than 3
n
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12.2 Estimating Error and Taylor Theorem

In the previous section, we have learned that if f has n times derivatives at a, then
[f(x) — Poo(x)| < |x—al" as xis sufficiently close to a.

Question: Can we estimate the difference between f(x) and P, ,(x) when x is in some interval
of a?

Definition 12.2.1. We define the remainder term R, ,(x) by
Rn,a(x) = f(.X) - Pn,a(x)

By the definition of the remainder,

11 (n)
109 = Paa(0 + o) = fl@) + F@x =)+ 5P o+ Dy s gy
Observe that
0 "I fay+ f P dr
Jo_
Roa(x)
@ rof - [ o
= f@+fx - faa- f o di
= f@+ f@x—a) - f@)x+ f0x - f £ dr
= f@+ f@—a)+ (F0) — f@)x - f £ dr
2 f@+ f@-a+ f 2 dr)x - f o ds
= f@+f@x—a)+ f £ = 1) di
«
_ 2 x X 27
@+ @ - 0 S50 P01 ar

= fla)+ f(a)(x - a)+f”() —a)? +f fm( )( — 1) dt

N -

RZ,a (x)

By induction, if f"*V is continuous on [a, x], then

X r(n+l)
R, (x) = f f ' ® (x=0)"dt (integral form)
a n!

Qa Taylor Theorem
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Theorem 12.2.2. (Taylor Theorem) Let f(t) be a n + 1 times differentiable function on [a, x|
and R, ,(x) be defined by

(n)
f=fa+fax-a)+- -+ f ( )

(x —a)" + Ry ().
Then
(a) (Cauchy form)

f ("“)(6)

Ry a(x) = (x=&"(x—a)  forsome¢ € (a,x).

(b) (Lagrange form)

(n+1)
f (é:) _ a)n+1

Rn,a(-x) = (l’l n 1)' (.Xf

for some & € (a, x).

(c) (Integral form)

X p(n+1)
Rn,u(-x) = f f ! (t)(x - t)n dt

Proof.

Recall the Cauchy Mean Value Theorem: If F and G are continous on [a, x] and differen-
tiable on (a, x), there exists & € (a, x) such that

F() - Fla) _ F'(¢)

G(x)-G(a) G'(&)

Define F on [a, x] by

(n)
fn!(t)(x _ oy

Let G be a differentiable function on [a, x] such that G’(¢) # 0 on (a, x). By the Cauchy Mean
Value Theorem, there exists a number & € (a, x) such that

Fx)-F(a) _F'(§)

Fit)=fO+f @) (x—0+-+

= . 12.
G —G@ _ G© (123)
Also,
(n)
FO) = F@) = 00 - [f@ + fae -+ + 10— ay] = Ryt
and
Nm® Lo
F'© = 46~ f46 + L@ =8 - 1 @e=+ o+ T gy < T gy
By (CX3),
fWW@ G - Gla)

na( )_

(x=&)"- @



12.2. ESTIMATING ERROR AND TAYLOR THEOREM 289

(a) Let G(t) =t —a. Then G(x) — G(a) = x —a and G'(¢) = 1. Hence,

(n+1)
Roa(x) = f (f)

—&'(x-a).

(b) Let G(r) = (x—1)""!. Then G(x) — G(a) = —(x —a)""! and G’ (&) = —(n + 1)(x — &)". Hence,

S0 1
Ryu(x) = —ay"!.
W) = @)
The part(c) is proved by using integration by parts O

Remark. In Theorem [277,
(1) the ¢ in part(a) and part(b) are usually different.
(i1) the & in part(a) and part(b) depend on a and x.
(i) by part(b), if | f"*V(#)| < M for all ¢ € [a, x], then

Ix_a|n+1
|Rya(x)| < M- S
(iv) by part(c), if | f™*D(1)| < M, then
n n+l M n+l
|Rna<x)\<—\f(x—t) d| = ]~ =0 | = e -

Example 12.2.3. Estimate sin 2 with error less than 0.0001.

Proof. Let f(x) = sinx. Then |[f™(x)] < 1 (= M) forevery x € Randn = 0,1,2,---. The
Taylor polynomial for f at O is

2n+1 (k) 0
Popi10(x) = Z fkf )Xk

k=0
I SR
3t 5t 7! 2n+ D!
G0 2t
i (2k +1)!
Let M = 1. The remainder
[Rans1 (0] = | $in x = Pane10(0)| < ]%M P2 < %
2n+2
Consider m < 0.0001. Thenn > 5 and

23 25 27 29 211
Phlo2)=2——+——-——+ — — — =0.909296136
11,0(2) TR TR TR BT

and sin2 = 0.90929743. O
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Remark. For a given number x, € R,

2 — 0 as n — oo,

' 1
sinxg — Pane10(X0)| < Qn+2)! %o

fixed number

Hence, for any x € R, we can use n-degree polynomial to approximate sin x with error arbitrarily
small by choosing n sufficiently large.

Notice that the choice of n depends on the error € and the value of |[x|. When the point x is
far from the center “0”, we should choose larger number 7 in order to keep the error still less
than €.

Example 12.2.4. Let f(x) = ¢*. Then f®(x) = e* for every k € N and

_ fk( ) k )C2 X3 P
P,o(x) = Z =1+x +5+§+ +H
and for x > 0,
e’ — no(x)—f —(x—t) dt<— (x—t) dt = L
0 (n+ 1)'

To estimate the value of e with error less than 0.0001. Since e < 3, we have

1

3
)e— no(l)‘ e S Gy < o0t

Choose n = 7 and Rg < 13440 We have P;,(1) = 2.7182.
Example 12.2.5. For f(x) = In(1 + x),

f'(x) LI 1+0™", ffo=-01+07 [f"@=20+x"",
1+x

P = ED"'k-DId+x0)* fork=1,2,---

Then W ;
Pn’O(X):x_E+?_Z+”'+(_1)n_1;
and
R,o(x) = ” : 1)‘f(n+1)(§)( 0)"+! for some £ € (0, x)
(= 1y 1 1

n+l  (1+&mt

| |n+l

If x > 0, then & € (0, x) and hence < 1. We have |R,o(x)| <

n+1

1
A +éy
Example 12.2.6.

(a) Approximate the function f(x) = +/x by a Taylor polynomial of degree 2 at a = 8.
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(b) How accurate is this approximation when 7 < x < 9.

Proof. (a) Compute

fi(x) = —lx‘f f(x) = —%x‘ f(x) = 10 x5
Then 1
f®=2f® =13 ["®) = —157-
Hence, Prs(x) =2 + i(X 8) — ——(x — 8)* and the approximation is

288

\/_~2+—(x 8)—ﬁ(x 8)°.

(b) To find a bound M such that |f"”(x)] < M for 7 < x <
9, consider
10
If” ()] = —|x| <5 7% for7<x<09.

Hence, for7 < x <9,

1 10
R <—.—.7% 3 <
IRy g(x)| < 327 lx —8|° <

Note. In fact, R, 3(x)| < 0.0003 for 7 < x < 9.

-1 < 0.0004.

0.0021
!

Example 12.2.7. (a) What is the maximum error possible in using the approximation

X X

sinx~x— — + —

3! 5!

when —0.3 < x < 0.3? Use the approximation to find 12° correct to six decimal places.
(b) For what values of x is this approximation accurate to within 0.00005?

Proof. (a) (Method 1: Alternating Series) When —0.3 < x < (.3, the series is an alternating

series and " et el
|| ||~ (BY

Qk+ DI~ k-1 " Qk+ 1)
By the alternating series estimation,

— 0 ask > .

3 7 7
{sinx (x— ;— )‘ < |x| < (073')

~43x 1078,
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Then

T
in 12° = sin(—) ~
sin Sm(lS)
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Vs
15

1 =

5375

|
34— (ZY ~ 020791169

(Method 2: Taylor’s Inequality) For (x) = sin x, the polynomial x — — + — is the 6th

degree Taylor’s polynomial for f at 0. The error

M
IRe0(x)| < 7|X|7

where M is a number such that |f”(z)] < M for —0.3 < z < 0.3. To find M, consider

FfP(x) = —cosx. When —0.3 <z7<0.3,| —cosz| <|cosO| = 1 = M. Then

1
IRg0(x)| < R 0.3) <43 x1078.

[’

(b) Consider |Rg(x)| < T < 0.00005. Then |x| < (0.252)"/7 ~ 0.821.

4.3 %107

0.00006

| y=0.00005

y=|Rg ()]

—-0.3 03 -1

y=|Rs0(z)

12.3 Power Series

In the previous section, we know that a function f with sufficiently many times derivatives
at a could be approximated by its Taylor polynomial P, ,(x). Some examples reveal that the
approximation become better (at least near a) if we choose larger degree Taylor polynomials.
In fact, this observation is not exactly true (and we will discuss in the later sections). We want
to ask whether a smooth function can be expressed as a “power series”

f)=co+ci(x—a)+cr(x—a)y ++clx—a)' +--- .

Moreover, if f has the power series expression, what is it?

Definition 12.3.1. (a) A power series is a series of the form

[

E X' =co+ C1x + Xt e + -

n=0

where x is a variable and the ¢, are constants called the “coefficients” of the series.
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(b) In general, a series of the form

(o8]

ch(x—a)”:c0+c1(x—a)+cz(x—a)2+-~
n=0

is called a “power series in (x — a)” or a “power series centered at a” or a “power series
about a”.

Example 12.3.2. Z " =1+x+x>+x°+--is a power series.
n=0
For given x = xj, we should determine whether the series Z cn(xg — a)" converges or
. n=0
diverges.
Definition 12.3.3. (a) We say that a power series Z c,(x — a)" converges
n=0

(i) at xq if Z cn(xg — a)" converges;
n=0

(i1) on the set S if Z cn(x —a)" converges ateach x € §.
n=0

(b) If we regard a series f(x) = Z c,(x —a)" as a function, then the domain of f(x) is the set
of all x for which the series cr:):r(iverges.

Remark. A poswer series Z c,(x — a)" always converges at its center a. In fact, it converges

to the constant term cj. "

Example 12.3.4. Consider the series Z X" =1+x+x*+x +--- as a geometric series with

ratio x. Then the series converges WI‘T;)l |x| < 1 and diverges when |x| > 1. Therefore, the

domain of Z x"is (—1,1).

n=0

(o)

Example 12.3.5. For what values of x is the series Z n!x" convergent?
n=0

Proof. (Idea: using the ratio test or root test)

N + 1) n+1 N
Leta, = nlx'. Then || = O+ DX g Dl T x = 0, lim 2 <0< 1and
a, n!x" n—e | @,
ay
if x # 0, lim || = co.
n—e | a,
By the Ratio Test, the series converges when x = 0. O
o (= 3)
Example 12.3.6. For what values of x does the series Z ——— converge?
n

n=1
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x—3)
Proof. Leta, = ( ) . Then
n
a (X_3)n+1 "
1
s :’ "+31n = lx=3]— |x—=3] asn— .
a, (=3 n+1
n

x - 3)

n

By the Ratio Test, if [x — 3| < 1 (i.e. 2 < x < 4), the series Z (

n=1

converges and if

(o8]

|x—3]>1 (i.e. x <2 or x > 4) the series Z S

n=1

n

diverges.

For |[x - 3| =1,

1

Z — diverges (p-series, p = 1).
n

n=1

(x-3)" _

n

(i) When x—=3 =1 (ie. x=4), >
n=1

o (x = 3)" ~1)"

(i1) When x—3 = -1 (i.e. x = 2), Z u = Z D converges by the alternating series

n n
n=1 n=1

test.

(x-3)"

n

()
Hence, the power series Z

n=1

converges on [2,4) and diverges on (—c0,2) U [4,00). O

Example 12.3.7. (Bessel function of order 0) Find the domain of the Bessel function

o0

-1y 2n
s =y S

2n(pn1)2 °
4 2°(n!)
(=1)x
Proof. Leta, = W Then
(_1)x2(n+1)
Ani1| | 20D[@aDP | 1 X
e 22 2
a, m 2’(n+1)
For every x € R,
. Apyl . 2
lim =lim —x["=0<1.
n—oo a, n—oo 22(]1 —+ 1)2| |
By the Ratio Test, the series converges for every x and the domain of Jy(x) is R. O

[

From the above examples, we observe that the region where the power series Z ca(x—a)'is
n=0
convergent has always turned out to be an interval (e.g. {a}, finite interval, (—oo, c0) etc).

Question: Is the set where a power series converges an interval (including the case that con-
verges at a single point)?

Theorem 12.3.8. For a given power series Z cu(x —a)',
n=0
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VA
1 So {
y=Jy(x)
\
\ // \ s4/l
1 /
1\ S3 ’

Partial sums of the Bessel function J,

(a) ifthe series converges at xy # a, then it converges absolutely at every x with |x — a| < |xo — a

(b) if the series diverges at y, then it diverges at every x with |x — a| > |yo — a|

diverges converges diverges
a Yo

Proof.

[

(a) Since Z cn(x9 — a)" converges, we have lim |c,(xg — a)"| = 0. Thus, there exists N € N

n=0
such that for every n > N such that |c,(xy — a)"| < 1.

converges. Also,

—-a
Let x satisty |[x—a| < |xo—al. Slnce‘ ‘ < 1, the series Z ‘
Xo—a Xo—d
n=N+1

n

forn > N.

n ‘x—a
Xo—d

eux =@l = leu(xo ~a)l| ==

n=1

By the comparison test, the series Z lc,(x — a)"| conveges and hence Z lc,(x — a)"| also

n=N+1
converges.
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(o)

(b) Let zo be a number such that [yy — a| < |zop — al. Assume that the series Z cn(zo — a)'
n=0

(o)

converges. By part(a), for every x with |x — a| < |z9 — al, the series Z c,(x —a)" con-
n=0

o

verges. Hence the series Z c,(yo — a)" converges. It contradicts the hypothesis that the

n=0
(o] o0
series Z c,(yo — a)" diverges. Therefore, Z cn(zo — @)" must diverges.
n=0 n=0

Since zj is an arbitrary number with [yy — a| < |zgp — a, part(b) is proved.

[

Theorem 12.3.9. For a given power series Z cy(x — a)", there are only three possibilities:
n=0

(i) The series converges only when x = a.
(ii) The series converges for all x.

(iii) There is a positive number R such that the series conveges if |x — a| < R and diverges if
|x —al > R.

Proof. (Exercise) O

Note.

(a) The number R in part(c) of Theorem 239 is called the “radius of convergence”.

(b) By convention, we define the radius of convergence as R = 0 in part(a), and as R = o in
part(b).

(c) The interval which consists of all values of x for which the series converges is called the
“interval of convergence” of the power series.

(d) In order to find the interval of convergence in part(c) if the radius of convergence is ob-
tained, we still need to consider the endpoints of the interval. That is, to consider whether
the series converges at the endpoints x = a — R and x = a + R. All situations would occur.
Hence, the interval of convergence could be (a — R,a + R), [a — R,a + R), (a — R,a + R] or
[a —R,a + R].

Example 12.3.10.

Question: How to find the radius of convergece for a given power series? What is the connec-
tion between the coefficients and the radius of convergence?

. Cn+l
Suppose that lim |——| = L. Let a,, = ¢,(x — a)". Then
n—o | ¢,
An+1 Cn+l
= |lx —al — L|x — q| as n — oo.
ay Cn
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convergence for |x —a| <R

ik,

O &

a—R a a+R

Y

>+
L4

divergence for |x —a|>R

Series Radius of convergence Interval of convergence
Geometric series 2 X R=1 (-1, 1)
n=0
Example | > nlze R=0 {0}
n=0
2 iG—
Example 2 Y — R =1 [2, 4)
ne=] n
% (_])n‘,ln
Example 3 — R=m —oo, )
A2ZRf.. 12
n=0 (.'?,)

By the ratio test,

(o)

. 1 . .
ifllx—al<l&|x—a| < T then the series Z c,(x — a)" is convergent;
n=0

(9]

1
ifllx—al>1 = |x—al| > i then the series Z cn(x — a)" is divergent.

n=0
: . . 1 . Cn+l
Hence, the radius of convergence of the series is R = I where lim =L
n—oo Cn
& n
Example 12.3.11. Find the radius and interval of convergence of the series -
n!
n=0

n

Proof. Leta, = x_| Then
n!

xn+l
Ani1 | | (nrD)! ‘ A
=|—| = )
a, = n+1
(o0
. Apyl . |x] . X"
Hence, for every x € R, lim |——| = lim = 0. The series Z — converges for every
n—oo | @, n—oo N + 1 0 n'
n=
x € R. The radius of convergence is co and the interval of convergence is R. O

(o)

Example 12.3.12. Find the radius and interval of convergence of the series Z n"x".
n=0
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2
xI°

Proof. Forevery x # 0, if n € Nand n > =, then |nx| > 2. Hence,

lim |#"x"| = lim |nx|* > lim 2" = oo.
n—0oo n—00 n—-0o0

(9]

By the test for divergence, the series Z n"x" diverges at every x € 0. The radius of convergence
n=0
is 0 and the interval of convergence is {0}.

O
: . : .o (B3
Example 12.3.13. Find the radius and interval of convergence of the series Z .
‘= Vn+1
(=3)""
Proof. Leta, = . Then
Vn+1
(_3);1+] xn+l 1
n i +
a —
By the Ratio Test,
1
(1) When3jx| <1 & x| < 3 the power series is convergent.
1 D
(2) When 3|x| > 1 < |x| > 3 the power series is divergent.
(3) At the endpoints,
. 1 .o (=D . .
(1) if x = =, the series is Z is convergnet by the alternating series test.
3 ‘= Vn+1
. 1 N < I S , 1
(i1) if x = —=, the series is Z is divergent (p-series, p = = < 1).
3 ‘= Vn+1 2
. . 1 . . 1 1
Hence, the radius of convergence is 3 and the interval of convergence is (-3, 5]. O
: . : .o n(x+2)"
Example 12.3.14. Find the radius and interval of convergence of the series Z T
n=0
+2)
Proof. Leta, = n();nT) Then
a D2y n 1
n+l | 3n+2 _ 2
ol n(;::%)n ‘_3(n+1)|x+2|—>3|x+2| asn — oo,
By the Ratio Test,

|
(1) When §|X +2 <1 & |x + 2| < 3, the power series is convergent.
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1
(2) When §|x +2>1 < |x+2| > 3, the power series is divergent.

1
(3) At the endpoints, consider §|X +2|=1 |[x+2|=3.
) . .1 ¢ .
(1) If x = 1, the series is — Z n = oo is divergent.
3 n=0

1 (o)
(i) If x = =5, the series is 3 Z(—l)"n is divergent by the test for divergence.
n=0

Hence, the radius of convergence is 3 and the interval of convergence is (-5, 1). O

Remark.

(1) The Ratio Test (or Root Test) do not apply for the endpoints of the interval of convergence.

(i1) Theorem [239 is false for general series Z S (X).
n=0

0 Operations for Power Series

When regarding power series as functions, we want to know whether some operations (such
as addition, subtraction, multiplication, division, differentiation or integration) for functions
also apply for power series and how they work.

(o8]

Theorem 12.3.15. Let f(x) = Z b,(x —a)" and g(x) = Z c,(x — a)" with the intervals of con-
n=0 n=0
vergence (a — L,a + L) and (a — M, a + M) respectively. Let R = min(L, M). Then

[Se]

(a) (f +8)(x) = Z (by+cy)(x—a)' on(a—R,a+R).

n=0

(b) (f . g) (x) = Z d,(x—a)" on (a — R,a + R) where d,, = Z biCri.

n=0 k=0
f < . . _N
(c) — = Z e,(x —a)" where e, satisfies b, = Z ciep—ron(a—R,a+ R).
g(x) n=0 k=0
Proof. (Exercise) O

(o8]

Remark. Suppose that f(x) = Z b,(x —a)" and g(x) = Z c,(x — a)" both converge at xy # a.
n=0 n=0
Theorem T23T9 hold for all x with |x — a| < |xy — a| by using Theorem I73°R.
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m Term-by-term Differentiation and Integration

[e9)

Suppose that f(x) = Z cy(x —a)" on (a — R,a + R). It is natural to ask whether f is con-
n=0
tinuous, differentiable, integrable or has other properites. Moreover, if f is differentiable or

integrable, what are its derivative function or antiderivative function?

Intuitively, we guess that

[ee)

Lrw = S (Det-ar)

n=0

i [cn(x - a)"} = Z cn(x —a)!

dx n=0

ch,,(x a)"dx—chn(x a)"dx—C+Z

e 1M

(x a)n+l

—
=
)
.
=

I

9(7 . . . . .
= Z lim ), infinite sum and differentiation

Mg

The interchange of infinite sum and limit (lim

X— X0 X— X0

Il
(=]

n

n=0
d (o8] () [s+] [e6] o [ee]
d_ Z = Z —) or infinite sum and integration( f Z z Z f ) involve the concept of the
n=0 n=0 n=0 n=0

interchange of two limits (lim lim Z lim lim). Itis a very importnat issue in mathematics. The

n—00 Mm—00 m—00 n—00

above equalities are true if the summations are just sum of “finite terms”. However, when the
summations are sum of “infinite terms”, the results could be totally different and the equalities
are usually false.

[

In the future, we will discuss general series of functions Z fn(x) and the term-by-term dif-
n=0
ferentiation and integration will be important topics.

[e9)

For a power series Z c,(x —a)", it can be regarded as a series of functions Z Jfu(x) with

n=0 n=0
special forms of power functions. Since it has such a nice structure, some operations are applied

for the power series (term-by-term).

Lemma 12.3.16. Suppose that Z cy(x — a)" converges on (a — R,a + R). Then
n=0

(a) the series Z nc,(x —a)" converges on (a — R,a + R) and
n=0

[ee)

(b) the series Z ni— 7

n=0

n+1

(x —a)"™" converges on (a — R,a + R).

Proof. We will prove part(a) here and the proof of part(b) is similar and left to the readers.
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For zp € (a — R,a + R), fix a number x( € (a — R,a + R) such that |zo — a| < |xo —a| < R. By

Theorem I3, the series Z cn(xo — a)" converges aboslutely. That is,

n=0
(o) (o)
n
D leatxo =)' = ) leal o — a|" < co. (12.4)
n=0 n=0
. Zp—a z0 —a |1
On the other hand, since ‘ ) < 1, we have n - ’ —> 0 as n — oo. Thus, there
Xo—da Xo—a
. Zo—a n—1 .
exists N € N such that forn > N, n - ‘ < 1. Consider
Xo—a
-1 20— a n—1
Inc,(zo —a@)"'| = lca(xo —a)"| - - ‘ ) < lca(xo — @)"|
lxo — a Xo—a lxo — a
<1 as n>N+1

where the last inequality holds when n > N + 1. From the comparison test and (I”24), the series

(9] (9]

Z Inc,(zo — a)"™!| conveges. Then the series Z cn(zo — a)" absolutely conveges and hence
n=N+1 n=0

(o)

it also converges. Since z; is an arbitrary number in (a — R,a + R), the series Z ne,(x —a)"

n=0

converges on (a — R,a + R).

O
Theorem 12.3.17. Let f(x) = Z cn(x — a)" with the radius of convergence R > 0. Then

n=0
(a) forany 0 < L <R, f is integrable on [a — L,a + L] and
ff(x) dx = fnzz(;cn(x—a)" dx = HZ:(;fcn(x—a)" dx=C+ HZ:(; ncﬁ(x—a)””.
(b) f is differentiable (and therefore continuous) on (a — R,a + R) and
f(x) = 4 ( i Cn(x — a)”) = i 4 [cn(x—a)'] = i ne,(x —a)"".
dx n=0 n=0 dx n=0

Proof. We postpone the proof in the end of this section. O

Remark.

(1) The derivative and antiderivative functions of power series are another power series. Al-
though the radius of convergence of derivative and antiderivative function are the same as
the one of the origianl power series, their intervals of convergence may be different from

0o

. . x"
the one of the original power series. (See the example E — or tan~! x).
n
n=1
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(ii) The term-by-term differentiation and integration gives a powerful method to solve differ-
ential equations.

a Proof of Theorem 12.3.17

()

Recall that “the convergence of a series Z c,(x—a)" on (a — R,a + R)” means that the

n=0
n

sequence of partial sums {sn(x) = Z cr(x — a)k}oo_o converges on (a — R,a + R). That is, for
k=0

every xo € (a — R, a+ R), the limit lim s,(xy) converges. Hence, the series Z c,(x — a)" should
n—oo

n=0
be expressed as

i c(x —a)' = lim [Z cul(x — a)k} = lim 5,(x) = s(0).
n=0 k=0

For x¢,y0 € (a — R,a + R), we have lim s,(xg) = s(xo) and lim s,(yo) = s(yy). But the “rate of

convergence” may be different. That is, for € > 0, the above two limits say that
|s,.(x0) — s(xp)| < & form >N, and ls,(yo) — s(yo)| < & form > N,.

The numbers N, and N, may be different. These numbers N depend not only on the error € but
also on the number x.

Since the power series has a good structure, we can obtain a nice result such that “in a
certain restricted interval” the corresponding integer N in the definition of limit only depends
on ¢ but is indpendent of x. Hence, the rate of convergence is “uniform”.

Lemma 12.3.18. Suppose that Z cu(x —a)" convergesto f(x)on(a—R,a+R). Let0 < L <R

n=0
be a fixed number. For every € > 0, there exists N = N(¢) € N (depending on & only), such that
forn >N,

n

‘f(x)—ch(x—a)k’<8 forevery x € [a—L,a+ L].
k=0

[Se]

Proof. Let xp = a+ L € (a—R,a+ R). Then Z cn(xg — a)" converges absolutely. That is,
n=0

(o)

D lentxo - a)"

n=0

< oo. Therefore, for given € > 0, there exists N € N such that

i !ck(xo—a)k} = i !ckLk} < e&.

k=N+1 k=N+1
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(o)

Forevery x € [a— L,a+ L] and n > N, since Z c,(x — a)" converges to f(x), we have
n=0

=Y at-af| = | Y at-af|= D lat-ar]

k=0 k=n+1 k=n+1
< Z }ck(x - a)k| < Z !ckLk} <e&.
k=N+1 k=N+1
Note that the number N only depends on L but is independent of x € [a — L,a + L]. O

k
Note. When the sequence of partial sum s;(x) = Z c,(x — a)" satisfies Lemma 2318 on [a —

n=0
L,a + L], we call {sy(x)} “converges uniformly on [a — L,a + L]”.
Proof of Theorem (23174
(a) Denote s,(x) = Z cx(x — a)* as the partial sum of the series Z ce(x — a)*. For everyn € N,

k=0 k=0
s,(x) is a polynomial function and thus it is integrable on (a — R, a + R).

Let 0 < L < R. By Lemma IZ3TR, for given € > 0, there exists N = N(g) € N such that
forevery x € [a— L,a + L]

f(x)—s(x)| <e& whenever n > N. (12.5)
| |

Since sy.1(x) is integrable on [a — L, a + L], there exists a partition P = {xg, x,-- - , xx} of
[a — L,a + L] such that

U(P, sy1) — L(P, sy41) < &.

By (C13),
k
U= UPosye)| = | (M= M) = xi0)|
i=1
k
< - M
i=1
k
N+ o
< max |M; - M, |;|xl X1
< check it —
< 2Le
where M; = max f(x) andeN”): max  Sy.1(x).

X€[xi-1,%;] X€[xi-1,%;]
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Similarly,

L(P, f) - L(P, sNH)( < 2Le. Then

UPD=LEH| = [UPH = UP 5| + |UP sxe) = LP.swan)

+| P sy = L(P. )|
< 4Lle+e =ML+ 1)e.

Hence, f is integrable on [a — L,a + L].

On the other hand, for x € (a —R,a + R), we choose 0 < L < Rsuchthat x € [a—L,a+ L].
For given & > 0, let N be the integer such that the inequality (IZZ3) hold when n > N. Then

[roa-y oo = | [rwa- [Cswal=| [ 0o
a k=0 a a a

fxlf(t)—sn(t)l dt < fxsdtsLs.

Let n — oo, we have f f() dt = Z %(x —a)y"t!,
. n

n=0

IA

k
(b) By Lemma [Z3TH, the derivative of partial sum s,(x) = Z ne,(x —a)”™!' converges on
n=0

[>9)

(@—R,a+R). Fix0 < L <R, by Lemma [Z3.T8R, s, (x) converges to Z ne,(x —a)"! =: g(x)

n=0
uniformly on [a — L, a + L]. It sufficies to show that f'(x) = g(x) for every x € [a—L,a+L].
By part(a),

T.C

fx g(t)dt = 31_)11010 fx s)(0) dt FL ,}Lr?o (sn(x) - sn(a)) = f(x) = f(a).

Then, by the Fundamental Theorem of Calculus,
f(x)=gx) = Z nea(x — a)*! forevery x € [a— L,a + L].
n=0
Since L is an arbitrary number with 0 < L < R, we obtain f’(x) = Z ne,(x —a)™! on
n=0
(a—R,a+R).

Remark.

(i) The series Z cy(x —a)" and Z ne,(x — a)*! have the same radius of convergence. But

n=0 n=1
they may have different interval of convergence. For example,

— 1

Z —x converges on [—1, 1]
n

n=1

n=

X! converges on [—1, 1)

S | =
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(i) Forevery k € N,

(9]

;;f <i cn(x = d)”) = i dik <Cn(x a)") = Z nn—1)n-2)(n—k+1)x—a)™"
n=0 n=0 n=k

All the above series have the same radii of convergence.

12.4 Power Series Representation

In Section 12.2, we know that if a function f has sufficiently many derivatives at a point «, it can
be approximated by polynomials P, ,(x) (at least near a). As n becomes large, the approximation
becomes better. This suggests us that if n tends to infinity, f might be expressed as a power
series.

Some reasons also motivate us to find power series representation for a function. Many
functions have no elementary antiderivatives or it is difficult to solve differential equations, or
the approximation of them are difficult to find. We hope to express those functions as sums of
power series and do the differentiation or integration on the power series rather than dealing
with the original functions.

Example 12.4.1.

(o)

Consider the power series Z X =14+x+x>+-- Ifwe

n=0
regard the series as a geometric series with ratio x, then

the series diverges when |x| > 1 and converges when |x| <
1. Moreover,

& 1
Zx":— for |x| < 1. (12.6)
1—x

n=0

Hence, the power series is regarded as expressing the
1

function f(x) = 7 .
- X

Note. Observe that the domain of f(x) = 1s R\{1} but the domain of the series Z x" s

n=0
(=1, 1). This says that a power series representa‘uon of a function may equal this function only

on a proper subset of its domain rather than the whole domain.

Question: For a given functlon does it have a A power series representation? If yes, for what

values of x does f(x) equal Z c, X" If f(x) = Z c, X", can we take differentation or integration

n=0 n=0
on the power series term-by-term?

1
Example 12.4.2. Express I as the sum of a power series and find the interval of conver-

+ x2
gence.
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1
L+x2 1-(=x%)

1 _ 1 _°°_2n_°°_n2n
1+x2_1—(—x2)_z( *) ‘;( .

n=0

Proof. Consider Replacing x by —x? in Equation (IZ6), we have

The geometric series converes when | — x?| < 1. Thus, the interval of convergence is (—1,1). O

Example 12.4.3. Find the power series representation of

X+

1 1 1
Proof. Consider 223 12 (_£).

11 (- 1)
x+2 2 1- Z(") _Z T

The power series converges when | — §| < 1. The interval of convergence is (-2, 2). O

Replacing x by —3 in Equation (CZ6), we have

3

Example 12.4.4. Find a power series representation of =
X

Proof. The power series representation is

)C3 3 1 x3 b (_1)nxn _ had (_l)nxn+3

x+2 x+2 n+l 2n+l

n=0 n=0

The interval of convergence is (-2, 2).

O
Example 12.4.5. (Bessel function) The function
b -1y 2n
Jo(x) = Z:; (22”()7;) ~ s defined for all x € R
Then
) _ d i (_l)nx2n _ i d (_1)11 2n _ & (_1)n2nx2n—l
Jol0) = E[Z_; 22”(11!)2} - Z_:; d_[ZZ"(n')J LTy £

1
Example 12.4.6. Express T as a power series by differentiating 7 . What is the radius

- X - X

of convergence?

Proof. Since 7

1 dr 1 d & © © n
o -l S - S-S (- S )

= 1+2x+3x"+---

=1+x+x2+--~:Zx”f0r|x|<1,

The radius of convergence of the power series of a >1s 1 which is the same as the radius of

- X

convergence of the power series of O

- X
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Example 12.4.7. Find a power series representation for In(1 + x) and its radius of convergence.

1 1 [ (o)
Proof. Since In(1 + x) = f T drand t— 5 = Do=xyt =Y (=1 for|xl < 1,
X —(—X
n=0 n=0

e s +1
ln(1+x):f1ixdx:fZ(—l)”x”dx:C+Z(—l)"nx:1.
n=0 n=0

To determine C, taking x = 0 € (=1, 1), we have 0 = In(1 + 0) = C and hence

X 1y
In(1 + x) = Z (I)Txn
n=1

Since the radius of convergence of the series for is 1, the radius of convergence of the

+ X
series for In(1 + x) is also 1. O

Example 12.4.8. Find a power series representation for f(x) = tan™! x.

1

Proof. Since f'(x) = o

! N n.2n
1) ;(—1) x* on |x| < 1, we have

s (_l)nx2n+l

_ -1 _ _1\142n —
f(x) = tan x_fnzz(;( 1" dx C+n=0 .

To determine C, taking x = 0, we have 0 = tan"! 0 = C and hence

(o)

Since the radius of convergence of the series for is 1, the radius of convergence of the

+ x2

' xis also 1. O

series for tan~

Note. In fact, the power series representation is also true when x = +1. But this result is not
given by the above theorem.

Example 12.4.9. Express g as a series.

Proof. From Example TZ4°R,

T 111 (1)
T [ R
4 = tan 35 7T T

+ ...

Vs . . .
In fact, 1 has several different series representations. For example,

T - tan = 4t -1
4 = an 5 an 3
ol 10 1 s 1,1 1 1,15 1,1s 1,1,
5-3G) +3G) -5G) o+ [3-3G3)+5(3) - 5(3) + ]
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Note. If we use the idnetity 7 = 48 tan™" & + 32 tan™" 2 5 — 20 tan™! 51 to approx1mate m, it will
give more rapid rate of convergence than the above series representation since — 18, 57 and 2;9 re
much smaller than 1 5 and ; This implies that the reminder of the former decays to zero much
more rapidly than the one of latter.

1
Example 12.4.10. (a) Evaluate f T2 dx as a power series
X

0.5
1
(b) Approximate f dx correct to within 1077,
0 1+ X7
Proof. (a) Since —— = ( ps Z( X' —Z( 12 for |x < 1, we have

7n+1

for |x| < 1.

f1+ 7dx—f2( % 7”dx—C+Z( '

(b)

0.5 Tn+1
Z( 1)( )

Tn+1 "~

fos o (D" e
0 1+x7 n07n+1

By the alternating series estimation, for Z(—l)bn with b, > 0, the estimate of remain-

n=0
(0.5)7n+1 5
der |R,| < b,,;. Hence, for b, = < 107", we have n > 4.
Tn+1
Therefore,
0.5
1 1 1 1 1
dx ~ — — - ~ 0.49951374.
fo +0 2783 1525 2227
O
Remark. Suppose that f(x) = Z cn(x — a)" converges for [x—a| < R. Then f’(x) = Z ne,(x —a)"
n=0 n=1

also converges for |x — a| < R. Hence f’(x) has a power series representation on (x — R, x + R).
We can also take term-by-term differentiation and obtain

[

(%) = Z n(n—1)(x —a)"? converges on (¢ — R,a + R)
n=2

(59

fOx) = Z nn—1)mn—-2)---(m—k+1)(x—a)"*  convergeson (a — R,a + R).
n=k
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12.5 Taylor and Maclaurin Series

So far, we can find power series representations for a centain restricted class of functions.
Question: Which functions do have power series representations?

Suppose that f has a power series representation

(o)

f(x):c0+cl(x—a)+cz(x—a)2+~--+c,,(x—a)”+--~:ch(x—a)” for|[x —al <R
n=0

Question: what are the coefficients c,?

k
By the term-by-term differentiation, we can take Tk on f and obtain
X

[ee)

FO@ = nn= 1) (n—k+ Dey(x—a) ™.

n=k
Plugging x = a into the equation, we have
f®(a)
k!

Remark. We have seen this coefficient formula in Taylor polynomials.

fork=0,1,2,---.

Cy =

Definition 12.5.1. (a) Let f be a function with infinitely many times derivatives at a, that is,
f'(a), f'(@), -, fPa),--- existfork = 1,2,---. Then the series

f()(_) f(a)

(k) X p(n)
S (a)(x_a)k FIR Z fnga)(x—a)”

2
x—a)y+---+ 0

fla) +

is called the “Taylor series for f at a” (or “Taylor series for f about a” or “Taylor series for
f centered at a”).

f(”)( )

(b) For the special case a = 0, the Taylor series at 0, Z X" is also called the “Maclaurin

series for f”.

Note. If f can be represented as a power series about a with radius of convergence R > 0, then
f 1s equal to the sum of its Taylor series about a.

Example 12.5.2. Find the Taylor series for the following functions at the given points.

(1) f(x)=e"atx=0.

Proof. Since f®(x) = e*, we have f®(0) = 1 for k = 0,1,2,---. Hence, the Taylor series
for f at 0 (Maclaurin series) is
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X! a, X )
Moreover, let a, = —- Then || = |+|1 — 0 < 1 as n — oo for every x. By the Ratio
n! a n
Test, the Taylor series converges for all x. O
(2) f(x) =sinxatx=0.
Proof. For k € N,
F9(x) =sinx, f4D(x) =cosx, f*?(x) = —sinx, f“(x) = -cosx

F40) = sinx, f4700) = 1, f4D(0) = 0, f4(0) = -1

The Taylor series for f at 0 (Maclaurin series) is

[ee)

i 2n+1
“ 2n+ D!
—1)
Leta, = ¥x2”“. Then
2n+ 1)!
an+l %x2n+3 x2
a :‘ﬂ 2n+1 :‘21’14—1 o+ 2 — 0 for all x.
" el ( X )
o0 _1 n
Therefore, the Taylor series =Dt 2™ converges for all x € R. -
= (2n+1)!

By the definition of Taylor series, as long as a function f has infinitely many derivatives at
a, the Taylor series for f about a is defined. It is natural to ask the following questions:

Question:

(1) What values of x for which the Taylor sereis is convergent or divergent?

7 o f®
(i1) If the Taylor series converges at x, does it converge to f(x)? Thatis, f(x) = E f ‘(a) (x—a)
n!
n=0

We usually determine whether and where a Taylor series converges by using the Ratio test
or Root test. Even if the Taylor series for f about a converges at some number x # a, it may not
converge to f(x). For example,

e ifx#0
f(x)_{o itx=0

We can evaluate that £(0) = f/(0) = f”(0) = --- = f®(0) = --- = 0. Hence, the Taylor series
for f at O is the zero function which does not converge to f except at the center 0.
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The Taylor series for f at a is defined by the limit of its partial sum

) (n) N (1)
D ar = im 33 - = fim P

|
n =0 n.

To check whether the Taylor series converges to f, we should show that
flx) = Allim Pyn.(x) if and only if Allim Ry.(x) = Allim f(x) = Pya(x) =0.

We recall the Taylor Theorem here (see Theorem ).

Let f(¢) be an + 1 times differentiable function on [a, x] and R, ,(x) be defined by
f(x) = Pn,a(x) + Rn,a(x).
Then

(a) (Cauchy form)

(n+1)
R,.(x) = f - &) x=8&8"(x—a) for some ¢ € (a, x).
(b) (Lagrange form)
A3 ntl
R, .(x) = i) (x—a) for some ¢ € (a, x).

(¢c) (Integral form)

X p(n+l)
Rualx) = f P70

n!

By using the part(b) of Taylor Theorem, we can derive the Taylor inequality

Lemma 12.5.3. Let f(t) be a n + 1 times differentiable function on [a, x] and | f"*V(z)| < M for
all z € [a, x]. Then the remainder R, ,(x) of the Taylor series satisfies the inequaltiy

M
IRna(x)| < D

| _ |n+l

Corollary 12.54. Let f(t) be a n + 1 times differentiable function on (a — R,a + R) and
|f"* V()| < M forall z € (a— R,a+ R). Then for every x € (a — R,a + R),

(n+1)
M |x_ a|n+1 S P
(n+1)! (n+1)!
———

for some zelax]

|X _ a|n+l.

|Rn,a(x)| =

(9]

x"
Example 12.5.5. Determine whether the equality ¢* = Z - holds. If yes, for what values of
n!
n=0
x does the equality hold?
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Proof. Let f(x) = e*. Then f®(x) = e* for all n € N and

n

x*
f(X) =e' = E + Rn,O(x)~
k=0 "
Fix a number x; and choose a number d > |xo|. Then [f"*V(z)| < e < e forall 0 < |7] <
|xo| < d. By the Taylor inequality,

ed . J n+1
0 <R, < -0 < )
|R0(x0)| o 1)!|Xo | e i)l
By the Squeeze Theorem, lim |R, o(xo)| = 0. Hence, the Taylor series Z x_' converges to e*
n—oo n!

n=0

[e9)

: . . : : x"
at xo. Since X, is an arbitrary number in R, the Taylor series Z — converges to e* for every
n

. n=0 "
number in R. O

y=Pso(x)

Y=Po(z)

N
0,1 .
_/\// 6.1 Y =P o(x)
0 p
\)’ = Ps3(x)

Example 12.5.6. Find the Taylor series for f(x) = e* at a = 2, and determine whether and for
what values of x, f(x) equals its Taylor series about a = 2.

Proof. Since f™(x) = e*, f™(2) = €*. The Taylor series for f ata = 2 is

> S7(2) Lo e "
; R CEE) :nzz(;—!(x—z)

e To determine for which values of x the Taylor series conveges.
2

Leta, = e—‘(x —2)". Then for every x € R,
n!

2
m(x _ 2)n+1

%(x_z)n n+1

ap+1

an
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© 9
e To determine whether ¢* = Z e—(x -2)".
oy n!
Fix a number d > 0. By the Taylor theorem, for x with |x — 2| < d, there exists z, between 2
and x such that )
f " (Zx) +1 e +1
R, = —|x-2I"" = —|x = 2I"".
20 =y A = e
Hence, for [x — 2| < d,
2+d | red n+1
0 <R, < =2I" < et —0m—.
Ru2(0l < G = 2 < e
By the Squeeze Theorem, lim R, ,(x) = O for every |x—2| < d and this imiplies that ¢* = Z —‘(x =-2)
n—oo n.
n=0
for every |x — 2| < d. Sicne d is arbitrary number, we have
e = Z —(x=2) for every x € R.
ey n!
O

Example 12.5.7. Find the Maclaurin series for f(x) = sinx and prove that it represents sin x
for all x.

Proof. The derivatives of f are
fH(x) = sinx, f*V(x) = cosx, fH*?P(x) = —sinx, fH*(x) = —cosx.

Then
0 =0, 400 = 1, fH20) = 0, fH90) = -1

The Maclaurin series for sin x is

s (n) 0 3 5 7 0 -1y
Z'f ()xn:x_x_+x__x_+..: #xzni—l'
i n! 31507  (2n+ 1)!
Since |f"*P®| = | £ sinx| or | + cos x| < 1 for all x € R and n € N, we have
Rn S n+1.
|Ry0(x) T 1)!IXI

Hence, for every fixed x, R, o(x) — 0 as n — oco. That is,

) x3 xS )C7 & (_l)n
smx=x——+——-—-—++ =

R i for all x € R.
ETRTIT Zianrnt

Example 12.5.8. Prove that cos x =
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VA
\
\\/)’ =P ()
%
\
N
N
/)/
0
\y Pso(2)
Proof.
_ _d DT o
cosx = —(smx) d_( (2n+1)' )
_ N D (d @)
— (2n + D!'\d
-1
= D" ¥ forall x € R.
— (2n)!
O
Example 12.5.9. Find the Maclaurin series for the function f(x) = xcos x
Proof. Since cos x = Z (2n)' 2" for all x, we have
1" > (=)
XCOSX = X- v ) = u)cz’”1 for all x.
(2n)' i (2n)!
O

Exercise. Find the Taylor series for f(x) = In(1 + x) and for what values of x the Taylor series
converges to f(x).

( 1)n+l
Answer: Z x" for-1<x<1.

n=1

m Binomial Series

Example 12.5.10. (Binomial Series) Use the Maclaurin series for f(x) = (1 + x)* to deduce the
formula of the binomial series where k is any real number.

Proof. The derivatives of f is

fOx) =k(k—1)(k-2)---(k—n+DA+x)" forn=1,2,---
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Then
fP0) =k(k=1)(k=2)---(k—n+1) forn=1,2,---.

The Maclaurin series for f(x) = (1 + x)* is

' (binomial series)
n!

> fP0) , o ktk=1Dk=2)---(k-n+1) ,
zg_zrﬂzzﬁz X

n=0

Note. (1) (Convergence)

(1) Forke N,k—n+1 =0 when n = k + 1. Then the binomial series is a finite sum and
a k degree polynomial. Therefore, the series converges for all x.
_ktk=1)(k=2)---(k—n+1)

(i) For k € R\N, leta, = ' x". Consider
n!

aptl

lk — 7l 11— 4
= |x| = 1

n+1 1+

|x| — |x| asn — oo.
al’l

By the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.
Question: How about x = +1?
Answer: depending on k.

e If —1 < k <0, the series converges at 1.

o If k > 0, the series converges at +1.

(2) Denote the coefficients in the binomial series

(binomial coefficients)

<€>_k%—1Xk—D-~w—n+l)

n n!

k!

If k e Nand k > n, then k = —.
n n!(k —n)!

(3) The binomial series: if £ € R and |x| < 1, then

% ()"

L+ kx4 k(kz—' 1)x2+ k(k — 13)'(}%—2))63 s k(k — 1)(k—2)|---(k—n+ l)x”.

(1 + x)

and its radius of

Example 12.5.11. Find the Maclaurin series for the function f(x) =
4 —

=

convergence.
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1
Proof. The function f(x) = =4- x)_%. By the binomial series with k = —% and re-

placing x by —2, we have

& (-1 X\n
_ = 2 _z
o = 22()( 1)
1 1 1-3 , 1:3-5, 1-3-5---2n-1) ,
= =sllrgrr gt g nl 8 W]
The series converges when | — j—:l < 1, that is, on (-4, 4). O

Example 12.5.12. Find the sum of the series

1 1 N 1 1 N +(—1)”‘1+
1.2 2.22 3.2% 4.24 n-2"

Proof. Consider

o0 n— 00 1\"
)

n=1 n=1

Using the Maclarin series for In(1 + x) by taking x = %, we have

1\
n— 1( ) 1 _ §
§( 1) =In(l +3)=In7.

n=1
O
2n + 2
Exercise. Evaluate the sum of the series Z(—l)"(z:—_'_l)!.
2 +2
Answer: Z( 1) " T =sinl +cos 1.

m Multiplication and Divison of Power Series

[Se]

Recall that if f(x) = )" b,(x—a)" and g(x) = ) c,(x - @)", then

n=0 n=0
fg) = Y di(x-a)'  whered, = > by
n=0 k=0
@ = Z e,(x —a)" where e, satistfying b, = Z Crlni-
8(x) =0 k=0

Example 12.5.13.

(1) Find the first three nonzero terms in the Maclaurin series for e* sin x.
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| = . 2
=Ex":l+x+,r“+x“+--- R=1
1_",— u=0
o )C" x _"(2 x.‘;
= ,,.z:}n! 21 3
; i x> A A4
sin x = — ) =y - — 4 et Lo Ro=oo
.Ex( )(2n+1]! 3! 5! 7!
o2 X:” IJ 4 (i)
sx= 2(—1)" =1 —"—+"——"—+- R =
coRA ,E.( G 21 " 41 6!
e J::H+] r.’- '1:5 J.‘?
tan~'x = X (—1)" === =+ R=1
e EJ( e A A T
D AP e o T R=1
. g _u=| ' 2 3 4 o
i I I kik—1) | kk— Dk — 2
(]-0—_1‘)*:2( ).r”=1+k.t+ ( }_r'+ ( N ]_r3+---R=1
n=0 n 2! 3!
Proof. Since
2 3
x rLr LR
et = 1+x+2!+3!+ +n!+ and
3 5 n
: XX D" o
sinx = x——+— 4+ ———— e
31 5! 2n+ 1)
we have
2 3 3 5
X _ AU W SV
e'sinx = (1+x+2!+3!+ )(x 3!+5!+ )
= x+x2+x—3+
= 3 .
O

(2) Find the first three nonzero terms in the Maclaurin series for tan x.

Proof. Since

. X D"

sinx = x—§+§+--- (Zn—-l-l)' and
2 4 —1)"

cosx = l—x—+x—+~--+( )

+ ...
21 4l (2n)! ’
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we have
3 5
sin x X—Gtgte
tanx = = > xé;
X
COS X -S4+ 4.
15 2 5

Il
~
+
&
+

|
=

O

Note. One reason that Taylor series are important is that they enable us to integrate functions
which we cannot find and express their antiderivatives as elementary functions.

Example 12.5.14.

(1) Evaluate f ¢ dx as an infinite series.

[e9)

2\n
. _ —X .
Proof. Since e = E ( ') for any x, we obtain
n!

2\n & 1\
fe_xz dx f (= ) Z %xzn dx

n=0

D" e
c+ Zn‘(2n+1) '

O
! 2
(2) Evaluate f e " dx correct to within an error of 0.001.
0
Proof. Consider
1 (o)
—x? =" peiss! !
X d — n+
L ¢ x Z n! 2n + 1) 0
1 1 1
= 1- 5 0~ E 716 (alternating series)
By the alternating series estimation, |s — Z b,| < b,;1. Consider
k=0
=" il
—— 1" < 0.001.
)n! 2n+1)
! 2
Then n > 5 and f e dx =~ 0.7475. O
0

X 1 _
(3) Evaluate lim ¢ > x.
x—0 X
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Proof.
2 3
limex_l_x _ lim(l+x+%+%+-~)—1—x
x—0 x2 x—0 )C2
) I x X2
= £11>%(5+§++ _ +)
1
= 5
Note: we can also obtain the above limit by the L’Hopital Rule. O
Exercise.

(1) Find the Taylor series for the function f(x) = sin”!

1
(Hint: sin™'(x) = f S —
V1 -£2dt

(2) Express the following functions as their Taylor series and find the limits

x and find its interval of convergence.

and using the binomial series.)

Inx

i) li )
(1) lim ——
... .. sinx-—tanx

i g =
(> —DIn(1 + x)

(1 = cos 3x)?

(ii1) }Cl_l;l(l)
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In this chapter, we will use the vector-valued functions to describe curves, surfaces and the

motion of objects through space.

13.1 Preliminary

a n-dimensional Spaces

Definition 13.1.1. Let A and B be two sets. We define A X B by

AXB=1{a,b)|lacA, be B}.

We call A X B the “product (set) of A and B”.
Example 13.1.2.

R? RxR={(@ab)|acR, beR)}
R* = RxRxR={@ab,c)|lacR, beR, ceR}

n

—— )
R = RX---XR={(a1,a2,---,a,,)laiER, 1:1’2’...’,1}

Example 13.1.3.

(1) Let f : R = R". For example,

¢ L (x0.y0,20)

f
I — (Xl(t), XZ(I)9 RS xn(t))
There exist fi, f>,-- f, : R = R such that

f = (H®, £O.- -, £,0))

321
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(2) Let f : R" — R. For example, f(x,y) = x> +y°.
(3) Let f : R* — R™. There exist fi, f>,- - fin : R" = R such that

FOneeex) = (A X0, fulrn, - x0)).

m Graph

The graph of a function f is the set consisting of the ordered pairs (x, f (x)) where x € Dom(f).

Graph(f) = {(x, f(x)) | x € Dom(f)}.

a Vectors

The n-dimensional space R” consists of the points with coordinates {(x;, -« ,x,) | x; € R, i =
1,2,---,n}. A point P in R" has coordinate

P=(,a, - ,a,) (usually written as P(ay, -+ ,a,) ).

The distance between P(ay,--- ,a,) and Q(by,--- ,b,) is

POl = \/(a) — b1 + - (@, — by)?.

A vector v in a n dimensional vector space can be written as v =< ay, - ,a, >. The “length”

(or “magnitude”) of a vector is
Ivll = \/aj +---a2.

In this chapter, we will take more attention on the vectors in 3-dimensional vector spaces and
most of the following results also hold for vectors in n-dimensional vector spaces.

m Laws and Operations of Vectors

Leta =< aj,as,a3 > and b =< by, by, b3 > be two vectors and ¢ be a real number. Then

(a) azb=<a; £bj,a, £by,a3 + b3 >

(b) ca =< cay,cay,caz >.
e ifc=0,thenca=0=<0,0,0>.
e if ¢ > 0, then ca and a have the same direction.

e if ¢ < 0, then ca and a have the opposite directions.

Note that ca = 0 if and only if c =0 ora = 0.

(c) The dot product (inner product) of a and b is defined by

a-b= a1b1 + a2b2 + a3b3.
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Remark. Let 8 be the angle between a and b.

(1) a-b = |lal|b|lcos &

(i) a-b = 0if and only if 0 = g

a‘b>0
0 acute

lar” (or “orthogonal’” ) (usually denoted a L b).

Hence, 0 is perpendicular to any vector.

(iii) a-a = |||’

(d) (cross product of a and b) satisfies

(i) axbis a vector perpendicular to both a and b;
(i1) a, b and a X b satisfy right hand rule

(i11) the magnitude of a X b is equal to the area of the
paralellogram with sides a and b

bXec¢ //
/
nilo/a )
CL ______ —
b

Remark.

(i) (axb)xc#ax(bxc);

a
v
\/ ab=0
. “ . a b —
In this case, we say that a and b are “perpendicu- 0=m/2
4_9/7
a

a‘b<0
0 obtuse

The right-hand rule gives the direction
of axb.

From the above conditions, we have

lla xb|| = [lall][bl| sin &

and
i j Kk
axb = |a a a3
by b, b

= (axbs — azby)i + (a3b; — a;b3)j + (a1b, — aby)k.

The volume of the parallelepiped whose adjacent sides
are the vectors a, b and c is ‘c -(ax b)’.

(i) (axb)-c = 0if and only if the vectors a, b and ¢ are in the same plane.

Definition 13.1.4.
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(a) The “standard basis vectors” in R? denote
i=<1,0,0>, j=<0,1,0>, k=<0,0,1>.
Then a =< ay, a, a3 >= a;i + a,j + azk.
(b) A unit vector is a vector with magnitude 1.

(c) We say that the two vectors a and b are “parallel” (usually denoted a//b) if there exists a
number ¢ such that a = cb.

(d) A vector (denoted by proj,b) is called the “projection of b onto a” if

proj,b/a and (b - proj,b) L a.

Note. We can compute that

a\ a a-b

proj,b = (b _)ﬁ = @ @nd llproj,bll = [Ibll cos .

llall

\
s ¢ 0
proj, b |b| cos 6
Vector projections Scalar projection

13.2 Vector Functions and Space Curves

As we know, we can regard R” as a n-dimensional vector space. Every element in R” can be
expressed as a vector a =< ay, - ,a, >. In this chapter, we consider the function whose range
consisting of vectors in 3-dimensional vector space R?.

Definition 13.2.1. A vector-valued function (vector function) is a function whose domain is a
set of real numbers and whose range is a set of vectors

r(r) : {subset in R} — {set of vectors}.

Note. In the present chapter, we will focus the vector function r(f) whose values are three-
dimensional vectors.
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We recall the expressions of vectors and vector-valued functions.
a = <a,am,az>=ai+aj+azk
r(1) < f(0), (1), h(1) >= f(Oi + g(1)j + h(Dk

where f, g,h : R — R are component functions

Example 13.2.2. Let r(¢) =< 2¢*,3t — 4, vt > be a vector-valued function. The domain of r(¢)
is [0, c0).

1 Limits of Vector-valued Functons

To study the calculus of vector-valued functions, motivated by the concepts of real-valued
functions, we will discuss the limits and continuity of vector-valued functions. We heuristically
consider that

(1) alimit of a vector valued function is supposed to be a vector; and

(i1) if L is the limit of a vector valued function r(¢) as t — a, we expect that r(¢) arbitrarily
approaches to L by taking ¢ arbitrarily close to a.

Definition 13.2.3. Let r(¢) be a vector valued function defined on an open interval / and a € I.
We say that the limit of r(¢) exists, as t approaches a if there exists a vector L such that

lim |r(z) — L|| = 0.
t—a
The vector L is called the “limit of ¥(¢) as t arpproaches a”’ and we write

limr(r) = L.

1—a
Remark. Suppose that r(r) =< f(¢), g(¢), h(t) > and L. =< L,, L,, L3 >. Then lim r(¢) exists if

—a

and only if lim f(¢), lim g(¢) and lim A(t) exist. Moreover,
t—a t—a t—a

limr(#) =L ifandonlyif lim f(¢#) = Ly, limg(t) = L, and lim h(¢) = L;.
t—a t—a t—a

t—a

This implies that
limr(¢) =< lim f(¢), lim g(¢), lim h(z) > .
t—a t—a t—a t—a

in ¢
Example 13.2.4. Suppose that r(r) = (1 + £)i + te™'j + %k. Then

int
Kmr(s) = [im(1 + 2)] i+ [limze™] j + [lim —— ] k = i + k.
t—0 t—0 t—0 -0 f

m Laws of limts

Theorem 13.2.5. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and a be a number. Suppose that

limr(z) =L, lims(#r) =M and limu(t) = c.
1—a t—a

t—a

Then
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(a) lim (res)(=L+M.
(b) limar() = aL.

(c) limr(@) - s(t) = L- M.
(d) limu()r() = cL.

(e) limr(1) X s(1) = L x M.

Proof. (Exercise)

a Continuity of Vector-valued Functons

CHAPTER 13. VECTOR FUNCTIONS

Definition 13.2.6. Let r(7) be a vector valued function defined on / C R and a € 1. We say that

(a) ris continuous at a if

%im r(t) = r(a).

(b) ris continuous on / if r is continuous at every point of /.

Note. If r(r) =< f(¢), g(t), h(t) > is continuous at a, then

< ltim f(@), ltim g, %im h(t) >= ltim r(t) = r(a) =< f(a), gla), h(a) > .

We have

lim f(1) = f(@), limg(t) =g@) and limh(1) = h@)

Thus, r(¢?) is continuous at a if and only if all its component functions f, g and & are continuous

at a.

Theorem 13.2.7. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and « be a number. Suppose that r, s and u are continuous at a. Then

r+S, ar, ur, r - S and r X S are continuous at a.

Proof. Exercise.

a Space Curves

Consider the vector

(1) =< f(1), (1), h(r) >.

the point P(f (1), g(t), h(1)).

As t ranges over an interval /, the point P traces
out some path C in R3. That is,

C = Range (r(t)),

The tip of r(¢) is

P(f(1), g(1), h(1))
T
o

0

xA/ r(1)={f(1),g(1), h(t)y 7

C is traced out by the tip of a moving
position vector r(z).
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Definition 13.2.8. Let f(z), g(¢) and h(¢) be three functions defined on an interval /. The set C
of all points (x, y, z) in space, where

x=f(0), y=g{), z=h(t) fortel (13.1)

is called a “space curve”.
Note.

(1) The equation (I3) is called “parametric equation of C” and ¢ is called a “parameter”.
(2) The space curve C is “oriented”’ in the direction as ¢ increases.
Example 13.2.9. Describe the curve defined by the vector function
r(t) =<5+1t1+4t,3 -2t >
Proof. From the parametric equation, the coordinates are
x=5+¢t y=1+4t, z=3-2¢

The curve represents a line passing through (5, 1, 3) and parallel to the vector < 1,4, -2 >. Let
ro=<5,1,-3>and v=<1,4,-2 >. Thenr(t) = ry + tv. O

Example 13.2.10. Sketch the curve whose vector equation is

r(f) =costi+sintj+trk

Proof.
e
. . \
The parametric equation represents the curve I
with coordinates N

X =cost, y=sint, z=t.

The curve is called a “helix”.

Example 13.2.11. Find a vector equation and parametric equations for the line segment that
joins the point P(1, 3, —2) to the point Q(2, -1, 3).
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Proof.
The line segment joining the tip of ry =< 1,3,-2 > to z

the tipof r; =< 2,-1,3 > is
02,1, 3)

r)=(1-Drg+1my, 0<r<1.

The vector equation of the line segment is

r) = (1-1)<1,3,-2>+1<2,-1,3> N T

= <1+t3-4t,-2+5t>, 0<tr<l1.

P, 3,—2)
The parametric equation of the line segment is

x=1+t, y=3-4t, z=-2+5¢ 0<t<1.
O

Example 13.2.12. Find a vector function that represents the curve of intersection of the cylinder
x* +y? =1 and the plane y + z = 2.

Proof.

For (x,y, z) on the cylinder x* + y* = 1,

x=cost, y=sint 0<t<2nm.

Also, for (x,y,z) on the plane y + z = 2, z = 2 — y. Then for
(x,y,z) on the intersection of x> +y?> = l and y + 7z = 2,

z=2-y=2-sint, 0<t<2nm

0, —1, 3)

Hnece, the parametric equation for the curve is
(—1,0,2)

x=cost, y=sint, z=2-sint 0<t<2n.

1,0.2)

The parametrization of the curve is

r(f) =costi+sintj+(2-sin) k 0<t<2n. /0\

13.3 Derivatives and Integrals of Vector Functions

a Derivatives

Recall that the derivative of a real-valued function f is defined by

df fc+h) = f(x)
dx h

f'(x) =lim
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Let r(¢) be a vector-valued function. Consider

e, . r(t+h)-r@)
g - r0=lm——

if the limit exists.

ZA

(a) The secant vector (b) The tangent vector

Note. (1) The numernator r(t + h) — r(t) = P_Q> means a secant vector.

t+h)—r(t 1
(2) The term w represents the vector 7 (r(t +h) — r(t)) which has the same direc-

tion as r(¢t + h) — r(z).
1
(3) As h — 0, the vector 7 (r(t +h) — r(t)) approaches a vector which lies on the tangent line.

Definition 13.3.1. Let r(¢#) be a vector function defined on I C R, C be the curve consisting of
the graph of r(¢) and P = r(a) be a point on C.

+ h) —
(a) We say that r(¢) is differentiable at a if the limit }ling w exists. The limit is called

the “derivative of r at a” and denoted by r’'(a). Moreover, we say r(¢) is differentiable on /
if it is differentiable at every point in /.

(b) If the derivative r’(a) exists, it is the “fangent vector” to the curve C at the point P provided
r'(a) # 0.

(c) The "tangent line” to C at P is defined to be the line through P parallel to the tangnet vector
r'(a).

(d) The unit tangent vector is
"(t
T(l) — I‘—()
[l )]

Note. From the definition of part(c), the parametric equation of the tangent line to C at P is

r(a) + tr'(a), teR.
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Theorem 13.3.2. If r(t) =< f(1),g(),h(t) >= f(t) i+ g) j+ h(t) K, where f,g and h are
differentiable functions, then

r'@)=<f®.8n.NoH>=FOi+g®j+n®k
Proof. (Exercise) O
Example 13.3.3. Suppose that r(r) = (1 + £}) i+ te™ j + sin 2t k.
(a) The tangent vector functionis r'(f) = 32 i+ (1 — )e™ j + 2 cos 2t k.

(b) To find the unit tangent vector at the point where ¢ = 0, consider the position vector r(0) = i
and the tangnet vector r’(0) = j + 2k. Therefore, the unit tangent vector at the point (1,0, 0)
is

(0 1 2
ro =—((+2k)=—j+—=k

1= v \F Vs

Example 13.3.4. For the curve r(f) = vVt i+ (2 — 1) j, find r'(¢) and sketch the position vector
r(1) and the tangent vector r’(1).

1 1
Proof. The tangent vectorisr’(tf) = —— i—j. Thenr(l) =i+ jandr'(1) = > i—j.

241

To sketch the position vector and the tangent vector, con- 4
sider the parametric equation

Then parametric equation of the tangent line to the plane r'(l)
curve at (1,1) is

0 1
1) =r()+m'(1) = (i+j)+z(%i—j) = (1+%t)i+(l—t)j \

Example 13.3.5. Find parametric equations for the tangent line to the helix with parametric
equation

x=2cost, y=sint, z==1.

at the point (0, 1, g).

Proof.
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The vector function is r(r) =< 2cost,sint, ¢t >. Then the tan-
gent vector function is

r'(f) =< —2sint,cost, 1 > .

At the point (0,1, g), r(r) =< 2cost,sint, t >=< 0, l,g >. 12 1

T )
Thus, ¢t = > The tangent vector is 8T

n 47 )/
r'(z)=<-2,0,1>. T |

2 1
91\—/\,/2//0//\.

Hence, the parametric equation of the tangent line through y 0.5 1

O, 1, g) is

x=0+(=2=-2 y=1+0=1, z:’_zut.

Theorem 13.3.6. Suppose that x(¢) is differentiable at a. Then it is continuous at a.

Proof. Let r(t) =< f(t), g(t), h(t) >. Since r(¢) is differentiable at a, f, g and h are also differ-
entiable at a and hence they are continuous at a. This implies that r(¢) is continuous at a. O

m Second Derivatives

d d

n — reo 5 () =r'0
r(t) =< f(),g(0, k() > = @) =<[f(1),8®,K{) >
=  r'@O=<f'0.g"0.h"1 > .
Similarly, if r®(¢) exists, then
rO) =< O, g%, 0@ > .

m Differentiation Rules

Theorem 13.3.7. Let r and s be two differentiable vector functions, ¢ be a number and u be a
real-valued function. Then

d
(a) E[r(t) +s()] =1r'(1) +5'(2).

d :
(b) —lex(D] = er'(2).

d
(c) E[M(t)l‘(t)] = u'(Nr(t) + u)r'(1).

(d) %[r(t) -s()] =1'(t) - s(t) + x(¢) - S'(t). (real-valued function)
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(e) %[r(t) X s()] = r'(t) x s(t) + r(¢) x s’ (7).

2
Exercise. Let r(¢) =< e, sin(#?), 2>t >, s(t) =< T sec(2f), In(? + 1) >andu(®) =< 1, ¢, > >.

Find %((rxs)m).

Proposition 13.3.8. Let r(¢) be a differentiable vector function on I and x'(t) # 0 for everyt € I.

Then
d _r(0)-r'()
(@) o) = 00
d v -1 ey 1
® Z ol = T - el

Proof. (Direct computation! We left the proof to the readers as exercise)
]

Remark. The results of Proposition 373§ are true for all n-dimensional vector valued func-
tions except for the last equality of part(b) which is true for 3-dimensional vector valued func-
tions.

Example 13.3.9. Show that if ||r(t)|| = C, then r'(¢) is orthogonal to r(¢) for all 7.

Proof.

Since r(¢) - r(t) = ||r(t)||2 = C? (constant), we have

d d
2r() - x'(n) = E[I‘(t) ()] = JI(CZ) =0

Hence, r() is orthogonal to r’(¢) for all 7.

For example, r(f) =< cost,sint >.

m Chain Rules

Theorem 13.3.10. (Chain Rule) Let u(t) be a real valued function defined on I and r(t) be a
vector valued function whose domain containing the range of u. Suppose that u is differentiable
at a and r is differentiable at u(a), then (r o u) (1) = r(u(t)) is differentiable at a and

(r o u)'(a) =u'(a)r’ (u(a)).
Proof. Exercise m|

Q Integrals
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Recall that the integral of a real-valued function f(¢) over [a, b] is defined by the limit of Rie-
mann sums.

b n
fa f@di = lim Zl £t

We try to use the same strategy to define the definite integral of vector-valued functions. Let r(z)
be a continuous vector-valued function defined on [a, b]. Let P = {ty,t;,--- ,t,} be a partition
of [a, b] and At; = |t; — t;_1|. Define

b n
f r(t) dt lim r(t)At;

P||—0
IPlI—0 4=

n

lim [Z < f@&), g(t), h(t)) > Nf]
1

IPI=0 - &
n n

lim < )AL, )AL, ) h(t))At >
Jim ;f(,) ;gu Z} )

b b b
< f f@) dr, f g(0) dt, f h(o) dt >

b b b
(ff(t)dt)i+(fg(t)dt)j+(f h(o) dt) k

Definition 13.3.11. Let r(¢) be a vector valued function defined on [a, b] where r(¢) =< f(¢), g(¢), h(t) >.
We say that r is integrable on [a, b] if f, g,and h are integrable on [a, b] and

b b b b
f r(7) dt < f f(@) dt, f (1) dt, f h(t) dt >
b b b
(f f(r)dr)i+(f g(t)dt)j+(f W) di) k.

Remark. (Integral Rule) If r(7) is continuous on [a, b], then r(¢) is integrable on [a, b].

Theorem 13.3.12. Let r(t) and s(t) be integrable vector valued functions on [a, b], ¢ be a vector,
and a and B be two numbers. Then

(a) The vector valued function (ar + ,BS) (t) is also integrable on [a, b] and

b b b
f (ar+Bs)() dt = f r(t) di + B f s(1) dt.

b b
(b)fc~r(t)dt:c-fr(t)dt.
b b
f r(t)dt”g f ()| dr.

Proof. The proofs of part(a) and (b) are easy and left to the readers. We will prove part(c) here.

() |
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b
LetR = f r(¢) dt. Then

IR | f v |

IRI* =R -R

b b
R~fr(t)dt:fR-r(t)dt
b ‘ ‘ b
[ R-r]ar< [ i
b
IR [ o) ar

b b
‘ f r(t)dtHS f ()| dt.

m Fundamental Theorem of Caluclus

b
f r(r) dt = R(t)‘b = R(b) - R(a)

where R is an antiderivative of r, that is R’(¢) = r(¢). Denote

R() = fr(t) dr.
Example 13.3.13. Let r(r) = 2costi+ sint j + 2¢ k. Then

IA

Hence,

fr(t)dt:25inti—costj+t2k+C

and
s
2

s 2
+7
0

pis 2
2 . . T
Ok—21+‘]+zk.

721
f r(t) dt = 2sint

0

5.
i—cost
0

13.4 Arc Length and Curvature

a Length of a Curve

In Section MO, we have learned how to evaluate the arc
length of a parametric curve. Let

x=f(, y=g@, ast<b. Q/
The arc length of the curve is

L=fh V[f'<t>]2+[g'<r>]2dt=fb V&Y (L) a ;

X

Consider the space curve with the vector equations The length of a space curve is the limit
of lengths of inscribed polygons.

r(t) =< (), g, h(t) >, a<t<b
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If the curve is traversed exactly once as ¢ increases from a to b, the arc length is
2 dy dz\2

(OF +1gOF + W @OF di = \/ =) ar.
f VIZOF + [ @F + o] f dt +<dt)

Note. (1) If r(¢) is the position vector of an object at time ¢, then r’(¢) is the velocity vector and
|lr’(#)]| is the speed.

(2) Since r'(¢) =< f'(1), &' (?), h'(¢) >, we have |[r'(?)|| = \/[f’(t)]2 + [g’(O)* + [W()]?. The arc

length is
b
= f e’ (Il dt.

We give a precise proof of formula of arc length here.

Theorem 13.4.1. Let x(t) be a continuously differentiable vector function on [a,b]. Let C be
the curve parametrized by r. The arc length of C is

b
L(C) = f e’ @Il dt.

Proof. Let P = {ty,t1,--- ,t,} be a partitition of [a, b]. By the Fundamental Theorem of Calcu-
lus,

ey -l = | [ o< [ o

n n ti b
PECERCHEDY f I (1)l dr = f I’ (1) dr.
i=1 i=1 Yli-1 a

Since P is an arbitrary partition of [a, b], we have

Then

n b
L(C) = SUPZ llr(z) — r(@-)ll < f I’ ()| dt. (13.2)
P o a
On the other hand, define s(7) as arc length of the curve from r(a) to r(¢). Then s(¢+ h) — s(¢)
is the arc length from r(z) to r(z + h). O
By (I32),

t+h
llr(z + h) —r(@)|| < s(t + h) — s(t) < f X’ (w)|| du.
Then, for h > 0,
”r(t +h) — r(t)H et + 1) —x@ll _ s+ h) = s(t) _ <l f*h I Gl di

h - h
By the Fundamental Theorem of Calculus, as h — 0,

/ . S(t + h) - S(t) ’
e @Il < IQIL%T < [Ir'@ll.

-

=)
Therefore, the arc length of C is

b b
s(b):f s'(t)dt:f I’ (1)]] dt.
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Example 13.4.2. Find the length of the arc of the circular helix with vector equation r(t) =
costi+sint j+ t k, from the point (1,0, 0) to the point (1,0, 2x).

Proof.

Compute r'(f) = —sint i+ cost j + k and then
I (@)l = \/(=sint)? + (cost)?> + 12 = V2. The
length of the arc is

21 27
L= f I’ ()|l dt = V2 dt = 2V2n.
0 0

m The Arc Length Function

Let C be a curve with vector function r(¢) = f(¢) i+g(t) j+
h(t) k, a <t < b. Suppose that r'(¢) is continuous and C
is traversed exactly once as ¢ increases from a to b. The
arc length function is

d d
(1) = fnr(u)ndu—f\/ () ()

Note. The value of s(7) is the arc length of the part of C between r(a) and r(¢). By the Funda-
mental Theorem of Calculus,

X

i e @II.

Observe that the arc length function s(¢) is one-to-one. Hence, we may also regard ¢ as a
function of s, say ¢ = #(s). Then we can “parametrize a curve with respect to are length.

r= r(t(s)) .

For example, when s = 3, r(t(3)) is the position vector of the point 3 unit of length along the
curve from its starting point.

Example 13.4.3. Reparametrize the helix r(#) = cost i + sintj + ¢ k with respect to arc length
measured from (1,0, 0) in the direction of increasing ¢

Proof. Find the arc length function from the starting time ¢ = 0.

s(t):fllr’(u)lldu:f V2 du = V2.
0 0

L 5. We have

Hence, ¢ = t(s) = N

r(t(s)) = cos(is) i+ sin(is)j + Ls k.

V2 V2 V2
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a Curvature
Question: How do we feel the “curvature” of a curve?

From our expericence, when we ride a bike at a constant speed, it is more difficult to turn
the direction along a path with “larger curvature” than the one with a smaller curvature.8d

Small curvature Large curvature

To discuss the curvature of a curve, we should discard some cases:

-
/

(i) Discontinuous curve

(i1) The curve has sharp corners or cusps

(ii1)) Imagine a particle moves along a curve, we don’t expect that it “stays” at a point for
a period since it cannot decide whether the direction changes there. Thus, we assume
IIr’(1)]| # 0. We parametrize the curve with respect to arc length parameter “s” rather than
time parameter “¢”.

Definition 13.4.4.

(a) A parametrization r(¢) is called “smooth ” on an interval [ if r’ is continuous and r'(¢) # 0
onl.

(b) A curve is called “smooth” if it has a smooth parametrization.

*Heuristically speaking, along the larger curvature path, we need to change directions more at the same time.
The constant speed says that the same period is corresponding to the same travelling distance. Thus, we can also
explain the larger curvature path as, when travelling the same distance, the direction changes more.

"The “curvature” is a geometric word. It is supposed to only depend on distance and direction but not time”.
Hence, to define “curvature”, we usually parametrize in s.
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Suppose that C is a smooth curve defined by the vector
function r. The unit tangnet vector

_re
O]

indicates the direction of the curve.

T()

Unit tangent vectors at equally spaced
points on C

Heuristically, the curvature of C at a given point is a measure of how quickly the curve changes
direction at that point.

Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector
with respect to arc length.

Deﬁnition 13.4.5. The curvature Of a curve iS
dS

where T is the unit tangent vector.
Note.

(1) The unit tangent vector T is usually expressed as a vector function in “#’. By the chain rule
dT dTds
dr ~ dsdr
Then

o= lgl= el

(2) Since the arc length function s(¢) = fot |Ir’(w)|| du, by the Fundamental Theorem of Calculus,

ds
— = ||Ir@)||. H ,
7 |lr’()||. Hence

o= Tl
@l

1
Example 13.4.6. Show that the curvature of a circle of radius a is —.
a

Proof. A parametrization of a circle of radius a is r(f) = acost i+ acost j. Then r'(t) =
—asinti+acost jand |[r'(r)|| = a. The unit tangent vector function is
r'(7)

T(?) = —sinti+costj.

T ol

Then
T'(t) = —costi—sintj and H%H =1.

The curvature is )
ol 1

Tiron T a
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Note. Small circles have large curvature and large circles have small curvature.

Theorem 13.4.7. The curvature of the curve given by the vector function r is

/ t 44 t
k() = IIr()XrB( l
[l ()|
. r ,.ds
Proof. Since T = and ||r’|| = —, we have
(|’ dt
ds
"= |Ir'||T = —T.
r’ = ||| 7
By the product rule,
d?s ds
"= —T+ —T.
r dr? dt
Consider )
dsd*s ds\2
"Xy ' = ——TxXxT+(—) TxT.
PR T diae = <dt>

Since ||T|| = 1, we have T(#) L T’(¢). Then ||T X T’|| = @HT’H = ||T’||. Also,

=1

ds\2 ds\2 ds~\2
rxr’||=(—) |ITxT| =(— TIIT| = (—) ||T|l.
el = (Z0) ITx Tl = ()" [T = () I
=1
Hence,
o x|l e x|
IT]| = — = —
(@) [l
dt
The curvature is ) ) .
_ e <l
lIx’]] Ilx’|]?

O

Example 13.4.8. Find the curvature of the twisted cubic r(f) =< t,*,#> > at general point and
at (0,0, 0).

Proof. Sincer'(t) =< 1,2t, 32 > and r’(t) =< 0,2, 6t >, we have

i j Kk
riOxr’@®) =1 2t 32 | =< 64, -61,2 > .
0 2 6t

Then ||’ Xr”|| = V36* + 3612 +4 = 2V9* + 922 + 1 and ||| = V1 + 4£2 + 97*. The curvature

1S
2NV + 92 + 1
T U421 ompr
Att =0, x(0) = 2. o
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e Special Case y = f(x)

Suppose that the curve C is the graph of f(x). We can express it as vector-valued function.

r(x) =xi+f(x)j(+0k).

Then
r()=i+f(x)j and r’(x)=f"(x)].

The cross product is
rx)xr’(x) = f"(x) k.

e xx”| = /")l and iK'l = /1 + [0

Hence, the curvature is

We have

_exel 1)
e[ (1 +[f (03
Example 13.4.9. Find the curvature of the parabola y = x? at the point (0, 0), (1, 1) and (2, 4).

Proof.

Compute that y* = 2x and y” = 2. The curvature of the
curve is 2

b2
[+ O)PP2 ~ (1 +4x2)02

k(x) =

At (0,0), x(0) = 2.

2
At (1, 1), k(1) = 5 ~ 0.18. ; 5 1 "

At (2,4),k(2) = T

We can observe that x(x) — 0 as x — =*oo.

~ 0.03. The parabola y = x? and its curvature
function y = k(x)

O
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14.1 Functions of Several Variables

0 Functions of Two Variables

Example 14.1.1.

(1) Let T = f(x,y) represent the temperature at the position (x,y) where x and y indicate the
longitude and latitude respectively.

(2) Let V = V(r, h) represent the volume of a circular cylinder where r and / indicate the raidus
and the height of the cylinder respectively.

y
flx.y)

Definition 14.1.2. A function f of two variables is a rule

that assigns to each ordered pair of real numbers (x,y) in

a set D a unique real number denoted by f(x,y). The set 10

D is the “domain” of f and its “range” is the set of values

that f takes on. That is, Range(f) = {f(x,y) | (x,y) € D}. fla.b)

Sometimes, we express z = f(x,y) where x and y are independent variables and z is a dependent

341
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variable.

Remark. If a function is given by a formula and no domain is specified, then the domain of f
is understood to be the set of all pair(x, y) for which the given expression is a well-defined real
number.

Example 14.1.3.

x+y+1=0
vVx+y+1 ) ) / y
(1) Let f(x,y) = 1 The domain of f is 1
X — x=

Dom(f) {(e, )| x+y+1>0, x—1=+0}

{(x,)|y=>2—x—-1, x #1}. »

\/L\‘+ y+1
x—1

Domain of f(x, y) =

(2) Let f(x,y) = xln(y2 — x). The domain of f is

Dom(f)

{(x’)’)|y2_x>0} /// _\\':yz

{6y [ x <y} 0

Domain of f(x, y) = xIn(y*> — x)

(3) Let g(x,y) = /9 — x> — y2. The domain of g is

V x>+y*=9
Dom(f) = {(x,y)]9-x"-y">0}
= {(oy [ +y* <9).
-3 3 x
The range of g is KJ
Range(g) = {zlz= /9 —-x2—-y% (x,y) € Dom(g)}

(z]0<z<3) Domain of g(x, y) =+/9 — x* — y?

m Some ways to figure out two variables functions

We introduce some visual methods to understand functions of two variables.

e Graph of a function
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Definition 14.1.4. If f is a function of two variables with
domain D, then the “graph” of f is the set of all points
(x,y,z) € R? such that z = f(x,y) and (x,y) is in D. That
is,

Graph(f) = {(x,y,2) |z = f(x,y), (x,y) € D}.

Example 14.1.5. Sketch the graph of g(x,y) = /9 — x> — y2.
Proof. Letz = /9 — x?> — y2. Then the graph of g is

Graph(g) = {(xayaz)|Z2:9_-x2_y2, ZZO}
(6,2 | X +y*+72 =9, 220}

O

Note. An entire sphere cannot be represented by a single function
of x and y. The lower hemisphere is represented by the function

hx,y) = —+/9 — x2 —y2.

Example 14.1.6. Find the domain and range and sketch the graph
of h(x,y) = 4x* + y*.

Proof. Dom(h) = R? and Range(f) = [0, o). The graph of h
Graph(h) = ((x,y,2) | z = 42 + Y%, (x,y) € R}

is an elliptic paraboliod. O

Example 14.1.7. Sketch the graph of the function
flx,y) =6 —3x—2y.

Proof. Letz =6—-3x—2yor3x+2y+z = 6. The intercepts of the
function are (2,0, 0), (0, 3,0) and (0, 0, 6).
]

Note. The function f(x,y) = ax+by+c is called a “linear function”.
The graph of such a function is a plane and has the equation z =
ax+by+corax+by—z+c=0. Graph of f(x, y) =6 —3x—2y

X

e Computer-generated graphs

In general, it is difficult to sketch the graph of a two-variables function. A nice method to sketch
the traces in the vertical plne x = k and y = h. For example, fix x = k and sketch the graph of a
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single variable function z = f(k,y). It is a curve on the plane x = k. Draw all such curve as x
ranges over all possible values in the x direction.

sin x sin y

(¢) flx, y) = sin x +sin y () flx, y) = —

o Level Curves

So far, we have two methods for visualizing functions: arrow diagrams and graphs. A third
method is to consider a contour map on which points of constant elevation are joined to form
“contour curves”, or “level curves”.

Definition 14.1.8. The “level curves” of a function f of two variables are the curves with
equation f(x,y) = k, where k is a constant (in the range of f). The level curve is the set

{(x,y) € D| f(x,y) = k}.
Note. (1) A level curve f(x,y) = k is the set of all points in the domain of f at which f takes
on a given value k. (It shows where the graph of f has height k).

(2) Level curves are useful in the reality. For example, isothermals, contour map, contour line.

Example 14.1.9. Sketch the level curves of the function f(x,y) =
6 — 3x — 2y for the values k = —6,0,6, 12.

Proof. Consider the curves 6 — 3x — 2y = k in the domain. For
k =—-6,0,6, 12, the corresponding level curves are 3x+2y—12 = 0,
3x+2y-6=0,3x+2y=0and 3x+ 2y + 6 = 0. |

Contour map of f(x,y)=6—3x—2y
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Example 14.1.10. Sketch the level curves of the function g(x, y) =

\/9 — x2 — y? for the values k = 0, 1,2, 3.

Proof. Consider the curves /9 — x> — y? = k in the domain. For
k = 0,1,2,3, the corresponding level curves are x> + y*> = 9, x> +
v =8, x> +y*=5and x> +y* = 0. O

Contour map of g(x, y) =9 — x> — y?
Example 14.1.11. Sketch the level curves of the function A(x, y) = 4x> + y* + 1.
Proof. Consider the curves 4x> + y* + 1 = k in the domain. We can rewrite the equation
2 2
as - al 42
k=1 k-1
3Vk—1and Vk - 1.

= 1. For k > 1, the level curves are a family of ellipses with semiaxes

(a) Contour map (b) Horizontal traces are raised level curves

The graph Of h(x, y) — 4x2 + y2 + 1
is formed by lifting the level curves.
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O

Note. The following two figures show different visualized concepts to figure out a two variables
functions f(x,y).

2_.2

(D) fGx,y) = —xye™ .

=
(e

(

2
¥

Level curves of fix, y) = —xye ™ Two views of fix, y)=—xye * "
_3y
2 X,y) = ——.
(2) fxy) Pyt

y

N
1N

Level sof i )=
evel curves of f(x, y) Byt

0 Functions of Three or More Variables

m Three variables functions

A function of three variables, f, is a rule that assigns to each ordered triple (x,y,z) in a
domain D C R? a unique real number denoted by f(x, y, z).

Example 14.1.12. The function f(x,y,z) = In(z — y) + xy sin z has the domain

Dom(f) ={(x,y,2) |z—y >0} ={(x,y,2) | 2> y}.

Note. It is difficult to visualize a function f of three variables by its graph since that would lie
in four-dimensional space.

We obtain some insight into f by examining its “level surfaces”, which are surfaces with
equation f(x,y,z) = k, where k is a constant in the range of f.
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Example 14.1.13. Find the level surfaces of the function
fuy, =2 +y + 22

Proof. Consider the surface with equation x> + y*> + 7> = k,
k > 0. The corresponding level surfaces form a family of concen-
tric spheres with radius Vk.

]

m 2 variables functions

A function of n variables is a rule that assigns a number z = f(x, x5, -, X,) to an n-tuple
(x1, X2, -+ , x,) of real numbers.

Example 14.1.14. (Cost function) Let C; be the cost per unit of the ith ingredient and x; be the
units of the ith ingredient are used. The total cost is

C=f(x1,x2,-, %) =Cix1 + Coxg + -+ - + Cpyx,,.

which is a n-variable function.

Remark. Since the point (xi, x5, -+ , x,,) and the vector X =< xy, x5, -, X, > are one-to-one
correspondence, we have three ways of looking at a function f defined on a subset of R".

1. As a function of n real variables xi, x,, - - - , x,,, denote f(xy, xp, - , Xp).
2. As a function of a single point variable (x;, x,, - - , x,,), denote f((x1 , X0, xn)).
3. Asafunction of a single vector variable X =< xy, x, - -+ , x, >, denote f(X) = f(< x1, X2, , X, >).

14.2 Limits and Continuity

a Limits
y

Recall that the limit of a single variable func- A@) oo
tion f(x) as x approaches a is followed by the
concept that the value of f(x) approaches L as x Ltg fommmmmmmmmmmommeooeee
tends to a. The precise € — ¢ definition is given P
in Chapter 3. e | ;

N

Question: How about the limit of a two variables function f as (x,y) approaches a point (a, b)?

Definition 14.2.1. (Heuristic definition) Let f be a function of two variables whose domain
D containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
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f(x,y) as (x,y) approaches (a, b) exists if there is a number L such that we can make f(x,y) as
close to L as we like by taking (x, y) sufficiently close to (a, b).

Definition 14.2.2. (Precise definition) Let f be a function of two variables whose domain D
containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
f(x,y), as (x,y) approaches (a, b), exists if there is a number L such that for every number £ > 0
there exists a corresponding number ¢ > 0 such that

lfCe,y) - Ll <e

whenever (x,y) € D and 0 < \/ (x —a)? + (y — a)? < 6. Denote

( 1)1rr(1 ” f(x,y)=1L or f(x,y) = L as(x,y) — (a,b).
x’y i a?

z
L+e
) L —
L—¢ ’ S
L+e | |
L I | |
L-¢
0 Iy
0 \4\'\\
I
x/ D5 y

Remark. For functions of a single variable, we only need to consider two possible direction
when x approaches a (from the left and from the right).

For functoins of two variables, we have to consider an infinite numbers of directions in any
manner whatsover as long as (x, y) stays within the domain of f.

Hence, if the limit ( 1)11‘1(1 ) f(x,y) exists, then f(x, y) must approach the same limit no matter
X,y)—a,

which direction and how (x, y) approaches (a, b).

. YA
Note. From the above remark, if f(x,y) — L;

and (x,y) approaches (a,b) along a path C, /\
and f(x,y) — L, when (x,y) approaches (a, b) ﬁ _____
along another path C, where L; # L,, then the /T\

limit  lim ) f(x,y) does not exist. |

(xy)—(ab / 0 a \

=Y
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2.2

Example 14.2.3. Let f(x,y) = % Consider the
X +y

limit of f(x,y) as (x,y) approaches (0, 0).

. y
Proof. Along the x-axis (y = 0),
2 _ 2 2
X° = .oX =—1
im i A lim— = 1. !
(xy)—=(ab) X2 +y* x>0 x2
y=0
. X
Along the y-axis (x = 0), =1
ﬂ = 1 __))2 = —1
xy—-@h) X2 +y2 30 y? '
x=0
2y
Hence, the limit lim SR does not exist.
@y)—0.0) X2 +y
O
xy ) )
Example 14.2.4. If f(x,y) = -——,does lim f(x,y) exist?
x-+y (x.y)—(0,0)
Proof. Along the x-axis (y = 0),
f=0
Xy .0
im ——— =Ilim— =0.
@y)—=(@b) x* +y* x>0 x2
y=0
Along the y-axis (x = 0),
. X .0 : :
lim 2y2:11m—2:0. :
(xy)—=(ab) x> +y =0y e g
x=0 P &.:5::3’.' ii: 2
' is'é:z"?éz%q’f"i
But, along the line y = x, "“ﬁ;‘:{{&z’:&\\“ "
St
QK [T
M aey oMo s=5 R/
(x,y);y(a, ) X“+Yy x—0 2x ““::S:::’:::::I"'
e
.. . X .
Hence, the limit lim v does not exist.  xy
flx,y)= = 2

(x)—=0.0) x% + y?
o

2

Example 14.2.5. If f(x,y) = does l)irr(l0 | f(x,y) exist?

x? +y4’ (x)—(0,0

Proof. Along the the line y = mx (not y-axis),

xy? ) x(mx)? . XA +m?)

lim = lim =lim————= =
(e))~(@b) X+yt o0 x4+ (mx)t -0 x2(1 + mtx?)




350 CHAPTER 14. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

Along the curve x = y?,

' xy? ‘ y2 )2 1
lim ———=Ilm—5—— .
()=Gab) X2 4yt =0 (PP 4yt 2
x=y?
2

. X )
Hence, the limit lim L does not exist.
(x3)—=0.0) x% + y*

m Laws of Limits and Squeeze Theorem

Theorem 14.2.6. (Laws of Limits) Let f and g be two variables functions defined on D contain-
ing a neighborhood of (a, b) (possibly except (a, b) itself) and c be a constant number. Suppose
that the limits ( 1)11‘1(1 ” f(x,y) and ( l)lrr(l ” g(x,y) exist. Then

X,y)—a, X,y)—a,

(a) (xy) ( » Lf £ gl(x,y) exists and hm [f+g (x,y) = ( b)f(x ,y) £ hrr(l b)g(x ).

(b) lim [cf](x,y) exists and hm cf](x y) = c hm f(x,y).
(x.y)—(a,b) x,y)— —(a,b)

(C) (xyl)g?a b)[fg](x y) exists and xyl)ln;la b)[fg (x y) ( lll’I(l b) f(x y)) ( lll’I(l b) g(x y))

(@) (x,yl)l—r>r(1a,b) [g} (x,) exists if (x,yl)gr(la’b) g(x,y) # 0 and

lim [q( ) = limyyy)—ap) f(X,Y)
(xy)—(ab) L g ’ limyy y)(a.0) 8(X, Y)

provided lim g(x,y) # 0.
(x,y)—>(a,b)

(e) In particular,

Iim x=a, lim y=0>b, Iim c=c¢
(x.y)—(ab) (x.y)—(ab) (x.y)—(a,b)

Theorem 14.2.7. (Squeeze Theorem) Let f(x,y), g(x,y) and h(x,y) be three functions defined
near (a, b). Suppose that f(x,y) < g(x,y) < h(x,y) for every (x,y) near (a, b). If

lim =L= hm h
(x,y)—(a,b) f(x y) (xy)—(a,b) (x y)

then the limit  lim  g(x,y) exists and
(x.y)—(a,b)

lim X,
(x,y)—(a,b) g( y)

2

Example 14.2.8. Find lim

if it exists.
(x)—(0.0) X2 + y?
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Proof. First of all, we may try the limits when (x, y) approaches (0, 0) along several paths. We
observe that all the limits are 0. Therefore, we guess that the limit could exist and equal 0.

Let € > 0. We want to find § > 0 such that if 0 < \/(x—O)2 +(y—-0)> < 6, then
‘ 3x%y

5~ 0‘ < &. Consider
X2 +y

3x%y x?
= 3yl < 3yl
)xz +y? ’xz +y? ‘ b1 < 3b

<1

Choose 6 = 1£. If 0 < \/x? +y? < 6 = 1, then |y| < \/x? +y? < 1&. Therefore,

2

3x7y 1
) = 01= | 3] <3bi <3 5=
L 32y
whenever 0 < /x* + y?> < ¢ and this implies that lim ——— =0. O

@)=00) X2 +y>

m Limt at Infinity

In the previous chapter, we regard R" as a vector space and every point (x,-- - , X,,) is iden-
tified as a vector X =< xy,-- -, x, >. The length of a vector is denoted by

— /2 2
x| = \/x7 + -+ x;.

Hence, if we want to describe a point (or a vector ) X € R” tending to infinity, we will use the
notation “||x|| — oo™ (or [|(x1, - -+, x,)l| = 0 or || < xp, -+, 4, > || > 00)

Remark. We usually use the words “as ||x|| is sufficiently large” which means that there exists a
positive number M such that for every point x with ||x|| > M then - - - . For example, “f(x,y) > 1
when ||(x, y)|| is sufficiently large” means that there exists a number M > 0 such that f(x,y) > 1
for every ||(x,y)|| > M.

Definition 14.2.9. (Limit at infinity) Let f be a function of two variables whose domain D
containing all points which are sufficiently large. We say that the limit of f(x,y), as (x,y)
approaches infinity, exists if there is a number L such that for every number & > 0 there exists a
corresponding number M > 0 such that

lf(x,y) - Li<e
whenever /x> + y?> > M. Denote

Juy)y=L or  flx,y) > L as|l(x,y)ll = co.

llCxll—00

Example 14.2.10. Let f(x,y) = x. Determine whether the limit | lim  f(x,y) exists.

(xey)ll—=o0

Proof. Fix x = 1 and let y — oo, then ||(x, y)|| = oo and llim f(x,y) = 1.
x=1,y—00

Similarly, fix x = 2 and let y — oo, then ||(x, y)|| — oo and lzim f(x,y) = 2. Hence, the
X=2,y—00

limit " li)r”n f(x,y) does not exist. |
X,y —00
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1
Example 14.2.11. Let f(x,y) = 2 Determine whether the limit| lim f(x,y) exists.
ATy

[(xll—00

1
Proof. Given g > 0, choose M = 7 and L = 0. For ||(x, y)|| = /x> +y> > M,
£

-1l =|

X2+ y?

Hence, lim f(x,y)=0. |

lICGepll—e0

a Continuity
Recall that the continuity of a single variable function f(x) at a is defined by
lim £(x) = f(a).

A slogan is that “the limit of f at a is equal to the value of f at a”. We attempt to use the same
idea to define the continuity of a multi-variables function.

Definition 14.2.12.

(a) A two variables function f is called “continuous at (a, b)” if

lim f(x,y) = f(a,b).

(x.y)—>(a,b)

(b) f is called continuous on D if f is continuous at every point in D.
Remark.
(1) A surface that is the graph of a continuous function has no hole or break.

(i1) The sums, differeneces, products and quotients of continuous functions are continuous on
their domains

(iii) Every polynomial function or every rational function of two variables is continuous. For
example, f(x,y) = 3x° + 6y* + 10x’y% + 5x — 7y + 6 is continuous everywhere.

2 2

Example 14.2.13. Where is the function f(x,y) = Xz_+y2 continuous?
ATy

Proof. Since f is a rational function, it is continuous on its domain. That is, f is continuous on

Dom(f) = {(x,)) | 2 +y* #0} = {(x,») | (x,y) # (0,00} = R\{(0,0)}. o
2y
Example 14.2.14. Let g(x,y) = { 2 + 2 ey #0.0) gince the limit  Tim  g(x, y)

0 if (x,y) = (0,0). ey
does not exist, g is not continuous at (0, 0).
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Example 14.2.15. Let

2

X7y . SKsS
foy =4 ey TN #O0 P -
. — %o\\ RN ,////l/l'l
Since f is a rational function for (x, y) # (0, 0), it is continuous n’{{./,.lllllllbi;‘:‘ifffl,/,',/{{llll""' y
. 3x . NN
on R%\{(0,0)}. Also, lim 2_y2 =0 = £(0,0). Thus, fis ,;‘,5’:"":',:‘:\:\\‘\\\‘?“‘3"‘,7,’//%//” i
(x)—(0,0) X +y "'ll"”"",/’r’! \\““W/
. . . Vi ’—'
continuous at (0,0) and f is continuous on R?. 7 S

m Composite Functions

We consider the composition of a two variables function and a single variable function.

Let f(x,y) be a continuous function of two variables and g(¢) be a continuous function of a
single variable that define on the range of f. Then h = g o f defined by h(x,y) = g( f(x, y)) is
also a continuous function.

f g
TR e
z
Range of Range of g
Dom(g)

D=Dom(f) e

h(x.y)= g(fﬁx,y))

Example 14.2.16. Where is the function /(x, y) = arctan (X) continuous?
x

Proof. Let f(x,y) = Y be continuous except on the line x = 0.
Let g(¢) = arctan ¢ be continuous everywhere. Then the com-
posite function h(x,y) = arctan (%) = g(f(x,y)) is continu-
ous except the line x = 0. O

The function A(x, y) = arctan(y/x)
is discontinuous where x = 0.

m Functions of Three or more Variables

The definitions of limits and continuity of n-variables functions are similar as the ones of
two variables functions. We ignore the details of their definitions here.
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14.3 Partial Derivatives

Recall that for a single variable function f(x), the derivative of f is defined by

fla+h) - f(a)
h

f'(@) =lim

which represents the instantaneous rate of change of f with respect to x.

For a two variables function f(x, y), let x vary while keep-

ing y fixed, say y = b, where b is a constant. We can o
regard f(x, b) as a single variable function. =
Let g(x) = f(x, b), then g(a) = f(a,b). The derivative of V/

gx)atx=ais a ,V\A
J S b

(@) = i B P 8@ @t hb) - flab) RN
g'(a) = lim p = lim p . :

We call it the “partial derivative of f with respect to x at
(a,b)”.

Similarly, let y vary while keeping x fixed, say x = a. Let
k(y) = f(a,y). The partial derivative of f with respect to

yat (a, b) is
) " A
i kb k) _ L flab+h) ~ fa,b) 2~ b
h—0 h h—0 h O - ¥
ab) -

Definition 14.3.1. (Partial Derivatives) Let f be a function of two variables. The partial deriva-
tives of f with respect to x and with respect to y are the functions f, and f; defined by setting

[+ hy) - f(x)
filx,y) = }g% .

1 f(X,}H‘h)_f(X,)’)
S y) = lim :

provided these limits exist.

Notation: Let z = f(x,y). We write

_ . _9f _ 9 _ 0z _ _ _
fx(x’y) - fx - ax - axf(x’y) - ax - Dxf - le - fl
0 0 0
Fey) = fi = a—]yp - Sy = 5= DS = Daf = f

m Find Partial Derivatives of z = f(x,y)
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e To find f,, we regard y as a constant and differentiate f(x,y) with respect to x.
e To find f;, we regard x as a constant and differentiate f(x,y) with respect to xy.
Example 14.3.2. If f(x,y) = x* + x*y* — 2y?, find f,(2,1) and f,(2,1).
Proof. The partial derivatives of f are
Jx,y) = 3x% + 2xy° and Hxy) = 3x%y — 4y.
Then f,(2,1) =12+4 =16 and f,(2,1) =12 -4 = 8. O

Note. We should consider the single variable function f(x,1) = x* + x> — 4 and f(2,y) =
8 +4y> — 2y?. Then

=12+4 =16.
x=2

=3x% + 2x

d
(Ef(x, )|

(diyﬂz,l))( =127 4y

y=

£(2,1)

=12-4=28.

y=1

H2, 1)

m Interpretation of Partial Derivatives

The equation z = f(x,y) represents a surface S (the graph of
f). If f(a,b) = c, then the point P(a, b, c) lieson §.

Fix y = b, the curve C; is the intersection of the vertical plane
and §. C; is also the graph of the function g(x) = f(x, b),
y = b. The slope of its tangent line 7, at P is g’(a) = f:(a,b).
Similar for the curve C,, the tangnet line 7, and its slope : v
H(a, b). (a, b, 0)

The partial derivatives of f at (a, b) are
the slopes of the tangents to C, and C,.

Example 14.3.3. If f(x,y) = 4 — x* = 2y? find f,(1,1) and f,(1, 1) and interpret these numbers
as slopes.

Proof. The partial derivatives of f are
file,y)=-2x  and  fy(x,y) - 4y.

Then f,(1,1) = =2 and f,(1,1) = —4.

The equation z = 4 — x> — 2y” represents a paraboloid which is the graph of f(x,y). Fix
y = 1, z = 2 — x? is the equation of a parabola which is the intersection of the vertical plane
y = 1 and the graph of f(x,y). The value f,(1,1) = -2 is the slope of the tangent line to the
parabola C; :z=2—- x>, y=1lat(1,1,1).

Similarly, f,(1,1) = —4 is the slope of the tangnet line to the parabola C, : z = 3 — 2)?,
x=1lat(1,1,1).

]
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Note. We can express the curve C; as a vector equation r(f) =< t, 1,2 — t* >. Then the tangent
vectoris r'(r) =< 1,0, =2¢ >.
At (1,1,1), we have t = 1 and then r'(1) =< 1,0, -2 >. The equation of the tangent line is

r()+m(l)=<1+¢£1,1-2t>.

X of of
, calculate — and —.
+y> calculate -~ an 9

Example 14.3.4. If f(x,y) = sin (1

Proof. We can calculate the partial derivatives by the chain rule,

af 1 of _
—:cos( al >1—+y and 6_y:COS<1-|x-y).(1+xy)2'

m Implicit Differentiation

Recall that if the two variables x and y satisfy an equation F(x,y) = 0, then we can use the

implicit differentiation to find the ralated rate of each other (d—y or d—x).
X y

By following the same idea, if three variables x, y and z satisfy an equation F(x,y,z) = 0,
we want to find the related rates (partial derivatives) between any two variables.

0 0

Example 14.3.5. Find (’)_Z and 8_Z if z is defined implicitly as a function of x and y by the
X y

equation

X +y +25+6xyz=1. (14.1)
Proof. Differentiating both sides of equation (I4-1) with respect to x, we have
Ors. 3,3 _ 9
8_)c[x +y +z +6xyz} = a(l)
Then

P P
32 + 3z26—i + 6yz + 6xya—i —0 and hence

%C (32 + 6xy) = - (327 + 6yz).
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We have
9z xX*+2yz

ox 2 +2xy

Similarly,
9z Y +2xz

dy  2+2xy

m Functions of Three or More Variables

e For a three variables function f(x,y, z), fix y and z, the partial derivative of f with respect to
x is defined by

1 f(x"‘h,y,z)—f(x,y,Z)
fi(x,y,2) = lim " :

(fy and f; have similar definition).

0
Iftw= f(x,y,2), then 6—W can be interpreted as the rate of change of w with respect to x when
X

y and z are fixed.

e for a n-variables function f(xy, x5, , X,),
S, i+h’..., ) — St Xyttt Xy
£, - ’xn):hmf(xl x x,) = f(x1 Xip+ %)
h—0 h
ou Of . ) . .
Ifu= f(x1,x,--,x,), then Frialr i fx, = fi = D;f 1s the partial deriveative of u with
Xi Xi

respect to x;.
Note. Denote x = (x1,--- ,x,) ande; = (0,---,0,1,0,---0). Then

S+ he) — f(x)
P :

£ = lim
Example 14.3.6. Let f(x,y,7) = ¢” Inz, then
, 1
filx,y,2)=eY-ylnz=ye®Inz, fi(x,y,2) =xe”Inz, fix,y,2)=e"- E

m Higher Derivatives

When study a single variable function f(x), we can regard its derivative f’(x) as a new
function and consider its second derivative f”'(x).

For a two variables function f(x,y), we can also regard its partial derivatives f(x,y) and
fy(x,y) as new functions and consider the “second partial derivatives”. Let z = f(x,y). Then

_ 8 0f\ 0 f 0z
(f)x = fuo = —x(a) =22 " 32 - S
3 3 0 /0 3 o f B 0’z B
(fx)y - fxy - ;y(a) - 0)7(9)6 - ayax - f12
~ 8 0f\ _ f 0z
B = J = 5(5> B 0x0y B 0x0y = Ja
d ,0f 0*f 0z
W= o= 5G) =G m g o e
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o third partial derivative

ﬁ ( (92f ) _ 03f _ 83Z
0x \0yox 0x0yox 0x0yox
ﬁ ( 32f ) _ (93f _ 332

Oy \0yox 0%yox 0%yox

(fxy)x = fxyx =

(foly = fay =
Example 14.3.7. Let f(x,y) = x> + x?>y® — 2y?. Then the first partial derivatives of f are
feo=3x" +2x)°, A= 3x%y* — 4y
and the second partial derivatives of f are
fox = 6x+2)°, fo = 6xy°, fox = 6xy°, fy = 6x%y — 4.

m Clairaut’s Theorem

Question: For a multi-variables function, does the second partial derivatives keep unchanged
when the order of two partial differentiations exchange? For example, if f(x,y) has all second
partial derivatives, can we obtain

2
f xy — fyx-
In general, the answer is false.
Exercise. Let ,
xy(x” =y .
— if (x, 0,0
Flxy) = NI (x,y) #(0,0)
0 if (x,y) = (0,0)

Check that £,,(0,0) # f,,(0,0).

Question: What conditions of f can guarantee its second partial derivatives are equal when
exchanging their order?

Theorem 14.3.8. (Clairaut’s Theorem) Suppose f is defined on a neighborhood D of (a, b). If
the functions f,, and f, are both continuous at (a, b), then

fw(a,b) = fix(a,b).
Proof. Consider

f@b) = lim fia,b + k) — fu(a, b)
(@, b) =

k—0 k
limy,_,, [L@thbtO-flabl) _ flathb-f(ab)
= lim [ h h ]
k—0 k
_ hmlig L@t bR~ flathb) - fa,b+ k) + fla,b)
k—0 h—0 kh .

8(b+k) ~ gb)

Define g(y) = f(a + h.y) - f(a.y) Then fy(a,b) = limlim o
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Since f, is defined on a neighborhood of (a, b), g is differentiable near b and, by the mean
value theorem, g(b + k) — g(b) = kg’'(¢) for some & = £(k) € (0, k). Then

EO) it L[ (0 b+ £00) — £y (arb + €0)].

1
h k—0 h—0 h

fo(a,b) = limlim
Since f; is differentiable with respect to x and by the mean value theorem again,
Fola,b) = limlim . (a + 702, b + £(0)

where n(h) € (0, h) and &(k) € (0, k) and hence }lirré n(h) = 0 and %m(l) &(k) = 0. Also, the continu-
ity of f, at (a, b) implies that

fola,b) = limlim . (a + 700, b+ €0)) = fia(a, ).
O

Remark. The Clairaut’s Theorem still holds if the hypothesis is weaken that one of f,, and f,,
is continuous at (a, b).

Example 14.3.9. Let f(x,y) = sin(3x + yz). Then
fi=3c0s(Bx +yz), fur=-9sin(Bx+yz), fo =-3zsin(3x+ yz)

fxxy = —9Z COS(3X + yZ), fxyx = _9Z COS(3X + yZ) = fxx}“

14.4 Tangent Planes and Linear Approximations

0 Tangent Planes

Recall that a single variable function f(x) with derivative
f’(a) can be linearly approximated by its “tangent line”

f(x) ~ L(x) = f(a) + f'(a)(x — a) as x is near a

For a two variables function f(x,y), we also expect that it can be linearly approximated by
a certain “plane”.

Suppose that

*The figure is download from https://www.math24.net/linear-approximation/

<Y
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f(x,y) is a two variables function which has continuous first
partial derivatives;

S is the surface with equation z = f(x,y) (the graph of f)
and P(a,b,c) € S;

C, and C, are the curves obtained by intersecting the vertical
planes y = b and x = a with the sufrace S. Then P € C; N (5.

T, and T, are tangent lines to the curves C; and C, at the
point P.

The partial derivatives of f at (a, b) are
the slopes of the tangents to C, and C,.

Definition 14.4.1. The “tangent plane” to the surface S [ C
at P is defined to be the plane that contains both tangent
lines Ty and 7T>.

|

|

|
Note. If C is any curve that lies on S and passes P, then ¢ 0L

the tangent line to C at P also lies on the tangent plane. / \\\\
Hence, we can think of the tangent plane to S at P as
consisting of all possible tangent lines at P to curves that

X

lie on S and pass through P.

The tangent plane contains the tangent

lines 7, and T,.
m Equation of the tangent plane

Let the tangent plane to S passing throught P(a, b, ¢) has equation
Ax-a)+Bly-b)+C(z=¢)=0 (14.2)

We may assume that it is not a vertical tangent plane and hence C # 0. Dividing both sides of
equation (T43) by —C, the tangent plane has an equivalent equation

A B
z—c=alx—a)+ By -D>) (azzandﬁ:_—c).

Since the intersection of the tangent plane and the vertical plane y = b is the tangent line 77,
plugging y = b into equation (T473),

z—c=a(x—a)

is the equation of the tangent line 7';. Then « is the slope of T to the curve C, at (a, b, c¢) and
hence a = f.(a, b).
Similarly, 8 = f,(a, b). Therefore, the equation of the tangent plane to S at P is

z—c= fx(a,b)(x—a) +fy(a,b)(y—b).

Example 14.4.2. Find the tangent plane to the elliptic paraboloid z = 2x> + y? at (1, 1, 3).
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Proof. Let f(x,y) = 2x* + y*. Then f.(x,y) = 4x and f,(x,y) = 2y. Hence, f.(1,1) = 4 and
f3(1,1) = 2. The equation of the tangent plane at (1, 1,3) is

z-3=4(x-1)+2(y-1) or z=4x+2y-3.

0 Linear Approximations

We have studied the linear apporximation for a single variable function f(x). We use the
tangent line to the graph y = f(x) at a to approxinate the value of f near a and the linearization
for fatais

L(x) = f(a) + f(a)(x — a)

and
f(x) = L(x) as x is close to a.

(a.f(a))
&
y=f'(a)(x—a)+ f(a)

For a two variable function f(x,y), we expect to approximate its values, as (x,y) is near
(a, b), by the tangnet plane at (a, b).

(a) (b) (c)

The elliptic paraboloid z = 2x” + y” appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).

Suppose that f(x,y) has continuous partial derivative. The tangnet plane to the surface
S 1z = f(x,y)at P(a,b, f(a,b)) is

z = fla,b) = fa,b)(x - a) + fy(a,b)(y - b)
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or
z = f(a,b) + f(a,b)(x — a) + f(a,b)(y — b).
Definition 14.4.3.

(a) We call the function

L(x,y) = f(a,b) + fi(a,b)(x — a) + f(a,b)(y — b)
the “linearization of f at (a, b).

(b) The approximation f(x,y) = L(x,y) is called the “linear approximation” or “tangent plane
approximation” of f at (a, b).

Example 14.4.4. Find the linearization of f(x,y) = 2x>+y? at (1, 1, 3) and use it to approximate
the value of f(1.1,0.95).

Proof. Compute fi(x,y) = 4x and f,(x,y) = 2y and hence f,(1,1) = and f,(1,1) = 2. Then the
linearization of f at (1,1, 3) is

Lx,y)=f(1,D+ f(1,Dx-D+ 0, Dy -1)=3+4x-1)+2(y-1) =4x+2y-3.

Also,
f(1.1,0.95) ~ L(1.1,0.95) =3 +4-0.1 +2-(-0.05) = 3.3.
m|

We define tangent plane for surface z = f(x, y), where f has continuous partial derivatives.
Question: What happens if f, and f, are not continuous? Consider the following example.

Example 14.4.5.

if (x,y) # (0,0)

xy
Let f(x,y) = { X2+ y? .
0 if (x,y) = (0,0)

Then f.(0,00 = 0 = £(0,0). For (x,y) # (0,0),
yOo? = x)
Sfulx,y) = @i Along x = 0,

3

. .Y
lim x,y) = lim = = oo.
(x)—(0.0), x=0 Sy -0 y*

Hence, f, is continuous at (0,0). Also, we can compute that
Jfy 18 not continuous at (0,0). Observe that, for (x,y) on the

1 __ Xy
line x =y, f(x,y) = 3 # 0. Therefore, f is not continuous at flx,y)= 2432 if (v, y) #(0,0),
(0,0). This implies that there is linear approximation of f at £(0,0)=0
(0,0).

Note. This example says that for the linear approximation, the condition of the continuities of
fr and f; are necessary.
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a Differentials

Recall that for a differentiable single variable func-
tion y = f(x), dx is the differantial of x and dy =
f’(x) dx is a differential of y.

The symbol Ay denotes the change in height of y and
dy represents the change in height of the tangent line
when x changes Ax = dx. Hence, as (x,y) is near
(a,b),

363

d
dx=Ax

1

f(x,y) = f(a,b) + f'(a,b) dx = f(a,b) + dy.

=V

0

a a+Ax

tangent line

y=fla) + f'(a)(x —a)

For a differentiable fucntion of two variables
z = f(x,y), dx and dy are differentials of x and y
respectively, and dz is the differenital of z which is
called the “total differential”’. Then

0
x dy.

0z
—dx+
X ay

dz = fi(x,y) dx + fy(x,y) dy = P

(a, b, fla, b))

Taking dx = Ax = x —a and dy = Ay =y — b, then

dz = fi(x,y)(x —a) + f,(x,y)(y — b).

As (x,y) is near (a, b),

fx,y) = f(a,b)+fi(a, b)(x—a)+fy(a,b)(y—b) = f(a, b)+dz.

Example 14.4.6.
(a) If z = f(x,y) = x*> + 3xy — y*, find the differential dz.

(a+Ax,b+Ay, fa+ Ax, b+ Ay))
surface z = f(x, y)

tangent plane

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Az and dz.

Proof.
(a) Tofind dz, fi(x,y) = 2x + 3y and f,(x,y) = 3x — 2y. Then

0 0
dz = Zax + Ly = @x + 3y)dx + Gx - 2y)dy.
Ox Jy 401
20t
(b) If x changes from x to 2.05 and y changes from 3 to 2.96, ’
compare Az and dz.
_20 +
Az = = f(2.05,2.96) — f(2,3) = 0.6449
dz = f(2,3)(2.05-2)+ £,(2,3)(2.96 - 3) = 0.65.

601 _N

Example 14.4.7. A cone has the raidus of its base 10 cm and the height 25 cm as the figure.
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Find a possible error as much as 0.1 cm in radius and height. Use differentials to estimate the
maximum error in the caculated volume of the cone.

Proof.

1
The volume of the cone is V(r, h) = gﬂrzh. Then

ov. 2 ov. 1 ,
= —nrh, = —nr.

or 3 oh 3
The differential of V with dr = 0.1 and dh = 0.1 is

25 em

1% oV e
= —(0,2 —(10,2 )
dv 6r( 0,25)dr + ah( 0,25)dh
1
= y-o.ug-m:zon (cm®)

0 Functions of Three or More Variables

m Linear Approximation

The linearization of f at (a, b, ¢) is

f(x,y,2) = L(x,y,2) = f(a,b,c) + fi(a,b,c)(x —a) + fy(a,b,c)(y — b) + f.(a,b,c)(z— ¢).
m Differentials
Letw = f(x,y,z). Then

fx+Ax,y+ Ay, z+ A7) = f(x,),2)

f(,y, 2dx + fi(x,y,2)dy + fi(x,y,2)dz =

Aw =
ow ow ow

—dx+ —dy + —dz.
dx o ay . 0z <

Example 14.4.8. A rectangular box has length, width, and height 75cm, 40 cm and 60cm
respectively. Use differentials to estimate the largest possible error when the volume of the box
is calculatedas each measurement is correct ot within 0.2 cm.

dw

Proof.

Let x, y and z denote the length, width and height of the box. The 40 cm

volume of the box is V(x,y, z) = xyz. Then

o _ .
ox dy

= xz, a_V = xy. 60 cm
0z

The differential in V at (75,40, 60) with dx = dy =dz = 0.2 is -
> cm

ov ov ov
—dx+ —dy+ —d
0x * ay Y 0z ¢

60-40-02+75-60-0.2+75-40-0.2 = 1980 (cm?).

dv =
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14.5 Differentiability and Gradient

For a two variables function f(x, y), it may have all partial derivatives (f; and f,) at (a, b) but f is
not continuous there. Hence, f has no linear approximation at (a, b) and it is not “smooth” near
(a,b). To understand the differentiability of two variables (n variables) functions, let’s observe
linear approximation of one variable function and try to give a suitable definition.
V4
We recall the geometric meaning of linear approximation y=fx)
of y = f(x). Let Ay = f(a + Ax) — f(a). The rate of
change of y with respect to x is

1
dy
dx=Ax

N

Ay _ fla+ax) - f(a)
AX AX '

0 a a-+Ax
tangent line

y=fla)+ f'(a)(x —a)

A
If f is differentiable at a, then A—y — f'(a) as ax — 0.
X

Hence,

Ay = f(@)ax + eAx  wheree >0 as Ax— 0.
. \/ . . . . v
increment in y  linear approximation

(Note that £ = &(Ax) varies as Ax varies.)

Formally, we says that a one variable function f is differentiable at x if there exists a number
L such that

. fe+h) - f(x) . f(x+h) - f(x)-Lh _
m = m =

}11—>O h L = }zl—>0 h 0
— lim lfCx+h) = f(x) = LAl _ 0.
h—0 |h

Question: How to define the differentiability of two or n variables functions?

If we want to establish an appropriate definition for differentiability, it is natural to expect
that the definition should be consistant with the usual derivative when n = 1. Also, the definition
should reflect the rate of change in any direction.

For the sake to discuss n variables functions conveniently, we will use the following vector
symbols to represent the corresponding items in 2, 3 or n dimensional cases.

X =<Xx,y> or X=<ux,y,7> ofr X=<X[, **,X, > as variables
a=<ap,a,> or a=<da,a),dz> O0Or X=<d, - ,d,> as some given point
h=<h,h,> or h=<h,h,h3> or h=<h, - ,h,> as small displacement

Then z = f(x) and

Az = f(a; + hy,ax + ho) — f(ay,az) = f(a+h) - f(a).
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Inspired by the definition of differentiability of one variable function, we may guess a
possible defintion as

AZ . . . .
However, the symbol ™ is nonsense since the denominator is a vector rather than a scalar.

. ... AZ . .
Again, the limit }llr% Tl usually does not exist and it cannot reflect the rate of change of z

in the direction m An expectant “derivative” of f at ais supposed to be an object which

sent the direction Tl to a value. The value will represent the rate of change of z in the

Ih|

direction —.
||

Definition 14.5.1. Let f : D € R> — R be a function and a € D. We say that f is “differen-
tiable” at a if there exists a vector y € R? such that

lim @+ h) — f(a)—y-h
1m

=0
h—0 lIh|

The vector y is denoted by “V f(a)” (or “grad f’) and is called the “gradient” of f at a.

Proposition 14.5.2. The vector y [= Vf(a) the gradient of f at a] in the above definition is
unique.

Proof. If w is a vector such that

[fa+h) - f(a)-w-h| _

lim 0,
h—0 (Il
then
_y—=w)-h  |y-h—w-h|
(x) = =
(Il [Ih|
lfa+h)-f(@—-y-h N lf(a+h) - f(a)—w-h|
a (1| [Ih|
Choose h = &(y —w) and let ¢ — 0. Then h — 0 and, by the definition of differentiability,
)
lly — w|| = M — 0. Hence, |ly —w||=0andy = w. O
elly — wll
Remark.

(1) The gradient, Vf, of f is a vector-valued function. If f(x) : D € R" — R, then the
gradient,V f(x), of f is a n component vector-valued function.

(i) If f: I € R — R is an one variable function, then Vf(x) = f"(x).

(ii1) For a fixed a € D, we can regard Vf(a) as an operator which sends every vector h to a
number V f(a) - h. This number represents the rate of change of f at a in the direction h.
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(iv) Dom(Vf) € Dom(f).
m Compute Vf

Question: How to compute V f?
Example 14.5.3. Let f(x,y) = x> + y*. Find V£(x, y).

Proof. Leth =< hy,h, > and x =< x,y >. Then

S+ =) = [(x+hm) + G+ h)’]- 2 +y)
= 2xhy + It +2yhy + 13

<2x,2y > < hy,hy > +h} + K.
~————

=h
Since
, If(x + h) — f(X)— < 2x,2y > -h| . | + B3|
h hhm 0,0 |[h| T hhm 00> /
1,112 , 1,h2>—<0, h% + h%
_ : /12 2 _
B <h1,h21lr£1<0,0> hl + h2 B O’
we have Vf(x,y) =< 2x,2y >. m|

Using the definition to find V f is usually complicated. We expect to find a way to compute
V f more conveniently (at least under certain assumptions).

m Sufficient condition for differentiability

From Example [4.4.5, a two variables function f(x, y) has all partial derivatives at (a, b) can-
not guarantee that it is differentiable there. We may need stronger conditions than the existence
of all partial derivatives to obtain the differentiability.

Theorem 14.5.4. Let f : D C R?* — R be a function. If f has continuous first partial derivatives
feand f, at a, then f is differentiable at a and

Vf(a) = (f(a), f,(a)).

Proof. Leta =< ay,a; >. Forh =< hy, hy >,

f@a+h) - fa) = fla+h,a+mh) - fla,a)
= [fla1 + hi,ay + by) = flay,az + hy)| + [flar, a2 + by) = f(ay, ar)]
)+ D).

By the Mean Value Theorem, there exists 8, € (0, h;) and 68, € (0, h;) such that
(D) = filar +61,a2 + hp)hy  and (1) = fi(a1,az + 62)hs.

Note that 6;,6, — 0 as < hy,h, >—>< 0,0 >. Since f, and f, are continuous at < a;,a >, as
< hy,h, >><0,0 >,

filay +61,a0 + hy) = filar,a) > 0 and  fi(ai,ar + 6,) — fy(ar,ax) — 0.
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Hence,
0 |f(a+h) - f(a)- < fi(a), fy(a) > -h|
im
h—0 |[hl|
y (D) + 1) = fi(ar, a))hy — fi(ar, ax)hs|
= lim
h—0 [[hl|
; ‘ (fx(al +61,a; + ho) — filay, a2)>h1 + (fy(au a + 6) — filai, 612))}12‘
= lim
< lim [ | + 61,2+ o) = fular,a)| + | filar, a2 + 6) = fa, a2 |
= 0.
Therefore, Vf(a) = < fi(a), fy(a)>. O

Example 14.5.5. Let f(x,y) = x* + y*. Then f.(x,y) = 2x and f,(x,y) = 2y are continuous on
R2. Hence, f is differentiable on R? and Vf(x,y) = (2x, 2y).

Remark. The theorem guarantees that Vf(a) =< f(a), f,(a) > if f; and f| are continuous at

a. Sometimes, the result is still true even if its partial derivatives are not continuous there. For
2 i (1
x“sin (= x,y) # (0,0 )
example, f(x,y) = { 0 (X) Ex i g _ EO 0% . We have seen that f, and f, are not continuous

at (0,0). On the other hand, f,(0,0) = 0 = £,(0,0) and

1) = £O,00 _ W sinGDl 1A sinG)
N A
as < hy,h, >>< 0,0 >. Therefore, Vf(0,0) = (f,(0,0), £,(0,0)).

Remark. Let f : D € R" — R be a function of n variables. Suppose that all first partial
derivatives of f are continuous at a. Then f is differentiable at a and

V@) = {fx(a), fx,(@), - f,,(a)).

Example 14.5.6. f(x;,---,x,) = sin(x; +2x, +- - -+nx,) Then f,, = kcos(x; +2x; + - -+ + nx,)
fork =1,2,---,n. Since f, (x;,---,x,)1s continuous on R" for k = 1,2,--- ,n, f is differen-
tiable on R” and

Vi, x0) = ( cos(xy + -+ 4 nx,), -+ ,ncos(xy + -+ +nx,) ).
Proposition 14.5.7. Let x =< x1, x5, -+ , x, >€ R" and r(x) = ||x||. Then
(1) ViX) = —— = = forx # 0,
r(x) x|
1 X X

(2) V =

(@) _rS(X) = —Wforx * 0.

(3) V(r"(x) = mr"(x)x = mIx|" X for x # 0, m € N.

Proof. (exercise) O
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Theorem 14.5.8. Let f : D C R" — R be a function. If f is differentiable at a, then it is
continuous at a.

Proof. Since f is differentiable at a, we have

[f(a+h) - f(a)-Vf@-hl _

o Ihl| 0
Then
h) —
0<lfa+h - f@l = 2L (“Hli” S@l
fa+h) - fa)- Vi@ [Vf@)-h
h
< | I e
h) — -V
< [If(a+ )~ f@a) - Vi@l IVr@i i
Ih| L/l
0 a5 oo fixed number

By the squeeze theorem,

0 <lim|f(a +h) - f(a)l < lim [V f(a)ll|lhl| = 0.

Hence, f is continuous at a. O

m Geometric viewpoint of defintion of differentiability

. . - (a+Ax,b+ Ay, fla+ Ax, b+ Ay))
For a two variables function z = f(x, y), as x changes surface z = f(x, y) /

from a to a + Ax and y changes from b to b + Ay, the
corresponding increment of z is

A7 = f(a+ 2ax,b+ Ay)— f(a,b)
= fila,b)ax + fi(a,b)Ay + E1AX + &0y

linear approximation error

tangent plane
pect that 1, &, — 0 as (Ax, Ay) — (0,0). =
z— fla, b) = f.la, b)(x — a) + f,(a, b)(y — b)

The following definition is equivalent to Definition T45T.

Definition 14.5.9. Let z = f(x,y). We call that f is “differentiable” at (a,b) if Az can be
expressed in the form

Az = fila,b)Ax + fi(a,b)Ay + &1 Ax + £,Ay

where €1, &, — 0 as (Ax, Ay) — (0,0).

Example 14.5.10. Show that f(x,y) = xe* is differentiable at (1,0) and find its linearization
there. Then use it to approximate f(1.1,—0.1).
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Proof. Since fi(x,y) = €“ + xye” and f,(x,y) = x’¢™ are continuous functions, f(x,y) is
differentiable everywhere. Moreover, f,(1,0) = 1 and f(1,0) = 1. The linearization of f at
(1,0) is

Lx,y) = f(1,0)+ f«(1,0)(x = 1) + £,(1,0)(y — 0)
= 1+(x-D+y
= x+y.

Then

£(1.1,-0.1) ~ L(1.1,-0.1) = 1.1 + (—0.1) = 1.

In fact, f(1.1,-0.1) = 1.1e7%! ~ 0.98542.

14.6 The Gradient Vector and Directional Derivatives

0 Laws of Gradients

Theorem 14.6.1. Let f,g : D C R" — R be differentiable at a and ¢ be a constant number.
Then

(a) f + g isdifferentiable at a and V(f + g)(a) = Vf(a) + Vg(a).
(b) cf is differentiable at a and V(cf)(a) = cV f(a).

(c) fgis differentiable at a and V(fg)(a) = f(a)Vg(a) + g(a)V f(a).

(d) If g(a) # 0, g is differentiable at a and

f

/ g@Vf(@ - f@Vvg@)
g

\Y
( gX(a)

)@ =

Proof. We will prove part(c) here and the proofs of part(a)(b)(d) are left to the readers. Consider

f@+hg@+h - fag@  (f@+h)-f@)g@+h) + f@)(ga+h - g@)
I ]
(fa+h) - fa)-Vf(a)-h)g@a+h) (Vf(a) h)g(a+h)
[h] o i
)
f@)(g(a+h) - g@) - Vg(a - h) f@)(s@-h)
] T

()]

-

-
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Hence,

f@+hyga+h) - f(ag(a) - (s(a+)Vf(a) + f(a)Vg(a)) -h
Ih]

{1

= () + (II).

Since f and g are differentiable at a, }]irr(l)(l) =0, }lin(l)(ll) =0 and lllirrfl) g(a+h)=g(a). Then
lllirr(%(lll) = (. Therefore,

V(f¢)(@) = f(a)Vg(a) + g(a)V f(a).

a Directional Derivatives

In Section M43, we studied the partial derivatives for a two variables function z = f(x,y).
The partial derivative
S (xo + h, yo) = f(x0, Yo)
h

represents the rate of change of z in the x-direction (in the direction of the unit vector i). Simi-
larly,

Sfe(x0,¥0) = }ll_f)%

£i(X0, v0) = lim S (xo0, yo + 1) = f(x0, y0)

y X0, Y0 h—0 h

represents the rate of change of z in the y-direction (in the direction of the unit vector j).
Question: How about the rate of change of z at (xy, y9) in the direction of a unit vector u =<
a, b >.

VA

A unit vector u = {a, b) = {cos 0, sin )

Let P(xy, Yo, 20) lie on a surface S. The vertical plane that passes through P in the direction
of u intersects S in a curve C. The slope of the tangent line 7" to C at the point P is the rate of
change of z in the direction u.
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Let u =< a, b > be a unit vector and z = f(x,y). Consider the quotient difference of z in the

directional u
Az _z—2 _ fxo+ha,yo + hb) — f(xo,y0)

h h h
Taking & — 0, we obtain the rate of change of z in the direction u.

Definition 14.6.2.

(a) Let f : D € R*> — R be a function and (x, yo) € D. The “directional derivatives” of f at
(x0, yo) in the direction of a unit vector u =< a, b > is

Sf(xo + ha,yo + hb) — f(xo,y0)
h

D“ .x s/ —_ 1.] Il

(b) In general, let f : D C R" — R be a function, a € D and u be a unit vector. The directional
derivative of f at a in the direction u is the limit

5 f(a+hu) - f(a)
1m
h—0 h

if it exists and is denoted by D, f(a).

Remark. (i) In the above definition, the direction u is a “unit” vector. Hence, if we want to

compute the directional derivative of f in the direction v, which is not a unit vector, we
. \
should normalize v by u = ﬂ
v

(i) Ifu =< 0,---,0,1,0,---,0 >, then D,f(a) = f.(a). The partial derivative of f with
respect to x; is a special directional derivative in the direction x;.

To compute the directional derivative Dy f(xy, o), there are two common methods:
(1) By the definition
(i) Under certain assumptions, we can use the following theorem.

Theorem 14.6.3. If f : D C R" — R is differentiable at a, then f has a directional derivative
at a in every direction u where u is a unit vector and

Dyf(a) = Vf(a)-u

Proof.
Recall that f is differentiable at a. Then

i @) — @) = V(@) -l _
= I

0.
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Let h = ru and then ||h|| = |¢|||u]| = |¢|. We have
flat+tm) - fa) _fla+m)-jf@-Vf@)-h N Vf(a)-h.

t t t
Hence,
i[O gy o |0 @
_ g |f(a+h)— f(a)-Vf(a)-h|
= lim
h—0 |l
= 0. (since f is differentiable at a)
Therefore,
Dufta) = lim TET I g )
O
y

Note. In particular, if f is a differentiable function
of x and y, then f has a directional derivative in the
direction of any unit vector u =< a,b > and

Dyuf(x,y) = fi(x,y)a + fy(x,y)b.

Moreover, if u =< cos 0, sin 6 >, then

0 X

Dyf(x,y) = fi(x,y)cos 8 + fi(x,y)sin6.

A unit vector u = {a. b) = (cos 6, sin 6)
Remark. If f is differentiable and u is a unit vector, then
Dyf(a) = Vf(a)-u

This means that the directional derivative (the rate of change of f) in the direction of a unit
vector u is the scalar projection of the gradient vector V f(a) onto u.

Example 14.6.4. Find the directional derivative Dy f(x, y) if
flx,y) = x° =3xy+4y*
and u is the unit vector given by angle 6 = . What is D, f(1,2)?

Proof. The gradient of f is
Vf =< fo, f >=<3x* = 3y,-3x + 8y > .

Hence, the directional derivative is

Dy f(x,y)

fe(x,y)cos 0 + fi(x,y)sin@
= (3x* - 3y)cos g +(=3x+ 8y) sing

= %[3 V322 = 3x + (8 =3 V3)y]

13-343

and Dy f(1,2) = ——
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Example 14.6.5. Find the directional derivative of f(x,y) = x*y®> — 4y at (2, —1) in the direction
v =2i+5j.

Proof. The gradient of f is y
Vf=</fofy>=< 2x9°,33% —4 > . // \
v 2 5
Let u=— =——i+——j. The directional - Vi(2,—1) iy
IVl v29 29 v
derivative is \V; o

2 5 32

D.f2,-1)=f.(2,-1) y2’_1 _— - - —
FO.) = £t 2 = N //

0 Differentiability and Partial Derivatives

O

From Definition [4571], we can prove that a differentiable function f havs (all) partial deriva-
tives. In fact, it has directional derivatives in every direction. But the converse is false. There
indeed exists a function which has all directional derivatives but it is not differentiable.

On the other hand, Theorem T454 says that continuity of all partial derivatives implies
differentiability of f. We hope to understand the connection between the partial derivatives and
differentiability.

Theorem 14.6.6. If f : D C R" — R is differentiable at a, then all partial derivatives of f exist

at a and
of of of

Vi@ = (@, 7@, o

@) ).
Proof. Since f is differentiable at a, the gradient vector V f(a) exists and denote
Vf@) =<aj,a,-,a,>.

The partial derivative of f with respect to x; is

g(a) =Vf(@) <0,---,0,1,0,--- ,0>=q;
(9Xi
fori=1,2---,n. Hence Vf(a) = <g—£(a),g—£(a),-~ ,g){(a)>.

Note. If f is differentiable at a, then we can explicitly write the form of V f(a).

Conclusion: Let f : D C R" — R be a function. Then

‘All partial derivatives of f exist and are continuous at a ‘

U
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£ is differentiable at a and V f(a) exists and V f(a) = ( %(a), g—){z(a), _— ij(a) ).

U

All partial derivatives of f exist and the directional derivative D f(a) = Vf(a) -u ‘

Note. All the converse of the above arrows are false.

0 Maximizing the Directional Derivatives

Suppose that f : D C R" — R is differentiable at a. Then all directional derivatives of f at
a exist and

Dyf(a)=Vf(a)-u

for any unit vector u.
Question: In which direction does f change fastest and what is the maximum rate of change?

Observe that the rate of change of f in the direction u is

Dyf(a)=Vf(a)-u= IIVf(a)Ilwcow = [IVf(a)llcos §

=1

where 6 is the angle between the two vectors Vf(a) and u. Hence, the maximum value of
D, f(a) occurs when 6 = 0.

Theorem 14.6.7. Suppose that f is differentiable at a. Then

(a) The maximum value of the directional derivative Dy f(a) is ||V f(a)|| and it occurs when u
has the same direction as the gradient vector V f(a). That is, the function f at a increases
fastest in the same direction of V f(a).

(b) Similarly, the minimum value of the direction derivative D, f(a) is —||V f(a)|| and it occurs
when u has the opposite direction to the gradient vector V f(a). That is, the function f at a
decreases fastest in the opposite direction to V f(a).

(c¢) The function does not change in the direction of w which is perpendicular to V f(a).
Example 14.6.8. Let f(x,y) = xe’.

(a) Find the rate of change of f at the point P(2,0) in the direction from P to Q(%, 2).

— 3 PC 3 4
Proof. The vector PQ=< ——,2 >andu = O =< ——, = >. The gradient of fis Vf(x,y) =
2 — 5°5
PO -
< e, xe” > and Vf(2,0) =< 1,2 >. Hence, the rate of change of f in the direction PQ is
Dyf(1,2)=<1,2>-<-3,2>=1. O
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(b) In what direction does f have the maximum rate of change? What is this maximum rate of
change?

Proof. f increases fastest in the direction of the gradient vector Vf(2,0) =< 1,2 > and the

maximum rate of change is [[Vf(2,0)[| = || < 1,2 > || = 5. O

YA
24

7
JN

ST

S

Example 14.6.9. Suppose that the temperature at a point (x, y, z) in space is given by

80
1+ x2+2y2+ 322

T(x,y,2) =

where T is measured in degree Celsius and x, y, z in meters. In which direction does the tem-
perature increase fastest at the point (1, 1, —2)? What is the maximum rate of increase?

160

Proof. The gradientof T is VT (x,y,z) = 1+ 2122 1 322)

(—xi — 2yj — 3zk) and then VT'(1, 1, -2) =

2(—i — 2j + 6k).
The temperature increases fastest in the direction of the gradient vector VT'(1,1,-2) =
%(—i — 2j + 6K) or —i — 2j + 6k. The maximum rate of increase is

541
8

50 . 0
IVT(L 1, =2)l = 2l =1 = 2j + Okl = ~4 (°C/m).

14.7 The Chain Rule

m Chain Rule: First Version

Recall the for single variable functions y = f(x), x = g(®), y = f (g(t)) is a composite
function of variable 7. Then
dy dydx
dt — dxdt’
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For a two variables function z = f(x,y), if x = g(t) and y = h(1), then z = f(g(1), h()) is
indeirectly a function of ¢, say z = z(#). Suppose that z = f(x,y) is differentiable and, x = g(7)

and y = h(¢) are differentiable. Then

felx, y)Ax + fi(x,y)Aay + sle + & Ay
AX Ay

At + & —— Al + &——At
At At

AZ
felx, y) At + filx, y)

(0,0). Since x = g(¢) and y = h(¢) are differentiable in ¢, we

where g1,&, — 0 as (Ax, Ay) —
A d A d

have—x - _x an 2, —yasAt—>O Then, letting At — 0,
At dt At dt

AZ dx dx dy

At - fx(X,)’)E + fy(X,)’) + 111%81 I + EI_)%SZ u

S~—— S~——

=0 =0

We obtain
d li = filx ) + ( )
dt Af 0 At fx y f;’ 'x y
In Chapter 3, we studied the n vector-valued functlon r(t) =< x;1(t),--- ,x,(t) >: I > R".

If r(?) is differentiable on I, then

() =< xi(1), -, x,(t) > .

Theorem 14.7.1. (Chain Rule)

(a) (Two variables function) Suppose that z = f(x,y) is a differentiable function of x and y
where x = x(t) and y = y(t) are both differentiable functions of t. Then z is a differentiable

function of t and
d_ofdx ofdy ozdv ocdy
dt  dxdt dydt dxdt Odydt

(b) (General multiple variables function) Suppose that f : D C R" — R is a continuously
differentiable function. If r = r(t) is a differentiable curve in D, then f or is differentiable

and 4
2 (F(r0)) = V£ (x) ¥ 0.
Proof. It suffices to prove the case n = 2 and the general cases are similar.

Since x = x(¢) and y = y(¢) are differentiable in ¢,
d d
Ax = x(t + At) — x(t) = d—):At + et and Ay =y(t+ At) - y(t) = d—i}At + &y At

where 1,6, — 0 as At — 0 as well as

A d
oM ad im 2=

m-—=— n
at—0 At dt at—0 At dt

Clearly, Ax, Ay — 0 as At — 0.



378 CHAPTER 14. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

On the other hand, since f is differentiable,

AZ

S+ Ax,y+ Ay) — f(x,y)
L y)ax + f,(x, y)Ay + £30x + g4y

where €3,&4 — 0 as (Ax, Ay) — (0,0). Then

Az Ax Ay Ax Ay
— = L, y)— + f(x,y)— +&3— +&a—.
~ fi( y)At S y)m v

Taking limits as At — 0, we have

dz . Az . AXx . Ay
a = ima = Aeon (Im) +heen (i 1))
N e
y
+(Jimes) (lim =) + (lim ey) ( lim =)
=0 =0
dx dy
- fx(-x’y)E-'-f;i(x’y)E
3 8zdx+(9zdy
© dxdt  Oydt

d
Example 14.7.2. If z = x?y + 3xy*, where x = sin2¢ and y = cos t, find d—i when ¢ = 0.

0 0
Proof. Compute a—z = 2xy + 3y* and 6_Z = x> + 12xy°. Then
X y

dz Ozdz 0z Q

—_ —_— + —_
dt oxdt Oydt
= (2xy + xy")(2cos 2t) + (x* + 12xy°)(—sin?)
= (2sin2tcost + 3 cos* 1)(2 cos 2¢) + (sin® 2z + 12 sin 2¢ cos® £)(— sin ?).
dz
Atr=0, —| =
0, dt =0 6

dz . .
Note that o represents the rate of change of z with respect to ¢ as the point (x,y) moves

along the curve C with parametric equation r(f) =< sin2¢,cost >. m|

Example 14.7.3. Compute the rate of change of f(x, y,z) = x*y+zcos z along the curve r(f) =<
L1242 >.

Proof. Compute

Vf(x,y,z) =< 2xy,x*,cosz—zsinz> and r'(f) =< 1,213 > .
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YA

=Y

The curve x =sin 2t, y =cos t

Then

Vf(r@) -r'()
<28, cost® —sine® > - < 1,2t 3¢ >
48 + 32 cos P — 3P sin £ .

2 (r(r0)

Remark. (1) Suppose that f(x) = f(xy, x2, -, x,) and r(¢) =< x;(¢), -+ , x,(¢) >. Then

Vfx) =< —f( )s —f( ), o

(x)> and r'(r) =< x{(1),---,x,(t) >

" 0x,
Hence,
d
Z(Frm)) = V(@) ro
0
= —f<> f() ,af(x>>-<x'1(r),~-,x;<r>>

f
(9_ r(t) x.(1)

r(1)) 0

>
"f dx;
S

(2) Recall that the directional derivative of f at (a, b) in the direction u (unit vector) is

Dyf(a,b) =Vf(a,b)-u.

Let the plane curve r(t) pass < a, b > when t = 1, (that is, r(ty) =< a,b >). Then

2 (#(rc0)

= Vf(r(t)) - ¥'(t0) = I’ (20)l1Du f (@, b)

r'(f)
e’ (o)l

where u =

379

This means that the rate of change of the composite function f (r(t)) at

t = 1y is equal to ||r'(#p)|| multiple of the directional derivative of f at r(#y) in the direction

r'(t).
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Corollary 14.7.4. If x = x(t) and y = y(t) are twice differentiable at t and if z = f(x,y) is twice
differentiable at (x(t), y(t)), thenz = f (x(t), y(t)) is twice differentiable at t and

d’z  dzd’x <dx>262z 5 0%z dxdy . <dy>262z N dzd’y
0y oOydfr

_ = — 4+ [ — 2 2 -
drr  Ox dr dt’/ 0x*  9xdy dt dt dt
Proof. (Exercise) O

m Chain Rule: Second Version

Let z = f(x,y), x = x(s,t) and y = y(s, ) be differentiable functions. Then z = z(s,?) =
f (x(s, 1), y(s, t)) is indirectly a function of s and ¢. Consider the partial derivative of z with
respect to . From the discuss in Section [473, fixing s (as a constant w.r.t 7) and regarding z as
a function of . We can use the idea of Casel to find the partial derivative of z with respect to t.

Theorem 14.7.5. (Chain Rule)
(a) Suppose that z = f(x,y) is a differentiable function of x and y, where x = x(s,t) and
y = y(s, t) are differentiable functions of s and t. Then

bz _ 0zdx dzdy 0z dzdx 0udy
ds  dxds  0Oyds’ ot dxadt Ayt

z
oz oz
9x ay
X y
9x 9x  dy 9y
os / \ ot os / \at
S t S t

The tree diagram is

(b) If x = x(s,t) and y = y(s, t) are differentiable at (s,t) and 7 = f(xl, N x,,) is differentiable
at (xl(t),xn(t)) then

0z 0z 0x, R 9z dx, i 97 Ox; J

- = e = _— an

s 0x; 0s 0x, 0s — ox; Os

0z 0z 0x; 9z dx, ~ 0z Ox;

_ = 4 e 4 = [

ot ox; Ot ox, Ot Z ox; Ot

. ) 0z 0z
Example 14.7.6. If z = ¢*siny, where x = st and y = s°¢, find s and e
Ry

Proof. Compute that
oz . z
— =e'siny, — =e'cosy

0x ay
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and p p p p
X _p OX y y 2
— =, — =2st, — =2st, — = §".
ds o~ " s or °
Then
0z 0z (9x 9z dy 5 . s 2
= T+ - 2st
% " 3x B 6y6s e”siny e cosy-2s
= e sin(s’t) + 2ste’ cos(s%1).
and

0z _ 0z0x 0z dy 5 5

+ — = ée’siny-2st+e*cosy- s
9 oxor  dyor Y Y
= 2ste’ sin(s%f) + s>e* cos(s%1).

O

Corollary 14.7.7. Suppose that z = f(x,y) is a twice differentiable function of x and y, where
x = x(s,t) and y = y(s, t) are twice differentiable functions of s and t. Then

Pz _ g(%) 0 [azax+ 0z6y}
ds> ds\0s ds Lox ds oy ds

| (Faox, oc oy o oo

0x*ds  0Oyoxds’ ds  Ox 0s?

( 0’z @+3_%@)5_y+%5_2y

Oxdyds  0y*0s’ ds 0Oy ds?

(92
Example 14.7.8. Let u = f(s> + 22, st) Find ——~ .

0sot
Proof.
0 0 0
a—b; = —f(s + 12, 51) - 2t + a]yt(s2 + 12, 51) - s.
and
d*u 0 /0u f i f
—=—(=) = + 12,502 2t+ + 12, s1)(2¢
g = o (5) = S+ D@ + o5+ 2L snRr)
5 2
0
i — L (s®+ 12,5025 5+ f(s + 12,501 5+ f(s2 + 12, 51) - 1.
(9x6y o0y? ay
O
m Chain Rule: General Version
Suppose that u is a differentiable function of n variables xy,--- , x, and each x; is a differ-
enbitable function of m variables #;,--- ,t,. Then u is a differentiable function of #{,--- ,t,

and
Ou  Oudx; Ou dx, ou 0x,

o ox 0 ox ;| ox, a,

foreachi=1,2,--- ,m.
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Example 14.7.9. Letw = f(x,y,2,1), x = x(u,v), y = ¥(u,v) and z = z(u, v). Then
ow _ Ow ax ow (9y ow (9z ow ot / \
O Ox 6u 6y 6u dz au 9t Ou / \
and
ow 8w8x+8w8y+0w0z+(9w8t / \ / \ / \ / \
v dx dv dyodv 0z 0v Ot Ov
u

Example 14.7.10. If u = x*y + y?z, where x = rse', y = rs*e™" and z = r*ssint, find the value

ofa—uwhenr:Z,s:Iandt:O.
s

Proof.
ou ou ou
_:43’_:4 23,_:322
Ox xy dy A 0z yz
and 3 3
8—): = ret, a—i = 2rse_t, 0_§ =r°sint u
Then / ‘ \
Ou  Ou ébc ou 8y Ou 0z X y z
ds (9x6s 6y6s 0z 0s /’\ /‘\ / \
= 44Xy -re' + (x* + 2y7°) - 2rse” + 3y’ - PP sint.
r s t r s t r s t
When (r, s,t) = (2,1,0), x =2,y = 2 and z = 0. Hence,
0
o =64-2+16-4+0-0=192.
0s 1 (r.s,0=(2,1,0) a

Example 14.7.11. If z = f(x, y) has continuous second-order partial derivatives and x = r* + s*

0z 0%z
and y = 2rs, find 0_ and Frh
Proof.

0z 0z0x 0z0y 0z 0z
== = 221 + =(25). 0z
ar ~ dxor " dy or ax( o+ 8y( ) -

ox
and
&z ﬁ(%) _ 2[&%+ 3ZZ}+2% / \

o2~ or\or "L9x2 or 0yox ox

X Yy
0’z ox 8%z 0y
2|+ |
oxdy or ~ 0y?* Or
2 2 5z
r S r S

0z ,07z2 ,0z
= 2— +4r +4s°— +8 .
ax e a2 T P axdy
&z :
Note that since f has continuous second partial derivatives. m|

0x0y - O0yox
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14.8 Mean Value Theorem and Implicit Differentiation

1 Mean Value Theorem

Theorem 14.8.1. (Mean Value Theorem) Let [ : D C R" — R be a function and the segment
ab C D. If f is differentiable at every point on ab, then there exists ¢ € ab such that

f(b) = f(a) = Vf(c)- (b—a).

Proof. Letg(t) = f(a+1(b—a)). Forre[0,1],a+17(b—a)e ab, g(0) = f(a) and g(1) = f(b).
Since f is differentiable at every point on the segment ab, g(7) is differentiable on [0, 1] and

g =Vf(a+ib-a)-(b-a).

By the mean value theorem for single variable function, there exists #, € (0, 1) such that

Jb) - f@ = g)-g(0) =g t)1l-0)
Vi(a+t(—a)-(b—a)=Vf(c):(b-a)

where ¢ = a + 1y(b — a). O

Corollary 14.8.2. Suppose that f(x,y) is differentiable on an open set containing the line seg-
ment connecting the point P(xy,yo) and Q(xo + h,y + k). Then there exists 6 € (0,1) such
that

f(xo +h,yo + k) — f(x0,y0) = hfi(xo + 6h,yo + 6k) + kf,(xo + 6h, yo + 6k).

Proof. (Exercise)

0 Implicit Differentiation

Recall that if the two variables x and y have a relation, for example xy* + xsiny = 1, we can

d
find d_y By differentiating of both sides,
X

d, , ) d
a(xy + xsmy) = E(l)

we have
dy Yy +siny
dx  2xy+xcosy’
In general, for the equation F(x,y) = 0 where F is differentiable, we can regard y as a

function of x. To find _y’
X

%(m, ») = %(0)

We have
OF dx +8F dy 0
dx dx = dydx
7
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and then o
dy _ o __F«
=--T =
dx % Y

Note. The “Implicit Function Theorem” give conditions under which this assumption is valid:
if F is defined on a disk containing (a, b) where F(a,b) = 0, Fy(a,b) # 0, and F, and F, are
continuous on the disk, then the equation F(x,y) = 0 defines y as a function of x near the point
(a, b) and the derivtive of y with respect to x is

dy _ Fx
dx B Fy.
if f,(a,b)#0 then the
slope is @ =— &
dx f:u
e Y O ey =0
. ) C:flz,y)=0
~ = f(fl"a y)
=(z -2+ (y—2+1 :

d
Example 14.8.3. Find d_y if x> +y3 = 6xy.
x

Proof. Let F(x,y) = x* + y* — 6xy. Then F, = 3x* — 6y and F, = 3y* — 6x. We have
dy F, 3x*-6y x*-2

dx Fy__3y2—6x__y2—2x.

6z &
Question: If z = f(x,y) or F(x,y,7) = 0, how to find = and (9_Z ?
X

For F(x,y,z) = 0, we can regard z as a function of x and y, say z = f(x,y). Then
0
F(x,y, f(x,y)) for all x,y € Dom(f). Find a—z Consider
X

0 OF dx OF dy O0Fdz 0

—(F(x,y,2)) = — — +— = +——==—(0)=0.

6x< (xyz)) Ox dx+6y dx+0z<9x Ox()
R

Therefore,
0 F, .
£ = —E prov1ded FZ * 0

.. 0z F y .
Similarly, — = —— provided F, # 0.
dy  F;
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0 0
Example 14.8.4. Find — and == if x> + y? + 23 + 6xyz = 1.
ox ay

Proof. Let F(x,y,z) = x> +y* + 22 + 6xyz — 1. Then
F,=3x*+6yz, F, = 3y* +6xz, F, = 37 + 6xy.

We have

0z F, X+ 2yz 0z F, v+ 2xz
—=—-—=- and —=-—=- .
Ox F, 22+ 2xy dy F, 22+ 2xy

O

We give the Implicit Function Theorem here. It will be discussed in the course of Advanced
Calculus.

Theorem 14.8.5. (Implicit Function Theorem) If F is defined within a sphere containing (a, b, ¢),
where F(a,b,c) = 0, F(a,b,c) # 0, and F\, F, and F_ aer continuous inside the sphere, then
the equation F(x,y,z) = 0 define z as a function of x and y near the point (a, b, c) and this
function is defferentiable and

0z  F, 0z Fy

— =—-— d —=-—.
o0x F, o ay F,

14.9 Tangent Plane to Level Surface

In SectionT4-4, we have learned that the equation of the tangent plane to the surface S : z = f(x,y)
at P(xo, o, 20) 18

Z =20 = fi(x0,y0)(x — Xo) + fy(XanO)(y = Yo)- (14.3)

Define F(x,y,z) =z — f(x,y). Then

S = {(x’y’z) | <= f(x,)’)} = {(X,y,z) { Z_f(x’y) = 0} = {(x,y,Z) | F(x,y,Z) = O}

is a level surface of F when the value is equal to 0. Hence, (I43) also interprets the equation of
the tangnet plane to the level surface of F at P.

From the same spirit as above, we consider a differentiable function F(x,y, z) of three vari-
ables x, y and z. Let S be a level surface with equation F(x,y,z) = k and X =< Xy, yp,20 >€ S.
To find the tangent plane to S at x, it suffices to find the normal vector of S at x.

Theorem 14.9.1. Let F : D C R® — R be continuously differentiable and S C D be a level
surface of F. If X =< X¢, 0,20 >€ S and V f(X) # 0, then Vf(X) is perpendicular to S at x.

Proof. In order to prove Vf(x) is perpendicular to S at x, it suffices to show that the vector
V f(x) is perpendicular to any curve on S passing X (the tangent vector to the curve at x).
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VF (X9, Y0 29)

Let C : r(r) =< x(t), y(t), z(t) > be a differentiable curve that
lies on S and passes through x =< x¢, yp, 20 > when ¢ = 1. Let
S be the level surface with equation F(x,y,z) = k. Then

tangent plane

F(x(0) = F(x(0), y(1), 2(1)) = k.

Hence,

OF dx  OFdy | OF dz
Ooxdt dydt O0zdt
OF OF OF dx dy dz
<> <=5, >
ox oy 0z dt dt dt
= VF (r(t)) -1'(1)

0=%VWW}=

Taking t = ty, VF(X) L r'(ty).

Note that r'(#) is a tangent vector lying on the tangent plane. Since C is an arbitrary curve
on S, any vector on the tangent plane (to S at x) is perpendicular to VF(x). Therefore, VF(X) is
the normal vector of the tangent plane to S at x. O

Note. (1) Let S be the level surface with equation F(x,y,z) = k and X =< Xx¢, 9,20 >€ S. If
VF(x) # 0, it is natural to define the tangent plane to the level surface S at x as the plane
that passes through x and has normal vector VF(x). The equation of the tangent plane is

VF(x0,Y0,20)" < X— X0,y —Y0,2— 20 >= 0.

That is,

F,(x0, Y0, 20)(x = x0) + Fy(X0, Y0, 20)(y — yo) + F(x0, Y0, 20)(z — 20) = 0.

(2) Consider the special case that the surface S with equation z = f(x,y) which is the graph
of a function f of two variables. Let F(x,y,z) = f(x,y) —z. Then S is with the equation
F(x,y,z) = 0. Also,

F(x0,Y0,20) = fx(x0,¥0),  Fy(X0,¥0,20) = fy(x0,¥0), and F.(xo,y0,20) = —1.

The equation of the tangent plane to S at (x, yo, 20) 18

J(x0, y0)(x = x0) + fy(x0, Y0)(y — yo) + (—=1)(z — 29) = 0.

Example 14.9.2. Find the equation of the tangne tplane at the point (-2, 1, —3) to the ellipsoid

X2 2

) 2
—_ —:3_
R

Proof.
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2 2
Let F(x,y,2) = xz +y2 4+ . Then the ellipsoid is the level surface
(with k = 3) of F(x,y,,z). Then 47

2..
X 2z
F, = > Fy, =2y and FZZK.

0T ]
|

2
Hence, F(-2,1,3) = =1, F\(=2,1,3) =2 and F(-2,1,-3) = -3 z-27
The equation of the tangnet plane is

_4__
2 _
—(x+2)+2(y—1)—§(z+3)20 61
M%
or 00 2
3x—6y+2z+ 18 =0. y X

a Normal Line

The normal line to S at x is the line passing through x =< x, ¥, 20 > and perpendicular to
the tangent plane. The direction of the normal line is the gradient vector VF(x). The symmetric
equation are

X — Xp _ Y —Yo _ =20
Fo(x0,¥0,20)  Fy(x0,¥0,20)  F2(x0,Y0,20)"
Example 14.9.3. As the above example, the equation of the normal line is

x+2 y-1 z+43

_ 2 "
1 2 -5
a Significance of the Gradient Vector
Consider the function f(x,y) of two variables.
i z2=f(xy)
Y Vf(xo, ¥o)
i P(xy, yo)
{ l y level curve/
| e | ” Xy =k
t/____ \\j 0 Jxy) N
“W.\"‘”h\.-.,.—‘—w" x‘
Level curve flx,y) =k

X of height k

e The gradient vector V f(xy, yo) gives the direction of fastest increase of f. Intuitively, it is
because the values of f remain constant as we move along the level curve.
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J e
/ ."// ._/'——-_ =y

.-’f. \r\_'\ I\L [ Ill/_:\
% ; . \.:-[:\h | ‘

/

Wy H"“""\_\
\k : e
Kb "W ]

5 T

\
1
h

i -
f X
curve o TR e .
T SRR | | by r
steepest "\ ;
ascent ——

a curve of steepest ascent is with direction a gradient vector field for the
Vflx,y ) It is perpendicular to all of the fuctnion f(x,y)=x* - y>
contour lines.

e Vf(xo,y0) is perpendicular to the level curve f(x,y) = k that passes througth (xy, yo).
e For a plane curve C : y = f(x), define F(x,y) = y — f(x). Then C is a level curve of F. If
(X0, y0) € C, then VF(xy, yy) is the normal vector of C at (xo, yo).

Example 14.9.4. Let C be the curve defined by C = {(x,y) | x*+)* = 9}. Find the tangent
line of C at (1, 2).

Proof. Let f(x,y) = x>*+y*. Then C is a level curve of f (with k = 9). The gradient vector
V£,2) =< %(1, 2), 3_];(1,2) >=< 2,12 > is the normal vector of C at (1,2). Hence, the
tangent vector of C at (1,2) is < 12, -2 > (perpendicular to < 2, 12 >). The equation of
the tangent line to C at (1,2) is

<x-1,y-2>-<2,12>=0 or 2(x-1)+12(y-2)=0.

14.10 Maximum and Minimum Values

In the present section, we will study the extreme values of two variables function f(x,y). Recall
that, of a single variable funciton f(x), we find the critical points as candinates and determine the
extreme values by first derivative test or second derivative test. For a muti-variables functions,
we also want to find the critical points by considering the directional derivatives.

Definition 14.10.1. Let f be a two variables function on D. We say that
(a) f has alocal maximum (minimum) at (a, b) if
fy) < flab)  (f(xy) = fa,b)

when (x,y) is near (a, b). [This means that f(x,y) < f(a, b) for all point (x,y) in some dist
center (a, b)]. The number f(a, b) is called a “local maximum (minimum) value’.
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(b) f has an absolute maximum (minimum) at (a, b)if

fGey) < fla,b) (f(x.y) = f(a,b))
for all (x,y) € D. The number f(a, b) is called an “absolute maximum (minimum) values”.

(c¢) The maximum and minimum values of f are called the “extreme values of f”.

absolute
&, maximum

S ‘3\\\_!%%';
Nt
N
N

bsolute \
absolute \“O'

minimum ¥

Question: How to find the extreme values of f?

Theorem 14.10.2. If f has a local maximum or minimum at (a,b) and the first-order partial
derivatives of f exists there, then f(a,b) = 0 and f,(a,b) =0. (Vf(a,b)=0)

Proof. Let g(x) = f(x,b). If f has a local maximum or minimum at (a, b), g has a local
maximum or minimum at a. Thus, 0 = g’(a) = f(a, b). Similarly, f,(a,b) = 0.
O

Note. The geometric interpretation is that if the graph of f has a tangent plane at a local maxi-
mum or minimum, then the tangent plane must be horizontal.

Definition 14.10.3. We call that point (a, b) a “critical point” of f if either (1) f.(a,b) = 0 and
fi(a,b) = 0 or (2) one of fi(a,b) and f,(a, b) does not exist.

Example 14.10.4. Let f(x,y) = x> + y* — 2x — 6y + 14. Find the critical point of f.

z

Proof. The partial derivatives f(x,y) = 2x — 2 and
f(x,y) = 2y — 6. Therefore, fi(x,y) = 0 when x = 1
and f,(x,y) = 0 when y = 3. The point (1, 3) is a critical
point of f. In fact, f(x,y) =4+ (x— 1>+ (y—3) ahsa
local and an absolute maximum at (1, 3). O 0

ST

z=x*+y*—2x—6y+14
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Remark. The above theorem says that if f has a local maximum or minimum at (a, b), then
(a, b) is a critical point of f. However, not all critical points give rise to maximum or minima.

Example 14.10.5. Find the extreme values of f(x,y) = y> — x%.

Proof. The partial derivatives f, = —2x and f, = 2y.
Then f, = 0 when x = O and f, = 0 wheny = 0. The
point (0, 0) is a critical point of f. But f(0,0) is neither a
local maximum nor a local minimum.

Indeed, on the x-axis, f(x,y) = —x> < 0if x # 0 and on
the y-axis, f(x,y) = y*if y # 0. o

Z=y2—x2

Note. Near the origin the graph has the shape of a saddle and so (0, 0) is called a “saddle point”
of f.
0 Second Derivative Test

Theorem 14.10.6. Suppose that f., [y, fyx and f,, are continuous near (a,b) and f.(a,b) =
fy(a,b) = 0 (that is, (a,b) is a critical point of f). Let

D = D(a,b) = fula, b)fyy(a,b) = [foy(a,b)I*.
(a) If D > 0 and fy,(a,b) > 0, then f(a, b) is a local minimum.
(b) If D > 0 and f,(a,b) <0, then f(a,b) is a local maximum.
(c) If D <0 and f(a,b) is not a local maximum or minimum.
Note. (1) In case(c), (a, b) is called a “saddle point” of f.

(2) If D = 0, the test is inconclusive, f could have a local maximum or local minimum at (a, b),
or (a, b) could be a saddle point of f.

3)
e f
D=1 h

Example 14.10.7. Find the local maximum and minimum values and saddle points of f(x,y) =
oyt —dxy + 1.

= fxxfyy - (fxy)2

Proof. The first and second partial derivatives of f are f, = 4x° — 4y, f, = 4y® —4x, fi,. = 1227,
fo = —4 = f,rand f,, = 12y*. Then f, = 0 when x* = y and f, = 0 when y* = x. We can solve
the critical points of f are (0,0), (1,1) and (-1,-1), and

D(x, y) = fxxf;'y - (fxy)2 = 144x2y2 —16.

e At (0,0), D(0.0) = —16 < 0. Then f has neither a local maximum nor a local minimum
at (0,0).



14.10. MAXIMUM AND MINIMUM VALUES

391
o At(1,1),D(1,1) =128 > Oand f,,(1,1) = 12 > 0. Then f(1,1) = —1 is a local minimum
of f.

o At(-1,-1), D(-1,-1) = 128 > 0 and f,,(—1,-1) = 12 > 0. Then f(-1,—-1) = -l isa
local minimum of f.
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Example 14.10.8. Find and classify the critical points of the function f(x,y) = 10x*y — 5x* —
4y? — x* — 2y*. Also find the highest points on the graph of f.

Proof. The first and second partial derivatives of f are

fo = 20xy—10x-4x", f, = 10x*=8y—8y’, fi, = 20y=10-12x%, f,, = f,. = 20x, f,, = —8-24y”.

To find the critical points of f by solving f, = Oand f; = 0, we have (x, y) = (0,0), (£2.64, 1.90), (+0.86,0.65).

Critical point | Value of f Jfrx D Conclusion
(0,0) 0 -10 80 local maximum
(+£2.64,1.90) 8.50 —55.93 | 2488.72 | local maximum
(+0.86,0.65) -1.48 -5.87 | —187.64 saddle point
The highest points on the graph of f are (+2.64, 1.90, 8.50).
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Example 14.10.9. Find the shortest distance from the point (1, 0, —2) to the plane x+2y+z = 4.

Proof. Let (x,y,z) be a point on the plane x + 2y + z = 4. The distance from (x, y, z) to (1,0, =2)
is

d(x,y,2) = V(x =12 +y2 + (z +2)%

Taking z = 4 — x — 2y, thend = /(x — 1)2 +y? + (—=x — 2y + 6)2. Consider f(x,y) = d*(x,y) =
(x — 1)®> +y? + (=x — 2y + 6)%. The first and second partial derivatives of f are

fe=dx+4y—14, £, =4x+ 10y =24, fiy =4, foy = fue =4 fy = 10.

11 5
To find the critical point of f by solving f, = 0 and f, = 0, the point (x, y) = (F’ 5) is the only
critical point of f. Also, D = 4-10 — 4% = 24 > 0 and f,, = 4 > 0. By the second derivatives
11
> ——. In fact, it is the absolute

11 5
test, f(x,y) has a local minimium at (g, 5). Then d(g, §) = Ve
minimum.

O

Example 14.10.10. A rectangle box without a lid is to be made from 12m? of cardboard. Find
the maximum volume of such a box.

Proof. Let x,y and z be the length, width and height of the box. Then the volume of the box
is V(x,y,z) = xyz and the area of the four sides and the bottom is 2xz + 2yz + xy = 12. Hence

and we can rewrite the volume function

ST 21y
12xy — x*y?
Vixy) = —2 =2
(x,y) 21y
Consider
vV Y12 -2xy — x%) d oV x*(12-2xy—y?)
_— = an _— = .
ox 2(x +y)? oy 2(x + y)?

The critical point of V is (2,2). We can use the second derivative z
test to check that V has a local maximum at (2,2,1). Then the
maximum volume of the box is 4m>.

a Absolute Maximum and Minimum Values

Question: Under what conditions does a function f(x,y) have (absolute) extreme values?

Recall that, for a single variable function f(x), we have the “Extreme Value Theorem’ that
if f is continuous on a closed interval [a, b], then f has an absolute maximum value and an
absolute minimum value.

Question: How about two variables function f(x, y)?
Heuristically, corresponding to the “closed interval” in R, a “close set” in R? is a set contains
all its boundary points. Also, a bounded set in R? is a set that is contained within some disk.
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A :_ _:
{ \
| |
\ / | |
b - y
(a) Closed sets (b) Sets that are not closed

m Extreme Value Theorem

Theorem 14.10.11. If f is continuous on a closed and bounded set D in R?, then f attains
an absolute maximum value f(x;,y,) and an absolute minimum value f(x,,y,) at some point
(x1,y1) and (x2,y>) in D.

Note. If f(x,y) has an extreme value at (x;,y;), then (xy,y;) is either a critical point of f or a
boundary point of D.

Question: How to find the absolute maximum value or minimum value of a continuous func-
tion f(x,y) on a closed and bounded set D?

m Strategy:
(1) Find the values of f at the critical point of f in D.
(2) Find the extreme value of f on the boundary of D.

(3) Check the values in (1) and (2). The largest value is the absolute maximum value and the
smallest value is the absolute minimum.

Example 14.10.12. Find the absolute maximum and minimum values of the function f(x,y) =
x* — 2xy + 2y on the rectangle D = {(x,y) | 0 < x <3, 0 <y <2}.

Proof. Since f is a polynomial on the closed and bounded set D, there exists absolute maximum
and minimum values in D.
First of all, we find the critical points of f in the interior of D. The partial derivatives of f

are f, = 2x — 2y and f, = —2x + 2. Hence, (1, 1) is a critical point of f in D and |f(1,1)=1|.

Next, we consider the candinates of extreme point on the boundary D. The boundary of D
consists of four lines L, L,, L; and L,.

e For(x,y) e L;,0 < x<3andy =0, f(x,0) = X2 is increasing. On L;, f has a local
maximum |f(3,0)=9 |and a local minimum | f(0,0)=0|.

e For(x,y) € L,,x=3and0 <y <2, f(3,y) = =4y + 9 is decreasing. On L,, f has a local
maximum |f(3,0)=9 |and a local minimum | f(3,2)=1|.

e For (x,y)€L3,0<x<3andy=2, f(x,2) = x> —4x+4 = (x—2)>. On L3, f has aloca

maximum and a local minimum .
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e For (x,y) € Ly, x =0and 0 <y < 2, f(0,y) = 2y is increasing. On L4, f has a local

maximum and a local minimum .

Hence, f has an absolute maximum value f(3,0) = 9 and an absolute minimum value f(0,0) =
f(2,2)=0.

VA
L 2,2
0,2) @2 5y
L, L,
(0’ O) Ll (3’ O) X

flx,y)=x>—2xy+2y

14.11 Lagrange Multipliers
In the present section, we will study the Lagrange’s method to maximize or minimize a general
function f(x) subject to a constraint (or side condition) of the form g(x) = k. The method works

for n variables functions but we will only consider 2 or 3 variables functions in this section.

m Geometric basis of Lagrange’s method (for two variables functions)

Let f(x,y) and g(x,y) be two differentiable functions. The goal is to find the maximum (or
minimum) of f(x,y) subject to the constraint g(x,y) = k. For (x,y) satisfies g(x,y) = k, the
point (x, y) lies on the level curve of g(x, y) with the value k.

We want to find a point(s) (xo, yo) on the level curve C = {(x,y) | g(x,y) = k} such that
f(x0,y0) = f(x,y) forall (x,y) € C. (14.4)

Suppose that (xg,y9) € C satisfying ([44) and

f(x0,y0) = M. Then (xp,y9) 1s also on the level 74

curve C| = {(x, Il fx,y)=M } Moreover, since

(x0, yo) 1s the maximum point, the two level curve C

and C| must be tangent each other at (xy, yo). flx, y) =11

> _

Since C and C; are level curves of g and f respec- X f(x y) =10

tively, the gradient vectors Vg L C and Vf L C;. g(x, y)=k flx,y)=9

Then Vg(xo,yo) is parallel to V f(xq,yo). Therefore, flx,y)=28

there exists a number A (“Lagrange multiplier”) such flx,y)=17

that < >
V (0, y0) = AVg(x, Y0)- 0 X
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Conclusion: The candidnate point(s) where the extreme values occur must satisfy

{ Vf(x,y) = AVg(x,y) for some number A
gx.y) =k

m Lagrange methods for three variables functions

For finding the extreme values of f(x,y,z) subject to the constraint g(x,y,z) = k, by the
same argument as above, if the maximum value of f is f(xg, yo,20) = M where (x, yo, 20) lies
on the level surface S = {(x,y,2) | g(x,y,z) = k}. Then the level surface {(x, y,z) | f(x,y,2) = M}
is tangent to S at (xo, Yo, 20). We have

V f(x0, Y0, 20) /| V&(x0, Y0, 20)-

(Intuitive veiwpoint) Let S be the level surface with equation g(x, y, z) = k. For every curve
r(t) =< x(t), y(t), z(r) > lie on S, the tangent vector r'(1) L Vg(r(z)) for every ¢.

Suppose that f has an extreme value at P(xo, yo,20) € S and r(¢) is a curve on S passing P,
say r(ty) =< Xo, Y0, 20 >. Consider the function A(t) = f (r(t)) which has maximum value at ¢,.
Then 0 = /(o) = Vf(r(ty)) - ¥'(t9). We have V£ (r(1)) L r'(fo). Also, r'(19) L Vg(r(tp)). Then
Vf(xo,yo, Zo) // Vg(XO, Yo, Z()). This 1mphes that

V f(x0, yo, 20) = AVg(x0, Yo, 20) for some number A.
This number A is called a “Lagrange multiplier”.

Q Method of Lagrange Multiplier

To find the maximu and minimum values of f(x,y, z) subject to the constraint g(x,y,z) = k
(assume that these extreme value exist and Vg # 0 on the surface g(x,y, z) = k). We solve this
problem by following the below steps.

(a) Find all values of x, y, z and A such that

Vf(x,y,2) = AVg(x,y,2) and g(x,y,2) = k.

(b) Evaluate f at all the points (x,y, z) that result from Step(a). The largest of these values is
the maximum value of f; the smallest is the minimum value of f.

Example 14.11.1. A rectangle box without a lid is to be made from 12m? of cardboard. Find
the maximum volume of such a box.

Proof. Let the length, width and height of the box be x, y and z. Then the volume of the box is

V(x,y,z) = xyz.
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The area of the four sides and the bottom is
g(x,v,2) = 2xz+ 2yz+ xy = 12.

To find the maximum of V subject to the constraint
g(x,y,z) = 12. The gradient vector of V and g are

VV =<yz,xz,xy > and Vg =< y+2z, x+2z,2x+2y > .

Consider
vz = Ay + 272) xyz = A(xy + 2x7) (D)
{ VW=avg ) xx=Akx+22) o) wz= Ay +2y2) (2)
g(x,y,2) =12 xy = A2x + 2y) xyz = A2xz + 2yz2) 3)
2xz+2yz+xy =12 2xz+2yz+xy =12 “4)

The number A # 0; otherwise, we obtain xy = xz = yz = 0 and hence g(x,y,z) = 0 which
contradicts the constraint. Also, Euqations(1),(2), (3) imply that

2xz+xy=2yz+xy=2xz+2yz = xz=Yyz.
This says that either x = y or z = 0.

(1) If z =0, then xy = 0 and hence x = y = 0 which contradicts g(x,y, z) = 12.

(i) If x = y and z # 0, then 2xz + x> = 4xz and then x = 2z = y. Also, from Equation(4), we
obtainx=y=2and z = 1.

The maximum volume of the box is 4m?>. O

Example 14.11.2. Find teh extreme values of the function f(x,y) = x* + 2y* on the circle
X +y? =1.

Proof. Let g(x,y) = x> + y*. Then
Vi(x,y) =<2x,4y> and Vg(x,y) =<2x,2y>.

Consider

2x = 2Ax (D)

{V(J;:f_vﬁ s y=21 @
8, y) = x2+y2:1 (3)
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By Equation(1), either 4 = 1 or x = 0.

(1) If A = 1, by Equation(2), y = 0. Then x = +1 by
Equation(3).

(1) If x = 0, then y = +1 by Equation(3) and 4 = 2 by
Equation(2).

Consider

f(1,0) =1, f(-1,0) = l and I(O, 1)=2, f(0,-1) = %

-

The maximum value of f on the circle x* + y* = 1 is NN x
f(0,+1) = 2 and the minimum value is f(+1,0) = 1.

X +2y2=1
O

Example 14.11.3. Find the extreme values of f(x,y) = x* + 2y? on the disk x> + y* < 1.

Proof. (1) Find the extreme values of f inside the disk x> + y> < 1.
Consider f, = 2x = 0 and f, = 4y = 0. Then the critical point of f is (0,0). Moreover,
fox =2, foy = fix =0and f;, = 4 and hence D = f,. f,, — (fxy)2 =8> 0. Also, fix > 0. By
the second derivative test, f(0,0) is a local minimum.

(2) Combining with the previous example, f(0,0) = 0, f(x1,0) = 1 and f(0,+1) = 2. Hence,
the maximum value of f on the disk x> + y* < lis f(0,+1) = 2 and the minimum value is
f(0,0) =0.

O

Example 14.11.4. Find the points on the sphere x* + y* + z2 = 4 that are closest to and farthest
from the point (3,1, —1)

Proof. Let f(x,y,2) = (x=3)>+(y—=1)>+ (z+ 1) and g(x,y,2) = x*> + y* + z%. Then

Vf=<2x-3),2(v-1),2(z+1)> and Vg=<2x,2y,2z>.

Consider
2x — 6 =2A2x (1-Dx=3 (1)
{Vf:/lVg - 2y —2 =21y . (1-y=1 ()
glx,y,2) =4 27+ 1 =21z (1-)z=-1 3)
P4y +=4 2xz+2yz+xy =12  (4)

Clearly, A # 1, x # 0, y # 0 and z # 0. Consider
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(1 x 2 vy
— = -=3=x=3y and —=>-=-1=>z7=-
@ "y Y 3z y
By (4), we have

2 2 2 2

Gy +y +(-y) =4=>y=i—11.

Then

6 2 2 6 2 2
(x,y,2) =( ) or )

’ s (_ s ’
VI Vi1 V11 VIT Vi1 V11
Taking these two poinits into f(x,y,z) the closest

2
point is (

N
(_6 _2 2)
VIT Vi1 VIl

X

) and the farthest point is

O

Remark. In the example, the line passes through the origin and the point (3, 1, —1) has para-
metric equation x = 3¢, y = t and z = —¢. The line intersection the sphere x> + y> + z> = 4 when

t= 17. Then we can also solve the closest and the farthest points.

0 Two Constraints

Find the maximum and minimum values of f(x, y, z) subject to two constraints g(x,y,z) = k
and h(x,y,7) = c.

Let C be the intersection of the two level surfaces
g(X,y,Z) = k and h(-x’y’Z) = C. Flnd P(XO,YO,ZO) € C
such that f(xy, yo, z0) ahs extreme value along C.

To find the level surface S = {(x,y,2) | f(x,y,2) = M}
which tangnet to C. Then, at the intersection of C and
S,Vf L C. We have

V£ (x0,¥0,20) = AVg(x0, Yo, 20) + uVh(xo, Yo, 20)-

g=k

Example 14.11.5. Find the maximum value of the function f(x,y,z) = x+ 2y + 3z on the curve
of intersection of the plane x — y + z = 1 and the cylinder x> + y*> = 1.

Proof. Let g(x,y,2) = x—y + zand h(x,y,z) = x> + y* Then
Vf=<1,2,3> Vg=<1,-1,1> and Vh=<2x2y,0>.

Consider
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A1=3
<1,2,3>=A<1,-1,1>+u <2x,2y,0 > 1 =2+ 2ux 1
x—-y+z=1 =1 2=-2+2uy = x__5/_l
¥ +yP=1 () 3=2 _
YT
u
4 f !
29 3
Taking into (x), we have u = iT\/_' Hence, ) -
2 5 7 2 5 7 z 14
(x,y,2) =( = 1+ ) ( , 1= )- §Ei5e2
V25 v V9 RO
Therefore, the maximum value of f is 3 + V?29. -11 citE
-2 Y
-1 0 1
y
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