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1.1 Preliminaries

o Notation:

■ Set of numbers

• N = set of all natural numbers = {1, 2, 3, . . .}.
• Z = set of all integers = {. . . ,−2,−1, 0, 1, 2, . . .}.

• Q = set of all rational numbers = {x
∣∣x = p

q
,where p, q ∈ Z, q , 0}.

Q+ = {x ∈ Q
∣∣x > 0}.

• R = set of all real numbers,

R+ = {x ∈ R
∣∣x > 0} and R− = {x ∈ R

∣∣x < 0} = {−x
∣∣x ∈ R+}.

■ Intervals

• (a, b) = {x
∣∣a < x < b} open interval.

• [a, b] = {x
∣∣a ≤ x ≤ b} closed interval.

• [a, b) = {x
∣∣a ≤ x < b}, (a, b] = {x

∣∣a < x ≤ b}.
• [a,∞) = {x

∣∣x ≥ a}, (a,∞) = {x
∣∣x > a},

(−∞, a] = {x
∣∣x ≤ a}, (−∞, a) = {x

∣∣x < a}.

Note:

(1) ∞ and −∞ do not represent real numbers.

(2) R = (−∞,∞), R+ = (0,∞) and R− = (−∞, 0).
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2 CHAPTER 1. A PREVIEW OF CALCULUS

o Functions

Definition 1.1.1. A function f , often called a mapping, is a rule that assigns to each element x
in a set A exactly one element, called f (x), in a set B.

The set A is called the domain of f and denoted by Dom( f ). The number f (x) is the value
of f at x.

The range (also called the image) of f , denoted by Range( f ) is the set of all possible values
of f (x) as x varies throughout the domain. That is,

Range( f ) = {y
∣∣ y = f (x) for some x ∈ Dom( f )}.

Note. In the class of Calculus(I), we consider those functions whose domains and ranges form
subsets of R. Thus, functions will be called real-valued functions of a real variable.

Remark.

(i) If f is a function, for each element a ∈ Dom( f ) there is exactly one element b ∈ Range( f )
such that b = f (a). The value a is an independent variable and the value b is a dependent
variable.

(ii) If Dom( f ) = A and Range( f ) ⊆ B, then the function f from A to B is usually symbolically
written as f : A→ B.
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Example 1.1.2.

(1) f (x) =
√

x : [0, 4]→ R. Then Dom( f ) = [0, 4] and Range( f ) = [0, 2].

(2) f (x) = x2 : (0,∞)→ R. Then Dom( f ) = (0,∞) and Range( f ) = (0,∞).

Remark. If the domain of a function f is not exactly given, then Dom( f ) consists of all values
that can have an image under f . That is, we take Dom( f ) as the maximal set of real number x
for which f (x) is a real number. In such a case Dom( f ) is called the natural domain.

Example 1.1.3.

(1) f (x) =
√

x. Then Dom( f ) = [0,∞] and Range( f ) = [0,∞].

(2) f (x) =
x2 + 1

x
. Then Dom( f ) = (−∞, 0) ∪ (0,∞)

(
or {x

∣∣ x , 0}
)

and Range( f ) =
(−∞,−2] ∪ [2,∞).

■ Graph of a function

Definition 1.1.4. Let f (x) be a function with domain Dom( f ). The graph of f consists of all
points (x, y) in the coordinate plane such that y = f (x) and x is in the domain of f . That is,

Graph( f ) =
{

(x, y)
∣∣ y = f (x), x ∈ Dom( f )

}
=
{(

x, f (x)
) ∣∣ x ∈ Dom( f )

}
.

Question: Is a curve the graph a function?

■ Vertical line test
A curve C in the plane is the graph of a function if and only if no vertical line intersects C at
more than one point.
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In the above diagrams, S 1 and S 3 are graphs of some functions, but S 2, S 4, S 5 and S 6 are
not graphs of any function.

1.2 Bounded Sets and Functions

o Bounded Sets
Definition 1.2.1. (Bounded Sets) Let A be a set of real numbers. We say that

(a) A is bounded above if there is a number M ∈ R such that

a ≤ M for all a ∈ A.

We call such a number M an “upper bound for A”.

(b) A is bounded below if there is a number N ∈ R such that

a ≥ N for all a ∈ A.

We call such a number N a “lower bound for A”.

(c) A is bounded if A is both bounded above and below. That is, there are M,N ∈ R such that

N ≤ a ≤ M for all a ∈ A.
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(d) If A is not bounded, we say that A is “unbounded”.

Remark. If A ⊂ R is bounded, then there exists M > 0 such that

0 ≤ |a| ≤ M (or − M ≤ a ≤ M) for all a ∈ A

Definition 1.2.2. Let A ⊆ R. We call a number a0 a “maximum of A” (“minimum of A”) if

(i) a0 ∈ A and

(ii) a0 ≥ a (a0 ≤ a) for all a ∈ A.

Denoted by “max A” (“min A”).

Remark.

(i) A bounded set may not have a maximum or a minimum. (ex: (0.1)).

(ii) A finite set must have a maximum and a minimum.

(iii) If a0 is a maximum of A, then a0 is an upper bound for A.

■ Least Upper Bound and Greatest Lower Bound
Definition 1.2.3. Let A ⊆ R. We say that M is a “least upper bound” of A if

(i) M is an upper bound for A (i.e. a ≤ M for all a ∈ A) and

(ii) if M1 is an upper bound for A, then M ≤ M1.

We denote the least upper bound for A by

“sup A” (supremum of A)

and the greatest lower bound for A by

“inf A” (infimum of A).

Lemma 1.2.4. A least upper bound is unique. That is, if M1 and M2 are least upper bounds for
a set A, then M1 = M2.

Proof. Since M1 is a least upper bound for A and M2 is an upper bound for A, M1 ≤ M2. The
converse argument is similar. We have M2 ≤ M1. Therefore, M1 = M2.

□

Exercise. Prove that the supremum of A satisfies

(i) sup A ≥ a for all a ∈ A

(ii) for any δ > 0, there exists a ∈ A such that a > sup A − δ.
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■ Least Upper Bound Property

Theorem 1.2.5. (Least upper bound property) Any nonempty set of real numbers that has an
upper bound necessarily has a least upper bound.

Proof. The proof will be postponed until Advanced Calculus.
□

Remark.

(i) A bounded set of real number may not have a maximum (or a minimum), but must have a
least upper bound (and a greatest lower bound). For example, (0, 1).

(ii) A maximum of a bounded set must be its supremum, but the couverse is possibly false.

(iii) In order to extend the defintion of sup and inf to more general sets, we define sup A = ∞
(inf A = −∞) if A is not bounded above (A is not bounded below).

(iv) Any number is an upper bound (or a lower bound) of ∅. We define sup ∅ = −∞ and
inf ∅ = ∞.

Remark.

(i) N,Z,Q and R are unbounded.

(ii) For every ε > 0, there exists n ∈ N such that 0 <
1
n
< ε.

o Bounded Functions
Definition 1.2.6. (Bounded Functions) Let f : D 7→ R be a function. We say that

(a) f is bounded above (on D) if the set of the values of f (x) on D is bounded above. That is,

“the set { f (x)
∣∣ x ∈ D} is bounded above”

or

“there exists a number M ∈ R such that f (x) ≤ M for all x ∈ D”.

We call such a number M an “upper bound for f (x)” and “ f (x) is bounded above by M”.

(b) f is bounde below on D if the set of the values of f (x) on D is bounded below. That is,

“the set { f (x)
∣∣ x ∈ D} is bounded below”

or

“there exists a number N ∈ R such that f (x) ≥ N for all x ∈ D”.

We call such a number N an “lower bound for f (x)” and “ f (x) is bounded below by N”.
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(c) f is bounded on D if f is both bounded above and below on D. That is

“the set { f (x)
∣∣ x ∈ D} is bounded”

or

“there exists M,N ∈ R such that N ≤ f (x) ≤ M for all x ∈ D”.

(d) If f is not bounded, we say that “ f is unbounded.”.

Remark. We usually say that “ f is bounded (above, below)” if f is bounded (above, below) on
its domain.

Definition 1.2.7. Let f be a function and D ⊆ Dom( f ). We say that a number L ∈ R is

(a) “the maximum (value) of f (x) on D” if L is the maximum of the set of the values of f (s) on
D. That is,

L = max
{

f (x)
∣∣ x ∈ D

}
= max

x∈D
f (x)

or

(i) there is a0 ∈ D such that f (a0) = L; and (ii) f (a) ≤ L for all a ∈ D.

(b) “the minimum (value) of f (x) on D” if L is the minimum of the set of the values of f (s) on
D. That is,

L = min
{

f (x)
∣∣ x ∈ D

}
= min

x∈D
f (x)

or

(i) there is a0 ∈ D such that f (a0) = L; and (ii) f (a) ≥ L for all a ∈ D.

Similarly, we can also define the supremum and infimum of a function on a set.

Definition 1.2.8. Let f be a function and D ⊆ Dom( f ). Define

(a) the supremum of f on D by

sup
x∈D

f (x) = sup
{

f (x)
∣∣ x ∈ D

}
.

and

(b) the infimum of f on D by

inf
x∈D

f (x) = inf
{

f (x)
∣∣ x ∈ D

}
.

Remark.

(i) A bounded function may not have a maximum or a minimum.

(ii) If the range of f (x) contains at most finitely many numbers, then f is bounded and contains
a maximum and a minimum.
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1.3 Inequalities

o Inequalities

■ Triangle Inequality Let a, b ∈ R be two numbers. Then

(i) |a + b| ≤ |a| + |b|.

(ii) |a| − |b| ≤ |a − b|.

(iii)
∣∣|a| − |b|∣∣ ≤ |a − b|.
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In high school algebra, students already learned some basic concepts of sequence (of num-
bers) and knew some examples of spcific sequences. For instance, arithmetic sequence ({−3,−1, 1, 3, 5, 7, 9, . . .}),
geometric sequence({1, 3, 9, 27, 81, . . .}), sequence defined by recursion (an+2 = an + an+1) etc.
We realize a sequence as a set of numbers with order. In this chapter, we introduce a new view-
point to look at a sequence. A sequence can be regarded as resulting functional values. This
idea will be not only inherited the concept of functions in Chapter 1, but also generalized to the
limit of general functions in Chapter 3.

We can see a sequence everywhere. For example, the irrational number π is corresponding
an infinite sequence(series).

π = 3.1415926 . . .

= 3 + 1 · ( 1
10

) + 4 · ( 1
102 ) + 1 · ( 1

103 ) + 5 · ( 1
104 ) + 9 · ( 1

105 ) + 2 · ( 1
106 ) + 6 · ( 1

107 ) + · · · .

The most basic idea in analysis is the concept of a limit. The simplest version of a limit
appears in the study of sequences. In this chapter, we will study the rigorous definition and
proof about sequences.

In this chapter, we will only discuss Sec2.1-Sec2.3 in the textbook and the remaining sec-
tions will be studied after Chpater 6.

2.1 Convergence

A sequence (of numbers) can be thought of as a list of numbers written in a definite order

a1, a2, a3, a4, . . . , an, . . .

9
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It can be regarded as a list of values of a function defined on N.

N 1 2 3 4 . . .

f ↓ ↓ ↓ ↓ ↓

R f (1) f (2) f (3) f (4) . . .

Note. From now on, we say “a sequence” instead of “a sequence of numbers” for the conve-
nience.

Definition 2.1.1. An (infinite) sequence is a function whose domain is a set of the form {n ∈
Z
∣∣ n ≥ m}, when m is a fixed integer.

Remark.

(i) The common choices for m are 0, 1 or 2.

(ii) By convention, we usually write the functional value f (n) as an and denote the sequence
{an}∞n=1 (or simply {an} if n begins with 1).

(iii) The values a1, a2, a3, . . . , an, . . . are called the “term" (first term, second term,. . ., nth
term, . . .) of a sequence.

(iv) To distinguish the notation of a set with the one of a sequence, we use {an
∣∣ n ∈ N} to

represent a set and {an} for a sequence.

Example 2.1.2.

(1)
{ n

n + 1
}∞

n=1, { an =
n

n + 1
⇒

{1
2
,

2
3
,

3
4
,

4
5
, . . .

}
.

(2)
{

cos
nπ
6
}∞

n=0, { an = cos
nπ
6
, n ≥ 0 ⇒

{
1,

√
3

2
,

1
2
, 0, . . .

}
.

(3) (Fibonacci sequence)
a1 = 1, a2 = 1, an = an−1 + an−2 for n ≥ 3 ⇒

{
1, 1, 2, 3, 5, 8, 13, 21, . . .

}
.

■ Visualization of sequence

(i) Plot all terms of a sequence on number line.

Example: an =
n

n + 1
.
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(ii) Regard a sequence a a function. f : N 7→ R by an = f (n). Plot the graph of f .
(1, a1), (2, a2), . . . , (n, an).

Example: f (n) =
n

n + 1

Observation: From the above figures, the functional values an approaches as close to 1 as
possible when n becomes large.

Note. People studied the limit of sequences over thousands of years. For example, to compute
the are a a circle.

Question: Does An approach a number as n becomes large?

o Limit and Convergence

■ Intuitive Definition: Let {an} be a sequence. We say that “the limit of {an} exists” if there
exists a real number A ∈ R such that we can make the term an as clos to A as we like by taking
n sufficiently large. Denote

lim
n→∞

an = A

or
an → A as n→ ∞

Example 2.1.3.
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(1)
{

1,
1
2
,

1
3
, . . . ,

1
n
, . . .

}
, an =

1
n

. Then lim
n→∞

an = 0.

(2)
{

1,−1, 1,−1, . . .
}

, an = (−1)n−1. Then lim
n→∞

an does not exist (DNE).

Definition 2.1.4. (Precise) Let {an} be a sequence.

(a) We say that “the limit of {an} exists” if there exists a real number A ∈ R such that for every
ε > 0 there is a corresponding integer N such that

|an − A| < ε for all n ≥ N.

Here A is called “the limit of {an}” and we write

lim
n→∞

an = A

or
an → A as n→ ∞

(b) If {an} has a limit A. (i.e. lim
n→∞

an = A), we say that the sequence “convergs to A”. Otherwise,
we say that the sequence “diverges”.
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Example 2.1.5. Consider the sequence
{ n

n + 2
}∞

n=1. For ε = 0.01, find a positive integer N such
that ∣∣∣ n

n + 2
− 1

∣∣∣ < 0.01 for all n ≥ N

Proof. From the experience, we know (guess) that the limit, A, of the sequence is 1. Consider∣∣∣ n
n + 2

− 1
∣∣∣ = 2

n + 2
.

It suffices to pick a positive integer N such that
∣∣ 2
n + 2

∣∣ < 0.01 for all n ≥ N.Compute

2
n + 2

< 0.01 ⇐⇒ 200 < n + 2.

Then
∣∣∣ n
n + 2

− 1
∣∣∣ < 0.01 when n > 198. Hence, we choose N = 199 and∣∣∣ n

n + 2
− 1

∣∣∣ < 0.01 for all n ≥ N.

□

Note. (1) In the above example, we can choose any positive integer N which is greater than
199. For instance, we choose N = 500. Then we stil have∣∣∣ n

n + 2
− 1

∣∣∣ < 0.01 for all n ≥ N.

(2) The above example does not prove the sequence converges to 1 since the ε is a specific
number but not an arbitrary.

Example 2.1.6. Prove that the sequence
{ n

n + 2
}∞

n=1 converges to 1.

Proof.

By the definition, we need to show that “for any given ε > 0, there exists a corresponding
positive integer N = N(ε) such that

∣∣ n
n + 2

− 1
∣∣ < ε for all n ≥ N”.

Given ε > 0, W.L.O.G. say 0 < ε < 1, consider∣∣∣ n
n + 2

− 1
∣∣∣ = 2

n + 2
< ε ⇐⇒ 2 − 2ε < nε ⇐⇒ 2 − 2ε

ε
< n.

Choose N ∈ N such that N ≥ 2 − 2ε
ε

. Then, for every n ≥ N,

∣∣∣ n
n + 2

− 1
∣∣∣ = 2

n + 2
≤ 2

N + 2
<

2
2−2ε
ε
+ 2
= ε.

Hence, the sequence
{ n

n + 2
}∞

n=1 converges to 1.
□
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Note. In the book, it provides a new estimate by using
2

n + 2
<

2
n

. It may easily find the positive
integer N.

Example 2.1.7. Prove that the sequence
{ n2 − 2

2n3 − n − 1
}∞

n=1 converges to 0.

Difficulty: In this example, it is difficult to find an exact positive integer N such that the
definition holds since we should solve the inequality n2 − 2 < (2n3 − n − 1)ε. But it is not
necessary. We only need to find a suitable integer.
Strategy: To find a simpler middle term (⋆) such that for every large n,∣∣∣ n2 − 2

2n3 − n − 1
− 0

∣∣∣ < (⋆) < ε.

Proof. For n ≥ 2, the numernator (n2 − 2) and the denominator (2n3 − n − 1) are positive.
[
We

observe that 2n3 − n − 1 > n3 when n is large.
]

Also,

2n3 − n − 1 > n3 ⇐⇒ n(n2 − 1) > 1.

Then 2n3−n−1 > n3 when n ≥ 2. Hence, for n ≥ 2,
n2

2n3 − n − 1
<

n2

n3 =
1
n
< ε where (⋆) =

1
n

.

Given ε > 0, choose a postive integer N ≥ max(2,
1
ε

). For every n ≥ N,

∣∣∣ n2 − 2
2n3 − n − 1

− 0
∣∣∣ = n2 − 2

2n3 − n − 1
<

n2

n3 =
1
n
<

1
1/ε
= ε.

Hence, the sequence
{ n2 − 2

2n3 − n − 1
}∞

n=1 converges to 0.
□

Exercise.

(i) Prove that the sequence
{1

n
}

converges to 0

(ii) Prove that the sequence
{ 1

np

}
converges to 0 for every p ∈ N. (Hint: you may use the fact

that
1
np ≤

1
n

.)

Recall. The following three statements are equivalent.

• A sequence {an} converges.

• there is a real number A ∈ R such that lim
n→∞

an = A.
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• there is a real number A such that for every ε > 0 there exists a corresponding integer
N ∈ N such that |an − A| < ε whenever n ≥ N.

Negation of Definition of Convergence:

• A sequence {an} diverges.

• for every real number A ∈ R , lim
n→∞

an , A. (Careful for the notation lim
n→∞

)

• For every real number A, there exists corresponding ε = ε(A) > 0 such that for every
N ∈ N there is n = n(N) > N such that |an − A| ≥ ε.

Example 2.1.8. Prove that the sequence {
√

n} diverges.

Proof. (By a contradiction)
Assume that the sequence {

√
n} converges. Then there exist a number A ∈ R such that lim

n→∞

√
n = A.

Let ε = 1. It suffices to show that, for every N ∈ N, we can choose n ≥ N such that |
√

n−A| > 1.

Consider ∣∣√n − A
∣∣ ≥ √n − |A|

For N ∈ N, we can choose a positive integer n > max
(
N, (|A| + 1)2

)
. Then∣∣√n − A

∣∣ ≥ √n − |A| >
√

(|A| + 1)2 − |A| = 1.

Hence, the sequence {
√

n} does not converge to A. By the contradiction, the sequence {
√

n}
diverges. □

Exercise.

(i) Prove that the sequence {(−1)n} diverges.

(ii) Let r be a real number with |r| > 1. Prove that the sequence {rn} diverges.

(iii) For 0 < r < 1, prove that the sequence {rn} converges to 0. (Hint: write r =
1

1 + b
for

some b > 0. Show that 0 < rn <
1

nb
for all n ∈ N and complete the proof.)

Theorem 2.1.9. (Uniqueness of Limit) If lim
n→∞

an = A and lim
n→∞

an = B then A = B.

Proof. For a given ε > 0, since lim
n→∞

an = A, there exists N1 ∈ N such that

|an − A| < ε
2

whenever n ≥ N1. Similarly, since lim
n→∞

an = B, there exists N2 ∈ N such that

|an − B| < ε
2
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f n ≥ N2.
Let N = max(N1,N2). Then

|A − B| = |A − aN + aN − B|
≤ |A − aN | + |aN − B| (triangle inequality)

<
ε

2
+
ε

2
= ε

Since ε is an arbitrary positive number, we have A = B. □

Note. (1) This theorem says that if the limit of a sequence exists, then the limit must be unique.

(2) It is easiler to prove this theorem by using the method of contradiction.

o Boundedness of Convergent Sequence
Definition 2.1.10. We say that

(a) a sequence {an} is bounded above if there exists a number M such that an < M for all n ∈ N.

(b) a sequence {an} is bounded below if there exists a number N such that an > N for all n ∈ N.

(c) a sequence {an} is bounded if it is both bounded above and below. That is, there is a number
M > 0 such that |an| < M for all n ∈ N.

(d) a sequence is unbounded if it is not bounded.

Theorem 2.1.11. Every convergent sequence is bounded.

Proof.

Idea: Every finite numbers are bounded. We only need to consider the “tail” of a se-
quence. The convergence of a sequence will control all terms of the tail near its limit.

Let {an} be a convergent sequence with limit A. For ε = 1, there exists an integer N ∈ N
such that |an − A| < 1 for all n ≥ N. We obtain

A − 1 < an < A + 1

for all n ≥ N. Then
−(|A| + 1) ≤ A − 1 < an < A + 1 ≤ |A| + 1

for all n ≥ N.
Consider the bound of the first N terms. Define M1 := max(|a1|, |a2|, . . . , |aN1 |), then

−M ≤ a1, a2, . . . , aN−1 ≤ M.

Let M = max(M1, |A| + 1) > 0. We have −M ≤ an ≤ M for all n ∈ N. Hence, the sequence
{an} is bounded. □
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Note.

(1) We could simply choose a specific bound M = 1 + |A| + |a1| + |a2| + . . . + |aN−1|.

(2) A divergent sequence may be bounded
(
e.g. {(−1)n}

)
or unbounded

(
e.g. {n}

)
.

(3) A bounded sequence may not be convergnet.

Corollary 2.1.12. Every unbounded sequence is divergent.

Theorem 2.1.13. Suppose that {an} be a sequence which converges to A where A , 0. Then

there exists N ∈ N such that an , 0 for all n ≥ N. In fact, |an| ≥
1
2
|A| for all n ≥ N.

Proof.

Since {an} converges to A and A , 0, for ε =
|A|
2
> 0, there exists N ∈ N such that |an − A| < |A|

2
for all n ≥ N. Then

|an| = |an − A + A| ≥ |A| − |an − A| > |A| − |A|
2
=
|A|
2

for all n ≥ N. □

Note. Heuristically, if a sequence converges to a nonzero number, then the term an will be
“bounded away from 0 for sufficiently large n.

Theorem 2.1.14. The sequence
{

an
}

converges to 0 if and only if the sequence
{
|an|

}
converges

to 0.

Proof. Observe that ∣∣ |an| − 0
∣∣ = |an| = |an − 0| (2.1)

(⇒) Given ε > 0, since lim
n→∞

an = 0, there exists N ∈ N such that |an−0| < ε for all n ≥ N. Then,
by (2.1), ∣∣ |an| − 0

∣∣ < ε
for all n ≥ N. Hence, the sequence

{
|an|

}
converges to 0.
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(⇐) Similarly, if
∣∣ |an| − 0

∣∣ < ε for all n ≥ N, we can also use (2.1) to prove

|an − 0| < ε

for all n ≥ N. Hence, the sequence
{

an
}

converges to 0. □

Remark. We can observe that some qualitative problems, such as convergence, divergence,
boundedness etc, of a sequence only depends on the “tails ” of the sequence. Any finitely many
terms do not change those properties

2.2 Limit Theorems
In this section, we will discuss some properties of limits.

o Limit Laws
Theorem 2.2.1. If sequences {an} and {bn} converge to A and B, respectively and C is a constant
number, then

(a) lim
n→∞

(an + bn) = A + B.
î

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

ó
.

(b) lim
n→∞

Can = CA.
î

lim
n→∞

(Can) = C lim
n→∞

an

ó
.

(c) lim
n→∞

(an − bn) = A − B.
î

lim
n→∞

(an + bn) = lim
n→∞

an − lim
n→∞

bn

ó
(d) lim

n→∞
(anbn) = AB.

î
lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn)
ó

(e) lim
n→∞

(an

bn

)
=

A
B

provided B , 0.
î

lim
n→∞

an

bn
=

limn→∞ an

limn→∞ bn

ó
(f) lim

n→∞
(an)p = Ap for all p ∈ N.

(g) lim
n→∞

k
√

an =
k√
A if A and an are nonnegative for all n with k ∈ N.

(h) if an ≤ bn for all n ≥ N ∈ N, then A ≤ B.

Proof. We will prove part(a), (b), (d), (f) and (h) here, and skip (c), (e), and (g).

(a) Since lim
n→∞

an = A and lim
n→∞

bn = B, for given ε > 0 there are integers N1,N2 ∈ N such that

|an − A| < ε
2

for all n ≥ N1

and
|bn − B| < ε

2
for all n ≥ N2.

Let N = max(N1,N2). Then, for n ≥ N,∣∣(an + bn) − (A + B)
∣∣ = ∣∣(an − A) + (bn − B)

∣∣ ≤ ∣∣an − A
∣∣ + ∣∣bn − B

∣∣ < ε
2
+
ε

2
= ε.

Hence, lim
n→∞

(an + bn) = A + B.
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(b) For C = 0, Can = 0 for all n ∈ N. Then lim
n→∞

Can = lim
n→∞

0 = 0 = CA.
Suppose that C , 0. Since limn→∞an = A, for given ε > 0, there exists N ∈ N such that

|an − A| < ε|C| for all n ≥ N.

Then ∣∣Can −CA
∣∣ = ∣∣C(an − A)

∣∣ = |C|∣∣an − A
∣∣ < |C| ε|C| = ε for all n ≥ N.

Hence, lim
n→∞

Can = CA.

(d)

A priori estimate:

|anbn − AB| = |anbn − Abn + Abn − AB| = |(an − A)bn| + |A(bn − B)| < ε
2
+
ε

2
.

Since {bn} is a convergent sequence, it is bounded. There exists a number M > 0 such that
|bn| < M for all n ∈ N. Also, since lim

n→∞
an = A and lim

n→∞
bn = B, for given ε > 0 there are

integers N1,N2 ∈ N such that

|an − A| < ε
2M

for all n ≥ N1

and
|bn − B| < ε

2(|A| + 1)
for all n ≥ N2.

Let N = max(N1,N2). Then, for n ≥ N,∣∣anbn − AB
∣∣ = ∣∣anbn − Abn + Abn − AB

∣∣
≤

∣∣(an − A)bn
∣∣ + ∣∣A(bn − B)

∣∣
≤

∣∣an − A
∣∣|bn| + |A|

∣∣bn − B
∣∣

≤ ε

2M
· M + ε

2(|A| + 1)
· |A|

≤ ε

2
+
ε

2
= ε.

Hence, lim
n→∞

(anbn) = AB.

(e) (Exercise!) Skip the proof here

A priori estimate: (Hint!)∣∣∣an

bn
− A

B

∣∣∣ = ∣∣∣anB − Abn

Bbn

∣∣∣ = ∣∣∣anB − AB + AB − Abn

Bbn

∣∣∣
≤

∣∣∣ (an − A)B
Bbn

∣∣∣ + ∣∣∣A(B − bn)
Bbn

∣∣∣ = ∣∣∣ (an − A)
bn

∣∣∣ + ∣∣∣A(B − bn)
Bbn

∣∣∣
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(f)

A priori estimate:

ap − bp = (a − b)(ap−1 + ap−2b + ap−3b2 + . . . + abp−2 + bp−1) for all p ∈ N.

Since lim
n→∞

an = A, for given ε > 0, there exists a number N ∈ N such that

|an − A| < ε

p(|A| + 1)p−1

for all n ≥ N. W.L.O.G, we may assume ε < 1. Then |an − A| < ε

p(|A| + 1)p−1 < 1 and

hence |an| < |A| + 1. For n ≥ N,

|ap − Ap| =
∣∣(an − A)(ap−1

n + ap−2
n A + ap−3

n A2 + . . . + anAp−2 + Ap−1)
∣∣

= |an − A|
∣∣ap−1

n + ap−2
n A + ap−3

n A2 + . . . + anAp−2 + Ap−1
∣∣

≤ |an − A|
[
|an|p−1 + |an|p−2|A| + |an|p−3|A|2 + . . . + |an||A|p−2 + |A|p−1]

≤ |an − A|
[
(|A| + 1)p−1 + (|A| + 1)p−1 + . . . + (|A| + 1)p−1]

= |an − A| · p(|A| + 1)p−1 < ε.

Thus, lim
n→∞

(an)p = Ap.

(h)

Exercise: (by using a contradiction)

A ≤ B ⇐⇒ A < B + ε for every ε > 0.

Since lim
n→∞

an = A and lim
n→∞

bn = B, for given ε > 0 there are integers N1,N2 ∈ N such that

|an − A| < ε
2

for all n ≥ N1

and
|bn − B| < ε

2
for all n ≥ N2.

Then, for N = max(N1,N2),

A < aN +
ε

2
and B > bN −

ε

2
.

We have
A < aN +

ε

2
≤ bN +

ε

2
< B + ε.

Since ε is an arbitrary positive number, we have A ≤ B.
(Note: We can also directly use the method of contradiction to prove this part.)
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□

Remark.

(i) The convergence of the two sequences is necessary. (Exercise: Give examples that the
laws are false if losing convergence.)

(ii) In part (h), the strict inequality is not preserved by limits.

Example 2.2.2. (1) Does the limit lim
n→∞

2n − 1
√

10 + n2
converge? If yes, find the limit.

Proof.

lim
n→∞

2n − 1
√

10 + n2
= lim

n→∞

Ä 2n − 1
√

10 + n2
·

1
n
1
n

ä
= lim

n→∞

2 − 1
n»

10
n2 + 1

=
limn→∞(2 − 1

n )

limn→∞
»

10
n2 + 1

=
limn→∞ 2 − limn→∞

1
n»

limn→∞
10
n2 + limn→∞ 1

=
2 + 0
√

0 + 1
= 2

□

(2) Find the limit lim
n→∞

(
√

n2 + 1 − n) if it exists.

Proof.

lim
n→∞

(
√

n2 + 1 − n) = lim
n→∞

î
(
√

n2 + 1 − n) ·
√

n2 + 1 + n
√

n2 + 1 + n

ó
= lim

n→∞

1
√

n2 + 1 + n

= lim
n→∞

Ä 1
√

n2 + 1 + n
·

1
n
1
n

ä
= lim

n→∞

1
n»

1 + 1
n2

=
limn→∞

1
n

limn→∞
»

1 + 1
n2

=
limn→∞

1
n»

limn→∞ 1 + limn→∞
1
n2

=
0
1
= 0.

□

o Squeeze (Sandwich, Pinching) Theorem for Sequences

Theorem 2.2.3. (Squeeze Theorem) Suppose that {an}, {bn} and {cn} are three sequences, and
suppose that there exists N ∈ N such that

an ≤ bn ≤ cn

for all n ≥ N. If both {an} and {cn} converge to A, then {bn} must also converge to A.
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Proof. Since both {an} and {cn} converge to A, for given ε > 0, there exist N1,N2 ∈ N such that

|an − A| < ε for all n ≥ N1 and |cn − A| < ε for all n ≥ N2.

Let N = max(N1,N2). Then, for n ≥ N,

−ε < an − A ≤ bn − A ≤ cn − A < ε.

Hence, the sequence {bn} converges to A. □

Corollary 2.2.4. Suppose that {an} and {bn} are two sequences and |an| ≤ bn for all sufficiently
large n. If lim

n→∞
bn = 0 then lim

n→∞
an = 0.

Exercise.

(i) Discuss the convergence of the sequence an =
n!
nn , where n! = 1 · 2 · 3 · · · · · n.

(ii) Evaluate lim
n→∞

(−1)n

n
if it exists.

Theorem 2.2.5. If a sequence {an} converges to 0, and a sequence {bn} is bounded, then the
sequence {anbn} converges to 0.

Proof. (Exercise) □

2.3 Infinite Limits

The properties and diversities of divergent sequences are much more complicated than conver-
gent sequences. Divergent sequneces can be subdivided into categories.

o Infinite Limits
Some types of divergent sequences have nice properties. For example, {n}, {2n}.
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■ Intuitive Definition: We say that a sequence {an} diverges to +∞ (approaches to +∞) (as
n tends to ∞) if we can make the term {an} as large as we like by taking n sufficiently large.
Denote

lim
n→∞

an = ∞

or

an → ∞ as n→ ∞

■ Precise Definition:

Definition 2.3.1. We say that

(a) a sequence {an} diverges to +∞ (approaches to +∞) as n tends to∞ if for any M > 0, there
exists N ∈ N such that an > M for all n ≥ N. Denote

lim
n→∞

an = +∞

or

an → +∞ as n→ ∞
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(b) {an} diverges to −∞ (approaches to −∞) as n tends to ∞ if for any M < 0, there exists
N ∈ N such that an < M for all n ≥ N. Denote

lim
n→∞

an = −∞

or
an → −∞ as n→ ∞

Note.

(1) If lim
n→∞

an = ∞ then lim
n→∞

(−an) = −∞.

(2) Since +∞ and −∞ are not real numbers, if lim
n→∞

an = ±∞, we will say that the limit of {an}
does not exist(DNE). (It is different from the note in the book, p81.)

Example 2.3.2. Prove that the sequence
{5n2 − 2n − 10

3n + 100
}

diverges to∞.

Proof. Consider 5n2 − 2n − 10 = (5n2 − 5n) + (3n − 10) > 5n(n − 1) for all n ≥ 4. Also,
3n + 100 < 5n for all n ≥ 50. Hence,

5n2 − 2n − 10
3n + 100

>
5n(n − 1)

5n
= n − 1

for all n ≥ 50.
Given M ∈ R, we choose N ∈ N such that N > max(50,M + 1). Then, for all n ≥ N,

5n2 − 2n − 10
3n + 100

> n − 1 ≥ N − 1 > M

Since M is an arbitrary number, lim
n→∞

5n2 − 2n − 10
3n + 100

= ∞. □
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Example 2.3.3. For r > 1, prove that the sequence {rn} diverges to∞.

Proof. Since r > 1, we can write r = 1 + h for some h > 0. Then

rn = (1 + h)n = 1 + nh +
n(n − 1)

2
h2 + . . . + hn > 1 + nh

Given M ∈ R, choose N ∈ N such that N >
|M|
h

. Then, for n ≥ N,

rn > 1 + nh > 1 +
|M|
h
· h = 1 + |M| > M.

Since M is an arbitrary number, lim
n→∞

rn = ∞.
□

Theorem 2.3.4. (Comparison Theorem) If a sequence {an} diverges to ∞ and an ≤ bn for all
n ≤ N, then the sequence {bn} must also diverge to∞.

Proof. Exercise! □

Example 2.3.5. Use the Comparison Theorem to prove that above two examples.

Insight: Observe the rational function
5n2 − 2n − 10

3n + 100
∼ 5n2

3n
. Hence, we have possibility to

adust it as
5n2 − 2n − 10

3n + 100
>

4.8n2

3.2n
=

3
2

n when n is sufficiently large.

Theorem 2.3.6. Suppose that {an} is a sequence satisfying an > 0 for all n ∈ N . Then {an}
diverges to∞ if and only if the sequence

{ 1
an

}
converges to 0.

Proof. (Exercise!) □

Question: Suppose that the hypothesis an > 0 is replaced by an , 0. Is the theorem still true?
If not, are both sides false or just one side?
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In Chapter 2, we regard a sequence as values of a function whose domain is a set of N and
consider its limit as n tends to infinity. In this chapter, we generalize the concept of a limit to
functions with a domain that can contain values other than integers.

3.1 Limit at Infinity

Consider a function f with domain which contains arbitrarily large values. We want to study
the behavior of the function when x becomes larger and larger.

■ Intuitive Definition: Let f (x) be a function defined on some interval (a,∞). We say that “the
limit of f (x), as x approaches ∞, exists” if there exists a number L ∈ R such that the values of

27
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f (x) can be made arbitrarily close to L by requiring x to be sufficiently large. Denote

lim
x→∞

f (x) = L

or
f (x)→ L as x→ ∞

Definition 3.1.1. (Precise) Let f (x) be a function defined on some interval (a,∞).

(a) We say that “the limit of f (x), as x approaches ∞, exists” if there exists a number L ∈ R
such that for every ε > 0, there exists a real number M > 0 such that

| f (x) − L| < ε if x ≥ M and x ∈ (a,∞)

Here, L is called “the limit of f (x), as x tends to∞”, and we write

lim
x→∞

f (x) = L

or
f (x)→ L as x→ ∞
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(b) If f (x) has a limit L as x tends to ∞, we say that f “converges” to L (as x tends to ∞).
Otherwise, we say that the function “diverges” (as x tends to∞).

(c) Similarly, let f be a function defined on (−∞, b). We write lim
x→−∞

f (x) = L if for every ε > 0
there exists a real number M > 0 such that

| f (x) − L| < ε if x ≤ −M and x ∈ (−∞, b).

Note. In the book, the function f only need to be defined on a set D ⊆ R which contains
arbitrarily large values. For example, D = R − Q. In our definition, we only consider the
simpler situation that D contains the interval (a,∞) for some number a.

Definition 3.1.2. If lim
x→∞

f (x) = L, then f has a “horizontal asymptote at ∞” and the line y = L
is called a “horizontal asymptote” for the function f .

Example 3.1.3. (1) Let f (x) =
1
x

. Prove that lim
x→∞

f (x) = 0.

Proof. Given ε > 0, choose a number M >
1
ε

(e.g. M = 1
2ε ). Then for x ≥ M,

∣∣ f (x) − 0
∣∣ = ∣∣1

x
− 0

∣∣ = 1
x
≤ 1

M
< ε.

Hence, lim
x→∞

f (x) = 0. □

(2) Prove that lim
x→∞

1
xp = 0 for all p ∈ N.

Proof. Exercise □

(3) Let f (x) =
2x2 − 3

x2 + 3x − 4
. Does f converge as x tends to∞? If yes, find the limit.

Proof. According to our experience, we expect that the limit is 2. Let’s try to prove our
guess is true.
Consider ∣∣∣ 2x2 − 3

x2 + 3x − 4
− 2

∣∣∣ = ∣∣∣ −6x + 5
x2 + 3x − 4

∣∣∣ = ∣∣∣ −6
x +

5
x2

1 + 3
x −

4
x2

∣∣∣ for x , 0.

For x ≥ 2,
3
x
− 4

x2 =
1
x

(3 − 4
x

) > 0

and ∣∣∣ − 6
x
+

5
x2

∣∣∣ = ∣∣∣1
x

(−6 +
5
x

)
∣∣∣ ≤ ∣∣∣1

x
(6 + 5)

∣∣∣ = 11
x
.
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Given ε > 0, choose M > max(2,
11
ε

). Then for every x ≥ M,

∣∣∣ 2x2 − 3
x2 + 3x − 4

− 2
∣∣∣ = ∣∣∣ −6

x +
5
x2

1 + 3
x −

4
x2

∣∣∣ ≤ ∣∣∣ 11
x

1

∣∣∣ ≤ ∣∣∣11
M

∣∣∣ < ε.
Hence, lim

x→∞
f (x) = 2. □

Example 3.1.4. A horizontal asymptote of the function f (x) =
2x2 − 3

x2 + 3x − 4
is y = 2.

Theorem 3.1.5. Suppose that lim
x→∞

f (x) = L. Then

(a) the limit is unique,

(b) lim
x→∞

[ f (x) − L] = 0,

(c) lim
x→∞
| f (x)| = |L|.

Proof. (Exercise) □

Negation of Definition of Convergence:

Let f be defined on some interval (a,∞). “The limit of f , as x approaches∞ does not exist”
if for every number L, there exists ε > 0 such that for every M > 0 there exists a number x ≥ M
such that | f (x) − L| > ε.
Note. We usually prove the divergence of a function by using the method of contradiction.

Example 3.1.6. Verify that f (x) = sin x has no limit at infinity.

Proof. Assume that f (x) has a limit L at infinity. For ε =
1
2

, there exists M > 0 such that for

every x > M | f (x) − L| < 1
2

. Choose a sufficiently large integer n such that
π

2
+ 2nπ > M. Then

|L − 1| =
∣∣ f (
π

2
+ 2nπ) − L

∣∣ < 1
2

and |L − (−1)| =
∣∣ f (

3π
2
+ 2nπ) − L

∣∣ < 1
2

We have L < −1
2

and L >
1
2

. It implies a contradiction and hence f has no limit at infinity.
□

■ Limits of sequences and functions at infinity

Let f be a function defined on [1,∞) and an = f (n) for n = 1, 2, . . .. Consider the limit
lim
x→∞

f (x) and lim
n→∞

an[= lim
n→∞

f (n)].

Theorem 3.1.7. Suppose that f is defined on [1,∞) and an = f (n) for n = 1, 2, . . .. If
lim
x→∞

f (x) = L, then lim
n→∞

an = L.
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Proof. (Exercise) □

Remark. The converse of the theorem is false. For example, f (x) = sin(πx).

Question: How about other sequence defined by a function?

Suppose that {xn} ⊂ Dom( f ) is a sequence with lim
n→∞

xn = ∞. Define the functional values
bn = f (xn) for n = 1, 2, . . .. [Compare with the sequence an = f (n) for n = 1, 2, · · · , bn could be
defined at any number xn ∈ Dom( f ) with xn → ∞ rather than positive integer n.]

Question: Is Theorem 3.1.7 still true for {bn}?

Answer: Yes. (Exercise)

Theorem 3.1.8. Suppose that f is defined on (1,∞]. Then lim
x→∞

f (x) = L if and only if for every

sequence {xn} ⊂ Dom( f ) with lim
n→∞

xn = ∞, the sequence
{

f (xn)
}

converges to L.

Proof.
(⇒) Exercise!
(⇐) Idea: If false, we can construct a counterexample.

Assume that lim
x→∞

f (x) , L. Then there exists a number ε > 0 such that, for every M > 0,
there exists xM > M such that | f (xM) − L| ≥ ε.

Fix the above number ε > 0. Let M1 = 1 and there exists x1 > M1 such that | f (x1) − L| ≥ ε.
Define M2 = max(2, x1) and there exists x2 > M2 such that | f (x2) − L| ≥ ε. Continue this pro-
cess, we can define Mn = max(n, xn−1) and we can find a sequence {xn} such that xn > Mn and
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| f (xn) − L| ≥ ε.

Since xn ≥ Mn ≥ n, lim
n→∞

xn = ∞. Also, | f (xn) − L| ≥ ε for all n = 1, 2, . . .. Then
lim
n→∞

f (xn) , L. It contradicts the hypothesis. Therefore, lim
x→∞

f (x) = L. □

Example 3.1.9. Evaluate lim
x→∞

(
√

x2 + 2x − x) and lim
x→−∞

(
√

x2 + 2x + x).

o Limit Laws

Theorem 3.1.10. Suppose that the functions f , g are defined on (a,∞), and lim
x→∞

f (x) = L and
lim
x→∞

g(x) = M, and C is a constant number. Then

(a) lim
x→∞

( f ± g)(x) = lim
x→∞

f (x) ± lim
x→∞

g(x) = L ± M.

(b) lim
x→∞

(
C f

)
(x) = C lim

x→∞
f (x) = CL.

(c) lim
x→∞

( f g)(x) = [ lim
x→∞

f (x)][ lim
x→∞

g(x)] = LM.

(d) lim
x→∞

[ f (x)]n = [ lim
x→∞

f (x)]n = Ln for all n ∈ N.

(e) lim
x→∞

Ä f
g

ä
(x) =

L
M

provided M , 0.

(f) lim
x→∞

n
√

f (x) = n

√
lim
x→∞

f (x) =
n√
L if L ≥ 0 and f (x) ≥ 0 with n ∈ N.

(g) lim
x→∞

C = C where C is a constant.

(h) If f (x) ≤ g(x) for all sufficiently large x, then L ≤ M.

Proof. (Exercise) □

Remark. If lim
x→∞

f1(x) = L1,. . . , lim
x→∞

fn(x) = Ln, then

(i) lim
x→∞

( f1 + · · · + fn)(x) = L1 + · · · + Ln and

(ii) lim
x→∞

( f1 · · · fn)(x) = L1 · · · Ln.

Remark. In the hypothesis, the convergence of f and g are important. The limit law (a), (b),
(d) are false if without the condition of convergence.

o Squeeze (Sandwich, Pinching) Theorem for Functions at Infinity

Theorem 3.1.11. (Squeeze Theorem) Suppose that f , g and h are three functions defined on
(a,∞), and f (x) ≤ g(x) ≤ h(x) for all sufficiently large x. If lim

x→∞
f (x) = L = lim

x→∞
h(x), then the

limit of g, as x tends to∞, exists and moreover lim
x→∞

g(x) = L.

Proof. (Exercise)(Postpone until the squeeze theorem for function at a point) □
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o Infinite Limit

Let f be a function defined on (a,∞). Observe that if the limit of f , as x tends to ∞, exists
then f (x) is bounded above and below when x is sufficiently large. Hence, if f is not bounded
for all large x, it must diverge at infinity. (e.g. f (x) = x.) Some situation may happen. For
example, f (x) = x sin x, f (x) = x2.

Note. That f is bounded above and below for all large x does not imply f converges at infinity
(e.g. f (x) = sin x).

Definition 3.1.12.

(a) Let f be a function defined on (a,∞). We say that f tends to ∞, as x tends to ∞, if for any
K > 0, there exists a number M > 0 such that f (x) > K for every x ≥ M. Denote

lim
x→∞

f (x) = ∞

or
f (x)→ ∞ as x→ ∞

(b) Let f be a function defined on (−∞, b). We say that f tends to ∞, as x tends to −∞, if for
any K > 0, there exists a number M > 0 such that f (x) > K for every x ≤ −M. Denote

lim
x→−∞

f (x) = ∞

or
f (x)→ ∞ as x→ −∞

Remark. If f tends to ±∞, as x tends to∞, we say that the f diverges to ±∞ and the limit does
not exist(DNE). It is different from the textbook.

Example 3.1.13. For n ∈ N, the n degree polynomial

f (x) = anxn + an−1xn−1 + · · · + a1x + a0

with an > 0 has infinite limit at∞. That is, lim
x→∞

f (x) = ∞.
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Proof. (Exercise) □

Question: How about the limit of a rational functions at∞?

Theorem 3.1.14. Suppose that a function, f , is defined by f (x) =
p(x)
q(x)

, where

p(x) = anxn + an−1xn−1 + · · · + a1x + a0 and
q(s) = bmxm + bm−1xm−1 + · · · + b1x + b0

where an, bm , 0, are n and m degree polynomials, respectively. Then

(a) if n < m, then lim
x→±∞

f (x) = 0.

(b) if n = m, then lim
x→±∞

f (x) =
an

bn
.

(c) if n > m, then lim
x→±∞

f (x) is infinite.

Proof. (a) For x , 0,

f (x) =
an

xm−n +
an−1

xm−n+1 + · · · + a1
xm−1 +

a0
xm

bm +
bm−1

x + · · · +
b1

xm−1 +
b0
xm

Then

lim
x→∞

f (x) = lim
x→∞

an
xm−n +

an−1
xm−n+1 + · · · + a1

xm−1 +
a0
xm

bm +
bm−1

x + · · · +
b1

xm−1 +
b0
xm

=
limx→∞

an
xm−n + limx→∞

an−1
xm−n+1 + · · · + limx→∞

a1
xm−1 + limx→∞

a0
xm

bm + limx→∞
bm−1

x + · · · + limx→∞
b1

xm−1 + limx→∞
b0
xm

=
0

bm
= 0

The proof of (b)and (c) are left to the readers. □

■ Oblique Asymptotes

Observe that if a function f (x) has an oblique asymptote L : y = ax + b where a , 0. Then
the graph y = f (x) are as close to L as we like by taking x sufficiently large. This means that

lim
x→∞

[ f (x) − (ax + b)] = 0.

Example 3.1.15. Find oblique asymptotes for the function f (x) =
x2 − 1
2x + 4

, if any exists.

Proof. Observe that the degree of the numerator is greater than the degree of the denominator
by 1. Thus, the function may have an oblique asymptote. Consider their leading coefficients
of the denominator and numerator. We expect that the equation of the oblique asymptote is

supposed to be y =
1
2

x + b. Then

∣∣ f (x) − (
1
2

x + b)
∣∣ = ∣∣ x2 − 1

2x + 4
− (

1
2

x + b)
∣∣ = ∣∣−2(1 + b)x − (1 + 4b)

2x + 4

∣∣
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In order to obtain the above term tends to 0 as x tends to∞, b should be −1. Hence, we have

lim
x→∞

∣∣ x2 − 1
2x + 4

− (
1
2

x − 1)
∣∣ = lim

x→∞

∣∣ −5
2x + 4

∣∣ = 0

Then, the oblique asymptote of f is y =
1
2

x − 1.

□

3.2 Limit at a Real Number

Consider the function f (x) = x2 − x + 2. What is the behavior of f (x) for values of x near 2?

When x tends to 2, f (x) approaches 4. We can make the value of f (x) as close to 4 as we
like by taking x sufficiently close to 2.
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In the world, lots of problems involve the “tendency” of a function near a number. For ex-
ample, tangent line problem, instantaneous velocity etc.

To study the behaviors of a function near a point, the function should be defined near this
point (possibly except the point itself).

Definition 3.2.1. Let a ∈ R be a real number.

(a) For ε > 0, we call the set B(a, ε) :=
{

x ∈ R
∣∣ |x − a| < ε

}
a “ball of a ”

(b) We call a set N ⊆ R a “neighborhood of a” if it contains a ball, B(a, ε), of a for some ε > 0.

Note. Any open interval containing a is a neighborhood. Specifically, a ball of a is also a
neighborhood of a.

■ Intuitive Definition (limits of functions at a number):

Suppose f (x) is defined in a neighborhood of a (except possibly at a itself). We say that
“the limit of f (x), as x approaches a, exists” if there is a number L ∈ R such that the values of
f (x) can be arbitrarily close to L by taking x to be sufficiently close to a (on either side of a) but
not equal to a. We write

lim
x→a

f (x) = L

or
x→ L as x→ a.

Note.
(1) In the definition, if there is no such number, we say that “the limit of f (x), as x approaches

a, does not exist (DNE).

(2) The words “but not equal to a” means that we never consider the value of f at x = a.
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Example 3.2.2. (Find the limit by graphing)

f (x) = x2 − x + 2

lim
x→2

f (x) = 4.

f (x) =
ß

x2 − x + 2 x , 2
6 x = 2

lim
x→2

f (x) = 4.

Example 3.2.3. (Guess by taking values) Evaluate lim
x→0

sin x
x

.

Guess: lim
x→0

sin x
x
= 1.

Note. The wrong evaluation may happen by graphing or taking testing values. For example

f (x) = sin πx for x , 0. Then f (1) = f (
1
2

) = f (
1
3

) = f
1

10
= f (

1
1000000

) = · · · = 0. But lim
x→0

f (x)
does not exist.
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Example 3.2.4. For the function f (x) = x2 sin
1
x

, it seems that f approaches 0 as x tends to 0.

We need to check whether we can make f arbitrarily close to 0 by taking x to be sufficiently
close to 0.
• For the error = 1

10 , how much close to 0 should we choose x such that |x2 sin 1
x − 0| < 1

10?
Choose |x − 0| < 1

5 , then |x2| < 1
25 . Hence, | f (x) − 0| = |x2 sin 1

x | ≤ x2 < 1
25 <

1
10 .

• For the error= 1
10000 , how much close to 0 should we choose x such that |x2 sin 1

x − 0| < 1
10000?

Choose |x − 0| < 1
100 , then |x2| < 1

10000 . Hence, | f (x) − 0| = |x2 sin 1
x | ≤ x2 < 1

10000 .

• For the error = ε > 0 to be an arbitrarily small number, choose |x − 0| <
√
ε. Then

| f (x) − 0| = |x2 sin 1
x | < x2 < ε.

To give a suitable definition of limit at a number a, it is supposed to check that, for every
“error”, the values of f is close to L within this error whenever x is close to a within a certain
range.
Definition 3.2.5. (Precise)(δ-ε definition)

Let f be a function defined on some neighborhood of a (except possibly at a itself).(a) We say that “the limit of f (x), as x approaches a, exists” if there is a number L ∈ R satisfying
for every ε > 0, there is a number δ > 0 such that

| f (x) − L| < ε whenever 0 < |x − a| < δ
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(b) If f has a limit L as x tends to a, we say that f “converges” to L (as x tends to a ). Otherwise,
we say that f “diverges” (as x tends to a).

Remark.

(i) That the words “0 < |x − a|" rather than 0 ≤ |x − a| reflects when we consider the limit of
f as x approaches a, we only concern the values of f “near” a. It is not essential that the
function f be defined at x = a.

(ii) The number δ = δ(ε) usually depends on the chosen number ε. For a given ε > 0, it
suffices to show that the corresponding number δ exists but not necessary to find the exact
number.

(iii) For a given ε > 0, if δ satisfies the statement of definition, any smaller number 0 < δ1 < δ
must also satisfy the statement for the same ε. In other words, δ can be replaced by δ1 (if
necessary).

Example 3.2.6. Prove that lim
x→3

(4x − 5) = 7.

Proof.

In this problem, the limit 7 is given. Otherwise, we should guess a possible limit and
then prove it.

Like the proof of limit of a sequence, we usually need some priori estimates before
proving.

Consider
|(4x − 5) − 7| = |4x − 12| = 4|x − 3|.

Hence, 4|x − 3| < ε if |x − 3| < ε
4

. For given ε > 0, choose δ =
ε

4
. Then, for every |x − 3| < δ,

|(4x − 5) − 7| = |4x − 12| = 4|x − 3| < 4δ = 4 · ε
4
= ε.

Thus, lim
x→3

(4x − 5) = 7.

□

Example 3.2.7. Prove that lim
x→2

x2 = 4.
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Proof.

Consider |x2 − 4| = |(x + 2)(x − 2)| = |x + 2||x − 2| < ε. If |x + 2| < M for some constant
number M. Then we can choose δ =

ε

M
and |x2 − 4| ≤ M · |x − 2| < M · ε

M
= ε.

To obtain an upper bound of |x + 2|, we consider that if |x − 2| < 1, then 1 < x < 3 and hence
|x + 2| < 5.

Given ε > 0, let δ = min(1,
ε

5
). For all x with |x − 2| < δ,

|x + 2| = |x − 2 + 4| ≤ |x − 2| + 4 < δ + 4 ≤ 5.

Then, for |x − 2| < δ,

|x2 − 4| = |(x + 2)(x − 2)| = |x + 2||x − 2| ≤ 5|x − 2| < 5δ ≤ 5 · ε
5
= ε.

Hence, lim
x→2

x2 = 4.

□

Exercise. Prove that lim
x→a

x2 = a2 for every a ∈ R.

Negation of Definition of Convergence:

Let f be defined on some neighborhood of a (except possibly at a itself). “The limit of f ,
as x approaches a, does not exist” if for every number L, there exists ε > 0 satisfying for every
δ > 0 there exists a number x with |x − a| < δ such that | f (x) − L| > ε.

Note. We prove the convergence of a function by using δ − ε definition. However, in order to
prove the divergence of a function, we usually use the method of contradiction.

Example 3.2.8. Prove that lim
x→0

sin
1
x

does not exist.

Proof. (The function f (x) = sin 1
x is defined near 0.)

Assume that there is a number L such that lim
x→0

sin
1
x
= L. For ε = 1

2 , there is a number δ > 0

such that for 0 < |x − 0| < δ, | sin 1
x − L| < 1

2 .
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Let x1 =
1

(2N + 1
2 )π

and x2 =
1

(2N + 3
2 )π

for some sufficiently large N ∈ N such that |x1| < δ

and |x2| < δ. Then∣∣1 − L
∣∣ = ∣∣ sin

1
x1
− L

∣∣ < 1
2

and
∣∣(−1) − L

∣∣ = ∣∣ sin
1
x2
− L

∣∣ < 1
2
.

We have

2 = |1 − (−1)| =
∣∣1 − L + L − (−1)

∣∣ < ∣∣1 − L
∣∣ + ∣∣L − (−1)

∣∣ < 1
2
+

1
2
= 1 (Contradiction).

Therefore, lim
x→0

sin
1
x

does not exist.
□

Exercise. Let f (x) =
ß

0, x is irrational
1, x is rational . Prove that the limit of f does not exist at every

point.

Theorem 3.2.9. (Uniqueness of a limit)
If the limit of a function exists, as x approaches a, then it is unique.

Proof.

In Sec3.1, we proved that the uniqueness of the limit of a function, as x approaches ∞ by
using the fact that “if two numbers, L and M, satisfy |L − M| < ε for every ε > 0, then L = M.
Here, we keep the same spirit and use the method of contradiction to prove it.

Let lim
x→a

f (x) = L and lim
x→a

f (x) = M. Assume that L , M.

For ε = 1
2 |L − M| > 0, there exist δ1, δ2 > 0 such that

| f (x) − L| < ε for all |x − a| < δ1

and
| f (x) − M| < ε for all |x − a| < δ2.

Let δ = min(δ1, δ2). For 0 < |x − a| < δ,

|L − M| = |L − f (x) + f (x)M | ≤ |L − f (x)| + | f (x)M | < ε + ε = 2ε = |L − M|.

It implies a contradiction and hence L = M. □

Theorem 3.2.10. lim
x→a

f (x) = 0 if and only if lim
x→a
| f (x)| = 0.
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Proof. (Exercise)
□

Note. In the above thorem, the direction (⇐) is false if the limit is nonzero. (Why?)

Exercise. lim
x→a

f (x) = L if and only if lim
x→a
| f (x) − L| = 0.

o Limit Laws

Theorem 3.2.11. Suppose that the functions f , g are defined on a neighborhood of a, and
lim
x→a

f (x) = L and lim
x→a

g(x) = M and C is a constant number. Then

(a) lim
x→a

( f ± g)(x) = lim
x→a

f (x) ± lim
x→a

g(x) = L ± M.

(b) lim
x→a

(
C f

)
(x) = C lim

x→a
f (x) = CL.

(c) lim
x→a

( f g)(x) = [lim
x→a

f (x)][lim
x→a

g(x)] = LM.

(d) lim
x→a

[ f (x)]n = [lim
x→a

f (x)]n = Ln for all n ∈ N.

(e) lim
x→a

Ä f
g

ä
(x) =

L
M

provided M , 0.

(f) lim
x→a

n
√

f (x) = n

√
lim
x→a

f (x) =
n√
L if L ≥ 0 and f (x) ≥ 0 with n ∈ N.

(g) lim
x→a

C = C where C is a constant.

(h) If f (x) ≤ g(x) for all x near a, then L ≤ M.

Proof. (Exercise) □

Remark. If lim
x→a

f1(x) = L1,. . . , lim
x→a

fn(x) = Ln, then

(i) lim
x→a

( f1 + · · · + fn)(x) = L1 + · · · + Ln and

(ii) lim
x→a

( f1 · · · fn)(x) = L1 · · · Ln.

Example 3.2.12. (Polynomial functions)

(1) For n = 0, 1, 2, . . .,

lim
x→a

xn = lim
x→a

( n︷           ︸︸           ︷
x · x · x · · · x

)
=

n︷                    ︸︸                    ︷(
lim
x→a

x
)
· · ·

(
lim
x→a

x
)
=

n︷       ︸︸       ︷
a · a · · · a = an.

(2) Let c be a constant.
lim
x→a

(cxn) = lim
x→a

c · lim
x→a

xn = can.
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(3) Pn(x) = cnxn + cn−1xn−1 + · · · + c1x + c0.

lim
x→a

Pn(x) = lim
x→a

(
cnxn + cn−1xn−1 + · · · + c1x + c0

)
= lim

x→a
cnxn + lim

x→a
cn−1xn−1 + · · · + lim

x→a
c1x + lim

x→a
c0

= cnan + cn−1an−1 + · · · + c1a + c0.

The limits of polynomial functions exist everywhere and the limits are equal to the values
of the polynomial at those points. That is, lim

x→a
Pn(x) = Pn(a).

Example 3.2.13. (Rational functions)

A rational function has thr form R(x) =
P(x)
Q(x)

, where P(x) and Q(x) are polynomials. Con-

sider lim
x→a

R(x).

(1) If Q(a) , 0, then lim
x→a

R(x) =
limx→a P(x)
limx→a Q(x)

=
P(a)
Q(a)

= R(a). For every number a in the do-

main of R(x), lim
x→a

R(x) = R(a).

(2) If Q(a) = 0 ,

• when P(a) , 0, we will show later that the limit lim
x→a

R(x) = ±∞.

• when P(a) = 0, we will factorize P(x) and Q(x). After dividing their common factors,
the problem will reduce to the above two cases.

Example 3.2.14.

(1) Compute lim
x→3

x3 + 2x − 6.

Proof. Since x3 + 2x − 6 is a polynomial function,

lim
x→3

x3 + 2x − 6 = 33 + 2 · 3 − 6 = 27.

□

(2) Compute lim
x→3

x2 + 5
3x2 − 1

.

Proof. Since
x2 + 5

3x2 − 1
is a rational function defined at 3,

lim
x→3

x2 + 5
3x2 − 1

=
32 + 5

3 · 32 − 1
=

7
13
.

□

(3) Compute lim
x→3

x3 + 2x − 6.

Proof. □
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(4) If lim
x→a

f (x) = 3, lim
x→a

g(x) = 2 and lim
x→a

h(x) = 4, compute lim
x→a

f (x) + g(x)
h2(x) − f (x)

.

Proof.

lim
x→a

f (x) + g(x)
h2(x) − f (x)

=
limx→a

(
f (x) + g(x)

)
limx→a

(
h2(x) − f (x)

) = limx→a f (x) + limx→a g(x)
limx→a h2(x) − limx→a f (x)

=
5

13
.

□

(5) Compute lim
x→3

x3 − 27
x − 3

.

Proof. For x , 3,
x3 − 27
x − 3

=
(x − 3)(x2 + 3x + 9)

x − 3
= x2 + 3x + 9. Also, x2 + 3x + 9 is a

polynomial functon, then

lim
x→3

x3 − 27
x − 3

= lim
x→3

(x2 + 3x + 9) = 32 + 3 · 3 + 9 = 27.

Hence, lim
x→3

x3 − 27
x − 3

= 27.

□

(6) Compute lim
x→1

1 −
√

x
1 − x

.

Proof. For x , 1,

1 −
√

x
1 − x

=
(1 −

√
x)(1 +

√
x)

(1 − x)(1 +
√

x)
=

1 − x
(1 − x)(1 +

√
x)
=

1
1 +
√

x
.

Then,

lim
x→1

1 −
√

x
1 − x

= lim
x→1

1
1 +
√

x
=

1
2
.

□

o Squeeze (Sandwich, Pinching) Theorem for Functions at a number
Theorem 3.2.15. (Squeeze Theorem) Suppose that f , g and h are three functions defined on
(a − σ, a + σ) (except possibly at a itself), and f (x) ≤ g(x) ≤ h(x) for all numbers near a. If
lim
x→a

f (x) = L = lim
x→a

h(x), then the limit of g, as x tends to a, exists and moreover lim
x→a

g(x) = L.
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Proof.

To prove that for given ε > 0, there exists δ > 0 such that for all 0 < |x − a| < δ, then
|g(x) − L| < ε.

Given ε > 0, since lim
x→a

h(x) = L, there exists 0 < δ1 < σ such that for every 0 < |x− a| < δ1,
|h(x) − L| < ε. Then, for 0 < |x − a| < δ1, h(x) < L + ε. Hence,

g(x) ≤ h(x) < L + ε for all 0 < |x − a| < δ1

Similarly, since lim
x→a

f (x) = L, there exists 0 < δ2 < σ such that for every 0 < |x − a| < δ2,
| f (x) − L| < ε. Then, for 0 < |x − a| < δ2, f (x) > L − ε. Hence,

g(x) ≥ f (x) < L − ε for all 0 < |x − a| < δ2

Choose δ = min δ1, δ2 > 0. For 0 < |x − a| < δ,

L − ε < g(x) < L + ε.

Hence, lim
x→a

g(x) = L. □

Example 3.2.16.

(1) Find lim
x→0

sin x.

Proof.
For x > 0, from the figure, sin x =

BC

OB
= BC. Then

0 < sin x = BC < AB < ÂB = x

Similarly, for x < 0, we have x < sin x < 0. We have

−|x| < sin x < |x| for every x.

Also, lim
x→0

(−|x|) = lim
x→0

x = 0. By the squeeze theorem,

lim
x→0

sin x = 0.

□

(2) Prove that lim
x→0

cos x = 1. (Hint: cos x =
√

1 − sin2 x when x is near 0.)

(3) Find lim
x→a

sin x.

Proof. Since lim
h→0

sin h = 0 and lim
h→0

cos h = 1,

lim
x→a

sin x = lim
h→0

sin(a + h) = lim
h→0

(
sin a cos h + cos a sin h

)
= sin a · 1 + cos a · 0 = sin a.

□
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(4) Prove that lim
x→a

cos x = cos a.

(5) Prove that the limits of all trigonometric functions are equal to the vlues of the trigonometric
functions at that points. That is, assuming that a is in the domain of the below functions,
lim
x→a

tan x = tan a, lim
x→a

cot x = cot a, lim
x→a

sec x = sec a, lim
x→a

csc x = csc a.

(6) Find lim
x→0

sin x
x

.

Proof. W.L.O.G, we may assume x > 0 and the case x < 0 is similiar.
From the figure,

4OAB =
1
2

sin x, sector OAB =
1
2

x and 4OAD =
1
2

tan x.

Then,
1
2

sin x <
1
2

x <
1
2

tan x.

Hence,

0 <
sin x

x
< 1 <

tan x
x
=

sin x
x
· 1

cos x
for x ∈ (0,

π

2
).

We have cos x <
sin x

x
< 1 for x ∈ (0, π2 ). Since lim

x→0
cos x = 1 and lim

x→0
1 = 1, by the squeeze

theorem,

lim
x→0

sin x
x
= 1.

□

(7) Prove that lim
x→0

cos x − 1
x

= 0.

(8) Find lim
x→0

sin(3x)
5x

Proof.

lim
x→0

sin(3x)
5x

= lim
x→0

Äsin(3x)
3x

· 3
5

ä
=

3
5
· lim

x→0

sin(3x)
3x

=
3
5
.

□

3.3 Sided Limits and Infinite Limits

3.3.1 Sided Limits

Consider the Heaviside function
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H(t) =
ß

0 if t < 0
1 if t ≥ 0

There is no number that H(t) approaches as t approaches 0. Therefore, lim
t→0

H(t) does not exist.
But if we only consider the number that H(t) approaches as t approaches 0 from the right (left)
side, such a number exists.

■ Intuitive Definition (one-sided limits):
Let f be a function whose domain contains an open interval (a, a + σ) for some samll number
σ > 0. We say that the “right-hand limit of f (x) as x approaches a from the right, exists” if
there exists a number L such that we can make the values of f (x) arbitrarily close to L by taking
x to be sufficiently close to a with x greater than a. We write

lim
x→a+

f (x) = L

or
x→ L as x→ a+.

Similarly, if we require that x be less than a, we get the “right-hand limit of f (x) as x approaches
a is equal to L and we write

lim
x→a−

f (x) = L

or
x→ L as x→ a−.

Definition 3.3.1. (Precise) Suppose f (x) is defined when x is near a from the right side (except
possibly at a itself). We say that “the right-hand limit (or limit from the right) of f (x), as x
approaches a, exists” if there is a umber L ∈ R satisfying for every ε > 0, there is a number
δ > 0 such that

| f (x) − L| < ε whenever 0 < x − a < δ.

Denote
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lim
x→a+

f (x) = L

or
x→ L as x→ a+.

Example 3.3.2. Let H(t) be the Heaviside function. Then lim
t→0+

H(t) = 1 and lim
t→0−

H(t) = 0

Remark. If lim
x→a

f (x) exists, then both lim
x→a+

f (x) and lim
x→a−

f (x) exists . But the converse could be
false. For example, the Heaviside function.

Theorem 3.3.3. lim
x→a

f (x) = L if and only if lim
x→a+

f (x) = L and lim
x→a−

f (x) = L (where L could be
±∞).

Proof. (Exercise) □

3.3.2 Infinite Limits

Consider lim
x→0

1
x2 if it exists

x
1
x2

±1 1
±0.5 4
±0.2 25
±0.1 100
±0.05 400
±0.01 10000
±0.001 1000000

As x becomes close to 0, 1/x2 becomes vergy large. In fact, the values of f (x) can be made ar-
bitrarily large by taing x close enough to 0. Thus, the values of f (x) do not approach a number,

so lim
x→0

1
x2 do not exist.

■ Intuitive Definition: Let f (x) be a function defined on a neighborhood of a (except possibly
at a itself). We say that f approaches (tends to) ∞ (−∞), as x approaches a, if the values of
f (x) can be made arbitrarily (negative) large by taking x sufficiently close to a, but not equal to
a. Denote

lim
x→a

f (x) = ∞ (−∞)

or
f (x)→ ∞ (−∞) as x→ a
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Definition 3.3.4. (Precise) Suppose that f is a function defined on a neighborhood of a (except
possibly at a itself). We say that “ f approaches∞ (−∞), as x approaches a,” if for every M > 0
there exists a number δ > 0 such that

f (x) > M
(

f (x) < −M
)

whenever 0 < |x − a| < δ.

We write

lim
x→a

f (x) = ∞ (−∞)

or

f (x)→ ∞ (−∞) as x→ a

Note. We can define the sided infinite limits, lim
x→a+

f (x) = ∞ by replacing “0 < |x − a| < δ” by
“0 < x − a < δ”. The other three limits, lim

x→a−
f (x) = ∞, lim

x→a+
f (x) = −∞ and lim

x→a−
f (x) = −∞ can

be defined in a similar fashion.

Example 3.3.5. Find lim
x→3−

2x
x − 3
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Proof. Observe that if 0 < 3 − x <
1
2

, then 5 < 2x < 6 and the quotient
2x

x − 3
is a negative

number. Moreover,
2x

x − 3
<

5
x − 3

For given M > 0,
5

x − 3
< −M if and only if x > 3 − 5

M
. Thus, choose δ = min(

1
2
,

5
M

). For
every number x with 0 < 3 − x < δ,

2x
x − 3

<
5

x − 3
< − 5

5/M
= −M.

Since M is an arbitrarily positive number, lim
x→3−

2x
x − 3

= −∞. □

■ Vertical Asymptote: The vertical line x = a is called a “vertical asymptote” of the curve
y = f (x) if at least one of the following statements is true:

lim
x→a

f (x) = ∞ lim
x→a+

f (x) = ∞ lim
x→a−

f (x) = ∞
lim
x→a

f (x) = −∞ lim
x→a+

f (x) = −∞ lim
x→a−

f (x) = −∞

Example 3.3.6. Find the vertical asymptotes of f (x) = tan x.

Proof. Check that lim x→ (π/2 + nπ)− tan x = ∞ or lim x→ (π/2 + nπ)+ tan x = −∞. Then the
lines x =

π

2
+ nπ, where n ∈ Z are all vertical asymptotes of f (x) = tan x.

□
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Exercise. Let a function f be defined on (0, a) for some a > 0. Prove that either both of the
limits

lim
x→0+

f (x) and lim
t→∞

f
Ä1

t

ä
exist and are equal, or both of them diverge.

Exercise. If lim
x→a

g(x) = ∞ and | f (x)| ≤ M for all x, then lim
x→a

f (x)
g(x)

= 0.

(Students are supposed to have the ability of writing down the rigorous proof if a is replaced by
a+, a−, ±∞. )
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Continuity of functions is an important concept in physics and mathematics. From the
macroscopic scale, the motion of an object is smooth. By using Euclidian Algorithm to ap-
proach a root of an equation, the continuity is also necessary.

4.1 Continuity of a Function

Heuristically, the graph of a continuous function contains no breaks, jumps, or wild oscilla-
tion. There are many ways which may make a function fail to be continuous. For example,

• f is not defined at a.

• lim
x→a

f (x) does not exist.

• The limit exists but there is a jump at a.

Definition 4.1.1. Let f be a function whose domain D contains a number a. We say that

(a) f is “continuous at a” if
lim
x→a

f (x) = f (a)

53
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(b) if f is not continuous at a, then f is “discontinuous at a.

(c) f is continuous on a set E ⊆ D if it is continuous at every point in E. If f is continuous at
every point in D, we say that f is continuous.

Note. The ε-δ expression of the definition is that f : D→ R is continuous at a ∈ D if for every
ε > 0, there exists δ > 0 such that

| f (x) − f (a)| < ε
for every x ∈ D with |x − a| < δ.
Remark. If f (x) is continuous at a, then

(i) f is defined at a.

(ii) the limit of f exist at a. (lim
x→a

f (x) exists).

(iii) the limit at a is equal to the value of f at a.
(
lim
x→a

f (x) = f (lim
x→a

x) = f (a)
)
.

Example 4.1.2.

(1) Any polynomial function is continuous on R.

(2) Any rational function is continuous on its domian.

(3) f (x) = |x| is continuous on R.

(4) f (x) =
√

x is continuous on R+.

(5) Any trigonometric function is continuos on its domain.

Theorem 4.1.3. Suppose that f (x) is continuous at a and f (a) > 0 ( f (a) < 0). Then there is
δ > 0 such that f (x) > 0 ( f (x) > 0) for all x with |x − a| < δ.

Proof. Choose ε = f (a) > 0. Since f (x) is continuous at a, there exists δ > 0 such that for
every x with |x − a| < δ, then

| f (x) − f (a)| < ε.
Then, f (x) − f (a) > −ε and hence f (x) > f (a) − ε = f (a) − f (a) = 0.

□
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Example 4.1.4. Suppose f (x) is continuous at a and f (a) > 0. Then there is δ > 0 such that

f (x) >
f (a)
2

for every x with |x − a| < δ.

■ Discontinuities

There are some different types of discontinuities.

Example 4.1.5. The Heaviside function H(x) =
ß

0, x < 0
1, x ≥ 0 is (jump) discontinuous at 0 and

continuous elsewhere.

Remark. There are some methods for proving discontinuity at x = a. See Remark 4.1.11 in the
textbook.

o Laws of Continuous Functions

Theorem 4.1.6. (The sums, differences, products, quotients and scalar products of continuous
functions are continuous.)

If f (x) and g(x) are continuous at a and c is a constant , then

(a) ( f ± g)(x) is continuous at a.

(b) (c f )(x) is continuous at a.

(c) ( f · g)(x) is continuous at a.

(d)
Ä f

g

ä
(x) is continuous at a provided g(a) , 0.

Proof. (Exercise) □

Lemma 4.1.7. If f is continuous at b and lim
x→a

g(x) = b, then lim
x→a

f (g(x)) = f (b). In other words,

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)
.

Proof. (Exercise) □
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Theorem 4.1.8. (Composite of continuous functions is continuous) If g is continuous at a and
f is continuous at g(a), then the composite function f ◦ g given by ( f ◦ g)(x) = f (g(x)) is
continuous at a.

Proof. (Exercise) □

Note. f (x) is continuous at “g(a)” rather than “a”.

Example 4.1.9. Prove that the function f (x) =
ß

x sin 1
x , x , 0

0, x = 0 is continuous.

Example 4.1.10. Evaluate lim
x→1

Ä3
√

x2 + 3x − 1
√
|x − 2| cos x

ä3
.

Proof. Let f (x) = x2 + 3x − 1, g(x) =
√

x, h(x) = |x − 2|, k(x) = cos x and F(x) = x3. Since
f , h and k are continuous at 1, g is continuous at 3 and cos 1 which is nonzero there. Also, F is

continuous at
3
√

3
√

cos 1
. Hence,Ä3

√
x2 + 3x − 1

√
|x − 2| cos x

ä3
= F
Ä 3g

(
f (x)

)
g
(
h(x)k(x)

)ä
is continuous at 1 and

lim
x→1

Ä3
√

x2 + 3x − 1
√
|x − 2| cos x

ä3
= F
Ä 3g

(
f (1)

)
g
(
h(1)k(1)

)ä = 81
√

3
cos3 1

.

□
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■ One-sided Continuity

We recall the defintion of continuity that the limit of f at a from both sides. But some
functions are only defined on one side. For example, f (x) =

√
x is defined on [0,∞). What’s

the continity of f at 0?

Definition 4.1.11. Let f be a function. We say that f is “right continuous at a” (or “continuous
from the right at a”) if lim

x→a+
f (x) = f (a).

Rephase as ε-δ defintion that “for given ε > 0 there exists δ > 0 such that | f (x) − f (a)| < ε,
provided that 0 ≤ x − a < δ”.

Similary, we can define the “left continuous at a” by lim
x→a−

f (x) = f (a) and replacing “0 ≤
x − a < δ” by “0 ≤ a − x > δ”.

■ Continuous on an interval with endpoint(s)

Definition 4.1.12. Suppose that f is a function defined on [a, b]. We say that f is continuous
on [a, b] if

(i) f is continuous on (a, b), and

(ii) lim
x→a+

f (x) = f (a) and lim
x→b−

f (x) = f (b)

Example 4.1.13. The Heaviside function H(x) =
ß

0, x < 0
1, x ≥ 0 is (jump) discontinuous at 0

and continuous elsewhere. H(x) is right continuous at 0 but not left continuous there.

4.2 Properties of Continuous Functions

o Intermediate Value Theorem

Theorem 4.2.1. (Intermediate Value Theorem) Suppose that f is continuous on the closed in-
terval [a, b] and let L be any number between f (a) and f (b), where f (a) , f (b). Then there
exists a number c in (a, b) such that f (c) = L.
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Proof.

W.L.O.G, we may assume f (a) < L < f (b). Define

A =
{

x ∈ [a, b]
∣∣ f (y) < L for all y < x

}
.

Since f (a) < L and f is continuous at a and f (a) < L,
there exists δ1 > 0 such that f (x) < L for all x ∈ [a, a+δ1).
Hence, A is nonempty.

Clearly, b is an upper bound for A. By the least upper
bound property, there exists a number c ∈ [a, b] such that
c = sup A.

We claim that c , a, b. Since f is continuous at b and f (b) > L, there exists δ2 > 0 such that
f (x) > L for all x ∈ (b − δ2, b]. Then b − δ2/2 is an upper bound for A and b is not a least upper
bound for A. Thus, c , b. Similarly, c , a.

Now, we want to prove f (c) = L. Assume that f (c) , L, then either f (c) < L or f (c) > L.

(i) If f (c) < L, since f is continuous at c, there exists δ3 > 0 such that f (x) < L for all
x ∈ (c − δ3, c + δ3). Then there is x0 > c such that f (x) < L for all x < x0. Hence, it
contradicts that c is an upper bound for A.

(ii) if f (c) > L, since f is continuous at c, there exists δ4 > 0 such that f (x) > L for all
x ∈ (c−δ4, c+δ4). Then there is x1 < c such that x1 is an upper bound for A. It contradicts
that c is a least upper bound for A.

Therefore, f (c) = L and the theorem is proved.
□

Remark. The theorem is false if one of the following condition happens.

(i) f is not continuous.

(ii) f is continuous on (a, b) but not continuous at the endpoint(s).

(iii) f (a) = f (b) (No number is between them.)

Example 4.2.2. Let f (x) = 4x3 − 6x2 + 3x − 2. Prove that there is a root of f (x) between 1 and
2.

Proof. Since f is a polynomial, it is continuous on [1, 2]. Also,

f (1) = −1 < 0
f (2) = 12 > 0

By the Intermediate Value Theorem, there exists a number c ∈ (1, 2) such that f (c) = 0 and c is
a root of f between 1 and 2.

□
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Exercise.

(1) Let n be an even positive integer. Prove that every positive number has a n-th root.

(2) Let n be an odd integer. Prove that the polynomial P(x) = xn + an−1xn−1 + · · ·+ a1x+ a0 has
a root.

(3) Let n be an odd integer. Prove that for any number α ∈ R there is a number c such that
P(c) = α.

o Boundedness of Continuous Functions

Theorem 4.2.3. If f is continuous at a, then there exists δ > 0 such that f is bounded on
(a − δ, a + δ).

Proof. Since f is continuous at a, for ε = 1, there exists δ > 0 such that | f (x)− f (a)| < 1 for all
|x − a| < δ. Therefore,

f (a) − 1 < f (x) < f (a) + 1 for all x ∈ (a − δ, a + δ).

Hence, f is bounded on (a − δ, a + δ). □

o Extreme Value Theorem

Theorem 4.2.4. If f is continuous on [a, b]. Then f is bounded on [a, b].

Proof. Define A =
{

x ∈ [a, b]
∣∣ f is bounded on [a, x]

}
. We want to prove A = [a, b] .

(i) Step1: To prove that A has a least upper bound.
Clearly, a ∈ A. Hence, A is nonempty. Since b is an upper bound for A, by the least upper
bound property, there exists c ∈ [a, b] such that c = sup A.

(ii) Step2: To prove b = c (= sup A).
Assume that c < b. Since f is continuous at c, there exists δ > 0 such that f (x) is bounded
on (c−δ, c+δ) ⊆ [a, b). Moreover, since c is a least upper bound for A, there exists x0 ∈ A
with c − δ < x0 < c. Hence, f is bounded on [a, x0]. Also, there exists x1 ∈ (c, c + δ) such
that f (x) is bounded on [x0, x1]. Then f is bounded on [a, x1]. This implies that x1 ∈ A
and we obtain a contradiction that c is an upper bound for A. Then c = b.

(iii) Step3: To prove that f is bounded on [a, b].
Since f is continuous at b, there exists δ1 > 0 such that f is bounded on (b − δ1, b]. That
b = sup A implies that there exists x2 ∈ (b − δ1, b] and x2 ∈ A. Then f is bounded on
[a, x2]. Also, f is bounded on [x2, b]. We have f is bounded on [a, b].
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□

Theorem 4.2.5. (Extreme Value Theorem) If f is continuous on [a, b], then there exists a number
c ∈ [a, b] such that

f (c) ≥ f (x) for all x ∈ [a, b]

That is, f (c) = max
x∈[a,b]

f (x). Similarly, there exists a number d ∈ [a, b] such that

f (d) ≤ f (x) for all x ∈ [a, b]

That is, f (d) = min
x∈[a,b]

f (x).

Proof. Since f is continuous on [a, b], it is bounded on [a, b]. Then the set
{

f (x)
∣∣ x ∈ [a, b]

}
is bounded and nonempty. By the least upper bound property, the set has a least upper bound,
say M = sup

{
f (x)

∣∣ x ∈ [a, b]
}

.

Assume that there is no number in [a, b] such that the values of f attain its maximum. De-

fine g(x) =
1

f (x) − M
. Since f is continuous on [a, b] and f (x) , M for all x ∈ [a, b], g is

continuous on [a, b], say 0 < |g(x)| < L.

On the other hand, M is a least upper bound of
{

f (x)
∣∣ x ∈ [a, b]

}
. Then there exists

x0 ∈ [a, b] and y0 ∈
{

f (x)
∣∣ x ∈ [a, b]

}
such that y0 = f (x0) and

M − 1
2L
< y0 < M.

Hence,

|g(x0)| =
∣∣∣ 1

f (x0) − M

∣∣∣ = ∣∣∣ 1
y0 − M

∣∣∣ > ∣∣∣ 1
(M − 1

2L ) − M

∣∣∣ = 1
1/2L

= 2L > L.

The contradiction implies that f must attain its maximum at some number. □
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Remark. In the theorem, the continuity and the closedness of the interval are necessary. The
theorem is false if either

(i) f is not continuous on [a, b], or

(ii) f is continuous on (a, b).

Exercise.

(1) Let n be an even integer and P(x) = xn + an−1xn−1 + · · · + a1x + a0. Then there is a number
c ∈ R such that

P(c) ≤ P(x) for all x ∈ R.
That is, P(c) = min

x∈R
P(x).

(2) Let n be an even integer and the equation

xn + an−1xn−1 + · · · + a1x + a0 = α.

Prove that there is a number m ∈ R such that the equation has no solution for α < m and the
equation has a solution for α ≥ m.
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5.1 Derivative of a Function

So far, we have learned the limits and continuity of functions. Some (local) information of
a function can be obtained by studying its limits and continuity. But continuous functions have
many different types.

The concepts in the previous chapters cannot reflect how a function changes locally. There-
fore, we will discuss the “rate of change” of a function. Some mathematical and physical
problems such as tangents and velocities involve this topic.

■ Tangents

The word tangent is derived from the Latin word tangens, which means “touching.” How to
make the idea that “a tangent to a curve is a line that touches the curve” precise?

63
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Question: How to find the tangent line of the graph of f (x) at a given point? To find the slope
of the tangent line.

For a curve C : y = f (x) and a point P(a, f (a)) on C, consider the slope of the secant line
PQ. Say Q(x, f (x)) on C. Then

mPQ =
f (x) − f (a)

x − a
.

Let Q approach P along the curve C by letting x approach a. If mPQ approaches a number m,
then we define tha tangent T to be the line through P with slope m.
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Definition 5.1.1. The “tangent line” to the curve y = f (x) at the point P(a, f (a)) is

(a) the line through P with slope

m = lim
x→a

f (x) − f (a)
x − a

provided that this limit exists, or

(b) the (vertical) line x = a, if lim
x→a+

f (x) − f (a)
x − a

= ±∞ or lim
x→a−

f (x) − f (a)
x − a

= ±∞

Note. An alternating expression of the slope of the tangent line is

m = lim
h→0

f (a + h) − f (a)
h

Example 5.1.2. Find an equation of the tangnet line to the hyperbola y = 3/x at the point (3, 1).
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Proof. Let f (x) = 3/x. The slope of the tangent line at (3, 1) is

lim
x→3

f (x) − f (3)
x − 3

= lim
x→3

3/x − 1
x − 3

= lim
x→3

3 − x
x(x − 3)

= −1
3
.

Hence, the equation of the tangent of y = f (x) at (3, 1) is

y − 1 = −1
3

(x − 3)

or
x + 3y − 6 = 0

□

■ Velocity

Let f (t) be the position function of a particle. The average
velocity from t = a to t = a + h is

f (a + h) − f (a)
h

.

We define the velocity (or the instantaneous velocity) at
time t = a is

lim
h→0

f (a + h) − f (a)
h

.

Remark. The value is equal to the slope of the tangent
line at P.

o Derivative
We observe the “difference quotient” plays an important role when we study the (local) change
of a function and its limit represents the “rate of change ” of a function.

Definition 5.1.3. Let f be a function defined on D which cantains a neighborhood of a.

(a) We say that f is “differentiable at a” if

lim
x→a

f (x) − f (a)
x − a

exists. The limit is denoted by f ′(a) and is called the “derivative of f at a .

(b) If f (x) is differentiable at every point of a set I, we say that “ f is differnetiable on I”.

Note. If replacing x by a + h, we have

f ′(a) = lim
x→a

f (x) − f (a)
x − a

= lim
h→0

f (a + h) − f (a)
h

.



5.1. DERIVATIVE OF A FUNCTION 67

(c) We collect every point x ∈ D where f ′(x) is defined (i.e. the limit lim
h→0

f (x + h) − f (x)
h

exists). Then we can regard f ′(x) as a function and is called the “derivative of f (x)”.

Note. Dom( f ′) ⊆ Dom( f ).

Example 5.1.4. Determine whether the following functions are differentiable at the given point.

(1) f (x) = cx + d, at x = a.

Proof.

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
h→0

[c(a + h) + d] − [ca + d]
h

= c.

Hence, f ′(a) = c. (independent of a) □

(2) f (x) = x2 at x = a

Proof.

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
h→0

(a + h)2 − a2

h
= lim

h→0

2ah + h2

h
= lim

h→0
(2a + h) = 2a.

Hence, f ′(a) = 2a. □

(3) f (x) = |x| at x = 0.

Proof.

Consider lim
h→0

f (h) − f (0)
h

= lim
h→0

|h| − 0
h

.

lim
h→0+

f (h) − f (0)
h

= lim
h→0+

h
h
= 1

lim
h→0−

f (h) − f (0)
h

= lim
h→0−

−h
h
= −1

Hence, the limit lim
h→0

f (h) − f (0)
h

does not exist and f is not dif-
ferentiable at 0.

□

(4) f (x) =
ß

4x, x < 1
2x2 + 2, x ≥ 1 at x = 1.

Proof. (Exercise)

□

(5) f (x) =
√

x at x > 0.
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Proof.

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

√
x + h −

√
x

h
= lim

h→0

î √x + h −
√

x
h

·
√

x + h +
√

x
√

x + h +
√

x

ó
= lim

h→0

h

h(
√

x + h +
√

x)
=

1
2
√

x
.

□

Note. (Tangent line) Suppose that f (x) is differentiable at a. Then the equation of the tangent
line of y = f (x) at

(
a, f (a)

)
is

y − f (a) = f ′(a)(x − a)

or
y = f (a) + f ′(a)(x − a).

■ Continuity and Differentiability

Theorem 5.1.5. If f (x) is differentiable at a, then f (x) is continuous at a.

Proof. Since f is differentiable at a, the derivative f ′(a) = lim
h→0

f (a + h) − f (a)
h

exists. Also,
lim
h→0

h = 0. We have

lim
h→0

Ä
f (a + h) − f (a)

ä
= lim

h→0

Ä f (a + h) − f (a)
h

· h
ä
= lim

h→0

f (a + h) − f (a)
h

· lim
h→0

h = f ′(a) · 0 = 0.

Then

lim
h→0

f (a+h) = lim
h→0

Ä
f (a+h)− f (a)+ f (a)

ä
= lim

h→0

Ä
f (a+h)− f (a)

ä
+ lim

h→0
f (a) = 0+ f (a) = f (a).

Hence, f is continuous at a. □

Remark. The converse of this theorem is false. For example, f (x) = |x|.

Question: How can a function fail to be differentiable?

f is not differentiable at a if

(i) f is not continuous at a;

(ii) f is continuous at a but lim
h→0

f (a + h) − f (a)
h

DNE;

(iii) lim
h→0

f (a + h) − f (a)
h

= ±∞ vertical tangnet.
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Remark. Heuristically, if the graph of a function y = f (x) has a discontinuity, a corner(cusp)
or a vertical tangent line at

(
a, f (a)

)
, then f (x) is not differentiable at a. On the contrary, if the

graph of f (x) is smooth at
(
a, f (a)

)
, then f is differentiable at a.

Example 5.1.6. Some continuous but nondifferentiable functions:

(1) f (x) = |x|;

(2) f (x) =
ß

x2, x ≤ 0
x, x > 0 ;

(3) f (x) =
√
|x|;

(4) f (x) =

{
x sin

1
x
, x , 0

0, x = 0

limh→0(h sin 1
h−0)/h = lim

h→0
sin

1
h

does not exist. Hence,
f is not differentiable at 0.

(5) f (x) =

{
x2 sin

1
x
, x , 0

0, x = 0

limh→0(h2 sin 1
h − 0)/h = lim

h→0
h sin

1
h
= 0. Hence, f is

differentiable at 0.

(6) There are functions which are continuous everywhere, but are differentiable nowhere.
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o Rate of Change

4x = x2 − x1, 4y = f (x2) − f (x1)
The quotient differenece

4y
4x
=

f (x2) − f (x1)
x2 − x1

is called the average rate of change of y with
respect to x over [x1, x2].

f ′(a) = lim
4x→0

4y
4x

is called the instantaneous rate of change of y
with respect to x.

Hence, f ′(a) is the instantaneous rate of change of y = f (x) with respect to x when x = a.

Remark.

If f ′(a) is large, it means
that the curve at x = a
is steep. Hence, y-value
changes rapidly

o Notation

Let y = f (x). Some common alternative notations for thederivative are as follows:

f ′(x) = y′ =
dy
dx
=

d f
dx
=

d
dx

f (x) = D f (x) = Dx f (x).

The symbols D and
d
dx

are called “differentiation operators” because they indicate the opera-
tion of differentiation.

f ′(a) =
dy
dx

∣∣∣
x=a
=

d f
dx

∣∣∣
x=a
.

o Higher Derivatives
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Recall the we can regard f ′(x) as a new function and consider the differentiability of f ′.

f
d
dx−→ f ′ derivative of f

f ′
d
dx−→ ( f ′)′ = f ′′ derivative of f ′ (second derivative of f )

f ′′
d
dx−→ ( f ′′)′ = f ′′′ derivative of f ′′ (third derivative of f )

...

f (n) (nth derivative of f )

■ Leibniz notation:

f
d
dx−→ d f

dx

d
dx−→ d

dx
(d f

dx
)
=

d2 f
d2x

d
dx−→ d

dx
(d2 f

dx2

)
=

d3 f
dx3 · · ·

d
dx−→ dn f

dxn

5.2 Differentiation Formulas
Using the definition to find the derivatives of functions would be tedious. We hope to study

some rules to help finding the derivative without using the definition.

Theorem 5.2.1. (Differentiation formulas) Let f and g be differentiable at a, and c be a con-
stant. Then

(a) f ± g is differentiable at a and
(

f ± g
)′(a) = f ′(a) ± g′(a);

(b) c f is differentiable at a and
(
c f

)′(a) = c f ′(a);

(c) f g is differentiable at a and
(

f g
)′(a) = f ′(a)g(a) + f (a)g′(a) (Product rule);

(d)
f
g

is differentiable at a provided g′(a) , 0 andÄ f
g

ä
(a) =

f ′(a)g(a) − f (a)g′(a)
[g(a)]2 (Quotient rule)

Proof. (Proof of product rule)

lim
h→0

( f g)(a + h) − ( f g)(a)
h

= lim
h→0

f (a + h)g(a + h) − f (a)g(a)
h

= lim
h→0

f (a + h)g(a + h) − f (a)g(a + h) + f (a)g(a + h) − f (a)g(a)
h

= lim
h→0

(
f (a + h) − f (a)

)
g(a + h) + f (a)

(
g(a + h) − g(a)

)
h
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Since f and g are differentiable at a, they are continuous at a. Hence,

lim
h→0

f (a + h) − f (a)
h

= f ′(a), lim
h→0

g(a + h) − g(a)
h

= g′(a), lim
h→0

g(a + h) = g(a).

Plugging the above limit, we have

lim
h→0

( f g)(a + h) − ( f g)(a)
h

= lim
h→0

f (a + h) − f (a)
h

· lim
h→0

g(a + h) + f (a) lim
h→0

g(a + h) − g(a)
h

= f ′(a)g(a) + f (a)g′(a).

□

Remark.
(

f g
)′
, f ′g′ and

Ä f
g

ä′
,
Ä f ′

g′
ä

.

Corollary 5.2.2. If f1, f2, . . . , fn and g are differentiable at a, then

(a) f1 + f2 + · · · + fn are differentiable at a and(
f1 + f2 · · · + fn

)′(a) = f ′1(a) + f ′2(a) + · · · + f ′n(a);

(b) f1 f2 · · · fn are differentiable at a and(
f1 f2 · · · fn

)′(a) = f ′1(a) f2(a) · · · fn(a) + f1(a) f ′2(a) · · · fn(a) + · · · f1(a) f2(a) · · · f ′n(a).

If fi = f for all i = 1, 2, . . . , n, then part (b) can be rewritten as(
f n)′(a) = n f n−1(a) f ′(a).

Note: This law is true for all n ∈ R. We will discuss in the future.

(c)
Ä1

g

ä′
(a) = − g′(a)

[g(a)]2 provided g(a) , 0.

Proof. Exercise □

Exercise.

(i) (constant function) f (x) = c is a constant function. Then f ′(x) = 0.

(ii) (power function) Let f (x) = xn for n ∈ N. Then f ′(x) = nxn.

(iii) f (x) = x−n for n ∈ N. Then f ′(x) = −nx−n−1.

(iv) f (x) = xn for n ∈ Q (that is, n = p
q where p, q ∈ Z). Then f ′(x) = nxn−1.

(v) (polynomial function) Let P(x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial. Then

P′(x) = nanxn−1 + (n − 1)an−1xn−2 + · · · + 2a2x + a1 =

n∑
k=1

kakxk−1.
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Proof. (iii)

d
dx

(x−n) =
d
dx

Ä 1
xn

ä
= −

d
dx (xn)
(xn)2 = −

nxn−1

x2n = −nx−n−1.

Problem (i), (ii), (iv), (v) are left as exercise. □

Remark. From (ii), (iii), (iv), we have the power rule that for n ∈ Q

d
dx

(xn) = nxn−1.

In fact, the rule is true for all n ∈ R and we will discuss it in the future.

Exercise.

(i)
d
dx

(x20) = 20x19.

(ii) f (x) = (3x2)(5x4).
f ′(x) = (3x2)′(5x4) + (3x2)(5x4)′ = 6x · 5x4 + 3x2 · 20x3 = 30x5 + 60x5 = 90x5.
In fact, f (x) = 15x6 and thus f ′(x) = 90x5.

(iii) f (x) =
5x3 + 2x − 3

3x2 + 1
.

f ′(x) =
(5x3 + 2x − 3)(3x2 + 1) − (5x3 + 2x − 3)(3x2 + 1)′

(3x2 + 1)2

=
(15x2 + 2)(3x2 + 1) − (5x3 + 2x − 3)(6x)

(3x2 + 1)2 .

o Derivatives of Trigonometric Functions

• f (x) = sin x

f ′(x) = lim
h→0

f (x + h) f (x)
h

= lim
h→0

sin(x + h) − sin x
h

= lim
h→0

sin x cos h + cos x sin h − sin x
h

= lim
h→0

sin x(cos h − 1) + cos x sin h
h

= lim
h→0

sin x · lim
h→0

cos h − 1
h

+ lim
h→0

cos x · lim
h→0

sin h
h

= cos x

The last equality follows the fact that lim
h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h
= 1.
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• f (x) = cos x. Then f ′(x) = − sin x. (Exercise)

• f (x) = tan x =
sin x
cos x

. By the quotient rule,

f ′(x) =
(sin x)′ cos x − sin x(cos x)′

cos2 x
=

cos2 x + sin2 x
cos2 x

=
1

cos2 x
= sec2 x

• f (x) = cot x, f ′(x) = − csc2 x.

• f (x) = sec x, f ′(x) = sec x tan x.

• f (x) = csc x, f ′(x) = − csc x cot x.

5.3 The Chain Rule

So far, we cannot use the differentiation formulas in the previous section to find the derivative
of F(x) =

√
x2 + 1. Let f (x) =

√
x and g(x) = x2 + 1. then F(x) = f

(
g(x)

)
.

In general, we want to deal with the differentiation of a composite function. Let F(x) =(
f ◦ g

)
(x) = f

(
g(x)

)
. What is F′(x)?
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Heuristic idea: Let u = g(x) and y = f (u) Then y = f
(
g(x)

)
= F(x).

F′(x) = lim
4x→0

F(x + 4x) − F(x)
4x

= lim
4x→0

4y
4x
.

Consider

4y
4u
=

f (u + 4u)
4u

⇒ lim
4u→0

4y
4u
= lim
4u→0

f (u + 4u) − f (u)
4u

= f ′(u)

4u
4x
=

g(x + 4x)
4x

⇒ lim
4x→0

4u
4x
= lim
4x→0

g(x + 4x) − g(x)
4x

= g′(x)

Hence,

dy
dx
= lim
4x→0

4y
4x

= lim
4x→0

Ä4y
4u
· 4u
4x

ä
=
Ä

lim
4x→0

4y
4u

äÄ
lim
4x→0

4u
4x

ä
=
Ä

lim
4u→0

4y
4u

äÄ
lim
4x→0

4u
4x

ä
= f ′(u)g′(x)

=
dy
du

du
dx
= f ′

(
g(x)

)
g′(x)

Theorem 5.3.1. (Chain Rule) Suppose that S and T are open intervals in R, g(x) : S → T,
f (u) : T → R and a ∈ S . If g is differentiable at a and f is differentiable at g(a) then f ◦ g is
differentiable at a and (

f ◦ g
)′(a) = f ′

(
g(a)

)
g′(a). (5.1)

Proof. Since f is differentiable at g(a),

lim
4u→0

f
(
g(a) + 4u

)
− f

(
g(a)

)
4u

= f ′
(
g(a)

)
.

Define a new function

ε(4u) =
f
(
g(a) + 4u

)
− f

(
g(a)

)
4u

− f ′
(
g(a)

)
. (5.2)

Then
f
(
g(a) + 4u

)
− f

(
g(a)

)
= 4u f ′

(
g(a)

)
+ 4uε(4u)

and (5.1) implies that ε(4u) → 0 as 4u → 0. On the other hand, let 4u = g(a + 4x) − g(a).
Since g is differentiable at a, it is continuous there. Then 4u→ 0 as 4x→ 0. This implies that

ε(4u)→ 0 as 4x→ 0

Also, by (5.2)

f
(
g(a + 4x) − g(a)

)
=
[
g(a + 4x) − g(a)

]
f ′
(
g(a)

)
+
[
g(a + 4x) − g(a)

]
ε(4u).

Dividing by 4x,

f
(
g(a + 4x) − g(a)

)
4x

=

[
g(a + 4x) − g(a)

]
4x

f ′
(
g(a)

)
+

[
g(a + 4x) − g(a)

]
4x

ε(4u)
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Let 4x→ 0. We have

lim
4x→0

f
(
g(a + 4x) − g(a)

)
4x

= lim
4x→0

[
g(a + 4x) − g(a)

]
4x

f ′
(
g(a)

)
+ lim
4x→0

[
g(a + 4x) − g(a)

]
4x

ε(4u)

= f ′
(
g(a)

)
g′(a) + g′(a) · 0.

□

Note.

(1) Strictly speaking, the two functions
(

f ◦ g
)′(x) and f ′

(
g(x)

)
g′(x) may not be equal. For

example, f (x) ≡ 0 and g(x) = |x|. The domain of
(

f ◦ g
)′(x) is R and the domain of

f ′
(
g(x)

)
g′(x) is R\{0}. We don’t worry about this if adding some conditions.

(2) Suppose that S and T are open intervals in R, g : S → T , f : T → R. If g is differentiable
on S and f is differentiable on T , then(

f ◦ g
)′(x) = f ′(g(x))g′(x).

Example 5.3.2.

(1) h(x) = sin x2.
Let f (x) = sin x and g(x) = x2, then h(x) = f

(
g(x)

)
. Since f ′(x) = cosx and g′(x) = 2x, we

have
h′(x) = f ′

(
g(x)

)
g′(x) = cos x2 · 2x

(2) h(x) = sin2 x.
Let f (x) = x2 and g(x) = sin x, then h(x) = f

(
g(x)

)
. Since f ′(x) = 2x and g′(x) = cos x,

h′(x) = f ′
(
g(x)

)
g′(x) = 2 sin x cos x.

(3) h(x) =

{
x2 sin

1
x
, for x , 0

0, for x = 0

For x , 0, let f (x) = sin x and g(x) =
1
x

, then sin
1
x
= ( f ◦ g)(x). Since f ′(x) = cos x and

g′(x) = − 1
x2 , we have (sin

1
x

)′ = (cos
1
x

)(− 1
x2 ). Then

h′(x) = 2x sin
1
x
+ x2 cos

1
x
· (− 1

x2 ) = 2x sin
1
x
− cos

1
x

At x = 0

lim
k→0

h(k) − h(0)
k

= lim
k→0

k2 sin 1
k − 0

k
= 0.

Thus, h′(0) = 0.
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■ The power rule combined with the chain rule

Theorem 5.3.3. Suppose that g is differentiable at a and n ∈ Q. If f (x) = [g(x)]n, then

f ′(a) = n[g(a)]n−1g′(a).

Proof. Let h(x) = xn, then f (x) = h
(
g(x)

)
. Since h(x) is differentiable everywhere and h′(x) =

nxn−1, we have
f ′(a) = h′

(
g(a)

)
g′(a) = n[g(a)]n−1g′(a).

□

Example 5.3.4. (1) Let y = (x3 + 2x + 1)30, then
dy
dx
= 30(x3 + 2x + 1)29(3x2 + 2).

(2) Let f (x) =
1

3√
x2 + x + 1

= (x2 + x + 1)−1/3, then f ′(x) = −1
3 (x2 + x + 1)−

4
3 · (2x + 1).

(3) Let g(t) =
Ä t − 2

2t + 1

ä9
, then g′(t) = 9

Ä t − 2
2t + 1

ä8
· (2t + 1) − 2(t − 2)

(2t + 1)2 .

Corollary 5.3.5. Suppose that h(x) is differentiable at a, g(x) is differentiable at h(a) and f (x)
is differentiable at g

(
h(a)

)
. If k(x) =

(
f ◦ g ◦ h

)
(x), then

k′(a) = f ′
(
g(h(a))

)
g′
(
h(a)

)
h′(a).

In Leibniz notation, y = f (u), u = g(w) and w = h(x),

dy
dx
=

dy
du

du
dw

dw
dx
.

Example 5.3.6. Let f (x) = sin2(2x2 + 1) =
[

sin(2x2 + 1)
]
, then

f ′(x) = 2 sin(2x2 + 1) · cos(2x2 + 1) · 4x.

5.4 Implicit Differentiation

Some functions have explicit forms. For example, y =
√

x, y = sin x2 etc. But not all functions
can be described by expressing one variable explicitly in terms of another variable. Some
functions may have relations(equations) between x and y. For example, x2 + y2 = 1.
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Moreover, for some equations such as x3y2 + sin(xy2) +
y

x2 + 1
= 1, it is difficult to express y as

a function of x (locally).

Question: How to find the
dy
dx

at a given point?

■ Implicit Differentiation
If x and y have a “relation” (satisfy an equation), we can regard y as a function of x (locally).
Take “ d

dx” on the both sides of the equation.

Example 5.4.1. Let x3 + y3 = 6xy.

(a) Find
dy
dx

.

(b) Find the equation of the tangent line of the curve at (3, 3).

(c) Find the points(s) on the curve such that
dy
dx
= 0.

Proof. (a)

d
dx

(
x3 + y3) = d

dx
(6xy)

⇒ 3x2 + 3y2 dy
dx
= 6y + 6x

dy
dx

⇒ dy
dx
=

3x2 − 6y
6x − 3y2 =

x2 − 2y
2x − y2

(b)

At (3, 3),
dy
dx

∣∣∣
(x,y)=(3,3)

=
3
−3
= −1. The equation of the

tangent line is

y − 3 = −(x − 3).
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(c) dy
dx
=

x2 − 2y
2x − y2 = 0 ⇒ x2 − 2y = 0 ⇒ y =

x2

2
.

On the curve,

x3 +
x6

8
= 3x2 ⇒ x3(

1
8

x3 − 2) = 0 ⇒ x = 0 or 2
4
3 .

At the point (24/3, 25/3), the curve has horizon-
tal tangent line.
Question: How about at (0, 0)? There are two
tangent lines.

□

Example 5.4.2. sin(x + y) = y2 cos x. Find
dy
dx

.

Proof.
d
dx

[
sin(x + y)

]
=

d
dx

[
y2 cos x

]
⇒ cos(x + y) ·

(
1 +

dy
dx

)
= 2y

dy
dx

cos x − y2 sin x

⇒
(

cos(x + y) − 2y cos x
)dy

dx
= − cos(x + y) − y2 sin x

⇒ dy
dx
= − cos(x + y) + y2 sin x

cos(x + y) − 2y cos x
□

Example 5.4.3. x4 + y4 = 16. Find
dy
dx

and
d2y
dx2 .

Proof.
d
dx

[
x4 + y4] = d

dx
(16) ⇒ 4x3 + 4y3 dy

dx
= 0 ⇒ dy

dx
= − x3

y3 .

To find
d2y
dx2 .

Method 1:

d
dx

(dy
dx

)
=

d
dx

(
− x3

y3

)
= −

3x2y3 − 3x3y2 dy
dx

(y3)2 = −
3x2y3 + 3x6

y

y6

= −3x2y4 + 3x6

y7 =
3x2(y4 + x4)

y7 = −48x2

y7

Method 2:

d
dx

(
4x3 + 4y3 dy

dx
)
=

d
dx

(0)

⇒ 12x2 + 12y2(
dy
dx

)
(dy

dx
)
+ 4y3 d2y

dx2 = 0⇒ d2y
dx2 = −

48x2

y7 .

□
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Example 5.4.4. y = x
p
q where p, q ∈ Z. Find

dy
dx

.

Proof. Consider yq = xp.

d
dx

(yq) =
d
dx

(xp)

⇒ qyq−1 dy
dx
= pxp−1

⇒ dy
dx
=

p
q

xp−1

yq−1 =
p
q

xp−1

xp−p/q =
p
q

x
p
q−1

□

Remark. In advanced calculus, we will study the Implicit Function Theorem.

5.5 Related Rates*

Recall: (Chain Rule) Let y = y(x) and x = x(t). Then

dy
dt
=

dy
dx

dx
dt

⇒ dy
dx
=

dy
dt

¿dx
dt

and
dx
dt
=

dy
dt

¿dy
dx
.

Example 5.5.1.

Air is being pumped into a spherical balloon. The radius
is increasing at the rate of 2 cm per second (2cm/s). What
rate is the volume increasing when the radius is 5 cm?

Proof. Let V be the volume of the balloon with radius r. Then

V(r) =
4
3
πr3.

Our goal is to find
dV
dt

∣∣∣
r=5

under the condition
dr
dt
= 2. By the volume formula,

dV
dr
= 4πr2.

Then
dV
dt
=

dV
dr

dr
dt
= 2 · 4πr2 = 8πr2.

Hence,
dV
dt

∣∣∣
r=5
= 200π (cm3/s). □

*The reference and examples in this section are from Calculus, J. Stewart 8th Ed.
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Example 5.5.2.

A ladder 5 m long rests against a vertical wall.
If the bottom of the ladder slides away from the
wall at a rate of 1 m/s, how fast is the top of the
ladder sliding down the wall when the bottom
of the ladder is 3 m from the wall?

Proof. Let x(t) be the distance from the bottom of the ladder to the wall. Let y(t) be the distance
from the top of the ladder to the ground. Then

x2 + y2 = 25.

By the implicit differentiation,

d
dx

(x2 + y2) =
d
dx

(25) ⇒ 2x + 2y
dy
dx
= 0 ⇒ dy

dx
= − x

y
.

Let x = 3, then y = 4 and hence
dy
dx

∣∣∣
x=3
= −3

4
. Therefore,

dy
dt
=

dy
dx

dx
dt

. The top of the ladder is
sliding down the wall at a rate

dy
dt

∣∣∣
x=3
=

dy
dx

∣∣∣
x=3
· dx

dt

∣∣∣
x=3
= −3

4
· 1 = −3

4
(m/s).

□

Example 5.5.3.

The water is being pumped into the tank at
a rate of 2 m3/min. find the rate at which the
water level is rising when the water is 3 m deep.

Proof. Let h be the height of water level and r be the radius of the surface of the water at time
t. Let V(r, h) be the volume of the water when the water level is h. From the similar triangle

argument, r =
1
2

h. Then

V(r, h) = V(h) =
1
3
πr2h =

1
3
π(

1
2

h)2h =
1

12
πh3.

Hence,
dV
dh
=

1
4
πh2 and

dV
dt
=

dV
dh
· dh

dt
. We have

dh
dt
=

dV
dt

¿dV
dh
=

2
1
4πh

2
=

8
πh2 .

The rate at which the water level is rising when h = 3 is
dh
dt

∣∣∣
h=3
=

8
9π

(m/min). □
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Example 5.5.4.
A man walks along a straight path at a speed of

1.5 m/s. A searchlight is located on the ground
6 cm from the path and is kept focused on the
man. At what rate is the searchlight rotating
when the man is 8 m from the point on the path
closest to the searchlight?

Proof. Let x be the distance from the man to the point on the path closest to the searchlight.

Then
dx
dt
= 1.5. Let θ be the angle between the beam of the searchlight and the perpendicular

to the path. Then

x = 6 tan θ ⇒ dx
dθ
= 6 sec2 θ.

When x = 8, cos θ =
6

10
=

3
5

and

dx
dt
=

dx
dθ

dθ
dt

⇒ dθ
dt
=

dx
dt

¿dx
dθ
=

1.5
6 sec2 θ

=
1
4

cos2 θ.

Hence, the rate of the searchlingt rotating is
dθ
dt

∣∣∣
x=8
=

1
4
·
(3

5
)2
=

9
100

(rad/s). □

■ Strategy

(i) Read the problem carefully.

(ii) Draw a diagram.

(iii) Introduce notation.

(iv) Express the given information and the required rate in terms of derivatives.

(v) Write an equation that relates the various quantities of the problem.

(vi) Use the chain rule.

(vii) Substitute the given information into the resulting equation and solve for the unknown
rate.

5.6 Linear Approximation and Differentials†

Motivation: A curve lies very very close to its tangnet line near the point of tangency. To
evaluate the value of a function f near a point a, it is sometimes difficult to compute directly.
Then we may use the tangent line at

(
a, f (a)

)
as an approximation to the curve y = f (x).

o Linear Approximation

†The reference and examples in this section are from Calculus, J. Stewart 8th Ed.
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The equation of the tangent line of y = f (x) at(
a, f (a)

)
is

y = f (a) + f ′(a)(x − a)

The approximation is

f (x) ≈ f (a) + f ′(a)(x − a)

if x is close to a.

Remark. This approximation is called the “linear approximation” or “tangent line approxima-
tion” of f at a. The linear function

L(x) = f (a) + f ′(a)(x − a)

is called the “linearization” of f at a.

Example 5.6.1.

Find the linearization of the function f (x) =
√

x + 3
at a = 1 and use it to approximate the number

√
3.98

and
√

4.05.

Proof. Since f ′(x) =
1

2
√

x + 3
, the linearization of f at a = 1 is

L(x) = f (1) + f ′(1)(x − 1) = 2 +
1
4

(x − 1) =
7
4
+

x
4
.

Then

√
3.98 = f (0.98) ≈ L(0.98) = 2 +

1
4

(0.98 − 1) = 1.995
√

4.05 = f (1.05) ≈ L(1.05) = 2 +
1
4

(1.05 − 1) = 3.0125

□

Question: How good is the approximation?

Example 5.6.2.

For what values of x is the linear approximation

√
x + 3 ≈ 7

4
+

x
4
.

accurate to within 0.5?
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Proof. Consider∣∣∣√x + 3 −
(7

4
+

x
4
)∣∣∣ < 0.5 ⇐⇒

√
x + 3 − 0.5 <

7
4
+

x
4
<
√

x + 3 + 0.5

See the graph to compute the points P and Q which intersect the curves y =
√

x + 3 ± 0.5.

□

o Differentials
The idea behind linear approximation is formulated in the terminology and notation of “dif-

ferentials”.

Let f be a differentiable function and y = f (x).
Consider the change of x, 4x and the corresponding
change of y, 4y. We have

4y = f (x + 4x) − f (x) ≈ f ′(x)4x.

Let 4x → 0, then dy = f ′(x)dx. We regard the “dif-
ferential” dx as an independent variable and “differ-
ential” dy as a dependent variable.

Let dx = 4x. As 4x is sufficiently small, dy ≈ 4y. Then

f (a + 4x) = f (a + dx) = f (a) + 4y ≈ f (a) + dy = f (a) + f ′(a)dx.

Example 5.6.3. Let f (x) = x3 + x2 − 2x+ 1. Find 4y and dy when x changes (a) from 2 to 2.05;
(b) form 2 to 2.01.

Proof. f ′(x) = 3x2 + 2x − 2 and f ′(2) = 144.

(a) 4x = dx = 2.05 − 2 = 0.05

4y = f (2.05) − f (2) = 0.717625 and dy = f ′(2)dx = 14 · 0.05 = 0.7

(b) 4x = dx = 2.01 − 2 = 0.01

4y = f (2.01) − f (2) = 0.140701 and dy = f ′(2)dx = 14 · 0.01 = 0.14

□
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Example 5.6.4.

A metal sphere with a radius of 10 cm is to be covered
by a 0.02 cm coating of silver. Approximately how much
silver will be required?

Proof. Let V(r) be the volume of the sphere with radius

r. Then V(r) =
4
3
πr3 and dV = 4πr2dr.

V(10.02)−V(10) = 4V ≈ dV = 4π·(10)2·0.02 = 8π (cm3).

□
Remark. (Relative Error) Dividing the error by the total volume

4V
V
≈ dV

V
=

4πr2dr
4
3πr

3
= 3

dr
r

Note. The relative error in the volume is about three times the relative error in the radius.
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Some of the most important applications of differential calculus are optimal problems. In
order to obtain the optimization, we can usually reduce these problems to finding the maximum
or minimum values of a function.

6.1 Maximum and Minimum Values
Recall: In Chapter 1, we have introduced the maximum (or minimum) value and the least upper
bound (or greatest lower bound ) of a function. In this section, we will study the extreme values
of a function more deeply.

Definition 6.1.1. Let f : D→ R and x0 ∈ D. We say that

(a) the number x0 is an “absolute maximum number (or point)” for f on D if

f (x0) ≥ f (x) for all x ∈ D

and the value of f at x0 is called the “absolute” maximum value of f on D.

(b) the number x0 is a “local maximu number (or point)” for f on D if there exists δ > 0 such
that

f (x0) ≥ f (x) for all x ∈ D ∩ (x0 − δ, x0 + δ)

i.e. x0 is a maximum number for f on D∩ (x0 − δ, x0 + δ). The value of f at x0 is called the
“local” maximum value of f on D.

(c) We can also define the “absolute (or lcoal) minimun number” and the “absolute (or local)
minimum value” of f on D by replacing the inequalty “≥” by “≤”.

87
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(d) The maximum and minimum values of f are called the “extreme values” of f on D.

Remark.

(i) An absolute maximum or minimum value is sometimes called a “global” maximum or
mumimum value.

(ii) An absolute maximum point for f on D is also a local maximum point for f on D.

(iii) The absolute maximum (or minimum) value of f on D is unique. In constast, a function
may have several or infinitely many maximum (or minimum) points.

Exercise. If A ⊆ B, and max
x∈A

f (x) and max
x∈B

f (x) exist, then

max
x∈A

f (x) ≤ max
x∈B

f (x)

Similarly, min
x∈A

f (x) ≥ min
x∈B

f (x), sup
x∈A

f (x) ≤ sup
x∈B

f (x), inf
x∈A

f (x) ≥ inf
x∈B

f (x) if the above quantities

exist.

Example 6.1.2.

f (x) = x2 on R.

The local and absolute minimum value is 0 but there is
no maximum value.

Remark. The existence of absolute (or local) maximum (or minimum) values not only depends
on functions, but also depends on the domains.

f (x) = x2 on [−1, 3].

The local and absolute minimum value is 0 and the local
minimum is f (−1) = 1 and f (3) = 9.

■ Extreme Points and Derivatives

We can observe that the tangent lines (if
they exist) of the graph of f at the maximum
and minimum points are horizontal. Hence the
slopes are 0.
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Theorem 6.1.3. (Fermat’s Theorem) Let f be a function defined on (a, b). If x0 is a local
maximum or local minimum point for f on (a, b) and f is differentiable at x0, then f ′(x0) = 0.

Proof. W.L.O.G, we assume that x0 is a local maximum point for f on (a, b). Then there exsits
δ > 0 such that (x0 − δ, x0 + δ) ⊆ (a, b) and

f (x0) ≥ f (x) for all x ∈ (x0 − δ, x0 + δ).

For 0 < h < δ, f (x0 + h) − f (x0) ≤ 0. Hence,

f (x0 + h) − f (x0)
h

≤ 0. (6.1)

Similarly, for −δ < h < 0, we have f (x0 + h) − f (x0) ≤ 0 and hence

f (x0 + h) − f (x0)
h

≥ 0 (since h is negative.) (6.2)

Since f is differentiable at x0,

f ′(x0) = lim
h→0

f (x0 + h) − f (x0)
h

= lim
h→0+

f (x0 + h) − f (x0)
h

= lim
h→0−

f (x0 + h) − f (x0)
h

By (6.1) and (6.2),

f ′(x0) = lim
h→0+

f (x0 + h) − f (x0)
h

≤ 0 and f ′(x0) = lim
h→0−

f (x0 + h) − f (x0)
h

≥ 0.

Therefore,

f ′(x0) = lim
h→0

f (x0 + h) − f (x0)
h

= 0.

□

Remark. The converse of the theorem is false. That is, it is possible that there exists a function
f with f ′(x0) = 0 but f has not maximum nor minimum at x0. For example, f (x) = x3 at 0.

Corollary 6.1.4. Let f be a function defined on (a, b) and x0 is an extreme point. Then either
f ′(x0) = 0 or f is not differentiable at x0.

Definition 6.1.5. Let f be a function defined on (a, b). We say that the point x0 ∈ (a, b) is a
critical number (point) of f if either f ′(x0) = 0 or f is not differentiable at x0. We call f (x0) a
critical value of f .

Remark. If f has a (local) maximum or minimum at x0, then x0 is a critical number of f . But
not every critical number gives rise to a maximum or minimum. For example f (x) = x3 at
x = 0.

■ Global Extreme Values for f on [a, b]

Recall: Theorem 4.2.5 says that a continuous function defined on [a, b] must have global max-
imum and minimum. The Fermat’s Theorem gives a method to find the extreme values of a
continuous function.

• The closed interval method
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(1) Find all critical numbers of f in (a, b).

(2) Find the values of f at those ciritical points and endpoints.

(3) The largest value in the above steps is the absolute maximum value and the smallest value
is the absolute minimum value.

Example 6.1.6.

Let f (x) = x3 − 3x2 + 1 defined on [−1
2
, 4]. Find the

absolute maximum and minimum values of f .

Proof. The derivative of f is f ′(x) = 3x(x − 2). Since
f is a polynomial, it is differentiable everywhere and the
critical numbers of f are 0 and 2. The values of f at
critical numbers and endpoints are

f (0) = 1, f (2) = −3, f (−1
2

) =
1
8
, f (4) = 17

Hence, f has the absolute maximum value f (4) = 17 and
the absolute minimum value f (2) = −3. □

Theorem 6.1.7. If f is differentiable at x0 and f ′(x0) > 0, then there exists a number δ > 0 such
that

f (x) < f (x0) for all x ∈ (x0 − δ, x0)

and
f (x) > f (x0) for all x ∈ (x0, x0 + δ)

Proof. Since f ′(x0) = lim
x→x0

f (x) − f (x0)
x − x0

> 0, for ε =
1
2

f ′(x0), there exists δ > 0 such that

∣∣∣ f (x) − f (x0)
x − x0

− f ′(x0)
∣∣∣ < ε = 1

2
f ′(x0)

whenever 0 < |x − x0| < δ. Then

f (x) − f (x0)
x − x0

> f ′(x0) − 1
2

f ′(x0) =
1
2

f ′(x0) > 0

If x ∈ (x0 − δ, x0), then x − x0 < 0 and

f (x) − f (x0) <
1
2

f ′(x0)(x − x0) < 0.

Similarly, if x ∈ (x0, x0 + δ), then x − x0 > 0 and f (x) − f (x0) >
1
2

f ′(x0)(x − x0) > 0. □
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6.2 Rolle’s Theorem and Mean Value Theorem

Observe a continuous function defined on [a, b] with f (a) = f (b). There must be a number
c ∈ (a, b) which is either a maximum point or a minimum point. Then f ′(c) = 0.

Theorem 6.2.1. (Rolle’s Theorem) Let f be a function that satisfies

(i) f is continuous on [a, b],

(ii) f is differentiable on (a, b) and

(iii) f (a) = f (b).

Then there is a number c ∈ (a, b) such that f ′(c) = 0.

Proof. If f is a constant function on [a, b] (i.e. f (x) = f (a) = f (b) for all x ∈ [a, b]), then
f ′(x) = 0 for all x ∈ (a, b).

If f (x) is not a constant function on [a, b], then there exists a number x0 ∈ (a, b) such that
f (x0) , f (a). W.L.O.G, say f (x0) > f (a). Since f is continuous on [a, b], by the extreme value
theorem, there exists c ∈ [a, b] such that f (c) = maxx∈[a,b] f (x). Then f (c) ≥ f (x0) > f (a) =
f (b) and hence c , a and c , b (i.e. c ∈ (a, b)).

Since c is a maximum point of f on (a, b) and f is differentiable at c, by Fermat’s theorem,
f ′(c) = 0. □

Example 6.2.2. If s = f (t) is a differentiable function which represents the position of an object.
Suppose that the object locates at the same position at time a and b. That is, f (a) = f (b). Then
three exists some time c ∈ (a, b) such that the velocity is 0 at time c (i.e. f ′(c) = 0).
Example 6.2.3. Prove that 3x3 + 2x − 1 = 0 has exactly one solution.

Proof. Let f (x) = 3x3 + 2x − 1. To prove that there exists exactly one number c such that
f (c) = 0.

(i) (Existence: at least one root) By Intermediate Value Theorem (exercise!)

(ii) (Uniqueness: at most one root)
Assuem that there are two distinct numbers a and b such that f (a) = f (b) = 0. Since
f (x) is a polynomial function, it is continuous on [a, b] and differentiable on (a, b). By the
Rolle’s theorem, there exists a number c ∈ (a, b) such that f ′(c) = 0. But f ′(x) = 3x2 + 1
for every x. It contradicts the conclusion of Rolle’s theorem. Hence, f cannot have two or
more roots.
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□

The following theorem is a generalized result of the Rolle’s theorem.

Theorem 6.2.4. (Mean Value Theorem) Let f be a function that satisfies

(i) f is continuous on [a, b] and

(ii) f is differentiable on (a, b).

Then there exists a number c ∈ (a, b) such that

f ′(c) =
f (b) − f (a)

b − a

or
f (b) − f (a) = f ′(c)(b − a)

Proof. Let

h(x) = f (x) −
Ä

f (a) +
f (b) − f (a)

b − a
(x − a)

ä
.

Since f is continuous on [a, b] and differentiable on (a, b), so is h(x).

Moreover, h(a) = 0 = h(b) and

h′(x) = f ′(x) − f (b) − f (a)
b − a

.

Then, by the Rolle’s theorem, there exists a number c ∈ (a, b)
such that h′(c) = 0. Hence,

f ′(c) = h′(c) +
f (b) − f (a)

b − a
=

f (b) − f (a)
b − a

.

□

Corollary 6.2.5. If f is continuous on [a, b] and f ′(x) = 0 for all x ∈ (a, b), then f is a constant
function on [a, b].
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Proof. Let c and d be any two points in [a, b]. It sufficies to show that f (c) = f (d).
Since f is continuous on [a, b] and differentiable on (a, b), it also continuous on [c, d] and

differentiable on (c, d). Then, by the mean value theorem, there exists α ∈ (c, d) such that
f (c) − f (d) = f ′(α)(c − d) = 0 since f ′(α) = 0. Therefore, f (c) = f (d).

That c and d are arbitrary two points in [a, b] implies f (x) is a constant function on [a, b]. □

Corollary 6.2.6. If f is differentiable on (a, b) and f ′(x) = 0 for all x ∈ (a, b), then f is a
constant function on (a, b).

Proof. (Skip) □

Note. The difference condition from the above corollary is that f is no longer continuous on
[a, b].

Corollary 6.2.7. If f and g are continuous on [a, b] and f ′(x) = g′(x) for all x ∈ (a, b), then

f (x) = g(x) +C for some constant C and for all x ∈ [a, b].

Proof. Let h(x) = f (x) − g(x). Since f and g are continuous on [a, b] and f ′(x) = g′(x) for all
x ∈ (a, b), h is continuous on [a, b] and h′(x) = 0 for all x ∈ (a, b). Then h(x) is a constant
function on [a, b]. Hence,

h(x) = h(a) = f (a) − g(a).

Then
f (x) = g(x) +

(
f (a) − g(a)

)
.

□

Note. f (x) =
x
|x| =

ß
1 if x > 0
−1 if x < 0 is not a constant function. But f ′(x) = 0 for all x ∈

Dom( f ). It is because Dom( f ) is not an interval. However, f is constant on (−∞, 0) and also on
(0,∞).

Remark.

(i) If f is constant on (a, b), then f ′(x) = 0 for all x ∈ (a, b).

(ii) If f (x) = g(x) +C on (a, b), and either f ′(x) or g′(x) exists for all x ∈ (a, b), then

f ′(x) = g′(x) for all x ∈ (a, b)

Theorem 6.2.8. (“Cauchy’s Mean Value Theorem” or “Generalized Mean Value Theorem”)
Let f and g be two functions which are continuous on [a, b] and differentiable on (a, b). Then
there exists a number c ∈ (a, b) such that

f ′(c)
[
g(b) − g(a)

]
= g′(c)

[
f (b) − f (a)

]
. (6.3)

Proof. Define k(x) = f (x)
[
g(b) − g(a)

]
− g(x)

[
f (b) − f (a)

]
. Then k is continuous on [a, b] and

differentiable on (a, b). Moreover, k(a) = f (a)g(b) − f (b)g(a) = k(b). By the Rolle’s Theorem,
there exists a number c ∈ (a, b) such that k′(c) = 0 and this implies (6.3). □
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Remark. The generalized mean value theorem has a geometrical interpretation similar to that
of the mean value theorem. Suppose that a smooth curve C can be represented as a parametric
equation ( f (t), g(t)) for a ≤ t ≤ b. There exists a tangnet line at t = c whose slope is equal to
the secant line connecting ( f (a), g(a)) and ( f (b), g(b)). The slope of the tangent line is

m =
f (b) − f (a)
g(b) − g(a)

.

Furthermore, the slope of the tangent line to the curve at any point t = t0 is
f ′(t0)
g′(t0)

.

6.3 How Derivatives Affect the Shape of a Graph

o Increasing and Decreasing

Definition 6.3.1. We say that

(a) a function f (x) is “(strictly) increasing” on an interval I if

f (x) < f (y) whenever x, y ∈ I with x < y.

(b) a function f (x) is “(strictly) decreasing” on an interval I if

f (x) > f (y) whenever x, y ∈ I with x < y.

(c) a function f (x) is “nondecreasing” on I if

f (x) ≤ f (y) whenever x, y ∈ I with x < y.

(d) a function f (x) is “nonincreasing” on I if

f (x) ≥ f (y) whenever x, y ∈ I with x < y.

(e) a function f (x) is called “monotonic” on I if it is either nondecreasing (increasing) or non-
increasing (decreasing) on I.
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Theorem 6.3.2.

(a) If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on (a, b).

(b) If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on (a, b).

Proof. We will prove (a) here and the proof of (b) is similar.
Let c and d be two numbers in (a, b) with c < d. It sufficies to show that if f (c) < f (d).

Since f ′(x) > 0 for all x ∈ (a, b), f is continuous on [c, d] and differentiable on (c, d). By the
mean value theorem, there exists α ∈ (c, d) such that

f (c) − f (d)
c − d

= f ′(α)

Then
f (c) − f (d) = f ′(α)(c − d) < 0

because f ′(α) > 0 and (c − d) < 0. We have f (c) < f (d). Since c and d are arbitrary two
numbers in (a, b), f is increasing on (a, b). □

Corollary 6.3.3. If f ′(x) > 0 for all x ∈ (a, b) and f is continuous on [a, b], then f is increasing
on [a, b].

Proof. (Exercise) □

Remark.

(i) The converse of the above theorem may be false. That is, even if f is differentiable and
increasing on (a, b), it cannot imply that f ′ is always positive. For example, f (x) = x3 is
increasing but f ′(0) = 0.

(ii) Suppose that the derivative of a function is positive at one point but not on an interval. It
cannot guarantee that f must be increasing on this interval. For example

f (x) =

{
x + 2x2 sin

1
x

if x , 0

0 if x = 0

Then

f ′(x) =

{
1 + 4x sin

1
x
− 2 cos

1
x

if x , 0

1 if x = 0
f ′(0) = 1 > 0 but f ′(x) is not positive on any neighborhood of 0. The function f is not
increasing on any neighborhood of 0
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Example 6.3.4. Find where the function f (x) = 3x4 − 4x3 − 12x2 + 5 is increasing and where it
is decreasing.

Proof. f ′(x) = 12x(x − 2)(x + 1). To find where f ′(x) > 0 and where f ′(x) < 0.
f is increasing on (−1, 0) ∪ (2,∞) and decreasing on (−∞,−1) ∪ (0, 2). (See the table.)

□

Remark 6.1 says that maximum or minimum value must occur at a critical point. But not
every critical point gives rise to a maximum or minimum. How to determine whether a critical
point gives an extreme value?

o First Derivative Test
Suppose that c is a critical number of a continuous function f .

(a) If f ′(x) changes from positive to negative at c, then f has a local maximum at c.

(b) If f ′(x) changes from negative to positive at c, then f has a local minimum at c.

(c) If f does not change sign at c, then f has no local maximum or minimum at c.

Note. To apply the first derivative test, it only needs that f is continuous at c and f ′ exists near
c. That f ′(c) = 0 is not necessary.
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Example 6.3.5. Find the local minimum and maximum values of the function f (x) = 3x4 −
4x3 − 12x + 5.

Proof. The derivative of f is f ′(x) = 12x(x − 2)(x + 1) and hence the critical points of f (x) are
−1, 0 and 2.

Since f ′(x) > 0 on (−1, 0) ∪ (2,∞) and f ′(x) < 0 on (−∞,−1) ∪ (0, 2), f ′(x) changes from
negative to positive at −1 and 2 and from positive to negative at 0.

By the first derivative test, f (−1) = 0 is a local minimum, f (0) = 5 is a local maximum and
f (2) = −27 is a local minimum. □

o Convexity and Concavity

Observe that two increasing functions
may have different shapes.

Question: How to distinguish them?

Definition 6.3.6.

(1) A function f (x) is “concave upward” (or “convex”) on an interval I if for any a, b ∈ I, the
segment joining

(
a, f (a)

)
and

(
b, f (b)

)
lies above the graph of f .

(2) A function f (x) is “concave downward” (or “concave”) on an interval I if for any a, b ∈ I,
the segment joining

(
a, f (a)

)
and

(
b, f (b)

)
lies below the graph of f .
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Example 6.3.7.

Example 6.3.8. f (x) = x2 is convex.

Remark. An equivalent statement of the convexity is that f is convex on I if for every a, b ∈ I
and every x ∈ (a, b)

f (a) +
f (b) − f (a)

b − a
(x − a) ≥ f (x). (6.4)

The alternating statement of concavity of f is by replacing the inequality “≥” in (6.4) by
“≤”.

Remark.

(i) If f is convex, we can rewrite (6.4) by

f (x) − f (a)
x − a

≤ f (b) − f (a)
b − a

≤ f (x) − f (b)
x − b

(6.5)

for every a, b ∈ I and x ∈ (a, b). This implies that the slope of the segment joining(
a, f (a)

)
and

(
b, f (b)

)
is greater than or equal to the slope of the segment joining

(
a, f (a)

)
and

(
x, f (x)

)
for every x ∈ (a, b).

(ii) Similarly, the slope of the segment joining
(
a, f (a)

)
and

(
b, f (a)

)
is less than or equal to

the slope of the segment joining
(

x, f (x)
)

and
(
b, f (b)

)
.
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(iii) For any x ∈ (a, b), there exists λ ∈ (0, 1) such that x = λa + (1 − λ)b. Then (6.4) impliles
that

λ f (a) + (1 − λ) f (b) = f (a) +
f (b) − f (a)

b − a
(
(1 − λ)(b − a)

)
≥ f

(
λa + (1 − λ)b

)
.

(iv) If replacing “≥” by “>” we call the function f “strictly convex”.

Exercise. If f is convex on I, then − f is concave on I.

Theorem 6.3.9. Let f be convex and differentiable at a.

(a) The graph of f lies above the tangent line through
(
a, f (a)

)
, except at

(
a, f (a)

)
itself.

(b) If a < b and f is also differentiable at b, then f ′(a) < f ′(b).

Proof.

(a) Define

F(h) =
f (a + h) − f (a)

h
for every h , 0.

The inequality (6.5) says that F is a nondecreasing function and lim
h→0

F(h) = f ′(a) since f

is differentiable at a. Note that F(h) equals the slope of the secant line connecting
(
a, f (a)

)
and

(
a + h, f (a + h)

)
.

Fix h > 0 and for 0 < h1 < h, since F is nondecreasing,

f ′(a) = lim
h1→0+

F(h1) ≤ F(h).

Hence, when h > 0, the slope of the secant line connecting
(
a, f (a)

)
and

(
a + h, f (a + h)

)
is greater than the slope of the the tangent line through

(
a, f (a)

)
. Then the point

(
a + h, f (a + h)

)
on the graph of f is above the point

(
a + h, L(a + h)

)
on the tangent line (where y = L(x) is

the equation of the tangent line throuth
(
a, f (a)

)
.)

On the contrary, we can use similar argument to show that F(h) ≤ f ′(a) when h < 0.
This also implies that the graph of f is above its tangent line.
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(b) From (6.5), we have

f (x) − f (a)
x − a

≤ f (b) − f (a)
b − a

≤ f (y) − f (b)
y − b

for every x, y ∈ (a, b).

Let x→ a+ and y→ b−. Since f is differentiable at a and b,

f ′(a) ≤ f (b) − f (a)
b − a

≤ f ′(b).

□

Note. If f is differentiable and convex on an interval I, then f ′(x) is nondecreasing.
Question: Is the converse of the statement true?

Lemma 6.3.10. Suppose f is differentiable on I and f ′ is nondecreasing. If (a, b) ⊂ I and
f (a) = f (b), then f (x) ≤ f (a) = f (b) for every x ∈ (a, b).

Proof.
Assume that there exists some number x ∈ (a, b) such
that f (x) > f (a) = f (b). Since f is continuous on [a, b],
by the extreme value theorem, there exists a number x0 ∈
(a, b) such that f (x0) = max

x∈[a,b]
f (x). Hence, f ′(x0) = 0.

By the mean value theorem to the interval [a, x0], there is
x1 ∈ (a, x0) such that

f ′(x1) =
f (x0) − f (a)

x0 − a
> 0 = f ′(x0).

It contradicts the fact that f ′ is nondecreasing and the
lemma is proved.

Notice that if the hypothesis “nondecreasing” is replaced by “increasing”, the inequality “≤”
in the conclusion will be replaced by “<”. Otherwise, there exists a number c ∈ (a, b) such that
f (c) = f (a) = f (b). Then, by the mean value theorem, there is x0 ∈ (a, c) such that f ′(x0) = 0.
Similar contradiction as above will be obtained.

□
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Theorem 6.3.11. If f is differentiable on I and f ′ is nondecreasing (increasing), then f is
convex (strictly convex).

Proof. Let a, b ∈ I and a < b. Define

g(x) = f (x) − f (b) − f (a)
b − a

(x − a).

Then g(a) = g(b) = f (a) and g′(x) = f ′(x) − f (b) − f (a)
b − a

is nondecreasing since f ′(x) is non-
decreasing. By Lemma 6.3.10, for every x ∈ (a, b),

g(x) ≤ g(a) = g(b) = f (a).

Hence,

f (x) ≤ f (a) +
f (b) − f (a)

b − a
(x − a)

and thus f is convex.
□

o Convexity and Concavity v.s. Differentiation
Question: How does f ′′ affect the graph of f ?

Theorem 6.3.12. (Concavity Test)

(a) If f has second derivative on I and f ′′(x) > 0 for all x ∈ I, then the graph of f is concave
upward on I.

(b) If f has second derivative on I and f ′′(x) < 0 for all x ∈ I, then the graph of f is concave
downward on I.

Proof. (Skip) □

Definition 6.3.13. We call a point P on a curve y = f (x) an “inflection point” (or “point of
inflection”) if f is continuous there and the curve changes concavity there (i.e. either changes
from CU to CD or from CD to CU).

Remark.
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(i) An inflection point is a point on the curve y = f (x).

(ii) The definition of an inflection point is NOT f ′′(c) = 0. For example f (x) = x4, but (0, 0)
is not an inflection point.

(iii) If
(
c, f (c)

)
is an inflection point for f (x), then “ f ′ ” has an local extreme value at c.

It is becasue f ′ is either from increase to decrease, or from decrease to increase. The
conclusion is followed by the first derivative test on f ′.

Theorem 6.3.14. If the point
(
c, f (c)

)
is an inflection point for f , then either f ′′(c) = 0 or

f ′′(c) does not exist.

Proof. If f ′′(c) does not exist, the proof is done. We may assume that f ′′(c) exists.

Since
(
c, f (c)

)
is an inflection point for f , the graph of y = f (x) changes concavity at(

c, f (c)
)
. Hence, f ′(x) has a local maximum or a local minimum at c. Since f ′′(c) exists, by

the Fermat’s theorem, f ′′(c) = 0. □

■ Stategy of finding Inflection Points

(i) Find all points where f ′′(x) = 0 or f ′′(x) does not exist.

(ii) determine whether the concavity changes at those points.

Example 6.3.15. Find all inflection point for f (x) = x3 − 6x2 + 9x + 1.

Proof. Since f is a polynomail function, f ′′(x) exists everywhere. Hence, the possible inflec-
tion points happen when f ′′(x) = 0.

The second derivative of f is f ′′(x) = 6(x − 2). We have f ′′(x) < 0 for x ∈ (−∞, 2) and
f ′′(x) > 0 for (2,∞). Hence, the graph of f is concave downward on (−∞, 2) and concave
upward on (2,∞). It implies that the graph of f changes concavity at x = 2. Therefore, the
point (2, 3) is an inflection point for f . □

Example 6.3.16. Find all inflection points for f (x) = 3x5/3 − 5x.

Proof. The first and second derivatives of f are f ′(x) = 5x2/3 − 5 and f ′′(x) = 10
3 x−1/3. Hence,

f ′′(x) does not exist at x = 0.

Since f ′′(x) is negative for x < 0 and positive for x > 0, the graph of f is concave upward
on (−∞, 0) and concave downward on (0,∞). It implies that the graph of f changes concavity
at x = 0. Also, f is continuous at 0. Then (0, 0) is an in flection point for f .

□

Question: What does f ′′ say about f ?

o Second Derivative Test
Suppose f ′′(x) is continuous near c.

(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
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(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

(c) If f ′′(c) = 0, the second derivative test is inconclusive. There might be a maximum ( f (x) =
−x4), a minimum ( f (x) = x4) or neither ( f (x) = x3).

Proof. We will prove part(a) here and the proof of part(b) is similar. By the definition of second
derivative,

0 < f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)
h

.

Hence, there exist δ > 0 such that for 0 < |h| < δ,

f ′(c + h)
h

> 0.

Then f ′(c + h) < 0 when −δ < h < 0 and f ′(c + h) > 0 when 0 < h < δ. Also, f is
continuous at c since f ′(c) exists. By the first derivative test, f (x) has a local minimum at c. □

Remark. To find the extreme values of a function, the first deriveative test is usually easier than
the second derivative test. The former can deal with more general functions than the latter. For
example, the second derivative test cannot apply when f ′′(c) = 0, f ′′(c) DNE, or f ′(c) DNE.

Example 6.3.17. Find all extreme values of the function f (x) = 3x4 − 4x3 − 12x2 + 5.

Proof. The first and second derivatives of f is f ′(x) = 12(x3 − x2 − 2x) = 12x(x+ 1)(x− 2) and
f ′′(x) = 12(3x2 − 2x − 2). Then f has critical points −1, 0 and 2.

Check the values of f ′′(x) at those critical points. f ′′(−1) = 36 > 0, f ′′(0) = −24 < 0 and
f ′′(2) = 72 > 0. By the second derivative test, f (−1) = 0 and f (2) = −27 are local minimum
of f , and f (0) = 5 is a local maximum of f . □

The next theorem gives some result of the converse of second derivative test.

Theorem 6.3.18. Suppose f ′′(x) is continuous near c.

(a) If f has a local minimum at c, then f ′′(c) ≥ 0.

(b) If f has a local maximum at c, then f ′′(c) ≤ 0.

Proof. We will prove part(a) by a contradiction and the proof of part(b) is similar. Assume that
f ′′(c) < 0. Since f ′′(c) exists , so does f ′(c). By the Fermat’s theorem, f ′(c) = 0 since f has a
local minimum at c.
We apply the second derivative test, f has a local maximum at c. Hence, f is constant near c.
This implies f ′′(c) = 0 and it contradicts the hypothesis f ′′(c) < 0. Therefore, f ′′(c) ≥ 0. □

Remark. For Theorem 6.3.18, we cannot get “>” or “<” respectively. For example, f (x) = x4

or f (x) = −x4 respectively.
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6.4 Sketch the Graph

So far, we have learned some topics of curve sketching, for exampe domains, ranges, symme-
try, limits, continuity, asymptotes, tangents, extreme values, intervals of increase and decrease,
concavity, point of inflection etc. Now, we may try to drawing the graphs of functions without
using graphing devices.

■ Guidelines for Sketching a Curve

(i) Domain

(ii) Intercepts
x-intercepts: find x such that f (x) = 0.
y-intercepts: if 0 ∈ Dom( f ), y-intercept is f (0).

(iii) Symmetry

(i) Even function: Check the domain is symmetric about 0 and f (−x) = f (x). If f is
even, the graph of f (x) is symmetric about the y-axis.

(ii) Odd function: Check the domain is symmetric about 0 and f (−x) = − f (x). If f is
odd, the graph of f (x) is symmetric about the origin

(iii) Periodic function: If there is a positive number p such that f (x + p) = f (x) for all
x ∈ Dom( f ).

(iv) Asymptotes

(i) Horizontal asymptotes: If lim
x→±∞

f (x) = L, the line y = L is a horizontal asymptote of
y = f (x). If lim

x→±∞
f (x) = ±∞, there is no horizontal asymptote.

(ii) Vertical asymptotes: If lim
x→a±

f (x) = ±∞, then the line x = a is a vertical asymptote
of y = f (x).
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(iii) Oblique (slant) asymptotes: If lim
x→±∞

[
f (x) − (ax + b)

]
= 0, then the line y = ax + b

is an oblique asymptote of y = f (x).

(v) Intervals of Increase or Decrease Check the intervals of x where f ′(x) > 0 and f ′(x) < 0.

(vi) Local Maximum and Minimum Values

(i) Find all critical numbers.

(ii) Use the First Derivative Test or the Second Derivative Test to find the local maximum
and local minimum values.

(vii) Concavity and Points of Inflection

(i) Compute f ′′(x). The graph of y = f (x) is concave upward if f ′′(x) > 0, and the
graph is concave downward if f ′′(x) < 0.

(ii) Points of Inflection: the point where the concavity changes.

(viii) Sketch the Curve

■ Examples

Example 6.4.1. Sketch the curve y =
2x2

x2 − 1
= f (x).

Proof. (i) Domain: The domain of f is
{

x
∣∣ x , ±1

}
.

(ii) Intercepts: y =
2x2

x2 − 1
= 0 if x = 0, then 0 is a x-intercept. Taking x = 0, then y = f (0) =

0 is y-intercept.

(iii) Symmetry: f (−x) =
2(−x)2

(−x)2 − 1
=

2x2

x2 − 1
= f (x). Thus, f is an even function and the

graph of y = f (x) is symmetric about the y-axis. On the other hand, the function is not
periodic.

(iv) Asymptotes:

(i) Horizontal Asymptote: lim
x→∞

2x2

x2 − 1
= 2 and lim

x→−∞

2x2

x2 − 1
= 2. The graph y = f (x) has

only one horizontal asymptote y = 2.

(ii) Vertical Asymptote: lim
x→1+

2x2

x2 − 1
= ∞, lim

x→1−

2x2

x2 − 1
= −∞, lim

x→(−1)+

2x2

x2 − 1
= −∞ and

lim
x→(−1)−

2x2

x2 − 1
= ∞. Thus the graph of y = f (x) has two vertical asymptotes x = 1

and x = −1.

(v) Intervals of Increase or Decrease: The derivative of f is f ′(x) =
−4x

(x2 − 1)2 . Then

f ′(x) > 0 when x < 0 (x , −1) and it implies f is increasing on (−∞,−1) ∪ (−1, 0)
f ′(x) < 0 when x > 0 (x , 1) and it implies f is decreasing on (0, 1) ∪ (1,∞)
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(vi) Local maximum and minimum values Compute f ′(x) =
−4x

(x2 − 1)2 = 0 when x = 0. The

critical number of f is x = 0. Since f ′(x) changes from positive to negative at x = 0,
hence, f (0) = 0 is a local maximum by the First Derivative Test.

(vii) Concavity and Points of Inflection Compute f ′′(x) =
12x2 + 4
(x2 − 1)3 . Then f ′′(x) > 0 when

x2 − 1 > 0 (x > 1 or x < −1), and f ′′(x) < 0 when x2 − 1 < 0 (−1 < x < 1). We have
the graph of f is concave upward on (−∞,−1)∪(−1, 0) and concave downward on (−1, 1).

On the other hand, the graph of f does not have any point of inflection since the concavity
changes at x = ±1. But ±1 are not in the domain.

(viii) Sketch the graph

x f ′(x) f ′′(x) f (x)
−∞ < x < −1 + + increasing and CU
−1 < x < 0 + - increasing and CD
0 < x < 1 - - decreasing and CD
1 < x < ∞ - + decreasing and CU

□

Example 6.4.2. Sketch the graph of f (x) =
cos x

2 + sin x
.

Proof. (i) Domain: Dom( f ) = R.

(ii) Intercepts: f (x) =
cos x

2 + sin x
= 0 when x = π2 + nπ for every n ∈ Z and those numbers are

x-intercepts. Since f (0) =
1
2

, y-intercept is
1
2

.
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(iii) Symmetry: The domain of f is symmetric about 0. Consider f (−x) =
cos(−x)

2 + sin(−x)
=

cos x
2 − sin x

.

Hence, f is neither even nor odd. On the other hand,

f (x + 2π) = f (x) for all x.

Thus, f is a periodic function with period 2π.

(iv) Asymptotes: Since f is periodic and continuous on R, there is no veritcal or horizontal
asymptote.

(v) Intervals of Increase of Decrease: It only suffices to discuss the case on [0, 2π]. Consider

f ′(x) = − 2 sin x + 1
(2 + sin x)2 . f ′(x) > 0 when 2 sin x + 1 < 0 and hence

7π
6
< x <

11π
6

, and

f ′(x) < 0 when 2 sin x + 1 > 0 and hence 0 < x <
7π
6

or
11π

6
< x < 2π. Then f is

increasing on (
7π
6
,

11π
6

) and decreasing on (0,
7π
6

) ∪ (
11π

6
, 2π).

(vi) Local maximum and minimum values: To find all critical numbers (in [0, 2π]). f ′(x) =

0 when x = 7π
6 and 11π

6 . Since f ′(x) changes from postive to negative at
7π
6

, f (
7π
6

) = − 1
√

3
is a local maximum value. Also, since f ′(x) changes from negative to positive at 11π

6 ,

f (
11π

6
) =

1
√

3
is a local minimum value.

(vii) Concavity and point of inflection on [0, 2π] Consider

f ′′(x) = −2 cos x(1 − sin x)
(2 + sin x)3 .

Since 2 + sin x > 0 and 1 − sin x ≥ 0 for all x, it suffices to consider the sign of cos x.

f ′′(x) > 0 when cos x < 0 (hence
π

2
< x <

3π
2

) and f ′′(x) < 0 when cos x > 0 (hence

0 < x < π2 or 3π
2 < x < 2π) We have the graph of y = f (x) is concave upward on (

π

2
,

3π
2

)

and concave downward on (0,
π

2
) ∪ (

3π
2
, 2π).

The concavity changes at (
π

2
, 0) and (

3π
2
, 0) and they are points of inflection.

(viii) Sketch the graph: It suffices to draw the graph on [0, 2π] and then extend to whole real
line since f is periodic with period 2π.

x f ′(x) f ′′(x) f (x)
0 < x < π/2 - - decreasing and CD
π/2 < x < 7π/6 - + decreasing and CU

7π/6 < x < 3π/2 + + increasing and CU
3π/2 < x < 11π/6 + - increasing and CD
11π/6 < x < 2π - - decreasing and CD
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□

Example 6.4.3. Sketch the graph of f (x) =
x3

x2 + 1
.

(i) Domain: Dom( f ) = R

(ii) Intercepts: f (x) =
x3

x2 + 1
= 0 when x = 0 and thus x-intercept is 0. Since f (0) = 0,

y-intercept is 0.

(iii) Symmetry: Since f (−x) =
(−x)3

(−x)2 + 1
= − x3

x2 + 1
= − f (x), f is an odd function and the

graph is symmetric about the origin.

(iv) Asymptote: Since the denominator x2 + 1 , 0 for all x, the graph of y = f (x) has no
vertical asymptote. But f (x) = x − x

x2 + 1
. Hence, f (x) − x = − x

x2 + 1
→ 0 as x → ±∞.

Therefore, the line y = x is an oblique asymptote.

(v) Intervals of Increase or Decrease:

f ′(x) =
x2(x2 + 3)
(x2 + 1)2 ≥ 0 for all x.

Thus f is increasing on (−∞,∞).

(vi) Local maximum and minimum values Since f ′(x) exists and f ′(x) = 0 when x = 0, the
only critical number is x = 0. Also, f ′(x) ≥ 0 for all x. Thus, f ′ does not change sign at
x = 0. There is no local maximum or minimum.

(vii) Concavity and points of inflection The second derivative of f is

f ′′(x) =
2x(3 − x2)
(x2 + 1)3 .

f ′′(x) > 0 when x < −
√

3 or 0 < x <
√

3 and f ′′(x) < 0 when −
√

3 < x < 0 or
x >
√

3. The graph is concave upward on (−∞,−
√

3)∪ (0,
√

3) and is concave downward
on (−

√
3, 0) ∪ (

√
3,∞).

The concavity changes at (−
√

3,−3
√

3
4

), (0, 0) and (
√

3,
3
√

3
4

). They are points of inflec-
tion.
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(viii) Sketch the curve

6.5 Inverse Functions
Recall: Functions

f never takes on the same value twice. If x1 ,
x2 then f (x1) , f (x2).

f (2) = 4 = f (3). f takes two different numbers
to the same value.

Question: For every number b ∈ B, can we find a “a ∈ A such that a function assigns a to b? In
general, it is impossible since two different numbers may be assigned to one number.

■ One-to-one and Onto Functions
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Definition 6.5.1. Let f : A→ B. We say that

(1) f is “one-to-one (or 1-1, or injective)” if f (x) , f (y) whenever x , y

(2) f is “onto (or surjective)” if for every b ∈ B, there exists a ∈ A such that f (a) = b.

Remark.
(i) An equivalent definition of one-to-one function is that if f (x1) = f (x2) then x1 = x2.

(ii) A function which is both one-to-one and onto is called “bijective”.

(iii) If f is increasing or decreasing, then f is one-to-one.

■ Horizontal Line Test

A function is one-to-one if and only if no hori-
zontal line intersects its graph more than once.

Example 6.5.2.

(1) f (x) = x3 is one-to-one.

If f (x1) = f (x2), then

0 = x3
1 − x3

2 = (x1 − x2)(x2
1 + x1x2 + x2

2).

Since x2
1 + x1x2 + x2

2 > 0 if x1 or x2 is nonzero, x1 = x2.
Hence, f is one-to-one.

(2) g(x) = x2 is not one-to-one.

g(1) = 1 = g(−1).

■ Inverse of a Function

Definition 6.5.3. Let f be a function with domain A and range B. The “inverse” of f , denoted
by f −1, is a rule that assigns each element in B to a set in A which reverses f . More precisely,
for b ∈ B

f −1(b) =
{

a ∈ A
∣∣ f (a) = b

}
.

The set f −1(b) ⊆ A is usually called the preimage of f at b.



6.5. INVERSE FUNCTIONS 111

Note. In general, the inverse, f −1, of a function f may not be a function. It sends every point b
in the range of f to a set, f −1(b), in the domain. Every number in the set is assigned to b by f .

Definition 6.5.4. A function f is “invertible” if its inverse is a function.

Heuristically, if f −1 is a function, by the vertical line test, no vertical line will intersect the
graph of f −1 more than one point. This implies that no horizontal line intersects the graph of f
more than one point. Hence, f is ono-to-one.

Theorem 6.5.5. A function f is invertible if and only if f is one-to-one.

Proof. (=⇒) Suppose that f (x1) = f (x2) = z for some x1, x2 ∈ Dom( f ). Since f is invertible,
f −1 is a function. A function assigns an element in the domain to a unique number. Hence,

x1 = f −1(z) = x2.

(⇐=) If f is one-to-one, for every element b in the range of f , there is a unique element a in the
domain of f such that f (a) = b. Hence, a is also the unique element which is assigned by f −1

from b. Then, f −1 is a function. □

Remark. If we call f −1 the “inverse function of f ”, then it is automatically regarded as a func-
tion. We have

(i)
Dom( f −1) = Range( f ) and Range( f −1) = Dom( f ).

(ii)
f −1(y) = x ⇐⇒ f (x) = y for any y ∈ Range( f ).

Example: f (x) = x3 and f −1(x) = x1/3. If y = x3 then

f −1(y) = f −1(x3) = (x3)1/3 = x.

(iii) Caution: Do not mistake the −1 in f −1 for an exponent. That is, f −1 ,
1
f
.

(iv)
f −1

(
f (x)

)
= x for every x ∈ Dom( f )

f
(

f −1(y)
)
= y for every y ∈ Dom( f −1)

Hence, ( f −1)−1 = f .

■ Graph of f −1

Graph o f f =
{(

a, f (a)
) ∣∣ a ∈ Dom( f )

}
Graph o f f −1 =

{(
b, f −1(b)

) ∣∣ b ∈ Range( f )
}
=
{

( f (a), a
) ∣∣ a ∈ Dom( f )

}
.

The graph of f −1 is obtained by reflecting the graph of f about the line y = x.
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Example 6.5.6. Sketch the graph of f (x) =
√
−1 − x and its inverse function using the same

coordinate axes.

Proof.

(i) Sketch y =
√
−1 − x.

(ii) Reflecting the graph about the line y = x.

□

■ How to Find the Inverse Function of a One-to-one Function f ?

1 Write y = f (x).

2 Solve the equation for x in terms of y (if possible)

3 Interchange x and y to express f −1 as a function of x.

Example 6.5.7.

(1) Find the inverse function of f (x) = x3 + 2.

Proof. Let y = x3 + 2. Then x = 3
√

y − 2. Consider

y =
3√

x − 2 (interchange x and y.)

Then f −1(x) = 3√x − 2. □

(2) Find the inverse of f (x) =
4x − 1
2x + 3

.

Proof. Let y =
4x − 1
2x + 3

. Then 4x − 1 = 2xy + 3y and hence x =
−3y − 1
2y − 4

. Interchange x and

y and we have

y =
−3x − 1
2x − 4

.

Thus, f −1(x) =
−3x − 1
2x − 4

. □
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o The Calculus of Inverse Functions
■ Continuity of f −1

Lemma 6.5.8. If f : [a, b]→ R be continuous, one-to-one and f (a) < f (b), then

(a) f (a) < f (c) < f (b) for all c ∈ (a, b).

(b) f is increasing on [a, b].

Proof. (a) If false, there is a number c ∈ (a, b) such that either f (c) ≤ f (a) or f (c) ≥ f (b).
Since f is one-to-one, the equality will not occur.

Suppose that f (c) < f (a). Choose L ∈ R such that f (c) < L < f (a) < f (b). By the
intermediate value theorem, there exist x, y ∈ (a, b) where a < x < c < y < b such that
f (x) = L = f (y). It contradicts the hypothesis that f is one-to-one.

Similarly, if f (c) > f (b), we can obtain a contradiction to the one-to-one hypothesis by
using the intermediate value theorem.

(b) Assume that f is not increasing on [a, b]. There exist a < x < y < b such that f (x) > f (y).
Since f is continuous and one-to-one on [a, y] and also by part(a), f (a) < f (y). Then for
x ∈ (a, y), f (x) < f (y). It contradicts the assumption.

□

Theorem 6.5.9. Let I be an interval and f : I → R is continuous and one-to-one, then f is
either increasing or decreasing on I.

Proof. By Lemma 6.5.8, since f is continuous and one-to-one, it is either increasing or decreas-
ing on any closed and bounded subinterval of I.

Assume that f is not increasing or decreasing on I. There are a, b, c, d ∈ I with a < b and
c < d such that f (a) < f (b) and f (c) > f (d).

Let α = min(a, b, c, d) and β = max(a, b, c, d). Then a, b, c, d ∈ [α, β] and f is either
increasing or decreasing on [α, β]. Hence, one of the arguments that f (a) < f (b) and f (c) >
f (d) is false. Thus, f is either increasing or decreasing on I. □
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Corollary 6.5.10. If f is continuous and one-to-one on (a, b), then the range of f is an open
interval.

Proof. (Exercise) □

Heuristically, if the graph of a continuous function has no break in it, the graph of f −1 also
has no break in it (since it is obtained from the graph of f by reflecting about the line y = x).
Hence, we expect that f −1 is also continuous.

Theorem 6.5.11. If f is continuous and one-to-one on an interval, then f −1 is also continuous.

Proof. By Theorem 6.5.9, we may assume that f is increasing. For b ∈ Dom( f −1), there exists
a ∈ Dom( f ) such that f (a) = b ( f −1(b) = a). We will prove that f −1 is continuous at b.

Given ε > 0, we will find δ > 0 such that if |y − b| < δ, then∣∣ f −1(y) − a
∣∣ < ε.

Since f is increasing, f (a − ε) < f (a) = b < f (a + ε). Let

δ = min(
∣∣ f (a − ε) − f (a)

∣∣, ∣∣ f (a + ε) − f (a)
∣∣).

For |y − b| < δ, f (a − ε) < y < f (a + ε). By I.V.T for f ,
there exists x ∈ (a − ε, a + ε) such that f (x) = y. Such x is the
unique number satisfying f (x) = y becasue f is one-to-one.
This implies that ∣∣ f −1(y) − a

∣∣ < ε for every |y − b| < δ.

Hence, f −1 is continuous at b. Since b is an arbitrary number in Dom( f −1), f −1 is continuous.
□

■ Differentiability of f −1

Let y = f −1(x) and b = f −1(a) ⇔ f (b) = a. Heuristically,
( f −1)′(a) is the slope of the tangent line L of f −1 at (a, b). The
tangent line L is obtained by reflecting the tangent line ℓ of f
at (b, a). Hence

( f −1)′(a) =
4y
4x
=

1
4x/4y

=
1

f ′(b)
.

Theorem 6.5.12. Let f be continuous and one-to-one on an open interval I. If f ′
(

f −1(a)
)
= 0,

then f −1 is not differentiable at a.

Proof. Assume that
(

f −1
)′(a) exists. Since f

(
f −1(x)

)
= x, by the chain rule,

f ′
(

f −1(a)
)
·
(

f −1)′(a) = 1.

Then 0 ·
(

f −1
)′(a) = 1. It is impossible to obtain this equality. □
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Theorem 6.5.13. Let f be continuous and one-to-one on an open interval I and f (a) = b.
Suppose that f is differentiable at f −1(b) with f ′

(
f −1(b)

)
, 0. Then f −1 is differentiable at b

and (
f −1)′(b) =

1
f ′
(

f −1(b)
) = 1

f ′(a)
.

Proof. Since f is continuous and one-to-one, for 0 ≤ |h| � 1, there exists a corresponding
k = k(h) such that b + h = f (a + k). Then h = f (a + k) − f (a). Also, by Theorem 6.5.11, f −1 is
continuous. Thus h→ 0 if and only if k → 0.

Consider

(
f −1)′(b) = lim

h→0

f −1(b + h) − f −1(b)
h

= lim
h→0

f −1(b + h) − a
h

= lim
h→0

(a + k) − a
f (a + k) − f (a)

= lim
h→0

k
f (a + k) − f (a)

= lim
k→0

1
f (a+k)− f (a)

k

=
1

f ′(a)
=

1
f ′
(

f −1(b)
) .

The equality in the last line is because f is differentiable at a and f ′(a) , 0. □

Example 6.5.14. Find the derivatives of f (x) = x1/n where n is odd.

Proof. Let g(y) = yn. Then f = g−1 and g′(y) = nyn−1.

f ′(x) =
1

g′
(
g−1(x)

) = 1
n(x1/n)n−1 =

1
n

x1/n−1.

□

6.6 Inverse Trigonometric Functions

Note that the only functions that have inverse functions are one-to-one fucntions. But the
trigonometric functions are not one-to-one. For example f (x) = sin x is not one-to-one (by the
horizontal line test). Thus, to discuss the inverse of trigonometric functions, we should restrict
those trigonometric functions on certain domain such that they are one-to-one there.

■ f (x) = sin−1 x

The function f (x) = sin x, −π
2
≤ x ≤ π

2
, is one-to-one. The inverse function of this restricted

sine function f exists and denoted by “sin−1” or “arcsin”. It is called the “inverse sine function”
or the “arcsine function”.
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Note.

(1) sin−1 x = y⇔ sin y = x for −π
2
≤ y ≤ π

2
.

(2) sin−1 x ,
1

sin x
.

(3) The domain of sin−1 x is [−1, 1] and its range is [−π
2
,
π

2
].

(4) For x ∈ [−1, 1], sin−1 x is the number(angle) between −π
2

and
π

2
whose sine is x.

(5) sin
(

sin−1 x
)
= x for x ∈ [−1, 1] and sin−1 ( sin x

)
= x for x ∈ [−π

2
,
π

2
].

Example 6.6.1.

sin−1(
1
2

) =
π

6
, sin−1(−1) = −π

2
, sin−1(−

√
3

2
) = −π

3

tan
(

sin−1(
1
2

)
)
=

1
√

3
, cos

(
sin−1(

√
3

2
)
)
=

1
2
.

• Graph of sin−1 x

• Derivative of sin−1 x
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f (x) = sin−1 x. Let g(y) = sin y. Then f = g−1 and g′(y) =
cos y.

f ′(x) =
1

g′
(
g−1(x)

) = 1
cos

(
sin−1(x)

) = 1
√

1 − x2
.

Consider the implicit differentiation, y = sin−1 x. Then sin y = x.

d
dx

(sin y) =
d
dx

(x) ⇒ cos y · dy
dx
= 1 ⇒ dy

dx
=

1
cos y

=
1

√
1 − x2

.

Example 6.6.2. f (x) = sin−1(x2 − 1)

(a) Dom( f ) =
{

x
∣∣ − 1 ≤ x2 − 1 ≤ 1

}
=
{

x
∣∣ 0 ≤ x2 ≤ 2

}
=
{

x
∣∣ − √2 ≤ x ≤

√
x
}

.

(b) f ′(x) =
1√

1 − (x2 − 1)2
· 2x =

2x
√

2x2 − x4
for x ∈ (−

√
2, 0) ∪ (0,

√
2).

■ f (x) = cos−1 x

Similar as the arcsine function, we should determine a region where cosine function is one-to-
one there. The function f (x) = cos x, 0 ≤ x ≤ π, is one-to-one. The inverse function of this
restricted sine function f exists and denoted by “cos−1” or “arccos”. It is called the “inverse
cosine function” or the “arccosine function”.

Note.

(1) cos−1 x = y⇔ cos y = x for 0 ≤ y ≤ π.

(2) The domain of cos−1 x is [−1, 1] and its range is [0, π].

(3) For x ∈ [−1, 1], cos−1 x is the number(angle) between 0 and π whose cosine is x.

(4) cos
(

cos−1 x
)
= x for x ∈ [−1, 1] and cos−1 ( cos x

)
= x for x ∈ [0, π].

• Graph of cos−1 x
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• Derivative of cos−1 x

Following the similar steps as the derivative of arcsine, it is easy to find

d
dx

(
cos−1 x

)
= − 1
√

1 − x2
for − 1 < x < 1.

Remark. Another point of view to look at the derivative of arccosine is that

cos−1 x =
π

2
− sin−1 x ⇒ d

dx
(

cos−1 x
)
= − d

dx
(

sin−1 x
)
= − 1
√

1 − x2
.

■ f (x) = tan−1 x

The function f (x) = tan x, −π
2
≤ x ≤ π

2
, is one-to-one. The inverse function of this restricted

sine function f exists and denoted by “tan−1” or “arctan”. It is called the “inverse tangnet func-
tion” or the “arctangent function”.

Note.

(1) tan−1 x = y⇔ tan y = x for −π
2
< y <

π

2
.

(2) The domain of tan−1 x is (−∞,∞) and its range is (−π
2
,
π

2
).

(3) For any x, tan−1 x is the number(angle) between −π
2

and
π

2
whose tangent is x.

(4) tan
(

tan−1 x
)
= x for x ∈ (−∞,∞) and tan−1 ( tan x

)
= x for x ∈ (−π

2
,
π

2
).

(5) lim
x→−∞

tan−1 x = −π
2

and lim
x→∞

tan−1 x =
π

2
.

Example 6.6.3. Evaluate cos
(

tan−1 x
)
.
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Proof. Let y = tan−1 x. Then

tan y = x⇒ sec2 y = 1 + tan2 y = 1 + x2 ⇒ cos
(

tan−1 x
)
= cos y =

1
sec y

=
1

√
1 + x2

.

□

• Graph of tan−1 x

• Derivative of tan−1 x

f (x) = tan−1 x. Let g(y) = tan y. Then f = g−1 and g′(y) =
sec2 y.

f ′(x) =
1

g′
(
g−1(x)

) = 1
sec2

(
tan−1(x)

) = 1
1 + x2 .

Consider the implicit differentiation, y = tan−1 x. Then tan y = x.

d
dx

(tan y) =
d
dx

(x) ⇒ sec2 y · dy
dx
= 1 ⇒ dy

dx
=

1
sec2 y

=
1

1 + x2 .

• Other inverse of trigonometric functions
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Functions Definition Domain Range

y = cot−1 x x = cot y (−∞,∞) (0, π)

y = sec−1 x x = sec y (−∞,−1) ∪ (1,∞) (0,
π

2
) ∪ (
π

2
, π)

y = csc−1 x x = csc y (−∞,−1) ∪ (1,∞) (−π
2
, 0) ∪ (0,

π

2
)

Remark.

(i) The ranges of sec−1 x and csc−1 x are not universally agreed.

(ii) The following is the derivatives of all inverse of trigonometric functions

• d
dx

(
sin−1 x

)
=

1
√

1 − x2
• d

dx
(

cos−1 x
)
= − 1
√

1 − x2

• d
dx

(
tan−1 x

)
=

1
1 + x2 • d

dx
(

cot−1 x
)
= − 1

1 + x2

• d
dx

(
sec−1 x

)
=

1

x
√

x2 − 1
• d

dx
(

csc−1 x
)
= − 1

x
√

x2 − 1

Example 6.6.4. Let f (x) = x tan−1(
√

x). Then

f ′(x) = tan−1(
√

x) + x · 1
1 + (

√
x)2
· 1

2
√

x
= tan−1(

√
x) +

√
x

2(1 + x)
.

Example 6.6.5. Prove that tan−1 x + cot−1 x =
π

2
.

Proof. Let f (x) = tan−1 x + cot−1 x and compute f ′(x) = 0. □

6.7 Optimization Problems*

The goal of this section is to solve some practical optimization problems.

■ Strategy

*All the materials and examples in this section are from Calculus, J. Stewart 8th Ed.
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1. Understand the problem

2. Draw a diagram

3. Introduce notation

4. Express the quantity in Step3, say Q, in terms of other symbols.

5. Express Q as a function of a single variable.

6. Use the techniques discussed in this chapter to find the extreme values.

Example 6.7.1.

A cyclindrical can is to be made to hold 1L of
oil. find the dimensions that will minimized the
cost tof the metal to manufacture the can.

Proof.

Let r be the radius of the top of the can (in cm)
and h be the height of the can. Then the surface
area of the can is

A = 2πr2 + 2πrh

The volume of the can gives rise to πr2h =

1000. We have h =
1000
πr2 and the surface area

can be expressed as

A(r) = 2πr2 + 2πr · 1000
πr2 = 2πr2 +

2000
r
.

To find the minimum of A, we compute the critical num-
bers of A.

A′(r) = 4πr − 2000
r2 =

4(πr3 − 500)
r2 .

Then A′(r) = 0 when r = 3
»

500
π

. Since A′(r) < 0 on

(0, 3
»

500
π

) and A′(r) > 0 on ( 3
»

500
π
,∞), A(r) decreases on

(0, 3
»

500
π

) and increases on ( 3
»

500
π
,∞).

Hence, A(r) has an absolute minimum at r =
3

…
500
π

and then h = 2
3

…
500
π

.

• Alternating Method
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Since A = A(r, h) = 2πr2 + 2πrh and πr2h = 1000, we can compute the derivative of A and find
the critical numbers of A by using the implicit differentiation and solving

d
dr

A = 4πr + 2πh + 2πr
dh
dr
= 0 and 2πrh + πr2 dh

dr
= 0.

Then we obtain that A has critical number when h = 2r. Plugging into πr2h = 1000, we have

r =
3

…
500
π

. Following the same analysis, we get the same result as above. □

From the above example, we use the first derivtive test to check that the minimum value
occurs at the critical point. But the first derivative test is to use to verify the “local” extremem
values. Why can we use it here?

■ First Derivative Test for Absolute Extreme Values

Let f be a continuous function on an interval and c be a critical number of f .

(a) If f ′(x) > 0 for x < c and f ′(x) < 0 for x > c, then f (c) is the absolute maximum value of
f .

(b) If f ′(x) < 0 for x < c and f ′(x) > 0 for x > c, then f (c) is the absolute minimum value of
f .

Proof. Skip □

Example 6.7.2. Find the point on the parabola y2 = 2x that is closest to the point (1, 4).

Proof.

Let (x, y) be a point on the parabola. Then y2 = 2x. The
distance from (x, y) to (1, 4) is

d =
√

(x − 1)2 + (y − 4)2 =

…
(
1
2

y2 − 1)2 + (y − 4)2.

To find the minimum of
»

(1
2y2 − 1)2 + (y − 4)2 is

equalivent to find the minumum of ( 1
2y2 − 1)2 + (y − 4)2.

Let f (y) = ( 1
2y2−1)2+(y−4)2. Then f ′(y) = 2(1

2y2−1)·y+2(y−4) = y3−8. Hence, f ′(y) = 0
when y = 2 which is the critical number of f . Since f ′(y) < 0 when y < 2 and f ′(y) > 0 when
y > 2, f (y) has an absolute minimum at y = 2 and thus x = 1

2 · 22 = 2. Therefore, the point on
the curve y2 = 2x that is closest to (1, 4) is (2, 2). □

Example 6.7.3. Find the largest rectangle that can be inscribed in a semicircle of radius r.

Proof.
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Consider the semicircle to the upper half circle
x2 + y2 = r2. Let (x, y) be the point on the semicircle
which is the vertex of the rectangle in the first quadrant.
Hence, x2 + y2 = r2. The area of the inscribed rectangle
is

A = 2xy = 2x
√

r2 − x2 for 0 ≤ x ≤ r.

To find the absolute maximum of A, we evaluate

A′(x) =
2(r2 − 2x2)
√

r2 − x2
.

We have A′(x) = 0 when x =
r
√

2
. Since A′(x) > 0 when 0 < x < r√

2
and A′(x) < 0 when

r√
2
< x < r. Then A(x) has an absolute maximum at x =

r
√

2
. The area of the largest inscribed

rectangle is A(r/
√

2) = r2.
• Alternating Method

We express the vertex of the rectangle in the first quadrant
as (x, y) = (r cos θ, r sin θ). Then the area of the inscribed
rectangle is

A(θ) = (2r cos θ)(r sin θ) = r2 sin(2θ) for 0 ≤ θ ≤ π
2
.

Since sin(2θ) has a maximum value when θ = π
4 , the area of the largest inscribed rectangle is

A(π/4) = r2.
□
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7.1 Areas

In this section, we will try to find the area under a curve.

o The Area Problem

Let f (x) ≥ 0 and S be the region that lies under the curve y = f (x) from a to b. We try to
find the area of S .

125
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Recall that the areas of some special regions are easily obtained. For example, the polygons.

Question: How about the areas of the general regions?
We try to approximate the area of the region S by rectangles and take the limit of the areas

of these rectangles as we increase the number of rectangles.

If the function f is nonnegative on [a, b], we indicate the region bounded by the x-axis, the
vertical lines x = a and x = b, and the cruve y = f (x) by R( f , a, b) and want to evaluate the area
of R( f , a, b). In order to study the integrals of more general functions, we no longer assume that
f is nonnegative. The area problems will be discussed later.

Definition 7.1.1.

(a) Let P be a finite collection of points {xk}nk=0 that satisfies a = x0 < x1 < x2 < · · · < xn = b.
We call such P a “partition of [a, b] ”.

(b) The norm (mesh) of a partition P is defined by

|P| = max
1≤k≤n

4xk where 4xk = xk − xk−1.

(c) If P1 and P2 are two partitions of [a, b] and P1 ⊆ P2, we say that P2 is a refinement of P1.

(d) If P1 and P2 are two partitions of [a, b], then P = P1 ∪ P2 is called a common refinement of
P1 and P2.

■ Upper sums and Lower sums
Definition 7.1.2. Suppose that f is bounded on [a, b] and P = {x0, x1, · · · , xn} is a partition of
[a, b]. Denote mi = inf

x∈[xi−1,xi]
f (x) and Mi = sup

x∈[xi−1,xi]
f (x). We say that

L(P, f ) =
n∑

k=1

mk(xk − xk−1) =
n∑

k=1

mk4xk

is “the lower (Darboux) sum of f for P” and

U(P, f ) =
n∑

k=1

Mk(xk − xk−1)
n∑

k=1

Mk4xk

is “the upper (Darboux) sum of f for P”.
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A “Riemann sum” of f for P is defined by

S (P, f ) =
n∑

k=1

f (ck)4xk

with any ck ∈ [xk−1, xk].

Remark.

(i) The lower sum and uppoer sum of a bounded function f for P is well-defined.

(ii) Let m = inf
x∈[a,b]

f (x) and M = sup
x∈[a,b]

f (x). For any partition P of [a, b],

m(b − a) ≤ L(P, f ) ≤ S (P, f ) ≤ U(P, f ) ≤ M(b − a).

Example 7.1.3. Let f (x) = x2 on [0, 1] and a particular partition P given by

P =
{

0,
1
n
,

2
n
, · · · , 1 − 1

n
, 1
}
.

For the partition P, xk =
k
n

and 4xk =
1
n

where k = 0, 1, · · · , n. Since f is increasing, f (xk) is
the maximum value for f and f (xk−1) is the minimum value for f on each interval [xk−1, xk].
Then

U(P, f ) =
n∑

k=1

Mk4xk =

n∑
k=1

Äk
n

ä2
· 1

n
=

1
n3

n∑
k=1

k2

=
1
n3 ·

n(n + 1)(2n + 1)
6

=
(n + 1)(2n + 1)

6n2

and

L(P, f ) =
n∑

k=1

mk4xk =

n∑
k=1

Äk − 1
n

ä2
· 1

n
=

1
n3

n∑
k=1

(k − 1)2

=
1
n3 ·

(n − 1)n(2n − 1)
6

=
(n − 1)(2n − 1)

6n2 .
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Lemma 7.1.4. Suppose that f is a bounded function on [a, b]. If P1 and P2 are two partitions
of [a, b] and P2 is a refinement of P1, then

L(P1, f ) ≤ L(P2, f ) and U(P2, f ) ≤ U(P1, f ).

Proof. It suffices to show that L(P1, f ) ≤ L(P2, f ) and the proof of U(P2, f ) ≤ U(P1, f ) is sim-
ilar.

Step1: Suppose that P2 contains only one point more than P1. Say

P1 =
{

x0, x1, · · · , xn
}

where x0 < x1 < · · · < xn

P2 =
{

x0, x1, · · · , xk−1, x∗, xk, · · · , xn
}

where x0 < · · · < xk < x∗ < xk+1 < · · · < xn

Let w1 = inf
x∈[xk−1,x∗]

f (x) and w2 = inf
x∈[x∗,xk]

f (x). Then mk ≤ w1 and mk ≤ w2. We have

L(P1, f ) =
k−1∑
i=1

mi(xi − xi−1) + mk(xk − xk−1) +
n∑

i=k+1

mi(xi − xi−1)

=

k−1∑
i=1

mi4xi + mk[(x∗ − xk−1) + (xk − x∗)] +
n∑

i=k+1

mi(xi − xi−1)

≤
k−1∑
i=1

mi4xi + w1(x∗ − xk−1) + w2(xk − x∗) +
n∑

i=k+1

mi(xi − xi−1)

= L(P2, f ).

Step2: If P2 contains m points more than P1, we can repeat the procedure of Step1 m times and
the lemma is proved. □



7.1. AREAS 129

Lemma 7.1.5. Let P1 and P2 be partitions of [a, b] and f is bounded on [a, b]. Then

L(P1, f ) ≤ U(P2, f )

Proof. Let P∗ = P1 ∪ P2. Then P is a common refinement of P1 and P2. By Lemma 7.1.4,

L(P1, f ) ≤ L(P, f ) ≤ U(P, f ) ≤ U(P2, f ).

□

Remark. Lemma 7.1.4 says that any upper sum U(Q, f ) is an upper bound of all upper sum
L(P, f ) and any lower sum L(Q, f ) is a lower bound of all upper sum U(P, f ). Hence, any upper
sum is greater than sup

P
U(P, f ). That is, let Q be a partition of [a, b]

sup
P

L(P, f ) ≤ U(Q, f ) and L(Q, f ) ≤ inf
P

U(P, f ).

Then
sup

P
L(P, f ) ≤ inf

P
U(P, f ).

Remark.

(i) If sup
P

L(P, f ) = inf
P

U(P, f ) = c, then c is the unique number which is greater than all

lower sums and is less than all upper sums.

(ii) It is possible that sup
P

L(P, f ) < inf
P

U(P, f ). For example, f (x) =
ß

1, x ∈ [0, 1] ∩ Q
0, x ∈ [0, 1]\Q .

Then mk = inf
x∈[xk−1,xk]

f (x) = 0 and Mk = sup
x∈[xk−1,xk]

f (x) = 1 for every k = 1, 2, · · · , n. Thus,

L(P, f ) =
n∑

k=1

mk4xk = 0

U(P, f ) =
n∑

k=1

Mk4xk = 1

Since P is an arbitrary partition of [0, 1],

sup
P

L(P, f ) = 0 < 1 = inf
P

U(P, f ).

(iii) If P1 ⊆ P2, then
U(P1, f ) − L(P1, f ) ≥ U(P2, f ) − L(P2, f ).

Definition 7.1.6. We write∫ b

a
f (x) dx = sup

P
L(P, f ) and

∫ b

a
f (x) dx = inf

P
U(P, f )

which are called the “lower integral” and “upper ingegral” of f over [a, b], respectively.
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Remark.

(i) Suppose that f is a bounded function on [a, b] and P is any partition of [a, b], then

L(P, f ) ≤
∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx ≤ U(P, f ).

(ii) We usually write the lower and upper integral as∫ b

a
f ,
∫ b

a
f dx, and

∫ b

a
f ,
∫ b

a
f dx.

Definition 7.1.7. Let f be a bounded function on [a, b]. We say that f is “(Riemann) integrable”
on [a, b] if ∫ b

a
f (x) dx =

∫ b

a
f (x) dx = A.

We call this number the “definite integral” of f on [a, b] and denote∫ b

a
f (x) dx.

Remark.

(i) The symbol
∫

is called an integral sign and f (x) dx is called an integrand. The procedure
of calculating an integral is called “integration”.

(ii) If f is integrable on [a, b] if and only if supP L(P, f ) = infP U(P, f ) = A.

(iii) A definite integral
∫ b

a
f (x) dx is a number. The variable x in the preceding is a “dummy

variable”. That is, we can write∫ b

a
f (x) dx =

∫ b

a
f (t) dt =

∫ b

a
f (r) dr.

(iv) When f (x) ≥ 0 on [a, b], the integral of f on [a, b],
∫ b

a
f (x) dx is the area of R( f , a, b).

That is, the area of the region R( f , a, b) that lies under the graph of f between a and b is
the limit of the areas of approximating rectangles.

Example 7.1.8. Let f (x) = c on [a, b] and P =
{

a = x0 < x1 < · · · < xn−1 < xn
}

be a partition
of [a, b]. Then mi = c = Mi for i = 1, 2, · · · , n. Thus

L(P, f ) =
n∑

i=1

mi(xi − xi−1) = c
n∑

i=1

(xi − xi−1) = c(b − a) =
n∑

i=1

Mi(xi − xi−1) = U(P, f ).

Since P is an arbitrary partition of [a, b],

sup
P

L(P, f ) = c(b − a) = inf
P

U(P, f ).

Then f is integrable on [a, b] and
∫ b

a
f (x) dx = c(b − a).
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Example 7.1.9. If f (x) =
ß

1, x ∈ [a, b] ∩ Q
0, x ∈ [a, b]\Q . Then, for any partition P of [a, b],

L(P, f ) = 0 < (b − a) = U(P, f ).

Hence, sup
P

L(P, f ) = 0 < (b − a) = inf
P

U(P, f ) and f is not integrable on [a, b].

Example 7.1.10. Let f (x) = x on [a, b]. Find
∫ b

a
f (x) dx.

Proof. Let 4x = b−a
n and Pn =

{
xi

∣∣ xi = a + i4x for i = 0, 1, 2, · · · , n
}

. Since f is an
increasing function on [a, b], on each subinterval [xi−1, xi], Mi = f (xi) = a+ i4x = a+ i(b−a)

n and
mi = f (xi−1) = a + (i − 1)4x = a + (i−1)(b−a)

n . Then

U(Pn, f ) =
n∑

i=1

Ä
a +

i(b − a)
n

ä
· b − a

n

= a(b − a) +
Äb − a

n

ä2
n∑

i=1

i =
1
2

(b2 − a2) +
(b − a)2

2n

L(Pn, f ) =
n∑

i=1

Ä
a +

((i − 1)(b − a)
n

ä
· b − a

n

= a(b − a) +
Äb − a

n

ä2
n∑

i=1

(i − 1) =
1
2

(b2 − a2) − (b − a)2

2n
.

We have
1
2

(b2 − a2) − (b − a)2

2n
≤
∫ b

a
f (x) dx ≤ 1

2
(b2 − a2) +

(b − a)2

2n

for every n ∈ N. The unique number makes the above inequality hold is 1
2 (b2 − a2). Hence,∫ b

a
f (x) dx =

1
2

(b2 − a2).

□

■ Areas

Heuristically, for f (x) ≥ 0 on [a, b], the area of R( f , a, b) under the graph y = f (x) for a ≤ x ≤ b
is greater than any lower sum and less than any upper sum. That is, for any partition P of [a, b],

L(P, f ) ≤ the area of R( f , a, b) ≤ U(P, f ).

Then
sup

P
L(P, f ) ≤ the area of R( f , a, b) ≤ inf

P
U(P, f ).

Hence, if sup
P

L(P, f ) = inf
P

U(P, f ), we have

the area of R( f , a, b) = sup
P

L(P, f ) = inf
P

U(P, f ).
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But, if sup L(P, f ) < inf U(P, f ), we cannot determine the area of R( f , a, b).

■ Distances

If the velocity of an object remains constant, then

Distance = velocity × time.

But if the velocity varies, it is not easy to find the traveled distance.

To estimate the distance over the time period [a, b], we may divide [a, b] into n subinterval

with width 4t =
b − a

n
. The distrance traveled over [ti−1, ti] is approximated by

v(t∗i )4t.

Hence, the total distance is the limit of the sum of approximating rectangle

distance = lim
n→∞

n∑
i=1

v(t∗i )4t = lim
n→∞

b − a
n

n∑
i=1

v(t∗i ).

7.2 Integrable Functions
Question: For a given function f on [a, b], how to determine whether f is integrable?

Question: If f is integrable on [a, b], how to find
∫ b

a
f (x) dx?

Theorem 7.2.1. If f is bounded on [a, b], then f is integrable on [a, b] if and only if for every
ε > 0, there is a partition P of [a, b] such that

U(P, f ) − L(P, f ) < ε.

Proof. (=⇒) Since f is bounded and integrable on [a, b], by the defintion,

sup
P

L(P, f ) = inf
P

U(P, f ) = A < ∞.

Given ε > 0, there exist two partitions of [a, b], P1 and P2, such that

L(P1, f ) > A − ε
2

and U(P2, f ) < A +
ε

2
.
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Let P = P1 ∪ P2 be a common refinement of P1 and P2. Then

A − ε
2
< L(P1, f ) ≤ L(P, f ) and

A +
ε

2
> U(P2, f ) ≥ U(P, f ).

Therefore,
0 ≤ U(P, f ) − L(P, f ) < (A +

ε

2
) − (A − ε

2
) = ε.

(⇐=) Given ε > 0, let Pε be a partition of [a, b] such that

U(Pε, f ) − L(Pε, f ) < ε.

Then
inf

P
U(P, f ) − sup

P
L(P, f ) ≤ U(Pε, f ) − L(Pε, f ) < ε.

Since ε is an arbitrary positive number, inf
P

U(P, f ) = sup
P

L(P, f ) and hence f is integrable on

[a, b]. □

Theorem 7.2.2. If a function f is monotonic on [a, b], then it is integrable on [a, b].

Proof. W.L.O.G, we may assume that f is increasing on [a, b]. Then f is a bounded function
with f (a) = min

x∈[a,b]
f (x) and f (b) = max

x∈[a,b]
f (x).

Given ε > 0, we wan to choose a partition P of [a, b] such that U(P, f ) − L(P, f ) < ε. Let

4x =
b − a

n
and P =

{
xi = a + i4x

∣∣ i = 0, 1, 2, · · · , n
}

where n will be determined later. On
each subinterval [xi−1, xi], Mi = f (xi) and mi = f (xi−1). We have

U(P, f ) − L(P, f ) =
n∑

i=1

Mi4x −
n∑

i=1

mi4x =
n∑

i=1

(Mi − mi)4x

=
b − a

n

n∑
i=1

[ f (xi) − f (xi−1)] =
b − a

n
[ f (b) − f (a)].

We can choose n sufficiently large such that
(b − a)[ f (b) − f (a)]

n
< ε and thus U(P, f ) − L(P, f ) < ε.

Since ε is an arbitrarily positive number, f is integrable on [a, b]. □

o Uniform Continuity
Review: A function f is continuous on [a, b] if for every x ∈ [a, b] and given ε > 0, there exists
δ = δ(ε, x) > 0 such that

| f (x) − f (y)| < ε
for every y ∈ [a, b] and |x − y| < δ.

Note that the number δ depends not only on ε but also on the point x. It could be different
when x varies. For example, f (x) = x2 is continuous on R. We can show that∣∣x2 − a2

∣∣ < ε whenever |x − a| < δ = min
Ä

1,
ε

1 + 2|a|
ä
.

On the other hand, we consider f (x) = x2 on [−2, 2]. For every point a ∈ [−2, 2], we can choose
δ = min

Ä
1,
ε

5

ä
which is independent of the point in [−2, 2]. Then |x2 − a2| < ε whenever

|x − y| < δ. Hence, the function f (x) = x2 may have different behaviors if the domain varies.
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Definition 7.2.3. Let f be a function defined on D ⊆ R and E ⊆ D. We say that f is “uniformly
continuous” on E if for any ε > 0 there exists δ = δ(ε) > 0 such that

| f (x) − f (y)| < ε

for all x, y ∈ E satisfying |x − y| < δ. If f is uniformly continuous on its domain D, we simply
say that f is uniformly continuous.

Remark.

(i) If f is uniformly continuous on E, then it is also continuous on E.

(ii) If f is not uniformly continuous on E, there exists ε > 0 such that for every δ > 0 there
exist x, y ∈ E with |x − y| < δ satisfying | f (x) − f (y)| ≥ ε.
This statement is equivalent that “there exists ε > 0 such that for every n ∈ N we can
choose a sequence of pairs of points xn, yn ∈ E such that |xn − yn| → 0 as n → ∞, but
| f (xn) − f (yn)| ≥ ε.”

Example 7.2.4. Prove that f (x) = x2 is not uniformly continuous.

Proof. Let ε = 1. We want to find xn, yn such that |xn − yn| <
1
n

and |x2
n−y2

n| ≥ 1 for every n ∈ N.
Consider

|x2
n − y2

n| = |xn + yn||xn − yn|.

Choose xn = n and yn = n +
1
n

. Then

∣∣∣x2
n − y2

n

∣∣∣ = 1
n
· (2n +

1
n

) =
∣∣∣2 + 1

n2

∣∣∣ > 1.

Hence, f (x) = x2 is not uniformly continuous on R. □

Exercise.

(i) Prove that f (x) =
1
x

is uniformly continuous on (
1
n
,∞) for every n ∈ N but not uniformly

continuous on (0,∞).

(ii) Prove that f (x) = sin x is uniformly continuous on R.

Theorem 7.2.5. If f is continuous on [a, b], then f is uniformly continuous on [a, b].

Proof. We will prove this theorem by a contradition. Assume that f is not uniformly continuous

on [a, b]. There exists ε > 0 and pair of sequences {sn}∞n=1, {tn}∞n=1 ⊂ [a, b] such that |sn − tn| <
1
n

and
∣∣ f (sn) − f (tn)

∣∣ > ϵ. We want to prove that [a, b] cannot contain such pair of sequences.
Define

A =
¶

x ∈ [a, b]
∣∣∣ [a, x] contains infinitely many sn

©
.

Step1: To show that a ∈ A. (That is, {sn} contains at most finitely many “a”.)
Since f is continuous at a, for the givne ε, there exists δ > 0 such that for x ∈ [a, b] and

|x − a| < δ then
∣∣ f (x) − f (a)

∣∣ < ε. Hence, if sn = a and |tn − sn| = |tn − a| < 1
n such that
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∣∣ = ∣∣ f (tn) − f (a)

∣∣ > ε, we have 1/n cannot be less than δ. Hence, n ≤ 1/δ.

Since A is nonempty and b is an upper bound for A, by the least upper bound property, there
exists c ∈ [a, b] such that c = sup A.
Step 2: To show that c = b.

Assume that c < b. Since f is continuous at c. For the given ε, there exists δ1 > 0 such that
for every y ∈ [a, b] and |y − c| < δ1 then∣∣ f (y) − f (c)

∣∣ < ε
2
.

Note that we can choose δ1 sufficiently small such that (c − δ1, c + δ1) ⊂ (a, b). We claim that
(c − δ12 , c +

δ1
2 ) contains infinitely many sn. Suppose that the claim is false (that is, it contains

finitely many sn). Since c = sup A, [a, c − δ14 ) contains finitely many {sn}. Combinig the above
two results, the interval [a, c+ δ12 ) also contains finitely many sn. This implies sup A ≥ c+ δ12 > c.

Now, we will show that the inequality c < b is false. Since (c− δ12 , c+
δ1
2 ) contains infinitely

many sn, we can choose sufficiently large N ∈ N such that
1
N
<
δ1

2
and sN ∈ (c − δ12 , c +

δ1
2 ).

Since |tN − sN | <
1
N
<
δ1

2
, we have |tN − c| < δ1. Then

∣∣ f (tN) − f (sN)
∣∣ ≤ ∣∣ f (tN) − f (c)

∣∣ + ∣∣ f (c) − f (sN)
∣∣ < ε

2
+
ε

2
= ε.

It contradicts the choice of {sn} and {tn}. Hence c = b.
Step 3: To show that A = [a, b]. It means that [a, b] contains only finitely many {sn} and hence
such choice of pair of sequence {sn} and {tn} does not exist.

For Stpe 2, b = sup A. We will show that b ∈ A. The process is similar as the proof of Step
1. Since f is continuous at b, for the given ε there exists δ2 > 0 such that for y ∈ [a, b] and
|y − b| < δ2, then

∣∣ f (y) − f (b)
∣∣ < ε2 . Also, since b = sup A, we can show that (b − δ22 , b] contains

infinitely many sn. Choose a sufficiently large M ∈ N with 1
M <

δ2
2 such that sM ∈ (b − δ22 , b].

Then |tM − b| ≤ |tM − sM | + |sM − b| < δ2 and∣∣ f (sM) − f (tM)
∣∣ ≤ ∣∣ f (sM) − f (b)

∣∣ + ∣∣ f (b) − f (tM)
∣∣ ≤ ε

2
+
ε

2
.

It contradicts that choice of {sn} and {tn}. We have b ∈ A and the theorem is proved.
□

Remark. In Theorem 7.2.5, the hypothesis that closedness and boundedness of the interval
are necessary. For example, f (x) = 1/x on (0, 1) and g(x) = x2 on (1,∞) are not uniformly
continuous.

Theorem 7.2.6. If a function f is continuous on [a, b], then it is integrable on [a, b].

Proof. Since f is continuous on [a, b], it is also uniformly continuous on [a, b]. Given ε > 0,
there exists δ > 0 such that ∣∣ f (x) − f (y)

∣∣ < ε

b − a
whenever |x − y| < δ. Choose a partition P =

{
x0, x1, · · · , xn

}
of [a, b] with |P| = max

1≤i≤n
4xi < δ.

On each subinterval [xi−1, xi], by the extreme value theorem, there exists si, ti ∈ [xi−1, xi] such
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that Mi = f (si) and mi = f (ti). Since |si − ti| < δ, we have Mi − mi <
ε

b − a
for i = 1, 2, · · · , n.

Then

U(P, f ) − L(P, f ) =
n∑

i=1

(Mi − mi)(xi − xi−1)

<
ε

b − a

n∑
i=1

(xi − xi−1)

=
ε

b − a
· (b − a) = ε.

Hence, f is integrable on [a, b]. □

Theorem 7.2.7. If f is bounded on [a, b] and is continuous on [a, b] except at one point, then f
is integrable on [a, b]. Moreover,∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Proof. Since f is bounded on [a, b], there exists M > 0 such that | f (x)| < M for every x ∈ [a, b].
For given ε > 0, we will prove that there exists a partition P of [a, b] such that

U(P, f ) − L(P, f ) < ε.

Suppose that f is discontinuous at only one point c ∈ [a, b]. Then f is continuous on [a, c − ε

12M
] ∪ [c +

ε

12M
, b].

Hence, f is integrable on [a, c − ε

12M
] and on [c +

ε

12M
, b]. There exists a partition P1 =

{t0, t1, · · · , tn} of [a, c − ε

12M
] and a partition P2 = {s0, s1, · · · , sm} of [c +

ε

12M
, b] such that

U(P1, f ) − L(P1, f ) <
ε

3
and U(P2, f ) − L(P2, f ) <

ε

3
.

Note that, in the partitions P1 and P2, t0 = a, tn = c − ε

12M
, s0 = c +

ε

12M
and sm = b. Let

P = P1 ∪ P2. Then P is a partition of [a, b].

Define

Mi = sup
x∈[ti−1,ti]

f (x) and mi = inf
x∈[ti−1,ti]

f (x)

M′
j = sup

x∈[s j−1,s j]
f (x) and m′j = inf

x∈[s j−1,s j]
f (x)
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Then

U(P, f ) − L(P, f ) =
n∑

i=1

Mi(ti − ti−1) +
Ä

sup
x∈[tn,s0]

f (x)
ä

(s0 − tn) +
m∑

j=1

M′
j(s j − s j−1)

−
n∑

i=1

mi(ti − ti−1) +
Ä

inf
x∈[tn,s0]

f (x)
ä

(s0 − tn) +
m∑

j=1

m′j(s j − s j−1)

=
î
U(P1, f ) − L(P1, f )

ó
+
î
U(P2, f ) − L(P2, f )

ó
+
î

sup
x∈[tn,s0]

f (x) − inf
x∈[tn,s0]

f (x)
ó
(s0 − tn)

<
ε

3
+
ε

3
+ 2M · ε

6M
= ε.

Hence, f is integrable on [a, b]. □

Definition 7.2.8. A function f is called “piecewise continuous” on an interval I if there exists
finitely many points x1, x2, · · · , xn in I such that f is continuous on I except at x1, x2, · · · , xn and
f has removable or jump discontinuities at x1, x2, · · · , xn.

Corollary 7.2.9. If f is piecewise continuous on [a, b], then f is integrable on [a, b].

Proof. Exercise! □

7.3 Properties of the Integrals

Theorem 7.3.1.

(a) If f is integrable on [a, b] and [c, d] ⊆ [a, b], then f is integrable on [c, d].

(b) For a < b < c, if f is integrable on [a, b] and is integrable on [b, c], then f is integrable on
[a, c]. Moreover, ∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx.
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(c) If f and g are integrable on [a, b], then f ± g is integrable on [a, b]. Moreover,∫ b

a
( f ± g)(x) dx =

∫ b

a
f (x) dx ±

∫ b

a
g(x) dx.

(d) If f is integrable on [a, b] and α ∈ R, then α f is integrable on [a, b]. Moreover∫ b

a
(α f )(x) dx = α

∫ b

a
f (x) dx.

(e)
∫ a

a
f (x) dx = 0.

Proof. We will prove (c) here and the proofs of other parts are left to the readers.
Since f and g are integrable on [a, b], for given ε > 0, there exist partitions, P1 and P2, of [a, b]
such that

U(P1, f ) − L(P1, f ) <
ε

2
and U(P2, g) − L(P2, g) <

ε

2
.

Let P = P1 ∪ P2 =
{

a = x0 < x1 < · · · < xn−1 < xn = b
}

be the common refinement of P1 and
P2. Then

U(P, f ) − L(P, f ) <
ε

2
and U(P, g) − L(P, g),

ε

2
.

Define

Mi = sup
x∈[xi−1,xi]

( f + g)(x), M′
i = sup

x∈[xi−1,xi]
f (x) and M′′

i = sup
x∈[xi−1,xi]

g(x)

mi = inf
x∈[xi−1,xi]

( f + g)(x), m′i = inf
x∈[xi−1,xi]

f (x) and m′′i = inf
x∈[xi−1,xi]

g(x).
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Then Mi ≤ M′
i + M′′

i and mi ≥ m′i + m′′i . We have

U(P, f + g) − L(P, f + g) =
n∑

i=1

Mi(xi − xi−1) −
n∑

i=1

mi(xi − xi−1)

≤
n∑

i=1

(M′
i + M′′

i )(xi − xi−1) −
n∑

i=1

(m′i + m′′i )(xi − xi−1)

= U(P, f ) − L(P, f ) + U(P, g) − L(P, g)

<
ε

2
+
ε

2
= ε.

Hence, f + g is integrable on [a, b]. Moreover, since

L(P, f ) ≤
∫ b

a
f (x) dx ≤ U(P, f ) with U(P, f ) − L(P, f ) <

ε

2
and

L(P, g) ≤
∫ b

a
g(x) dx ≤ U(P, g) with U(P, g) − L(P, g) <

ε

2
,

we have

L(P, f ) + L(P, g) ≤
∫ b

a
f (x) dx +

∫ b

a
g(x) dx ≤ U(P, f ) + U(P, g).

Also,

L(P, f ) + L(P, g) ≤ L(P, f + g) ≤
∫ b

a
( f + g)(x) dx ≤ U(P, f + g) ≤ U(P, f ) + U(P, g).

Hnece,

∣∣∫ b

a
( f+g)(x) dx−

Ä∫ b

a
f (x) dx+

∫ b

a
g(x) dx

ä∣∣∣ ≤ ∣∣∣ÄU(P, f )+U(P, g)
ä
−
Ä

L(P, f )+L(P, g)
ä∣∣∣ < ε.

Thus, ∫ b

a
( f + g)(x) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx.

□

Exercise. If f is integrable on [a, b], prove that | f (x)| is also integrable on [a, b].

Example 7.3.2. Let a < c < d < b. If f is integrable on [a, b], f (x) ≥ 0 on [a, c] ∪ [d, b] and
f (x) ≤ 0 on [c, d] as the figure. Then∫ b

a
f (x) dx

=

∫ c

a
f (x) dx +

∫ d

c
f (x) dx +

∫ b

d
f (x) dx

=

∫ c

a
f (x) dx −

∫ d

c
(−1) f (x) dx +

∫ b

d
f (x) dx

= Area of I − Area of II + Area of III.
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Moreover, the area between the graph of f and x-axis is∫ b

a
| f (x)| dx =

∫ c

a
| f (x)| dx +

∫ d

c
| f (x)| dx +

∫ b

d
| f (x)| dx

= Area of I + Area of II + Area of III.

Example 7.3.3. Evaluate
∫ 1

0

√
1 − x2 dx.

Proof.

If we try to find the upper sum or lower sum, it is not
easy to evaluate the form

n∑
i=1

√
1 − xi4xi.

Hence, we try to think that
∫ 1

0

√
1 − x2 dx repre-

sents the area under the curve y =
√

1 − x2 from 0 to
1. Hence, ∫ 1

0

√
1 − x2 dx =

1
4
π · 12 =

π

4
.

□

Remark. So far, we only consider the integral
∫ b

a
f (x) dx for a ≤ b. Can we define

∫ a

b
f (x) dx

for a < b? If the integral
∫ a

b
f (x) dx is well-defined, by the part(2) of Theorem 7.3.1,

∫ b

a
f (x) dx +

∫ a

b
f (x) dx =

∫ a

a
f (x) dx = 0.

Then
∫ a

b
f (x) dx = −

∫ b

a
f (x) dx. Therefore, for any a, b ∈ R, we define∫ a

b
f (x) dx = −

∫ b

a
f (x) dx.

■ Comparison Properties of the Integral

(f) If f (x) ≥ 0 on [a, b], then
∫ b

a
f (x) dx ≥ 0.

(g) If f and g are integrable on [a, b] and f (x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx.
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(h) If f is integrable on [a, b] and m ≤ f (x) ≤ M for all x ∈ [a, b], then

m(b − a) ≤
∫ b

a
f (x) dx ≤ M(b − a).

Corollary 7.3.4. (Mean Value Theorem of Integarls) If f is continuous on [a, b], then there
exists a number c ∈ [a, b] such that

f (c) = fave =
1

b − a

∫ b

a
f (x) dx,

that is, ∫ b

a
f (x) dx = f (c)(b − a)

Proof. Since f is continuous on [a, b], by the extreme value theorem, there exist α, β ∈ [a, b]
such that M = f (α) = max

x∈[a,b]
f (x) and m = f (β) = min

x∈[a,b]
f (x). By the property(h),

m ≤ 1
b − a

∫ b

a
f (x) dx ≤ M.

That is, the value
1

b − a

∫ b

a
f (x) dx is a number between f (α) and f (β). By the mean value

theorem for continuous functions, there exists a number c between α and β such that

f (c) =
1

b − a

∫ b

a
f (x) dx.

□
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7.4 Riemann Sums

Suppose that P = {x0, x1, · · · , xn} is a partition of [a, b], and that for each i we choose some
point x∗i in [xi−1, xi]. Then we have

L(P, f ) ≤
n∑

i=1

f (x∗i )(xi − xi−1) ≤ U(P, f ).

Any sum
n∑

i=1

f (x∗i )(xi − xi−1) is called a “Riemann sum” of f for P.

Theorem 7.4.1. Suppose that f is integrable on [a, b]. Then for every ε > 0, there exists δ > 0
such that if P = {x0, · · · , xn} is any partition of [a, b] with ‖P‖ < δ then∣∣∣ n∑

i=1

f (x∗i )(xi − xi−1) −
∫ b

a
f (x) dx

∣∣∣ < ε
for any x∗i ∈ [xi−1, xi].

Proof. Firstly, we consider that f is continuous on [a, b]. Hence, it is integrable and uniformly
continuous on [a, b]. For given ε > 0, there exists δ > 0 such that if |x − y| < δ, then∣∣ f (x) − f (y)

∣∣ < ε

b − a
.

Let P = {x0, x1, · · · , xn} be a partition of [a, b] with ‖P‖ < δ. Then Mi − mi <
ε

b − a
for i =

1, · · · , n. We have

U(P, f ) − L(P, f ) =
n∑

i=1

(Mi − mi)(xi − xi−1) <
ε

b − a

n∑
i=1

(xi − xi−1) = ε.

Also, since L(P, f ) ≤
∫ b

a
f (x) dx ≤ U(P, f ) and L(P, f ) ≤

n∑
i=1

f (x∗i )(xi − xi−1) ≤ U(P, f ), we have

∣∣∣ n∑
i=1

f (x∗i )(xi − xi−1) −
∫ b

a
f (x) dx

∣∣∣ < ε.
Moreover, for a general integrable function f , we will use a known fact that there exist contin-
uous functions g and h on [a, b] satisfying g ≤ f ≤ h and∫ b

a
h(x) dx −

∫ b

a
g(x) dx < ε.

We have
n∑

i=1

g(x∗i )(xi − xi−1) ≤
n∑

i=1

f (x∗i )(xi − xi−1) ≤
n∑

i=1

h(x∗i )(xi − xi−1)
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Since g and h are both uniformly continuous on [a, b], we can choose δ > 0 such that for a
partition P with ‖P‖ < δ,

∣∣∣ n∑
i=1

g(x∗i )(xi − xi−1) −
∫ b

a
g(x) dx

∣∣∣ < ε and
∣∣∣ n∑

i=1

h(x∗i )(xi − xi−1) −
∫ b

a
h(x) dx

∣∣∣ < ε
Hence, ∣∣∣ n∑

i=1

g(x∗i )(xi − xi−1) −
n∑

i=1

h(x∗i )(xi − xi−1)
∣∣∣

≤
∣∣∣ n∑

i=1

g(x∗i )(xi − xi−1) −
∫ b

a
g(x) dx

∣∣∣ + ∣∣∣∫ b

a
g(x) dx −

∫ b

a
h(x) dx

∣∣∣
+

∣∣∣ − ∫ b

a
h(x) dx −

n∑
i=1

h(x∗i )(xi − xi−1)
∣∣∣ < 3ε.

Hence,∣∣∣ n∑
i=1

f (x∗i )(xi − xi−1) −
∫ b

a
f (x) dx

∣∣∣ ≤ ∣∣∣ n∑
i=1

f (x∗i )(xi − xi−1) −
n∑

i=1

g(x∗i )(xi − xi−1)
∣∣∣

+

∣∣∣ n∑
i=1

g(x∗i )(xi − xi−1) −
∫ b

a
g(x) dx

∣∣∣ + ∣∣∣∫ b

a
g(x) dx −

∫ b

a
f (x) dx

∣∣∣
≤
∣∣∣ n∑

i=1

g(x∗i )(xi − xi−1) −
n∑

i=1

h(x∗i )(xi − xi−1)
∣∣∣ + 2ε

< 5ε.

□

Remark. If f is integrable on [a, b], then

lim
‖P‖→0

n∑
i=1

f (x∗i )(xi − xi−1) =
∫ b

a
f (x) dx.

The above sample point x∗i and 4xi vary as the partitions change.

7.5 The Fundamental Theorem of Calculus

Suppose that f is integrable function on [a, b]. For every number x in [a, b], we can define a
new function by

F(x) :=
∫ x

a
f (t) dt.

If f (t) ≥ 0 on [a, b], then the function F(x) represents the area of the region under the graph
y = f (t) from t = a to t = x
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In fact, the function F(x) is continuous on [a, b] and the proof is left to the readers.

Exercise. If f is integrable on [a, b] and F(x) is defined as above, then F(x) is continuous on
[a, b].

Question: Is F(x) differentiable?

In order to compute F′(x) from the definition of a derivative, we first observe that, for h > 0,
F(x + h) − F(x) is obtained by subtracting areas, so it is the area under the graph of f from x to
x + h.

For small h, the area is approximately equal to the area of the rectangle with height f (x) and
width h.

F(x + h) − F(x) ≈ h f (x)

an so
F(x + h) − F(x)

h
≈ f (x).

Intuitively, we expect that

F′(x) = lim
h→0

F(x + h) − F(x)
h

= f (x).

Theorem 7.5.1. (Fundamental Theorem of Calculus, Part I) If f is integrable on [a, b] and is
continuous at c for some c ∈ [a, b] then

F(x) =
∫ x

a
f (t)dt

is differentiable and F′(c) = f (c).
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Proof. We will prove the theorem for c ∈ (a, b) and the proof is similar for c = a or c = b.
Since f is continuous at c, for given ε > 0, there exists δ > 0 such that for all |t − c| < δ,

| f (t) − f (c)| < ε.

This implies that
f (c) − ε < f (t) < f (c) + ε for t ∈ (c − δ, c + δ).

For 0 < h < δ,

F(c + h) − F(c) =
∫ c+h

a
f (t) dt −

∫ c

a
f (t) dt =

∫ c+h

c
f (t) dt.

Hence, (
f (c) − ε

)
h < F(c + h) − F(c) <

(
f (c) + ε

)
h.

We have
f (c) − ε < F((c + h) − F(c)

h
< f (c) + ε. (7.1)

Similarly, for −δ < h < 0,

(−h)
(
− f (c)−ε

)
< F(c+h)−F(c) =

∫ c+h

c
f (t) dt = −

∫ c

c+h
f (t) dt =

∫ c

c+h
− f (t) dt < (−h)

(
− f (c)+ε

)
.

Then
− f (c) − ε < F(c + h) − F(c)

−h
< − f (c) + ε.

We have
f (c) − ε < F(c + h) − F(c)

h
< f (c) + ε. (7.2)

By (7.1) and (7.2), for 0 < |h| < δ,∣∣∣F(c + h) − F(c)
h

− f (c)
∣∣∣ < ε.

Hence,

F′(c) = lim
h→0

F(c + h) − F(c)
h

= f (c).

□

Remark. Suppose that f is integrable on [a, b] and is continuous at c.

(i) For x ∈ [a, b], let

F1(x) =
∫ b

x
f (t) dt =

∫ b

a
f (t) dt −

∫ x

a
f (t) dt =

∫ b

a
f (t) dt − F(x).

F2(x) =
∫ a

x
f (t) dt = −

∫ x

a
f (t) dt = −F(x).

F3(x) =
∫ b

x
f (t) dt = −

∫ b

x
f (t) dt = −F1(x).

Then

F′1(c) = −F′(c) = − f (c), F′2(c) = −F′(c) = − f (c) and F′3(c) = −F′1(c) = f (c).
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(ii) If f is continuous on [a, b], then F(x) is differentiable on [a, b] and F′(x) = f (x).

Corollary 7.5.2. If f is continuous on [a, b] and f = g′ for some function g, then∫ x

a
f (t) dt = g(x) − g(a) and

∫ b

a
f (x) dx = g(b) − g(a).

Proof. Let F(x) =
∫ x

a
f (t) dt. Then F′(x) = f (x) = g′(x). Hence, F(x) = g(x) + C for some

constant C. We have 0 = F(a) = g(a) +C and then C = −g(a). Thus∫ x

a
f (t) dt = F(x) = g(x) − g(a) and

∫ b

a
f (x) dx = g(b) − g(a).

□

Remark. This corollary seems to be useless. If g(x) =
∫ x

a
f (t) dt then g′(x) = f (x) and g(a) = 0.

We have ∫ b

a
f (t) dt = g(b) = g(b) − g(a).

But the useful point is that for any g satisfying g′ = f , then∫ b

a
f (t) dt = g(b) − g(a).

Example 7.5.3. Let g(x) = 1
3 x3 and f (x) = x2. Then g′(x) = f (x) and∫ b

a
f (x) dx =

∫ b

a
x2 dt =

1
2

b3 − 1
3

a3 = g(b) − g(a).

On the other hand, let g1(x) = 1
3 x3 + 5 then g′1(x) = f (x) and∫ b

a
f (x) dx =

∫ b

a
x2 dx = g1(b) − g1(a).

Theorem 7.5.4. (Fundamental Theorem of Calculus, Part II) If f is integrable on [a, b] and
f = g′ for some function g, then∫ b

a
f (x) dx = g(b) − g(a) (denoted by g(x)

∣∣∣b
a
).

Proof. Let P = {x0, x1, · · · , xn} be a partition of [a, b]. By the mean value theorem, for each
i = 1, 2, ·2, n, there exists ci ∈ (xi−1, xi) such that

g(xi) − g(xi−1) = g′(ci)(xi − xi−1) = f (ci)(xi − xi−1).

Since mi ≤ f (ci) ≤ Mi,

L(P, f ) ≤
n∑

i=1

mi(xi − xi−1) ≤
n∑

i=1

f (ci)(xi − xi−1)︸                   ︷︷                   ︸
=
∑n

i=1 g(xi)−g(xi−1)

≤
n∑

i=1

Mi(xi − xi−1) = U(P, f )
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Hence, L(P, f ) ≤ g(b) − g(a) ≤ U(P, f ) for any partition P. Since f is integrable, we have∫ b

a
f (x) dx = g(b) − g(a).

□

Example 7.5.5.

(1) Let f (x) = sin x and define F(x) =
∫ x

a
sin t dt. Then F′(x) = sin x.

(2) Suppose that f is continuous on [a, b] and x2 ∈ [a, b]. Let F(x) =
∫ x2

a
f (t) dt. Find F′(x).

Proof. Define G(x) =
∫ x

a
f (t) dt. Then F(x) =

∫ x2

a
f (t) dt = G(x2). By the Fundamental

Theorem of Calculus, G′(x) = f (x) and by the chain rule,

F′(x) =
d
dx

(
G(x2)

)
= G′(x2) · 2x = f (x2) · 2x.

□

(3) Suppose that f is continuous on [a, b] and h(x) ∈ [a, b] is differentiable. Let F(x) =
∫ h(x)

a
f (t) dt.

Find F′(x).

Proof. Define G(x) =
∫ x

a
f (t) dt and then F(x) = G

(
h(x)

)
. Hence

F(x) = G′
(
h(x)

)
· h′(x) = f

(
h(x)

)
· h′(x).

□

(4) Suppose that f is continuous on [a, b] and g(x), h(x) ∈ [a, b] are differentiable. Let F(x) =
∫ h(x)

g(x)
f (t) dt.

Then

F(x) =
∫ h(x)

g(x)
f (t) dt =

∫ h(x)

a
f (t) dt +

∫ a

g(x)
f (t) dt

=

∫ h(x)

a
f (t) dt −

∫ g(x)

a
f (t) dt.

Therefore,
F′(x) = f

(
h(x)

)
· h′(x) − f

(
g(x)

)
· g′(x).

(5) Let F(x) =
∫ x3

a

1
1 + sin2 t

dt. Then

F′(x) =
1

1 + sin2(x3)
· 3x2.
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(6) Let G(x) =
∫ x3

2x

1
1 + sin2 t

dt. Then

G(x) =
∫ x3

0

1
1 + sin2 t

dt −
∫ 0

2x

1
1 + sin2 t

dt =
∫ x3

0

1
1 + sin2 t

dt −
∫ 2x

0

1
1 + sin2 t

dt

and
G′(x) =

1
1 + sin2(x3)

· 3x2 − 1
1 + sin2(2x)

· 2.

■ Differentiation and Integration as inverse process

By the Fundamental Theorem of Calculus,

d
dx

∫ x

a
f (t)] dt = f (x), f

∫
dt
−→

∫ x

a
f (t) dt

d
dx−→ f∫ b

a
F′(x) dx = F(b) − F(a), F

d
dx−→ f

∫ b
a dt
−→ F(b) − F(a).

7.6 Antiderivatives

p(t) : position function
d
dx−→ v(t) : velocity function v(t) = p′(t)

v(t) : velocity function
??−→ p(t) : position function ?

Question: For a given function f , can we find a function F such that F′(x) = f (x)?

Definition 7.6.1. A function F is called an “antiderivative” of f on [a, b] if F′(x) = f (x) for all
x ∈ [a, b].

Example 7.6.2.

(1) Let f (x) = x and F(x) = 1
2 x2. Then F is an antiderivative of f since F′(x) = f (x).

(2) Let f (x) = sin x. Then F(x) = − cos x is an antiderivative of f . In fact, G(x) = − cos x + 5
and H(x) = − cos x − 100 are also antiderivatives of f .

We recall that if G(x) = F(x) + C then G′(x) = F′(x). Hence, if F is an antiderivative of f ,
then G is also an antiderivative of f where G(x) = F(x) +C for any constant number C.

Theorem 7.6.3. If F(x) is an antiderivative of f (x), then F(x) +C is also an antiderivative for
any constant C.

Proof.
(
F(x) +C

)′
= F′(x) = f (x). □

Example 7.6.4. Find the most general antiderivative of the given functions.

(1) f (x) = cos x, then F(x) = sin x +C.
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(2) f (x) = xn, n ∈ Q and n ≥ 0, then F(x) =
xn+1

n + 1
+C.

(3) f (x) = x−3, then F(x) = − 1
2x2 is an antiderivative of f . But f (x) = x−3 is not defined at

x = 0. The general antiderivative of f is − 1
2x2 + C on each interval that does not contain 0.

Hence the general antiderivative of f (x) = x−3 is

F(x) =


− 1

2x2 +C1 if x > 0

− 1
2x2 +C2 if x < 0

Remark. If F(x) and G(x) are antiderivative of f (x) and g(x) respectively on an interval, and a
and b are two constants, then (

aF(x) + bG(x)
)′
= a f (x) + bg(x).

Hence, the general antiderivative of a f (x) + bg(x) is aF(x) + bG(x) +C where C is an arbitrary
constant.

• Antiderivative Formulas

Functions Antiderivative Functions Antiderivatives
c f (x) cF(x) cos x sin x

f (x) + g(x) F(x) +G(x) sin x − cos x

xn (n ∈ Q, n , 1)
xn+1

n + 1
sec2 x tan x

1
√

1 − x2
sin−1 x csc2 x − cot x

1
1 + x2 tan−1 x sec x tan x sec x

csc x cot x − csc x

Example 7.6.5.

(1) Find all functions g such that g′(x) = 4 sin x +
2x5 −

√
x

x
.

Proof.

g′(x) = 4 sin x + 2x4 − x−1/2

g(x) = 4(− cos x) + 2 · 1
5

x5 − x1/2

1/2
+C = −4 cos x +

2x5

5
− 2
√

x +C

□

(2) Find f if f ′(x) = x
√

x and f (1) = 2.
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Proof. The general antiderivative of f ′(x) is f (x) = 2
5 x5/2 +C. Since 2 = f (1) = 2

5 +C, we
have C = 8

5 and

f (x) =
2
5

x5/2 +
8
5
.

□

Note. The definite integral
∫ b

a
f (x) dx was defined by a complicated procedure. If we know an

antiderivative F of f , the definite integral can be found by the values of F(x) at only two points,
a and b.

Example 7.6.6.

(1) Evaluate
∫ 1

−2
x3 dx.

Proof. Let f (x) = x3. Then F(x) = 1
4 x4 is an antiderivative of f . We have

∫ 1

−2
x3 dx = F(1) − F(−2) = −15

4
.

□

(2) Find the area under the cosine curve from 0 to b where 0 ≤ b ≤ π
2

.

Proof. Let f (x) = cos x. Then F(x) = sin x is an antiderivative of f . The area is

A =
∫ b

0
cos x dx = sin x

∣∣∣b
0
= sin b − sin 0 = sin b.

□

Caution: The following computation is wrong.∫ 3

−1

1
x2 dx = −1

x

∣∣∣3
−1
= −1

3
−
( 1
−1

)
= −4

3
.

The integrand f (x) =
1
x2 is nonnegative but the definite integral is negative. What’s wrong with

this?
It is because that f (x) =

1
x2 is not continuous on [−1, 3]. The Fundamental Theorem of Calculus

is not applied.
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7.7 Indefinite Integrals
From the Fundamental Theorem of Calculus, we observe that there are connections between
integration and differentiation(antiderivatives). We need good notation for antiderivative.

From the Fundamental Theorem of Calculus,
∫ x

a
f (t) dt is an antiderivative of f and

∫ b

a
f (t) dt = F(b) − F(a)

where F is an antiderivative of f . Therefore, the symbol “
∫

f (x) dx” denotes the antiderivative

of f and is called “indefinite integral” of f . Thus,∫
f (x) dx = F(x) +C means F′(x) = f (x).

Remark.

(i) We regard an indefinite integral as representing an entire family of functions (one an-
tiderivative for each value of the constant C).

(ii) A definite integral
∫ b

a
f (x) dx is a number and an indefinite integral

∫
f (x) dx is a func-

tion (or a family of functions).

Example 7.7.1. Find the general indefinite integral∫
x4 − 2 sec x tan x dx =

∫
x4 ds − 2

∫
sec x tan x dx =

1
5

x5 − 2 sec x +C.
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7.8 The Logarithmic and Exponential Functions
In the present section, we will discuss two families of functions, the logarithimic and expo-
nential functions. They are very useful not only in mathematics but also on physics and other
fileds.

7.8.1 The Logarithmic Function
Consider the number

10n.

(i) For n = 0,
100 = 1.

(ii) For n ∈ N,

10n =

n︷                   ︸︸                   ︷
10 × 10 × · · · × 10 .

(iii) For m, n ∈ N,

10m+n = 10m × 10n

10mn =
(
10m)n

.

(iv) For n ∈ N, 10−n × 10n = 10−n+n = 100 = 1. Then

10−n =
1

10n . (7.3)

(v) For n ∈ N,
(
10

1
n
)n
= 10

1
n ·n = 101 = 10. Then

10
1
n =

n√
10.

Hence 10
1
n is defined for n ∈ N. Moreover, by (7.3), 10

1
n is defined for n ∈ Z\{0}.

(vi) For m, n ∈ Z,
10

m
n =

(
10

1
n
)m
=
( n√

10
)m
.

Hence, 10k is defined for k ∈ Q.

Question: Can we define 10k for k ∈ R\Q?

If yes, we can consider the function f (x) = 10x on R. Suppose that the function f (x) = 10x

is defined. We hope that it satisfies

f (x + y) = 10x+y = 10x · 10y = f (x) f (y) for every x, y ∈ R.

Moreover, assume that such a function is differentiable

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

f (x) f (h) − f (x)
h

= f (x)
Ä

lim
h→0

f (h) − 1
h

ä
= f (x) f ′(0).
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On the other hand, assume that f (x) has an inverse, say f −1(x) = log10 x and hence f −1(1) = 0.
Then (

f −1)′(x) =
1

f ′
(

f −1(x)
) = 1

f ′(0) f
(

f −1(x)
) = 1

f ′(0)
1
x
.

This gives an idea to define f −1(x) = log10 x. We expect that

log10 x =
∫ x

1
( f −1)′(t) dt =

∫ x

1

1
f ′(0)

1
t

dt =
1

f ′(0)

∫ x

1

1
t

dt.

This suggests us investigate the function
∫ x

1

1
t

dt.

Note. Another motivation to make us study the function
∫ x

1

1
t

dt is that
∫

xn dx =
xn+1

n + 1
for

every n , −1. Hence, we want to understand the antiderivative of
1
x

.

Definition 7.8.1. The “natural logarithmic function” is the function defined by

ln x =
∫ x

1

1
t

dt x > 0.

Note. In some articles, the natural logarithmic function is usually denoted by “log x”.

Remark.

(i) If x > 1, ln x is the area of the region

bounded by y =
1
t
, t-axis, t = 1 and t = x.

(ii) If 0 < x < 1,

ln x =
∫ x

1

1
t

dt = −
∫ 1

x

1
t

dt

is negative area of the region bounded by

y =
1
t
, t-axis, t = x and t = 1.

(iii) By the Fundamental Theorem of Calculus,
for x > 0,(

ln x
)′
=

1
x
> 0(

ln x
)′′
=

(1
x
)′
= − 1

x2 < 0.

Hence, ln x is increasing and the graph of y =
ln x is concave downward.
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■ Laws of Logarithms

Theorem 7.8.2. If x and y are positive nubmers and r is a rational number, then

(a) ln(xy) = ln x + ln y

(b) ln
Ä x

y

ä
= ln x + ln y

(c) ln(xr) = r ln x

Proof. (a) By the Fundamental Theorem of Calculus, (ln x)′ = 1
x . Let f (x) = ln(xy). Then

f ′(x) =
1
xy
· y = 1

x
= (ln x)′.

Hence, f (x) = ln x +C. Since ln y = f (1) = ln 1 +C = C. Therefore,

ln(xy) = f (x) = ln x + ln y.

(b) Let x = 1/y. Then

ln
1
y
+ ln y = ln

Ä1
y
· y
ä
= ln 1 = 0.

Hence ln
1
y
= − ln y and

ln
Ä x

y

ä
= ln

(
x · 1

y
)
= ln x + ln

1
y
= ln x − ln y.

(c) If r ∈ N, then ln xr = ln(
r︷       ︸︸       ︷

x · x · · · x) =
r︷                        ︸︸                        ︷

ln x + ln x + · · · + ln x = r ln x.

If r = 1
n , then ln x = ln(x

1
n )n = n ln x

1
n Hence, ln xr = ln x

1
n =

1
n

ln x = r ln x.
If r = m

n . Then

ln xr = ln(x
1
n )m = m ln x

1
n =

m
n

ln x = r ln x.

□

Example 7.8.3.

ln
(x2 + 5) sin x

x3 + 1
= ln(x2 + 5) + ln(sin x) − ln(x3 + 1).

Corollary 7.8.4. lim
x→∞

ln x = ∞ and lim
x→0+

ln x = −∞

Proof. Consider ln 2 =
∫ 2

1

1
x

dx > 0. By the Law(3), we have ln 2n = n ln 2 and ln 2−n = −n ln 2.

Given M > 0, we can choose n0 ∈ N such that n0 ln 2 > M. Also, since ln x is increasing,
for x > n0,

ln x > ln 2n0 = n0 ln 2 > M.
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Hence, lim
x→∞

ln x = ∞. On the other hand, for given N > 0, we choose n1 ∈ N such that −n1 ln 2 <
−N. Again, since ln 2 is increasing, for 0 < x < 2−n1

ln x < ln 2−n1 = −n1 ln 2 < −N.

Thus lim
x→0+

ln x = −∞. □

o Derivatives of Logarithmic Functions and Logarithmic Differentiation

Recall that the Fundamental Theorem of Calculus implies that
d
dx

(ln x) =
d
dx

∫ x

1

1
t

dt =
1
x

.

For f (x) > 0, we compute the derivative of ln f (x). Let u = f (x) and y = ln f (x) = ln u. By the
chain rule,

d
dx

(
ln f (x)

)
=

dy
dx
=

dy
du

du
dx
=

1
u
· du

dx
=

f ′(x)
f (x)
.

Example 7.8.5.

(1) Differentiate y = ln(x3 + 1)

Proof. Let u = x3 + 1, then
du
dx
= 3x2 and y = ln u. By the chain rule,

dy
dx
=

dy
du

du
dx
=

1
u
· 3x2 =

3x2

x3 + 1
.

□

(2) Find
d
dx

ln(sin x).

Proof.
d
dx

ln(sin x) =
1

sin x
· cos x = cot x.

□

(3)

d
dx

ln
x + 1
√

x − 2
=

d
dx

[
ln(x+1)−ln

√
x − 2

]
=

d
dx

[
ln(x+1)−1

2
ln(x−2)

]
=

1
x + 1

− 1
2(x − 2)

.

Example 7.8.6. Find f ′(x) if f (x) = ln |x|.

Proof. Since

f (x) =
ß

ln x if x > 0
ln(−x) if x < 0

then

f ′(x) =


1
x

if x > 0
1
−x
· (−1) =

1
x

if x < 0

□
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Note.
d
dx

(
ln |x|

)
=

1
x

for every x , 0.

and hence ∫
1
x
= ln |x| +C

We have ∫
xn dx =

 xn+1

n + 1
+C if n , −1

ln |x| +C if n = −1.

Example 7.8.7. Differentiate y =
x3/4
√

x2 + 1
(3x + 2)5 .

Proof. Taking Logarithms of both sides, we have

ln |y| = 3
4

ln |x| + 1
2

ln |x2 + 1| − 5 ln |3x + 2|.

To find
dy
dx

, we take derivatives of both sides. Then

1
y
· dy

dx
=

3
4x
+

2x
2(x2 + 1)

− 15
3x + 2

Hence,

dy
dx
= y
Ä 3

4x
+

2x
2(x2 + 1)

− 15
3x + 2

ä
=

x3/4
√

x2 + 1
(3x + 2)5

Ä 3
4x
+

2x
2(x2 + 1)

− 15
3x + 2

ä
.

□

■ Properties of Logarthmic Function

(a) ln x =
∫ x

1

1
t

dt.

(b) Dom(ln x) = (0,∞) and Range(ln x) = (−∞,∞)

(c) ln x is continuous and strictly increasing.

(d)
d
dx

(ln x) =
1
x
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7.8.2 The Exponential Function
Recall that the natural logarithmic function ln x is one-to-one from (0,∞) onto (−∞,∞). Hence
it has an inverse function denoted by “exp(x)”.

Definition 7.8.8. The inverse function of (ln x)−1 is denoted by “exp(x)”. It satisfies

exp(x) = y ⇐⇒ ln y = x.

This function is called the “(natural) exponential function”.

Proposition 7.8.9. (Properties of natural exponential function)

(a) Domain of exp(x) = (−∞,∞) and Range of exp(x) = (0,∞).

(b) exp(ln x) = x for x ∈ (0,∞) and ln
(

exp(x)
)
= x for x ∈ (−∞,∞). In particular,

exp(0) = 1 since ln 1 = 0
exp(1) = e since ln e = 1.

(c) lim
x→∞

exp(x) = ∞ and lim
x→−∞

exp(x) = 0.

(d) Since ln x is differentiable and
d
dx

(ln x) =
1
x
, 0 for every x ∈ (0,∞), the exponential func-

tion exp(x) is also differentiable everywhere. Moreover,

d
dx

Ä
exp(x)

ä
=

1
d ln
dx

(
exp(x)

) = 1
1/ exp(x)

= exp(x).

Notice that
d(n)

dxn exp(x) = exp(x) for every n ∈ N.

The property(d) implies that the first and second derivative of exp(x) are always positive.
Hence, it is an increasing function and its graph is concave upward.

Theorem 7.8.10. For x, y ∈ R,

exp(x + y) = exp(x) · exp(y).
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Proof. Let x1 = exp(x) and y1 = exp(y). Then ln x1 = x and ln y1 = y. Thus,

x + y = ln x1 + ln y1 = ln(x1y1).

We have
exp(x + y) = x1y1 = exp(x) · exp(y).

□

Definition 7.8.11. We denote the number e = exp(1). This number is called “Euler’s number”.

Remark. (i) ln e = ln(exp(1)) = 1 and e is a number such that

1 =
∫ e

1

1
x

dx = area of A

(ii) en =

n︷      ︸︸      ︷
e · e · · · e = exp(1) · · · exp(1) = exp(n).

(iii) e−n · en = e0 = 1 = exp(0) = exp
(
n + (−n)

)
= exp(n) · exp(−n). Hence,

e−n = exp(−n).

(iv) e
1
n ·n = e = exp(1) = exp

( n︷       ︸︸       ︷
1
n
+ · · · 1

n
)
=
[

exp(
1
n

)
]n. Thus,

e
1
n = exp(

1
n

).

(v) e
q
p =

q︷      ︸︸      ︷
e

1
p · · · e 1

p =

q︷                   ︸︸                   ︷
exp(

1
p

) · · · exp(
1
p

) = exp(
q
p

). Hence,

ek = exp(k) for every k ∈ Q.

Note. The function exp(x) is defined on R but ex is only defined on Q.

Question: Can we define ex on R\Q?

Definition 7.8.12. For any x ∈ R, we define

ex = exp(x).
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From Proposition 7.8.9, if f (x) = ex then

(1) Dom( f ) = R and Range( f ) = (0,∞).

(2) eln x = x for x ∈ (0,∞) and ln ex = x for x ∈ R.

(3) lim
x→∞

ex = ∞ and lim
x→−∞

ex = 0.

(4)
d
dx

(ex) = ex.

This means that the function f (x) = ex is its own derivative. The slope of a tangent line to
the curve y = ex at any point is equal to the y-coordinate of the point The exponential curve
y = ex grows very rapidly.

(5) The antiderivative of ex is itself. That is,∫
ex dx = ex +C.

Example 7.8.13. Differentiate the function y = etan x.

Proof. Let u = tan x. Then y = eu and
du
dx
= sec2 x. Thus, by the chain rule,

dy
dx
=

dy
du

du
dx
= eu · sec2 x = etan x sec2 x.

□

7.9 General Logarithmic and Exponential Functions

In the present section, we use the natural exponential and logarithmic functions to study expo-
nential and logarithmic functions with base a > 0.
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7.9.1 General Exponential Functions
Question: For a > 0, can we define ax for every x ∈ R?

Notice that a = exp(ln a) = eln a.

Definition 7.9.1. For a > 0, we define

ax =
Ä

eln a
äx
= ex ln a for x ∈ R.

The function f (x) = ax is called the “exponential function with base a”.

Note. For every a > 0,

(1) Dom(ax) = R and Range(ax) = (0,∞).

(2) ln ax = ln
(
ex ln a

)
= x ln a for every x ∈ R.

Theorem 7.9.2. If a, b > 0 and x, y ∈ R, then

(a) ax+y = axay (b) ax−y =
ax

ay (c) (ax)y = axy (d) (ab)x = axbx

Proof. Exercise □

■ Derivative of ax and Graph of y = ax

d
dx

(ax) =
d
dx

(ex ln a) = ex ln a · ln a = ax ln a.

Note.
(1) If a > 1, then ln a > 0 and hence y = ax is increasing since d

dx (ax) > 0. Also,

lim
x→∞

ax = lim
x→∞

ex ln a = lim
t→∞

et = ∞ and lim
x→−∞

ax = lim
x→−∞

ex ln a = 0.

(2) If a = 1, then y = 1 is a constant function.

(3) If 0 < a < 1, then ln a < 0 and hence y = ax is decreasing since d
dx (ax) < 0. Also,

lim
x→∞

ax = 0 and lim
x→−∞

ax = ∞.
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Since
d
dx

(ax) = ax ln a, the antiderivative of ax is
ax

ln a
for a > 0 and a , 1. Thus,∫

ax dx =
ax

ln a
+C, a > 0 and a , 1.

Example 7.9.3.
∫ 5

0
2x dx =

2x

ln 2

∣∣∣5
0
=

25

ln 2
− 1

ln 2
=

31
ln 2

.

■ The Power Rule versus the Exponential Rule

Theorem 7.9.4. If n is any real number and f (x) = xn, then

f ′(x) = nxn−1.

Proof. Let y = xn. Then
ln |y| = ln |x|n = n ln |x|, for x , 0

Taking differentiation of both sides,
y′

y
=

d
dx

(ln |y|) = n
d
dx

ln |x| = n
x
.

Then
y′ = y · n

x
= xn · n

x
= nxn−1.

□

■ Four cases for exponents and bases

(1)
d
dx

(bn) = 0 (constant base, constant exponent)

(2)
d
dx

[ f (x)]n = n[ f (x)]n−1 f ′(x) (variable base, constant exponent)

(3)
d
dx

[bg(x)] = bg(x)(ln b)g′(x) (constant base, variable exponent)

(4)
d
dx

[ f (x)g(x)] = f (x)g(x)
Ä

g′(x) ln | f (x)| + g(x) · f ′(x)
f (x)

ä
(variable base, variable exponent)

Proof. We only prove (4) here. Let y = f (x)g(x). Then ln y = g(x) ln f (x). Taking differentiation
on both sides,

y′

y
=

d
dx

ln y =
d
dx

[g(x) ln f (x)] = g′(x) ln f (x) + g(x) · f ′(x)
f (x)
.

Then

y′ = y
Ä

g′(x) ln | f (x)| + g(x) · f ′(x)
f (x)

ä
= f (x)g(x)

Ä
g′(x) ln | f (x)| + g(x) · f ′(x)

f (x)

ä
.

Another method: f (x)g(x) = eln[ f (x)g(x)] = eg(x) ln f (x). Then
d
dx

[ f (x)g(x)] =
d
dx

î
eg(x) ln f (x)

ó
= eg(x) ln f (x) · d

dx

Ä
g(x) ln f (x)

ä
= eg(x) ln f (x)

Ä
g′(x) ln f (x) + g(x) · f ′(x)

f (x)

ä
.

□
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Example 7.9.5. Differentiate y = x
√

x.

Proof. Taking logarithm on both sides, ln y =
√

x ln x. Then

y′

y
=

d
dx

(ln y) =
ln x
2
√

x
+

√
x

x
.

Then

y′ = y
Ä ln x

2
√

x
+

√
x

x

ä
= x

√
x
Ä ln x

2
√

x
+

√
x

x

ä
= x

√
x
Ä2 + ln x

2
√

x

ä
.

□

7.9.2 General Logarithmic Functions
If a > 0 and a , 1, then f (x) = ax is a one-to-one function and thus its inverse function exists.

Definition 7.9.6. For a > 0 and a , 1, the inverse function of ax is called the “logarithmic
function with base a” and is denoted by loga x.

Note. For a > 0 and a , 1,

(1) Dom(loga x) = (0,∞) and Range(loga x) = R.

(2) loga 1 = 0.

(3) loga x = y if and only if ay = x.

(4) aloga x = x for every x ∈ (0,∞) and loga ax = x for every x ∈ R.

(5) loge x = ln x.

(6) (Change of Base Formula) For any positive number a (a , 1), we have

loga x =
ln x
ln a
.

Proof. Let y = loga x. Then ay = x. Taking natural logarithms of both sides, we obtain
y ln a = ln x and thus

y =
ln x
ln a
.

□

(7) For a > 1,
lim
x→∞

loga x = ∞ and lim
x→0+

loga x = −∞.

and for 0 < a < 1,
lim
x→∞

loga x = −∞ and lim
x→0+

loga x = ∞.

■ Graph of loga x

Heuristically, for a > 1, the fact that y = ax is a very rapidly increasing function for x > 0 is
reflected in the fact that y = loga x is a very slowly increasing function for x > 1.
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■ Derivative of loga x

For a > 0 and a , 1,
d
dx

(loga x) =
d
dx

Ä ln x
ln a

ä
=

1
x ln a

.

Example 7.9.7.
d
dx

ln10(2 + sin x) =
1

(2 + sin x) ln 10
· cos x.

■ The Number e as a Limit

Let f (x) = ln x then f ′(x) =
1
x

and f ′(1) = 1. By the definition of f ′(1),

f ′(1) = lim
h→0

f (1 + h) − f (1)
h

= lim
x→0

f (1 + x) − f (1)
x

= lim
x→0

ln(1 + x) − ln 1
x

= lim
x→0

1
x

ln(1 + x)

= lim
x→0
= ln(1 + x)1/x

Since f ′(1) = 1, then

lim
x→0

ln(1 + x)1/x = 1.

Since ex is continuous, we have

e = e1 = elimx→0 ln(1+x)1/x
= lim

x→0
eln(1+x)1/x

= lim
x→0

(1 + x)1/x.

Note. If we put n = 1/x, then n→ ∞ as x→ 0+and we have

e = lim
n→∞

Ä
1 +

1
n

än
.
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7.10 L’Hôpital’s Rule
In Chapter3, we have computed some limits with special form like

lim
x→a

f (x)
g(x)

where f (x), g(x) → 0 as x → a. When f and g have common factor (x − a), we can evaluate
the limit by dividing this common factor. We can also compute some specific limit such as

lim
x→0

sin x
x
= 1.

On the other hand, the generalized mean value theorem some ideas to compute the above
limit. Recall that a curve C on the plane can be represented as

(
f (t), g(t)

)
where f and

g are differentiable. The slope of the secant line connected
(

f (a), g(b)
)

and
(

f (t), g(t)
)

is

m =
f (t) − f (a)
g(t) − g(a)

for any t ∈ (a, b). G.M.V.T says that there exists ct ∈ (a, t) such that

f ′(ct)
g′(ct)

=
f (t) − f (a)
g(t) − g(a)

.

Suppose that f (t), g(t)→ 0 as x→ 0 and then f (a) = g(a) = 0. Heuristically, as t → a,

f ′(a)
g′(a)

= lim
t→a

f ′(ct)
g′(ct)

= lim
t→a

f (t) − f (a)
g(t) − g(a)

= lim
t→a

f (t)
g(t)
.

In this section, we will study the limit with some specific form.
Note.

(1) The limit lim
x→a

f (x)
g(x)

where f (x) → 0 and g(x) → 0 as x → a is called an “indeterminate

form of type
(0

0
)
”.

(2) The limit lim
x→a

f (x)
g(x)

where f (x)→ ±∞ and g(x)→ ±∞ as x→ a is called an “indeterminate

form of type
(∞
∞
)
”.

Example: lim
x→1

ln x
x − 1

is of type
(0

0
)

and lim
x→∞

ln x
x − 1

is of type
(∞
∞
)
.

Theorem 7.10.1. (L’Hôpital’s Rule) Suppose f and g are differentiable on an open interval I
containing a (except possibly at a itself), and g′(x) , 0 near a. Suppose that

lim
x→a

f (x) = 0 = lim
x→a

g(x)

or that
lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞.

If the limit lim
x→a

f ′(x)
g′(x)

exists (or equals ±∞), then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.
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Proof. We will show the case a ∈ R and the case a = ±∞ will be left to the readers.

Case1: −∞ < L < ∞

Suppose that lim
x→a

f ′(x)
g′(x)

= L. Then, for given ε > 0, there exists δ > 0 such that for all

0 < |x − a| < δ, ∣∣∣ f ′(x)
g′(x)

− L
∣∣∣ < ε. (7.4)

Fix a number s ∈ (a, a + δ). By Cauchy Mean Value Theorem, for any t ∈ (a, s), there exists
ct ∈ (t, s) ⊂ (a, a + δ) such that

f (s) − f (t)
g(s) − g(t)

=
f ′(ct)
g′(ct)

.

Then, by (7.4) ∣∣∣ f (s) − f (t)
g(s) − g(t)

− L
∣∣∣ = ∣∣∣ f ′(ct)

g′(ct)
− L

∣∣∣ < ε. (7.5)

(i) For lim
t→a

f (t) = 0 = lim
t→a

g(t), by (7.5)

∣∣∣ lim
t→a+

f (s)
g(s)

− L
∣∣∣ ≤ ε.

Since s is arbitrary number in (a, a + δ), we have∣∣∣ f (s)
g(s)

− L
∣∣∣ ≤ ε

for every s ∈ (a, a + δ). This implies that lim
x→a+

f (x)
g(x)

= L. Similarly, we can also prove that

lim
x→a−

f (x)
g(x)

= L and thus

lim
x→a

f (x)
g(x)

= L.

(ii) For lim
x→a

f (x) = ∞ and lim
x→∞

g(x) = ∞, we can choose δ > 0 such that for every x ∈ (a, a+δ),
g(x) > 0 and ∣∣∣ f ′(x)

g′(x)
− L

∣∣∣ < ε.
Fix s ∈ (a, a + δ), since lim

x→a
g(x) = ∞, there exists 0 < δ1 < δ such that for every t ∈

(a, a + δ1), g(t) > g(s) > 0. By the Cauchy Mean Value Theorem, for every t ∈ (a, a + δ1),
there exists ct ∈ (t, s) such that

f (s) − f (t)
g(s) − g(t)

=
f ′(ct)
g′(ct)

.

Then

−ε·g(t) − g(s)
g(t)

≤
Ä f (t) − f (s)

g(t) − g(s)
−L
ä
·g(t) − g(s)

g(t)
=
Ä f ′(ct)

g′(ct)
−L
ä
·g(t) − g(s)

g(t)
< ε·g(t) − g(s)

g(t)
.
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Hence,

−ε
Ä

1 − g(s)
g(t)

ä
<

f (t)
g(t)
− f (s)

g(t)
− L − g(s)

g(t)
< ε
Ä

1 − g(s)
g(t)

ä
for every t ∈ (a, a + δ1). Since s is fiexed and g(t) → ∞as t → a, when t is sufficiently

close to a from the right, we obtain
∣∣∣g(s)

g(t)

∣∣∣ < ε and
∣∣∣ f (s)

g(t)

∣∣∣ < ε. Therefore,

−2ε <
Ä f (t)

g(t)
− L
ä
−
Ä f (s)

g(t)
+

g(s)
g(t)

ä
< 2ε.

Then

4ε ≤ f (t)
g(t)
− L ≤ 4ε.

This implies that lim
t→a+

f (t)
g(t)
= L. Similarly, we can evaluate lim

t→a−

f (t)
g(t)
= L and thus lim

t→a

f (t)
g(t)
= L.

Case2: L = ±∞, left to the readers.
□

Note.

(1) The L’Hôpital’s Rule says that

(i) Check the indeterminate form
(

0
0

)
or

(∞
∞
)

is satisfied.

(ii) Check lim
x→a

f ′(x)
g′(x)

exists (or equals ±∞).

(iii) the limit of a quotient of function is equal to the limit quotient of their derivatives.

(2) The rule is also valid for sided limits. That is “ lim
x→a+

”, “ lim
x→a−

”, “ lim
x→−∞

” and “lim
x→∞

”.

Example 7.10.2. Determine whether the limit lim
x→1

ln x
x − 1

exists.

Proof. Since lim
x→1

ln x = 0 = lim
x→1

(x − 1), the limit is of type
(

0
0

)
. Consider

lim
x→1

d
dx (ln x)
d
dx (x − 1)

= lim
x→1

1
x

1
= 1.

By the L’Hôpital’s rule,

lim
x→1

ln x
x − 1

= lim
x→1

1
x

1
= 1.

□

Example 7.10.3. Determine whether the limit lim
x→∞

ex

x2 exists.
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Proof. Since lim
x→∞

ex = ∞ = lim
x→∞

x2, the limit is of type
(∞
∞
)
. Consider

lim
x→∞

d
dx (ex)
d
dx (x2)

= lim
ex

2x
.

Again, since lim
x→∞

ex = ∞ = lim
x→∞

2x, the limit lim
x→∞

ex

2x
is of type

(∞
∞
)
. Consider

lim
x→∞

d
dx (ex)
d
dx (2x)

= lim
x→∞

ex

2
= ∞.

By the L’Hôpital’s rule,

lim
x→∞

ex

x2 = lim
x→∞

ex

2x
= lim

x→∞

ex

2
= ∞.

□

Remark. The exponential functions grow much more rapidly than any power functions as x→
∞.

Example 7.10.4. Determine whether the limit lim
x→∞

ln x
3
√

x
.

Proof. Since lim
x→∞

ln x = ∞ = lim
x→∞

3√x, the limit is of type
(∞
∞
)
.

Consider

lim
x→∞

d
dx (ln x)
d
dx ( 3
√

x)
= lim

x→∞

1
x

1
3 x−2/3

= lim
x→∞

1
3x1/3 = 0.

By the L’Hôpital’s Rule,

lim
x→∞

ln x
3
√

x
= lim

x→∞

1
3x1/3 = 0.

□

Remark. The logarithms grow slowly than power function as x→ ∞.

Exercise. Determine whether the limit lim
x→0

tan x − x
x3 exists.

Remark.

(i) If the limit lim
x→a

f (x)
g(x)

is not of type
(

0
0

)
or

(∞
∞
)
, then the L’Hôpital’s rule could be wrong.

For example,

lim
x→π−

sin x
1 − cos x

=
0
2
= 0.

But

lim
x→π−

d
dx (sin x)

d
dx (1 − cos x)

= lim
x→π−

cos x
sin x

= −∞.
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(ii) If the limit lim
x→a

f ′(x)
g′(x)

DNE, then the L’Hôpital’s rule could be wrong. For exmaple,

lim
x→∞

x
x − sin x

= 1 but lim
x→∞

1
1 − cos x

DNE.

o Applications

The L’Hôpital’s rule can be applied some speical forms of limits.

(I) Indterminate products: the limit lim
x→a

[ f (x)g(x)] is of the type 0 · ∞ or∞ · 0. Either

f (x) , 0 near a (except possibly at a), f (x)→ 0 and g(x)→ ±∞
or

g(x) , 0 near a (except possibly at a), f (x)→ ±∞ and g(x)→ 0

Express lim
x→a

f (x)g(x) as lim
x→a

f (x)
1/g(x)

or lim
x→a

g(x)
1/ f (x)

.

Example 7.10.5. lim
x→0+

x ln x.

Proof. Since lim
x→0+

x = 0 and lim
x→0+

ln x = −∞, the limit is of type (0 · ∞). Consider

lim
x→0+

d
dx (ln x)

d
dx (1

x )
= lim

x→0+

1/x
−1/x2 = lim

x→0+
(−x) = 0.

By the L’Hôpital’s rule,

lim
x→0+

x ln x = lim
x→0+

ln x
1/x
= lim

x→0+

1/x
−1/x2 = 0.

□

Note.

(1) If we rewrite x ln x as
x

1/ ln x
, then the limit is of type

(
0
0

)
. But it is difficult to use

L’Hôpital’s rule to solve it.
(2) When x→ 0+, the rate of power functions (xa, a > 0) which decay to 0 is more rapid

than the ralte of logarithms (ln x) which grow to∞,

(II) Indeterminate differences: the indeterminate form is of tyep (∞−∞)
lim
x→a

[ f (x) − g(x)] where lim
x→a

f (x) = ∞ and lim
x→a

g(x) = ∞.

Example 7.10.6.

lim
x→( π2 )−

(sec x − tan x) = lim
x→( π2 )−

(
1

cos x
− sin x

cos x
) = lim

x→( π2 )−

1 − sin x
cos x

(
0
0

)-type

Consider

lim
x→( π2 )−

d
dx (1 − sin x)

d
dx (cos x)

= lim
x→( π2 )−

− cos x
− sin x

= 0.

By the L’Hôpital’s rule,

lim
x→( π2 )−

(sec x − tan x) = lim
x→( π2 )−

− cos x
− sin x

= 0.
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(III) Indeterminate powers the limit lim
x→a

[ f (x)]g(x) is of the form 00,∞0 or 1∞.

(a) lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0 (type 00)

(b) lim
x→a

f (x) = ∞ and lim
x→a

g(x) = 0 (type∞0)

(c) lim
x→a

f (x) = 1 and lim
x→a

g(x) = ±∞ (type 1∞)

Strategy:

(i) Taking “ln“ on [ f (x)]g(x) and then taking “lim
x→a

”, we have

lim
x→a

ln[ f (x)g(x)] = lim
x→a

g(x) ln f (x)

 (a) ⇒ type 0 · ∞
(b) ⇒ type 0 · ∞
(c) ⇒ type∞ · 0

(ii) lim
x→a

[ f (x)]g(x) = lim
x→a

eln[ f (x)]g(x)
= elimx→a ln[ f (x)]g(x)

.

Example 7.10.7. lim
x→0+

(1 + sin 4x)cot x (1∞)

Proof. Let y = (1+sin 4x)cot x. Then ln y = (cot x) ln(1+sin 4x) and our goal is to compute
lim
x→a

y.

lim
x→0+

y = lim
x→0+

(cot x) ln(1 + sin 4x) (∞ · 0)

= lim
x→0+

(cos x) ln(1 + sin 4x)
sin x

Ä0
0

ä
.

Consider

lim
x→0+

d
dx [cos x ln(1 + sin 4x)]

d
dx (sin x)

= lim
x→0+

− sin x ln(1 + sin 4x) + cos x · 1
1+sin 4x · cos 4x · 4

cos x
= 4

By the L’Hôpital’s rule, limx→0+ ln y = 4. Hence,

lim
x→0+

(1 + sin 4x)cot x = lim
x→0+

eln[(1+sin 4x)cot x]

= elimx→0+ ln[(1+sin 4x)cot x]

= elimx→0+ ln y = e4.

□

Example 7.10.8. lim
x→0+

xx
Ä

00
ä

.

Proof. Let y = xx. Then ln y = x ln x and our goal is to compute limx→0+ y.

lim
x→0+

ln y = lim
x→0+

x ln x (0 · ∞)

= lim
x→0+

ln x
1
x

Ä∞
∞
ä
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Consider

lim
x→0+

d
dx (ln x)

d
dx (1

x )
= lim

x→0+

1/x
−1/x2 = lim

x→0+
(−x) = 0.

By the L’Hôpital’s rule,
lim
x→0+

ln y = lim
x→0+

(−x) = 0.

Hence,
lim
x→0+

xx = lim
x→0+

y = lim
x→0+

eln y = elimx→0+ ln y = e0 = 1.

□

Exercise. Use the L’Hôpital’s rule to show

lim
h→0+

(1 + h)1/h = e.
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The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b]

then the function F(x) =
∫ x

a
f (t) dt is differentiable on [a, b] and F′(x) = f (x). The indefinite∫

f (x) dx indicates the family of antiderivative of f . The differentiation and integration are

inverse operations.

Differentiation ←→ Integration
Chain rule ←→ Substitution rule

Product rule ←→ Integration by parts

8.1 The Substitution Rule

So far, our experience does not tell the antiderivative of the function f (x) = 2x
√

1 + x2. By the
chain rule, the derivative of F

(
g(x)

)
is F′

(
g(x)

)
g′(x). Hence, the antiderivative of F′

(
g(x)

)
g′(x)

is F
(
g(x)

)
.

Chain Rule:

F
(
g(x)

) d
dx−→ F′

(
g(x)

)
g′(x)

F′
(
g(x)

)
g′(x)

∫
dx
−→ F

(
g(x)

)
For F′ = f , ∫

f
(
g(x)

)
g′(x) dx =

∫
F′
(
g(x)

)
g′(x) dx =

∫
d
dx

[
F
(
g(x)

)]
dx =

171
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Let u = g(x), then
du
dx
= g′(x) and du = g′(x)dx. Hence,∫

F′
(

g(x)︸︷︷︸
u

)
g′(x) dx︸     ︷︷     ︸

du

=

∫
F′
(
u
)

du = F(u) +C = F
(
g(x)

)
+C.

Substitution rule (u-substitition)

Theorem 8.1.1. If u = u(x) is a continuously differentiable function whose range is an interval
I and f is continuous on I, then∫

f
(
u(x)

)
u′(x) dx =

∫
f (u) du.

Moreover, if F′ = f then ∫
f
(
u(x)

)
u′(x) dx = F(u) +C.

Proof. Since f is continuous and F′ = f , by the chain rule∫
f
(
u(x)

)
u′(x) dx =

∫
F′
(
u(x)

)
u′(x) dx =

∫
d
dx

Ä
F
(
u(x)

)ä
dx = F

(
u(x)

)
+C.

□

Example 8.1.2.

(1) Evaluate
∫

x3 cos(x4 + 2) dx

Proof. Let u = x4 + 2. Then
du
dx
= 4x3 and du = 4x3 dx. Thus

1
4

du = x3dx. We have∫
x3 cos(x4 + 2) dx =

∫
cos u · 1

4
du =

1
4

∫
cos u du

=
1
4

sin u +C =
1
4

sin(x4 + 2) +C

□

(2) Evaluate
∫ √

2x + 1 dx.

Proof. Solution 1: Let u = 2x + 1. Then
du
dx
= 2 and du = 2dx. Thus du =

1
2

dx. We have∫ √
2x + 1 dx =

∫ √
u · 1

2
du =

1
2

∫
u1/2 du

= =
1
2

(
2
3

u3/2 +C) =
1
3

u3/2 +C

=
1
3

(2x + 1)
3
2 +C.
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Solution 2: Let u =
√

2x + 1. Then du =
1

√
2x + 1

dx and dx =
√

2x + 1 du = udu.

Hence, ∫ √
2x + 1 dx =

∫
u · u du =

∫
u2 du

=
1
3

u3 +C =
1
3

(2x + 1)
3
2 +C.

□

(3) Evaluate
∫

x
3√
2x2 + 1

dx.

Proof. Let u = 2x2 + 1. Then
du
dx
= 4x and du = 4xdx. Thus xdx =

1
4

du. We have∫
x

3√
2x2 + 1

dx = =
∫

1
3
√

u
· 1

4
du =

1
4

∫
u−1/3 du

=
1
4
· 1

2/3
u2/3 +C =

3
8

(2x2 + 1)
2
3 +C.

□

(4) Evaluate
∫

cos 5x dx.

Proof. Let u = 5x. Then du = 5dx. Hence,∫
cos 5x dx =

∫
cos u · 1

5
du =

1
5

∫
cos u du

=
1
5

sin u +C =
1
5

sin 5x +C.

□

(5) Evaluate
∫

x5
√

1 + x2 dx.

Proof. Let u = 1 + x2. Then du = 2xdx and x2 = u − 1. Hence,∫ √
1 + x2 · x5 dx =

∫ √
1 + x2 · (x2)2 · xdx

=
1
2

∫ √
u(u − 1)2 du

=
1
2

∫
u5/2 − 2u3/2 + u1/2 du

=
1
2
(2

7
u

7
2 − 4

5
u

5
2 +

2
3

u
3
2
)
+C

=
1
7

(1 + x2)
7
2 − 2

5
(1 + x2)

5
2 +

1
3

(1 + x2)
3
2 +C.

□
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(6) Evaluate
∫

tan x dx.

Proof. We observe that tan x =
sin x
cos x

. Let u = cos x. Then du = − sin x dx. Hence,∫
tan x dx =

∫
sin x
cos x

dx = −
∫

1
u

du = − ln |u| +C

= − ln | cos x| +C = ln | sec x| +C.

□

■ Definite Integral

Example 8.1.3.∫ 4

0

√
2x + 1 dx =

∫ √
2x + 1 dx

∣∣∣4
0
=

1
3

(2x + 1)1/2
∣∣∣4
0
=

1
3

(27 − 1) =
26
3
.

Theorem 8.1.4. If f and u′ are continuous, then∫ b

a
f
(
u(x)

)
u′(x) dx =

∫ u(b)

u(a)
f (u) du.

Proof. Let F(x) =
∫ x

u(a)
f (t) dt, then F′(x) = f (x). Hence,

d
dx

Ä
F
(
u(x)

)ä
= F′

(
u(x)

)
u′(x) = f

(
u(x)

)
u′(x).

Then ∫ b

a
f
(
u(x)

)
u′(x) dx =

∫ b

a

d
dx

Ä
F
(
u(x)

)ä
dx = F

(
u(b)

)
− F

(
u(a)

)
=

∫ u(b)

u(a)
f (u) du.

□

Note. The theorem notices that the upper and lower limits of the integral will change when we
take the change of variables. The readers sholud carefully deal with this.

Example 8.1.5.

(1) Evaluate
∫ 1/2

0
cos3(πx) sin(πx) dx.

Proof. Let u = cos(πx). Then du = −π sin(πx) dx. Hence,∫ 1/2

0
cos3(πx) sin(πx) dx = −1

π

∫ 0

1
u3 du = −1

π

Ä1
4

u4
∣∣∣0
1

ä
=

1
4π
.

□
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(2) Evaluate
∫ e

1

ln x
x

dx.

Proof. Let u = ln x. Then du =
1
x

dx. Hence,

∫ e

1

ln x
x

dx =
∫ 1

0
u du =

1
2

u2
∣∣∣1

0
=

1
2
.

□

■ Integral of Symmetric Functions

Proposition 8.1.6. Suppose that f is integrable on [−a, a].

(a) If f is even, then
∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx.

(b) If f is odd, then
∫ a

−a
f (x) dx = 0.

Proof. (a) ∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

(let u = −x) = −
∫ 0

a
f (−u) du +

∫ a

0
f (x) dx

=

∫ a

0
f (u) du +

∫ a

0
f (x) dx

= 2
∫ a

0
f (x) dx.

(b) Skip
□

Example 8.1.7.
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(1) The function f (x) = x6 + 1 is an even function on [−2, 2] since f (−x) = f (x). Then∫ 2

−2
x6 + 1 dx = 2

∫ 2

0
x6 + 1 dx = 2(

1
7

x7 + x)
∣∣∣2
0
=

284
7
.

(2) The function f (x) =
tan x

1 + x2 + x4 is an odd function on [−1, 1] since f (−x) = f (x). Then

∫ 1

−1

tan x
1 + x2 + x4 dx = 0.

8.2 Integration by Parts
In the present section, we will study another technique of integration which is an inverse oper-
ation of product rule of differentiation.

Product rule ←→ Integration by parts

Let u(x) and v(x) be differentiable functions. By the product rule,

d
dx

Ä
u(x)v(x)

ä
= u′(x)v(x) + u(x)v′(x).

By the fundamental theorem of calculus,

u(x)v(x) =
∫

d
dx

Ä
u(x)v(x)

ä
dx =

∫
u′(x)v(x) + u(x)v′(x) dx +C.

Then ∫
u(x)v′(x) dx = u(x)v(x) −

∫
u′(x)v(x) dx +C

The process is called the “integration by parts”.

By using the symbols of differential, du = u′(x)dx and dv = v′(x)dv. Then∫
u(x) v′(x) dx︸     ︷︷     ︸

dv

= u(x)v(x) −
∫

v(x) u′(x) dx︸     ︷︷     ︸
du

+C.

Another form of the integration by parts is∫
u dv = uv −

∫
v du.

Strategy:

(i) Obersve the integrand as a product of two functions

(ii) One will be differentiated and the other will be integrated

(iii) Convert the integral of
∫

u dv into
∫

v du and to solve the latter integral.
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Example 8.2.1.

(1) Evaluate
∫

xex dx.

Proof.

Solution1: ∫
xex dx I.B.P

= xex −
∫

ex dx [where x = u(x), ex = v′(x)]

= xex − ex +C

Solution2: Let u = x and dv = exdx. Then du = dx and v = ex. Hence,∫
xex dx =

∫
u dv I.B.P

= uv −
∫

v du

= xex −
∫

ex dx = xex − ex +C.

□

(2) Evaluate
∫

x ln x dx.

Proof. Let u = ln x and dv = xdx. Then du =
1
x

dx and v =
1
2

x2. Hence,∫
x ln x dx =

∫
u dv =I.B.P

= uv −
∫

v du

= (ln x) · 1
2

x2 −
∫

1
2

x2 · 1
x

dx =
1
2

x2 ln x − 1
2

∫
x dx

=
1
2

x2 ln x − 1
4

x2 +C.

□

(3) Evaluate
∫

x2ex dx.

Proof. Use the integration by parts twice,∫
x2ex dx = x2ex −

∫
2xex dx [where u(x) = x2, v′(x) = ex]

= x2ex − 2
∫

xex dx

= x2ex − 2
Ä

xex −
∫

ex dx
ä

[where u(x) = x, v′(x) = ex]

= x2e2 − 2
Ä

xex − ex
ä
+C

= x2ex − 2xex + 2ex +C.

□
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(4) Evaluate
∫

ln x dx.

Proof.∫
ln x dx =

∫
ln x · 1 dx = x ln x −

∫
1
x
· x dx = x ln x −

∫
1 dx = x ln x − x +C.

□

(5) Evaluate
∫

ex sin x dx.

Proof. Use the integration by parts twice,∫
ex sin x dx = ex sin x −

∫
ex cos x dx

= ex sin x −
Ä

ex cos x +
∫

ex sin x dx
ä

= ex sin x − ex cos x −
∫

ex sin x dx

Then ∫
ex sin x dx =

1
2

ex(sin x − cos x) +C.

□

(6) Evaluate
∫

x5 cos x3 dx.

Proof. Let u = x3 then du = 3x2dx. We have∫
x5 cos x3 dx =

∫
x3 cos x3 · x2 dx =

1
3

∫
u cos u du

=
1
3

î
u sin u −

∫
sin u du

ó
=

1
3

î
u sin u + cos u +C

ó
=

1
3

(x3 sin x3 + cos x3) +C.

□

(7) Evaluate
∫

(ln x)2 dx.

Proof. Let u = ln x. Thenx = eu and du = 1
xdx. Thus dx = xdu = eudu and we have∫

(ln x)2 dx =
∫

u2eu du = · · · (I.B.P twice)

= u2eu − 2ueu + 2eu +C
= x(ln x)2 − 2x ln x + 2x +C.

□
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Example 8.2.2. For n ∈ N, evaluate
∫

sinn x dx.

Proof.

For n = 1,
∫

sin x dx = − cos x +C.

For n = 2,
∫

sin x dx =
∫

1 − cos 2x
2

dx =
1
2

(x − 1
2

sin 2x) +C =
1
2

x − 1
4

sin 2x +C.

For n ≥ 3,∫
sinn x dx =

∫
sinn−1 x · sin x dx

= sinn−1 x · (− cos x) −
∫

(n − 1) sinn−2 x cos x · (− cos x) dx

= − sinn−1 x cos x + (n − 1)
∫

sinn−2 x(cos2 x) dx

= − sinn−1 x cos x + (n − 1)
∫

sinn−2 x(1 − sin2 x) dx

= − sinn−1 x cos x + (n − 1)
∫

sinn−2 x dx − (n − 1)
∫

sinn x dx.

Then ∫
sinn x dx = −1

n
sinn−1 cos x +

n − 1
n

∫
sinn−2 x dx.

□

■ Definite Integral ∫ b

a
u(x)v′(x) dx = u(x)v(x)

∣∣∣b
a
−
∫ b

a
u′(x)v(x) dx.

Example 8.2.3. ∫ 1

0
tan−1 x dx = x tan−1 x

∣∣∣1
0
−
∫ 1

0

x
1 + x2 dx

= x tan−1 x
∣∣∣1
0
−
∫ 2

1

1
u

du (let u = 1 + x2)

=
π

4
− 1

2
ln u

∣∣∣2
1
=
π

4
− 1

2
ln 2.

8.3 Trigonometric Integrals
In the present section, we will study the integrals of combination of trigonometric functions
with some specific forms.

(I) Product of sine and cosine:∫
sinm x cosn x dx for m, n ∈ N
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Case1: Either m or n is odd.

For example m = 2k + 1, then taking u = cos x.

Example 8.3.1.
∫

sin3 x dx.

Proof. Let u = cos x. Then du = − sin xdx.∫
sin3 x dx =

∫
sin2 x sin x dx =

∫
(1 − cos2 x) sin x dx

= −
∫

1 − u2 du = −(u − 1
3

u3) +C

= − cos x +
1
3

cos3 x +C.

□∫
sin6 x cos5 x dx

Proof. Let u = sin x. Then du = cos xdx.∫
sin6 cos5 x dx =

∫
sin6 x cos4 x cos x dx =

∫
sin6 x(1 − cos2 x)2 cos x dx

=

∫
u6(1 − u2)2 du =

∫
u6 − 2u8 + u10 du

=
1
7

u7 − 2
9

u9 +
1

11
u11 +C

=
1
7

sin7 x − 2
9

sin9 x +
1
11

sin11 x +C.

□

Case2: Both m and n are even.

Using the half-angle identity, either we can reduced the integrand sinm x cosn x to the form
of Case1, or it can be coverted into another form of Case2. Then taking the half-angle identity
until it can be coverted into the form of Case1.

Example 8.3.2.

(1)
∫

sin4 x dx.

Solution1 : Using the integration by parts to lower down the power of sine function by 2
each time.
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Solution2 :∫
sin4 x dx =

∫ Ä1 − cos 2x
2

ä2
dx =

1
4

∫
1 − 2 cos 2x + cos2 2x dx

=
1
4

∫
1 − 2 cos 2x +

1 + cos 4x
2

dx

=
1
4

∫
3
2
− 2 cos 2x +

1
2

cos 4x dx

=
3
8

x − 1
4

sin 2x +
1

32
sin 4x +C.

(2) ∫
sin4 x cos2 x dx =

∫
(1 − cos2 x)2 cos2 x dx =

∫
cos2 x − 2 cos4 x + cos6 x dx

=

∫
1 + cos 2x

2
− 2
Ä1 + cos 2x

2

ä2
+
Ä1 + cos 2x

2

ä3
dx

=
1
8

∫
1 − cos 2x − cos2 2x + cos3 2x dx

=
1
8

î∫
1 − cos 2x −

Ä1 + cos 4x
2

ä
dx +

∫
cos2 2x · cos 2x dx

ó
= · · ·
=

1
16

x − 1
64

sin 4x − 1
48

sin3 2x +C.

(II) Product of tangent and secant:∫
tanm x secn x dx for m, n ∈ N

Case1: n is even.
Let u = tan x. Then du = sec2 xdx.

Example 8.3.3. ∫
tan5 x sec6 x dx =

∫
tan5 x sec4 x sec2 x dx

=

∫
tan5 x(1 + tan2 x)2 sec2 x dx

=

∫
u5(1 + u2)2 du (let u = tan x)

=

∫
u9 − 2u7 + u5 du

=
1

10
u10 − 1

4
u8 +

1
6

u6 +C

=
1

10
tan10 x − 1

4
tan8 x +

1
6

tan6 x +C.

Case2: m is odd.
Let u = sec x. Then du = tan x sec x dx.
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Example 8.3.4.

(1) ∫
tan5 x sec6 x dx =

∫
tan4 x sec5 x tan x sec x dx

=

∫
(sec2 x − 1)2 sec5 x(tan x sec x) dx

=

∫
(u2 − 1)2u5 du (let u = sec x)

=

∫
u9 − 2u7 + u5 du

=
1

10
u10 − 1

4
u8 +

1
6

u6 +C

=
1

10
sec10 x − 1

4
sec8 x +

1
6

sec6 x +C.

(2) Recall that
∫

tan x dx = ln | sec x| +C.∫
tan3 x dx =

∫
tan x(sec2 x − 1) dx

=

∫
tan x sec2 x − tan x dx

=

∫
sec x(tan x sec x) dx −

∫
tan x dx

=

∫
u du − ln | sec x| +C (let u = sec x)

=
1
2

u2 − ln | sec x| +C

=
1
2

sec2 x − ln | sec x| +C.

Case3: Others, m is even or n is odd.
Notice that if m = 2k, we can convert the term tan2k x into (sec2 x − 1)k. Hence, the integral∫

tan2k x secn x dx =
∫

(sec2 x − 1)k secn x dx.

Suppose that we can compute
∫

seck x dx for any k ∈ N. Then every integral in Case3 can be

evaluated.

(i) (k = 1)∫
sec x dx =

∫
sec x · sec x + tan x

sec x + tan x
dx =

∫
1
u

du (let u = sec x + tan x)

= ln |u| +C
= ln

∣∣ sec x + tan x
∣∣ +C.
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(ii) (k = 2) ∫
sec2 x dx = tan x +C.

(iii) (k ≥ 3, integer) By the integration by parts,∫
seck x dx =

1
n − 1

tan x seck−2 x +
n − 2
n − 1

∫
seck−2 x dx.

(III) ∫
sin mx cos nx dx,

∫
sin mx sin nx dx,

∫
cos mx cos nx dx.

By the identities,

sin A cos B =
1
2

[sin(A − B) + sin(A + B)]

sin A sin B =
1
2

[cos(A − B) − cos(A + B)]

cos A cos B =
1
2

[cos(A − B) + cos(A + B)]

8.4 Trigonometric Substitution
Recall that the substitution method says that if u = g(x) then du = g′(x)dx and∫

f
(
g(x)

)︸     ︷︷     ︸
f (u)

g′(x) dx︸     ︷︷     ︸
du

=

∫
f (u) du.

In the formula, “x” is the old variable in the left hand side and “u” is a new variable in the right
hand side. The new variable u is a function of the old variable x. Conversely, assume that the
old variable x is a function of a new variable t, say x = g(t). Then dx = g′(t)dt and we have the
“inverse substitutuion” ∫

f (x) dx =
∫

f
(
g(t)

)︸    ︷︷    ︸
f (x)

g′(t) dt︸    ︷︷    ︸
dx

.

Note. The inverse substitution provides a new method to evaluate the integral
∫

f (x) dx. Sup-

pose that we can find a suitable function x = g(t) such that we could compute the integral∫
f
(
g(t)

)
g′(t) dt and the problem would be solved. In general, the suitable function g is not

easy to find. But, it is effective for the given radical expression because of the secified trigono-
metric identities.

o Trigonometric Substitutions

In the present section, we will set x = a sin θ, x = a tan θ and x = a sec θ to deal with the
integral with integrand

√
a2 − x2,

√
a2 + x2 and

√
x2 − a2 respectively.
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Example 8.4.1.

(1) Evaluate
∫ √

9 − x2

x2 dx.

Proof.

Let x = 3 sin θ, −π
2
≤ θ ≤ π

2
. Then dx = 3 cos θ dθ.

∫ √
9 − x2

x2 dx =
∫

3 cos θ
9 sin2 θ

· 3 cos θ dθ =
∫

cot2 θ dθ

=

∫
csc2 θ − 1 dθ = − cot θ − θ +C

= −
√

9 − x2

x
− sin−1 ( x

3
)
+C.

□

(2) Evaluate
∫

1

x2
√

x2 + 4
dx.

Proof.
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Let x = 2 tan θ, −π
2
< θ <

π

2
. Then dx = 2 sec2 θ dθ.∫

1

x2
√

x2 + 4
dx =

∫
1

4 tan2 θ · 2 sec θ
· 2 sec2 θ dθ

=
1
4

∫
sec θ
tan2 θ

dθ =
1
4

∫
cos θ
sin2 θ

dθ

(let u = sin θ) =
1
4

∫
1
u2 du = − 1

4u
+C

= − 1
4 sin θ

+C = −
√

x2 + 4
4x

+C.
□

(3) Evaluate
∫

1
√

x2 − a2
dx, a > 0.

Proof. Let x = sec θ, 0 < θ <
π

2
or
π

2
< θ < π. Then dx = a tan θ sec θ dθ.∫

1
√

x2 − a2
dx =

∫
1

a tan θ
· a tan θ sec θ dθ

=

∫
sec θ dθ = ln | sec θ + tan θ| +C

= ln
∣∣∣ x
a
+

√
x2 − a2

a

∣∣∣ +C

= ln
∣∣∣x + √x2 − a2

∣∣∣ − ln a +C

= ln
∣∣∣x + √x2 − a2

∣∣∣ +C.
□

(4) Find the area enclosed by the ellipse
x2

a2 +
y2

b2 = 1.

Proof.

Area = 4
∫ a

0
b

 
1 − x2

a2 dx =
4b
a

∫ a

0

√
a2 − x2 dx

=
4b
a

∫ π
2

0
a cos θ · a cos θ dθ (let x = a sin θ)

= 4ab
∫ π

2

0

1 + cos2 θ

2
dθ

= 2ab
Ä
θ +

1
2

sin 2θ
ä∣∣∣ π2

0
= πab.

□
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(5) Evaluate
∫ 3

√
3

2

0

x3

(4x2 + 9)3/2 dx.

Proof. Let x = 3
2 tan θ, then ds = 3

2 sec2 θ dθ.

∫ 3
√

3
2

0

x3

(4x2 + 9)3/2 dx =
∫ π

3

0

27
8 tan3 θ

27 sec3 θ
· 3

2
sec2 θ dθ =

3
16

∫ π
3

0

tan3 θ

sec θ
dθ

=
3

16

∫ π
3

0

sin3 θ

cos2 θ
dθ =

3
16

∫ 1
2

1

1 − u2

u2 (−du)

=
3

16

∫
u−2 − 1 du =

3
16

Ä
− u−1 − u

ä∣∣∣1
1
2

=
3

32
.

□

(6) Evaluate
∫

x
√

3 − 2x − x2
dx.

Proof. Let x + 1 = 2 sin θ. Then dx = 2 cos θ dθ.

∫
x

√
3 − 2x − x2

dx =
∫

x√
4 − (x + 1)2

=

∫
2 sin θ − 1

2 cos θ
· 2 cos θ dθ

=

∫
2 sin θ − 1 dθ = −2 cos θ − θ +C

= −
√

4 − (x + 1)2 − sin
Ä x + 1

2

ä
+C.

□

8.5 Partial Fractions

In this section, we will try to solve the integral of rational functions. Let’s observe the following
example that ∫

2
x + 1

dx = 2 ln |x + 1| +C and∫
1

x − 2
dx = ln |x − 2| +C.

Then ∫
x − 5

x2 − x − 2
dx =

∫
2

x + 1
− 1

x − 2
dx = 2 ln |x + 1| − ln |x − 2| +C.
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Question: For a general rational function f , can we express f as sum of several fractions such
that we can evaluate the integral of each fraction?

■ Breaking a rational function into several fractions

Consider

f (x) =
P(x)
Q(x)

where
P(x) = anxn + · · · + a1x + a0,
Q(x) = bmxm + · · · + b1x + b0,

an, bm , 0

Definition 8.5.1. If n < m, we call f (x)
Ä
=

P(x)
Q(x)

ä
a “proper” rational function; if n ≥ m, we

call f a “improper” rational function.

Notice that in high school algebra, we can use long-divison to express a rational function as
a sum of a polynomial and a proper rational function. That is,

P(x)
Q(x)

= S (x)︸︷︷︸
polynomial

+
R(x)
Q(x)︸ ︷︷ ︸

proper rational function

.

■ Strategy of the integration of ration functions∫
P(x)
Q(x)

dx

Step1: By using the long-divison to express
P(x)
Q(x)

= S (x) +
R(x)
Q(x)

. Hence,

∫
P(x)
Q(x)

dx =
∫

S (x) dx +
∫

R(x)
Q(x)

dx.

Step2: Factorizing the denominator Q(x) as far as possible. For example,

Q(x) = x4 − 16 = (x2 + 4)(x + 2)(x − 2)

Q(x) = x3 − 5x2 + 7x − 2 = (x − 2)(x − 3 +
√

5
2

)(x − 3 −
√

5
2

)

Q(x) = x5 − 2x4 + 6x + 32 = (x − 2)2(x + 2)(x2 + 4)
Q(x) = x3 − 5x2 + 12x − 12 = (x − 2)(x2 − 3x + 6)

Step3: To express
R(x)
Q(x)

as a sum of several terms of the forms

A
(ax + b)i or

Ax + B
(ax2 + bx + c)i

Note. Not all improper rational functions can be expressed as a sum of the above terms.
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Step4: Take the integral of each of the above terms and use the techniques in the previous sec-
tions to solve them.

■ Different Cases

• Case1: Q(x) = (a1x+ b1)(a2x+ b2) · · · (akx+ bk) all distinct (i.e. no factor repeated). Express

R(x)
Q(x)

=
A1

(a1x + b1)
+

A2

(a2x + b2)
+ · · · + Ak

(akx + bk)
.

and solve A1, · · · , Ak.

Example 8.5.2. Evaluate
∫

x2 + 2x − 1
2x3 + 3x2 − 2x

dx.

Proof. Consider the factorization 2x3 + 3x2 − 2x = x(2x − 1)(x + 2). We can express

x2 + 2x − 1
2x3 + 3x2 − 2x

=
A
x
+

B
2x − 1

+
C

x + 2
=

1
2
· 1

x
+

1
5
· 1

2x − 1
− 1

10
· 1

x + 2
.

Hence, ∫
x2 + 2x − 1

2x3 + 3x2 − 2x
dx =

1
2

∫
1
x

dx +
1
5

∫
1

2x − 1
dx − 1

10

∫
1

x + 2
dx

=
1
2

ln |x| + 1
10

ln |2x − 1| − 1
10

ln |x + 2| +C.

□

• Case2: Q(x) = (a1x + b1)r1(a2x + b2)r2 · · · (akx + bk)rk . Express

R(x)
Q(x)

=
A11

a1x + b1
+

A12

(a1x + b1)2 + · · · +
A1r1

(a1x + b1)r1

+
...

+
Ak1

akx + bk
+

Ak2

(akx + bk)2 + · · · +
Akrk

(akx + bk)rk
.

and solve A11, · · · , Akrk .

Example 8.5.3. Evaluate
∫

4x
x3 − x2 − x + 1

dx.

Proof. Consider the factorization x3 − x2 − x + 1 = (x − 1)2(x + 1). Then

4x
x3 − x2 − x + 1

=
A

x − 1
+

B
(x − 1)2 +

C
x + 1

=
1

x − 1
+

2
(x − 1)2 +

−1
x + 1

.

Hence, ∫
4x

x3 − x2 − x + 1
dx =

∫
1

x + 1
dx + 2

∫
1

(x − 1)2 dx −
∫

1
x + 1

dx

= ln |x − 1| − 2
x − 1

− ln |x + 1| +C.

□
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• Case3: Q(x) = (a1x2 + b1x + c1)(a2x2 + b2x + c2) · · · (akx2 + bkx + bk). Express

R(x)
Q(x)

=
A1x + B1

(a1x2 + b1x + c1)
+

A2x + B2

(a2x2 + b2x + c2)
+ · · · + Akx + Bk

(akx2 + bkx + ck)
.

Example 8.5.4. Evaluate
∫

2x2 − x4

x3 + 4x
dx.

Proof. Consider the factorization x3 + 4x = x(x2 + 4). Then

2x2 − x + 4
x3 + 4x

=
A
x
+

Bx +C
x2 + 4

=
1
x
+

x − 1
x2 + 4

.

Hence, ∫
2x2 − x + 4

x3 + 4x
dx =

∫
1
x

dx +
∫

x − 1
x2 + 4

dx

=

∫
1
x

dx +
1
2

∫
2x

x2 + 4
dx −

∫
1

x2 + 4
dx

= ln |x| + 1
2

ln |x2 + 1| − tan−1 ( x
2
)
+C.

□

Remark.

(i) In this case, we usually use the trick∫
Cx + D
x2 + a2 dx =

C
2

∫
2x

x2 + a2 dx + D
∫

1
x2 + a2 dx =

C
2

ln |x2 + a2| + D tan−1 ( x
a
)
+ K.

(ii) As long as the denominator ax2 + bx + c cannot be factorized,
Ax + B

ax2 + bx + c
must can be

expressed as

A
2a
· (2ax + b)

ax2 + bx + c
+ (B− Ab

2a
)

1
ax2 + bx + c

=
A
2a
· 2ax + b

ax2 + bx + c
+ (B− Ab

2a
)

1
(αx + β)2 + γ2 .

For example,∫
x − 1

4x2 − 4x + 3
dx =

1
8

∫
8x − 4

4x2 − 4x + 3
dx − 1

2

∫
1

(2x − 1)2 + 2
dx

=
1
8

ln
∣∣4x2 − 4x + 3

∣∣ − 1
4

∫
1

u2 + 2
du (u = 2x − 1)

=
1
8

ln
∣∣4x2 − 4x + 3

∣∣ − 1
4

tan−1 ( u
√

2

)
+C

=
1
8

ln
∣∣4x2 − 4x + 3

∣∣ − 1
4

tan−1 (2x − 1
√

2

)
+C.
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• Case4: Q(x) = (a1x2 + b1x + c1)r1(a2x2 + b2x + c2)r2 · · · (akx2 + bkx + bk)rk . Express

R(x)
Q(x)

=
A11x + B11

(a1x2 + b1x + c1)
+

A12x + B12

(a1x2 + b1x + c1)2 + · · · +
A1r1 x + B1r1

(a1x2 + b1x + c1)r1

+
...

+
Ak1x + Bk1

(akx2 + bkx + ck)
+

Ak2x + Bk2

(akx2 + bkx + ck)2 + · · · +
Akrk x + Bkrk

(akx2 + bkx + ck)rk
.

Example 8.5.5. Evaluate
∫

1 − x + 2x2 − x3

x(x2 + 1)2 .

Proof.∫
1 − x + 2x2 − x3

x(x2 + 1)2 =

∫
A
x

dx +
Bx +C
x2 + 1

dx +
∫

Dx + E
(x2 + 1)2 dx

=

∫
1
x

dx −
∫

x + 1
x2 + 1

dx +
∫

x
(x2 + 1)2 dx

=

∫
1
x

dx +
1
2

∫
2x

x2 + 1
dx −

∫
1

x2 + 1
dx +

1
2

∫
2x

(x2 + 1)2 dx

= ln |x| − 1
2

ln
∣∣x2 + 1

∣∣ − tan−1 x − 1
2(x2 + 1)

+ K.

□

• Case5: Q(x) = (a1x + b1)r1 · · · (akx + bk)rk(c1x2 + d1x + e1)s1 · · · (cℓx2 + dℓx + eℓ)sℓ . Express

R(x)
Q(x)

=
A11

a1x + b1
+ · · · + A1r1

(a1x + b1)r1

+
...

+
Ak1

akx + bk
+ · · · + Akrk

(akx + bk)rk

+
C11x + D11

(c1x2 + d1x + e1)
+ · · · + C1s1 x + B1s1

(c1x2 + d1x + e1)s1

+
...

+
Cℓ1x + Dℓ1

(ckx2 + dkx + ek)
+ · · · + Cℓsℓ x + Dℓsℓ

(cℓx2 + dℓx + eℓ)sℓ
.

■ Rationalizing Substitutions

Example 8.5.6. Evaluate
∫ √

x + 4
x

dx.
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Proof. Let u =
√

x + 4. Then x = u2 − 4 and du =
1

2
√

x + 4
dx =

1
2u

dx.

∫ √
x + 4
x

dx =
∫

u
u2 − 4

· 2u du = 2
∫

1 +
4

u2 − 4
du

= 2u + 2
∫

1
u − 2

− 1
u + 2

du

= 2u + 2 ln
∣∣∣u − 2
u + 2

∣∣∣ +C

= 2
√

x + 4 + 2 ln
∣∣∣ √x + 4 − 2
√

x + 4 + 2

∣∣∣ +C.

□

Remark. Since every polynomial function Q(x) can be factorized into products of several 1-
degree or 2-degree irreducible polynomial functions, by following above steps and cases, we
can deal with the integrations of all rational functions.

8.6 Strategy for Integration

Momorized the following table
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■ Strategy

(1) Simplify the integrand if possible.

(2) Look for an obvious substitution.

(3) Classify the integrand according to its form

(a) trigonometric function: products of powers of sin x, · · · , csc x.

(b) rational functions:
P(x)
Q(x)

(c) Integration by parts:
∫

u(x)v′(x) dx = u(x)v(x) −
∫

u′(x)v(x) dx



8.7. IMPROPER INTEGRAL 193

(d) radicals:
√

x2 ± a2,
√

a2 ± x2 (trigonometric substitituion); n√ax + b (rationalizing sub-
stitution)

(4) Try again!

Question: Can we integrate all continuous functions?
Answer: No, the majority of elementary functions don’t have elementary antiderivatives. For
example, f (x) = ex2

has no antiderivative which is an elementary function.

8.7 Improper Integral

In the previous sections, we discuss the definite integral
∫ b

a
f (x) dx of f under the assumptions

that f is defined on a finite interval [a, b] and f does not have an infinite discontinuity. In the
presect section, we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where f has an infinite discontinuity in [a, b]. In either case the
integral is called an “improper integral”.

o Type1: Infinite Intervals

Let f be a function defined on an infinite interval such as [a,∞], (−∞, a] or (−∞,∞).

Example 8.7.1. Let f (x) =
1
x2 be defined on [1,∞).

So far, we can only evaluate the integral of f on an finite in-
terval. Fix t > 1, we have the area of the region bounded by

y =
1
x2 , x-axis, x = 1 and x = t

A(t) =
∫ t

1

1
x2 dx = −1

x

∣∣∣t
1
= 1 − 1

t
.

To evaluate the area of the region bounded by y =
1
x2 , x-axis and x = 1, we let t tend to infinity

and consider the limit

lim
t→∞

A(t) = lim
t→∞

∫ t

1

1
x2 dx = lim

t→∞
(1 − 1

t
) = 1.

Note. In the above process, the integral
∫ t

1

1
x2 dx should be defined for all t > 1.

Definition 8.7.2. (Improper Integral of Type1)
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(a) If
∫ t

a
f (x) dx exists for every number t ≥ a, then

∫ ∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx

provided this limit exists.

(b) If
∫ b

t
f (x) dx exists for every number t ≤ b, then

∫ b

−∞
f (x) dx = lim

t→−∞
f (x) dx

proveided this limit exists.

We call the above improper integrals
∫ ∞

a
f (x) dx and

∫ b

−∞
f (x) dx “convergent” if the cor-

responding limit exists and “divergent” if the limit does not exists.

(c) If both
∫ ∞

a
f (x) dx and

∫ a

−∞ f (x) dx are convergent, then we definte∫ ∞

−∞
f (x) dx =

∫ a

−∞
f (x) dx +

∫ ∞

a
f (x) dx.

In part (c) any real number a can be used.

Remark. If f (x) ≥ 0 and the integral
∫ ∞

a
f (x) dx is convergent, we define the area of the region

S =
{

(x, y)
∣∣x ≥ a, 0 ≤ y ≤ f (x)

}
to be

A(S ) =
∫ ∞

a
f (x) dx.

Example 8.7.3.

(1) Discuss for what values of p the integral
∫ ∞

1

1
xp dx is convergent or divergent.
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Proof. ∫ ∞

1

1
xp dx = lim

t→∞

∫ t

1

1
xp dx

=


lim
t→∞

Ä 1
1 − p

· 1
xp−1

ä∣∣∣t
1

p , 1

lim
t→∞

Ä
ln |x|
ä∣∣∣t

1
p = 1

=


1

1 − p
lim
t→∞

Ä 1
tp−1 − 1

ä
p , 1

lim
t→∞

ln t p = 1

=


1

1 − p

Ä
lim
t→∞

1
tp−1 − 1

ä
=


∞ p < 1

1
p − 1

p > 1

∞ p = 1
□

Conclusion:
∫ ∞

1

1
xp dx is convergenet if p > 1 and divergent if p ≤ 1.

(2) Evaluate
∫ 0

−∞
xex dx.

Proof. ∫ 0

−∞
xex dx = lim

t→−∞

∫ 0

t
xex dx I.B.P

= lim
t→−∞

î
xex

∣∣∣0
t
−
∫ 0

t
ex dx

ó
= lim

t→−∞

î
− tet − ex

∣∣∣0
t

ó
= lim

r→−∞

î
− tet − 1 + et

ó
= −1.
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□

(3) Evaluate
∫ ∞

−∞

1
1 + x2 dx.

Proof. ∫ ∞

−∞

1
1 + x2 dx =

∫ 0

−∞

1
1 + x2 dx +

∫ ∞

0

1
1 + x2 dx.

Consider ∫ ∞

0

1
1 + x2 dx = lim

t→∞

∫ t

0

1
1 + x2 dx = lim

t→∞
tan−1 x

∣∣∣t
0

= lim
t→∞

tan−1 t =
π

2
.

∫ 0

−∞

1
1 + x2 dx = lim

t→−∞

∫ 0

t

1
1 + x2 dx = lim

t→−∞
tan−1 x

∣∣∣0
t

= lim
t→−∞

(− tan−1 t) =
π

2
.

Hnece, ∫ ∞

−∞

1
1 + x2 dx =

∫ 0

−∞

1
1 + x2 dx +

∫ ∞

0

1
1 + x2 dx =

π

2
+
π

2
= π.

Note that f (x) =
1

1 + x2 is an even function.

□

o Type2: Discontinuous Integrands

Let f be a function defined on a finite interval [a, b) but has a vertical asymptote at b.

In type1 integrals, the regions extended indef-
initely in a horizontal direction. In type2 inte-
grals, the regioin is infinite in a vertical direc-
tion.

For a ≤ t < b, the area of the region S under the graph y = f (x) from x = a to x = t is

A(t) =
∫ t

a
f (x) dx.
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If the limit lim
t→b−

A(t) = lim
t→b−

∫ t

a
f (x) dx = A exists, we say that the area of the region S is A.

Definition 8.7.4. (Improper Integral of Type 2)

(a) If f is defined on [a, b) and
∫ t

a
f (x) dx exists for all a ≤ t < b, then

∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx

if this limit exists.

(b) If f is defined on (a, b] and
∫ b

t
f (x) dx exists for all a < t ≤ b, then

∫ b

a
f (x) dx = lim

t→a+

∫ b

t
f (x) dx

if this limit exists.

We call the improper integral
∫ b

a
f (x) dx “convergent” if the corresponding limit exists and

“divergent” if the limit does not exist.

(c) For a < c < b, if f has an (infinite) discontinuity at c, if

both
∫ c

a
f (x) dx and

∫ b

c
f (x) dx converge then we say that∫ b

a
f (x) dx converges and

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Example 8.7.5.

(1) Evaluate
∫ 5

2

1
√

x − 2
dx.
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Proof. The function f (x) =
1

√
x − 2

has the vertical

asymptote x = 2. Thus,∫ 5

2

1
√

x − 2
dx = lim

t→2+

∫ 5

t

1
√

x − 2
dx

= lim
t→2+

2
√

x − 2
∣∣∣5
t

= lim
t→2+

2(
√

3 −
√

t − 2) = 2
√

3.

□

(2) Evaluate
∫ π

2

0
sec x dx.

Proof. The function f (x) = sec x has the vertical
asymptote x = π2 . Thus,∫ π

2

0
sec x dx = lim

t→( π2 )−

∫ t

0
sec x dx

= lim
t→( π2 )−

ln | sec x + tan x|
∣∣∣t
0

= lim
t→( π2 )−

[ln | sec x + tan x| − ln 1] = ∞.

□

(3) Evaluate
∫ 3

0

1
x − 1

dx.

Proof. The function f (x) =
1

x − 1
x has the vertical

asymptote x = 1. Thus,∫ 1

0

1
x − 1

dx = lim
t→1−

∫ t

0

1
x − 1

dx

= lim
t→1−

(ln |x − 1|)
∣∣∣t
0

= lim
t→1−

ln |t − 1| = −∞.

Hence,
∫ 3

0

1
x − 1

dx is divergent. □

Wrong method:
∫ 3

0

1
x − 1

dx = (ln |x − 1|)
∣∣∣3
0
= ln 2 − ln 1 = ln 2.

(4) Evaluate
∫ 1

0
ln x dx.
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Proof. The function f (x) = ln x has the vertical
asymptote x = 0. Thus,∫ 1

0
ln x dx = lim

t→0+

∫ 1

t
ln x dx

= lim
t→0+

[x ln x − x]
∣∣∣1
t

= lim
t→0+

(−t ln t − 1 + t) L.H.
= −1.

□

(5) Discuss for what values of p the integral
∫ 1

0

1
xp dx is convergent or divergent.

Proof. When p ≤ 0, f (x) = 1
xp is continuous on [0, 1]. Hence, the integral is convergent

and
∫ 1

0

1
xp dx =

1
1 − p

. Consider the cases p > 0, then function f (x) = 1
xp has a vertical

asymptote x = 0. Then

∫ 1

0

1
xp dx = lim

t→0+

∫ 1

t

1
xp dx =


1

1 − p
lim
t→0+

1
xp−1

∣∣∣1
t

p , 1

lim
t→0+

(ln |x|)
∣∣∣1
t

p = 1

=


1

1 − p
lim
t→0+

(1 − t1−p) =


1

1 − p
p < 1

∞ p > 1

lim
t→0+

(− ln t) = ∞ p = 1

□

Conclusion:
∫ 1

0

1
xp dx is convergent if p < 1 and divergent if p ≥ 1.

o Comparison Theorem

Note. For some definite integrals, it is impossible (difficult) to find their exact values but we
can still determine whether these integrals are convergent or divergent.

Theorem 8.7.6. (Comparison Theorem) Suppose that f and g satisfy 0 ≤ g(x) ≤ f (x) for every
x ≥ a.
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(a) If
∫ ∞

a
f (x) dx is convergent, then

∫ ∞

a
g(x) dx is con-

vergent.

(b) If
∫ ∞

a
g(x) dx is divergent, then

∫ ∞

a
f (x) dx is di-

vergent.

Example 8.7.7.

(1) Determine whether the improper integral
∫ ∞

0
e−x2

dx is convergent or divergent.

Proof.

Since f (x) = e−x2
is continuous on [0, 1], it is integrable on

[0, 1]. On the other hand, 0 ≤ e−x2 ≤ e−x for every x ≥ 1 and∫ ∞

1
e−x dx = lim

t→∞

∫ t

1
e−x dx = lim

t→∞
(−ex)

∣∣∣t
1
= e−1.

By the Comparison Theorem, the improper integral
∫ ∞

1
e−x2

dx

is convergent. Hence,∫ ∞

0
e−x2

dx =
∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx

is also convergent. In fact,
∫ ∞

0
e−x2

dx =
√
π

2
.

□

(2) Determine whether the improper integral
∫ ∞

1

1 − e−x

x
dx is convergent or divergent.

Proof. Since 0 <
1
2x
<

1 − e−x

x
for every 1 ≤ x < ∞ and

∫ ∞

1

1
2x

dx =
1
2

lim
t→∞

∫ t

1

1
x

dx =
1
2

lim
t→∞

ln t = ∞.

By the Comparison Theorem, the improper integral
∫ ∞

1

1 − e−x

x
dx is divergent. □
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9.1 Areas Between Curves

In the present section, we try to evaluate the integrals to find areas of regions that lie between
the graphs of two functions.

Let f and g be two continuous functions satisfying f (x) ≥ g(x) for every x ∈ [a, b]. Let S
be the region between the two curves y = f (x) and y = g(x), and the vertical lines x = a and
x = b. We use the approximating rectangles method to evaluate the area of S .

Let P be a partition of [a, b]. The Riemann sum

n∑
i=1

[ f (x∗i ) − g(x∗i )]4xi

201
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is an approximation to the area of S . We define the area A of the region S as the limiting value
of the sum of the area of these approximating rectangles

A = lim
‖P‖→0

n∑
n=1

[ f (x∗i ) − g(x∗i )]4xi.

Theorem 9.1.1. The area A of the region bounded by the cruve y = f (x), y = g(x) and the lines
x = a and x = b, where f and g are integrable and f (x) ≥ g(x) for all x ∈ [a, b], is

A =
∫ b

a
[ f (x) − g(x)] dx

Note. (1) If g(x), S is the region under the graph of f . The area of S is

A =
∫ b

a
[ f (x) − 0] dx =

∫ b

a
f (x) dx

is the same as the area we discussed before.

(2) If f (x) ≥ g(x) ≥ 0 for all x ∈ [a, b]

A = [area under y = f (x)] − [area under y = g(x)]

=

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

=

∫ b

a
[ f (x) − g(x)] dx.

Example 9.1.2. Find the area of the region bounded above by y = ex, bounded below by y = x
and bounded on the sides by x = 0 and x = 1.

Proof.

A =

∫ 1

0
[ex − x] dx

= ex − 1
2

x2
∣∣∣1

0
= e − 3

2
.

□

Example 9.1.3. Find the area of the region enclosed by the parabola y = x2 and y = 2x − x2.

Proof. The points of intersection of y = x2 and y = 2x − x2 are
given by solving the equation x2 = x − x2. They are x = 0 and
x = 1. The graph y = 2x − x2 is above the graph of y = x2 for all
x ∈ [0, 1]. The area of the region is

A =
∫ 1

0
[(2x − x2) − x2] dx = x2 + x − 2

3
x3
∣∣∣1
0
=

1
3
.

□
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To find the area between the curves y = f (x) and y = g(x) where f (x) ≥ g(x) for some
values of x but g(x) ≥ f (x) for other values.

We splits the region S into several subregions S 1, S 2, · · · S n

with areas A1, A2, · · · An. Then the area of S is

A = A1 + A2 + · · · + An.

Since

| f (x) − g(x)| =
ß

f (x) − g(x) when f (x) ≥ g(x)
g(x) − f (x) when f (x) ≤ g(x),

we have the following results.
Theorem 9.1.4. The are between the curves y = f (x) and y = g(x) and between x = a and
x = b is

A =
∫ b

a
| f (x) − g(x)| dx.

Example 9.1.5. Find the area of the region bounded by the cruves y = sin x, y = cos x, x = 0
and x =

π

2
.

Proof. The points of intersection of two curves in [0,
π

2
] is
π

4
.

Also, cos x ≥ sin x when 0 ≤ x ≤ π
4 and sin x ≥ cos x when

π
4 ≤ x ≤ π2 . The area of the region is

A =

∫ π
2

0
| cos x − sin x| dx

=

∫ π
4

0
cos x − sin x dx +

∫ π
2

π
4

sin x − cos x dx

= 2
√

2 − 2

□
Some regions are treated by regarding x as a function of y. Suppose that the region S is

bounded by curves with equation x = f (y), x = g(y), y = c and y = d where f and g are
continuous and f (y) ≥ g(y) for all c ≤ y ≤ d. The area of the region S is

A =
∫ d

c
[ f (y) − g(y)] dy.
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Example 9.1.6. Find the area enclosed by the line y = x − 1 and the parabola y2 = 2x + 6.
Proof. The points of intersection is obtained by solving y2 =

2y + 8. Hence, those points are y = 4 and y = 2. The area of
the enclosed region is

A =

∫ 4

−2
(y + 1) − (

1
2

y2 − 3) dy

=

∫ 4

−2
−1

2
y2 + y + 4dy

= 18

□

Note. We can also obtain the area of the above region by
integrating with respect to x instead of y.

Splitting the region into two subregions A1 and A2 and com-
puting each area and adding them up. But it is very compli-
cated.

9.2 Volume

In the present section, we wnat to find the volume of a solid by using the techniques of integral to
give an exact definition. We start with a simple type of solid called a “cylinder (right cylinder)”.

For a general solid S (not a cylinder), we cut it into several slices and approximate each slice
by regarding them as cylinders. We estimate the volume of S by adding the volume of those
approximating volumes of slabs.

(i) The intersection of S with a plane and obtaining a plane region that is called a “cross-
section” of S . Let A(x) be the area of the cross-section of S in a plane Px perpendicular to
the x-axis and passing through the point x where a ≤ x ≤ b.
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(ii) Dividing S into n “slabs” of equal width 4x by using the planes Px1 , Px2 , · · · to slice the
solid.

(iii) Choosing sample points x∗i in [xi−1, xi], we can approximate the ith slab S i by a cylinder
with base A(x∗i ) and “height” 4xi. The volume of this cylinder is A(x∗i )4xi. Hence, the
volume of S i is

Vi ≈ A(x∗i )4xi.

(iv) Adding the volumes of these slabs, we get an approximation to the total volume of S ,

V ≈
n∑

i=1

A(x∗i )4xi.

(v) Let n tends to infinity, we define the volume of S as the limit of these sums.

Definition 9.2.1. Let S be a solid that lies between x = a and x = b. If the cross-sectional area
of S in the plane Px through x and perpendicular to the x-axis, is A(x), where A is a continuous
function, then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗i )4xi =

∫ b

a
A(x) dx.

Note. For a (right) cylinder, A(x) = A for all x. Then the volume is

V =
∫ b

a
A(x) dx =

∫ b

a
A dx = A(b − a).

Example 9.2.2. Find the volume of a sphere of radius r.
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Proof. The plane Px intersects the sphere in a circle whose
radius is y =

√
r2 − x2. Hence, the cross-sectional area is

A(x) = π(
√

r2 − x2)2 = π(r2 − x2).

The volume of the sphere is

V =

∫ r

−r
A(x) dx =

∫ r

−r
π(r2 − x2) dx

= π(r2x − 1
3

x3)
∣∣∣r
−r

=
4
3
πr3.

□

Example 9.2.3. A solid with a circular base of radius 1. Parallel cross-sections perpendicular
to the base are equilateral triangles. Find the volume of the solid.

Proof. Each cross-section is an equilateral triangle, the base is 2y and the height is
√

3y. Hence
the area of the cross-section is

A(x) =
√

3y2 =
√

3(1 − x2).

The volume of the solid is

V =
∫ 1

−1
A(x) dx =

∫ 1

−1

√
3(1 − x2) dx =

4
√

3
3
.

□

Example 9.2.4. A wedge is cut out of circular cylinder of radius 4 by two planes. One plane
is perpendicular to the axis of the cylinder. The other intersects the first at an angle 30◦ along a
diameter of the cylinder. Find the volume of the wedge.
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Proof. Each cross-section is a right triangle with base y =√
16 − x2. The intersection angle 30◦ implies that the height

is y tan 30◦ =
√

16−x2
√

3
. The area of the cross-section is

A(x) =
1
2

√
16 − x2 ·

√
16 − x2

√
3

=
1

2
√

3
(16 − x2).

The volume of the solid is

V =

∫ 4

−4
A(x) dx =

∫ 4

−4

1

2
√

3
(16 − x2) dx

=
1

2
√

3
(16x − 1

3
x3)

∣∣∣4

−4
=

128

3
√

3
.

□

9.3 Solid of Revolution
In the present section, we wnat to find the volume of the solid which is obtained by rotating a
region about a line. We calculate the area of cross-section. The the volume is

V =
∫ b

a
A(x) dx or V =

∫ d

c
A(y) dy.

To find the area of each cross-section.

(i) If the cross-section is a dist, the area is

A = π(radius)2

(ii) If the cross-section is a washer, the area is

A = πr2
outer − πr2

inner.

Example 9.3.1. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y =

√
x from 0 to 1.
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Proof. The cross-sectional area is

A(x) = π(
√

x)2 = πx.

The solid lies between x = 0 and x = 1 has volume

V =
∫ 1

0
A(x) dx =

∫ 1

0
πx dx =

πx2

2

∣∣∣1
0
=
π

2
.

□

Example 9.3.2. Find the volume of the solid obtained by rotating the region bounded by y = x3,
y = 8 and x = 0 about the y-axis.

Proof. The region is rotated about y-axis. It makes to slice the solid perpendicular to the y-axis
obtaining circular cross-sections. The area of a cross-section through y is

A(y) = πx2 = π( 3
√

y)2 = πy2/3.

The volume of the solid is

V =
∫ 8

0
A(y) dy =

∫ 8

0
πy2/3 dy =

3π
5

y5/3
∣∣∣8
0
=

96π
5
.

□
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o Washer Method (Method of Washer)

Example 9.3.3. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x2, about the x-axis.

Proof. The points of intersection is obtained by x = x2 and hence those points are x = 0 and
x = 1. The area of the cross-section perpendicular to x-axis is

A(x) = πr2
outer − πr2

inner = π(x)2 − π(x2)2 = π(x2 − x4).

The volume of the solid is

V =
∫ 1

0
A(x) dx =

∫ 1

0
π(x2 − x4) dx = π(

1
3

x3 − 1
5

x5)
∣∣∣1
0
=

2π
15
.

□

Example 9.3.4. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x2, about the line y = 2.

Proof. The cross-section is a washer and its area is

A(x) = πr2
outer − πr2

inner = π(2 − x2)2 − π(2 − x)2 = π(x4 − 5x2 + 4x).

The volume of the solid is

V =
∫ 1

0
A(x) dx = π

∫ 1

0
x4 − 5x2 + 4x dx = π

(1
5

x5 − 5
3

x3 + 2x2)∣∣∣1
0
=

8π
15
.

□
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Example 9.3.5. Find the volume of the solid obtained by rotating the region which is enclosed
by y = x and y = x2, about the line x = −1.

Proof. The area of the cross-section is

πr2
outer − πr2

inner = π
(√

y − (−1)
)2 − π

(
y − (−1)

)2
= π(2

√
y − y − y2).

The volume of the solid is

V =
∫ 1

0
π(2
√

y − y − y2) dy = π
Ä4

3
y3/2 − 1

2
y2 − 1

3
y3
ä∣∣∣1

0
=
π

2
.

□

o Method of Cylindrical Shells

For some solids of revolution, it is difficult to find their volumes by using the washer method.

For example, the solid obtained by rotating the region which
is enclosed by y = 2x2 − x3 and x-axis. If we want to use
the washer method to find the volume of the solid, we have to
evaluate the areas of each cross-section, A(y), for every 0 ≤
y ≤ 32

27 . But it is not easy to solve the equation y = 2x2 − x3.

Hence, we study a different method, called the method of “cylindrical shells”, to find its volume
here.

Consider a cylindrical shell with inner radius r1, outer radius
r2 and height h. Then the thickness of the shell is 4r = r2 − r1.
The volume of the shell is

V = πr2
2h − πr2

1h = π(r2
2 − r2

1)h

= π(r2 + r1)(r2 − r1)h = 2π · r2 + r1

2︸    ︷︷    ︸
≈ r

h (r2 − r1)︸     ︷︷     ︸
=4r

≈ 2πrh4r.
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The approximating volume of the cylindrical shell is 2πrh4r.†

Let S be the solid obtained by rotating about the y-axis the region bound by y = f (x), y = 0,
x = a and x = b where 0 ≤ a < b.

Dividing [a, b] into n subintervals [xi−1, xi] of equal width 4x and choose x̄ as the midpoint
of the ith subinterval. Consider the rectangle with base [xi−1, xi] and height f (x̄). The solid
whcih is obtained by rotating the above region about the y-axis has volume

Vi ≈ (2πx̄)( f (x̄i))4x.

The approximation to the volume of S is

V ≈
n∑

i=1

Vi =

n∑
i=1

2πx̄i f (x̄i)4x.

Let n→ ∞, the volume of the solid is,

lim
n→∞

n∑
i=1

2πx̄i f (x̄i)4x =
∫ b

a
2πx f (x) dx.

Theorem 9.3.6. The volume of the solid obtained by rotating about the y-axis the region under
the curve y = f (x) from a to b is

V =
∫ b

a
2πx f (x) dx.

†It can be remembered as V ≈ [circumference][height][thickness].
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Note. Flattening a cylindrical shell with radius x, circumference 2πx, height f (x) and thickness
4x (or dx). Hence, the volume of S is

V −
∫ b

a
2πx︸︷︷︸

circumference
f (x)︸︷︷︸

height

dx︸︷︷︸
thickness

.

Example 9.3.7. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = 2x2 − x3 and y = 0.

Proof.

V =

∫ 2

0
2πx(2x2 − x3) dx

= 2π(
1
2

x4 − 1
5

x5)
∣∣∣2

0

=
16π

5
.

□

Example 9.3.8. Find the volume of the solid obtained by rotating about the y-axis the region
bounded by y = x and y = x2.

Proof. The points of intersection of y = x and y = x2 is (0, 0)
and (1, 0). Therefore, the volume of the solid is

V =
∫ 1

0
2πx(x − x2) dx =

π

6
.

□

Example 9.3.9. Find the volume of the solid obtained by rotating about the x-axis the region
under the curve y =

√
x from 0 to 1.

Proof.
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V =
∫ 1

0
2πy(1 − y2) dy = 2π(

y2

2
− y4

4
)
∣∣∣1
0
=
π

2
.

□

Example 9.3.10. Find the volume of the solid obtained by rotating about the line x = 2 the
region bounded by y = x − x2 and y = 0.

Proof.

V =
∫ 1

0
2π(2 − x)(x − x2) dx =

π

2
.

□

9.4 Arc Length
In the present section, we want to evaluate the arc length of a curve which is the graph of a
smooth function.

Question: For a given curve C, what is the length of C?
If the curve is a polygon, it is easy to find its length.

Question: How about the length of a general curve?
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We try to approximate the length of a general curve by polygons and take a limit as the
numbers of thy polygon is increased.

Suppose that f is a function defined on [a, b] and C is the graph of f with equation y = f (x).
Let P =

{
x0, x1, · · · , xn

}
be a partition of [a, b] and the point Pi

(
xi, f (xi)

)
are points on C.

Consider the polygon with vertices P0, P1, · · · , Pn. The number ℓ(P, f ) represents the length of
a polygonal curve inscribed in the graph of f . Then the length L of the curve C is approximately
the length of the polygon

ℓ(P, f ) =
n∑

i=1

|Pi−1Pi| =
n∑

i=1

√
(xi − xi−1)2 +

[
f (xi) − f (xi−1)

]2
.

As n increases, the approximation gets better

Exercise. Let P and Q be two partitions of [a, b]. If Q is a refinement of P, then

ℓ(P, f ) ≤ ℓ(Q, f ).

Definition 9.4.1. We define the length of f on [a, b] to be the least upper bound of all ℓ(P, f )
for all partition P (provided that the set of all such ℓ(P, f ) is bounded above). That is, the length
of f on [a, b] is

L = sup
P
ℓ(P, f ).

Unfortunately, for a general function f , the approximating length ℓ(P, f ) is not easy to
obtain. Therefore, from now on, we assume that f has a (continuous) derivative.

The length of the segment Pi−1Pi is√
(4xi)2 + (4yi)2

=
√

(xi − xi−1)2 + [ f (xi) − f (xi−1)]2

M.V.T
=

»
(xi − xi−1)2 + [ f ′(x∗i )(xi − xi−1)]2

=
»

1 + [ f ′(x∗i )]24xi.
The length of the curve C with the equation y = f (x) on [a, b] is

sup
P
ℓ(P, f ) = sup

P

n∑
i=1

»
1 + [ f ′(x∗i )]24xi =

∫ b

a

√
1 + [ f ′(x)]2 dx.
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The last equality is followed the hypothesis that f is continuously differentiable.

■ Arc Length Formula

If f ′(x) is continuous on [a, b], then the length of the curve y = f (x), a ≤ x ≤ b, is

L =
∫ b

a

√
1 + [ f ′(x)]2 dx.

The expression in Leibniz notation is

L =
∫ b

a

…
1 +
Ädy

dx

ä2
dx.

Example 9.4.2. Find the arc length of the semicubical parabola y2 = x3 between (1, 1) and
(4, 8).

Proof. The curve between (1, 1) and (4, 8) satisfies the equa-

tion y = x3/2. Then
dy
dx
=

3
2

x1/2. The arc length of the curve
is

L =
∫ 4

1

…
1 + (

3
2

x
1
2 )2 dx =

8
27

u
3
2

∣∣∣10

13
4

=
1
27

(80
√

10− 13
√

13).

□

Suppose that the curve C has equation x = g(y), c ≤ y ≤ d. Then the arc length of C is

L =
∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

 
1 +
Ädx

dy

ä2
dy.

Example 9.4.3. Find the arc length of the curve C with the equation y2 = x from (0, 0) to (1, 1).

Proof. Since the curve has equation x = y2, then
dx
dy
= 2y.

The arc length of the curve is

L =

∫ 1

0

√
1 + (2y)2 dy

=

∫ tan−1 2

0

√
1 + tan2 θ · 1

2
sec2 θ dθ (y =

1
2

tan θ)

=
1
4

Ä
sec θ tan θ + ln | sec θ + tan θ|

ä∣∣∣tan−1 2

0

=

√
5

2
+

1
4

ln(
√

5 + 2).

□
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■ Arc Length Function

Suppose that a smooth curve C has the equation y = f (x), a ≤ x ≤ b. Let s(x) be the
distance along C from the initial point P0

(
a, f (a)

)
to the point Q

(
x, f (x)

)
. Then s is a function,

called the “arc length function” and

s(x) =
∫ x

a

√
1 + [ f ′(t)]2 dt.

By the Fundamental Theorem of Calculus,

ds
dx
=

√
1 + [ f ′(x)]2 =

…
1 +
Ädy

dx

ä2
.

This shows that the rate of change of s with respect to x is
always at least 1 and is equal to 1 when f ′(x), the slope of the
curve, is 0. The differential of arc length is

ds =

…
1 +
Ädy

dx

ä2
dx.

It is sometimes written in the symmetric form

(ds)2 = (dx)2 + (dy)2.

Similarly,

ds =

 
1 +
Ädx

dy

ä2
dy.

Hence, the arc length along the curve C from
(
a, f (a)

)
to

(
t, f (t)

)
is

L =
∫ t

0

…
1 +
Ädy

dx

ä2
dx︸                 ︷︷                 ︸

ds

=

∫
1 ds = s(x)

∣∣∣t
a
= s(t) − s(a) = s(t).

Example 9.4.4. Find the arc length function for the curve y = x2 − 1
8 ln x taking P0(1, 1) as the

starting point.

Proof. The rate of change of y with respect to x is

dy
dx
= 2x − 1

8x
.
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The arc length function is

s(x) =
∫ x

1

…
1 + (2t − 1

8t
)2 dt =

∫ x

1

…
(2t +

1
8t

)2 dt

=

∫ x

1
2t +

1
8t

dt = x2 +
1
8

ln x − 1.

The arc length from (1, 1) to (3, f (3)) is

s(3) = 32 +
1
8

ln 3 − 1 = 8 +
ln 3
8
.

□

9.5 Area of a Surface of Revolution

In the present section, we want to evaluate the area of a surface of revolution which is formed
when a curve is rotated about a line. Let’s look at some simple cases.

Area = 2πrh.

θ =
2πr
ℓ

Area =
1
2
ℓ2θ = πrℓ.
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r
R
=

ℓ1
ℓ + ℓ1

⇒ ℓ1 =
rℓ

R − r

Area = πR(ℓ + ℓ1) − πrℓ1
= π(R − r)ℓ1 + πRℓ
= π(R + r)ℓ.

Consider the surface which is obtained by rotating the curve y = f (x), a ≤ x ≤ b, about the
x-axis where f is positive and has a continuous derivative. Let P = {x0, x1, · · · , xn} be a partition
of [a, b]. The points P0

(
x0, f (x0)

)
, · · · , Pn

(
xn, f (xn)

)
are on the curve y = f (x).

The surface of revolution S is divided into several “belts”. The surface area of one belt can
be calculated in terms of its radius and its arc length.

Area = π
(

f (xi) + f (xi−1)
)√

(x2
i − x2

i−1)2
[

f (xi) − f (xi−1)
]2

M.V.T
= π

(
f (xi) + f (xi−1)

)√
4x2

i

[
f ′(x∗i )4xi

]2

= π
(

f (xi) + f (xi−1)
)»

1 + [ f ′(x∗i )]24xi

≈ 2π f (x∗i )
»

1 + [ f ′(x∗i )]24xi

Hence, the sufrace area of the revolution is

S = lim
n→∞

n∑
i=1

2π f (x∗i )
»

1 + [ f ′(x∗i )]24xi

=

∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx

(Leibniz notation) =

∫ b

a
2πy

…
1 +
Ädy

dx

ä2
dx

(arc length notation) =

∫ b

a
2πy ds (ds =

…
1 +
Ädy

dx

ä2
dx )
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Example 9.5.1. The curve y =
√

4 − x2, −1 ≤ x ≤ 1, is an arc of the circle x2 + y2 = 4. Find
the area of the surface obtained by rotating this arc about the x-axis.

Proof. Since y =
√

4 − x2, then
dy
dx
=

−x
√

4 − x2
. The sur-

face area is

S =

∫ 1

−1
2πy

…
1 +
Ädy

dx

ä2
dx

= 2π
∫ 1

−1

√
4 − x2

 
1 +
Ä −x
√

4 − x2

ä2
dx

= 2π
∫ 1

−1
2 dx = 8π.

□
Similarly, the surface is obtained by rotating the curve x = g(y), c ≤ y ≤ d, about the y-axis.

The surface area is

Area =
∫ d

c
2πg(y)

√
1 + [g′(y)]2 dy

=

∫ d

c
2πx

 
1 +
Ädx

dy

ä2
dy

=

∫ d

c
2πx ds (ds =

 
1 +
Ädx

dy

ä2
dy )

Note. Thinking of 2πy or 2πx as the circumference of a circle traced out by the point (x, y) on
the curve as it is rotated about the x-axis or y-axis respectively.

Example 9.5.2. The arc of the parabola y = x2 from (1, 1) to (2, 4) is rotated about the y-axis.
Find the area of the resulting surface.
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Proof.

Method 1: Since y = x2, then
dy
dx
= 2x. The surface area

is

S =

∫
2πx dx =

∫ 2

1
2πx

…
1 +
Ädy

dx

ä2
dx

= 2π
∫ 2

1
x
√

1 + 4x2 dx

=
π

4
[2

3
u

3
2
]17

5 =
π

6
(17
√

17 − 5
√

5).

Method 2 : Since x =
√

y, then
dx
dy
=

1
2
√

y
. The surface area is

S =

∫
2πx ds =

∫ 4

1
2π
√

y

 
1 +
Ädx

dy

ä2
dy

= π

∫ 4

1

√
4y + 1 dy

=
π

4

∫ 17

5

√
u du =

π

6
(17
√

17 − 5
√

5).

□

Example 9.5.3. Find the area of the surface generated by rotating the curve y = ex, 0 ≤ x ≤ 1,
about the x-axis.

Proof. Since y = ex, then
dy
dx
= ex. The surface area is

S =

∫
2πy ds =

∫ 1

0
2πex

…
1 +
Ädy

dx

ä2
dx

= 2π
∫ 1

0
ex
√

1 + e2x dx

(u = ex) = 2π
∫ e

1

√
1 + u2 du

(u = tan θ) = 2π
∫ tan−1 e

π/4
sec3 θ dθ

= π
î

sec θ tan θ + ln | sec θ + tan θ|
ótan−1 e

π/4

= π
î
e
√

1 + e2 + ln(e +
√

1 + e2) −
√

2 − ln(
√

2 + 1)
ó
.

□
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So far, we have studied the plane curves which are the graphs of explicit functions (y = f (x)
or x = g(y)) or implicit functions ( f (x, y) = 0). In the present chapter, we will discuss those
curves which are given in terms of a third variable t (x = f (t) and y = g(t)).

10.1 Parametric Curves

When a particle moves on a plane along the curve C, in gen-
eral, the path may not be described as an equation of the form
y = f (x) (or x = g(y)). Suppose that x and y are both given
as functions of a third variable t (called a “parameter”). The
equation

x = f (t), y = g(t)

is called a “parametric equation”.

Each value of t determines a point (x, y) which we can plot in a coordinate plane. As t
varies, the point (x, y) =

(
f (t), g(t)

)
varies and traces out a curve C. We call the curve C :

(x, y) =
(

f (t), g(t)
)

a “parametric curve”.

Example 10.1.1. Sketch and identify the curve defined by the parametric equation

x = t2 − 2t y = t + 1

t = y − 1⇒ x = (y − 1)2 − 2(y − 1) = y2 − 4y + 3 (Cartesian equation)

221
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We sometimes restrict t to lie in a finite interval.

Example 10.1.2. Consider the parametric equation

x = t2 − 2t y = t + 1 0 ≤ t ≤ 4

Example 10.1.3. Observe the parametric equation

x = cos t y = sin t 0 ≤ t ≤ 2π

represents the circle x2 + y2 = 1. As t increase from 0 to 2π,
the point (x, y) = (cos t, sin t) moves once around the circle in
the counterclockwise direction starting from the point (1, 0).

Example 10.1.4. The parametric equation

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π

still represents the unit circle x2 + y2 = 1. But as t increases
from 0 to 2π, the point (x, y) = (sin 2t, cos 2t) starts at (0, 1)
and moves twice around the circle in the clockwise direction.
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Example 10.1.5. Find parametric equations for the circle with center (h, k) and radius r.

Proof. We start from the circle x = cos t, y = sin t. Multiplying the expressions for x and y
by r, we get x = r cos t, y = r sin t and it represents a circle with radius r and center the origin
traced counterclockwise. Then we shift h units in the x-direction and k units in the y-direction
and obtain parametric equations of the circle with center (h, k) and raidus r.

□

Example 10.1.6. (Straight Line)

The parametric equation of a straight line per-
pendicular the x-axis and passing (x0, 0) is

x = x0 y = t.

Example 10.1.7. (Ellipsoid)

The parametric equation of an ellipsoid with
center (h, k) and two axes with lengths a and b
is

x = h + a cos t y = k + b sin t 0 ≤ t ≤ 2π.

Example 10.1.8. (The Cycloid擺線) The curve traced out by a point P on the circumference
of a circle as the circle rolls along a straight line is called a “cycloid”.
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x = |OT | − |PQ| = rθ − r sin θ = r(θ − sin θ)
y = |CT | − |CQ| = r − r cos θ = r(1 − cos θ).

Example 10.1.9. Two particles move along the curves C1 and C2, respectively, with parametric
equations

C1 :

{
x =

16
3
− 8

3
t

y = 4t − 5
, t ≥ 0 C2 :


x = 2 sin(

1
2
πt)

y = −3 cos(
1
2
πt)
, t ≥ 0

(a) Do the two curves intersect?

Proof. The Cartesian equations of C1 and C2 are

C1 : 3x + 2y − 6 = 0 and C2 :
x2

4
+

y2

9
= 1. We can solve

the two equations and find the points where the the curves
intersect at (2, 0) and (0, 3). □

(b) Do the two particles collide?

Proof. Find t ≥ 0 such that both
16
3
− 8

3
t = 2 sin(

1
2
πt) and

4t − 5 = −3 cos(
1
2
πt). We have t = 2 and the two particles

collide at (0, 3) when t = 2. □

10.2 Calculus with Parametric Curves

In the present section, we will apply the methods of calculus to the parametric curves. We will
solve problems involving tangents, areas, arc length, and surface area.
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o Tangents

Suppose that f and g are differentiable functions and C is a curve with parametric equation
x = x(t), y = y(t). We want to find the tangent line of the curve C at a given point. In order to

find the equation of the tangent line, it suffices to obtain its slope
dy
dx

.

The slope of the secant line connecting(
x(t0), y(t0)

)
and

(
x(t0 + h), y(t0 + h)

)
is

y(t0 + h) − y(t0)
x(t0 + h) − x(t0)

=

y(t0+h)−y(t0)
h

x(t0+h)−x(t0)
h

h→0−→ y′(t0)
x′(t0)

=
dy/dt
dx/dt

∣∣∣
t=t0

By the Chain Rule,
dy
dt
=

dy
dx
· dx

dt
.

If
dx
dt
, 0, we have

dy
dx
=

dy/dt
dx/dt

Remark.

(i) The rate of change of y with respect to x,
dy
dx

, is followed by the Chain Rule. It is not
necessary to express y in terms of x.

(ii) The curve has a horizontal tangent line when
dy
dt
= 0 and

dx
dt
, 0.

(iii) The curve has a vertical tangent line when
dy
dt
, 0 and

dx
dt
= 0.

(iv) How about
dx
dt
= 0 =

dy
dt

? It may need further discussion.

(v) To discuss the concavity of a curve, we consider

d2y
dx2 =

d
dx

Ädy
dx

ä
=

d
dt

Ä
dy
dx

ä
dx
dt

.

Notice that
d2y
dt2 ,

d2y
dt2

d2 x
dt2

.
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Example 10.2.1. A curve C is defined by the parametric equations x = t2, y = t3 − 3t.

(a) Show that C has two tangents at the point (3, 0) and find their equations.

Proof. Find the value(s) of t at which the curve passes (3, 0). Consider

t2 = 3 =⇒ t = ±
√

3 and t3 − 3t = 0 =⇒ t = 0,±
√

3.

Hence, when t = ±
√

3, the curve passes (3, 0). Also,
dy
dt
= 3t2 − 3 and

dx
dt
= 2t. Then

dy
dt

∣∣∣
t=−
√

3
=

dy/dt
dx/dt

∣∣∣
t=−
√

3
=

3
2

(t − 1
t
)
∣∣∣
t=−
√

3
= −
√

3.

The equation of the tangent line is y = −
√

3(x − 3). Similarly,
dy
dx

∣∣∣√
3
=

3
2

(t − 1
t
)
∣∣∣
t=
√

3
=
√

3.

The equation of the tangent line is y =
√

3(x − 3). □

(b) Find the points on C where the tangent is horizontal or vertical.

Proof.

(i) Horizontal tanglent line: Let
dy
dt
= 3t2 − 3 = 0, then t = ±1. Also,

dx
dt
= 2t , 0

when t = ±1. Hence, when t = 1,
(

x(1), y(1)
)
= (1,−2). The curve has a horizontal

tangent line y = −2. When t = −1,
(

x(−1), y(−1)
)
= (1, 2). The curve has a horizontal

tangent line y = 2.

(ii) Vertical tangent line: Let
dx
dt
= 2t = 0. Then t = 0. Also,

dy
dt
= 3t2 − 3 , 0 when

t = 0 and
(

x(0), y(0)
)
= (0, 0). The curve has a vertical tangent line x = 0.

□

(c) Determine where the curve is concave upward or downward.

Proof. Consider

d2y
dx2 =

d
dx

Ädy
dx

ä
=

d
dt

Ä
dy/dt
dx/dt

ä
dx
dt

=

d
dt [

3
2 (t − 1

t )]
2t

=
3(t2 + 1)

4t3 .

Then
d2y
dx2 > 0 when t > 0 and

d2y
dx2 < 0 when t < 0.

The curve is concave upward when t > 0 and concave downward when t < 0. □

(d) Sketch the curve

Proof.
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□

Example 10.2.2. (a) Find the tangent to the cycloid x = r(θ − sin θ), y = r(1 − cos θ) at the
point where θ =

π

3
.

Proof. Consider
dy
dx
=

dy/dθ
dx/dθ

=
r sin θ

r(1 − cos θ)
=

sin θ
1 − cos θ

.

When θ =
π

3
,
(

x(θ), y(θ)
)
=
(
r(
π

3
−
√

3
2

),
r
2
)

and
dy
dx

∣∣∣
θ= π3

=

√
3/2

1 − 1
2

=
√

3. Therefore, when

θ =
π

3
, the tangent line is

y − r
2
=
√

3
(

x − r(
π

3
−
√

3
2

)
)
.

□

(b) At what point(s) is the tangent horizontal? Where is it vertical?

Proof. (i) When n = 2m − 1 is odd,
dx
dθ
= r(1 − cos θ) , 0. The curve has horizontal

tangent lines at
Ä

x
(
(2m − 1)π

)
, y
(
(2m − 1)π

)ä
=
(
(2m − 1)πr, 2r

)
, m ∈ Z.

(ii) When n = 2m is even.
dx
dθ
= 0. Consider the limit

lim
θ→2mπ+

dy
dx
= lim
θ→2mπ+

sin θ
1 − cos θ

L.H
= lim
θ→2mπ+

cos θ
sin θ

= ∞.

Similarly, lim
θ→2mπ−

dy
dx
= −∞. The curve has vertical tangent line at

(
x(2mπ), y(2mπ)

)
=

(2mπr, 0), m ∈ Z.

□
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o Areas

Recall that, for a function F(x) ≥ 0, the area under the cruve y = F(x) from a to b is

A =
∫ b

a
F(x) dx. Suppose that a curve has the parametric equation x = f (t) and y = g(t),

α ≤ t ≤ β, we want to calculate an area formula. Let a = f (α) and b = f (β). Then the area of
the region under the curve is

A =
∫ b

a
y dx =

∫ β

α

y
dx
dt

dt =
∫ β

α

g(t) f ′(t) dt.

Example 10.2.3. Find the area under one arch of the cycloid

x = r(θ − sin θ) y = r(1 − cos θ)

Proof.

Using the Substitution Rule with y = r(1 − cos θ)
and dx = r(1 − cos θ) dθ, the area of one arch is

A =

∫ 2πr

0
y dx =

∫ 2π

0
r(1 − cos θ)r(1 − cos θ) dθ

= r2(
3
2
· 2π) = 3πr2.

□

o Arc Length

Let C be a curve with equation y = F(x), a ≤ x ≤ b. If F′(x) is continuous, the arc length of
C is

L =
∫ b

a

…
1 +
Ädy

dx

ä2
dx =

∫ b

a

√
1 +

(
F′(x)

)2 dx.

We want to calculate the arc length of C with parametric equation x = f (t), y = g(t), α ≤ t ≤ β.

(i) If C can be expressed as the graph of a function y = F(x), it is traversed once from left to

right as t increases (i.e.
dx
dt
= f ′(t) > 0). The arc length is

L =

∫ b

a

…
1 +
Ädy

dx

ä2
dx

=

∫ β

α

 
1 +
Ä dy/dt

dx/dt

ä2 Ädx
dt

ä
dt

=

∫ β

α

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt

(ii) If C cannot be expressed in the form y = F(x), we take a partition P = {t0, t1, · · · , tn} of
[α, β]. Let Pi

(
f (ti), g(ti)

)
, i = 1, · · · , n, be point on the curve C. Then the length of the

segment Pi−1Pi is √
[ f (ti) − f (ti−1)]2 + [g(ti) − g(ti−1)]2
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By the polygonal approximateions and the mean value theorem,

n∑
i=1

|Pi−1Pi| =
n∑

i=1

√
[ f (ti) − f (ti−1)]2 + [g(ti) − g(ti−1)]2

=

n∑
i=1

»
[ f ′(t∗i )4ti]2 + [g′(t∗∗i 4ti)]2

=

n∑
i=1

»
[ f ′(t∗i )]2 + [g′(t∗∗i )]24ti

The arc length of C is

L = lim
‖P‖→0

n∑
i=1

»
[ f ′(t∗i )]2 + [g′(t∗∗i )]24ti

=

∫ β

α

√
[ f ′(t)]2 + [g′(t)]2 dt

=

∫ β

α

…Ädx
dt

ä2
+
Ädy

dx

ä2
dt

Theorem 10.2.4. If a curve C is described by the parametric equation x = f (t), y = g(t),
α ≤ t ≤ β where f ′ and g′ are continuous on [α, β] and C is traversed exactly once as t
increases from α to β, then the arc length of C is

L =
∫ β

α

…Ädx
dt

ä2
+
Ädy

dx

ä2
dt =

∫ β

α

√
[ f ′(t)]2 + [g′(t)]2 dt.

Note. The formula is consisent with the general formulas L =
∫

1 ds and (ds)2 = (dx)2 + (dy)2.

Example 10.2.5. Compute the circumference of a unit circle by expressing it as the parametric
equation

x = cos t y = sin t 0 ≤ t ≤ 2π

Proof. We have
dx
dt
= − sin t and

dy
dt
= cos t. Then the arc length is

L =
∫ 2π

0

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt =

∫ 2π

0

√
sin2 t + cos2 t dt = 2π.

□

Example 10.2.6. Find the length of one arch of the cycloid x = r(θ− sin θ) and y = r(1− cos θ).

Proof. We have
dx
dθ
= r(1 − cos θ) and

dy
dθ
= r sin θ. The arc length of one arch is
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L =

∫ 2π

0

…Ädx
dθ

ä2
+
Ädy

dθ

ä2
dθ

=

∫ 2π

0

»
r2(1 − cos θ)2 + r2 sin2 θ dθ

= r
∫ 2π

0

√
2(1 − cos θ) dθ

= r
∫ 2π

0
2 sin

Äθ
2

ä
dθ

= 8r.
□

o Surface Area

Recall that the surface area of the surface obtained by rotating a curve, C : y = F(x) where
F(x) ≥ 0 for a ≤ x ≤ b, about x-axis is

S =
∫ b

a
2πy

…
1 +
Ädy

dx

ä2
dx.

Suppose that C has the parametric equation x = f (t) and y = g(t), α ≤ t ≤ β where f ′ and g′ are
continuous and g(t) ≥ 0. Then rotating the curve C about x-axis and the surface area is

S =

∫ b

a
2πy

…
1 +
Ädy

dx

ä2
dx

=

∫ β

α

2πy

 
1 +
Ä dy/dt

dx/dt

ä2 Ädx
dt

ä
dt

=

∫ β

α

2πy

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt.

Note. Let s(t) be the arc length function. Then

ds =

…
1 +
Ädy

dx

ä2
dx =

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt.

The surface area formula is
S =
∫

2πy ds

Example 10.2.7. Find the surface area of a sphere of radius r.

Proof. The sphere is obtained by rotating the semicircle

x = r cos t y = r sin t 0 ≤ t ≤ π
about x-axis. The surface area of the sphere is

S =

∫ π

0
2πr sin t

√
(−r sin t)2 + (r cos t)2 dt

= 2π
∫ π

0
r sin t · r dt = 4πr2

□
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10.3 Polar Coordinates
A coordinate system represents a point in the plane by an ordered pair of numbers called co-
ordinates. In the present section, we will study a coordinate system which is called the “polar
coordinate system”. The coordinate is established by the following steps

(i) We choose a point in the plane that is called the “pole” (or origin) and is labeled O.

(ii) We drwa a ray starting at O called the “polar axis” . It is usually horizontal to the right
and corresponds to the positive x-axis in Cartesian coordinates.

(iii) If P , O is an point in the plane, let r be the distance
from O to P and let θ be then angle between the polar
axis. We use the convention that an angle is positive if
measured in the counterclockwise direction from the
polar axis and negative in the clockwise direction.

Then the point P is represented by the ordered pair (r, θ) as well as r and θ are called “polar
coordinates” of P.

Note. The origin O = (0, θ) for any θ.

Now, we extend (r, θ) to the case that in which r is negative. The point (−r, θ) means the
point which is opposite to (r, θ) about the origin. Hence, (−r, θ) = (r, θ + π). Moreover, we can
also extend (r, θ) to the case where r ∈ R (not only on [0, 2π]). We have

(r, θ) = (−r, θ + π) = (r, θ + 2π)
= (−r, θ + 3π) = (r, θ + 4π)
=

(
− r, θ + (2k + 1)π

)
=
(
r, θ + 2kπ

)
for every k ∈ Z.

Remark. In the Cartesian coordinate system, every point has only one representation, but in
the polar coordinate system, each point has infinitely many representations.

■ The connection between polar and Cartesian coordinates

 x = r cos θ

y = r sin θ
⇐⇒


cos θ =

x
r

sin θ =
y
r

=⇒


r2 = x2 + y2

tan θ =
y
x

Example 10.3.1. (1) Convert (2,
π

3
) from polar to Cartesian coordinates.

Proof. From the above formulas, x = 2 cos
π

3
= 1 and y = 2 sin

π

3
=
√

3. Then (x, y) = (1,
√

3).
□
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(2) Convert (1,−1) from Cartesian to polar coordinates.

Proof. Again, r =
√

12 + (−1)2 =
√

2 and tan θ = −1
1 = −1. Then θ =

3π
4

or
7π
4

. Since

(1,−1) is a point in the fourth quadrant, θ =
7π
4

and (r, θ) = (
√

2,
7π
4

). □

o Polar Curves

Definition 10.3.2. A polar curve is the graph of a polar equation, r = f (θ) or F(r, θ) = 0,
consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy
the equation.

Example 10.3.3.

r = 2 θ = 1

Example 10.3.4. (a) Sketch the curve with polar equation r = 2 cos θ.

Proof.

θ r = 2 cos θ
0 2
π/6

√
3

π/4
√

2
π/3 1
π/2 0
2π/3 −1
3π/4 −

√
2

5π/6 −
√

3
π −2

□

(b) Find a Cartesian equation for this curve.
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Proof.

Consider r = 2 cos θ. Then r2 = 2r cos θ.
Convert this polar equation into Cartesian
equation x2 + y2 = 2x and we have

(x − 1)2 + y2 = 1.

□

Example 10.3.5. Sketch the curve r = 1 + sin θ.

Proof.

(a) Sketch the graph of r = 1 + sin θ in Cartesina coordinates (θ-r plane). That is a shift of the
curve of sine function up by one unit.

(b) Sketch the polar curve as θ increases 0→ π
2
→ π→ 3π

2
→ 2π.

(Cardioid)

□
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Example 10.3.6. Sketch the curve r = cos 2θ.

Proof. □

■ Symmetry

(a)
If f (θ) = f (−θ) or F(r, θ) = F(r,−θ), then the
curve is symmetric about the polar axis.

(b)
If f (θ) = f (θ+π) or F(r, θ) = F(r, θ+π), then
the curve is symmetric about the pole.

(c) If f (θ) = f (π−θ) or F(r, θ) = F(r, π − θ), then
the curve is symmetric about the vertical line
θ =
π

2
.
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o Tangents to Polar Curves

We want to use the techniques of finding the tangent lines of parametric curves to obtain the
tangents of polar curves. Consider the curve with polar equation r = f (θ). Thenß

x = r cos θ = f (θ) cos θ
y = r sin θ = f (θ) sin θ =⇒ dy

dx
=

dy/dθ
dx/dθ

=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.

(i) Horizontal tangent line: When
dy
dθ
= 0 and

dx
dθ
, 0, the polar curve has a horizontal

tangent line.

(ii) Vertical tangent line: When
dy
dθ
, 0 and

dx
dθ
= 0, the polar curve has a vertical tangent

line.
(Special case:

dy
dθ
= 0 =

dx
dθ

, we should further consider the limit lim
θ→θ0

dy/dθ
dx/dθ

).

(iii) Tangent line at pole:

dy
dx
=

dr
dθ sin θ
dr
dθ cos θ

= tan θ, if
dr
dθ
, 0.

Example 10.3.7. The cardioid has polar equation r = 1 + sin θ.

(a) Find the slope of the tangent line when θ =
π

3
.

Proof. Consider
dr
dθ
= cos θ. Then

dy
dx
=

cos θ sin θ + (1 + sin θ) cos θ
cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

(1 + sin θ)(1 − 2 sin θ)
.

Hence, the slope of the tangent line when θ =
π

3
is

dy
dx

∣∣∣
θ= π3

= −1. □

(b) Find the points on the cardioid where the tangent line is horizontal or vetical.

Proof. We have

dy
dθ
= cos θ(1 + 2 sin θ) = 0 =⇒ θ =

π

2
,

3π
2
,

7π
6
,

11π
6
.

dx
dθ
= (1 + sin θ)(1 − 2 sin θ) = 0 =⇒ θ =

3π
2
,
π

6
,

5π
6
.

The curve has horizontal tangent lines at (2, π/2),
(1/2, 7π/6) and (1/2, 11π/6) and has vertical tangent
lines at (3/2, π/6), (3/2, 5π/6).
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For θ =
3π
2

,
dy
dθ
=

dx
dθ
= 0. Consider

lim
θ→(3π/2)−

dy
dx
=
Ä

lim
θ→(3π/2)−

1 + 2 sin θ
1 − 2 sin θ

äÄ
lim

θ→(3π/2)−

cos θ
1 + sin θ

ä L.H.
= −1

3
lim

θ→(3π/2)−

− sin θ
cos θ

= ∞.

Similarly, lim
θ→(3π/2)+

dy
dx
= −∞. Hence, the cardioid has a vertical tangent line at (0, 3π/2).

□

10.4 Areas and Lengths in Polar Coordinates

o Areas

We try to find the area of a region whose boundary is given by a polar equation. Let’s start
with an easy case that the area of an sector of a circle with radius r and central angle θ.

Area =
1
2

r2θ.

Let R be the region bounded by the polar
curve r = f (θ) and by the rays θ = a and θ = b,
where f is a positive continuous function and
where 0 < b − a < 2π. We will use the approxi-
mating sectors to estimate the area of R.

Let P = {θ0, θ1, · · · , θn} be a paratition of
[a, b] with 4θi = θi − θi−1. The region R is di-
vided into n subregions by the rays θ = θi. The
area of each subregion denotes 4Ai. Choose a
sample point θ∗i ∈ [θi−1, θi]. Then

4Ai ≈
1
2

[ f (θ∗i )]24θi.

Then an approximation to the total area A of R is

Area ≈
n∑

i=1

1
2

[ f (θ∗i )]24θi
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Taking ‖P‖ → 0, then

Area = lim
‖P‖→0

n∑
i=1

1
2

[ f (θ∗i )]24θi

=
1
2

∫ b

a
[ f (θ)]2 dθ

=
1
2

∫ b

a
r2 dθ where r = f (θ).

Note. The area formula is to compute the area of the region which area enclosed by a polar
curve and two straight lines connecting the origin and their intersections of the polar curve

Example 10.4.1. Find the area enclosed by one loop of the four-leaved rose r = cos 2θ.

Proof.

Area =
∫ π

4

− π4

1
2

r2 dθ

=
1
2

∫ π
4

− π4
cos2 2θ dθ

=
1
2

∫ π
4

− π4

1 + cos 4θ
2

dθ

=
π

8
.

□
■ Region enclosed by two polar curves

The area of R is ∫ b

a

1
2

[ f (θ)]2 dθ −
∫ b

a

1
2

[g(θ)]2 dθ =
1
2

∫ b

a
f 2(θ) − g2(θ) dθ.
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Example 10.4.2. Find the area of the region that lies inside the circle r = 3 sin θ and outside
the cardioid r = 1 + sin θ.

Proof. The points of intersection of the two polar curves
are obtained by solving 3 sin θ = 1 + sin θ and hence

θ =
π

6
,

5π
6

. The area of the region is

A =
∫ 5π

6

π
6

1
2

(3 sin θ)2 − 1
2

(1 + sin θ)2 dθ = π.

□

Note. The origin O is also a point of intersection of the two polar curves. But it cannot be
obtained by solving the equation 3 sin θ = 1 + sin θ since r = 3 sin θ = 0 when θ = 0 and π and

r = 1 + sin θ = 0 when θ =
3π
2

.

Remark. It is usually difficult to find the points of intersection of two polar curves since a single
point may have many representations in polar coordinates. Suppose we want to find the points
of intersection by solving f1(θ) = r = f2(θ). The point of intersection has polar coordinate(

f1(θ1), θ1
)
=
(

f2(θ2), θ2
)
. But, in general, the angles θ1 may not equal θ2.

Example 10.4.3. Find all points of intersection of the curves r = cos 2θ and r =
1
2

.

Proof. Let cos 2θ =
1
2

. Then θ =
π

6
,

5π
6
,

7π
6
,

11π
6

. The

points of intersection are (
1
2
,
π

6
), (

1
2
,

5π
6

), (
1
2
,

7π
6

) and

(
1
2
,

11π
6

).

However, the points (
1
2
,
π

3
), (

1
2
,

2π
3

), (
1
2
,

4π
3

) and (
1
2
,

5π
3

)
are also points of intersection of the two polar curves.

Those points can be found by solving cos 2θ = −1
2

. □

o Arc Length

To find the length of a polar curve r = f (θ), a ≤ θ ≤ b, we regard θ as the parameter if we
write the polar equation of the curve as ß

x = r cos θ
y = r sin θ ⇒


dx
dθ
=

dr
dθ

cos θ − r sin θ
dy
dθ
=

dr
dθ

sin θ + r cos θ

The arc length is

L =
∫ b

a

…Ädx
dθ

ä2
+
Ädy

dθ

ä2
dθ =

∫ b

a

…
r2 +
Ädr

dθ

ä2
dθ.

Example 10.4.4. Find the length of the cardioid r = 1 + sin θ.
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Proof. The arc length fo the cardioid is

L =

∫ 2π

0

…
r2 +
Ädr

dθ

ä2
dθ =

∫ 2π

0

√
(cos θ)2 + (1 + sin θ)2 dθ

=

∫ 2π

0

√
2 + 2 sin θ dθ =

∫ 2π

0

√
4 − 4 sin2 θ
√

2 − 2 sin θ

=

∫ π
2

− π2

2 cos θ
√

2 − 2 sin θ
dθ −

∫ 3π
2

π
2

2 cos θ
√

2 − 2 sin θ
dθ

= 8.

□
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In Chapter 2, we have learned some basic concepts of infinite sequences. In the present
chapter, we will further study some important facts of sequences. Based on the ideas of infinite
sequence, we will introduce an important mathematical object, “(infinite) series” in the rest
sections.

11.1 Monotonic Sequences and Cauchy Sequences
Before revisit the infinite sequences, the readers should review and make familiar with all re-

sults of sequences in Chapter 2, such as “convergence and divergence of a sequence”, “bounded
sequence”, “limit laws”, “squeeze theorem”, “infinite limit” etc.

o Monotonic Sequence

Definition 11.1.1. Let {an} be a sequence.

(a) We say that {an} is “increasing ( and “decreasing”) if for every n,m ∈ N with n < m then

an < am (and an > am).

(b) We say that {an} is “nondecreasing” (and “nonincreasing”) if for every n,m ∈ N with n < m
then

an ≤ am (and an ≥ am).

241



242 CHAPTER 11. SEQUENCES AND SERIES

(c) If a sequence is either increasing (nondecreasing) or decreasing (or nonincreasing), we call
it is a “monotonic” seqnence.

Example 11.1.2. (1) The sequence {1, 1, 2, 2, 3, 3, · · · } is an example of a nondecreasing se-
quence

(2) The sequence {1 − 1
n } is an increasing sequence.

Remark. For a sequence {an} where an > 0 for all n, the following statements are equivalent

(i) {an} is nondecreasing.

(ii) an ≤ an+1 for all n.

(iii)
an+1

an
≥ 1 for all n.

(iv) an+1 − an ≥ 0 for all n.

Notice that an increasing (nondecreasing) sequence {an}∞n=1 is bounded below by a1. But it
may not be bounded above.

Theorem 11.1.3. Let {an} be an increasing (nondecreasing) sequence.

(a) If {an} is bounded above by M, then there exists a number L ≤ M such that lim
n→

an = L.

(b) If {an} is unbounded, then lim
n→∞

an = ∞.

Proof. (Exercise) □

Note. The similar results for a decreasing (nonincreasing) sequence hold if replacing “above
boundedness” by “below boundedness” in part(a), and “lim

n→∞
an = ∞” by “lim

n→∞
an = −∞” in

part(b).
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Example 11.1.4. Determine whether the sequence {an} with an =
√

n + 1 −
√

n converges or
diverges.

Proof. Consider

an+1 − an = (
√

n + 1 −
√

n + 1) − (
√

n + 1 −
√

n) =
1

√
n + 2 +

√
n + 1

− 1
√

n + 1 +
√

n
< 0

Then {an} is a decreasing sequence and is bounded below by 0. The sequence is convergent.

Moreover, lim
n→∞

an = lim
n→∞

1
√

n + 1 +
√

n
= 0. □

o Subsequence

Example 11.1.5. The sequence {an}∞n=1 with an = (−1)n is a divergent sequence. But if we
restrict our attention on the sequence {a2n}∞n=1 = {1, 1, 1, · · · }, it is a convergent sequence. Con-
versely, for a given sequence {bn}∞n=1, if we know that {b2n}∞n=1 diverges, then the orginal sequence
{bn}∞n=1 must be divergent which can be proved by the definition of convergence of a sequence.

It seems that a “subsequence” which comes from a certain sequence, {an}, may give some
information of the sequence {an}.

Definition 11.1.6. Let {an}∞n=1 be a sequence and we say that a sequence {bn}∞n=1 is a subsequence
of {an} if there exists a strictly increasing function f : N→ N such that bn = a f (n). for all n ∈ N.

Note. Since f : N→ N is a strictly increasing function, we can prove that f (n) ≥ n.

Example 11.1.7. Let {an} = {1, 5, 8, 3, 6, 2, 1, 4, · · · } be a sequence.

a1 a2 a3 a4 a5 a6 a7 a8 · · ·
q q q q q q q q
1 5 8 3 6 2 1 4 · · ·

If f (1) = 3, f (2) = 5, f (3) = 8, · · · , then b1 = a3 = 8, b2 = a5 = 6, b3 = a8 = 4, · · · . The
sequence {bn} = {8, 6, 4, · · · } is a subsequence of {an}.

Note. It is customary to write a subsequence {bn} obtained from the sequence {an} as bk =

ank , since the terms of the subsequence come from an. That is, f (k) = nk and we write the
subsequence as {ank}∞k=1.

Remark. Let {ank}∞k=1 be a subsequence of {an}∞n=1. Then

(i) {ank}∞k=1 is a sequence.

(ii) {ank

∣∣ k ∈ N} is a subset of {an
∣∣ n ∈ N}.

(iii) The order of ank follows the order of an.
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Remark. Let {an} be a sequence. Then

(i) {an} is a subsequence of itself .

(ii) If {bn} is a subsequence of {an} and {cn} is a subsequence of {bn}, then {cn} is a subsequence
of {an}. That is, a subsequence of a subsuequence of {an} is also a subsequence of {an}.

Lemma 11.1.8. Any sequence {an} contains a subsequence which is either nondecreasing or
nonincreasing.

Proof. We call the positive integer n “peak point” if

an ≥ am for all m > n.

Case 1: {an} contains infinitely many peak points, say {ank}. By the definition of peak point,

an1 ≥ an2 ≥ an3 ≥ · · · .

Hence, {ank} is a nonincreasing subsequence of {an}.

Case 2: {an} contains finitely many peak points. Then there exists a number N ∈ N such that
for every n ≥ N, an is not a peak point.

Let an1 ≥ aN . Since an1 is not a peak point, there exists a number n2 > n1 such that an2 > an1 .
Also, an2 is not a peak point and hence there exists n3 > n2 such that an3 > an2 . Continue the
process, we can obtain a sequence {ank} such that

an1 < an2 < an3 < · · · .

Hence, {ank} is a nondecreasing subsequence of {an}. □

Heuristically, a subsequence {ank} is a portion of the sequence {an}. If {an} has a certain
property, every subsubsequence of {an} is supposed to keep this property. But the converse is
usually not true unless every subsequence has this property.

■ Bounded Subsequences

Recall that a convergent sequence must be bounded. But the converse is false, that is, a
bounded sequence may not be convergent. For example, {(−1)n} is a bounded and divergent
sequence. If a sequence has some nice hypothesis, the convergence of this sequence would
be obtained. For example, “a bounded and monotonic sequence is convergent”. In general,
we cannot expect that a bounded will be convergent. But we can still get some results of the
subsequence of a bounded sequence.

Lemma 11.1.9. A sequence {an} is bounded, say |an| < M for all n ∈ N if and only if every
subsequence {ank} of {an} is bounded and |ank | < M for all k ∈ N.

Proof. (Exercise) □

The sequence in Example 11.1.5 is bounded and divergent but it contains one (or some)
convergent subsequence. In fact, this phenomenon is true for any bounded sequence.
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Theorem 11.1.10. (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent
subsequence.

Proof. Let {an} be a bounded sequence. By Lemma 11.1.8, {an} contains a monotonic sequence.
W.L.O.G, say {ank} is a nondecreasing subsequence of {an}.

Since {an} is bounded, {ank} is bounded above. By the Least Upper Bound property, the set
S =

{
ank

∣∣ k ∈ N
}

has a least upper bound, say L = sup S . For given ε > 0, there exists k0 ∈ N
such that |ank0

− L| < ε. Since {ank} is nondecreasing, for every k ≥ k0, |ank − L| ≤ |ank0
− L| < ε.

Hence {ank} converges to L.
□

Theorem 11.1.11. If {an} converges to L if and only if every subsequence of {an} converges to
L.

Proof. (=⇒) If {an} converges to L, for given ε > 0, there exists N0 ∈ N such that

|an − L| < ε whenever n > N0.

Let {ank} be a subsequence of {an}. Then n1 < n2 < n3 < · · · and nk ≥ k for every k ∈ N.
Thus there exists K0 ∈ N such that nk ≥ N0 for every k ≥ K0. We have

|ank − L| < ε whenever k ≥ K0.

This implies that the subsequence {ank} converges to L.

(⇐=) This direction is clear since {an} is a subsequence of itself.
□

Remark. There exists a divergent sequence contains convergent subsequences.

Example 11.1.12. For example an =

{
1 if n is odd
1
n

if n is even
and ank = a2k =

1
2k

. Then the se-

quence {an} diverges but the subsequence {ank} converges to 0.

Remark. The importance of Theorem 11.1.11 is that if one subsequence of {an} diverges, then
so does {an}. Hence, if we can prove that two subsequences of {an} converge to different values,
then {an} diverges.

o Cauchy Sequence

Theorem 11.1.13. If {an} converges, then for given ε > 0, there exists N ∈ N such that

|am − an| < ε

for every m, n > N.
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Proof. Since {an} converges, say lim
n→∞

an = L, for given ε > 0, there exists N ∈ N such that

|an − L| < ε
2

for every n > N. Hence, for m, n > N,

|am − an| ≤ |am − L| + |L − an| <
ε

2
+
ε

2
= ε.

□

Remark. When we consider the sequence in the real-valued field R, the converse of Theorem
11.1.13 is also true. We will prove this statement later. However, if we discuss a sequence
in a different field (for example, rational number field Q), Theorem 11.1.13 still holds but the
converse will not be true.*

Definition 11.1.14. A sequence {an} is called a “Cauchy sequence” if for every ε > 0 there
exists a number N ∈ N such that

|am − an| < ε

for every m, n > N.

Lemma 11.1.15. A Cauchy sequence is bounded.

Proof. Let {an} be a Cauchy sequence. Given ε = 1, there exists N ∈ N such that for every
m, n > N,

|am − an| < 1.

Hence, for every n > N, |an − aN+1| < 1.
Let M = max

(
|a1|, |a2|, · · · , |aN |, |aN+1| + 1

)
. Then

|an| ≤ M for every n ∈ N.

Therefore, {an} is bounded. □

Theorem 11.1.16. A sequence {an} converges (in R) if and only if {an} is a Cauchy sequence.

Proof.

(=⇒) This direction is proved in Theorem 11.1.13.
(⇐=) Since {an} is a Cauchy sequence, it is bounded. By Bolzano-Weierstrass Theorem, {an}
contains a convergent subsequence {ank}, say lim

k→∞
ank = L. We claim that the sequence {an} con-

verges to L.

Since the subsequence {ank} converges to L, for given ε > 0, there exists K ∈ N such that for
every k > K

|ank − L| < ε
2
.

*If a set has the property that every Cauchy sequence converges, we called the set “complete” and we will
discuss it in the future.
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Since {an} is a Cauchy sequence, there exists N ∈ N such that for every m, n > N

|am − an| <
ε

2
.

Choose a sufficiently large number k0 ∈ N such that k0 > K and nk0 > N. Then for every n > N,

|an − L| ≤ |an − ank0
| + |ank0

− L| < ε
2
+
ε

2
= ε.

Hence, the sequence {an} converges to L. □

11.2 Infinite Series
Every real number can be expressed as a digital number. Especially, most numbers have the
expression of infinite deciamls. For example,

π = 3.1415926 . . .

= 3︸︷︷︸
a1

+
1

10︸︷︷︸
a2

+
4

102︸︷︷︸
a3

+
1

103︸︷︷︸
a4

+
5

104︸︷︷︸
a5

+
9

105︸︷︷︸
a6

+
2

106︸︷︷︸
a7

+
6

107︸︷︷︸
a8

+ · · ·

= a1 + a2 + a3 + · · ·

Heuristically, for a given sequence {an}, we want to consider whether the sum of all terms makes
sense. But, in mathematics, adding infinite numbers is not doable. Hence, the sum

a1 + a2 + a3 + · · · + an + · · ·

does not make sense.

Question: How to define the sum of infinite numbers (terms)?

Consider the “partial sum” of {an}
s1 = a1 (first partial sum)

s2 = a1 + a2 (second partial sum)

s3 = a1 + a2 + a3 (third partial sum)
...

sn = a1 + a2 + · · · + an =

n∑
k=1

ak (nth partial sum).

Then, for every n ∈ N, sn is well-defined and {sn}∞n=1 forms a new sequence. Suppose that sum
of the infinite terms of {an} is well-defined. It is supposed to be the limit of {sn}.
Definition 11.2.1. We say that a sequence {an} is “summable” if the sequence {sn} converges.

The symbol
∞∑

n=1

an denotes the limit lim
n→∞

sn and we call it the sum of the sequence {an}. If

lim
n→∞

sn = s, we write
∞∑

n=1

an = s.
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Remark.

(i)
∞∑

n=1

an is usually called an “infinite series”.

(ii) The statement “{an} is summable” is conventionally replaced by the statement “
∞∑

n=1

an

converges”. That is,

“the series
∞∑

n=1

an converges” if and only if “the sequence {sn}∞n=1 converges”.

(iii) If the sequence {sn} is divergent, we say that the series
∞∑

n=1

an is divergent.

Example 11.2.2.

(1) Let an =
1
2n . Then sn =

1
2
+

1
22 + · · · +

1
2n = 1 − 1

2n .

Hence,

∞∑
n=1

an = lim
n→∞

n∑
k=1

ak = lim
n→∞

sn = lim
n→∞

1 − 1
2n = 1.

(2) (Telescoping series) Let an =
1

n(n + 1)
. Then

sn =

n∑
k=1

1
k(k + 1)

=
1

1 · 2 +
1

2 · 3 + · · · +
1

n(n + 1)

= (1 −
�
�
�1

2
) + (

�
�
�1

2
−

�
�
�1

3
) + · · · + (

�
�
�1

n
− 1

n + 1
)

= 1 − 1
n + 1

Since lim
n→∞

sn = lim
n→∞

1 − 1
n + 1

= 1, the series
∞∑

n=1

1
n(n + 1)

= 1. The

series
∞∑

n=1

1
n(n + 1)

is convergent and the sequence
¶ 1

n(n + 1)

©
is

summable.

(3) Let an = (−1)n. Then

s2n = (−1) + 1 + (−1) + 1 + · · · + 1 = 0
s2n+1 = (−1) + 1 + (−1) + 1 + · · · + 1 + (−1) = −1
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Hence, the limit lim
n→∞

sn does not exist.
(
That is, {sn} is divergent, {(−1)n} is not summable

or
∞∑

n=1

(−1)n is divergent.
)

■ Geometric Series

A geometric series with ratio r is a series of the form
∞∑

n=0

arn = a + ar + ar2 + · · · + arn + · · · , a , 0

Note: The series starts with the 0th term rather than 1st term.

(1) For r = 1, sn = a + a + · · · + a︸              ︷︷              ︸
n

= na→ ±∞ as n→ ∞. Hence lim
n→∞

sn is divergent.

(2) For r , 1,

sn = a + ar + · · · + arn

rsn = ar + · · · + arn + arn+1

We have (r − 1)sn = a(rn+1 − 1) and hence

sn =
a(rn+1 − 1)

r − 1
.

Consider the limit lim
n→∞

sn = lim
n→∞

a(rn+1 − 1)
r − 1

provided r , 1.

(i) If |r| < 1, then lim
n→∞

rn+1 = 0. Hence,
∞∑

n=0

arn = lim
n→∞

sn =
a

1 − r
.

(ii) If |r| > 1, then lim
n→∞

rn+1 diverges. Hence,
∞∑

n=0

arn = lim
n→∞

sn diverges.

(iii) If r = −1, sn = a−a+a−a+ · · ·+(−1)n−1a =
ß

0 n is even
a n is odd. Hence,

∞∑
n=0

arn = lim
n→∞

sn

diverges.

Conclusion: The geometric series
∞∑

n=0

arn, a , 0

(1) converges if |r| < 1 and
∞∑

n=0

arn =
1

1 − r
.

(2) diverges if |r| ≥ 1.

In the figure,
s
a
=

a
a − ar

. Then s =
a

1 − r
.
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Example 11.2.3.

(1) Evaluate 5 − 10
3
+

20
9
− 40

27
+ · · ·.

Proof. For the series, the first term a = 5 and the ratio
r = −2

3 . Since |r| = | − 2
3 | =

2
3 < 1, the series is

convergent and

∞∑
n=0

5
(
− 2

3
)n
=

5
1 − (−2

3 )
= 3.

□

(2) Evaluate
∞∑

n=0

2 ·
(5

3
)n.

Proof. Since the ratio of the geometric series is r = 5
3 > 1. The series is divergent. □

(3) Write 0.1232323 · · · = 0.123 as a ratio of integer.

Proof.

0.123 = 0.1 + 0.023 + 0.00023 + 0.0000023 + · · ·
=

1
10
+

23
103 +

23
105 +

23
107 + · · ·

=
1

10
· 23

103

(
1︸︷︷︸
a

+
1

102︸︷︷︸
r

+
1

104 + · · ·
)

=
1

10
+

23
103 ·

1
1 − 1

102

=
122
99
.

□

(4) Find the sum of the series
∞∑

n=0

xn, where |x| < 1.

Proof.
∞∑

n=0

xn + 1 + x + x2 + x3 + · · · .

The first term of the series is a = 1 and the ratio r = x with |r| = |x| < 1. Hence, the series

is convergent and
∞∑

n=0

xn =
1

1 − x
. □
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■ Harmonic Series

A harmonic series has the form
∞∑

n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · · .

We claim that
∞∑

n=1

1
n
= ∞. It sufficies to show that for any number M > 0,

∞∑
n=1

1
n
> M. Consider

2k∑
n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · · + 1

8
+ · · · + 1

16
+ · · · + 1

2k

> 1 +
1
2
+
(1

4
+

1
4
)
+
(1

8
+

1
8
+

1
8
+

1
8
)
+
( 1

16
+ · · · + 1

16︸              ︷︷              ︸
8 times

)
+ · · ·

+
( 1

2k + · · · +
1
2k︸             ︷︷             ︸

2k−1 times

)

> 1 +
1
2
+

1
2
+ · · · + 1

2︸                ︷︷                ︸
k times

= 1 +
k
2

Choose k > 2M. Then
2k∑

n=1

1
n
> M. Hence,

∞∑
n=1

1
n
>

2k∑
n=1

1
n
> M. Since M is an arbitrary positive

number,
∞∑

n=1

1
n
= ∞.

o Laws of Series

Theorem 11.2.4. If
∞∑

n=1

an and
∞∑

n=1

bn are convergent series and c is a constant. Then

(1)
∞∑

n=1

(an ± bn) converges and
∞∑

n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn.

(2)
∞∑

n=1

(can) converges and
∞∑

n=1

(can) = c
∞∑

n=1

an.

Remark. The result of Theorem 11.2.4 is false if one of the series
∞∑

n=1

an and
∞∑

n=1

bn is divergent.

Example 11.2.5. Evaluate
∞∑

n=1

î 3
n(n + 1)

+
1
2n

ó
.
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Proof. Since
∞∑

n=1

1
n(n + 1)

= 1 (converges), we have
∞∑

n=1

3
n(n + 1)

= 3
∞∑

n=1

1
n(n + 1)

= 3. For the

series
∞∑

n=1

1
2n , it is a geometric series with the first term a = 1

2 and the ratio r = 1
2 . Then it

converges and
∞∑

n=1

1
2n =

1
2

1 − 1
2

= 1. Hence,

∞∑
n=1

î 3
n(n + 1)

+
1
2n

ó
=

∞∑
n=1

3
n(n + 1)

+

∞∑
n=1

1
2n = 3 + 1 = 4.

□

11.3 Test for Divergence
For most series, it is difficult to find their limit even if they have nice patterns. Therefore, we
usually don’t expect to compute the exact limit of a convergent series. Instead of this, we want
to study some tests for convergence or divergence of a series and estimate their limits if they
converge in the present and next sections.

Theorem 11.3.1. (Cauchy Criterion) Let {an} be a sequence and {sn} be the sequence of partial
sums of {an}. Then the following statements are equivalent.

(a) {an} is summable. (
∞∑

n=1

an is convergent.)

(b) {sn} converges.

(c) lim
m,n→∞

sn − sm = 0.

(d) lim
m,n→∞

an+1 + an+2 + · · · + am = 0.

Proof. (Exercise) □

Theorem 11.3.2. If the series
∞∑

n=1

an is convergent, then lim
n→∞

an = 0.

Proof. Since
∞∑

n=1

an is convergent, the sequence {sn} is convergent. Consider an = sn − sn−1.

Then
lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = 0.

□

Remark.

(i) The converse of Theorem 11.3.2 is false. That is, even if lim
n→∞

an = 0, it cannot imply that

the series
∞∑

n=1

an converges. For example, an =
1
n

. Then an → 0 as n→ ∞ but
∞∑

n=1

an = ∞.
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(ii) That
∞∑

n=1

an diverges cannot imply lim
n→∞

an , 0. (For example, an =
1
n .)

■ Test for Divergence

Theorem 11.3.3. (Test for Divergence) If lim
n→∞

an does not converge to 0 (either lim
n→∞

an DNE or

lim
n→∞

an = L , 0), then the series
∞∑

n=1

an is divergent.

Example 11.3.4. Determine whether the series
∞∑

n=1

n2

5n2 + 4
is convergent or divergent.

Proof. Consider the limit

lim
n→∞

n2

5n2 + 4
= lim

n→∞

1
5 + 4

n2

=
1
5
, 0.

By the test for divergence, the series
∞∑

n=1

n2

5n2 + 4
is divergent. □

Remark. In Chapter 2, we understand that, for a sequence {an}, a finite number of terms of {an}
doesn’t affect the convergence or divergence of the sequence. A series has similar results. If we
only concern whether a series

∑
an is convergent or divergent (but not the exact value of the

sereis), the sum of a finite number terms does not change its convergence or divergence. That

is, for any number n0 ∈ N, the series
∞∑

n=1

an and
∞∑

n=n0

an both converg or both diverge.

11.4 Tests for Convergence
So far, we can compute the sum of some special series (for example, the geometric series with
ratio |r| < 1,

∑ 1
n(n+1) etc). But even for a simple series, like

∑ 1
n2 , it is not easy to find its sum

since the formula of its partial sum is difficult to be obtained.
In the present section, we will introduce some methods to determine whethere a series is

convergent. First of all, we consider the sequence {an} whose all terms have the same sign.
Because of this, its partial sum {sn} is a monotonic sequence and we can use the bounded
criterion to determine whether the sequence of partial sum is convergent or not.

Definition 11.4.1. We say that {an} is a “nonnegative sequence” (”nonpositive sequence”) if
an ≥ 0 (an ≤ 0) for all n ∈ N.

Remark. If {an} is a nonnegative (nonpositive) sequence, then the sequence of the partial sum
{sn} is a nondecreasing (nonincreasing) sequence.

Theorem 11.4.2. (Bounded Criterion) A nonnegative sequence {an} is summable if and only if
the sequence of partial sum {sn} is bounded (above).

Proof. (Exercise) □
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11.4.1 The Integral Test

Observe the series
∞∑

n=1

1
n2 . The nth partial sum

sn =

n∑
k=1

1
k2 = 1 +

1
22 +

1
32 + · · · +

1
n2

is an increasing sequence. To determine whether the sequence {sn}∞n=1 converges, it sufficies
to show that the seqnence is bounded above since it is increasing. Let’s consider the function

f (x) =
1
x2 on [1,∞). We have

sn =

n∑
k=1

1
k2 = 1 +

1
22 +

1
32 + · · · +

1
n2 < 1 +

∫ n

1

1
x2 dx < 1 +

∫ ∞

1

1
x2 dx = 2.

Hence, {sn} is bounded above (by 2). By the bounded criterion, the series
∞∑

n=1

1
n2 is convergent.

Also, observe another series
∞∑

n=1

1
√

n
. The nth partial sum

sn =

n∑
k=1

1
√

k
= 1 +

1
√

2
+

1
√

3
+ · · · + 1

√
n

is an increasing sequence. Consider the function f (x) =
1
√

x
on [1,∞). We have

sn =

n∑
k=1

1
√

k
= 1 +

1
√

2
+

1
√

3
+ · · · + 1

√
n
>

∫ n−1

1

1
√

x
dx = 2

√
n − 1 − 1.

Then
lim
n→∞

sn ≥ lim
n→∞

(2
√

n − 1 − 1) = ∞.

and the series
∞∑

n=1

1
√

n
is divergent.
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Theorem 11.4.3. (Integral Test) Suppose that f is a positive and decreasing function on [1,∞)
and f (n) = an. Then

∞∑
n=1

an converges if and only if
∫ ∞

1
f (x) dx converges.

That is, the series
∞∑

n=1

an and the improper integral
∫ ∞

1
f (x) dx either both converge or both

diverge.

Proof. Since f is decreasing, for every k ∈ N,

f (k + 1) · 1 ≤
∫ k+1

k
f (x) dx ≤ f (k) · 1.

Since f is positive, for every n ∈ N,

0 ≤
n−1∑
k=1

ak+1︸     ︷︷     ︸
sn−a1

=

n−1∑
k=1

f (k + 1) ≤
n−1∑
k=1

∫ k+1

k
f (x) dx︸                  ︷︷                  ︸∫ n

1 f (x) dx

≤
n−1∑
k=1

f (k) =
n−1∑
k=1

ak︸  ︷︷  ︸
sn−1

.

Hence,
∞∑

n=2

an ≤
∫ ∞

1
f (x) dx ≤

∞∑
n=1

an.

This inequality implies that
∞∑

n=1

an and
∫ ∞

1
f (x) dx either both converge or both diverge.

□

Remark.

(i) To determine whether a series is convergent or divergent, it is not necessary to start with

the first term. That is, the series
∞∑

n=1

an and
∞∑

n=n0

an either both converge or both diverge.
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Hence, to use the integral test, it sufficies to compute the integral with lower limit at x = n0

instead of x = 1. That is,∫ ∞

n0

f (x) dx converges (diverges) ⇐⇒
∞∑

n=n0

an converges (diverges)

⇐⇒
∞∑

n=1

an converges (diverges).

(ii) It is not necessary that f is “always” decreasing. We can use the integral test as long as
the function f is positive and decreasing on (n0,∞) and f (n) = an for some large number
n0 and n ≥ n0.

Example 11.4.4. Determine whether the series
∞∑

n=1

1
n2 + 1

is convergent or divergent.

Proof. The function f (x) =
1

x2 + 1
is positive and decreasing on [1,∞). Also, f (n) =

1
n2 + 1

for all n ∈ N. Since the improper integral∫ ∞

1

1
x2 + 1

dx = lim
t→∞

∫ t

1

1
x2 + 1

dx = lim
t→∞

tan−1 x
∣∣∣t
1
= lim

t→∞

(
tan−1 t − tan−1 1

)
=
π

2
− π

4
=
π

4
,

by the integral test, the series
∞∑

n=1

1
n2 + 1

converges. □

Example 11.4.5. (p-series) For what values of p is the series
1
np convergent?

Proof. If p ≤ 0,
1
np = n−p ≥ 1 for all n ∈ N. Hence

∞∑
n=1

1
np diverges.

Consider the cases 0 < p < ∞. The function f (x) =
1
xp is positive and decreasing on [1,∞),

and f (n) =
1
np . Since∫ ∞

1

1
xp dx =

ß ∞ when 0 < p < 1 (divergent)
1

p−1 when p > 1 (convergent).

By the integral test, the series
∞∑

n=1

1
np converges when p > 1 and diverges when p ≤ 1. □
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Example 11.4.6.

(i)
∞∑

n=1

1
n3 converges (p-series with p = 3 > 1)

(ii)
∞∑

n=1

1
n1/3 diverges (p-series with p = 1

3 < 1)

Note. The integral test can only determine whether a series is convergent (or divergent). But it
cannot give the sum of the series.

Example 11.4.7. Determine whether the series
∞∑

n=1

ln n
n

converges or diverges.

Proof. Let f (x) =
ln x

x
. Then f ′(x) =

1 − ln x
x2 < 0 when x > e. Hence, f (x) is positive and

decreasing on (e,∞). Since the integral∫ ∞

e

ln x
x

dx = lim
t→∞

∫ t

e

ln x
x

dx = lim
t→∞

(ln x)2

2

∣∣∣t
e
= lim

t→∞

(ln t)2 − 1
2

= ∞,

by the integarl test, the series
∞∑

n=1

ln n
n

diverges. □

■ Estimating the Sum of a Series

Although it is difficult to use the integral test to find the limit of a series
∑

an, it can still

help us to approximate the sum of the series. Recall that “s =
∞∑

n=1

an converges” means that

the partial sum sn =

n∑
k=1

ak → s as n → ∞. Hence, in order to evaluate the sum s, we want to

estimate the differenece sn and s. Define

Rn = s − sn = an+1 + an+2 + · · · =
∞∑

k=n+1

ak as the ”remainder”.

Theorem 11.4.8. (Remainder Estimate for the Integral Test) Let f be a positive and decreasing
function for every x ≥ n0, and f (n) = an for every n ∈ N and n ≥ n0. Then∫ ∞

n+1
f (x) dx ≤

∞∑
k=n+1

ak = Rn ≤
∫ ∞

n
f (x) dx

Note.
sn +

∫ ∞

n+1
f (x) dx ≤ s ≤ sn +

∫ ∞

n
f (x) dx.

Example 11.4.9.
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(a) Approximate the sum of the series
∞∑

n=1

1
n3 by using the sum of the first 10 terms. Estimate

the error involved in the approximation.

Proof. Let f (x) =
1
x3 . Then

∫ ∞

n

1
x3 dx =

1
2n2 and

R10 ≤
∫ ∞

10

1
x3 dx =

1
200
.

□

(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

Proof. Consider

Rn ≤
∫ ∞

n

1
x3 dx =

1
2n2 ≤ 0.0005.

Then n2 ≥ 1000 and hence n ≥ 31.6. We need 32 terms to ensure accuracy to within
0.0005. □

(c) Use n = 10 to estimate the sum of the series
∞∑

n=1

1
n3 .

Proof.

s10 +
1

2(11)2 =

10∑
n=1

1
n3 +

∫ ∞

11

1
x3 dx ≤ s ≤

10∑
n=1

1
n3 +

∫ ∞

10

1
x3 dx = s10 +

1
2(10)2 .

Since s10 ≈ 1.197532, we have 1.201664 ≤ s ≤ 1.202532. □

Note. In fact, to make the error smaller than 0.0005, it only needs 10 terms by part(c) instead
of 32 terms by part(b).

11.4.2 The Comparison Test

In Section 11.3, we know that the geometric series
∞∑

n=1

1
2n is convergent.

Question: Does it say the convergence or divergence of the series
∞∑

n=1

1
2n + 1

?

Observe that the sequence of the partial sum sn =

n∑
k=1

1
2k + 1

is an increasing sequence. Since

0 <
1

2k + 1
<

1
2k for every k ∈ N, we have

sn =

n∑
k=1

1
2k + 1

≤
n∑

k=1

1
2k ≤

∞∑
k=1

1
2k = 1.
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Hence, {sn} is bounded above. By the bounded criterion, the series
∞∑

n=1

1
2k + 1

converges. More-

over,
∞∑

n=1

1
2k + 1

< 1.

Heuristically, we may have the insight of two nonnegative series.

(i) If every term of one series is smaller than the corresponding term of another convergent
series, then the former series is also convergent.

(ii) If every term of one series is larger than the corresponding term of another divergent series,
then the former series is also divergent.

■ The Comparison Test

Theorem 11.4.10. (The Comparision Test) Suppose that
∞∑

n=1

an and
∞∑

n=1

bn are series with non-

negative terms and 0 ≤ bn ≤ an for all n ∈ N.

(1) If
∞∑

n=1

an is convergent, then
∞∑

n=1

bn is convergent.

(2) If
∞∑

n=1

bn is divergent, then
∞∑

n=1

an is divergent.

Proof. Let sn = a1 + a2 + · · · + an and tn = b1 + b2 + · · · + bn. Then the sequences {sn} and {tn}
are increasing and 0 ≤ tn ≤ sn for every n ∈ N.

(1) If
∞∑

n=1

an is convergent, {sn} is convergent. Since {tn} is increasing and bounded above, it is

convergent and thus
∞∑

n=1

bn is convergent.

(2) If
∞∑

n=1

bn is divergent, then lim
n→∞

tn = ∞. Therefore, lim
n→∞

sn = ∞ and thus
∞∑

n=1

an is divergent.

□

Remark.

(i) In order to use the Comparison Test, the “nonnegative” condition is necessary. For exam-

ple, bn = −1 and an =
1
n2 for all n ∈ N. Then bn < an. But the series

∞∑
n=1

bn =

∞∑
n=1

(−1) = −∞

is divergent and the series
∞∑

n=1

an =

∞∑
n=1

1
n2 is convergent.

(ii) In the use of the Comparsion Test, we need to know some convergent or divergent series.
Some important series are:
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• p-series
∞∑

n=1

1
np

 converges when p > 1

diverges when p ≤ 1

• geometric series
∞∑

n=1

arn

 converges when |r| < 1

diverges when |r| ≥ 1

Example 11.4.11. Determine whether the series
∞∑

n=1

5
2n2 + 4n + 3

is convergent or divergent.

Proof. That the series
∞∑

n=1

1
n2 is convergent (p-series, p = 2) implies the series

∞∑
n=1

5
2n2 is also

convergent. Since
5

2n2 + 4n + 3
<

5
2
· 1

n2 for every n ∈ N, by the Comparison Test, the series
∞∑

n=1

5
2n2 + 4n + 3

is convergent.

□

Remark. To determine whether a series is convergent, it sufficies to consider the convergence

of the “tail ” (
∞∑

n=n0

an) of the series. Therefore, in the use of the Comparison Test, we can replace

the condition 0 ≤ bn ≤ an “for every n ≥ 1” by “ for every n ≥ n0” and for some integer n0, and
the test still holds.

Example 11.4.12. Determine whether the series
∞∑

n=1

ln n
n

is convergent or divergent.

Proof. Since ln n > 1 for n > e, we have
ln n
n
>

1
n

when n ≥ 3. Also, the series
∑
n=1

1
n

diverges

(p-series, p = 1). By the Comparison Test, the series
∞∑

n=3

ln n
n

diverges and thus the series

∞∑
n=1

ln n
n

also diverges. □

Example 11.4.13. Determine whether the series
∞∑

n=1

1
n3 − 5n − 2

is convergent or divergent.

Proof.

Observe that

(i) Not all terms are positive

(ii) We guess the series is convergent and hope
1

n3 − 5n − 2
<

2
n3 for all n ≥ n0. To find n0, consider

2n3 − 10n − 4 > n3 ⇐⇒ n3 > 10n + 4 ⇒ n ≥ 4.
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When n ≥ 4, the term
1

n3 − 5n − 2
> 0 and

1
n3 − 5n − 2

<
2
n3 . Also,

∞∑
n=4

2
n3 converges (p-series,

p = 3 > 1). By the Comparison Test, the series
∞∑

n=4

1
n3 − 5n − 2

converges. Therefore, the series

∞∑
n=1

1
n3 − 5n − 2

converges. □

Note. Recall that for
∑

an and
∑

bn with 0 ≤ bn ≤ an for all n ∈ N, the Comparison Test says
that

(1)
∑

an converges =⇒
∑

bn converges;

(2)
∑

bn diverges =⇒
∑

an diverges.

But the converse is false. That is,

(1)
∑

bn converges ��XX=⇒
∑

an converges;

(2)
∑

an diverges ��XX=⇒
∑

bn diverges.

Example 11.4.14. Consider the series
∞∑

n=1

1
2n − 1

. In order to use the Comparison Test to

show
∑ 1

2n − 1
converges, we cannot choose the known convergent series

∑ 1
2n because

1
2n − 1

>
1
2n . However,

1
2n − 1

looks very close to
1
2n . It is reasonable to guess that the se-

ries
∑ 1

2n − 1
also converges.

■ The Limit Comparison Test

Theorem 11.4.15. (Limit Comparison Test) Let {an} and {bn} be two nonnegative sequences. If

lim
n→∞

an

bn
= L

for some 0 < L < ∞, then
∞∑

n=1

an converges if and only if
∞∑

n=1

bn converges. That is, either both

series
∞∑

n=1

an and
∞∑

n=1

bn converge or both diverge.

Proof. (Exercise) □

Example 11.4.16. Determine whether the series
∞∑

n=1

3
2n − 1

is convergent or divergent.
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Proof. Consider the geometric series
∞∑

n=1

1
2n . Since

∞∑
n=1

1
2n converges (geometric series with

r = 1
2 < 1) and

lim
n→∞

3
2n−1

1
2n

= lim
n→∞

3
1 − 1

2n

= 3,

by the Limit Comparison Test, the series
∞∑

n=1

3
2n − 1

is convergent. □

Example 11.4.17. Determine whether the series
∞∑

n=1

2n2 + 3n
√

5 + n5
is convergent or divergent.

Proof. Consider the series
∞∑

n=1

1
n1/2 . Since

∞∑
n=1

1
n1/2 diverges (p-series, p = 1

2 < 1) and

lim
n→∞

2n2+3n√
5+n5

1
n1/2

= lim
n→∞

2 + 3
n»

5
n5 + 1

= 2,

by the Limit Comparison Test, the series
∞∑

n=1

2n2 + 3n
√

5 + n5
diverges. □

■ Estimating Sums

Suppose that
∞∑

n=1

an and
∞∑

n=1

bn are two convergent series with nonnegative terms and 0 ≤ bn ≤ an

for all n ∈ N. Let

s =
∞∑

n=1

an, sn =

n∑
k=1

ak and Rn = s − sn = an+1 + an+2 + · · ·

t =
∞∑

n=1

bn, tn =

n∑
k=1

bk and Tn = t − tn = bn+1 + bn+2 + · · ·

then 0 ≤ Tn ≤ Rn for all n ∈ N. Hence, if we can estimate Rn, then we have an upper bound of
Tn.
Example 11.4.18. Use the sum of the first 100 terms to approximate the sum of the series∑ 1

n3 + 1
. Estimate the error involved in this approximation.

Proof. Since
1

n3 + 1
<

1
n3 for all n ∈ N, we have

T100 =

∞∑
n=101

1
n3 + 1

≤
∞∑

n=101

1
n3 <

∫ ∞

100

1
x3 dx =

1
2(100)2 .

The error is less than
1

2(100)2 and
∞∑

n=1

1
n3 + 1

≈
100∑
n=1

1
n3 + 1

≈ 0.6864538.

□
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11.5 Alternating Series
In the previous section, we consider the convergence tests for the nonnegative series (because
of the bounded criterion). In the present section, we want to relax the condition and discuss the
convergence for some special series which includes positive and negative terms alternatively.

o Alternating Series

Definition 11.5.1. An alternating series
∞∑

n=1

an is a series whose terms are alternatively positive

and negative.

Let bn = |an|. The general form of an alternating series is

∞∑
n=1

an =



∞∑
n=1

(−1)nbn if a1 < 0

∞∑
n=1

(−1)n−1bn if a1 ≥ 0.

Example 11.5.2. The series
∞∑

n=1

(−1)n is an alternating series.

■ Alternating Series Test

Theorem 11.5.3. If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + · · · where bn > 0

satisfies

(i) bn+1 ≤ bn for all n ∈ N

(ii) lim
n→∞

bn = 0.

then the series is convergent.

Proof.
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Let {sn} be the sequence of the partial sums of the alternating series. The condition (i)
implies that, for every n ∈ N,

s2n+2 = s2n + (b2n+1 − b2n+2)︸              ︷︷              ︸
≥0

≥ s2n

and
s2n = b1 − (b2 − b3)︸      ︷︷      ︸

≥0

− · · · − (b2n−1 − b2n)︸           ︷︷           ︸
≥0

≤ b1.

We have
0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ · · · ≤ b1

which is increasing and bounded above by b1. By the bounded criterion, lim
n→∞

s2n = s is conver-
gent. Since s2n+1 = s2n + b2n+1, by condition (ii),

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

b2n+1 = s + 0 = s.

Hence lim
n→∞

sn = s and the alternating series is convergent. □

Example 11.5.4. (alternating harmonic series) Determine whether the series
∞∑

n=1

(−1)n−1

n
is con-

vergent or divergent.

Proof. Let bn =
1
n

. Then
∞∑

n=1

(−1)n−1

n
=

∞∑
n=1

bn.

Since bn+1 =
1

n + 1
<

1
n
= bn for all n ∈ N and

lim
n→∞

bn = lim
n→∞

1
n
= 0, by the alternating series test, the

series
∞∑

n=1

(−1)n−1

n
is convergent. □

Example 11.5.5. Determine whether the series
∞∑

n=1

(−1)n3n
4n − 1

is convergent or divergent.

Proof. Let bn =
3n

4n − 1
and an =

(−1)n3n
4n − 1

= (−1)nbn. Then |an| = bn for every n ∈ N.

Since lim
n→∞

bn = lim
n→∞

3n
4n − 1

=
3
4
, 0, the limit lim

n→∞
an is not equal to 0 (in fact, the limit does

not exist). By the test for divergent, the series
∞∑

n=1

(−1)n3n
4n − 1

= lim
n→∞

an is divergent. □

Example 11.5.6. Determine whether the series
∞∑

n=1

(−1)n+1n2

n3 + 1
is convergent or divergent.
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Proof. Let bn =
n2

n3 + 1
Then

∞∑
n=1

(−1)n+1n2

n3 + 1
=

∞∑
n=1

(−1)n+1bn. Since

bn+1 − bn =
(n + 1)2

(n + 1)3 + 1
− n2

n3 + 1
=
−n4 − 2n3 − n2 + 2n + 1

[(n + 1)3 + 1](n3 + 1)
< 0 for all n ∈ N,

we have bn+1 ≤ bn for all n ∈ N. Also, lim
n→∞

bn = lim
n→∞

n2

n3 + 1
= 0. By the alternating series test,

the series
∞∑

n=1

(−1)n+1n2

n3 + 1
is convergent. □

Note. In this example, we can compute
d
dx

Ä x2

x3 + 1

ä
=

x(2 − x3)
(x3 + 1)2 < 0 for x ≥ 2 to obtain bn+1 ≤

bn for all n ∈ N.
Remark. As the similar discussion as before, in the use of the alternating series test, it only
needs that the series satisfies conditions (i) in Theorem 11.5.3 for every n ≥ n0 for some fixed
integer n0.
■ Estimating Sums

Observe the structure of an alternating se-
ries satisfying the two conditions (i) and
(ii) in Theorem 11.5.3. Let Rn = s − sn

be the remainder of the series, then

|Rn| = |s − sn| ≤ bn+1.

Theorem 11.5.7. (Alternating Series Estimation Theorem) If s =
∞∑

n=1

(−1)n−1bn is the sum of an

alternating series that satisfies

(i) 0 ≤ bn+1 ≤ bn for every n ∈ N and (ii) lim
n→∞

bn = 0

then
|Rn| = |s − sn| ≤ bn+1

Example 11.5.8. Find the sum of the series
∞∑

n=1

(−1)n

n!
correct to three decimal places.

Proof. The series
∞∑

n=1

(−1)n

n!
is an alternating series. Let bn =

1
n!

. Then bn+1 =
1

(n + 1)!
<

1
n!
= bn

and lim
n→∞

bn = lim
n→∞

1
n!
= 0. To find n such that bn =

1
n!
< 0.001, we have n ≥ 7. Hence, by the

alternating series estimation,

|R6| = |s − s6| ≤ b7 < 0.001 (in fact, b7 < 0.0002).

Then s6 = 1 − 1 +
1
2
− 1

6
+

1
24
− 1

120
+

1
720
≈ 0.368056. In fact s =

1
e
≈ 0.36787944.

□
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11.6 Absolute Convergence

In the present section, we will continue to discuss the convergence of general series (without
alternating patterns). Intuitively, it is difficult to give a nice test for every series because they
may have too many varieties. Therefore, we hope to use some known results (discussed in the
previous sections) to deal with the convergence of certain general series.

o Absolute Convergence

Definition 11.6.1. (a) A series
∞∑

n=1

an is called “absolutely convergent” if the series of absolute

values
∞∑

n=1

|an| is convergent.

(b) A series
∞∑

n=1

an is called “conditionally convergent” if it is convergent but not absolutely

convergent.

Example 11.6.2.

(1) The series
∞∑

n=1

(−1)n

n
is convergent by the alternating series test. But

∞∑
n=1

∣∣∣ (−1)n

n

∣∣∣ = ∞∑
n=1

1
n
= ∞

is divergent (harmonic series, p-series with p = 1). Therefore,
∞∑

n=1

(−1)n

n
is a conditionally

convergent series.

(2) The series
∞∑

n=1

(−1)n

n2 is convergent by the alternating series test and
∞∑

n=1

∣∣∣ (−1)n

n2

∣∣∣ = ∞∑
n=1

1
n2 is

also convergent (p-series with p = 2). Therefore,
∞∑

n=1

(−1)n

n2 is absolutely convergent.

Question: For the two series
∞∑

n=1

an and
∞∑

n=1

|an|, can the convergence of one series imply the

convergence of the other one?

Theorem 11.6.3. If a series
∞∑

n=1

an is absolutely convergent, then it is convergent. That is, if

∞∑
n=1

|an| converges then
∞∑

n=1

an converges.

Proof. Observe that 0 ≤ an + |an| ≤ 2|an|. If
∞∑

n=1

an is absolutely convergent, then
∞∑

n=1

2|an|
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converges. By the Comparison Test, the series
∞∑

n=1

(an + |an|) converges. Hence, the series

∞∑
n=1

an =

∞∑
n=1

(an + |an| − |an|) =
∞∑

n=1

(an + |an|) −
∞∑

n=1

|an|

converges.
□

Note.

(1) The converse of Theorem 11.6.3 is false. That is, the convergence of
∞∑

n=1

an cannot imply the

convergence of
∞∑

n=1

|an|. For example,
∞∑

n=1

(−1)n

n
is convergent but

∞∑
n=1

∣∣∣ (−1)n

n

∣∣∣ is divergent.

(2) If
∞∑

n=1

an is divergent, then
∞∑

n=1

|an| must be divergent.

Example 11.6.4. Determine whether the series
∞∑

n=1

cos n
n2 is convergent or divergent.

Proof. The series
∞∑

n=1

cos n
n2 is not an alternating series. Con-

sider
∣∣∣cos n

n2

∣∣∣ ≤ 1
n2 for every n ∈ N.

Since
∞∑

n=1

1
n2 converges (p-series, p = 2), by the Compari-

son Test, the series
∞∑

n=1

∣∣∣cos n
n

∣∣∣ converges. Hence, the series

∞∑
n=1

cos n
n2 is absolutely convergent and this implies that it is

convergent. □
Exercise. Let {an} be a sequence and define

a+n =
ß

an, if an ≥ 0
0, if an < 0 and a−n =

ß
0, if an ≥ 0
an, if an < 0

Prove that the series
∞∑

n=1

|an| converges if and only if both of the series
∞∑

n=1

a+n and
∞∑

n=1

a−n converge

and moreover,
∞∑

n=1

|an| =
∞∑

n=1

a+n −
∞∑

n=1

a−n .

Hint: (=⇒) Using the Comarison Test with the fact 0 ≤ |a±n | ≤ |an| for every n ∈ N and moreover,
the equality holds from the laws for series.
(⇐=) Using the laws for series with the fact |an| = a+n − a−n for every n ∈ N.
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o Rearrangement
Consider an example of a paradox. Let

x = 1 − 1
2
+

1
3
− 1

4
+ · · · + (−1)n+1

n
+ · · ·

?
= (1 − 1

2
) +

1
4
+ (

1
3
− 1

6
) − 1

8
+ (

1
5
− 1

10
) − 1

12
+ (

1
7
− 1

14
) − 1

16
+ (

1
9
− 1

18
) − 1

20
+ · · ·

=
1
2
− 1

4
+

1
6
− 1

8
+ · · ·

=
1
2

(1 − 1
2
+

1
3
− 1

4
+ · · · )

=
1
2

x.

Hence x = 1
2 x and we obtain a contradiction that x = 0.

Question: What’s wrong with this?

For a sum of finitely many numbers, we obtain the same value if arbitrarily rearraneging the
order of those numbers.

Question: Can we get the same value of the sum of infinitely many numbers if we arbitrarily
rearrange the order of these numbers?

Definition 11.6.5. Let {an} and {bn} be two sequences. We say that {bn} is a “rearrangement” of
{an} if there exists a one-to-one and onto function f on N such that bn = a f (n) for every n ∈ N.

Note. In general,
∞∑

n=1

an ,
∞∑

n=1

bn if {bn} is a rearrangement of {an}.

Theorem 11.6.6. If
∞∑

n=1

an is conditionally convergent then, for any number L ∈ R, there exists

a rearrangement {bn} of {an} such that
∞∑

n=1

an = L.

Proof. We only sketch the proof by the following steps.

(I) Let {pn} be the nonnegative subsequence of {an} and {qn} be the negative subsequence of

{an}. Since
∞∑

n=1

an is conditionally convergent, we have
∞∑

n=1

|an| diverges. Hence, at least

one of the series
∞∑

n=1

pn and
∞∑

n=1

qn is divergent. Moreover, the fact that
∞∑

n=1

an converges

implies both series
∞∑

n=1

pn and
∞∑

n=1

qn are divergent. We have that

∞∑
n=1

pn = ∞ and
∞∑

n=1

qn = −∞.
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(II) W.L.O.G, say L > 0. We construct a sequence {bn} from {pn} and {qn} by the following

process. Since
∞∑

n=1

pn = ∞, there exists n1 ∈ N such that

n1−1∑
n=1

pn < L ≤
n1∑

n=1

pn.

Let S 1 =

n1∑
n=1

pn. Then S 1 ≥ L and S 1 − pn1 < L. Hence, |S 1 − L| < pn1 .

Since
∞∑

n=1

qn = −∞, there exists m1 ∈ N such that

n1∑
n=1

pn +

m1−1∑
n=1

qn > L ≥
n1∑

n=1

pn +

m1∑
n=1

qn.

Let T1 =

n1∑
n=1

pn +

m1∑
n=1

qn = S 1 +

m1∑
n=1

qn. Then T1 ≤ L and T1 − qm1 > L. Hence, |T1 − L| <
qm1 .

Continue this process, we have 1 ≤ n1 < n2 < · · · and 1 ≤ m1 < m2 < · · · and {S k} and
{Tk} such that for every k ∈ N,

S k = Tk−1 +

nk∑
n=nk−1+1

pn, S k ≥ L, S k − pnk < L =⇒ |S k − L| < pnk

and

Tk = S k +

mk∑
n=mk−1+1

qn, Tk ≤ L, Tk − qmk ≥ L =⇒ |Tk − L| < qmk .

Define {bn} =
{

p1, p2, · · · , pn1 , q1, q2, · · · , qm1 , pn1+1, · · · , pn2 , qm1+1, · · · qm2 , · · ·
}

(III) To check that {bn} is a rearrangement of {an}, we have to show that

(i) To show that each an appears at most once in {bn}. Since each an is either in {pn} or
in {qn}, and each pn or each qn appears in {bn} at most once by the construction of
{bn}, we have each an appears in {bn} at most once.

(ii) To show that each an appears at least once in {bn}. For K ∈ N, aK must appear in
{pn}Kn=1 or in {qn}Kn=1. Hence, aK appears in {bn} at least once.

(IV) Check that S k → L and Tk → L as k → ∞. Since the series
∞∑

n=1

an converges, an → 0 as

n→ ∞. Then pn → 0 and qn → 0 as n→ ∞. Hence, by part (II), S k → L and Tk → L as
k → ∞.

By the above argument {bn} is a rearrangement of {an} and
∞∑

n=1

bn = L.

□
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Theorem 11.6.7. If
∞∑

n=1

an is absolutely convergent and {bn} is a rearrangement of {an}, then

(a)
∞∑

n=1

an =

∞∑
n=1

bn and

(b)
∞∑

n=1

bn is absolutely convergent.

Proof. Let sn =

n∑
k=1

ak and tm =

m∑
k=1

bk.

(a) Since
∞∑

n=1

an is absolutely convergent and hence it is convergent, the series
∞∑

n=1

an is a finite

number. Given ε > 0, we want to prove
∣∣∣tm −

∞∑
n=1

an

∣∣∣ < ε as m is sufficiently large.

Since
∞∑

n=1

|an| converges, there exists N ∈ N such that

|aN+1| + |aN+2| + · · · <
ε

2
.

Since {bn} is a rearrangement of {an}, there exists M ∈ N such that {a1, a2, · · · , aN} ⊆
{b1, b2, · · · , bM}. For m > M

|tm − sN | ≤ |aN+1| + |aN+2| + · · · <
ε

2
.

Then

|tm −
∞∑

n=1

an| ≤ |tm − sN | + |sN −
∞∑

n=1

an| <
ε

2
+
ε

2
= ε.

Hence, {tm} converges to
∞∑

n=1

an and we have
∞∑

n=1

an =

∞∑
n=1

bn.

(b) Consider the sequence {|an|}. Since
∞∑

n=1

an is absolutely convergent,
∞∑

n=1

|an| is also absolutely

convergent. On the other hand, since {bn} is a rearrangement of {an}, {|bn|} is a rearrangement
of {|an|}. By part(a),

∞∑
n=1

|an| =
∞∑

n=1

|bn|.

Hence,
∞∑

n=1

|bn| converges; that is,
∞∑

n=1

bn is absutely convergent.

□
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■ Product of two sequences

Suppose that {an} and {bn} are summable sequences. We recall that

∞∑
n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn

∞∑
n=1

(can) = c
∞∑

n=1

an where c is a constant.

Question: Can we express (
∞∑

n=1

an)(
∞∑

n=1

bn) as a form of series? If yes, what is the expression?

Heuristically, we observe the product of two finite series.

( N∑
n=1

an
)( M∑

m=1

bm
)
=

L∑
k=1

ck.

where {ck} contains all products of anbm.

Question: Is the formula still true for the product of two arbitrary infinite series?
Anserer: In general, it is not true for two summable sequences.

Exercise. Find two summable sequences {an} and {bn} such that there is no summable sequence
{cn} satisfying ( ∞∑

n=1

an
)( ∞∑

n=1

bn
)
=

∞∑
n=1

cn.

Theorem 11.6.8. If
∞∑

n=1

an and
∞∑

n=1

bn converge absolutely and {cn} is any sequence containing

all products aib j for each pair (i, j), then

∞∑
n=1

cn =
( ∞∑

n=1

an
)( ∞∑

n=1

bn
)
.

Proof. (Exercise) □

11.7 The Ratio and Root Tests
In the previous section, we study that an absolutely convergent series is also convergent. How-
ever, it is not easy to check whether a general series is absolutely convergent. In the present
section, we will introduce two methods which can determine whether certain series are conver-
gent or divergent. The spirit of these two methods is from the comparison with geometric series.

o The Ratio Test

Theorem 11.7.1. (Ratio Test) For the series
∞∑

n=1

an, suppose that lim
n→∞

∣∣∣an+1

an

∣∣∣ = L.
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(a) If L < 1, then the series
∞∑

n=1

an is absolutely convergent (and therefore it is convergent).

(b) If L > 1 (or L = ∞), then the series
∞∑

n=1

an is divergent.

(c) If L = 1 the Ratio Test is inconclusive. (For example,
∑ 1

n
diverges and

∑ 1
n2 converges).

Proof. (Postponed) □

Example 11.7.2. Determine whether the following series are convergent or divergent.

(1)
∞∑

n=1

1
n!

Proof. Let an =
1
n!

. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

1
n + 1

= 0 < 1.

By the ratio test, the series
∞∑

n=1

1
n!

is convergent. □

(2)
∞∑

n=1

1
n!

Proof. Let an =
1
n!

. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

1
n + 1

= 0 < 1.

By the ratio test, the series
∞∑

n=1

1
n!

is convergent. □

(3)
∞∑

n=1

rn

(n + 1)!
for some r ∈ R.

Proof. Let an =
rn

(n + 1)!
. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

rn+1

(n+2)!
rn

(n+1)!

= lim
n→∞

r
n + 2

= 0 < 1.

By the ratio test, the series
∞∑

n=1

rn

(n + 1)!
is convergent. □
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(4)
∞∑

n=1

(−1)n n3

3n

Proof. Let an = (−1)n n3

3n . Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (−1)n+1 (n+1)3

3n+1

(−1)n n3

3n

∣∣∣ = lim
n→∞

1
3

Än + 1
n

ä3
=

1
3
< 1.

By the ratio test, the series
∞∑

n=1

(−1)n n3

3n is convergent. □

(5)
∞∑

n=1

nn

n!

Proof. Let an =
nn

n!
. Then

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (n+1)n+1

(n+1)!
nn

n!

∣∣∣ = lim
n→∞

Än + 1
n

än
= lim

n→∞
(1 +

1
n

)n = e > 1.

By the ratio test, the series
∞∑

n=1

nn

n!
is divergent. □

Note. Consider
nn

n!
=

n · n · · · n
1 · 2 · · · n ≥ n→ ∞ as n →. By the Test for Divergence, the series

∞∑
n=1

nn

n!
is divergent.

Proof of Ratio Test

(a) Since lim
n→∞

∣∣∣an+1

an

∣∣∣ = L < 1, choosing a number s such that L < s < 1, there exists N ∈ N
such that for every n ≥ N

|an+1|
|an|

< s < 1.

Hence, |an+1| < |an|s for every n > N. We have

|aN+2| < |aN+1|s
|aN+3| < |aN+2|s < |aN+1|s2

...

|aN+k| < |aN+k−1|s < · · · < |aN+1|sk−1 for k = 1, 2, 3, · · ·
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For every n > N, the partial sum sn of
∞∑

n=1

|an| satisfies

sn = |a1| + |a2| + · · · + |aN | + |aN+1| + · · · + |an|

=

N∑
k=1

|ak| + |aN+1| + · · · + |an|

<

N∑
k=1

|ak| + |aN+1| + |aN+1|s + |aN+1|s2 + · · · + |aN+1|sn−(N+1)

=

N∑
k=1

|ak| +
|aN+1|(1 − sn−N)

1 − s

<

N∑
k=1

|ak| +
|aN+1|
1 − s

since 0 < s < 1.

Since {sn} is an increasing sequence and bounded above, by the bounded criterion, {sn}

converges and hence
∞∑

n=1

an is absolutely convegent.

(b) Since lim
n→∞

∣∣∣an+1

an

∣∣∣ = L > 1, choosing a number s such that 1 < s < L, there exists N ∈ N
such that for every n ≥ N

|an+1|
|an|

> s > 1.

Hence, |an+1| > |an|s for every n > N. We have

|aN+2| > |aN+1|s
|aN+3| > |aN+2|s < |aN+1|s2

...

|aN+k| > |aN+k−1|s > · · · < |aN+1|sk−1 for k = 1, 2, 3, · · ·

W.L.O.G, we may assume that |aN+1| > 0. Then

lim
n→∞
|an| ≥ lim

n→∞
|aN+1|sn−(N+1) = ∞ (since s > 1).

Hence, lim
n→∞

an , 0. By the Test for Divergence, the series
∞∑

n=1

an is divergent.

o The Root Test

Theorem 11.7.3. (Root Test) For the series
∞∑

n=1

an, suppose that lim
n→∞

n
√
|an| = L.

(a) If L < 1, then the series
∞∑

n=1

an is absolutely convergent (and therefore it is convergent).
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(b) If L > 1 (or L = ∞), then the series
∞∑

n=1

an is divergent.

(c) If L = 1 the Ratio Test is inconclusive. (For example,
∑ 1

n
diverges and

∑ 1
n2 converges).

Proof. (Postponed) □

Example 11.7.4. Determine whether the following series are convergent or divergent.

(1)
∞∑

n=1

1
(ln n)n .

Proof. Let an =
1

(ln n)n . Then

lim
n→∞

n
√
|an| = lim

n→∞
n

 ∣∣∣ 1
(ln n)

∣∣∣n = lim
n→∞

1
ln n
= 0 < 1.

By the root test, the series
∞∑

n=1

1
(ln n)n is convergent. □

(2)
∞∑

n=1

2n

n3 .

Proof. Let an =
2n

n3 . Then

lim
n→∞

n
√
|an| = lim

n→∞

n

…∣∣∣2n

n3

∣∣∣ = lim
n→∞

2
n√
n3
= 2 > 1.

By the root test, the series
∞∑

n=1

2n

n3 is divergent. □

(3)
∞∑

n=1

Ä2n + 3
3n + 2

än
.

Proof. Let an =
Ä2n + 3

3n + 2

än
. Then

lim
n→∞

n
√
|an| = lim

n→∞

n

…∣∣∣2n + 3
3n + 2

∣∣∣n = lim
n→∞

2n + 3
3n + 2

=
2
3
< 1.

By the root test, the series
∞∑

n=1

Ä2n + 3
3n + 2

än
is convergent. □

Proof of Ratio Test



276 CHAPTER 11. SEQUENCES AND SERIES

(a) Since lim
n→∞

n
√
|an| = L < 1, choosing a number s such that L < s < 1, there exists N ∈ N

such that for every n ≥ N
n
√
|an| < s < 1.

Hence, |an| < sn for every n ≥ N. The partial sum sn of
∞∑

n=1

|an| satisfies

sn = |a1| + |a2| + · · · + |aN | + |aN+1| + · · · + |an|

<

N∑
k=1

|ak| + sN+1 + sN+2 + · · · + sn

=

N∑
k=1

|ak| +
sN+1(1 − sn−N)

1 − s

<

N∑
k=1

|ak| +
sN+1

1 − s
since 0 < s < 1.

Since {sn} is an increasing sequence and bounded above, by the bounded criterion, {sn}

converges and hence
∞∑

n=1

an is absolutely convegent.

(b) Since lim
n→∞

n
√
|an| = L > 1, choosing a number s such that 1 < s < L, there exists N ∈ N

such that for every n ≥ N
n
√
|an| > s > 1.

Hence, |an| > sn for every n > N. We have

lim
n→∞
|an| ≥ lim

n→∞
sn = ∞ (since s > 1).

Hence, lim
n→∞

an , 0. By the Test for Divergence, the series
∞∑

n=1

an is divergent.

11.8 Strategy for Testing Series

In the present section, we will organize all tests introduced in previous sections. The following
steps are some strategies for convergence or divergence for series.

∞∑
n=1

an

1. p-series:
∞∑

n=1

1
np is

 convergent when p > 1

divergent when p ≤ 1.
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2. geometric series:

∞∑
n=1

arn (a , 0) is

 convergent when |r| < 1

divergent when |r| ≥ 1.

3. When the form of the series is similar to a p-series or a geometric series (for example,∑ 2
n2 + 3n + 1

or
∑ 2n+1 − 5

3n + 2
), we could determine the convergence or divergence by using

the comparison test (or limit comparison test).

4. Test for Divergence:

lim
n→∞

an , 0 =⇒
∞∑

n=1

an is divergent.

5. Alternating Series Test: If the series has the form
∞∑

n=1

(−1)nbn for bn > 0 satisfying

(i) bn+1 ≤ bn for all n ∈ N and (ii) lim
n→∞

bn = 0

then the series
∞∑

n=1

(−1)nbn is convergent.

6. Ratio Test: Suppose that lim
n→∞

∣∣∣an+1

an

∣∣∣ = L.

∞∑
n=1

an is

 absolutely convergent if L < 1
divergent if L > 1
inconclusive if L = 1

7. Root Test: Suppose that lim
n→∞

n
√
|an| = L.

∞∑
n=1

an is

 absolutely convergent if L < 1
divergent if L > 1
inconclusive if L = 1

8. Integral Test: Suppose that f is positive and nonincreasing on [1,∞), and an = f (n). Then

∞∑
n=1

an is convergent (divergent) ⇐⇒
∫ ∞

1
f (x) dx is convergent (divergent).
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12.1 Approximation by polynomial functions
Although most elementary functions have nice differentiable and integrable properties, it

is not easy to compute their exact values like sin 1, e2, ln 3 etc. Polynomial functions are a
family of best functions. For a polynomial function P(x), we can easily find its value P(a) by
basic algebraic algorithms. Naturally, we want to study whether a function can be approxi-
mated by polynomial functions. In Section 5.6, we knew that a differentiable function can be
approximated by a 1-degree polynomial, at least near a certain point. We expect to (locally)
approximate elementary functions by higher degree polynomials

■ Coefficients and Derivatives of P(x)

Lemma 12.1.1. (a) Let P(x) = c0 + c1x + c2x2 + cnxn. Then

ck =
P(k)(0)

k!
for k = 0, 1, 2, · · · , n

(b) Let P(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n be “polynomial in (x − a)”. Then

ck =
P(k)(a)

k!
for k = 0, 1, 2, · · · , n.

Proof. Compute them directly. □

■ Taylor Polynomial

Question: For a given function f (x) (for example, ex), can we find a polynomial function P(x)
such that P(x) is close to f (x) for every x ∈ R?

279
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In general, it is impossible to obtain such a nice approximation “for every x”. Therefore, we
will usually consider an approximation by polynomial functions “near a given point”.

Question: Which polynomial function will give nice approximations (near a given point a)?
How to find such a polynomial function?

Heuristically, for a given function f (x) with sufficiently many times derivatives at a, we
expect that P(x) is an appropriate polynomial to approximate f (near a) if both f (x) and P(x)
have the same first n times derivatives at a. That is, f (k)(a) = P(k)(a) for k = 0, 1, 2, · · · , n.
Therefore, if we write P(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n, then

ck =
P(k)(a)

k!
=

f (k)(a)
k!

for k = 0, 1, 2, · · · , n.

Definition 12.1.2. Suppose that f is a function such that f ′(a), f ′′(a), · · · , f (n)(a) exist. Define

Pn,a, f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n =

n∑
k=1

f (k)(a)
k!

(x − a)k

where ck =
f (k)(a)

k!
for k = 0, 1, · · · , n. The polynomial Pn,a, f (x) is called the “Taylor polynomial

of degree n for f at a”.

Remark.

(i) If there is no confusion, we may replace Pn,a, f (x) by Pn,a(x).

(ii) P(k)(a) = f (k)(a) for every k = 0, 1, 2, · · · , n.

Example 12.1.3. Find the Taylor polynomial of degree n for f at the given point.

(1) f (x) = sin x, at a = 0.

Proof.
f (4n)(0) = 0, f (4n+1)(0) = 1, f (4n+2)(0) = 0, f (4n+3)(0) = −1.

Then

P2n+1,0(x) = x − x3

3!
+

x5

5!
+ · · · + (−1)n x2n+1

(2n + 1)!
P2n+2,0(x) = P2n+1,0(x)

□

(2) f (x) = tan−1 x, at a = 0. Find P3,0(x)
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Proof.

f ′(x) =
1

1 + x2 , f ′′(x) =
−2x

(1 + x2)2 and f ′′′(x) =
−2(1 + x2)2 + 2x · 2(1 + x2)2 · 2x

(1 + x2)4 .

Then f (0) = 0, f ′(0) = 1, f ′′(0) = 0 and f ′′′(0) = −2. Hence,

P3,0(x) = x − 2x3

3!
= x − x3

3
.

□

(3) f (x) = ex, at a = 0. Find Pn,0(x).

Proof. For every k = 0, 1, 2, · · · , f (k)(x) = ex. Hence, f (k)(0) = 1. We have

Pn,0(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
.

□

Exercise. If f (x) is a n-degree polynomial in x− a, say f (x) = c0 + c1(x− a)+ c2(x− a)2 + · · ·+
cn(x − a)n, then

(1) Pk,a(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)k for every 0 ≤ k ≤ n.

(2) f (x) = Pk,a(x) for every k ≥ n.

(3) f (x) = Pk,b(x) for every k , n and every b ∈ R.

o Approximation of f (x) by Pn,a(x)

So far, we only know that the Taylor polynomial Pn,a(x) is defined by the first n times
derivatives of f at a. But we don’t figure out the connection between f (x) and Pn,a(x).

Observe that P1,a(x) = f (a)+ f ′(a)(x− a) is the linear approximation (introduced in Section
5.6). Then

f (x) − P1,a(x)
x − a

=
f (x) − f (a) − f ′(a)(x − a)

x − a
=

f (x) − f (a)
x − a

− f ′(a) −→ 0 as x→ a.

Consider P2,a(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2. Then

f (x) − P2,a(x)
(x − a)2 =

f (x) − f (a) − f ′(a)(x − a) − f ′′(a)(x−a2)
2

(x − a)2

=
f (x) − f (a) − f ′(a)(x − a)

(x − a)2 − f ′′(a)
2

Therefore,

lim
x→a

f (x) − P2,a(x)
(x − a)2

L.H
= lim

x→a

f ′(x) − f ′(a)
2(x − a)

− f ′′(a)
2
= 0

provided f ′(x) exists as x near a.

Question: Is there similar result for every n ∈ N?
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Theorem 12.1.4. Suppose that f is a function such that f ′(a), f ′′(a), · · · , f (n)(a) exist. Then

lim
x→a

f (x) − Pn,a(x)
(x − a)n = 0

Proof. Consider

f (x) − Pn,a(x)
(x − a)n =

f (x) −∑n−1
k=0

f (k)(a)
k! (x − a)k

(x − a)n − f (n)(a)
n!
.

Let Q(x) = f (x) −
n−1∑
k=0

f (k)(a)
k!

(x − a)k and g(x) = (x − a)n. Then, for 1 ≤ i ≤ n − 1,

Q(i)(x) = f (i)(x) − f (i)(a) − f (i+1)(a)(x − a) − · · · − f (n−1)(a)(x − a)n−i−1

1 · 2 · · · (n − i − 1)
.

Hence, lim
x→a

Q(i)(x) = 0 for i = 0, 1, 2, · · · , n − 1. On the other hand,

g(i)(x) = n(n − 1) · · · (n − i + 1)(x − a)n−i

and hence lim
x→a

g(i)(x) = 0 for i = 0, 1, 2, · · · , n − 1. By applying L’Hôpital’s Rule n − 1 times,

lim
x→a

f (x) − Pn,a(x)
(x − a)n = lim

x→a

Q(x)
g(x)

− f (n)(a)
n!

L.H.
= lim

x→a

Q′(x)
g′(x)

− f (n)(a)
n!

L.H.
=

...

L.H.
= lim

x→a

Q(n−1)(x)
g(n−1)(x)

−
(n)(a)

n!

= lim
x→a

f (n−1)(x) − f (n−1)(a)
n!(x − a)

− f (n)(a)
n!

= 0.

□

Note. Theorem 12.1.4 says that the more differentiabilities of f at a has, the better approxima-
tion of f by Pn,a(x) is when x is near a.

o Local behaviors of functions
We recall the Second Derivative Test: f ′(x) is continuous near a and f ′(a) = 0.

(i) If f ′′(a) > 0 then f has a minimum at a.

(ii) If f ′′(a) < 0 then f has a maximum at a.

(iii) If f ′′(a) = 0 then the test is inconclusive.
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Heuristically, we follow the same idea that if f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and
f (n)(a) , 0, then the sign of f (n)(a) might give some information about the local behavior of f
near a. For example

P5,a(x) = f (a)+ f ′(a)(x− a)+
f ′′(a)

2!
(x− a)2 +

f ′′′(a)
3!

(x− a)3 +
f (4)(a)

4!
(x− a)4 +

f (5)(a)
5!

(x− a)5.

Then

f (x) − P5,a(x)
(x − a)5

x→a−→ 0 =⇒
∣∣ f (x) − P5,a(x)

∣∣ � |x − a|5 as x is close to a. (12.1)

Suppose that f ′(a) = f ′′(a) = 0 and f (3)(a) , 0. Then

P5,a(x) = f (a) + (x − 3)3
î f ′′′(a)

3!
+

f (4)(a)
4!

(x − a) +
f (5)(a)

5!
(x − a2)

ó
. (12.2)

For the bracket in (12.2), the term
f ′′′(a)

3!
is dominated as x is near a. Hence,

f ′′′(a)
3!

(x − a)3

determines the behavior of P5,a(x) when x is near a. Also, we may obtain that the behavior of

f (x), as x is near a, is like
f ′′′(a)

3!
(x − a)3 by (12.1).

Roughly speaking, if a function f has sufficiently many derivatives at a, the first nonzero
derivative f (k)(a) will dominate the behavior of f when x is near a.

Theorem 12.1.5. Suppose that a function f (x) satisfies

f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and f (n)(a) , 0.

(1) If n is even and f (n)(a) > 0, then f has a local minimum at a.

(2) If n is even and f (n)(a) < 0, then f has a local maximum at a.

(3) If n is odd, then f has neither a local maximum nor a local minimum at a.

Proof. W.L.O.G, we may assume that f (a) = 0. Otherwise we may take f (x) − f (a).

Pn,a(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · f (n−1)(a)

(n − 1)!
(x − a)n−1 +

f (n)(a)
n!

(x − a)n

=
f (n)(a)

n!
(x − a)n.

By Theorem 12.1.4, 0 = lim
x→a

f (x) − Pn,a(x)
(x − a)n = lim

x→a

î f (x)
(x − a)n − f (n)(a)

ó
. Then

f (x)
(x − a)n has the

same sign as f (n)(a) when x is sufficiently close to a.

(I) If n is even, then (x − a)n > 0 for x , a and therefore f (x) and f (n)(a)(x − a)n have the
same sign when x is close to a.

(i) For f (n)(a) > 0, f (x) > 0 = f (a) when x is close to a. Hence, f has a local minimum
at a.
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(ii) For f (n)(a) < 0, f (x) < 0 = f (a) when x is close to a. Hence, f has a local maximum
at a.

(II) If n is odd, (x − a)n

ß
> 0, when x > a
< 0, when x < a , then f (x) and f (n)(a)(x − a)n have the same

sign for x > a and different sign for x < a. That is,

(i) For f (n)(a) > 0, f (x)
ß
> 0, when x > a,
< 0, when x < a.

(ii) For f (n)(a) < 0, f (x)
ß
< 0, when x > a,
> 0, when x < a.

Hence, f has neither maximum nor minimum at a.

□

Note. Theorem 12.1.5 is inconclusive if f (k)(a) = 0 for every k ∈ N. For example,

f (x) =

®
e−

1
x2 if x , 0

0 if x = 0

f (k)(0) = 0 for all k ∈ N.

f (x) =

®
−e−

1
x2 if x , 0

0 if x = 0

f (k)(0) = 0 for all k ∈ N.

f (x) =


e−

1
x2 if x > 0

−e−
1
x2 if x < 0

0 if x = 0

f (k)(0) = 0 for all k ∈ N.

o Uniqueness of Pn,a, f

Definition 12.1.6. Let f and g be two functions. We say that f and g are “equal up to order n
at a” if

lim
x→a

f (x) − g(x)
(x − a)n = 0.
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Remark. If f (x) has nth derivative at a, then f (x) and Pn,a, f (x) are equal up to order n at a.
Question: Is there any polynomial Q(x), different from Pn,a, f (x), of degree less than or equal to
n such that f (x) and Q(x) are equal up to order n at a?
Answer: No, by the following theorem.

Theorem 12.1.7. Let P and Q be two polynomials in (x − a), of degree less than or equal to n.
Suppose that P and Q are equal up to order n at a. Then P = Q.

Proof. We claim that if R(x) is a polynomial of degree less than or equal to n and lim
x→a

R(x)
(x − a)n = 0,

then R(x) ≡ 0.

Proof of claim: Expressing R(x) as a polynomial in (x − a)

R(x) = b0 + b1(x − a) + b2(x − a)2 + · · · + bn(x − a)n,

we want to show that bi = 0 for i = 0, 1, 2, · · · , n by induction.

Since lim
x→a

R(x)
(x − a)n = 0, we have

0 ≤ lim
x→a
|R(x)| ≤ lim

x→a
|(x − a)|n = 0.

Then R(a) = lim
x→a

R(x) = 0. Thus, for i = 0, b0 = 0 and R(x) = b1(x − a) + · · · + bn(x − a)n.

If b0 = b1 = · · · = bi = 0 for 1 ≤ i < n, then R(x) = bi+1(x − a)i+1 + · · · + bn(x − a)n. By

using the similar argument as above, since lim
x→a

R(x)
(x − a)n = 0, we have

lim
x→a

∣∣∣ R(x)
(x − a)i+1

∣∣∣ ≤ lim
x→a
|x − a|n−(i+1) = 0.

Hence,

0 = lim
x→a

R(x)
(x − a)i+1 = lim

x→a
bi+1 + bi+2(x − a) + · · · + bn(x − a)n−(i+1) = bi+1.

By the induction, we have b0 = b1 = · · · = bn = 0 and the claim is proved.
Now, define R(x) = P(x) − Q(x). Since P and Q are equal up to order n at a, R(x) is a

polynomial of degree less than or equal to n and

lim
x→a

R(x)
(x − a)n = lim

x→a

P(x) − Q(x)
(x − a)n = 0.

By the claim, R(x) ≡ 0 and hence P(x) ≡ Q(x). □

Corollary 12.1.8. Suppose that f has nth derivative at a and P is a polynomial in (x − a) of
degree less than or equal to n which equals f up to order n at a. Then P(x) = Pn,a, f (x).

Proof. Since

lim
x→a

P(x) − Pn,a, f (x)
(x − a)n = lim

x→a

P(x) − f (x)
(x − a)n + lim

x→a

f (x) − Pn,a, f (x)
(x − a)n = 0,

P(x) and Pn,a, f (x) are equal up to order n at a. Also, P and Pn,a, f (x) are polynomials of degree
less than or equal to n. By Theorem 12.1.7, P(x) = Pn,a, f (x). □
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Remark. In Corollary 12.1.8, the hypothesis that “ f has nth derivative at a” is necessary. There
exists some function f such that some polynomials are equal to f of order n at a, but f does not
have n times derivatives at a. Hence, Pn,a, f (x) does not exists. For example,

f (x) =
ß

xn+1 if x is irrational
0 if x is rational.

Then P(x) = 0 and f are equal up to order n at 0. On the other hand, f ′(0) exists but f ′(x) does
not exist for every x , 0. Hence, f ′′(0) does not exist.

Remark. Corollary 12.1.8 gives another method to find the nth degree Taylor polynomial of f .
That is, to find a polynomial P(x) of degree n such that

lim
x→a

f (x) − P(x)
(x − a)n = 0.

Then P(x) = Pn,a, f (x). For example,

tan−1 x =
∫ x

0

1
1 + t2 dt =

∫ x

0
1 − t2 + t4 − t6 + · · · + (−1)nt2n +

(−1)n+1t2n+2

1 + t2 dt

= x − x3

3
+

x5

5
− x7

7
+ · · · + (−1)nx2n+1

2n + 1︸                                            ︷︷                                            ︸
P(x) : 2n+1 degree polynomial

+(−1)n+1
∫ x

0

t2n+2

1 + t2 dt

Consider∣∣∣ tan−1(x) − P(x)
x2n+1

∣∣∣ = ∣∣∣∫ x

0
t2n+2

1+t2 dt

x2n+1

∣∣∣ ≤ ∣∣∣∫ x

0
t2n+2 dt

x2n+1

∣∣∣ = 1
2n + 3

∣∣∣ x2n+3

x2n+1

∣∣∣ −→ 0 as x→ 0.

Since P(x) is equal to tan−1 x of order 2n + 1 at 0,

P2n+1,0(x) = x − x3

3
+

x5

5
− x7

7
+ · · · + (−1)nx2n+1

2n + 1
.

Observe that

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · · + (−1)nx2n+1

2n + 1
+ (−1)n+1

∫ x

0

t2n+2

1 + t2 dt

= P2n+1,0(x) + (−1)n+1
∫ x

0

t2n+2

1 + t2 dt.

Then ∣∣ tan−1 x − P2n+1,0(x)
∣∣ = ∣∣∣∫ x

0

t2n+2

1 + t2 dt
∣∣∣ ≤ |x|2n+3

2n + 3
.

Hence, for some |x0| ≤ 1,

| tan−1 x0 − P2n+1,0(x0)| ≤ |x0|2n+3

2n + 3
<

1
2n + 3

.

We can estimate tan−1 x0 by computing P2n+3,0(x0) with error less than
1

2n + 3
.
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12.2 Estimating Error and Taylor Theorem
In the previous section, we have learned that if f has n times derivatives at a, then

| f (x) − Pn,a(x)| � |x − a|n as x is sufficiently close to a.

Question: Can we estimate the difference between f (x) and Pn,a(x) when x is in some interval
of a?
Definition 12.2.1. We define the remainder term Rn,a(x) by

Rn,a(x) = f (x) − Pn,a(x)

By the definition of the remainder,

f (x) = Pn,a(x) + Rn,a(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n + Rn,a(x).

Observe that

f (x) F.T.C
= f (a) +

∫ x

a
f ′(t) dt︸          ︷︷          ︸

R0,a(x)

I.B.P
= f (a) + f ′(t)t

∣∣∣x

a
−
∫ x

a
f ′′(t)t dt

= f (a) + f ′(x)x − f ′(a)a −
∫ x

a
f ′′(t)t dt

= f (a) + f ′(a)(x − a) − f ′(a)x + f ′(x)x −
∫ x

a
f ′′(t)t dt

= f (a) + f ′(a)(x − a) +
(

f ′(x) − f ′(a)
)

x −
∫ x

a
f ′′(t)t dt

I.B.P
= f (a) + f ′(a)(x − a) +

Ä∫ x

a
f ′′(t) dt

ä
x −
∫ x

a
f ′′(t)t dt

= f (a) + f ′(a)(x − a) +
∫ x

a
f ′′(t)(x − t) dt︸                   ︷︷                   ︸

R1,a(x)

I.B.P
= f (a) + f ′(a)(x − a) − f ′′(t) · (x − t)2

2

∣∣∣x

a
+

∫ x

a

f ′′′(t)
2

(x − t)2 dt

= f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

∫ x

a

f ′′′(a)
2

(x − t)2 dt︸                       ︷︷                       ︸
R2,a(x)

By induction, if f (n+1) is continuous on [a, x], then

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x − t)n dt (integral form)

o Taylor Theorem
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Theorem 12.2.2. (Taylor Theorem) Let f (t) be a n + 1 times differentiable function on [a, x]
and Rn,a(x) be defined by

f (x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n + Rn,a(x).

Then

(a) (Cauchy form)

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n(x − a) for some ξ ∈ (a, x).

(b) (Lagrange form)

Rn,a(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1 for some ξ ∈ (a, x).

(c) (Integral form)

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x − t)n dt

Proof.

Recall the Cauchy Mean Value Theorem: If F and G are continous on [a, x] and differen-
tiable on (a, x), there exists ξ ∈ (a, x) such that

F(x) − F(a)
G(x) −G(a)

=
F′(ξ)
G′(ξ)

.

Define F on [a, x] by

F(t) = f (t) + f ′(t)(x − t) + · · · + f (n)(t)
n!

(x − t)n.

Let G be a differentiable function on [a, x] such that G′(t) , 0 on (a, x). By the Cauchy Mean
Value Theorem, there exists a number ξ ∈ (a, x) such that

F(x) − F(a)
G(x) −G(a)

=
F′(ξ)
G′(ξ)

. (12.3)

Also,

F(x) − F(a) = f (x) −
î

f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n
ó
= Rn,a(x)

and

F′(ξ) =���f ′(ξ) −���f ′(ξ) +(((((((f ′′(ξ)(x − ξ) −(((((((f ′′(ξ)(x − ξ) +��· · · +
f (n+1)(ξ)

n!
(x − ξ)n =

f (n+1)(ξ)
n!

(x − ξ)n.

By (12.3),

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n · G(x) −G(a)

G′(ξ)
.
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(a) Let G(t) = t − a. Then G(x) −G(a) = x − a and G′(ξ) = 1. Hence,

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n(x − a).

(b) Let G(t) = (x − t)n+1. Then G(x)−G(a) = −(x − a)n+1 and G′(ξ) = −(n+ 1)(x − ξ)n. Hence,

Rn,a(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1.

The part(c) is proved by using integration by parts □

Remark. In Theorem 12.2.2,

(i) the ξ in part(a) and part(b) are usually different.

(ii) the ξ in part(a) and part(b) depend on a and x.

(iii) by part(b), if
∣∣ f (n+1)(t)

∣∣ < M for all t ∈ [a, x], then∣∣Rn,a(x)
∣∣ < M · |x − a|n+1

(n + 1)!
.

(iv) by part(c), if
∣∣ f (n+1)(t)

∣∣ < M, then∣∣Rn,a(x)
∣∣ ≤ M

n!

∣∣∣∫ x

a
(x − t)n dt

∣∣∣ = M
(n + 1)!

∣∣∣ − (x − t)n+1
∣∣x

a

∣∣∣ = M
(n + 1)!

|x − a|n+1.

Example 12.2.3. Estimate sin 2 with error less than 0.0001.

Proof. Let f (x) = sin x. Then | f (n)(x)| ≤ 1 (= M) for every x ∈ R and n = 0, 1, 2, · · · . The
Taylor polynomial for f at 0 is

P2n+1,0(x) =
2n+1∑
k=0

f (k)(0)
k!

xk

= x − x3

3!
+

x5

5!
− x7

7!
+ · · · + (−1)n x2n+1

(2n + 1)!1

=

n∑
k=1

(−1)k

(2k + 1)!
x2k+1.

Let M = 1. The remainder

|R2n+1,0(x)| =
∣∣∣ sin x − P2n+1,0(x)

∣∣∣ ≤ ∣∣∣ f (2n+2)(ξ)
(2n + 2)!

∣∣∣|x|2n+2 ≤ |x|2n+2

(2n + 2)!
.

Consider
22n+2

(2n + 2)!
< 0.0001. Then n ≥ 5 and

P11,0(2) = 2 − 23

3!
+

25

5!
− 27

7!
+

29

9!
− 211

11!
≈ 0.909296136

and sin 2 ≈ 0.90929743. □
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Remark. For a given number x0 ∈ R,∣∣∣ sin x0 − P2n+1,0(x0)
∣∣∣ ≤ 1

(2n + 2)!
|x0|2n+2︸    ︷︷    ︸

fixed number

−→ 0 as n→ ∞.

Hence, for any x ∈ R, we can use n-degree polynomial to approximate sin x with error arbitrarily
small by choosing n sufficiently large.

Notice that the choice of n depends on the error ε and the value of |x|. When the point x is
far from the center “0”, we should choose larger number n in order to keep the error still less
than ε.

Example 12.2.4. Let f (x) = ex. Then f (k)(x) = ex for every k ∈ N and

Pn,0(x) =
n∑

k=0

f k(0)
k!

xk = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!

and for x > 0,

ex − Pn,0(x) =
∫ x

0

et

n!
(x − t)n dt ≤ ex

n!

∫ x

0
(x − t)n dt =

ex

(n + 1)!
xn+1.

To estimate the value of e with error less than 0.0001. Since e < 3, we have∣∣∣e − Pn,0(1)
∣∣∣ ≤ e1

(n + 1)!
<

3
(n + 1)!

< 0.0001

Choose n = 7 and R8 ≤ 1
13440 . We have P7,0(1) = 2.7182.

Example 12.2.5. For f (x) = ln(1 + x),

f ′(x) =
1

1 + x
= (1 + x)−1, f ′′(x) = −(1 + x)−2, f ′′′(x) = 2(1 + x)−3, · · ·

f (k)(x) = (−1)k+1(k − 1)!(1 + x)−k for k = 1, 2, · · · .

Then

Pn,0(x) = x − x2

2
+

x3

3
− x4

4
+ · · · + (−1)n−1 xn

n
and

Rn,0(x) =
1

(n + 1)!
f (n+1)(ξ)(x − 0)n+1 for some ξ ∈ (0, x)

=
(−1)n+1xn+1

n + 1
· 1

(1 + ξ)n+1 .

If x > 0, then ξ ∈ (0, x) and hence
1

(1 + ξ)n+1 < 1. We have
∣∣Rn,0(x)

∣∣ ≤ |x|n+1

n + 1
.

Example 12.2.6.

(a) Approximate the function f (x) = 3
√

x by a Taylor polynomial of degree 2 at a = 8.
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(b) How accurate is this approximation when 7 ≤ x ≤ 9.

Proof. (a) Compute

f ′(x) = −1
3

x−
2
3 , f ′′(x) = −2

9
x−

5
3 , f ′′′(x) =

10
27

x−
8
3 .

Then
f (8) = 2, f ′(8) =

1
12
, f ′′(8) = − 1

144
.

Hence, P2,8(x) = 2 +
1

12
(x − 8) − 1

288
(x − 8)2 and the approximation is

3√x ≈ 2 +
1

12
(x − 8) − 1

288
(x − 8)2.

(b) To find a bound M such that | f ′′′(x)| ≤ M for 7 ≤ x ≤
9, consider

| f ′′′(x)| = 10
27
|x|− 8

3 ≤ 10
27
· 7− 8

3 for 7 ≤ x ≤ 9.

Hence, for 7 ≤ x ≤ 9,

|R2,8(x)| ≤ 1
3!
· 10

27
· 7− 8

3 |x − 8|3 ≤ 0.0021
3!

· 1 < 0.0004.

Note. In fact, |R2,8(x)| < 0.0003 for 7 ≤ x ≤ 9.

□

Example 12.2.7. (a) What is the maximum error possible in using the approximation

sin x ≈ x − x3

3!
+

x5

5!

when −0.3 ≤ x ≤ 0.3? Use the approximation to find 12◦ correct to six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?

Proof. (a) (Method 1: Alternating Series) When −0.3 ≤ x ≤ 0.3, the series is an alternating
series and

|x|2k+1

(2k + 1)!
≤ |x|2k−1

(2k − 1)!
and

|x|2k+1

(2k + 1)!
−→ 0 as k → ∞.

By the alternating series estimation,∣∣ sin x − (x − x3

3!
+

x5

5!
)
∣∣ ≤ |x|7

7!
≤ (0.3)7

7!
≈ 4.3 × 10−8.
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Then
sin 12◦ = sin(

π

15
) ≈ π

15
− 1

3!
(
π

15
)3 +

1
5!

(
π

15
)5 ≈ 0.20791169

(Method 2: Taylor’s Inequality) For (x) = sin x, the polynomial x − x3

3!
+

x5

5!
is the 6th

degree Taylor’s polynomial for f at 0. The error

|R6,0(x)| ≤ M
7!
|x|7

where M is a number such that | f (7)(z)| ≤ M for −0.3 ≤ z ≤ 0.3. To find M, consider
f (7)(x) = − cos x. When −0.3 ≤ z ≤ 0.3, | − cos z| ≤ | cos 0| = 1 = M. Then

|R6,0(x)| ≤ 1
7!
· (0.3)7 < 4.3 × 10−8.

(b) Consider |R6,0(x)| ≤ |x|
7

7!
< 0.00005. Then |x| ≤ (0.252)1/7 ≈ 0.821.

□

12.3 Power Series
In the previous section, we know that a function f with sufficiently many times derivatives
at a could be approximated by its Taylor polynomial Pn,a(x). Some examples reveal that the
approximation become better (at least near a) if we choose larger degree Taylor polynomials.
In fact, this observation is not exactly true (and we will discuss in the later sections). We want
to ask whether a smooth function can be expressed as a “power series”

f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n + · · · .

Moreover, if f has the power series expression, what is it?

Definition 12.3.1. (a) A power series is a series of the form

∞∑
n=0

cnxn = c0 + c1x + c2x2 + c3x3 + · · ·

where x is a variable and the cn are constants called the “coefficients” of the series.
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(b) In general, a series of the form

∞∑
n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·

is called a “power series in (x − a)” or a “power series centered at a” or a “power series
about a”.

Example 12.3.2.
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · is a power series.

For given x = x0, we should determine whether the series
∞∑

n=0

cn(x0 − a)n converges or

diverges.

Definition 12.3.3. (a) We say that a power series
∞∑

n=0

cn(x − a)n converges

(i) at x0 if
∞∑

n=0

cn(x0 − a)n converges;

(ii) on the set S if
∞∑

n=0

cn(x − a)n converges at each x ∈ S .

(b) If we regard a series f (x) =
∞∑

n=0

cn(x − a)n as a function, then the domain of f (x) is the set

of all x for which the series converges.

Remark. A poswer series
∞∑

n=0

cn(x − a)n always converges at its center a. In fact, it converges

to the constant term c0.

Example 12.3.4. Consider the series
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · as a geometric series with

ratio x. Then the series converges when |x| < 1 and diverges when |x| ≥ 1. Therefore, the

domain of
∞∑

n=0

xn is (−1, 1).

Example 12.3.5. For what values of x is the series
∞∑

n=0

n!xn convergent?

Proof. (Idea: using the ratio test or root test)

Let an = n!xn. Then
∣∣∣an+1

an

∣∣∣ = ∣∣∣ (n + 1)!xn+1

n!xn

∣∣∣ = (n + 1)|x|. If x = 0, lim
n→∞

∣∣∣an+1

an

∣∣∣ = 0 < 1 and

if x , 0, lim
n→∞

∣∣∣an+1

an

∣∣∣ = ∞.

By the Ratio Test, the series converges when x = 0. □

Example 12.3.6. For what values of x does the series
∞∑

n=1

(x − 3)n

n
converge?
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Proof. Let an =
(x − 3)n

n
. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (x−3)n+1

n+1
(x−3)n

n

∣∣∣ = n
n + 1

|x − 3| −→ |x − 3| as n→ ∞.

By the Ratio Test, if |x − 3| < 1 (i.e. 2 < x < 4), the series
∞∑

n=1

(x − 3)n

n
converges and if

|x − 3| > 1 (i.e. x < 2 or x > 4) the series
∞∑

n=1

(x − 3)n

n
diverges.

For |x − 3| = 1,

(i) When x − 3 = 1 (i.e. x = 4),
∞∑

n=1

(x − 3)n

n
=

∞∑
n=1

1
n

diverges (p-series, p = 1).

(ii) When x−3 = −1 (i.e. x = 2),
∞∑

n=1

(x − 3)n

n
=

∞∑
n=1

(−1)n

n
converges by the alternating series

test.

Hence, the power series
∞∑

n=1

(x − 3)n

n
converges on [2, 4) and diverges on (−∞, 2) ∪ [4,∞). □

Example 12.3.7. (Bessel function of order 0) Find the domain of the Bessel function

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2 .

Proof. Let an =
(−1)x2n

22n(n!)2 . Then

∣∣∣an+1

an

∣∣∣ =
∣∣∣∣∣∣

(−1)x2(n+1)

22(n+1)[(n+1)!]2

(−1)x2n

22n(n!)2

∣∣∣∣∣∣ = 1
22(n + 1)2 |x|

2.

For every x ∈ R,

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

1
22(n + 1)2 |x|

2 = 0 < 1.

By the Ratio Test, the series converges for every x and the domain of J0(x) is R. □

From the above examples, we observe that the region where the power series
∞∑

n=0

cn(x − a)n is

convergent has always turned out to be an interval (e.g. {a}, finite interval, (−∞,∞) etc).

Question: Is the set where a power series converges an interval (including the case that con-
verges at a single point)?

Theorem 12.3.8. For a given power series
∞∑

n=0

cn(x − a)n,
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(a) if the series converges at x0 , a, then it converges absolutely at every x with |x − a| < |x0 − a|.

(b) if the series diverges at y0, then it diverges at every x with |x − a| > |y0 − a|.

Proof.

(a) Since
∞∑

n=0

cn(x0 − a)n converges, we have lim
n→∞
|cn(x0 − a)n| = 0. Thus, there exists N ∈ N

such that for every n > N such that |cn(x0 − a)n| < 1.

Let x satisfy |x−a| < |x0−a|. Since
∣∣∣ x − a
x0 − a

∣∣∣ < 1, the series
∞∑

n=N+1

∣∣∣ x − a
x0 − a

∣∣∣n converges. Also,

|cn(x − a)n| = |cn(x0 − a)n|
∣∣∣ x − a
x0 − a

∣∣∣n < ∣∣∣ x − a
x0 − a

∣∣∣n for n > N.

By the comparison test, the series
∞∑

n=N+1

|cn(x − a)n| conveges and hence
∞∑

n=1

|cn(x − a)n| also

converges.



296 CHAPTER 12. POWER SERIES AND TAYLOR SERIES

(b) Let z0 be a number such that |y0 − a| < |z0 − a|. Assume that the series
∞∑

n=0

cn(z0 − a)n

converges. By part(a), for every x with |x − a| < |z0 − a|, the series
∞∑

n=0

cn(x − a)n con-

verges. Hence the series
∞∑

n=0

cn(y0 − a)n converges. It contradicts the hypothesis that the

series
∞∑

n=0

cn(y0 − a)n diverges. Therefore,
∞∑

n=0

cn(z0 − a)n must diverges.

Since z0 is an arbitrary number with |y0 − a| < |z0 − a|, part(b) is proved.

□

Theorem 12.3.9. For a given power series
∞∑

n=0

cn(x − a)n, there are only three possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series conveges if |x − a| < R and diverges if
|x − a| > R.

Proof. (Exercise) □

Note.

(a) The number R in part(c) of Theorem 12.3.9 is called the “radius of convergence”.

(b) By convention, we define the radius of convergence as R = 0 in part(a), and as R = ∞ in
part(b).

(c) The interval which consists of all values of x for which the series converges is called the
“interval of convergence” of the power series.

(d) In order to find the interval of convergence in part(c) if the radius of convergence is ob-
tained, we still need to consider the endpoints of the interval. That is, to consider whether
the series converges at the endpoints x = a − R and x = a + R. All situations would occur.
Hence, the interval of convergence could be (a − R, a + R), [a − R, a + R), (a − R, a + R] or
[a − R, a + R].

Example 12.3.10.
Question: How to find the radius of convergece for a given power series? What is the connec-
tion between the coefficients and the radius of convergence?

Suppose that lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = L. Let an = cn(x − a)n. Then∣∣∣an+1

an

∣∣∣ = ∣∣∣cn+1

cn

∣∣∣|x − a| −→ L|x − a| as n→ ∞.
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By the ratio test,

if L|x − a| < 1⇐⇒ |x − a| < 1
L
, then the series

∞∑
n=0

cn(x − a)n is convergent;

if L|x − a| > 1⇐⇒ |x − a| > 1
L
, then the series

∞∑
n=0

cn(x − a)n is divergent.

Hence, the radius of convergence of the series is R =
1
L

where lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = L.

Example 12.3.11. Find the radius and interval of convergence of the series
∞∑

n=0

xn

n!
.

Proof. Let an =
xn

n!
. Then ∣∣∣an+1

an

∣∣∣ = ∣∣∣ xn+1

(n+1)!
xn

n!

∣∣∣ = |x|
n + 1

.

Hence, for every x ∈ R, lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

|x|
n + 1

= 0. The series
∞∑

n=0

xn

n!
converges for every

x ∈ R. The radius of convergence is∞ and the interval of convergence is R. □

Example 12.3.12. Find the radius and interval of convergence of the series
∞∑

n=0

nnxn.
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Proof. For every x , 0, if n ∈ N and n > 2
|x| , then |nx| > 2. Hence,

lim
n→∞
|nnxn| = lim

n→∞
|nx|n ≥ lim

n→∞
2n = ∞.

By the test for divergence, the series
∞∑

n=0

nnxn diverges at every x ∈ 0. The radius of convergence

is 0 and the interval of convergence is {0}.
□

Example 12.3.13. Find the radius and interval of convergence of the series
∞∑

n=0

(−3)nxn

√
n + 1

.

Proof. Let an =
(−3)nxn

√
n + 1

. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (−3)n+1 xn+1
√

n+2
(−3)n xn
√

n+1

∣∣∣ = 3

…
n + 1
n + 2

−→ 3|x| as n→ ∞.

By the Ratio Test,

(1) When 3|x| < 1⇐⇒ |x| < 1
3

, the power series is convergent.

(2) When 3|x| > 1⇐⇒ |x| > 1
3

, the power series is divergent.

(3) At the endpoints,

(i) if x =
1
3

, the series is
∞∑

n=0

(−1)n

√
n + 1

is convergnet by the alternating series test.

(ii) if x = −1
3

, the series is
∞∑

n=0

1
√

n + 1
is divergent (p-series, p =

1
2
< 1).

Hence, the radius of convergence is
1
3

and the interval of convergence is (−1
3 ,

1
3 ]. □

Example 12.3.14. Find the radius and interval of convergence of the series
∞∑

n=0

n(x + 2)n

3n+1 .

Proof. Let an =
n(x + 2)n

3n+1 . Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (n+1)(x+2)n+1

3n+2

n(x+2)n

3n+1

∣∣∣ = n
3(n + 1)

|x + 2| −→ 1
3
|x + 2| as n→ ∞.

By the Ratio Test,

(1) When
1
3
|x + 2 < 1⇐⇒ |x + 2| < 3, the power series is convergent.
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(2) When
1
3
|x + 2 > 1⇐⇒ |x + 2| > 3, the power series is divergent.

(3) At the endpoints, consider
1
3
|x + 2| = 1⇐⇒ |x + 2| = 3.

(i) If x = 1, the series is
1
3

∞∑
n=0

n = ∞ is divergent.

(ii) If x = −5, the series is
1
3

∞∑
n=0

(−1)nn is divergent by the test for divergence.

Hence, the radius of convergence is 3 and the interval of convergence is (−5, 1). □

Remark.

(i) The Ratio Test (or Root Test) do not apply for the endpoints of the interval of convergence.

(ii) Theorem 12.3.9 is false for general series
∞∑

n=0

fn(x).

o Operations for Power Series

When regarding power series as functions, we want to know whether some operations (such
as addition, subtraction, multiplication, division, differentiation or integration) for functions
also apply for power series and how they work.

Theorem 12.3.15. Let f (x) =
∞∑

n=0

bn(x − a)n and g(x) =
∞∑

n=0

cn(x − a)n with the intervals of con-

vergence (a − L, a + L) and (a − M, a + M) respectively. Let R = min(L,M). Then

(a) ( f ± g)(x) =
∞∑

n=0

(
bn ± cn

)
(x − a)n on (a − R, a + R).

(b)
(

f · g
)
(x) =

∞∑
n=0

dn(x − a)n on (a − R, a + R) where dn =

n∑
k=0

bkcn−k.

(c)
f (x)
g(x)

=

∞∑
n=0

en(x − a)n where en satisfies bn =

n∑
k=0

cken−k on (a − R, a + R).

Proof. (Exercise) □

Remark. Suppose that f (x) =
∞∑

n=0

bn(x − a)n and g(x) =
∞∑

n=0

cn(x − a)n both converge at x0 , a.

Theorem 12.3.15 hold for all x with |x − a| < |x0 − a| by using Theorem 12.3.8.
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■ Term-by-term Differentiation and Integration

Suppose that f (x) =
∞∑

n=0

cn(x − a)n on (a − R, a + R). It is natural to ask whether f is con-

tinuous, differentiable, integrable or has other properites. Moreover, if f is differentiable or
integrable, what are its derivative function or antiderivative function?

Intuitively, we guess that

d
dx

f (x) =
d
dx

Ä ∞∑
n=0

cn(x − a)n
ä ??
=

∞∑
n=0

d
dx

[
cn(x − a)n] = ∞∑

n=0

cnn(x − a)n−1

∫
f (x) dx =

∫ ∞∑
n=0

cn(x − a)n dx ??
=

∞∑
n=0

∫
cn(x − a)n dx = C +

∞∑
n=0

cn

n + 1
(x − a)n+1

The interchange of infinite sum and limit ( lim
x→x0

∞∑
n=0

??
=

∞∑
n=0

lim
x→x0

), infinite sum and differentiation

(
d
dx

∞∑
n=0

??
=

∞∑
n=0

d
dx

) or infinite sum and integration(
∫ ∞∑

n=0

??
=

∞∑
n=0

∫
) involve the concept of the

interchange of two limits ( lim
n→∞

lim
m→∞

??
= lim

m→∞
lim
n→∞

). It is a very importnat issue in mathematics. The
above equalities are true if the summations are just sum of “finite terms”. However, when the
summations are sum of “infinite terms”, the results could be totally different and the equalities
are usually false.

In the future, we will discuss general series of functions
∞∑

n=0

fn(x) and the term-by-term dif-

ferentiation and integration will be important topics.

For a power series
∞∑

n=0

cn(x − a)n, it can be regarded as a series of functions
∞∑

n=0

fn(x) with

special forms of power functions. Since it has such a nice structure, some operations are applied
for the power series (term-by-term).

Lemma 12.3.16. Suppose that
∞∑

n=0

cn(x − a)n converges on (a − R, a + R). Then

(a) the series
∞∑

n=0

ncn(x − a)n converges on (a − R, a + R) and

(b) the series
∞∑

n=0

cn

n + 1
(x − a)n+1 converges on (a − R, a + R).

Proof. We will prove part(a) here and the proof of part(b) is similar and left to the readers.
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For z0 ∈ (a − R, a + R), fix a number x0 ∈ (a − R, a + R) such that |z0 − a| < |x0 − a| < R. By

Theorem 12.3.8, the series
∞∑

n=0

cn(x0 − a)n converges aboslutely. That is,

∞∑
n=0

|cn(x0 − a)n| =
∞∑

n=0

|cn|
∣∣x0 − a

∣∣n < ∞. (12.4)

On the other hand, since
∣∣∣ z0 − a
x0 − a

∣∣∣ < 1, we have n ·
∣∣∣ z0 − a
x0 − a

∣∣∣n−1
−→ 0 as n → ∞. Thus, there

exists N ∈ N such that for n > N, n ·
∣∣∣ z0 − a
x0 − a

∣∣∣n−1
< 1. Consider

|ncn(z0 − a)n−1| = 1
|x0 − a| |cn(x0 − a)n| · n ·

∣∣∣ z0 − a
x0 − a

∣∣∣n−1

︸              ︷︷              ︸
<1 as n≥N+1

≤ 1
|x0 − a| |cn(x0 − a)n|

where the last inequality holds when n ≥ N + 1. From the comparison test and (12.4), the series
∞∑

n=N+1

|ncn(z0 − a)n−1| conveges. Then the series
∞∑

n=0

cn(z0 − a)n absolutely conveges and hence

it also converges. Since z0 is an arbitrary number in (a − R, a + R), the series
∞∑

n=0

ncn(x − a)n

converges on (a − R, a + R).
□

Theorem 12.3.17. Let f (x) =
∞∑

n=0

cn(x − a)n with the radius of convergence R > 0. Then

(a) for any 0 < L < R, f is integrable on [a − L, a + L] and∫
f (x) dx =

∫ ∞∑
n=0

cn(x − a)n dx =
∞∑

n=0

∫
cn(x − a)n dx = C +

∞∑
n=0

cn

n + 1
(x − a)n+1.

(b) f is differentiable (and therefore continuous) on (a − R, a + R) and

f ′(x) =
d
dx

Ä ∞∑
n=0

cn(x − a)n
ä
=

∞∑
n=0

d
dx

[
cn(x − a)n] = ∞∑

n=0

ncn(x − a)n−1.

Proof. We postpone the proof in the end of this section. □

Remark.

(i) The derivative and antiderivative functions of power series are another power series. Al-
though the radius of convergence of derivative and antiderivative function are the same as
the one of the origianl power series, their intervals of convergence may be different from

the one of the original power series. (See the example
∞∑

n=1

xn

n2 or tan−1 x).
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(ii) The term-by-term differentiation and integration gives a powerful method to solve differ-
ential equations.

o Proof of Theorem 12.3.17

Recall that “the convergence of a series
∞∑

n=0

cn(x − a)n on (a − R, a + R)” means that the

sequence of partial sums
¶

sn(x) =
n∑

k=0

ck(x − a)k
©∞

n=0
converges on (a − R, a + R). That is, for

every x0 ∈ (a−R, a+R), the limit lim
n→∞

sn(x0) converges. Hence, the series
∞∑

n=0

cn(x − a)n should

be expressed as

∞∑
n=0

cn(x − a)n = lim
n→∞

î n∑
k=0

ck(x − a)k
ó
= lim

n→∞
sn(x) =: s(x).

For x0, y0 ∈ (a − R, a + R), we have lim
n→∞

sn(x0) = s(x0) and lim
n→∞

sn(y0) = s(y0). But the “rate of
convergence” may be different. That is, for ε > 0, the above two limits say that

|sn(x0) − s(x0)| < ε for n > N1 and |sn(y0) − s(y0)| < ε for n > N2.

The numbers N1 and N2 may be different. These numbers N depend not only on the error ε but
also on the number x.

Since the power series has a good structure, we can obtain a nice result such that “in a
certain restricted interval” the corresponding integer N in the definition of limit only depends
on ε but is indpendent of x. Hence, the rate of convergence is “uniform”.

Lemma 12.3.18. Suppose that
∞∑

n=0

cn(x − a)n converges to f (x) on (a−R, a+R). Let 0 < L < R

be a fixed number. For every ε > 0, there exists N = N(ε) ∈ N (depending on ε only), such that
for n ≥ N, ∣∣∣ f (x) −

n∑
k=0

ck(x − a)k
∣∣∣ < ε for every x ∈ [a − L, a + L].

Proof. Let x0 = a + L ∈ (a − R, a + R). Then
∞∑

n=0

cn(x0 − a)n converges absolutely. That is,

∞∑
n=0

∣∣cn(x0 − a)n
∣∣ < ∞. Therefore, for given ε > 0, there exists N ∈ N such that

∞∑
k=N+1

∣∣ck(x0 − a)k
∣∣ = ∞∑

k=N+1

∣∣ckLk
∣∣ < ε.
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For every x ∈ [a − L, a + L] and n > N, since
∞∑

n=0

cn(x − a)n converges to f (x), we have

∣∣∣ f (x) −
n∑

k=0

ck(x − a)k
∣∣∣ = ∣∣∣ ∞∑

k=n+1

ck(x − a)k
∣∣∣ ≤ ∞∑

k=n+1

∣∣ck(x − a)k
∣∣

≤
∞∑

k=N+1

∣∣ck(x − a)k
∣∣ ≤ ∞∑

k=N+1

∣∣ckLk
∣∣ < ε.

Note that the number N only depends on L but is independent of x ∈ [a − L, a + L]. □

Note. When the sequence of partial sum sk(x) =
k∑

n=0

cn(x − a)n satisfies Lemma 12.3.18 on [a−

L, a + L], we call {sk(x)} “converges uniformly on [a − L, a + L]”.

Proof of Theorem 12.3.17

(a) Denote sn(x) =
n∑

k=0

ck(x − a)k as the partial sum of the series
∞∑

k=0

ck(x − a)k. For every n ∈ N,

sn(x) is a polynomial function and thus it is integrable on (a − R, a + R).

Let 0 < L < R. By Lemma 12.3.18, for given ε > 0, there exists N = N(ε) ∈ N such that
for every x ∈ [a − L, a + L]∣∣ f (x) − sn(x)

∣∣ < ε whenever n ≥ N. (12.5)

Since sN+1(x) is integrable on [a − L, a + L], there exists a partition P = {x0, x1, · · · , xk} of
[a − L, a + L] such that

U(P, sN+1) − L(P, sN+1) < ε.

By (12.5),

∣∣∣U(P, f ) − U(P, sN+1)
∣∣∣ = ∣∣∣ k∑

i=1

(Mi − M(N+1)
i )(xi − xi−1)

∣∣∣
≤

k∑
i=1

∣∣Mi − M(N+1)
i

∣∣∣∣xi − xi−1
∣∣

≤ max
1≤i≤k

∣∣Mi − M(N+1)
i

∣∣︸                    ︷︷                    ︸
<ε (check it)

k∑
i=1

|xi − xi−1
∣∣︸            ︷︷            ︸

=2L

< 2Lε

where Mi = max
x∈[xi−1,xi]

f (x) and M(N+1)
i = max

x∈[xi−1,xi]
sN+1(x).
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Similarly,
∣∣∣L(P, f ) − L(P, sN+1)

∣∣∣ < 2Lε. Then∣∣∣U(P, f ) − L(P, f )
∣∣∣ ≤ ∣∣∣U(P, f ) − U(P, sN+1)

∣∣∣ + ∣∣∣U(P, sN+1) − L(P, sN+1)
∣∣∣

+

∣∣∣L(P, sN+1) − L(P, f )
∣∣∣

< 4Lε + ε = (4L + 1)ε.

Hence, f is integrable on [a − L, a + L].

On the other hand, for x ∈ (a − R, a + R), we choose 0 < L < R such that x ∈ [a − L, a + L].
For given ε > 0, let N be the integer such that the inequality (12.5) hold when n > N. Then∣∣∣∫ x

a
f (t) dt −

n∑
k=0

ck

k + 1
(x − a)k+1

∣∣∣ = ∣∣∣∫ x

a
f (t) dt −

∫ x

a
sn(t) dt

∣∣∣ = ∣∣∣∫ x

a
f (t) − sn(t) dt

∣∣∣
≤
∫ x

a
| f (t) − sn(t)| dt ≤

∫ x

a
ε dt ≤ Lε.

Let n→ ∞, we have
∫ x

a
f (t) dt =

∞∑
n=0

cn

n + 1
(x − a)n+1.

(b) By Lemma 12.3.16, the derivative of partial sum s′k(x) =
k∑

n=0

ncn(x − a)n−1 converges on

(a − R, a + R). Fix 0 < L < R, by Lemma 12.3.18, s′k(x) converges to
∞∑

n=0

ncn(x − a)n−1 =: g(x)

uniformly on [a−L, a+L]. It sufficies to show that f ′(x) = g(x) for every x ∈ [a−L, a+L].
By part(a),∫ x

a
g(t) dt = lim

n→∞

∫ x

a
s′n(t) dt F.T.C

= lim
n→∞

Ä
sn(x) − sn(a)

ä
= f (x) − f (a).

Then, by the Fundamental Theorem of Calculus,

f ′(x) = g(x) =
∞∑

n=0

ncn(x − a)n−1 for every x ∈ [a − L, a + L].

Since L is an arbitrary number with 0 < L < R, we obtain f ′(x) =
∞∑

n=0

ncn(x − a)n−1 on

(a − R, a + R).

Remark.

(i) The series
∞∑

n=0

cn(x − a)n and
∞∑

n=1

ncn(x − a)n−1 have the same radius of convergence. But

they may have different interval of convergence. For example,
∞∑

n=1

1
n2 xn converges on [−1, 1]

∞∑
n=1

1
n

xn−1 converges on [−1, 1)



12.4. POWER SERIES REPRESENTATION 305

(ii) For every k ∈ N,

dk

dxk

Ä ∞∑
n=0

cn(x − a)n
ä
=

∞∑
n=0

dk

dxk

Ä
cn(x − a)n

ä
=

∞∑
n=k

n(n − 1)(n − 2) · · · (n − k + 1)(x − a)n−k

All the above series have the same radii of convergence.

12.4 Power Series Representation

In Section 12.2, we know that if a function f has sufficiently many derivatives at a point a, it can
be approximated by polynomials Pn,a(x) (at least near a). As n becomes large, the approximation
becomes better. This suggests us that if n tends to infinity, f might be expressed as a power
series.

Some reasons also motivate us to find power series representation for a function. Many
functions have no elementary antiderivatives or it is difficult to solve differential equations, or
the approximation of them are difficult to find. We hope to express those functions as sums of
power series and do the differentiation or integration on the power series rather than dealing
with the original functions.

Example 12.4.1.

Consider the power series
∞∑

n=0

xn = 1 + x + x2 + · · ·. If we

regard the series as a geometric series with ratio x, then
the series diverges when |x| > 1 and converges when |x| <
1. Moreover,

∞∑
n=0

xn =
1

1 − x
for |x| < 1. (12.6)

Hence, the power series is regarded as expressing the

function f (x) =
1

1 − x
.

Note. Observe that the domain of f (x) =
1

1 − x
is R\{1} but the domain of the series

∞∑
n=0

xn is

(−1, 1). This says that a power series representation of a function may equal this function only
on a proper subset of its domain rather than the whole domain.

Question: For a given function, does it have a power series representation? If yes, for what

values of x does f (x) equal
∞∑

n=0

cnxn? If f (x) =
∞∑

n=0

cnxn, can we take differentation or integration

on the power series term-by-term?

Example 12.4.2. Express
1

1 + x2 as the sum of a power series and find the interval of conver-
gence.
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Proof. Consider
1

1 + x2 =
1

1 − (−x2)
. Replacing x by −x2 in Equation (12.6), we have

1
1 + x2 =

1
1 − (−x2)

=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n.

The geometric series converes when |− x2| < 1. Thus, the interval of convergence is (−1, 1). □

Example 12.4.3. Find the power series representation of
1

x + 2
.

Proof. Consider
1

x + 2
=

1
2
· 1

1 − (− x
2 )

. Replacing x by − x
2 in Equation (12.6), we have

1
x + 2

=
1
2
· 1

1 − (− x
2 )
=

1
2

∞∑
n=0

(− x
2

)n =

∞∑
n=0

(−1)n

2n+1 xn.

The power series converges when | − x
2 | < 1. The interval of convergence is (−2, 2). □

Example 12.4.4. Find a power series representation of
x3

x + 2
.

Proof. The power series representation is

x3

x + 2
= x3 · 1

x + 2
= x3

∞∑
n=0

(−1)nxn

2n+1 =

∞∑
n=0

(−1)nxn+3

2n+1 .

The interval of convergence is (−2, 2).
□

Example 12.4.5. (Bessel function) The function

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2 is defined for all x ∈ R

Then

J′0(x) =
d
dx

î ∞∑
n=0

(−1)nx2n

22n(n!)2

ó
=

∞∑
n=0

d
dx

î (−1)nx2n

22n(n!)2

ó
=

∞∑
n=1

(−1)n2nx2n−1

2n(n!)2 on R.

Example 12.4.6. Express
1

(1 − x)2 as a power series by differentiating
1

1 − x
. What is the radius

of convergence?

Proof. Since
1

1 − x
= 1 + x + x2 + · · · =

∞∑
n=0

xn for |x| < 1,

1
(1 − x)2 =

d
dx

î 1
1 − x

ó
=

d
dx

î ∞∑
n=0

xn
ó
=

∞∑
n=1

d
dx

(xn) =
∞∑

n=1

nxn−1
Ä
=

∞∑
n=0

(n + 1)xn
ä

= 1 + 2x + 3x2 + · · · .

The radius of convergence of the power series of
1

(1 − x)2 is 1 which is the same as the radius of

convergence of the power series of
1

1 − x
. □



12.4. POWER SERIES REPRESENTATION 307

Example 12.4.7. Find a power series representation for ln(1 + x) and its radius of convergence.

Proof. Since ln(1 + x) =
∫

1
1 + x

dx and
1

1 − (−x)
=

∞∑
n=0

(−x)n =

∞∑
n=0

(−1)nxn for |x| < 1,

ln(1 + x) =
∫

1
1 + x

dx =
∫ ∞∑

n=0

(−1)nxn dx = C +
∞∑

n=0

(−1)n xn+1

n + 1
.

To determine C, taking x = 0 ∈ (−1, 1), we have 0 = ln(1 + 0) = C and hence

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
.

Since the radius of convergence of the series for
1

1 + x
is 1, the radius of convergence of the

series for ln(1 + x) is also 1. □

Example 12.4.8. Find a power series representation for f (x) = tan−1 x.

Proof. Since f ′(x) =
1

1 + x2 =
1

1 − (−x2)
=

∞∑
n=0

(−1)nx2n on |x| < 1, we have

f (x) = tan−1 x =
∫ ∞∑

n=0

(−1)nx2n dx = C +
∞∑

n=0

(−1)nx2n+1

2n + 1
.

To determine C, taking x = 0, we have 0 = tan−1 0 = C and hence

tan−1 x =
∞∑

n=0

(−1)n

2n + 1
x2n+1.

Since the radius of convergence of the series for
1

1 + x2 is 1, the radius of convergence of the

series for tan−1 x is also 1. □

Note. In fact, the power series representation is also true when x = ±1. But this result is not
given by the above theorem.

Example 12.4.9. Express
π

4
as a series.

Proof. From Example 12.4.8,

π

4
= tan−1 1 = 1 − 1

3
+

1
5
− 1

7
+ · · · + (−1)n

2n + 1
+ · · ·

In fact,
π

4
has several different series representations. For example,

π

4
= tan−1 1

2
+ tan−1 1

3

=
î1

2
− 1

3
(1

2
)3
+

1
5
(1

2
)5 − 1

7
(1

2
)7
+ · · ·

ó
+
î1

3
− 1

3
(1

3
)3
+

1
5
(1

3
)5 − 1

7
(1

3
)7
+ · · ·

ó
□
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Note. If we use the idnetity π = 48 tan−1 1
18 + 32 tan−1 1

57 − 20 tan−1 1
239 to approximate π, it will

give more rapid rate of convergence than the above series representation since 1
18 , 1

57 and 1
239 are

much smaller than 1
2 and 1

3 . This implies that the reminder of the former decays to zero much
more rapidly than the one of latter.

Example 12.4.10. (a) Evaluate
∫

1
1 + x7 dx as a power series

(b) Approximate
∫ 0.5

0

1
1 + x7 dx correct to within 10−7.

Proof. (a) Since
1

1 + x7 =
1

1 − (−x7)
=

∞∑
n=0

(−x7)n =

∞∑
n=0

(−1)nx7n for |x < 1, we have

∫
1

1 + x7 dx =
∫ ∞∑

n=0

(−1)nx7n dx = C +
∞∑

n=0

(−1)n x7n+1

7n + 1
for |x| < 1.

(b) ∫ 0.5

0

1
1 + x7 dx =

∞∑
n=0

(−1)n

7n + 1
x7n+1

∣∣∣0.5
0
=

∞∑
n=0

(−1)n (0.5)7n+1

7n + 1
.

By the alternating series estimation, for
∞∑

n=0

(−1)bn with bn > 0, the estimate of remain-

der |Rn| < bn+1. Hence, for bn =
(0.5)7n+1

7n + 1
< 10−7, we have n ≥ 4.

Therefore, ∫ 0.5

0

1
1 + x7 dx ≈ 1

2
− 1

8 · 28 +
1

15 · 215 −
1

22 · 222 ≈ 0.49951374.

□

Remark. Suppose that f (x) =
∞∑

n=0

cn(x − a)n converges for |x−a| < R. Then f ′(x) =
∞∑

n=1

ncn(x − a)n

also converges for |x − a| < R. Hence f ′(x) has a power series representation on (x − R, x + R).
We can also take term-by-term differentiation and obtain

f ′′(x) =
∞∑

n=2

n(n − 1)(x − a)n−2 converges on (a − R, a + R)

...

f (k)(x) =
∞∑

n=k

n(n − 1)(n − 2) · · · (n − k + 1)(x − a)n−k converges on (a − R, a + R).
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12.5 Taylor and Maclaurin Series
So far, we can find power series representations for a centain restricted class of functions.

Question: Which functions do have power series representations?

Suppose that f has a power series representation

f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n + · · · =
∞∑

n=0

cn(x − a)n for |x − a| < R

Question: what are the coefficients cn?

By the term-by-term differentiation, we can take
dk

dxk on f and obtain

f (k)(x) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)cn(x − a)n−k.

Plugging x = a into the equation, we have

ck =
f (k)(a)

k!
for k = 0, 1, 2, · · · .

Remark. We have seen this coefficient formula in Taylor polynomials.

Definition 12.5.1. (a) Let f be a function with infinitely many times derivatives at a, that is,
f ′(a), f ′′(a), · · · , f (k)(a), · · · exist for k = 1, 2, · · · . Then the series

f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (k)(a)

k!
(x − a)k + · · · =

∞∑
n=0

f (n)(a)
n!

(x − a)n

is called the “Taylor series for f at a” (or “Taylor series for f about a” or “Taylor series for
f centered at a”).

(b) For the special case a = 0, the Taylor series at 0,
∞∑

n=0

f (n)(0)
n!

xn is also called the “Maclaurin

series for f ”.

Note. If f can be represented as a power series about a with radius of convergence R > 0, then
f is equal to the sum of its Taylor series about a.

Example 12.5.2. Find the Taylor series for the following functions at the given points.

(1) f (x) = ex at x = 0.

Proof. Since f (k)(x) = ex, we have f (k)(0) = 1 for k = 0, 1, 2, · · · . Hence, the Taylor series
for f at 0 (Maclaurin series) is

∞∑
n=0

f (n)(0)
n!

xn =

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · + xn

n!
+ · · · .
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Moreover, let an =
xn

n!
. Then

∣∣∣an+1

an

∣∣∣ = |x|
n + 1

−→ 0 < 1 as n→ ∞ for every x. By the Ratio

Test, the Taylor series converges for all x. □

(2) f (x) = sin x at x = 0.

Proof. For k ∈ N,

f (4n)(x) = sin x, f (4n+1)(x) = cos x, f (4n+2)(x) = − sin x, f (4n+3)(x) = − cos x
f (4n)(0) = sin x, f (4n+1)(0) = 1, f (4n+2)(0) = 0, f (4n+3)(0) = −1

The Taylor series for f at 0 (Maclaurin series) is

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

Let an =
(−1)n

(2n + 1)!
x2n+1. Then

∣∣∣an+1

an

∣∣∣ = ∣∣∣ (−1)n+1

(2n+3)! x2n+3

(−1)n

(2n+1)! x2n+1

∣∣∣ = ∣∣∣ x2

(2n + 1)(2n + 2)

∣∣∣ −→ 0 for all x.

Therefore, the Taylor series
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1 converges for all x ∈ R. □

By the definition of Taylor series, as long as a function f has infinitely many derivatives at
a, the Taylor series for f about a is defined. It is natural to ask the following questions:

Question:

(i) What values of x for which the Taylor sereis is convergent or divergent?

(ii) If the Taylor series converges at x, does it converge to f (x)? That is, f (x) ??
=

∞∑
n=0

f (n)(a)
n!

(x − a)n

We usually determine whether and where a Taylor series converges by using the Ratio test
or Root test. Even if the Taylor series for f about a converges at some number x , a, it may not
converge to f (x). For example,

f (x) =

®
e−

1
x2 if x , 0

0 if x = 0

We can evaluate that f (0) = f ′(0) = f ′′(0) = · · · = f (k)(0) = · · · = 0. Hence, the Taylor series
for f at 0 is the zero function which does not converge to f except at the center 0.
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The Taylor series for f at a is defined by the limit of its partial sum

∞∑
n=0

f (n)(a)
n!

(x − a)n = lim
N→∞

N∑
n=0

f (n)(a)
n!

(x − a)n = lim
N→∞

PN,a(x)

To check whether the Taylor series converges to f , we should show that

f (x) = lim
N→∞

PN,a(x) if and only if lim
N→∞

RN,a(x) = lim
N→∞

f (x) − PN,a(x) = 0.

We recall the Taylor Theorem here (see Theorem 12.2.2 ).

Let f (t) be a n + 1 times differentiable function on [a, x] and Rn,a(x) be defined by

f (x) = Pn,a(x) + Rn,a(x).

Then

(a) (Cauchy form)

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n(x − a) for some ξ ∈ (a, x).

(b) (Lagrange form)

Rn,a(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1 for some ξ ∈ (a, x).

(c) (Integral form)

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x − t)n dt

By using the part(b) of Taylor Theorem, we can derive the Taylor inequality

Lemma 12.5.3. Let f (t) be a n+ 1 times differentiable function on [a, x] and | f (n+1)(z)| ≤ M for
all z ∈ [a, x]. Then the remainder Rn,a(x) of the Taylor series satisfies the inequaltiy

|Rn,a(x)| ≤ M
(n + 1)!

|x − a|n+1

Corollary 12.5.4. Let f (t) be a n + 1 times differentiable function on (a − R, a + R) and
| f (n+1)(z)| ≤ M for all z ∈ (a − R, a + R). Then for every x ∈ (a − R, a + R),

|Rn,a(x)| = | f (n+1)(z0)|
(n + 1)!︸         ︷︷         ︸

for some z0∈[a,x]

|x − a|n+1 ≤ M
(n + 1)!

|x − a|n+1.

Example 12.5.5. Determine whether the equality ex =

∞∑
n=0

xn

n!
holds. If yes, for what values of

x does the equality hold?
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Proof. Let f (x) = ex. Then f (n)(x) = ex for all n ∈ N and

f (x) = ex =

n∑
k=0

xk

k!
+ Rn,0(x).

Fix a number x0 and choose a number d ≥ |x0|. Then | f (n+1)(z)| ≤ e|z| ≤ ed for all 0 ≤ |z| ≤
|x0| ≤ d. By the Taylor inequality,

0 ≤ |Rn,0(x0)| ≤ ed

(n + 1)!
|x0 − 0|n+1 ≤ ed dn+1

(n + 1)!
.

By the Squeeze Theorem, lim
n→∞
|Rn,0(x0)| = 0. Hence, the Taylor series

∞∑
n=0

xn

n!
converges to ex

at x0. Since x0 is an arbitrary number in R, the Taylor series
∞∑

n=0

xn

n!
converges to ex for every

number in R. □

Example 12.5.6. Find the Taylor series for f (x) = ex at a = 2, and determine whether and for
what values of x, f (x) equals its Taylor series about a = 2.

Proof. Since f (n)(x) = ex, f (n)(2) = e2. The Taylor series for f at a = 2 is

∞∑
n=0

f (n)(2)
n!

(x − 2)n =

∞∑
n=0

e2

n!
(x − 2)n

• To determine for which values of x the Taylor series conveges.

Let an =
e2

n!
(x − 2)n. Then for every x ∈ R,

∣∣∣an+1

an

∣∣∣ = ∣∣∣ e2

(n+1)! (x − 2)n+1

e2

n! (x − 2)n

∣∣∣ = 1
n + 1

|x − 2| −→ 0 as n −→ ∞.
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• To determine whether ex =

∞∑
n=0

e2

n!
(x − 2)n.

Fix a number d > 0. By the Taylor theorem, for x with |x − 2| < d, there exists zx between 2
and x such that

Rn,2(x) =
f (n+1)(zx)
(n + 1)!

|x − 2|n+1 =
ezx

(n + 1)!
|x − 2|n+1.

Hence, for |x − 2| < d,

0 ≤ |Rn,2(x)| ≤ e2+d

(n + 1)!
|x − 2|n+1 ≤ e2+d dn+1

(n + 1)!
.

By the Squeeze Theorem, lim
n→∞

Rn,2(x) = 0 for every |x−2| < d and this imiplies that ex =

∞∑
n=0

e2

n!
(x − 2)n

for every |x − 2| < d. Sicne d is arbitrary number, we have

ex =

∞∑
n=0

e2

n!
(x − 2)n for every x ∈ R.

□

Example 12.5.7. Find the Maclaurin series for f (x) = sin x and prove that it represents sin x
for all x.

Proof. The derivatives of f are

f (4k)(x) = sin x, f (4k+1)(x) = cos x, f (4k+2)(x) = − sin x, f (4k+3)(x) = − cos x.

Then
f (4k)(0) = 0, f (4k+1)(0) = 1, f (4k+2)(0) = 0, f (4k+3)(0) = −1.

The Maclaurin series for sin x is
∞∑

n=0

f (n)(0)
n!

xn = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

Since | f (n+1)(x)| = | ± sin x| or | ± cos x| ≤ 1 for all x ∈ R and n ∈ N, we have

|Rn,0(x) ≤ 1
(n + 1)!

|x|n+1.

Hence, for every fixed x, Rn,0(x)→ 0 as n→ ∞. That is,

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1 for all x ∈ R.

□

Example 12.5.8. Prove that cos x =
∞∑

n=0

(−1)n

(2n)!
.
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Proof.

cos x =
d
dx

(sin x) =
d
dx

Ä ∞∑
n=0

(−1)n

(2n + 1)!
x2n+1
ä

=

∞∑
n=0

(−1)n

(2n + 1)!

Ä d
dx

x2n+1
ä

=

∞∑
n=0

(−1)n

(2n)!
x2n for all x ∈ R.

□

Example 12.5.9. Find the Maclaurin series for the function f (x) = x cos x

Proof. Since cos x =
∞∑

n=0

(−1)n

(2n)!
x2n for all x, we have

x cos x = x ·
∞∑

n=0

(−1)n

(2n)!
x2n =

∞∑
n=0

(−1)n

(2n)!
x2n+1 for all x.

□

Exercise. Find the Taylor series for f (x) = ln(1 + x) and for what values of x the Taylor series
converges to f (x).

Answer:
∞∑

n=1

(−1)n+1

n
xn for −1 < x ≤ 1.

■ Binomial Series

Example 12.5.10. (Binomial Series) Use the Maclaurin series for f (x) = (1+ x)k to deduce the
formula of the binomial series where k is any real number.

Proof. The derivatives of f is

f (n)(x) = k(k − 1)(k − 2) · · · (k − n + 1)(1 + x)k−n for n = 1, 2, · · · .
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Then
f (n)(0) = k(k − 1)(k − 2) · · · (k − n + 1) for n = 1, 2, · · · .

The Maclaurin series for f (x) = (1 + x)k is

∞∑
n=0

f (n)(0)
n!

xn =

∞∑
n=0

k(k − 1)(k − 2) · · · (k − n + 1)
n!

xn (binomial series)

□

Note. (1) (Convergence)

(i) For k ∈ N, k − n + 1 = 0 when n = k + 1. Then the binomial series is a finite sum and
a k degree polynomial. Therefore, the series converges for all x.

(ii) For k ∈ R\N, let an =
k(k − 1)(k − 2) · · · (k − n + 1)

n!
xn. Consider

∣∣∣an+1

an

∣∣∣ = |k − n|
n + 1

|x| =
|1 − k

n |
1 + 1

n

|x| −→ |x| as n→ ∞.

By the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.
Question: How about x = ±1?
Answer: depending on k.

• If −1 < k ≤ 0, the series converges at 1.
• If k ≥ 0, the series converges at ±1.

(2) Denote the coefficients in the binomial seriesÇ
k
n

å
=

k(k − 1)(k − 2) · · · (k − n + 1)
n!

(binomial coefficients)

If k ∈ N and k ≥ n, then

Ç
k
n

å
=

k!
n!(k − n)!

.

(3) The binomial series: if k ∈ R and |x| < 1, then

(1 + x)k =

∞∑
n=0

Ç
k
n

å
xn

= 1 + kx +
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)
3!

x3 + · · · + k(k − 1)(k − 2) · · · (k − n + 1)
n!

xn.

Example 12.5.11. Find the Maclaurin series for the function f (x) =
1

√
4 − x

and its radius of

convergence.
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Proof. The function f (x) =
1

√
4 − x

= (4 − x)−
1
2 . By the binomial series with k = −1

2 and re-

placing x by − x
4

, we have

f (x) =
1
2

∞∑
n=0

Ç
−1

2

n

åÄ
− x

4

än

= =
1
2

î
1 +

1
8

x +
1 · 3
2! 82 x2 +

1 · 3 · 5
3! 83 x3 + · · · + 1 · 3 · 5 · · · (2n − 1)

n! 8n xn + · · ·
ó

The series converges when | − x
4
| < 1, that is, on (−4, 4). □

Example 12.5.12. Find the sum of the series

1
1 · 2 −

1
2 · 22 +

1
3 · 23 −

1
4 · 24 + · · · +

(−1)n−1

n · 2n + · · ·.

Proof. Consider
∞∑

n=1

(−1)n−1

n · 2n =

∞∑
n=1

(−1)n−1

(
1
2

)n

n
.

Using the Maclarin series for ln(1 + x) by taking x = 1
2 , we have

∞∑
n=1

(−1)n−1

(
1
2

)n

n
= ln(1 +

1
2

) = ln
3
2
.

□

Exercise. Evaluate the sum of the series
∞∑

n=0

(−1)n 2n + 2
(2n + 1)!

.

Answer:
∞∑

n=0

(−1)n 2n + 2
(2n + 1)!

= sin 1 + cos 1.

■Multiplication and Divison of Power Series

Recall that if f (x) =
∞∑

n=0

bn(x − a)n and g(x) =
∞∑

n=0

cn(x − a)n, then

f (x)g(x) =
∞∑

n=0

dn(x − a)n where dn =

n∑
k=0

bkcn−k

f (x)
g(x)

=

∞∑
n=0

en(x − a)n where en satisfying bn =

n∑
k=0

cken−k.

Example 12.5.13.

(1) Find the first three nonzero terms in the Maclaurin series for ex sin x.
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Proof. Since

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
+ · · · and

sin x = x − x3

3!
+

x5

5!
+ · · · + (−1)n

(2n + 1)n x2n+1 + · · ·,

we have

ex sin x =
Ä

1 + x +
x2

2!
+

x3

3!
+ · · ·

äÄ
x − x3

3!
+

x5

5!
+ · · ·

ä
= x + x2 +

x3

3
+ · · · .

□

(2) Find the first three nonzero terms in the Maclaurin series for tan x.

Proof. Since

sin x = x − x3

3!
+

x5

5!
+ · · · + (−1)n

(2n + 1)!
x2n+1 + · · · and

cos x = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n

(2n)!
+ · · ·,
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we have

tan x =
sin x
cos x

=
x − x3

3! +
x5

5! + · · ·
1 − x2

2! +
x4

4! + · · ·

= x +
1
3

x3 +
2
15

x5 + · · · .

□

Note. One reason that Taylor series are important is that they enable us to integrate functions
which we cannot find and express their antiderivatives as elementary functions.

Example 12.5.14.

(1) Evaluate
∫

e−x2
dx as an infinite series.

Proof. Since e−x2
=

∞∑
n=0

(−x2)n

n!
for any x, we obtain

∫
e−x2

dx =
∫ ∞∑

n=0

(−x2)n

n!
=

∞∑
n=0

∫
(−1)n

n!
x2n dx

= C +
∞∑

n=0

(−1)n

n! (2n + 1)
x2n+1.

□

(2) Evaluate
∫ 1

0
e−x2

dx correct to within an error of 0.001.

Proof. Consider∫ 1

0
e−x2

dx =
∞∑

n=0

(−1)n

n! (2n + 1)
x2n+1

∣∣∣1
0

= 1 − 1
3
+

1
10
− 1

42
+

1
216

(alternating series)

By the alternating series estimation, |s −
n∑

k=0

bn| ≤ bn+1. Consider

∣∣∣ (−1)n

n! (2n + 1)
· 12n+1

∣∣∣ < 0.001.

Then n ≥ 5 and
∫ 1

0
e−x2

dx ≈ 0.7475. □

(3) Evaluate lim
x→0

ex − 1 − x
x2 .
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Proof.

lim
x→0

ex − 1 − x
x2 = lim

x→0

(1 + x + x2

2! +
x3

3! + · · · ) − 1 − x

x2

= lim
x→0

( 1
2!
+

x
3!
+ · · · + xn−2

n!
+ · · ·

)
=

1
2
.

Note: we can also obtain the above limit by the L’Hôpital Rule. □

Exercise.

(1) Find the Taylor series for the function f (x) = sin−1 x and find its interval of convergence.

(Hint: sin−1(x) =
∫

1
√

1 − t2 dt
and using the binomial series.)

(2) Express the following functions as their Taylor series and find the limits

(i) lim
x→1

ln x
x − 1

.

(ii) lim
x→0

sin x − tan x
x3 .

(iii) lim
x→0

(e2x − 1) ln(1 + x3)
(1 − cos 3x)2 .
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In this chapter, we will use the vector-valued functions to describe curves, surfaces and the
motion of objects through space.

13.1 Preliminary

o n-dimensional Spaces

Definition 13.1.1. Let A and B be two sets. We define A × B by

A × B = {(a, b) | a ∈ A, b ∈ B}.

We call A × B the “product (set) of A and B”.
Example 13.1.2.

R2 = R × R = {(a, b) | a ∈ R, b ∈ R}
R3 = R × R × R = {(a, b, c) | a ∈ R, b ∈ R, c ∈ R}

...

Rn =

n︷          ︸︸          ︷
R × · · · × R = {(a1, a2, · · · , an) | ai ∈ R, i = 1, 2, · · · , n}

Example 13.1.3.

(1) Let f : R→ Rn. For example,

t
f−→

(
x(t), y(t), z(t)

)
t

f−→
(

x1(t), x2(t), · · · , xn(t)
)

There exist f1, f2, · · · fn : R→ R such that

f (t) =
(

f1(t), f2(t), · · · , fn(t)
)

321
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(2) Let f : Rn → R. For example, f (x, y) = x2 + y2.

(3) Let f : Rn → Rm. There exist f1, f2, · · · fm : Rn → R such that

f (x1, · · · , xn) =
Ä

f1(x1, · · · , xn), · · · , fm(x1, · · · xn)
ä
.

■ Graph

The graph of a function f is the set consisting of the ordered pairs
(

x, f (x)
)

where x ∈ Dom( f ).

Graph( f ) =
{(

x, f (x)
) ∣∣ x ∈ Dom( f )

}
.

o Vectors

The n-dimensional spaceRn consists of the points with coordinates {(x1, · · · , xn) | xi ∈ R, i =
1, 2, · · · , n}. A point P in Rn has coordinate

P = (a1, a2, · · · , an) (usually written as P(a1, · · · , an) ).

The distance between P(a1, · · · , an) and Q(b1, · · · , bn) is

|PQ| =
√

(a1 − b1)2 + · · · (an − bn)2.

A vector v in a n dimensional vector space can be written as v =< a1, · · · , an >. The “length”
(or “magnitude”) of a vector is

‖v‖ =
»

a2
1 + · · · a2

n.

In this chapter, we will take more attention on the vectors in 3-dimensional vector spaces and
most of the following results also hold for vectors in n-dimensional vector spaces.

■ Laws and Operations of Vectors

Let a =< a1, a2, a3 > and b =< b1, b2, b3 > be two vectors and c be a real number. Then

(a) a ± b =< a1 ± b1, a2 ± b2, a3 ± b3 >

(b) ca =< ca1, ca2, ca3 >.

• if c = 0, then ca = 0 =< 0, 0, 0 >.

• if c > 0, then ca and a have the same direction.

• if c < 0, then ca and a have the opposite directions.

Note that ca = 0 if and only if c = 0 or a = 0.

(c) The dot product (inner product) of a and b is defined by

a · b = a1b1 + a2b2 + a3b3.
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Remark. Let θ be the angle between a and b.

(i) a · b = ‖a‖‖b‖ cos θ

(ii) a · b = 0 if and only if θ =
π

2
.

In this case, we say that a and b are “perpendicu-
lar” (or “orthogonal” ) (usually denoted a ⊥ b).

Hence, 0 is perpendicular to any vector.

(iii) a · a = ‖a‖2.

(d) (cross product of a and b) satisfies

(i) a × b is a vector perpendicular to both a and b;

(ii) a, b and a × b satisfy right hand rule

(iii) the magnitude of a × b is equal to the area of the
paralellogram with sides a and b

From the above conditions, we have

‖a × b‖ = ‖a‖‖b‖ sin θ

and

a × b =

∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k.

The volume of the parallelepiped whose adjacent sides
are the vectors a, b and c is

∣∣∣c · (a × b)
∣∣∣.

Remark.

(i) (a × b) × c , a × (b × c);

(ii) (a × b) · c = 0 if and only if the vectors a, b and c are in the same plane.

Definition 13.1.4.
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(a) The “standard basis vectors” in R3 denote

i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 > .

Then a =< a1, a2, a3 >= a1i + a2j + a3k.

(b) A unit vector is a vector with magnitude 1.

(c) We say that the two vectors a and b are “parallel” (usually denoted a//b) if there exists a
number c such that a = cb.

(d) A vector (denoted by projab) is called the “projection of b onto a” if

projab//a and (b − projab) ⊥ a.

Note. We can compute that

projab =
Ä

b · a
‖a‖
ä a
‖a‖ =

a · b
‖a‖2 a and ‖projab‖ = ‖b‖ cos θ.

13.2 Vector Functions and Space Curves

As we know, we can regard Rn as a n-dimensional vector space. Every element in Rn can be
expressed as a vector a =< a1, · · · , an >. In this chapter, we consider the function whose range
consisting of vectors in 3-dimensional vector space R3.

Definition 13.2.1. A vector-valued function (vector function) is a function whose domain is a
set of real numbers and whose range is a set of vectors

r(t) : {subset in R} −→ {set of vectors}.

Note. In the present chapter, we will focus the vector function r(t) whose values are three-
dimensional vectors.
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We recall the expressions of vectors and vector-valued functions.

a = < a1, a2, a3 >= a1i + a2j + a3k
r(t) = < f (t), g(t), h(t) >= f (t)i + g(t)j + h(t)k

where f , g, h : R→ R are component functions
Example 13.2.2. Let r(t) =< 2t2, 3t − 4,

√
t > be a vector-valued function. The domain of r(t)

is [0,∞).

o Limits of Vector-valued Functons

To study the calculus of vector-valued functions, motivated by the concepts of real-valued
functions, we will discuss the limits and continuity of vector-valued functions. We heuristically
consider that

(i) a limit of a vector valued function is supposed to be a vector; and

(ii) if L is the limit of a vector valued function r(t) as t → a, we expect that r(t) arbitrarily
approaches to L by taking t arbitrarily close to a.

Definition 13.2.3. Let r(t) be a vector valued function defined on an open interval I and a ∈ I.
We say that the limit of r(t) exists, as t approaches a if there exists a vector L such that

lim
t→a
‖r(t) − L‖ = 0.

The vector L is called the “limit of r(t) as t arpproaches a” and we write

lim
t→a

r(t) = L.

Remark. Suppose that r(t) =< f (t), g(t), h(t) > and L =< L1, L2, L3 >. Then lim
t→a

r(t) exists if
and only if lim

t→a
f (t), lim

t→a
g(t) and lim

t→a
h(t) exist. Moreover,

lim
t→a

r(t) = L if and only if lim
t→a

f (t) = L1, lim
t→a

g(t) = L2 and lim
t→a

h(t) = L3.

This implies that
lim
t→a

r(t) =< lim
t→a

f (t), lim
t→a

g(t), lim
t→a

h(t) > .

Example 13.2.4. Suppose that r(t) = (1 + t3)i + te−tj +
sin t

t
k. Then

lim
t→0

r(t) = [lim
t→0

(1 + t3)] i + [lim
t→0

te−t] j + [lim
t→0

sin t
t

] k = i + k.

■ Laws of limts

Theorem 13.2.5. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and α be a number. Suppose that

lim
t→a

r(t) = L, lim
t→a

s(t) =M and lim
t→a

u(t) = c.

Then
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(a) lim
t→a

Ä
r ± s
ä

(t) = L ±M.

(b) lim
t→a
αr(t) = αL.

(c) lim
t→a

r(t) · s(t) = L ·M.

(d) lim
t→a

u(t)r(t) = cL.

(e) lim
t→a

r(t) × s(t) = L ×M.

Proof. (Exercise) □

o Continuity of Vector-valued Functons

Definition 13.2.6. Let r(t) be a vector valued function defined on I ⊆ R and a ∈ I. We say that

(a) r is continuous at a if
lim
t→a

r(t) = r(a).

(b) r is continuous on I if r is continuous at every point of I.

Note. If r(t) =< f (t), g(t), h(t) > is continuous at a, then

< lim
t→a

f (t), lim
t→a

g(t), lim
t→a

h(t) >= lim
t→a

r(t) = r(a) =< f (a), g(a), h(a) > .

We have
lim
t→a

f (t) = f (a), lim
t→a

g(t) = g(a) and lim
t→a

h(t) = h(a)

Thus, r(t) is continuous at a if and only if all its component functions f , g and h are continuous
at a.

Theorem 13.2.7. Let r(t) and s(t) be vector valued functions defined on I, u be a real-valued
function defined on I and α be a number. Suppose that r, s and u are continuous at a. Then
r ± s, αr, ur, r · s and r × s are continuous at a.

Proof. Exercise. □

o Space Curves

Consider the vector valued function
r(t) =< f (t), g(t), h(t) >. The tip of r(t) is
the point P

(
f (t), g(t), h(t)

)
.

As t ranges over an interval I, the point P traces
out some path C in R3. That is,

C = Range
(
r(t)

)
, t ∈ I.
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Definition 13.2.8. Let f (t), g(t) and h(t) be three functions defined on an interval I. The set C
of all points (x, y, z) in space, where

x = f (t), y = g(t), z = h(t) for t ∈ I (13.1)

is called a “space curve”.

Note.

(1) The equation (13.1) is called “parametric equation of C” and t is called a “parameter”.

(2) The space curve C is “oriented” in the direction as t increases.

Example 13.2.9. Describe the curve defined by the vector function

r(t) =< 5 + t, 1 + 4t, 3 − 2t >

Proof. From the parametric equation, the coordinates are

x = 5 + t, y = 1 + 4t, z = 3 − 2t.

The curve represents a line passing through (5, 1, 3) and parallel to the vector < 1, 4,−2 >. Let
r0 =< 5, 1,−3 > and v =< 1, 4,−2 >. Then r(t) = r0 + tv. □

Example 13.2.10. Sketch the curve whose vector equation is

r(t) = cos t i + sin t j + t k

Proof.

The parametric equation represents the curve
with coordinates

x = cos t, y = sin t, z = t.

The curve is called a “helix”.

□

Example 13.2.11. Find a vector equation and parametric equations for the line segment that
joins the point P(1, 3,−2) to the point Q(2,−1, 3).
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Proof.
The line segment joining the tip of r0 =< 1, 3,−2 > to
the tip of r1 =< 2,−1, 3 > is

r(t) = (1 − t)r0 + tr1, 0 ≤ t ≤ 1.

The vector equation of the line segment is

r(t) = (1 − t) < 1, 3,−2 > +t < 2,−1, 3 >
= < 1 + t, 3 − 4t,−2 + 5t >, 0 ≤ t ≤ 1.

The parametric equation of the line segment is

x = 1 + t, y = 3 − 4t, z = −2 + 5t 0 ≤ t ≤ 1.
□

Example 13.2.12. Find a vector function that represents the curve of intersection of the cylinder
x2 + y2 = 1 and the plane y + z = 2.

Proof.

For (x, y, z) on the cylinder x2 + y2 = 1,

x = cos t, y = sin t 0 ≤ t ≤ 2π.

Also, for (x, y, z) on the plane y + z = 2, z = 2 − y. Then for
(x, y, z) on the intersection of x2 + y2 = 1 and y + z = 2,

z = 2 − y = 2 − sin t, 0 ≤ t ≤ 2π.

Hnece, the parametric equation for the curve is

x = cos t, y = sin t, z = 2 − sin t 0 ≤ t ≤ 2π.

The parametrization of the curve is

r(t) = cos t i + sin t j + (2 − sin t) k 0 ≤ t ≤ 2π.

□

13.3 Derivatives and Integrals of Vector Functions

o Derivatives

Recall that the derivative of a real-valued function f is defined by

d f
dx
= f ′(x) = lim

h→0

f (x + h) − f (x)
h
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Let r(t) be a vector-valued function. Consider

dr
dt
= r′(t) = lim

h→0

r(t + h) − r(t)
h

if the limit exists.

Note. (1) The numernator r(t + h) − r(t) =
−−→
PQ means a secant vector.

(2) The term
r(t + h) − r(t)

h
represents the vector

1
h
(
r(t + h) − r(t)

)
which has the same direc-

tion as r(t + h) − r(t).

(3) As h→ 0, the vector
1
h
(
r(t + h) − r(t)

)
approaches a vector which lies on the tangent line.

Definition 13.3.1. Let r(t) be a vector function defined on I ⊆ R, C be the curve consisting of
the graph of r(t) and P = r(a) be a point on C.

(a) We say that r(t) is differentiable at a if the limit lim
h→0

r(a + h) − r(a)
h

exists. The limit is called
the “derivative of r at a” and denoted by r′(a). Moreover, we say r(t) is differentiable on I
if it is differentiable at every point in I.

(b) If the derivative r′(a) exists, it is the “tangent vector” to the curve C at the point P provided
r′(a) , 0.

(c) The ”tangent line” to C at P is defined to be the line through P parallel to the tangnet vector
r′(a).

(d) The unit tangent vector is

T(t) =
r′(t)∥∥∥r′(t)∥∥∥ .

Note. From the definition of part(c), the parametric equation of the tangent line to C at P is

r(a) + tr′(a), t ∈ R.
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Theorem 13.3.2. If r(t) =< f (t), g(t), h(t) >= f (t) i + g(t) j + h(t) k, where f , g and h are
differentiable functions, then

r′(t) =< f ′(t), g′(t), h′(t) >= f ′(t) i + g′(t) j + h′(t) k.

Proof. (Exercise) □

Example 13.3.3. Suppose that r(t) = (1 + t3) i + te−t j + sin 2t k.

(a) The tangent vector function is r′(t) = 3t2 i + (1 − t)e−t j + 2 cos 2t k.

(b) To find the unit tangent vector at the point where t = 0, consider the position vector r(0) = i
and the tangnet vector r′(0) = j+ 2k. Therefore, the unit tangent vector at the point (1, 0, 0)
is

T(0) =
r′(0)∥∥∥r′(0)
∥∥∥ = 1

√
5

(j + 2k) =
1
√

5
j +

2
√

5
k.

Example 13.3.4. For the curve r(t) =
√

t i + (2 − t) j, find r′(t) and sketch the position vector
r(1) and the tangent vector r′(1).

Proof. The tangent vector is r′(t) =
1

2
√

t
i − j. Then r(1) = i + j and r′(1) =

1
2

i − j.

To sketch the position vector and the tangent vector, con-
sider the parametric equation

x =
√

t, y = 2 − t ⇒ y = 2 − x2, x ≥ 0.

Then parametric equation of the tangent line to the plane
curve at (1, 1) is

ℓ(t) = r(1)+ tr′(1) = (i+j)+ t(
1
2

i−j) = (1+
1
2

t) i+(1− t) j

□

Example 13.3.5. Find parametric equations for the tangent line to the helix with parametric
equation

x = 2 cos t, y = sin t, z = t.

at the point (0, 1,
π

2
).

Proof.
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The vector function is r(t) =< 2 cos t, sin t, t >. Then the tan-
gent vector function is

r′(t) =< −2 sin t, cos t, 1 > .

At the point (0, 1,
π

2
), r(t) =< 2 cos t, sin t, t >=< 0, 1,

π

2
>.

Thus, t =
π

2
. The tangent vector is

r′(
π

2
) =< −2, 0, 1 >.

Hence, the parametric equation of the tangent line through
(0, 1,

π

2
) is

x = 0 + (−2)t = −2t, y = 1 + 0t = 1, z =
π

2
+ t.

□

Theorem 13.3.6. Suppose that r(t) is differentiable at a. Then it is continuous at a.

Proof. Let r(t) =< f (t), g(t), h(t) >. Since r(t) is differentiable at a, f , g and h are also differ-
entiable at a and hence they are continuous at a. This implies that r(t) is continuous at a. □

■ Second Derivatives

r(t)
d
dt−→ r′(t)

d
dt−→

(
r′
)′
= r′′(t)

r(t) =< f (t), g(t), h(t) > ⇒ r′(t) =< f ′(t), g′(t), h′(t) >
⇒ r′′(t) =< f ′′(t), g′′(t), h′′(t) > .

Similarly, if r(k)(t) exists, then

r(k)(t) =< f (k)(t), g(k)(t), h(k)(t) > .

■ Differentiation Rules

Theorem 13.3.7. Let r and s be two differentiable vector functions, c be a number and u be a
real-valued function. Then

(a)
d
dt

[r(t) + s(t)] = r′(t) + s′(t).

(b)
d
dt

[cr(t)] = cr′(t).

(c)
d
dt

[u(t)r(t)] = u′(t)r(t) + u(t)r′(t).

(d)
d
dt

[r(t) · s(t)] = r′(t) · s(t) + r(t) · s′(t). (real-valued function)
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(e)
d
dt

[r(t) × s(t)] = r′(t) × s(t) + r(t) × s′(t).

Exercise. Let r(t) =< e3t, sin(t2), 2t2−t >, s(t) =<
t2

t + 1
, sec(2t), ln(t2 + 1) > and u(t) =< 1, t, t2 >.

Find
d
dt

Ä
(r × s) · u

ä
.

Proposition 13.3.8. Let r(t) be a differentiable vector function on I and r′(t) , 0 for every t ∈ I.
Then

(a)
d
dt
‖r(t)‖ = r(t) · r′(t)

‖r(t)‖ .

(b)
d
dt

Ä r(t)
‖r(t)‖

ä
=
−‖r‖′
‖r‖2 r +

1
‖r‖r

′ (n=3)
=

1
‖r‖2

[
(r × r′) × r

]
.

Proof. (Direct computation! We left the proof to the readers as exercise)
□

Remark. The results of Proposition 13.3.8 are true for all n-dimensional vector valued func-
tions except for the last equality of part(b) which is true for 3-dimensional vector valued func-
tions.

Example 13.3.9. Show that if
∥∥∥r(t)
∥∥∥ = C, then r′(t) is orthogonal to r(t) for all t.

Proof.

Since r(t) · r(t) =
∥∥∥r(t)
∥∥∥2 = C2 (constant), we have

2r(t) · r′(t) = d
dt

[r(t) · r(t)] =
d
dt

(C2) = 0

Hence, r(t) is orthogonal to r′(t) for all t.

For example, r(t) =< cos t, sin t >. □

■ Chain Rules

Theorem 13.3.10. (Chain Rule) Let u(t) be a real valued function defined on I and r(t) be a
vector valued function whose domain containing the range of u. Suppose that u is differentiable
at a and r is differentiable at u(a), then

(
r ◦ u

)
(t) = r

(
u(t)

)
is differentiable at a and(

r ◦ u
)′(a) = u′(a)r′

(
u(a)

)
.

Proof. Exercise □

o Integrals
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Recall that the integral of a real-valued function f (t) over [a, b] is defined by the limit of Rie-
mann sums. ∫ b

a
f (t) dt = lim

‖P‖→0

n∑
i=1

f (t∗i )4ti

We try to use the same strategy to define the definite integral of vector-valued functions. Let r(t)
be a continuous vector-valued function defined on [a, b]. Let P = {t0, t1, · · · , tn} be a partition
of [a, b] and 4ti = |ti − ti−1|. Define∫ b

a
r(t) dt = lim

‖P‖→0

n∑
i=1

r(t∗i )4ti

= lim
‖P‖→0

î n∑
i=1

< f (t∗i ), g(t∗i ), h(t∗i ) > 4ti

ó
= lim

‖P‖→0
<

n∑
i=1

f (t∗i )4ti,

n∑
i=1

g(t∗i )4ti,

n∑
i=1

h(t∗i )4ti >

= <

∫ b

a
f (t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt >

=
Ä∫ b

a
f (t) dt

ä
i +
Ä∫ b

a
g(t) dt

ä
j +
Ä∫ b

a
h(t) dt

ä
k

Definition 13.3.11. Let r(t) be a vector valued function defined on [a, b] where r(t) =< f (t), g(t), h(t) >.
We say that r is integrable on [a, b] if f , g,and h are integrable on [a, b] and∫ b

a
r(t) dt = <

∫ b

a
f (t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt >

=
Ä∫ b

a
f (t) dt

ä
i +
Ä∫ b

a
g(t) dt

ä
j +
Ä∫ b

a
h(t) dt

ä
k.

Remark. (Integral Rule) If r(t) is continuous on [a, b], then r(t) is integrable on [a, b].

Theorem 13.3.12. Let r(t) and s(t) be integrable vector valued functions on [a, b], c be a vector,
and α and β be two numbers. Then

(a) The vector valued function
(
αr + βs

)
(t) is also integrable on [a, b] and∫ b

a

(
αr + βs

)
(t) dt = α

∫ b

a
r(t) dt + β

∫ b

a
s(t) dt.

(b)
∫ b

a
c · r(t) dt = c ·

∫ b

a
r(t) dt.

(c)
∥∥∥∥ ∫ b

a
r(t) dt

∥∥∥∥ ≤ ∫ b

a
‖r(t)‖ dt.

Proof. The proofs of part(a) and (b) are easy and left to the readers. We will prove part(c) here.
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Let R =
∫ b

a
r(t) dt. Then

‖R‖
∥∥∥∥ ∫ b

a
r(t) dt

∥∥∥∥ = ‖R‖2 = R · R

= R ·
∫ b

a
r(t) dt =

∫ b

a
R · r(t) dt

≤
∫ b

a

∥∥∥∥R · r(t)
∥∥∥∥ dt ≤

∫ b

a
‖R‖‖r(t)‖ dt

=
∥∥∥R∥∥∥ ∫ b

a

∥∥∥r(t)
∥∥∥ dt.

Hence, ∥∥∥∥ ∫ b

a
r(t) dt

∥∥∥∥ ≤ ∫ b

a
‖r(t)‖ dt.

□

■ Fundamental Theorem of Caluclus∫ b

a
r(t) dt = R(t)

∣∣∣b
a
= R(b) − R(a)

where R is an antiderivative of r, that is R′(t) = r(t). Denote

R(t) =
∫

r(t) dt.

Example 13.3.13. Let r(t) = 2 cos t i + sin t j + 2t k. Then∫
r(t) dt = 2 sin t i − cos t j + t2 k +C

and ∫ π
2

0
r(t) dt = 2 sin t

∣∣∣ π2
0

i − cos t
∣∣∣ π2

0
j + t2

∣∣∣ π2
0

k = 2 i + j +
π2

4
k.

13.4 Arc Length and Curvature

o Length of a Curve

In Section 10.1, we have learned how to evaluate the arc
length of a parametric curve. Let

x = f (t), y = g(t), a ≤ t ≤ b.

The arc length of the curve is

L =
∫ b

a

√
[ f ′(t)]2 + [g′(t)]2 dt =

∫ b

a

…Ädx
dt

ä2
+
Ädy

dt

ä2
dt.

Consider the space curve with the vector equations

r(t) =< f (t), g(t), h(t) >, a ≤ t ≤ b
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If the curve is traversed exactly once as t increases from a to b, the arc length is

L =
∫ b

a

√
[ f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt =

∫ b

a

…Ädx
dt

ä2
+
Ädy

dt

ä2
+
Ädz

dt

ä2
dt.

Note. (1) If r(t) is the position vector of an object at time t, then r′(t) is the velocity vector and
‖r′(t)‖ is the speed.

(2) Since r′(t) =< f ′(t), g′(t), h′(t) >, we have ‖r′(t)‖ =
√

[ f ′(t)]2 + [g′(t)]2 + [h′(t)]2. The arc
length is

L =
∫ b

a
‖r′(t)‖ dt.

We give a precise proof of formula of arc length here.

Theorem 13.4.1. Let r(t) be a continuously differentiable vector function on [a, b]. Let C be
the curve parametrized by r. The arc length of C is

L(C) =
∫ b

a
‖r′(t)‖ dt.

Proof. Let P = {t0, t1, · · · , tn} be a partitition of [a, b]. By the Fundamental Theorem of Calcu-
lus,

‖r(ti) − r(ti−1)‖ =
∥∥∥∥ ∫ ti

ti−1

r′(t) dt‖ ≤
∫ ti

ti−1

‖r′(t)‖ dt.

Then
n∑

i=1

‖r(ti) − r(ti−1)‖ ≤
n∑

i=1

∫ ti

ti−1

‖r′(t)‖ dt =
∫ b

a
‖r′(t)‖ dt.

Since P is an arbitrary partition of [a, b], we have

L(C) = sup
P

n∑
i=1

‖r(ti) − r(ti−1)‖ ≤
∫ b

a
‖r′(t)‖ dt. (13.2)

On the other hand, define s(t) as arc length of the curve from r(a) to r(t). Then s(t+h)− s(t)
is the arc length from r(t) to r(t + h). □

By (13.2),

‖r(t + h) − r(t)‖ ≤ s(t + h) − s(t) ≤
∫ t+h

t
‖r′(u)‖ du.

Then, for h > 0,∥∥∥∥r(t + h) − r(t)
h

∥∥∥∥ = ‖r(t + h) − r(t)‖
h

≤ s(t + h) − s(t)
h

≤ 1
h

∫ t+h

t
‖r′(u)‖ du.

By the Fundamental Theorem of Calculus, as h→ 0,

‖r′(t)‖ ≤ lim
h→0

s(t + h) − s(t)
h︸                   ︷︷                   ︸

=s′(t)

≤ ‖r′(t)‖.

Therefore, the arc length of C is

s(b) =
∫ b

a
s′(t) dt =

∫ b

a
‖r′(t)‖ dt.
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Example 13.4.2. Find the length of the arc of the circular helix with vector equation r(t) =
cos t i + sin t j + t k, from the point (1, 0, 0) to the point (1, 0, 2π).

Proof.

Compute r′(t) = − sin t i + cos t j + k and then
‖r′(t)‖ =

√
(− sin t)2 + (cos t)2 + 12 =

√
2. The

length of the arc is

L =
∫ 2π

0
‖r′(t)‖ dt =

∫ 2π

0

√
2 dt = 2

√
2π.

□

■ The Arc Length Function

Let C be a curve with vector function r(t) = f (t) i+g(t) j+
h(t) k, a ≤ t ≤ b. Suppose that r′(t) is continuous and C
is traversed exactly once as t increases from a to b. The
arc length function is

s(t) =
∫ t

a
‖r′(u)‖ du =

∫ t

a

…Ädx
du

ä2
+
Ädy

du

ä2
+
Ä dz

du

ä2
du

Note. The value of s(t) is the arc length of the part of C between r(a) and r(t). By the Funda-
mental Theorem of Calculus,

ds
dt
= ‖r′(t)‖.

Observe that the arc length function s(t) is one-to-one. Hence, we may also regard t as a
function of s, say t = t(s). Then we can “parametrize a curve with respect to are length.

r = r
(
t(s)

)
.

For example, when s = 3, r
(
t(3)

)
is the position vector of the point 3 unit of length along the

curve from its starting point.

Example 13.4.3. Reparametrize the helix r(t) = cos t i + sin tj + t k with respect to arc length
measured from (1, 0, 0) in the direction of increasing t

Proof. Find the arc length function from the starting time t = 0.

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0

√
2 du =

√
2t.

Hence, t = t(s) = 1√
2
s. We have

r
(
t(s)

)
= cos(

1
√

2
s) i + sin(

1
√

2
s) j +

1
√

2
s k.

□
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o Curvature

Question: How do we feel the “curvature” of a curve?

From our expericence, when we ride a bike at a constant speed, it is more difficult to turn
the direction along a path with “larger curvature” than the one with a smaller curvature.*†

To discuss the curvature of a curve, we should discard some cases:

(i) Discontinuous curve

(ii) The curve has sharp corners or cusps

(iii) Imagine a particle moves along a curve, we don’t expect that it “stays” at a point for
a period since it cannot decide whether the direction changes there. Thus, we assume
‖r′(t)‖ , 0. We parametrize the curve with respect to arc length parameter “s” rather than
time parameter “t”.

Definition 13.4.4.

(a) A parametrization r(t) is called “smooth ” on an interval I if r′ is continuous and r′(t) , 0
on I.

(b) A curve is called “smooth” if it has a smooth parametrization.

*Heuristically speaking, along the larger curvature path, we need to change directions more at the same time.
The constant speed says that the same period is corresponding to the same travelling distance. Thus, we can also
explain the larger curvature path as, when travelling the same distance, the direction changes more.

†The “curvature” is a geometric word. It is supposed to only depend on distance and direction but not ”time”.
Hence, to define “curvature”, we usually parametrize in s.
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Suppose that C is a smooth curve defined by the vector
function r. The unit tangnet vector

T(t) =
r′(t)
‖r′(t)‖

indicates the direction of the curve.

Heuristically, the curvature of C at a given point is a measure of how quickly the curve changes
direction at that point.

Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector
with respect to arc length.
Definition 13.4.5. The curvature of a curve is

κ =
∥∥∥∥dT

ds

∥∥∥∥
where T is the unit tangent vector.
Note.

(1) The unit tangent vector T is usually expressed as a vector function in “t”. By the chain rule

dT
dt
=

dT
ds

ds
dt
.

Then
κ =
∥∥∥∥dT

ds

∥∥∥∥ = ∥∥∥∥dT/dt
ds/dt

∥∥∥∥.
(2) Since the arc length function s(t) =

∫ t

0
‖r′(u)‖ du, by the Fundamental Theorem of Calculus,

ds
dt
= ‖r′(t)‖. Hence,

κ =
‖T′(t)‖
‖r′(t)‖ .

Example 13.4.6. Show that the curvature of a circle of radius a is
1
a

.

Proof. A parametrization of a circle of radius a is r(t) = a cos t i + a cos t j. Then r′(t) =
−a sin t i + a cos t j and ‖r′(t)‖ = a. The unit tangent vector function is

T(t) =
r′(t)
‖r′(t)‖ = − sin t i + cos t j.

Then
T′(t) = − cos t i − sin t j and

∥∥∥∥dT
dt

∥∥∥∥ = 1.

The curvature is
κ =
‖T′(t)‖
‖r′(t)‖ =

1
a
.

□
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Note. Small circles have large curvature and large circles have small curvature.

Theorem 13.4.7. The curvature of the curve given by the vector function r is

κ(t) =
‖r′(t) × r′′(t)‖
‖r′(t)‖3 .

Proof. Since T =
r′

‖r′‖ and ‖r′‖ = ds
dt

, we have

r′ = ‖r′‖T = ds
dt

T.

By the product rule,

r′′ =
d2s
dt2 T +

ds
dt

T′.

Consider

r′ × r′′ =
ds
dt

d2s
dt2 T × T︸  ︷︷  ︸

=0

+
Äds

dt

ä2
T × T′.

Since ‖T‖ = 1, we have T(t) ⊥ T′(t). Then ‖T × T′‖ = ‖T‖︸︷︷︸
=1

‖T′‖ = ‖T′‖. Also,

‖r × r′′‖ =
Äds

dt

ä2
‖T × T′‖ =

Äds
dt

ä2
‖T‖︸︷︷︸
=1

‖T′‖ =
Äds

dt

ä2
‖T′‖.

Hence,

‖T′‖ = ‖r
′ × r′′‖Ä

ds
dt

ä2 =
‖r′ × r′′‖
‖r′‖2 .

The curvature is
κ =
‖T′‖
‖r′‖ =

‖r′ × r′′‖
‖r′‖3 .

□

Example 13.4.8. Find the curvature of the twisted cubic r(t) =< t, t2, t3 > at general point and
at (0, 0, 0).

Proof. Since r′(t) =< 1, 2t, 3t2 > and r′′(t) =< 0, 2, 6t >, we have

r′(t) × r′′(t) =

∣∣∣∣∣∣
i j k
1 2t 3t2

0 2 6t

∣∣∣∣∣∣ =< 6t2,−6t, 2 > .

Then ‖r′ × r′′‖ =
√

36t4 + 36t2 + 4 = 2
√

9t4 + 9t2 + 1 and ‖r′‖ =
√

1 + 4t2 + 9t4. The curvature
is

κ =
2
√

9t4 + 9t2 + 1
(1 + 4t2 + 9t4)3/2 .

At t = 0, κ(0) = 2. □
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• Special Case y = f (x)

Suppose that the curve C is the graph of f (x). We can express it as vector-valued function.

r(x) = x i + f (x) j
Ä
+ 0 k

ä
.

Then
r′(x) = i + f ′(x) j and r′′(x) = f ′′(x) j.

The cross product is
r′(x) × r′′(x) = f ′′(x) k.

We have
‖r′ × r′′‖ = | f ′′(x)| and ‖r′‖ =

√
1 + [ f ′(x)]2.

Hence, the curvature is

κ =
‖r′ × r′′‖
‖r′‖3 =

| f ′′(x)|
(1 + [ f ′(x)]2)3/2 .

Example 13.4.9. Find the curvature of the parabola y = x2 at the point (0, 0), (1, 1) and (2, 4).

Proof.
Compute that y′ = 2x and y′′ = 2. The curvature of the
curve is

κ(x) =
|y′′|

[1 + (y′)2]3/2 =
2

(1 + 4x2)3/2

At (0, 0), κ(0) = 2.

At (1, 1), κ(1) =
2

53/2 ≈ 0.18.

At (2, 4), κ(2) =
2

173/2 ≈ 0.03.
We can observe that κ(x)→ 0 as x→ ±∞.

□
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14.1 Functions of Several Variables

o Functions of Two Variables

Example 14.1.1.
(1) Let T = f (x, y) represent the temperature at the position (x, y) where x and y indicate the

longitude and latitude respectively.

(2) Let V = V(r, h) represent the volume of a circular cylinder where r and h indicate the raidus
and the height of the cylinder respectively.

Definition 14.1.2. A function f of two variables is a rule
that assigns to each ordered pair of real numbers (x, y) in
a set D a unique real number denoted by f (x, y). The set
D is the “domain” of f and its “range” is the set of values
that f takes on. That is, Range( f ) = { f (x, y) | (x, y) ∈ D}.

Sometimes, we express z = f (x, y) where x and y are independent variables and z is a dependent

341



342 CHAPTER 14. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

variable.

Remark. If a function is given by a formula and no domain is specified, then the domain of f
is understood to be the set of all pair(x, y) for which the given expression is a well-defined real
number.

Example 14.1.3.

(1) Let f (x, y) =

√
x + y + 1
x − 1

. The domain of f is

Dom( f ) = {(x, y) | x + y + 1 ≥ 0, x − 1 , 0}
= {(x, y) | y ≥ −x − 1, x , 1}.

(2) Let f (x, y) = x ln(y2 − x). The domain of f is

Dom( f ) = {(x, y) | y2 − x > 0}
= {(x, y) | x < y2}.

(3) Let g(x, y) =
√

9 − x2 − y2. The domain of g is

Dom( f ) = {(x, y) | 9 − x2 − y2 ≥ 0}
= {(x, y) | x2 + y2 ≤ 9}.

The range of g is

Range(g) = {z | z =
√

9 − x2 − y2, (x, y) ∈ Dom(g)}
= {z | 0 ≤ z ≤ 3}.

■ Some ways to figure out two variables functions

We introduce some visual methods to understand functions of two variables.

• Graph of a function
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Definition 14.1.4. If f is a function of two variables with
domain D, then the “graph” of f is the set of all points
(x, y, z) ∈ R3 such that z = f (x, y) and (x, y) is in D. That
is,

Graph( f ) = {(x, y, z) | z = f (x, y), (x, y) ∈ D}.

Example 14.1.5. Sketch the graph of g(x, y) =
√

9 − x2 − y2.

Proof. Let z =
√

9 − x2 − y2. Then the graph of g is

Graph(g) = {(x, y, z) | z2 = 9 − x2 − y2, z ≥ 0}
= {(x, y, z) | x2 + y2 + z2 = 9, z ≥ 0}

□

Note. An entire sphere cannot be represented by a single function
of x and y. The lower hemisphere is represented by the function
h(x, y) = −

√
9 − x2 − y2.

Example 14.1.6. Find the domain and range and sketch the graph
of h(x, y) = 4x2 + y2.

Proof. Dom(h) = R2 and Range( f ) = [0,∞). The graph of h

Graph(h) = {(x, y, z) | z = 4x2 + y2, (x, y) ∈ R2}

is an elliptic paraboliod. □

Example 14.1.7. Sketch the graph of the function

f (x, y) = 6 − 3x − 2y.

Proof. Let z = 6− 3x− 2y or 3x+ 2y+ z = 6. The intercepts of the
function are (2, 0, 0), (0, 3, 0) and (0, 0, 6).

□

Note. The function f (x, y) = ax+by+c is called a “linear function”.
The graph of such a function is a plane and has the equation z =
ax + by + c or ax + by − z + c = 0.

• Computer-generated graphs
In general, it is difficult to sketch the graph of a two-variables function. A nice method to sketch
the traces in the vertical plne x = k and y = h. For example, fix x = k and sketch the graph of a
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single variable function z = f (k, y). It is a curve on the plane x = k. Draw all such curve as x
ranges over all possible values in the x direction.

• Level Curves

So far, we have two methods for visualizing functions: arrow diagrams and graphs. A third
method is to consider a contour map on which points of constant elevation are joined to form
“contour curves”, or “level curves”.

Definition 14.1.8. The “level curves” of a function f of two variables are the curves with
equation f (x, y) = k, where k is a constant (in the range of f ). The level curve is the set
{(x, y) ∈ D | f (x, y) = k}.
Note. (1) A level curve f (x, y) = k is the set of all points in the domain of f at which f takes

on a given value k. (It shows where the graph of f has height k).

(2) Level curves are useful in the reality. For example, isothermals, contour map, contour line.

Example 14.1.9. Sketch the level curves of the function f (x, y) =
6 − 3x − 2y for the values k = −6, 0, 6, 12.

Proof. Consider the curves 6 − 3x − 2y = k in the domain. For
k = −6, 0, 6, 12, the corresponding level curves are 3x+2y−12 = 0,
3x + 2y − 6 = 0, 3x + 2y = 0 and 3x + 2y + 6 = 0. □
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Example 14.1.10. Sketch the level curves of the function g(x, y) =√
9 − x2 − y2 for the values k = 0, 1, 2, 3.

Proof. Consider the curves
√

9 − x2 − y2 = k in the domain. For
k = 0, 1, 2, 3, the corresponding level curves are x2 + y2 = 9, x2 +

y2 = 8, x2 + y2 = 5 and x2 + y2 = 0. □

Example 14.1.11. Sketch the level curves of the function h(x, y) = 4x2 + y2 + 1.

Proof. Consider the curves 4x2 + y2 + 1 = k in the domain. We can rewrite the equation

as
x2

1
4 (k − 1)

+
y2

k − 1
= 1. For k > 1, the level curves are a family of ellipses with semiaxes

1
2

√
k − 1 and

√
k − 1.
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□

Note. The following two figures show different visualized concepts to figure out a two variables
functions f (x, y).

(1) f (x, y) = −xye−x2−y2
.

(2) f (x, y) =
−3y

x2 + y2 + 1
.

o Functions of Three or More Variables

■ Three variables functions

A function of three variables, f , is a rule that assigns to each ordered triple (x, y, z) in a
domain D ⊆ R3 a unique real number denoted by f (x, y, z).

Example 14.1.12. The function f (x, y, z) = ln(z − y) + xy sin z has the domain

Dom( f ) = {(x, y, z) | z − y > 0} = {(x, y, z) | z > y}.

Note. It is difficult to visualize a function f of three variables by its graph since that would lie
in four-dimensional space.

We obtain some insight into f by examining its “level surfaces”, which are surfaces with
equation f (x, y, z) = k, where k is a constant in the range of f .
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Example 14.1.13. Find the level surfaces of the function
f (x, y, z) = x2 + y2 + z2.

Proof. Consider the surface with equation x2 + y2 + z2 = k,
k ≥ 0. The corresponding level surfaces form a family of concen-
tric spheres with radius

√
k.

□

■ n variables functions

A function of n variables is a rule that assigns a number z = f (x1, x2, · · · , xn) to an n-tuple
(x1, x2, · · · , xn) of real numbers.

Example 14.1.14. (Cost function) Let Ci be the cost per unit of the ith ingredient and xi be the
units of the ith ingredient are used. The total cost is

C = f (x1, x2, · · · , xn) = C1x1 +C2x2 + · · · +Cnxn.

which is a n-variable function.

Remark. Since the point (x1, x2, · · · , xn) and the vector x =< x1, x2, · · · , xn > are one-to-one
correspondence, we have three ways of looking at a function f defined on a subset of Rn.

1. As a function of n real variables x1, x2, · · · , xn, denote f (x1, x2, · · · , xn).

2. As a function of a single point variable (x1, x2, · · · , xn), denote f
(
(x1, x2, · · · , xn)

)
.

3. As a function of a single vector variable x =< x1, x2, · · · , xn >, denote f (x) = f (< x1, x2, · · · , xn >).

14.2 Limits and Continuity

o Limits

Recall that the limit of a single variable func-
tion f (x) as x approaches a is followed by the
concept that the value of f (x) approaches L as x
tends to a. The precise ε − δ definition is given
in Chapter 3.

Question: How about the limit of a two variables function f as (x, y) approaches a point (a, b)?

Definition 14.2.1. (Heuristic definition) Let f be a function of two variables whose domain
D containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
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f (x, y) as (x, y) approaches (a, b) exists if there is a number L such that we can make f (x, y) as
close to L as we like by taking (x, y) sufficiently close to (a, b).

Definition 14.2.2. (Precise definition) Let f be a function of two variables whose domain D
containing a neightborhood of (a, b) (possibly except (a, b) itself). We say that the limit of
f (x, y), as (x, y) approaches (a, b), exists if there is a number L such that for every number ε > 0
there exists a corresponding number δ > 0 such that

| f (x, y) − L| < ε

whenever (x, y) ∈ D and 0 <
√

(x − a)2 + (y − a)2 < δ. Denote

lim
(x,y)→(a,b)

f (x, y) = L or f (x, y)→ L as (x, y)→ (a, b).

Remark. For functions of a single variable, we only need to consider two possible direction
when x approaches a (from the left and from the right).

For functoins of two variables, we have to consider an infinite numbers of directions in any
manner whatsover as long as (x, y) stays within the domain of f .

Hence, if the limit lim
(x,y)→(a,b)

f (x, y) exists, then f (x, y) must approach the same limit no matter

which direction and how (x, y) approaches (a, b).

Note. From the above remark, if f (x, y) → L1

and (x, y) approaches (a, b) along a path C1

and f (x, y) → L2 when (x, y) approaches (a, b)
along another path C2 where L1 , L2, then the
limit lim

(x,y)→(a,b)
f (x, y) does not exist.
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Example 14.2.3. Let f (x, y) =
x2 − y2

x2 + y2 . Consider the

limit of f (x, y) as (x, y) approaches (0, 0).

Proof. Along the x-axis (y = 0),

lim
(x,y)→(a,b)

y=0

x2 − y2

x2 + y2 = lim
x→0

x2

x2 = 1.

Along the y-axis (x = 0),

lim
(x,y)→(a,b)

x=0

x2 − y2

x2 + y2 = lim
y→0

−y2

y2 = −1.

Hence, the limit lim
(x,y)→(0,0)

x2 − y2

x2 + y2 does not exist.
□

Example 14.2.4. If f (x, y) =
xy

x2 + y2 , does lim
(x,y)→(0,0)

f (x, y) exist?

Proof. Along the x-axis (y = 0),

lim
(x,y)→(a,b)

y=0

xy
x2 + y2 = lim

x→0

0
x2 = 0.

Along the y-axis (x = 0),

lim
(x,y)→(a,b)

x=0

xy
x2 + y2 = lim

y→0

0
y2 = 0.

But, along the line y = x,

lim
(x,y)→(a,b)

x=y

xy
x2 + y2 = lim

x→0

x2

2x2 =
1
2
.

Hence, the limit lim
(x,y)→(0,0)

xy
x2 + y2 does not exist.

□

Example 14.2.5. If f (x, y) =
xy2

x2 + y4 , does lim
(x,y)→(0,0)

f (x, y) exist?

Proof. Along the the line y = mx (not y-axis),

lim
(x,y)→(a,b)

y=mx

xy2

x2 + y4 = lim
x→0

x(mx)2

x2 + (mx)4 = lim
x→0

x3(1 + m2)
x2(1 + m4x2)

= 0.
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Along the curve x = y2,

lim
(x,y)→(a,b)

x=y2

xy2

x2 + y4 = lim
y→0

y2 · y2

(y2)2 + y4 =
1
2
.

Hence, the limit lim
(x,y)→(0,0)

xy2

x2 + y4 does not exist.

□

■ Laws of Limits and Squeeze Theorem

Theorem 14.2.6. (Laws of Limits) Let f and g be two variables functions defined on D contain-
ing a neighborhood of (a, b) (possibly except (a, b) itself) and c be a constant number. Suppose
that the limits lim

(x,y)→(a,b)
f (x, y) and lim

(x,y)→(a,b)
g(x, y) exist. Then

(a) lim
(x,y)→(a,b)

[ f ± g](x, y) exists and lim
(x,y)→(a,b)

[ f ± g](x, y) = lim
(x,y)→(a,b)

f (x, y) ± lim
(x,y)→(a,b)

g(x, y).

(b) lim
(x,y)→(a,b)

[c f ](x, y) exists and lim
(x,y)→(a,b)

[c f ](x, y) = c lim
(x,y)→(a,b)

f (x, y).

(c) lim
(x,y)→(a,b)

[ f g](x, y) exists and lim
(x,y)→(a,b)

[ f g](x, y) =
Ä

lim
(x,y)→(a,b)

f (x, y)
äÄ

lim
(x,y)→(a,b)

g(x, y)
ä

.

(d) lim
(x,y)→(a,b)

î f
g

ó
(x, y) exists if lim

(x,y)→(a,b)
g(x, y) , 0 and

lim
(x,y)→(a,b)

î f
g

ó
(x, y) =

lim(x,y)→(a,b) f (x, y)
lim(x,y)→(a,b) g(x, y)

provided lim
(x,y)→(a,b)

g(x, y) , 0.

(e) In particular,
lim

(x,y)→(a,b)
x = a, lim

(x,y)→(a,b)
y = b, lim

(x,y)→(a,b)
c = c

Theorem 14.2.7. (Squeeze Theorem) Let f (x, y), g(x, y) and h(x, y) be three functions defined
near (a, b). Suppose that f (x, y) ≤ g(x, y) ≤ h(x, y) for every (x, y) near (a, b). If

lim
(x,y)→(a,b)

f (x, y) = L = lim
(x,y)→(a,b)

h(x, y),

then the limit lim
(x,y)→(a,b)

g(x, y) exists and

lim
(x,y)→(a,b)

g(x, y) = L.

Example 14.2.8. Find lim
(x,y)→(0,0)

3x2y
x2 + y2 if it exists.
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Proof. First of all, we may try the limits when (x, y) approaches (0, 0) along several paths. We
observe that all the limits are 0. Therefore, we guess that the limit could exist and equal 0.

Let ε > 0. We want to find δ > 0 such that if 0 <
√

(x − 0)2 + (y − 0)2 < δ, then∣∣∣ 3x2y
x2 + y2 − 0

∣∣∣ < ε. Consider

∣∣∣ 3x2y
x2 + y2

∣∣∣ = ∣∣∣ x2

x2 + y2

∣∣∣︸       ︷︷       ︸
<1

·3|y| < 3|y|.

Choose δ = 1
3ε. If 0 <

√
x2 + y2 < δ = 1

3ε, then |y| ≤
√

x2 + y2 < 1
3ε. Therefore,

| f (x, y) − 0| =
∣∣∣ 3x2y
x2 + y2

∣∣∣ < 3|y| < 3 · 1
3
ε = ε

whenever 0 <
√

x2 + y2 < δ and this implies that lim
(x,y)→(0,0)

3x2y
x2 + y2 = 0. □

■ Limt at Infinity

In the previous chapter, we regard Rn as a vector space and every point (x1, · · · , xn) is iden-
tified as a vector x =< x1, · · · , xn >. The length of a vector is denoted by

‖x‖ =
»

x2
1 + · · · + x2

n.

Hence, if we want to describe a point (or a vector ) x ∈ Rn tending to infinity, we will use the
notation “‖x‖ → ∞” (or ‖(x1, · · · , xn)‖ → ∞ or ‖ < x1, · · · , xn > ‖ → ∞ )

Remark. We usually use the words “as ‖x‖ is sufficiently large” which means that there exists a
positive number M such that for every point x with ‖x‖ > M then · · · . For example, “ f (x, y) > 1
when ‖(x, y)‖ is sufficiently large” means that there exists a number M > 0 such that f (x, y) > 1
for every ‖(x, y)‖ > M.

Definition 14.2.9. (Limit at infinity) Let f be a function of two variables whose domain D
containing all points which are sufficiently large. We say that the limit of f (x, y), as (x, y)
approaches infinity, exists if there is a number L such that for every number ε > 0 there exists a
corresponding number M > 0 such that

| f (x, y) − L| < ε

whenever
√

x2 + y2 > M. Denote

lim
‖(x,y)‖→∞

f (x, y) = L or f (x, y)→ L as ‖(x, y)‖ → ∞.

Example 14.2.10. Let f (x, y) = x. Determine whether the limit lim
‖(x,y)‖→∞

f (x, y) exists.

Proof. Fix x = 1 and let y→ ∞, then ‖(x, y)‖ → ∞ and lim
x=1,y→∞

f (x, y) = 1.

Similarly, fix x = 2 and let y → ∞, then ‖(x, y)‖ → ∞ and lim
x=2,y→∞

f (x, y) = 2. Hence, the

limit lim
‖(x,y)‖→∞

f (x, y) does not exist. □
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Example 14.2.11. Let f (x, y) =
1

x2 + y2 . Determine whether the limit lim
‖(x,y)‖→∞

f (x, y) exists.

Proof. Given ε > 0, choose M =
1
√
ε

and L = 0. For ‖(x, y)‖ =
√

x2 + y2 > M,

| f (x, y) − L| =
∣∣∣ 1
x2 + y2 − 0

∣∣∣ < 1
M2 = ε.

Hence, lim
‖(x,y)‖→∞

f (x, y) = 0. □

o Continuity

Recall that the continuity of a single variable function f (x) at a is defined by

lim
x→a

f (x) = f (a).

A slogan is that “the limit of f at a is equal to the value of f at a”. We attempt to use the same
idea to define the continuity of a multi-variables function.

Definition 14.2.12.

(a) A two variables function f is called “continuous at (a, b)” if

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

(b) f is called continuous on D if f is continuous at every point in D.

Remark.

(i) A surface that is the graph of a continuous function has no hole or break.

(ii) The sums, differeneces, products and quotients of continuous functions are continuous on
their domains

(iii) Every polynomial function or every rational function of two variables is continuous. For
example, f (x, y) = 3x5 + 6y4 + 10x7y6 + 5x − 7y + 6 is continuous everywhere.

Example 14.2.13. Where is the function f (x, y) =
x2 − y2

x2 + y2 continuous?

Proof. Since f is a rational function, it is continuous on its domain. That is, f is continuous on
Dom( f ) =

{
(x, y) | x2 + y2 , 0

}
=
{

(x, y) | (x, y) , (0, 0)
}
= R\

{
(0, 0)

}
. □

Example 14.2.14. Let g(x, y) =


x2 − y2

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0).
. Since the limit lim

(x,y)→(0,0)
g(x, y)

does not exist, g is not continuous at (0, 0).
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Example 14.2.15. Let

f (x, y) =


3x2y

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)

Since f is a rational function for (x, y) , (0, 0), it is continuous

on R2\{(0, 0)}. Also, lim
(x,y)→(0,0)

3x2y
x2 + y2 = 0 = f (0, 0). Thus, f is

continuous at (0, 0) and f is continuous on R2.

■ Composite Functions

We consider the composition of a two variables function and a single variable function.

Let f (x, y) be a continuous function of two variables and g(t) be a continuous function of a
single variable that define on the range of f . Then h = g ◦ f defined by h(x, y) = g

(
f (x, y)

)
is

also a continuous function.

Example 14.2.16. Where is the function h(x, y) = arctan
(y

x
)

continuous?

Proof. Let f (x, y) =
y
x

be continuous except on the line x = 0.
Let g(t) = arctan t be continuous everywhere. Then the com-
posite function h(x, y) = arctan

(y
x
)
= g

(
f (x, y)

)
is continu-

ous except the line x = 0. □

■ Functions of Three or more Variables

The definitions of limits and continuity of n-variables functions are similar as the ones of
two variables functions. We ignore the details of their definitions here.
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14.3 Partial Derivatives
Recall that for a single variable function f (x), the derivative of f is defined by

f ′(a) = lim
h→0

f (a + h) − f (a)
h

which represents the instantaneous rate of change of f with respect to x.

For a two variables function f (x, y), let x vary while keep-
ing y fixed, say y = b, where b is a constant. We can
regard f (x, b) as a single variable function.
Let g(x) = f (x, b), then g(a) = f (a, b). The derivative of
g(x) at x = a is

g′(a) = lim
h→0

g(a + h) − g(a)
h

= lim
h→0

f (a + h, b) − f (a, b)
h

..

We call it the “partial derivative of f with respect to x at
(a, b)”.

Similarly, let y vary while keeping x fixed, say x = a. Let
k(y) = f (a, y). The partial derivative of f with respect to
y at (a, b) is

lim
h→0

k(b + h) − k(b)
h

= lim
h→0

f (a, b + h) − f (a, b)
h

Definition 14.3.1. (Partial Derivatives) Let f be a function of two variables. The partial deriva-
tives of f with respect to x and with respect to y are the functions fx and fy defined by setting

fx(x, y) = lim
h→0

f (x + h, y) − f (x, y)
h

fy(x, y) = lim
h→0

f (x, y + h) − f (x, y)
h

provided these limits exist.

Notation: Let z = f (x, y). We write

fx(x, y) = fx =
∂ f
∂x
=
∂

∂x
f (x, y) =

∂z
∂x
= Dx f = D1 f = f1

fy(x, y) = fx =
∂ f
∂y
=
∂

∂y
f (x, y) =

∂z
∂y
= Dy f = D2 f = f2

■ Find Partial Derivatives of z = f (x, y)
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• To find fx, we regard y as a constant and differentiate f (x, y) with respect to x.

• To find fy, we regard x as a constant and differentiate f (x, y) with respect to xy.

Example 14.3.2. If f (x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

Proof. The partial derivatives of f are

f(x, y) = 3x2 + 2xy3 and fy(x, y) = 3x2y2 − 4y.

Then fx(2, 1) = 12 + 4 = 16 and fy(2, 1) = 12 − 4 = 8. □

Note. We should consider the single variable function f (x, 1) = x3 + x2 − 4 and f (2, y) =
8 + 4y3 − 2y2. Then

fx(2, 1) =
Ä d

dx
f (x, 1)

ä∣∣∣
x=2
= 3x2 + 2x

∣∣∣
x=2
= 12 + 4 = 16.

fy(2, 1) =
Ä d

dy
f (2, 1)

ä∣∣∣
y=1
= 12y2 − 4y

∣∣∣
y=1
= 12 − 4 = 8.

■ Interpretation of Partial Derivatives

The equation z = f (x, y) represents a surface S (the graph of
f ). If f (a, b) = c, then the point P(a, b, c) lies on S .
Fix y = b, the curve C1 is the intersection of the vertical plane
and S . C1 is also the graph of the function g(x) = f (x, b),
y = b. The slope of its tangent line T1 at P is g′(a) = fx(a, b).
Similar for the curve C2, the tangnet line T2 and its slope
fy(a, b).

Example 14.3.3. If f (x, y) = 4 − x2 − 2y2, find fx(1, 1) and fy(1, 1) and interpret these numbers
as slopes.

Proof. The partial derivatives of f are

fx(x, y) = −2x and fy(x, y) − 4y.

Then fx(1, 1) = −2 and fy(1, 1) = −4.
The equation z = 4 − x2 − 2y2 represents a paraboloid which is the graph of f (x, y). Fix

y = 1, z = 2 − x2 is the equation of a parabola which is the intersection of the vertical plane
y = 1 and the graph of f (x, y). The value fx(1, 1) = −2 is the slope of the tangent line to the
parabola C1 : z = 2 − x2, y = 1 at (1, 1, 1).

Similarly, fy(1, 1) = −4 is the slope of the tangnet line to the parabola C2 : z = 3 − 2y2,
x = 1 at (1, 1, 1).

□
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Note. We can express the curve C1 as a vector equation r(t) =< t, 1, 2 − t2 >. Then the tangent
vector is r′(t) =< 1, 0,−2t >.

At (1, 1, 1), we have t = 1 and then r′(1) =< 1, 0,−2 >. The equation of the tangent line is

r(1) + tr(1) =< 1 + t, 1, 1 − 2t > .

Example 14.3.4. If f (x, y) = sin
Ä x

1 + y

ä
, calculate

∂ f
∂x

and
∂ f
∂y

.

Proof. We can calculate the partial derivatives by the chain rule,

∂ f
∂x
= cos

Ä x
1 + y

ä
· 1

1 + y
and

∂ f
∂y
= cos

Ä x
1 + y

ä
· −x

(1 + y)2 .

□

■ Implicit Differentiation

Recall that if the two variables x and y satisfy an equation F(x, y) = 0, then we can use the

implicit differentiation to find the ralated rate of each other (
dy
dx

or
dx
dy

).

By following the same idea, if three variables x, y and z satisfy an equation F(x, y, z) = 0,
we want to find the related rates (partial derivatives) between any two variables.

Example 14.3.5. Find
∂z
∂x

and
∂z
∂y

if z is defined implicitly as a function of x and y by the

equation
x3 + y3 + z3 + 6xyz = 1. (14.1)

Proof. Differentiating both sides of equation (14.1) with respect to x, we have

∂

∂x

î
x3 + y3 + z3 + 6xyz

ó
=
∂

∂x
(1)

Then

3x2 + 3z2 ∂z
∂x
+ 6yz + 6xy

∂z
∂x
= 0 and hence

∂z
∂x

Ä
3z3 + 6xy

ä
= −
Ä

3x2 + 6yz
ä
.
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We have
∂z
∂x
= − x2 + 2yz

z2 + 2xy
.

Similarly,
∂z
∂y
= −y2 + 2xz

z2 + 2xy
.

□

■ Functions of Three or More Variables

• For a three variables function f (x, y, z), fix y and z, the partial derivative of f with respect to
x is defined by

fx(x, y, z) = lim
h→0

f (x + h, y, z) − f (x, y, z)
h

.

( fy and fz have similar definition).

If w = f (x, y, z), then
∂w
∂x

can be interpreted as the rate of change of w with respect to x when
y and z are fixed.

• for a n-variables function f (x1, x2, · · · , xn),

fxi(x1, x2, · · · , xn) = lim
h→0

f (x1, · · · , xi + h, · · · , xn) − f (x1, · · · , xi, · · · xn)
h

.

If u = f (x1, x2, · · · , xn), then
∂u
∂xi
=
∂ f
∂xi
= fxi = fi = Di f is the partial deriveative of u with

respect to xi.

Note. Denote x = (x1, · · · , xn) and ei = (0, · · · , 0, 1, 0, · · · 0). Then

fxi(x) = lim
h→0

f (x + hei) − f (x)
h

.

Example 14.3.6. Let f (x, y, z) = exy ln z, then

fx(x, y, z) = exy · y ln z = yexy ln z, fy(x, y, z) = xexy ln z, fz(x, y, z) = exy · 1
z
.

■ Higher Derivatives

When study a single variable function f (x), we can regard its derivative f ′(x) as a new
function and consider its second derivative f ′′(x).

For a two variables function f (x, y), we can also regard its partial derivatives fx(x, y) and
fy(x, y) as new functions and consider the “second partial derivatives”. Let z = f (x, y). Then

( fx)x = fxx =
∂

∂x

Ä∂ f
∂x

ä
=
∂2 f
∂x2 =

∂2z
∂x2 = f11

( fx)y = fxy =
∂

∂y

Ä∂ f
∂x

ä
=
∂2 f
∂y∂x

=
∂2z
∂y∂x

= f12

( fy)x = fyx =
∂

∂x

Ä∂ f
∂y

ä
=
∂2 f
∂x∂y

=
∂2z
∂x∂y

= f21

( fy)y = fyy =
∂

∂y

Ä∂ f
∂y

ä
=
∂2 f
∂y2 =

∂2z
∂y2 = f22



358 CHAPTER 14. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

• third partial derivative

( fxy)x = fxyx =
∂

∂x

Ä ∂2 f
∂y∂x

ä
=

∂3 f
∂x∂y∂x

=
∂3z
∂x∂y∂x

( fxy)y = fxyy =
∂

∂y

Ä ∂2 f
∂y∂x

ä
=
∂3 f
∂2y∂x

=
∂3z
∂2y∂x

Example 14.3.7. Let f (x, y) = x3 + x2y3 − 2y2. Then the first partial derivatives of f are

fx = 3x2 + 2xy3, fy = 3x2y2 − 4y

and the second partial derivatives of f are

fxx = 6x + 2y3, fxy = 6xy2, fyx = 6xy2, fyy = 6x2y − 4.

■ Clairaut’s Theorem

Question: For a multi-variables function, does the second partial derivatives keep unchanged
when the order of two partial differentiations exchange? For example, if f (x, y) has all second
partial derivatives, can we obtain

fxy
??
= fyx.

In general, the answer is false.

Exercise. Let

f (x, y) =


xy(x2 − y2)

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)

Check that fxy(0, 0) , fyx(0, 0).

Question: What conditions of f can guarantee its second partial derivatives are equal when
exchanging their order?

Theorem 14.3.8. (Clairaut’s Theorem) Suppose f is defined on a neighborhood D of (a, b). If
the functions fxy and fyx are both continuous at (a, b), then

fxy(a, b) = fyx(a, b).

Proof. Consider

fxy(a, b) = lim
k→0

fx(a, b + k) − fx(a, b)
k

= lim
k→0

limh→0

î
f (a+h,b+k)− f (a,b+k)

h − f (a+h,b)− f (a,b)
h

ó
k

= lim
k→0

lim
h→0

f (a + h, b + k) − f (a + h, b) − f (a, b + k) + f (a, b)
kh

.

Define g(y) = f (a + h, y) − f (a, y) Then fxy(a, b) = lim
k→0

lim
h→0

g(b + k) − g(b)
kh

.
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Since fy is defined on a neighborhood of (a, b), g is differentiable near b and, by the mean
value theorem, g(b + k) − g(b) = kg′(ξ) for some ξ = ξ(k) ∈ (0, k). Then

fxy(a, b) = lim
k→0

lim
h→0

g′
(
ξ(k)

)
h

= lim
k→0

lim
h→0

1
h
[

fy
(
a + h, b + ξ(k)

)
− fy

(
a, b + ξ(k)

)]
.

Since fy is differentiable with respect to x and by the mean value theorem again,

fxy(a, b) = lim
k→0

lim
h→0

fyx
(
a + η(h), b + ξ(k)

)
where η(h) ∈ (0, h) and ξ(k) ∈ (0, k) and hence lim

h→0
η(h) = 0 and lim

k→0
ξ(k) = 0. Also, the continu-

ity of fyx at (a, b) implies that

fxy(a, b) = lim
k→0

lim
h→0

fyx
(
a + η(h), b + ξ(k)

)
= fyx(a, b).

□

Remark. The Clairaut’s Theorem still holds if the hypothesis is weaken that one of fxy and fyx

is continuous at (a, b).

Example 14.3.9. Let f (x, y) = sin(3x + yz). Then

fx = 3 cos(3x + yz), fxx = −9 sin(3x + yz), fxy = −3z sin(3x + yz)

fxxy = −9z cos(3x + yz), fxyx = −9z cos(3x + yz) = fxxy.

14.4 Tangent Planes and Linear Approximations

o Tangent Planes

Recall that a single variable function f (x) with derivative
f ′(a) can be linearly approximated by its “tangent line”

f (x) ≈ L(x) = f (a) + f ′(a)(x − a) as x is near a

*

For a two variables function f (x, y), we also expect that it can be linearly approximated by
a certain “plane”.

Suppose that

*The figure is download from https://www.math24.net/linear-approximation/
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f (x, y) is a two variables function which has continuous first
partial derivatives;

S is the surface with equation z = f (x, y) (the graph of f )
and P(a, b, c) ∈ S ;

C1 and C2 are the curves obtained by intersecting the vertical
planes y = b and x = a with the sufrace S . Then P ∈ C1∩C2.

T1 and T2 are tangent lines to the curves C1 and C2 at the
point P.

Definition 14.4.1. The “tangent plane” to the surface S
at P is defined to be the plane that contains both tangent
lines T1 and T2.

Note. If C is any curve that lies on S and passes P, then
the tangent line to C at P also lies on the tangent plane.
Hence, we can think of the tangent plane to S at P as
consisting of all possible tangent lines at P to curves that
lie on S and pass through P.

■ Equation of the tangent plane

Let the tangent plane to S passing throught P(a, b, c) has equation

A(x − a) + B(y − b) +C(z − c) = 0 (14.2)

We may assume that it is not a vertical tangent plane and hence C , 0. Dividing both sides of
equation (14.3) by −C, the tangent plane has an equivalent equation

z − c = α(x − a) + β(y − b) (α =
A
−C

and β =
B
−C

).

Since the intersection of the tangent plane and the vertical plane y = b is the tangent line T1,
plugging y = b into equation (14.3),

z − c = α(x − a)

is the equation of the tangent line T1. Then α is the slope of T1 to the curve C1 at (a, b, c) and
hence α = fx(a, b).

Similarly, β = fy(a, b). Therefore, the equation of the tangent plane to S at P is

z − c = fx(a, b)
(

x − a
)
+ fy(a, b)

(
y − b

)
.

Example 14.4.2. Find the tangent plane to the elliptic paraboloid z = 2x2 + y2 at (1, 1, 3).
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Proof. Let f (x, y) = 2x2 + y2. Then fx(x, y) = 4x and fy(x, y) = 2y. Hence, fx(1, 1) = 4 and
fy(1, 1) = 2. The equation of the tangent plane at (1, 1, 3) is

z − 3 = 4(x − 1) + 2(y − 1) or z = 4x + 2y − 3.

□

o Linear Approximations

We have studied the linear apporximation for a single variable function f (x). We use the
tangent line to the graph y = f (x) at a to approxinate the value of f near a and the linearization
for f at a is

L(x) = f (a) + f ′(a)(x − a)

and
f (x) ≈ L(x) as x is close to a.

For a two variable function f (x, y), we expect to approximate its values, as (x, y) is near
(a, b), by the tangnet plane at (a, b).

Suppose that f (x, y) has continuous partial derivative. The tangnet plane to the surface
S : z = f (x, y) at P

(
a, b, f (a, b)

)
is

z − f (a, b) = fx(a, b)(x − a) + fy(a, b)(y − b)
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or
z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

Definition 14.4.3.

(a) We call the function

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

the “linearization of f at (a, b).

(b) The approximation f (x, y) ≈ L(x, y) is called the “linear approximation” or “tangent plane
approximation” of f at (a, b).

Example 14.4.4. Find the linearization of f (x, y) = 2x2+y2 at (1, 1, 3) and use it to approximate
the value of f (1.1, 0.95).

Proof. Compute fx(x, y) = 4x and fy(x, y) = 2y and hence fx(1, 1) = and fy(1, 1) = 2. Then the
linearization of f at (1, 1, 3) is

L(x, y) = f (1, 1) + fx(1, 1)(x − 1) + fy(1, 1)(y − 1) = 3 + 4(x − 1) + 2(y − 1) = 4x + 2y − 3.

Also,
f (1.1, 0.95) ≈ L(1.1, 0.95) = 3 + 4 · 0.1 + 2 · (−0.05) = 3.3.

□

We define tangent plane for surface z = f (x, y), where f has continuous partial derivatives.
Question: What happens if fx and fy are not continuous? Consider the following example.

Example 14.4.5.

Let f (x, y) =

{ xy
x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
.

Then fx(0, 0) = 0 = fy(0, 0). For (x, y) , (0, 0),

fx(x, y) =
y(y2 − x2)
(x2 + y2)2 . Along x = 0,

lim
(x,y)→(0,0), x=0

fx(x, y) = lim
y→0

y3

y4 = ∞.

Hence, fx is continuous at (0, 0). Also, we can compute that
fy is not continuous at (0, 0). Observe that, for (x, y) on the

line x = y, f (x, y) =
1
2
, 0. Therefore, f is not continuous at

(0, 0). This implies that there is linear approximation of f at
(0, 0).

Note. This example says that for the linear approximation, the condition of the continuities of
fx and fy are necessary.
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o Differentials
Recall that for a differentiable single variable func-
tion y = f (x), dx is the differantial of x and dy =
f ′(x) dx is a differential of y.
The symbol 4y denotes the change in height of y and
dy represents the change in height of the tangent line
when x changes 4x = dx. Hence, as (x, y) is near
(a, b),

f (x, y) ≈ f (a, b) + f ′(a, b) dx = f (a, b) + dy.

For a differentiable fucntion of two variables
z = f (x, y), dx and dy are differentials of x and y
respectively, and dz is the differenital of z which is
called the “total differential”. Then

dz = fx(x, y) dx + fy(x, y) dy =
∂z
∂x

dx +
∂z
∂y

dy.

Taking dx = 4x = x − a and dy = 4y = y − b, then

dz = fx(x, y)(x − a) + fy(x, y)(y − b).

As (x, y) is near (a, b),

f (x, y) ≈ f (a, b)+ fx(a, b)(x−a)+ fy(a, b)(y−b) = f (a, b)+dz.

Example 14.4.6.
(a) If z = f (x, y) = x2 + 3xy − y2, find the differential dz.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of 4z and dz.

Proof.

(a) To find dz, fx(x, y) = 2x + 3y and fy(x, y) = 3x − 2y. Then

dz =
∂z
∂x

dx +
∂z
∂y

dy = (2x + 3y)dx + (3x − 2y)dy.

(b) If x changes from x to 2.05 and y changes from 3 to 2.96,
compare 4z and dz.

4z = = f (2.05, 2.96) − f (2, 3) = 0.6449
dz = fx(2, 3)(2.05 − 2) + fy(2, 3)(2.96 − 3) = 0.65.

□

Example 14.4.7. A cone has the raidus of its base 10 cm and the height 25 cm as the figure.
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Find a possible error as much as 0.1 cm in radius and height. Use differentials to estimate the
maximum error in the caculated volume of the cone.

Proof.

The volume of the cone is V(r, h) =
1
3
πr2h. Then

∂V
∂r
=

2
3
πrh,

∂V
∂h
=

1
3
πr2.

The differential of V with dr = 0.1 and dh = 0.1 is

dV =
∂V
∂r

(10, 25)dr +
∂V
∂h

(10, 25)dh

=
500π

3
· 0.1 + 100π

3
· 0.1 = 20π (cm3)

□

o Functions of Three or More Variables

■ Linear Approximation

The linearization of f at (a, b, c) is

f (x, y, z) ≈ L(x, y, z) = f (a, b, c) + fx(a, b, c)(x − a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c).

■ Differentials

Let w = f (x, y, z). Then

4w = f (x + 4x, y + 4y, z + 4z) − f (x, y, z)

dw = fx(x, y, z)dx + fy(x, y, z)dy + fz(x, y, z)dz =
∂w
dx

dx +
∂w
∂y

dy +
∂w
∂z

dz.

Example 14.4.8. A rectangular box has length, width, and height 75cm, 40 cm and 60cm
respectively. Use differentials to estimate the largest possible error when the volume of the box
is calculatedas each measurement is correct ot within 0.2 cm.

Proof.

Let x, y and z denote the length, width and height of the box. The
volume of the box is V(x, y, z) = xyz. Then

∂V
∂x
= xy,

∂V
∂y
= xz,

∂V
∂z
= xy.

The differential in V at (75, 40, 60) with dx = dy = dz = 0.2 is

dV =
∂V
∂x

dx +
∂V
∂y

dy +
∂V
∂z

dz

= 60 · 40 · 0.2 + 75 · 60 · 0.2 + 75 · 40 · 0.2 = 1980 (cm3).

□
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14.5 Differentiability and Gradient

For a two variables function f (x, y), it may have all partial derivatives ( fx and fy) at (a, b) but f is
not continuous there. Hence, f has no linear approximation at (a, b) and it is not “smooth” near
(a, b). To understand the differentiability of two variables (n variables) functions, let’s observe
linear approximation of one variable function and try to give a suitable definition.

We recall the geometric meaning of linear approximation
of y = f (x). Let 4y = f (a + 4x) − f (a). The rate of
change of y with respect to x is

4y
4x
=

f (a + 4x) − f (a)
4x

.

If f is differentiable at a, then
4y
4x
→ f ′(a) as 4x→ 0.

Hence,

4y︸︷︷︸
increment in y

= f ′(a)4x︸     ︷︷     ︸
linear approximation

+ ε4x︸︷︷︸
error

where ε→ 0 as 4x→ 0.

(Note that ε = ε(4x) varies as 4x varies.)

Formally, we says that a one variable function f is differentiable at x if there exists a number
L such that

lim
h→0

f (x + h) − f (x)
h

= L ⇐⇒ lim
h→0

f (x + h) − f (x) − Lh
h

= 0

⇐⇒ lim
h→0

| f (x + h) − f (x) − Lh|
|h| = 0.

Question: How to define the differentiability of two or n variables functions?

If we want to establish an appropriate definition for differentiability, it is natural to expect
that the definition should be consistant with the usual derivative when n = 1. Also, the definition
should reflect the rate of change in any direction.

For the sake to discuss n variables functions conveniently, we will use the following vector
symbols to represent the corresponding items in 2, 3 or n dimensional cases.

x =< x, y > or x =< x, y, z > or x =< x1, · · · , xn > as variables
a =< a1, a2 > or a =< a1, a2, a3 > or x =< a1, · · · , an > as some given point
h =< h1, h2 > or h =< h1, h2, h3 > or h =< h1, · · · , hn > as small displacement

Then z = f (x) and

4z = f (a1 + h1, a2 + h2) − f (a1, a2) = f (a + h) − f (a).
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Inspired by the definition of differentiability of one variable function, we may guess a
possible defintion as

lim
h→0

4z
h
.

However, the symbol
4z
h

is nonsense since the denominator is a vector rather than a scalar.

Again, the limit lim
h→0

4z
‖h‖ usually does not exist and it cannot reflect the rate of change of z

in the direction
h
‖h‖ . An expectant “derivative” of f at a is supposed to be an object which

sent the direction
h
‖h‖ to a value. The value will represent the rate of change of z in the

direction
h
‖h‖ .

Definition 14.5.1. Let f : D ⊆ R2 → R be a function and a ∈ D. We say that f is “differen-
tiable” at a if there exists a vector y ∈ R2 such that

lim
h→0

| f (a + h) − f (a) − y · h|
‖h‖ = 0

The vector y is denoted by “∇ f (a)” (or “grad f ”) and is called the “gradient” of f at a.

Proposition 14.5.2. The vector y [= ∇ f (a) the gradient of f at a] in the above definition is
unique.

Proof. If w is a vector such that

lim
h→0

| f (a + h) − f (a) − w · h|
‖h‖ = 0,

then

(∗) = |(y − w) · h|
‖h‖ =

|y · h − w · h|
‖h‖

≤ | f (a + h) − f (a) − y · h|
‖h‖ +

| f (a + h) − f (a) − w · h|
‖h‖ .

Choose h = ε(y − w) and let ε → 0. Then h → 0 and, by the definition of differentiability,

‖y − w‖ = ε‖y − w‖2
ε‖y − w‖ → 0. Hence, ‖y − w‖ = 0 and y = w. □

Remark.

(i) The gradient, ∇ f , of f is a vector-valued function. If f (x) : D ⊆ Rn → R, then the
gradient,∇ f (x), of f is a n component vector-valued function.

(ii) If f : I ⊆ R→ R is an one variable function, then ∇ f (x) = f ′(x).

(iii) For a fixed a ∈ D, we can regard ∇ f (a) as an operator which sends every vector h to a
number ∇ f (a) · h. This number represents the rate of change of f at a in the direction h.
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(iv) Dom(∇ f ) ⊆ Dom( f ).

■ Compute ∇ f

Question: How to compute ∇ f ?

Example 14.5.3. Let f (x, y) = x2 + y2. Find ∇ f (x, y).

Proof. Let h =< h1, h2 > and x =< x, y >. Then

f (x + h) − f (x) = [(x + h1)2 + (y + h2)2] − (x2 + y2)
= 2xh1 + h2

1 + 2yh2 + h2
2

= < 2x, 2y > ·< h1, h2 >︸        ︷︷        ︸
=h

+h2
1 + h2

2.

Since

lim
<h1,h2>→<0,0>

| f (x + h) − f (x)− < 2x, 2y > ·h|
‖h‖ = lim

<h1,h2>→<0,0>

|h2
1 + h2

2|»
h2

1 + h2
2

= lim
<h1,h2>→<0,0>

»
h2

1 + h2
2 = 0,

we have ∇ f (x, y) =< 2x, 2y >. □

Using the definition to find ∇ f is usually complicated. We expect to find a way to compute
∇ f more conveniently (at least under certain assumptions).

■ Sufficient condition for differentiability

From Example 14.4.5, a two variables function f (x, y) has all partial derivatives at (a, b) can-
not guarantee that it is differentiable there. We may need stronger conditions than the existence
of all partial derivatives to obtain the differentiability.

Theorem 14.5.4. Let f : D ⊆ R2 → R be a function. If f has continuous first partial derivatives
fx and fy at a, then f is differentiable at a and

∇ f (a) =
〈

fx(a), fy(a)
〉
.

Proof. Let a =< a1, a2 >. For h =< h1, h2 >,

f (a + h) − f (a) = f (a1 + h1, a2 + h2) − f (a1, a2)
=

[
f (a1 + h1, a2 + h2) − f (a1, a2 + h2)

]
+
[

f (a1, a2 + h2) − f (a1, a2)
]

= (I) + (II).

By the Mean Value Theorem, there exists θ1 ∈ (0, h1) and θ2 ∈ (0, h2) such that

(I) = fx(a1 + θ1, a2 + h2)h1 and (II) = fy(a1, a2 + θ2)h2.

Note that θ1, θ2 → 0 as < h1, h2 >→< 0, 0 >. Since fx and fy are continuous at < a1, a2 >, as
< h1, h2 >→< 0, 0 >,

fx(a1 + θ1, a2 + h2) − fx(a1, a2)→ 0 and fy(a1, a2 + θ2) − fy(a1, a2)→ 0.
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Hence,

lim
h→0

| f (a + h) − f (a)− < fx(a), fy(a) > ·h|
‖h‖

= lim
h→0

|(I) + (II) − fx(a1, a2)h1 − fy(a1, a2)h2|
‖h‖

= lim
h→0

∣∣∣Ä fx(a1 + θ1, a2 + h2) − fx(a1, a2)
ä

h1 +
Ä

fy(a1, a2 + θ2) − fy(a1, a2)
ä

h2

∣∣∣»
h2

1 + h2
2

≤ lim
h→0

î ∣∣∣ fx(a1 + θ1, a2 + h2) − fx(a1, a2)
∣∣∣ + ∣∣∣ fy(a1, a2 + θ2) − fy(a1, a2)

∣∣∣ ó
= 0.

Therefore, ∇ f (a) =
〈

fx(a), fy(a)
〉
. □

Example 14.5.5. Let f (x, y) = x2 + y2. Then fx(x, y) = 2x and fy(x, y) = 2y are continuous on
R2. Hence, f is differentiable on R2 and ∇ f (x, y) = 〈2x, 2y〉.
Remark. The theorem guarantees that ∇ f (a) =< fx(a), fy(a) > if fx and fy are continuous at
a. Sometimes, the result is still true even if its partial derivatives are not continuous there. For

example, f (x, y) =
ß

x2 sin
(

1
x

)
(x, y) , (0, 0)

0 (x, y) = (0, 0) . We have seen that fx and fy are not continuous

at (0, 0). On the other hand, fx(0, 0) = 0 = fy(0, 0) and

| f (h1, h2) − f (0, 0)|»
h2

1 + h2
2

=
|h2

1 sin( 1
h1

)|»
h2

1 + h2
2

≤
|h2

1 sin( 1
h1

)|
|h1|

−→ 0

as < h1, h2 >→< 0, 0 >. Therefore, ∇ f (0, 0) = 〈 fx(0, 0), fy(0, 0)〉.
Remark. Let f : D ⊆ Rn → R be a function of n variables. Suppose that all first partial
derivatives of f are continuous at a. Then f is differentiable at a and

∇ f (a) = 〈 fx1(a), fx2(a), · · · fxn(a)〉.

Example 14.5.6. f (x1, · · · , xn) = sin(x1+2x2+ · · ·+nxn) Then fxk = k cos(x1 + 2x2 + · · · + nxn)
for k = 1, 2, · · · , n. Since fxk(x1, · · · , xn) is continuous on Rn for k = 1, 2, · · · , n, f is differen-
tiable on Rn and

∇ f (x1, · · · , xn) =
〈

cos(x1 + · · · + nxn), · · · , n cos(x1 + · · · + nxn)
〉
.

Proposition 14.5.7. Let x =< x1, x2, · · · , xn >∈ Rn and r(x) = ‖x‖. Then

(1) ∇r(x) =
x

r(x)
=

x
‖x‖ for x , 0.

(2) ∇
( 1

r(x)
)
= − x

r3(x)
= − x
‖x‖3 for x , 0.

(3) ∇
(
rm(x)

)
= mrm−2(x)x = m‖x‖m−2x for x , 0, m ∈ N.

Proof. (exercise) □
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Theorem 14.5.8. Let f : D ⊆ Rn → R be a function. If f is differentiable at a, then it is
continuous at a.

Proof. Since f is differentiable at a, we have

lim
h→0

| f (a + h) − f (a) − ∇ f (a) · h|
‖h‖ = 0.

Then

0 ≤ | f (a + h) − f (a)| = | f (a + h) − f (a)|
‖h‖ ‖h‖

≤
î | f (a + h) − f (a) − ∇ f (a)|

‖h‖ +
|∇ f (a) · h|
‖h‖

ó
‖h‖

≤
î | f (a + h) − f (a) − ∇ f (a)|

‖h‖︸                              ︷︷                              ︸
→0 as h→0

+ ‖∇ f (a)‖︸     ︷︷     ︸
fixed number

ó
‖h‖.

By the squeeze theorem,

0 ≤ lim
h→0
| f (a + h) − f (a)| ≤ lim

h→0
‖∇ f (a)‖‖h‖ = 0.

Hence, f is continuous at a. □

■ Geometric viewpoint of defintion of differentiability

For a two variables function z = f (x, y), as x changes
from a to a+4x and y changes from b to b+4y, the
corresponding increment of z is

4z = f (a + 4x, b + 4y) − f (a, b)
= fx(a, b)4x + fy(a, b)4y︸                         ︷︷                         ︸

linear approximation

+ ε14x + ε24y︸           ︷︷           ︸
error

where ε1 = ε1(4x,4y) and ε2 = ε2(4x,4y). We ex-
pect that ε1, ε2 → 0 as (4x,4y)→ (0, 0).

The following definition is equivalent to Definition 14.5.1.

Definition 14.5.9. Let z = f (x, y). We call that f is “differentiable” at (a, b) if 4z can be
expressed in the form

4z = fx(a, b)4x + fy(a, b)4y + ε14x + ε24y

where ε1, ε2 → 0 as (4x,4y)→ (0, 0).

Example 14.5.10. Show that f (x, y) = xexy is differentiable at (1, 0) and find its linearization
there. Then use it to approximate f (1.1,−0.1).
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Proof. Since fx(x, y) = exy + xyexy and fy(x, y) = x2exy are continuous functions, f (x, y) is
differentiable everywhere. Moreover, fx(1, 0) = 1 and fy(1, 0) = 1. The linearization of f at
(1, 0) is

L(x, y) = f (1, 0) + fx(1, 0)(x − 1) + fy(1, 0)(y − 0)
= 1 + (x − 1) + y
= x + y.

Then

f (1.1,−0.1) ≈ L(1.1,−0.1) = 1.1 + (−0.1) = 1.

In fact, f (1.1,−0.1) = 1.1e−0.1 ≈ 0.98542.
□

14.6 The Gradient Vector and Directional Derivatives

o Laws of Gradients

Theorem 14.6.1. Let f , g : D ⊆ Rn → R be differentiable at a and c be a constant number.
Then

(a) f + g is differentiable at a and ∇( f ± g)(a) = ∇ f (a) ± ∇g(a).

(b) c f is differentiable at a and ∇(c f )(a) = c∇ f (a).

(c) f g is differentiable at a and ∇( f g)(a) = f (a)∇g(a) + g(a)∇ f (a).

(d) If g(a) , 0,
f
g

is differentiable at a and

∇
( f

g
)
(a) =

g(a)∇ f (a) − f (a)∇g(a)
g2(a)

.

Proof. We will prove part(c) here and the proofs of part(a)(b)(d) are left to the readers. Consider

f (a + h)g(a + h) − f (a)g(a)
‖h‖ =

Ä
f (a + h) − f (a)

ä
g(a + h) + f (a)

Ä
g(a + h) − g(a)

ä
‖h‖

=

Ä
f (a + h) − f (a) − ∇ f (a) · h

ä
g(a + h)

‖h‖︸                                                ︷︷                                                ︸
(I)

+

(
∇ f (a) · h

)
g(a + h)

‖h‖

+
f (a)
Ä

g(a + h) − g(a) − ∇g(a) · h
ä

‖h‖︸                                         ︷︷                                         ︸
(II)

+
f (a)

(
∇g(a) · h

)
‖h‖ .
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Hence,

f (a + h)g(a + h) − f (a)g(a) −
Ä

g(a + h)∇ f (a) + f (a)∇g(a)
ä
· h

‖h‖︸                                                                                   ︷︷                                                                                   ︸
(III)

= (I) + (II).

Since f and g are differentiable at a, lim
h→0

(I) = 0, lim
h→0

(II) = 0 and lim
h→0

g(a + h) = g(a). Then
lim
h→0

(III) = 0. Therefore,

∇( f g)(a) = f (a)∇g(a) + g(a)∇ f (a).

□

o Directional Derivatives

In Section 14.3, we studied the partial derivatives for a two variables function z = f (x, y).
The partial derivative

fx(x0, y0) = lim
h→0

f (x0 + h, y0) − f (x0, y0)
h

represents the rate of change of z in the x-direction (in the direction of the unit vector i). Simi-
larly,

fy(x0, y0) = lim
h→0

f (x0, y0 + h) − f (x0, y0)
h

represents the rate of change of z in the y-direction (in the direction of the unit vector j).
Question: How about the rate of change of z at (x0, y0) in the direction of a unit vector u =<
a, b >.

Let P(x0, y0, z0) lie on a surface S . The vertical plane that passes through P in the direction
of u intersects S in a curve C. The slope of the tangent line T to C at the point P is the rate of
change of z in the direction u.
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Let u =< a, b > be a unit vector and z = f (x, y). Consider the quotient difference of z in the
directional u

4z
h
=

z − z0

h
=

f (x0 + ha, y0 + hb) − f (x0, y0)
h

.

Taking h→ 0, we obtain the rate of change of z in the direction u.

Definition 14.6.2.

(a) Let f : D ⊆ R2 → R be a function and (x0, y0) ∈ D. The “directional derivatives” of f at
(x0, y0) in the direction of a unit vector u =< a, b > is

Du f (x0, y0) = lim
h→0

f (x0 + ha, y0 + hb) − f (x0, y0)
h

if the limit exists.

(b) In general, let f : D ⊆ Rn → R be a function, a ∈ D and u be a unit vector. The directional
derivative of f at a in the direction u is the limit

lim
h→0

f (a + hu) − f (a)
h

if it exists and is denoted by Du f (a).

Remark. (i) In the above definition, the direction u is a “unit” vector. Hence, if we want to
compute the directional derivative of f in the direction v, which is not a unit vector, we
should normalize v by u =

v
‖v‖ .

(ii) If u =< 0, · · · , 0, 1, 0, · · · , 0 >, then Du f (a) = fxi(a). The partial derivative of f with
respect to xi is a special directional derivative in the direction xi.

To compute the directional derivative Du f (x0, y0), there are two common methods:

(i) By the definition

(ii) Under certain assumptions, we can use the following theorem.

Theorem 14.6.3. If f : D ⊆ Rn → R is differentiable at a, then f has a directional derivative
at a in every direction u where u is a unit vector and

Du f (a) = ∇ f (a) · u.

Proof.

Recall that f is differentiable at a. Then

lim
h→0

| f (a + h) − f (a) − ∇ f (a) · h|
‖h‖ = 0.



14.6. THE GRADIENT VECTOR AND DIRECTIONAL DERIVATIVES 373

Let h = tu and then ‖h‖ = |t|‖u‖ = |t|. We have
f (a + tu) − f (a)

t
=

f (a + tu) − f (a) − ∇ f (a) · h
t

+
∇ f (a) · h

t
.

Hence,

lim
t→0

∣∣∣ f (a + tu) − f (a)
t

− ∇ f (a) · u
∣∣∣ = lim

t→0

∣∣∣ f (a + tu) − f (a)
t

− ∇ f (a) · (tu)
t

∣∣∣
= lim

h→0

| f (a + h) − f (a) − ∇ f (a) · h|
‖h‖

= 0. (since f is differentiable at a)

Therefore,

Du f (a) = lim
t→0

f (a + tu) − f (a)
t

= ∇ f (a) · u.
□

Note. In particular, if f is a differentiable function
of x and y, then f has a directional derivative in the
direction of any unit vector u =< a, b > and

Du f (x, y) = fx(x, y)a + fy(x, y)b.

Moreover, if u =< cos θ, sin θ >, then

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ.

Remark. If f is differentiable and u is a unit vector, then

Du f (a) = ∇ f (a) · u.
This means that the directional derivative (the rate of change of f ) in the direction of a unit
vector u is the scalar projection of the gradient vector ∇ f (a) onto u.
Example 14.6.4. Find the directional derivative Du f (x, y) if

f (x, y) = x3 − 3xy + 4y2

and u is the unit vector given by angle θ = π6 . What is Du f (1, 2)?

Proof. The gradient of f is

∇ f =< fx, fy >=< 3x2 − 3y,−3x + 8y > .

Hence, the directional derivative is

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ

= (3x2 − 3y) cos
π

6
+ (−3x + 8y) sin

π

6

=
1
2

[3
√

3x2 − 3x + (8 − 3
√

3)y]

and Du f (1, 2) =
13 − 3

√
3

2
.

□
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Example 14.6.5. Find the directional derivative of f (x, y) = x2y3 − 4y at (2,−1) in the direction
v = 2i + 5j.

Proof. The gradient of f is

∇ f =< fx, fy >=< 2xy3, 3x2y2 − 4 > .

Let u =
v
‖v‖ =

2
√

29
i +

5
√

29
j. The directional

derivative is

Du f (2,−1) = fx(2,−1)· 2
√

29
+ fy(2,−1)· 5

√
29
=

32
√

29
.

□

o Differentiability and Partial Derivatives

From Definition 14.5.1, we can prove that a differentiable function f havs (all) partial deriva-
tives. In fact, it has directional derivatives in every direction. But the converse is false. There
indeed exists a function which has all directional derivatives but it is not differentiable.

On the other hand, Theorem 14.5.4 says that continuity of all partial derivatives implies
differentiability of f . We hope to understand the connection between the partial derivatives and
differentiability.

Theorem 14.6.6. If f : D ⊆ Rn → R is differentiable at a, then all partial derivatives of f exist
at a and

∇ f (a) =
¨ ∂ f
∂x1

(a),
∂ f
∂x2

(a), · · · , ∂ f
∂xn

(a)
∂
.

Proof. Since f is differentiable at a, the gradient vector ∇ f (a) exists and denote

∇ f (a) =< α1, α2, · · · , αn > .

The partial derivative of f with respect to xi is

∂ f
∂xi

(a) = ∇ f (a)· < 0, · · · , 0, 1, 0, · · · , 0 >= αi

for i = 1, 2 · · · , n. Hence ∇ f (a) =
¨ ∂ f
∂x1

(a),
∂ f
∂x2

(a), · · · , ∂ f
∂xn

(a)
∂

.
□

Note. If f is differentiable at a, then we can explicitly write the form of ∇ f (a).

Conclusion: Let f : D ⊆ Rn → R be a function. Then

All partial derivatives of f exist and are continuous at a

⇓
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f is differentiable at a and ∇ f (a) exists and ∇ f (a) =
¨ ∂ f
∂x1

(a),
∂ f
∂x2

(a), · · · , ∂ f
∂xn

(a)
∂

.

⇓

All partial derivatives of f exist and the directional derivative Du f (a) = ∇ f (a) · u

Note. All the converse of the above arrows are false.

o Maximizing the Directional Derivatives

Suppose that f : D ⊆ Rn → R is differentiable at a. Then all directional derivatives of f at
a exist and

Du f (a) = ∇ f (a) · u
for any unit vector u.

Question: In which direction does f change fastest and what is the maximum rate of change?

Observe that the rate of change of f in the direction u is

Du f (a) = ∇ f (a) · u = ‖∇ f (a)‖ ‖u‖︸︷︷︸
=1

cos θ = ‖∇ f (a)‖ cos θ

where θ is the angle between the two vectors ∇ f (a) and u. Hence, the maximum value of
Du f (a) occurs when θ = 0.

Theorem 14.6.7. Suppose that f is differentiable at a. Then

(a) The maximum value of the directional derivative Du f (a) is ‖∇ f (a)‖ and it occurs when u
has the same direction as the gradient vector ∇ f (a). That is, the function f at a increases
fastest in the same direction of ∇ f (a).

(b) Similarly, the minimum value of the direction derivative Du f (a) is −‖∇ f (a)‖ and it occurs
when u has the opposite direction to the gradient vector ∇ f (a). That is, the function f at a
decreases fastest in the opposite direction to ∇ f (a).

(c) The function does not change in the direction of u which is perpendicular to ∇ f (a).

Example 14.6.8. Let f (x, y) = xey.

(a) Find the rate of change of f at the point P(2, 0) in the direction from P to Q( 1
2 , 2).

Proof. The vector
−→
PQ=< −3

2
, 2 > and u =

−→
PQ

‖
−→
PQ ‖

=< −3
5
,

4
5
>. The gradient of f is∇ f (x, y) =

< ey, xey > and ∇ f (2, 0) =< 1, 2 >. Hence, the rate of change of f in the direction
−→
PQ is

Du f (1, 2) =< 1, 2 > · < −3
5 ,

4
5 >= 1. □
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(b) In what direction does f have the maximum rate of change? What is this maximum rate of
change?

Proof. f increases fastest in the direction of the gradient vector ∇ f (2, 0) =< 1, 2 > and the
maximum rate of change is ‖∇ f (2, 0)‖ = ‖ < 1, 2 > ‖ =

√
5. □

Example 14.6.9. Suppose that the temperature at a point (x, y, z) in space is given by

T (x, y, z) =
80

1 + x2 + 2y2 + 3z2 ,

where T is measured in degree Celsius and x, y, z in meters. In which direction does the tem-
perature increase fastest at the point (1, 1,−2)? What is the maximum rate of increase?

Proof. The gradient of T is∇T (x, y, z) =
160

(1 + x2 + 2y2 + 3z2)2 (−xi − 2yj − 3zk) and then∇T (1, 1,−2) =
5
8 (−i − 2j + 6k).

The temperature increases fastest in the direction of the gradient vector ∇T (1, 1,−2) =
5
8 (−i − 2j + 6k) or −i − 2j + 6k. The maximum rate of increase is

‖∇T (1, 1,−2)‖ = 5
8
‖ − i − 2j + 6k‖ = 5

√
41

8
≈ 4 (oC/m).

□

14.7 The Chain Rule

■ Chain Rule: First Version

Recall the for single variable functions y = f (x), x = g(t), y = f
(
g(t)

)
is a composite

function of variable t. Then
dy
dt
=

dy
dx

dx
dt
.
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For a two variables function z = f (x, y), if x = g(t) and y = h(t), then z = f
(
g(t), h(t)

)
is

indeirectly a function of t, say z = z(t). Suppose that z = f (x, y) is differentiable and, x = g(t)
and y = h(t) are differentiable. Then

4z = fx(x, y)4x + fy(x, y)4y + ε14x + ε24y

= fx(x, y)
4x
4t
4t + fy(x, y)

4y
4t
4t + ε1

4x
4t
4t + ε2

4y
4t
4t

where ε1, ε2 → 0 as (4x,4y) → (0, 0). Since x = g(t) and y = h(t) are differentiable in t, we

have
4x
4t
→ dx

dt
and
4y
4t
→ dy

dt
as 4t → 0. Then, letting 4t → 0,

4z
4t
→ fx(x, y)

dx
dt
+ fy(x, y)

dy
dt
+ lim
4t→0
ε1︸   ︷︷   ︸

=0

·dx
dt
+ lim
4t→0
ε2︸   ︷︷   ︸

=0

·dy
dt
.

We obtain
dz
dt
= lim
4t→0

4z
4t
= fx(x, y)

dx
dt
+ fy(x, y)

dy
dt
.

In Chapter 13, we studied the n vector-valued function r(t) =< x1(t), · · · , xn(t) >: I → Rn.
If r(t) is differentiable on I, then

r′(t) =< x′1(t), · · · , x′n(t) > .

Theorem 14.7.1. (Chain Rule)

(a) (Two variables function) Suppose that z = f (x, y) is a differentiable function of x and y
where x = x(t) and y = y(t) are both differentiable functions of t. Then z is a differentiable
function of t and

dz
dt
=
∂ f
∂x

dx
dt
+
∂ f
∂y

dy
dt
=
∂z
∂x

dx
dt
+
∂z
∂y

dy
dt
.

(b) (General multiple variables function) Suppose that f : D ⊆ Rn → R is a continuously
differentiable function. If r = r(t) is a differentiable curve in D, then f ◦ r is differentiable
and

d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t).

Proof. It suffices to prove the case n = 2 and the general cases are similar.

Since x = x(t) and y = y(t) are differentiable in t,

4x = x(t + 4t) − x(t) =
dx
dt
4t + ε14t and 4y = y(t + 4t) − y(t) =

dy
dt
4t + ε24t

where ε1, ε2 → 0 as 4t → 0 as well as

lim
4t→0

4x
4t
=

dx
dt

and lim
4t→0

4y
4t
=

dy
dt
.

Clearly, 4x,4y→ 0 as 4t → 0.
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On the other hand, since f is differentiable,

4z = f (x + 4x, y + 4y) − f (x, y)
= fx(x, y)4x + fy(x, y)4y + ε34x + ε44y

where ε3, ε4 → 0 as (4x,4y)→ (0, 0). Then

4z
4t
= fx(x, y)

4x
4t
+ fy(x, y)

4y
4t
+ ε3
4x
4t
+ ε4
4y
4t
.

Taking limits as 4t → 0, we have

dz
dt
= lim
4t→0

4z
4t
= fx(x, y)

Ä
lim
4t→0

4x
4t

ä
︸         ︷︷         ︸

= dx
dt

+ fy(x, y)
Ä

lim
4t→0

4y
4t

ä
︸         ︷︷         ︸

=
dy
dt

+
Ä

lim
4t→0
ε3

ä
︸       ︷︷       ︸

=0

Ä
lim
4t→0

4x
4t

ä
+
Ä

lim
4t→0
ε4

ä
︸       ︷︷       ︸

=0

Ä
lim
4t→0

4y
4t

ä
= fx(x, y)

dx
dt
+ fy(x, y)

dy
dt

=
∂z
∂x

dx
dt
+
∂z
∂y

dy
dt
.

□

Example 14.7.2. If z = x2y + 3xy4, where x = sin 2t and y = cos t, find
dz
dt

when t = 0.

Proof. Compute
∂z
∂x
= 2xy + 3y4 and

∂z
∂y
= x2 + 12xy3. Then

dz
dt
=
∂z
∂x

dz
dt
+
∂z
∂y

dy
dt

= (2xy + xy4)(2 cos 2t) + (x2 + 12xy3)(− sin t)
= (2 sin 2t cos t + 3 cos4 t)(2 cos 2t) + (sin2 2t + 12 sin 2t cos3 t)(− sin t).

At t = 0,
dz
dt

∣∣∣
t=0
= 6.

Note that
dz
dt

represents the rate of change of z with respect to t as the point (x, y) moves
along the curve C with parametric equation r(t) =< sin 2t, cos t >. □

Example 14.7.3. Compute the rate of change of f (x, y, z) = x2y+z cos z along the curve r(t) =<
t, t2, t3 >.

Proof. Compute

∇ f (x, y, z) =< 2xy, x2, cos z − z sin z > and r′(t) =< 1, 2t, 3t2 > .
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Then
d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t)

= < 2t3, t2, cos t3 − t3 sin t3 > · < 1, 2t, 3t2 >

= 4t3 + 3t2 cos t3 − 3t5 sin t3.

□

Remark. (1) Suppose that f (x) = f (x1, x2, · · · , xn) and r(t) =< x1(t), · · · , xn(t) >. Then

∇ f (x) =<
∂ f
∂x1

(x),
∂ f
∂x2

(x), · · · , ∂ f
∂xn

(x) > and r′(t) =< x′1(t), · · · , x′n(t) >

Hence,

d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t)

= <
∂ f
∂x1

(x),
∂ f
∂x2

(x), · · · , ∂ f
∂xn

(x) > · < x′1(t), · · · , x′n(t) >

=

n∑
i=1

∂ f
∂xi

(
r(t)

)
x′i(t)

=

n∑
i=1

∂ f
∂xi

(
r(t)

)dxi

dt
(t)

(2) Recall that the directional derivative of f at (a, b) in the direction u (unit vector) is

Du f (a, b) = ∇ f (a, b) · u.

Let the plane curve r(t) pass < a, b > when t = t0 (that is, r(t0) =< a, b >). Then

d
dt

Ä
f
(
r(t)

)ä∣∣∣
t=t0
= ∇ f

(
r(t0)

)
· r′(t0) = ‖r′(t0)‖Du f (a, b)

where u =
r′(t0)
‖r′(t0)‖ . This means that the rate of change of the composite function f

(
r(t)

)
at

t = t0 is equal to ‖r′(t0)‖ multiple of the directional derivative of f at r(t0) in the direction
r′(t0).
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Corollary 14.7.4. If x = x(t) and y = y(t) are twice differentiable at t and if z = f (x, y) is twice
differentiable at

(
x(t), y(t)

)
, then z = f

(
x(t), y(t)

)
is twice differentiable at t and

d2z
dt2 =

∂z
∂x

d2x
dt2 +

Ädx
dt

ä2 ∂2z
∂x2 + 2

∂2z
∂x∂y

dx
dt

dy
dt
+
Ädy

dt

ä2 ∂2z
∂y2 +

∂z
∂y

d2y
dt2 .

Proof. (Exercise) □

■ Chain Rule: Second Version

Let z = f (x, y), x = x(s, t) and y = y(s, t) be differentiable functions. Then z = z(s, t) =
f
(

x(s, t), y(s, t)
)

is indirectly a function of s and t. Consider the partial derivative of z with
respect to t. From the discuss in Section 14.3, fixing s (as a constant w.r.t t) and regarding z as
a function of t. We can use the idea of Case1 to find the partial derivative of z with respect to t.

Theorem 14.7.5. (Chain Rule)
(a) Suppose that z = f (x, y) is a differentiable function of x and y, where x = x(s, t) and

y = y(s, t) are differentiable functions of s and t. Then

∂z
∂s
=
∂z
∂x
∂x
∂s
+
∂z
∂y
∂y
∂s
,

∂z
∂t
=
∂z
∂x
∂x
∂t
+
∂z
∂y
∂y
∂t
.

The tree diagram is

(b) If x = x(s, t) and y = y(s, t) are differentiable at (s, t) and z = f
(

x1, · · · , xn
)

is differentiable
at

(
x1(t), xn(t)

)
then

∂z
∂s
=
∂z
∂x1

∂x1

∂s
+ · · · + ∂z

∂xn

∂xn

∂s
=

n∑
i=1

∂z
∂xi

∂xi

∂s
and

∂z
∂t
=
∂z
∂x1

∂x1

∂t
+ · · · + ∂z

∂xn

∂xn

∂t
=

n∑
i=1

∂z
∂xi

∂xi

∂t

Example 14.7.6. If z = ex sin y, where x = st and y = s2t, find
∂z
∂s

and
∂z
∂t

.

Proof. Compute that
∂z
∂x
= ex sin y,

∂z
∂y
= ex cos y
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and
∂x
∂s
= t2,

∂x
∂t
= 2st,

∂y
∂s
= 2st,

∂y
∂t
= s2.

Then

∂z
∂s
=
∂z
∂x
∂x
∂s
+
∂z
∂y
∂y
∂s
= e2 sin y · t2 + e2 cos y · 2st

= t2est sin(s2t) + 2stest cos(s2t).

and

∂z
∂t
=
∂z
∂x
∂x
∂t
+
∂z
∂y
∂y
∂t
= e2 sin y · 2st + e2 cos y · s2

= 2stest sin(s2t) + s2est cos(s2t).

□

Corollary 14.7.7. Suppose that z = f (x, y) is a twice differentiable function of x and y, where
x = x(s, t) and y = y(s, t) are twice differentiable functions of s and t. Then

∂2z
∂s2 =

∂

∂s

Ä∂z
∂s

ä
=
∂

∂s

î ∂z
∂x
∂x
∂s
+
∂z
∂y
∂y
∂s

ó
=

( ∂2z
∂x2

∂x
∂s
+
∂2z
∂y∂x

∂y
∂s

)∂x
∂s
+
∂z
∂x
∂2x
∂s2

+
( ∂2z
∂x∂y

∂x
∂s
+
∂2z
∂y2

∂y
∂s

)∂y
∂s
+
∂z
∂y
∂2y
∂s2

Example 14.7.8. Let u = f (s2 + t2, st) Find
∂2u
∂s∂t

.

Proof.
∂u
∂t
=
∂ f
∂x

(s2 + t2, st) · 2t +
∂ f
∂y

(s2 + t2, st) · s.

and

∂2u
∂s∂t

=
∂

∂s

Ä∂u
∂t

ä
=
∂2 f
∂x2 (s2 + t2, st)(2s)(2t) +

∂2 f
∂y∂x

(s2 + t2, st)(2t2)

+
∂2 f
∂x∂y

(s2 + t2, st)2s · s + ∂
2 f
∂y2 (s2 + t2, st)t · s + ∂ f

∂y
(s2 + t2, st) · 1.

□

■ Chain Rule: General Version

Suppose that u is a differentiable function of n variables x1, · · · , xn and each xi is a differ-
enbitable function of m variables t1, · · · , tm. Then u is a differentiable function of t1, · · · , tm

and
∂u
∂ti
=
∂u
∂x1

∂x1

∂ti
+
∂u
∂x2

∂x2

∂ti
+ · · · + ∂u

∂xn

∂xn

∂ti

for each i = 1, 2, · · · ,m.
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Example 14.7.9. Let w = f (x, y, z, t), x = x(u, v), y = y(u, v) and z = z(u, v). Then

∂w
∂u
=
∂w
∂x
∂x
∂u
+
∂w
∂y
∂y
∂u
+
∂w
∂z
∂z
∂u
+
∂w
∂t
∂t
∂u

and
∂w
∂v
=
∂w
∂x
∂x
∂v
+
∂w
∂y
∂y
∂v
+
∂w
∂z
∂z
∂v
+
∂w
∂t
∂t
∂v
.

Example 14.7.10. If u = x4y + y2z3, where x = rset, y = rs2e−t and z = r2s sin t, find the value

of
∂u
∂s

when r = 2, s = 1 and t = 0.

Proof.
∂u
∂x
= 4x3y,

∂u
∂y
= x4 + 2yz3,

∂u
∂z
= 3y2z2

and
∂x
∂s
= ret,

∂y
∂s
= 2rse−t,

∂z
∂s
= r2 sin t.

Then

∂u
∂s
=
∂u
∂x
∂x
∂s
+
∂u
∂y
∂y
∂s
+
∂u
∂z
∂z
∂s

= 4x3y · ret + (x4 + 2yz3) · 2rse−t + 3y2z2 · r2 sin t.

When (r, s, t) = (2, 1, 0), x = 2, y = 2 and z = 0. Hence,

∂u
∂s

∣∣∣
(r,s,t)=(2,1,0)

= 64 · 2 + 16 · 4 + 0 · 0 = 192.
□

Example 14.7.11. If z = f (x, y) has continuous second-order partial derivatives and x = r2 + s2

and y = 2rs, find
∂z
∂r

and
∂2z
∂r2 .

Proof.
∂z
∂r
=
∂z
∂x
∂x
∂r
+
∂z
∂y
∂y
∂r
=
∂z
∂x

(2r) +
∂z
∂y

(2s).

and

∂2z
∂r2 =

∂

∂r

Ä∂z
∂r

ä
= 2r

î ∂2z
∂x2

∂x
∂r
+
∂2z
∂y∂x

ó
+ 2
∂z
∂x

+2s
î ∂2z
∂x∂y

∂x
∂r
+
∂2z
∂y2

∂y
∂r

ó
= 2

∂z
∂x
+ 4r2 ∂

2z
∂x2 + 4s2 ∂

2z
∂y2 + 8sr

∂2z
∂x∂y

.

Note that
∂2z
∂x∂y

=
∂2z
∂y∂x

since f has continuous second partial derivatives. □
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14.8 Mean Value Theorem and Implicit Differentiation

o Mean Value Theorem

Theorem 14.8.1. (Mean Value Theorem) Let f : D ⊆ Rn → R be a function and the segment
ab ⊂ D. If f is differentiable at every point on ab, then there exists c ∈ ab such that

f (b) − f (a) = ∇ f (c) · (b − a).

Proof. Let g(t) = f (a + t(b − a)). For t ∈ [0, 1], a + t(b − a) ∈ ab, g(0) = f (a) and g(1) = f (b).
Since f is differentiable at every point on the segment ab, g(t) is differentiable on [0, 1] and

g′(t) = ∇ f
(
a + t(b − a)

)
· (b − a).

By the mean value theorem for single variable function, there exists t0 ∈ (0, 1) such that

f (b) − f (a) = g(1) − g(0) = g′(t0)(1 − 0)
= ∇ f

(
a + t0(b − a)

)
· (b − a) = ∇ f (c) · (b − a)

where c = a + t0(b − a). □

Corollary 14.8.2. Suppose that f (x, y) is differentiable on an open set containing the line seg-
ment connecting the point P(x0, y0) and Q(x0 + h, y + k). Then there exists θ ∈ (0, 1) such
that

f (x0 + h, y0 + k) − f (x0, y0) = h fx(x0 + θh, y0 + θk) + k fy(x0 + θh, y0 + θk).

Proof. (Exercise)
□

o Implicit Differentiation

Recall that if the two variables x and y have a relation, for example xy2 + x sin y = 1, we can

find
dy
dx

. By differentiating of both sides,

d
dx

(
xy2 + x sin y

)
=

d
dx

(1)

we have
dy
dx
= − y2 + sin y

2xy + x cos y
.

In general, for the equation F(x, y) = 0 where F is differentiable, we can regard y as a

function of x. To find
dy
dx

,
∂

∂x

Ä
F(x, y)

ä
=
∂

∂x
(0).

We have
∂F
∂x

dx
dx︸︷︷︸
=1

+
∂F
∂y

dy
dx
= 0.
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and then
dy
dx
= −

∂F
∂x
∂F
∂y

= −Fx

Fy
.

Note. The “Implicit Function Theorem” give conditions under which this assumption is valid:
if F is defined on a disk containing (a, b) where F(a, b) = 0, Fy(a, b) , 0, and Fx and Fy are
continuous on the disk, then the equation F(x, y) = 0 defines y as a function of x near the point
(a, b) and the derivtive of y with respect to x is

dy
dx
= −Fx

Fy
.

Example 14.8.3. Find
dy
dx

if x3 + y3 = 6xy.

Proof. Let F(x, y) = x3 + y3 − 6xy. Then Fx = 3x2 − 6y and Fy = 3y2 − 6x. We have

dy
dx
= −Fx

Fy
= −3x2 − 6y

3y2 − 6x
= − x2 − 2y

y2 − 2x
.

□

Question: If z = f (x, y) or F(x, y, z) = 0, how to find
∂z
∂x

and
∂z
∂y

?

For F(x, y, z) = 0, we can regard z as a function of x and y, say z = f (x, y). Then

F
(

x, y, f (x, y)
)

for all x, y ∈ Dom( f ). Find
∂z
∂x

. Consider

∂

∂x

Ä
F(x, y, z)

ä
=
∂F
∂x

dx
dx︸︷︷︸
=1

+
∂F
∂y

dy
dx︸︷︷︸
=0

+
∂F
∂z
∂z
∂x
=
∂

∂x
(0) = 0.

Therefore,
∂z
∂x
= −Fx

Fz
provided Fz , 0.

Similarly,
∂z
∂y
= −

Fy

Fz
provided Fz , 0.



14.9. TANGENT PLANE TO LEVEL SURFACE 385

Example 14.8.4. Find
∂z
∂x

and
∂z
∂y

if x3 + y3 + z3 + 6xyz = 1.

Proof. Let F(x, y, z) = x3 + y3 + z3 + 6xyz − 1. Then

Fx = 3x2 + 6yz, Fy = 3y2 + 6xz, Fz = 3z2 + 6xy.

We have
∂z
∂x
= −Fx

Fz
= − x2 + 2yz

z2 + 2xy
and

∂z
∂y
= −

Fy

Fz
= −y2 + 2xz

z2 + 2xy
.

□

We give the Implicit Function Theorem here. It will be discussed in the course of Advanced
Calculus.

Theorem 14.8.5. (Implicit Function Theorem) If F is defined within a sphere containing (a, b, c),
where F(a, b, c) = 0, Fz(a, b, c) , 0, and Fx, Fy and Fz aer continuous inside the sphere, then
the equation F(x, y, z) = 0 define z as a function of x and y near the point (a, b, c) and this
function is defferentiable and

∂z
∂x
= −Fx

Fz
and

∂z
∂y
= −

Fy

Fz
.

14.9 Tangent Plane to Level Surface

In Section14.4, we have learned that the equation of the tangent plane to the surface S : z = f (x, y)
at P(x0, y0, z0) is

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0). (14.3)

Define F(x, y, z) = z − f (x, y). Then

S =
{

(x, y, z)
∣∣ z = f (x, y)

}
=
{

(x, y, z)
∣∣ z − f (x, y) = 0

}
=
{

(x, y, z)
∣∣ F(x, y, z) = 0}

is a level surface of F when the value is equal to 0. Hence, (14.3) also interprets the equation of
the tangnet plane to the level surface of F at P.

From the same spirit as above, we consider a differentiable function F(x, y, z) of three vari-
ables x, y and z. Let S be a level surface with equation F(x, y, z) = k and x =< x0, y0, z0 >∈ S .
To find the tangent plane to S at x, it suffices to find the normal vector of S at x.

Theorem 14.9.1. Let F : D ⊆ R3 → R be continuously differentiable and S ⊂ D be a level
surface of F. If x =< x0, y0, z0 >∈ S and ∇ f (x) , 0, then ∇ f (x) is perpendicular to S at x.

Proof. In order to prove ∇ f (x) is perpendicular to S at x, it suffices to show that the vector
∇ f (x) is perpendicular to any curve on S passing x (the tangent vector to the curve at x).
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Let C : r(t) =< x(t), y(t), z(t) > be a differentiable curve that
lies on S and passes through x =< x0, y0, z0 > when t = t0. Let
S be the level surface with equation F(x, y, z) = k. Then

F
(
r(t)

)
= F

(
x(t), y(t), z(t)

)
= k.

Hence,

0 =
d
dt

î
F
(
r(t)

)ó
=
∂F
∂x

dx
dt
+
∂F
∂y

dy
dt
+
∂F
∂z

dz
dt

= <
∂F
∂x
,
∂F
∂y
,
∂F
∂z
> · < dx

dt
,

dy
dt
,

dz
dt
>

= ∇F
(
r(t)

)
· r′(t)

Taking t = t0, ∇F(x) ⊥ r′(t0).
Note that r′(t0) is a tangent vector lying on the tangent plane. Since C is an arbitrary curve

on S , any vector on the tangent plane (to S at x) is perpendicular to ∇F(x). Therefore, ∇F(x) is
the normal vector of the tangent plane to S at x. □

Note. (1) Let S be the level surface with equation F(x, y, z) = k and x =< x0, y0, z0 >∈ S . If
∇F(x) , 0, it is natural to define the tangent plane to the level surface S at x as the plane
that passes through x and has normal vector ∇F(x). The equation of the tangent plane is

∇F(x0, y0, z0)· < x − x0, y − y0, z − z0 >= 0.

That is,

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

(2) Consider the special case that the surface S with equation z = f (x, y) which is the graph
of a function f of two variables. Let F(x, y, z) = f (x, y) − z. Then S is with the equation
F(x, y, z) = 0. Also,

Fx(x0, y0, z0) = fx(x0, y0), Fy(x0, y0, z0) = fy(x0, y0), and Fz(x0, y0, z0) = −1.

The equation of the tangent plane to S at (x0, y0, z0) is

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + (−1)(z − z0) = 0.

Example 14.9.2. Find the equation of the tangne tplane at the point (−2, 1,−3) to the ellipsoid
x2

4
+ y2 +

z2

9
= 3.

Proof.
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Let F(x, y, z) =
x2

4
+ y2 +

z2

9
. Then the ellipsoid is the level surface

(with k = 3) of F(x, y, , z). Then

Fx =
x
2
, Fy = 2y and Fz =

2z
9
.

Hence, Fx(−2, 1, 3) = −1, Fy(−2, 1, 3) = 2 and Fz(−2, 1,−3) = −2
3

.
The equation of the tangnet plane is

−(x + 2) + 2(y − 1) − 2
3

(z + 3) = 0

or
3x − 6y + 2z + 18 = 0.

□

o Normal Line

The normal line to S at x is the line passing through x =< x0, y0, z0 > and perpendicular to
the tangent plane. The direction of the normal line is the gradient vector ∇F(x). The symmetric
equation are

x − x0

Fx(x0, y0, z0)
=

y − y0

Fy(x0, y0, z0)
=

z − z0

Fz(x0, y0, z0)
.

Example 14.9.3. As the above example, the equation of the normal line is

x + 2
−1
=

y − 1
2
=

z + 3
−2

3

.

o Significance of the Gradient Vector

Consider the function f (x, y) of two variables.

• The gradient vector ∇ f (x0, y0) gives the direction of fastest increase of f . Intuitively, it is
because the values of f remain constant as we move along the level curve.
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• ∇ f (x0, y0) is perpendicular to the level curve f (x, y) = k that passes througth (x0, y0).

• For a plane curve C : y = f (x), define F(x, y) = y − f (x). Then C is a level curve of F. If
(x0, y0) ∈ C, then ∇F(x0, y0) is the normal vector of C at (x0, y0).

Example 14.9.4. Let C be the curve defined by C = {(x, y)
∣∣ x2+y3 = 9}. Find the tangent

line of C at (1, 2).

Proof. Let f (x, y) = x2+y3. Then C is a level curve of f (with k = 9). The gradient vector
∇ f (1, 2) =< ∂ f

∂x (1, 2), ∂ f
∂y (1, 2) >=< 2, 12 > is the normal vector of C at (1, 2). Hence, the

tangent vector of C at (1, 2) is < 12,−2 > (perpendicular to < 2, 12 >). The equation of
the tangent line to C at (1, 2) is

< x − 1, y − 2 > · < 2, 12 >= 0 or 2(x − 1) + 12(y − 2) = 0.

□

14.10 Maximum and Minimum Values

In the present section, we will study the extreme values of two variables function f (x, y). Recall
that, of a single variable funciton f (x), we find the critical points as candinates and determine the
extreme values by first derivative test or second derivative test. For a muti-variables functions,
we also want to find the critical points by considering the directional derivatives.

Definition 14.10.1. Let f be a two variables function on D. We say that

(a) f has a local maximum (minimum) at (a, b) if

f (x, y) ≤ f (a, b)
(

f (x, y) ≥ f (a, b)
)

when (x, y) is near (a, b). [This means that f (x, y) ≤ f (a, b) for all point (x, y) in some dist
center (a, b)]. The number f (a, b) is called a “local maximum (minimum) value”.
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(b) f has an absolute maximum (minimum) at (a, b)if

f (x, y) ≤ f (a, b)
(

f (x, y) ≥ f (a, b)
)

for all (x, y) ∈ D. The number f (a, b) is called an “absolute maximum (minimum) values”.

(c) The maximum and minimum values of f are called the “extreme values of f ”.

Question: How to find the extreme values of f ?

Theorem 14.10.2. If f has a local maximum or minimum at (a, b) and the first-order partial
derivatives of f exists there, then fx(a, b) = 0 and fy(a, b) = 0. (∇ f (a, b) = 0)

Proof. Let g(x) = f (x, b). If f has a local maximum or minimum at (a, b), g has a local
maximum or minimum at a. Thus, 0 = g′(a) = fx(a, b). Similarly, fy(a, b) = 0.

□

Note. The geometric interpretation is that if the graph of f has a tangent plane at a local maxi-
mum or minimum, then the tangent plane must be horizontal.

Definition 14.10.3. We call that point (a, b) a “critical point” of f if either (1) fx(a, b) = 0 and
fy(a, b) = 0 or (2) one of fx(a, b) and fy(a, b) does not exist.

Example 14.10.4. Let f (x, y) = x2 + y2 − 2x − 6y + 14. Find the critical point of f .

Proof. The partial derivatives fx(x, y) = 2x − 2 and
fy(x, y) = 2y − 6. Therefore, fx(x, y) = 0 when x = 1
and fy(x, y) = 0 when y = 3. The point (1, 3) is a critical
point of f . In fact, f (x, y) = 4 + (x − 1)2 + (y − 3) ahs a
local and an absolute maximum at (1, 3). □
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Remark. The above theorem says that if f has a local maximum or minimum at (a, b), then
(a, b) is a critical point of f . However, not all critical points give rise to maximum or minima.

Example 14.10.5. Find the extreme values of f (x, y) = y2 − x2.

Proof. The partial derivatives fx = −2x and fy = 2y.
Then fx = 0 when x = 0 and fy = 0 when y = 0. The
point (0, 0) is a critical point of f . But f (0, 0) is neither a
local maximum nor a local minimum.
Indeed, on the x-axis, f (x, y) = −x2 < 0 if x , 0 and on
the y-axis, f (x, y) = y2 if y , 0. □

Note. Near the origin the graph has the shape of a saddle and so (0, 0) is called a “saddle point”
of f .

o Second Derivative Test
Theorem 14.10.6. Suppose that fxx, fxy, fyx and fyy are continuous near (a, b) and fx(a, b) =
fy(a, b) = 0 (that is, (a, b) is a critical point of f ). Let

D = D(a, b) = fxx(a, b) fyy(a, b) − [ fxy(a, b)]2.

(a) If D > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

(c) If D < 0 and f (a, b) is not a local maximum or minimum.

Note. (1) In case(c), (a, b) is called a “saddle point” of f .

(2) If D = 0, the test is inconclusive, f could have a local maximum or local minimum at (a, b),
or (a, b) could be a saddle point of f .

(3)

D =
∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣ = fxx fyy − ( fxy)2.

Example 14.10.7. Find the local maximum and minimum values and saddle points of f (x, y) =
x4 + y4 − 4xy + 1.

Proof. The first and second partial derivatives of f are fx = 4x3 − 4y, fy = 4y3 − 4x, fxx = 12x2,
fxy = −4 = fyx and fyy = 12y2. Then fx = 0 when x3 = y and fy = 0 when y3 = x. We can solve
the critical points of f are (0, 0), (1, 1) and (−1,−1), and

D(x, y) = fxx fyy − ( fxy)2 = 144x2y2 − 16.

• At (0, 0), D(0.0) = −16 < 0. Then f has neither a local maximum nor a local minimum
at (0, 0).
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• At (1, 1), D(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0. Then f (1, 1) = −1 is a local minimum
of f .

• At (−1,−1), D(−1,−1) = 128 > 0 and fxx(−1,−1) = 12 > 0. Then f (−1,−1) = −1 is a
local minimum of f .

□

Example 14.10.8. Find and classify the critical points of the function f (x, y) = 10x2y − 5x2 −
4y2 − x4 − 2y4. Also find the highest points on the graph of f .

Proof. The first and second partial derivatives of f are

fx = 20xy−10x−4x3, fy = 10x2−8y−8y3, fxx = 20y−10−12x2, fxy = fyx = 20x, fyy = −8−24y2.

To find the critical points of f by solving fx = 0 and fy = 0, we have (x, y) = (0, 0), (±2.64, 1.90), (±0.86, 0.65).

Critical point Value of f fxx D Conclusion
(0, 0) 0 −10 80 local maximum

(±2.64, 1.90) 8.50 −55.93 2488.72 local maximum
(±0.86, 0.65) −1.48 −5.87 −187.64 saddle point

The highest points on the graph of f are (±2.64, 1.90, 8.50).

□
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Example 14.10.9. Find the shortest distance from the point (1, 0,−2) to the plane x+2y+z = 4.

Proof. Let (x, y, z) be a point on the plane x+2y+ z = 4. The distance from (x, y, z) to (1, 0,−2)
is

d(x, y, z) =
√

(x − 1)2 + y2 + (z + 2)2.

Taking z = 4 − x − 2y, then d =
√

(x − 1)2 + y2 + (−x − 2y + 6)2. Consider f (x, y) = d2(x, y) =
(x − 1)2 + y2 + (−x − 2y + 6)2. The first and second partial derivatives of f are

fx = 4x + 4y − 14, fy = 4x + 10y − 24, fxx = 4, fxy = fyx = 4, fyy = 10.

To find the critical point of f by solving fx = 0 and fy = 0, the point (x, y) = (
11
6
,

5
3

) is the only

critical point of f . Also, D = 4 · 10 − 42 = 24 > 0 and fxx = 4 > 0. By the second derivatives

test, f (x, y) has a local minimium at (
11
6
,

5
3

). Then d(
11
6
,

5
3

) =
5
√

6
. In fact, it is the absolute

minimum.
□

Example 14.10.10. A rectangle box without a lid is to be made from 12m2 of cardboard. Find
the maximum volume of such a box.

Proof. Let x, y and z be the length, width and height of the box. Then the volume of the box
is V(x, y, z) = xyz and the area of the four sides and the bottom is 2xz + 2yz + xy = 12. Hence

z =
12 − xy
2(x + y)

and we can rewrite the volume function

V(x, y) =
12xy − x2y2

2(x + y)
.

Consider

∂V
∂x
=

y2(12 − 2xy − x2)
2(x + y)2 and

∂V
∂y
=

x2(12 − 2xy − y2)
2(x + y)2 .

The critical point of V is (2, 2). We can use the second derivative
test to check that V has a local maximum at (2, 2, 1). Then the
maximum volume of the box is 4m3.

□

o Absolute Maximum and Minimum Values

Question: Under what conditions does a function f (x, y) have (absolute) extreme values?
Recall that, for a single variable function f (x), we have the “Extreme Value Theorem” that

if f is continuous on a closed interval [a, b], then f has an absolute maximum value and an
absolute minimum value.

Question: How about two variables function f (x, y)?
Heuristically, corresponding to the “closed interval” in R, a “close set” in R2 is a set contains

all its boundary points. Also, a bounded set in R2 is a set that is contained within some disk.
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■ Extreme Value Theorem

Theorem 14.10.11. If f is continuous on a closed and bounded set D in R2, then f attains
an absolute maximum value f (x1, y1) and an absolute minimum value f (x2, y2) at some point
(x1, y1) and (x2, y2) in D.

Note. If f (x, y) has an extreme value at (x1, y1), then (x1, y1) is either a critical point of f or a
boundary point of D.

Question: How to find the absolute maximum value or minimum value of a continuous func-
tion f (x, y) on a closed and bounded set D?

■ Strategy:

(1) Find the values of f at the critical point of f in D.

(2) Find the extreme value of f on the boundary of D.

(3) Check the values in (1) and (2). The largest value is the absolute maximum value and the
smallest value is the absolute minimum.

Example 14.10.12. Find the absolute maximum and minimum values of the function f (x, y) =
x2 − 2xy + 2y on the rectangle D =

{
(x, y)

∣∣ 0 ≤ x ≤ 3, 0 ≤ y ≤ 2
}

.

Proof. Since f is a polynomial on the closed and bounded set D, there exists absolute maximum
and minimum values in D.

First of all, we find the critical points of f in the interior of D. The partial derivatives of f
are fx = 2x − 2y and fy = −2x + 2. Hence, (1, 1) is a critical point of f in D and f(1,1)=1 .

Next, we consider the candinates of extreme point on the boundary D. The boundary of D
consists of four lines L1, L2, L3 and L4.

• For (x, y) ∈ L1, 0 ≤ x ≤ 3 and y = 0, f (x, 0) = x2 is increasing. On L1, f has a local
maximum f(3,0)=9 and a local minimum f(0,0)=0 .

• For (x, y) ∈ L2, x = 3 and 0 ≤ y ≤ 2, f (3, y) = −4y + 9 is decreasing. On L2, f has a local
maximum f(3,0)=9 and a local minimum f(3,2)=1 .

• For (x, y) ∈ L3, 0 ≤ x ≤ 3 and y = 2, f (x, 2) = x2 − 4x + 4 = (x − 2)2. On L3, f has a loca
maximum f(0,2)=4 and a local minimum f(2,2)=0 .
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• For (x, y) ∈ L4, x = 0 and 0 ≤ y ≤ 2, f (0, y) = 2y is increasing. On L4, f has a local
maximum f(0,2)=4 and a local minimum f(0,0)=0 .

Hence, f has an absolute maximum value f (3, 0) = 9 and an absolute minimum value f (0, 0) =
f (2, 2) = 0.

□

14.11 Lagrange Multipliers
In the present section, we will study the Lagrange’s method to maximize or minimize a general
function f (x) subject to a constraint (or side condition) of the form g(x) = k. The method works
for n variables functions but we will only consider 2 or 3 variables functions in this section.

■ Geometric basis of Lagrange’s method (for two variables functions)

Let f (x, y) and g(x, y) be two differentiable functions. The goal is to find the maximum (or
minimum) of f (x, y) subject to the constraint g(x, y) = k. For (x, y) satisfies g(x, y) = k, the
point (x, y) lies on the level curve of g(x, y) with the value k.

We want to find a point(s) (x0, y0) on the level curve C =
{

(x, y)
∣∣ g(x, y) = k

}
such that

f (x0, y0) ≥ f (x, y) for all (x, y) ∈ C. (14.4)

Suppose that (x0, y0) ∈ C satisfying (14.4) and
f (x0, y0) = M. Then (x0, y0) is also on the level
curve C1 =

{
(x, y) | f (x, y) = M

}
. Moreover, since

(x0, y0) is the maximum point, the two level curve C
and C1 must be tangent each other at (x0, y0).

Since C and C1 are level curves of g and f respec-
tively, the gradient vectors ∇g ⊥ C and ∇ f ⊥ C1.
Then ∇g(x0, y0) is parallel to ∇ f (x0, y0). Therefore,
there exists a number λ (“Lagrange multiplier”) such
that

∇ f (x0, y0) = λ∇g(x0, y0).
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Conclusion: The candidnate point(s) where the extreme values occur must satisfyß
∇ f (x, y) = λ∇g(x, y) for some number λ
g(x, y) = k

■ Lagrange methods for three variables functions

For finding the extreme values of f (x, y, z) subject to the constraint g(x, y, z) = k, by the
same argument as above, if the maximum value of f is f (x0, y0, z0) = M where (x0, y0, z0) lies
on the level surface S = {(x, y, z) | g(x, y, z) = k}. Then the level surface {(x, y, z) | f (x, y, z) = M}
is tangent to S at (x0, y0, z0). We have

∇ f (x0, y0, z0) ∥ ∇g(x0, y0, z0).

(Intuitive veiwpoint) Let S be the level surface with equation g(x, y, z) = k. For every curve
r(t) =< x(t), y(t), z(t) > lie on S , the tangent vector r′(t) ⊥ ∇g

(
r(t)

)
for every t.

Suppose that f has an extreme value at P(x0, y0, z0) ∈ S and r(t) is a curve on S passing P,
say r(t0) =< x0, y0, z0 >. Consider the function h(t) = f

(
r(t)

)
which has maximum value at t0.

Then 0 = h′(t0) = ∇ f
(
r(t0)

)
· r′(t0). We have ∇ f

(
r(t0)

)
⊥ r′(t0). Also, r′(t0) ⊥ ∇g

(
r(t0)

)
. Then

∇ f (x0, y0, z0) ∥ ∇g(x0, y0, z0). This implies that

∇ f (x0, y0, z0) = λ∇g(x0, y0, z0) for some number λ.

This number λ is called a “Lagrange multiplier”.

o Method of Lagrange Multiplier

To find the maximu and minimum values of f (x, y, z) subject to the constraint g(x, y, z) = k
(assume that these extreme value exist and ∇g , 0 on the surface g(x, y, z) = k). We solve this
problem by following the below steps.

(a) Find all values of x, y, z and λ such that

∇ f (x, y, z) = λ∇g(x, y, z) and g(x, y, z) = k.

(b) Evaluate f at all the points (x, y, z) that result from Step(a). The largest of these values is
the maximum value of f ; the smallest is the minimum value of f .

Example 14.11.1. A rectangle box without a lid is to be made from 12m2 of cardboard. Find
the maximum volume of such a box.

Proof. Let the length, width and height of the box be x, y and z. Then the volume of the box is

V(x, y, z) = xyz.
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The area of the four sides and the bottom is

g(x, y, z) = 2xz + 2yz + xy = 12.

To find the maximum of V subject to the constraint
g(x, y, z) = 12. The gradient vector of V and g are

∇V =< yz, xz, xy > and ∇g =< y+2z, x+2z, 2x+2y > .

Considerß
∇V = λ∇g
g(x, y, z) = 12 ⇒


yz = λ(y + 2z)
xz = λ(x + 2z)
xy = λ(2x + 2y)
2xz + 2yz + xy = 12

⇒


xyz = λ(xy + 2xz) (1)
xyz = λ(xy + 2yz) (2)
xyz = λ(2xz + 2yz) (3)
2xz + 2yz + xy = 12 (4)

The number λ , 0; otherwise, we obtain xy = xz = yz = 0 and hence g(x, y, z) = 0 which
contradicts the constraint. Also, Euqations(1),(2), (3) imply that

2xz + xy = 2yz + xy = 2xz + 2yz ⇒ xz = yz.

This says that either x = y or z = 0.

(i) If z = 0, then xy = 0 and hence x = y = 0 which contradicts g(x, y, z) = 12.

(ii) If x = y and z , 0, then 2xz + x2 = 4xz and then x = 2z = y. Also, from Equation(4), we
obtain x = y = 2 and z = 1.

The maximum volume of the box is 4m3. □

Example 14.11.2. Find teh extreme values of the function f (x, y) = x2 + 2y2 on the circle
x2 + y2 = 1.

Proof. Let g(x, y) = x2 + y2. Then

∇ f (x, y) =< 2x, 4y > and ∇g(x, y) =< 2x, 2y > .

Consider ß
∇ f = λ∇g
g(x, y) = 1 ⇒

 2x = 2λx (1)
4y = 2λy (2)
x2 + y2 = 1 (3)
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By Equation(1), either λ = 1 or x = 0.

(i) If λ = 1, by Equation(2), y = 0. Then x = ±1 by
Equation(3).

(ii) If x = 0, then y = ±1 by Equation(3) and λ = 2 by
Equation(2).

Consider

f (1, 0) = 1, f (−1, 0) = 1︸                             ︷︷                             ︸
minimum

and f (0, 1) = 2, f (0,−1) = 2︸                             ︷︷                             ︸
maximum

.

The maximum value of f on the circle x2 + y2 = 1 is
f (0,±1) = 2 and the minimum value is f (±1, 0) = 1.

□

Example 14.11.3. Find the extreme values of f (x, y) = x2 + 2y2 on the disk x2 + y2 ≤ 1.

Proof. (1) Find the extreme values of f inside the disk x2 + y2 ≤ 1.
Consider fx = 2x = 0 and fy = 4y = 0. Then the critical point of f is (0, 0). Moreover,
fxx = 2, fxy = fyx = 0 and fyy = 4 and hence D = fxx fyy − ( fxy)2 = 8 > 0. Also, fxx > 0. By
the second derivative test, f (0, 0) is a local minimum.

(2) Combining with the previous example, f (0, 0) = 0, f (±1, 0) = 1 and f (0,±1) = 2. Hence,
the maximum value of f on the disk x2 + y2 ≤ 1is f (0,±1) = 2 and the minimum value is
f (0, 0) = 0.

□

Example 14.11.4. Find the points on the sphere x2 + y2 + z2 = 4 that are closest to and farthest
from the point (3, 1,−1)

Proof. Let f (x, y, z) = (x − 3)2 + (y − 1)2 + (z + 1) and g(x, y, z) = x2 + y2 + z2. Then

∇ f =< 2(x − 3), 2(y − 1), 2(z + 1) > and ∇g =< 2x, 2y, 2z > .

Considerß
∇ f = λ∇g
g(x, y, z) = 4 ⇒


2x − 6 = 2λ2x
2y − 2 = 2λy
2z + 1 = 2λz
x2 + y2 + z2 = 4

⇒


(1 − λ)x = 3 (1)
(1 − λ)y = 1 (2)
(1 − λ)z = −1 (3)
2xz + 2yz + xy = 12 (4)

Clearly, λ , 1, x , 0, y , 0 and z , 0. Consider
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(1)
(2)
⇒ x

y
= 3⇒ x = 3y and

(2)
(3)
⇒ y

z
= −1⇒ z = −y.

By (4), we have

(3y)2 + y2 + (−y)2 = 4⇒ y = ± 2
√

11
.

Then

(x, y, z) = (
6
√

11
,

2
√

11
,− 2
√

11
) or (− 6

√
11
,− 2
√

11
,

2
√

11
).

Taking these two poinits into f (x, y, z) the closest

point is (
6
√

11
,

2
√

11
,− 2
√

11
) and the farthest point is

(− 6
√

11
,− 2
√

11
,

2
√

11
).

□

Remark. In the example, the line passes through the origin and the point (3, 1,−1) has para-
metric equation x = 3t, y = t and z = −t. The line intersection the sphere x2 + y2 + z2 = 4 when

t = ± 2
√

11
. Then we can also solve the closest and the farthest points.

o Two Constraints

Find the maximum and minimum values of f (x, y, z) subject to two constraints g(x, y, z) = k
and h(x, y, z) = c.

Let C be the intersection of the two level surfaces
g(x, y, z) = k and h(x, y, z) = c. Find P(x0, y0, z0) ∈ C
such that f (x0, y0, z0) ahs extreme value along C.

To find the level surface S = {(x, y, z) | f (x, y, z) = M}
which tangnet to C. Then , at the intersection of C and
S , ∇ f ⊥ C. We have

∇ f (x0, y0, z0) = λ∇g(x0, y0, z0) + µ∇h(x0, y0, z0).

Example 14.11.5. Find the maximum value of the function f (x, y, z) = x+ 2y+ 3z on the curve
of intersection of the plane x − y + z = 1 and the cylinder x2 + y2 = 1.

Proof. Let g(x, y, z) = x − y + z and h(x, y, z) = x2 + y2 Then

∇ f =< 1, 2, 3 >, ∇g =< 1,−1, 1 > and ∇h =< 2x, 2y, 0 > .

Consider
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 < 1, 2, 3 >= λ < 1,−1, 1 > +µ < 2x, 2y, 0 >
x − y + z = 1
x2 + y2 = 1 (∗)

⇒

 1 = λ + 2µx
2 = −λ + 2µy
3 = λ

⇒


λ = 3

x = −1
µ

y =
5

2µ

Taking into (∗), we have µ = ±
√

29
2

. Hence,

(x, y, z) = (
2
√

29
,− 5
√

29
, 1+

7
√

29
) or (

2

−
√

29
,

5
√

29
, 1− 7
√

29
).

Therefore, the maximum value of f is 3 +
√

29.

□
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