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Introduction - Sets and Functions

0.1 Preliminaries
1 Sets

a Functions

f : S(domain) — T (codomain)

If £ is an ono-to-one function, then the “inverse function of f”, f~' : f(S) — S exists.

In general, ! may not exist. But we can still define the “pre-image” of f, f~'(B).

Definition 0.1.1. Let f : S — T be a functionand A C §. We call f(A) = {f(x) | X € A} “the
image of A under . For B C T, we call the set f~!(B) = {x SN } f(x) € B} “the pre-image
of B under f”.
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1.1 Motivation and Some Ideas

Question: We seem to be much familiar with the real numbers. Why do we want to investigate
the real number system?

We live in R? (Really? What’s R?)

We are too familiar with R to describe it.

Many results of Calculus are based on some properties of R. For example,

Limit Continuity Differentiation Integration
Least Upper LV.T. Rolle’s Theorem
Bound Property = Extreme Value Theorem = M.V.T. = ET.C.

R has “Least Upper Bound Property” but Q does not. For example
S = {1, 1.4,1.41,1.414,1.4142,1.41421,1.414213, - - - } cQ

There is no number in Q such that the number is the least upper bound of §'.

Question: Does R really have “Least Upper Bound Property (L.U.B.P)”?
In fact, R is defined by an “ordered field with least upper bound property” (B 5 %8)

Question: Does this set really exist?
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Question: How many this kind of set are there?
Question: How much do we recognize R or how about a set without L.U.B.P.?

a Five Axioms

m Euclidean Geometry (B.C 325 ~ B.C. 265) The Euclidean geometry is based on five ax-
ioms:®

(1) To draw a straight line from any point to any point.

(2) To produce (extend) a finite straight line continuously in a straight line.
(3) To describe a circle with any centre and distrance (radius).

(4) That all right angles are equal to one another.

(5) That, if a straight line falling on two straight lines make the interior angles on the same side
less than two right angles, the two right angles, the two straight line, if produced indefinitely,
meet on that side on which the angles are less than two right angles.

mNon-Euclidean Geometry

Q Origin of irrational numbers

mThe Age of Pythagoras (B.C 570. ~ B.C. 495) (§ + ‘¥ #)

For any two segments with lengths a and b, a
there exists another segment with length £ and
two integers mand n such that a = m{ and b

a m
b=nt. H , — = — .
n enceb neQ ]

But people find that the ratio of the lengths of some seg- /\
ments may not be a rational number. For example, the B E

lenghts of the side and a diagonal line in a regular pen- b
tagon as in the figure have no common factor. This causes
the well-known first crisis in mathematics.

People knew that there are many numbers which are not rational. But they do not figure out
the real numbere system until Dedekind (1831-1916) and Cantor(1845-1918).

Question: Is there any number a satisfying a* — 2 = 0?
Obviously, there is no rational number satisfying the above equation. How about any number

“the following descriptions are from wiki.
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which is not a rational number?

a Observation

mProperties of rational number system Q

Fora,b,c € Q,

(i) Two operators on Q: addition “+”” and multiplication “X”, and Q is closed under these two
operators: a+b € Qanda X b € Q.

(i1)) The commutative law unber “+” and “X”: a+b=b+aandaxX b =b X a.
(i11) The associative law under “+” and “X”: (a+b)+c = a+(b+c)and (axb)Xc = ax(bXc).
(iv) The distributive law: a X (b+c)=aXb+a X c.

m Some questions of real number system

Question: Does R have above properties? Does R have any hole?

Question: Is there a set of numbers which has above properties and Q is densely contained in
this set?

We are interested in the “structure” of R, rather than the “members” of R. In Algebra, we
emphasis on the “structure of a set” more than the “members of a set”. In analysis, we take
attention on what changes of functions rather than the values of functions.

Question: Do we really figure out the real number system well?

In high school algebra, we have learned some operations and computation of real numbers.

For example,
V2 x V3 = V6. (1.1)

Teachers told us that it is true. Is it really reasonable? The three symbols “V2”, “V/3” and “V6”
means the “numbers” which satisfy x* —2 = 0, x* =3 = 0 and x* — 6 = 0 respectively.

Question: Do these “numbers”, “\3/5”, “+/3” and “V6” really exist?

Question: If V2 really exists, it should be between 1.25992 and 1.25993. Is the argument really
true? (Ordered Field).

Question: What does the product of two irraional numbers mean?

Question: Why is the equation (IT) true under the definition of multiplication? How to explain
it?

Question: What is the multiplication on irrational number system? Why is the area of a rect-
angle equal to the product of length and width (if they are irrational)?

Question: Is the equation ( 3+ \/5)( \V3- \/5) = 3-2-1 true? (Commutative law, distribution
law, associative law)
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1 Students’ Difficulties:

To understand how to construct a real number system, a second-year college student may
have some difficulties:

(1) Unfamiliar with set theory, field theory, number theory, convergence, equivalent classes
and other abstrct language.

(i) Abuse notation: students usually do not notice that the symbols “+” in f+g and f(x)+g(x)
are different. But the symbols “X” inu X v = w and 2 X 3 = 6 are easily to distinguished.

(iii)) We are too familiar with the computation on R. It is difficult to forget that some facts (for
example 1 < 2) are not so trivial.

(iv) We should remind ourselves to focus on the structure of real number system rather than
how to obtain the correct answers.

A A% (Q,+,,<) 1 b - FALR ﬁ*,_'—ﬁ.:t"l T ’éFﬁ?]ii— ik Jﬁﬂ‘ 7 ko c &—;ﬁ,iﬁ,
w5 Ty £ B0 Tl de yin e N o L3 B0 2L S gcn [ ey e 315
Tk e Q(V2, V3, \/5,---)’ WE AL ATF Ak

FRRHAD Aot > AP EEEC FA VR 12§ g A R
,S‘éof“ffu‘g‘rféfi;fﬁ;viiffﬁﬁ: R FQCcF EHE e FFhEoBRE 0 flR
(F,@.0) f HFEZPE Rie? iR 2R -R> vy afE- Rz gl
“*iﬁlﬁt BHERELR > BSRFERAA B DY - R

a+b=a®b and a-b=a0b foreverya,bec Q.

preb s g 5 T Al S TEedr o Bl F F z - TOEE | A5 X )BT SR
BFREAFEL? G E K, ORI P RPETEESE Y T Completeness | 738 Tk
REARCN

1.2 Ordered Fields and the Number Systems
A Fields
In order to prevent that students may abuse and misunderstand the familiar symbols “+” and

, we temporarily use “@®” and “©” to denote the two binary operations on fileds. After careful
explamatlon and understanding, we will still use the usual symbols “+” and “-”.

4‘ 2

Definition 1.2.1. (First Version) A set ¥ is said to be a “field” if there exist two binary opera-
tions @ and © such that

(a) (Closedness) For x,ye F,x®yecF andxOye F.
(b) (Commutative law of addition) x®y =y @ x for all x,y € F.

(c) (Associative law of addition) (x®y)®z=x® (y®d z) forall x,y,z € F.
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(d) There exists an element e € ¥ such that x ® e = x for all x € F. (“additive identity”)

(e) Forevery x € 7, there exists y € ¥ such that x @ y = e. The element y is usually denoted
by —x and is called the additive inverse of x.

(f) xOy=yoxforall x,y € ¥.(Commutative law of multiplication)
(g) (x0y)0z=x0((y0oz) forall x,y,z € F. (Associative law of multiplication)
(h) There exists an element i € ¥ such that x © i = x for all x € F. (“multiplicative identity")

(i) For every x € F where x is not the additive identity(x # e), there exists y € ¥ such that
x @y = i. The element y is usually denoted by x~! and is called the multiplicative inverse
of x.

() x0(y®2) = (x0y) ® (x0z) forall x,y,z € F (Distributive law)
(k) e #1i.

We can easily observe that the rational number system Q with the two usual binary op-
erations: addition “+” and multiplication “-” satisfies all the above conditions. The additive
identity is O and the multiplicative identity is 1. Hence, (Q, +, -) is a filed.

If students have no misunderstanding with the two binary operations, from now on, we
replace the notation @ and © by “+” and “-” respectively. Also, the additive and multiplicative
identities are denoted by “0” and “1” respectively. Therefore, we rewrite the defition of a filed
as follows.

Definition 1.2.2. A set ¥ is said to be a “field” if there exist two binary operations + and - such
that

(a) (Closedness) Forx,ye F,x+yeF andx-yeF.

(b) (Commutative law of addition) x + y = y + x for all x,y € F.

(c) (Associative law of addition) (x+y)+z=x+ (y+z) forall x,y,z € F.

(d) There exists an element 0 € ¥ such that x + 0 = x for all x € . (“additive identity”)

(e) Forevery x € ¥, there exists y € ¥ such that x + y = 0. The element y is usually denoted
by —x and is called the additive inverse of x.

(f) x-y=y-xforall x,y € ¥. (Commutative law of multiplication)
(g) (x-y)-z=x-(y-z) forall x,y,z € . (Associative law of multiplication)
(h) There exists an element 1 € ¥ such that x - 1 = x for all x € . (“multiplicative identity")

(i) For every x € ¥ where x is not the additive identity(x # 0), there exists y € ¥ such that
x-y = 1. The element y is usually denoted by x~! and is called the multiplicative inverse of
X.

(G) x-v+z)=x-y+x-zforall x,y,z € F (Distributive law)
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(k) 0+ 1.

Remark. The additive identity O and multiplicative identity 1 in a field (¥, +, -) are unique. If
a set satisfies conditions (a)-(j) and 0 = 1, then the contain only one element.

a Partially Ordered Sets

Definition 1.2.3. Let P be a set. A “partial order” over P is a binary relation < which is
reflexive, anti-symmetric and transitive. That is,

(a) x < xfor all x € P (reflexive).
(b) If x < yand y < x, then x = y (anti-symmetric).
(¢c) If x < yandy < zthen x < z (transitive).

A set with a partial order is called a “partially ordered set’ and is usually denoted by (P, <).
Example 1.2.4. Let S be a set and 2° be the power set of S ; that is,

P=25 = {A | AC S} = the collection of all subsets of S.

Consider the binary relation C. Then

(a) A C A (reflexivity).

(b) If A C Band B C A, then A = B (anti-symmetry)
(c) If AC Band B C C then A C C (transitivity).

Hence, (P, ©) is a partially ordered set.

Note that for a partially ordered set P, not any two elements in P have relation between
them. For example, let § = {1,2} and P = 25 = {0,{1},{2},{1,2}}. There is no inclusive
relation between the two element {1} and {2}.

Definition 1.2.5. Let (P, <) be a partially ordered set. Two elements x,y € P are said to be
“comparable” if either x < yory < x.

Example 1.2.6. Let S = {1,2}and P = 25 = {(D, {1}, {2}, {1, 2}}. In the partially ordered set
(P,©), {1} and {1, 2} are comparable. But, {1} and {2} are not comparable.

Definition 1.2.7. A partial order under which every pair of elements is comparable is called a
“total order” or “linear order”.

Definition 1.2.8. An “ordered filed” is a totally ordered (¥, +, -, <) satisfying that
(@) f x<y,thenx+z<y+zforallze F.
(b) f0<xand 0 <y, then 0 <

From now on, the total order < of an ordered field will be denoted by <.

Definition 1.2.9. In an ordered field (7, +, -, <), the binary relations <, > and > are defined by
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(@) x<yifx<yandx#y.

(b) x>yify<x.

(c) x>yify<ux.

Definition 1.2.10. The “magnitude” or the “absolute value” of x, denoted |x|, is defined as

||_{ x ifx>0,
M= —x ifx<o.

Note. There are several results mentioned in the lecture note. Students are suggested to read
them by yourselves.

0 The natural numbers, the integers and the rational numbers

m Preparation % B 4:& f#?? Behim > APFFELPLG - oG o

Lo Aipir R end - BOpH e PR EEF AR “*f? g it e bl {1,2,3,4, 0]
~{2,4,6,8,---} & {a, a+ta, a+a+a, a+ta+a+a,--- ) EEEHTER TR P
o fy_“,aﬂéﬁx‘%é—ﬁiigi? PR R WA - BASAEEREAAL Dp

HORBAAR B EF - L’ﬁ"f; o
>‘"F“J§ gl

(D*ﬁéﬁ*B%&‘ﬁ&‘ﬁﬁ&%ﬁiwﬁﬁﬁﬁﬁ

(i1) Fﬁgzﬁgé,\#}«,r}pzlit‘ o % ﬁ* ?Iv aq,% %lﬁi'Jr"'ﬁﬁ-J(%/L)
B %o TR 3] < el

(iii) 4 =¥ 4= B = B b comparable > ¥ T M At Bk uEE o

(v) &f "EA BT o APE LG T i e (3R KRG
SERRT AL R S L = £

2 KU HAPE LR A DR Al Bl § B e A PREI LAY B R
B p R FEE ﬁﬂt,i Pt A BB R B E O i L R TR &
PR

Definition 1.2.11. Let (¥, +, -, <) be an ordered field.

(a) The “natural number system”, denoted by N, is the collection of all the number 1, 1+ 1, 1 +1+ 1, 1+
) ——

2 3
1+1+1,---. Wewrite2 =1+1,3=1+1+1,---,n=1+1+---+1. Therefore,
~—_————

n

N={1,2,3,---}.

Since 1,2,3, --- € F, their additive inverses —1,—-2,-3,--- alsoin .

(b) The “integer number system”, denoted by Z, is the set Z = {--- ,-3,-2,-1,0,1,2,3,---}.
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(c) For every non-zero element 0 # n € ¥, the multiplicative inverse n™! exists and is usually

1 m
denoted by —. We also use — to denote m - n~!. The “rational number system”, denoted by
n n

Q, is the collection of all numbers of the form 4 with p,q € Z and p # 0. That s,
p
Q= {xe?’|x: 2’ p,quandp;&O}.
4

Definition 1.2.12. An ordered field (7, +, -, <) is said to have the “Archimedean property” if

for every x € F, there exists n € Z such that x < n.

Theorem 1.2.13. Q has the Archimedean property.
Proof. If x < 0, it is clear by choosing n = 1 since x < 0 < 1 (transitivity of <). If 0 < x = £

p
with p,g € N, letn = g + 1. Then,
x:qu<q+1:n.
p

The above relations < and < are from the hypotheses of ordered field and the fact 0 < 1. O

Definition 1.2.14. A “well-ordered” relation on a set S is a total order on S with the property
that every non-empty subset of S has a least (smallest) element in this ordering.

Theorem 1.2.15. (Peano axiom)(Principle of mathematical induction)
If S is a subset of N U {0} (or N) such that 0 € S (or1 € S)andk+1 € S ifk € S, then
S =NU{0} (or S =N).

Proposition 1.2.16. If S ¢ N and S # 0, then S has a smallest element; that is there exists
so € S such that sy < x for every x € §.

Proof. If 1 € §, then 1 is the smallest element in S'.
Now, we consider that case that 1 ¢ S. Assume that § does not contain a smallest element.
Define

T=N\S and To={n|{1,2,3,---,n}eT}.

Sincel ¢ S,1 € Tand 1 € Ty. For k € Ty, be definition of T, 1,2,--- ,k € T. Therefore,
1,2,--- ,ke¢S.

Ifk+1 €S, then k+1 is the smallest element in S . It contradicts that assumption that S has
no smallest element. Hence, k+1 ¢ S and then k+1 € T. This implies that 1,2, --- ,k,k+1 € T.
We have k + 1 € Ty by the definition of 7.

By the Peano axiom, 7y = N. Then T = N and § = (). We obtain a contradiction. O
Proposition 1.2.17. If r|,r, € Q and r| < r,, then there exists r € Q such that ry <r < r,.

a Sequence and Limits
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Definition 1.2.18. A “sequence” in a set S is a function f : N — §. The values of f are
called the “terms” of the sequence. We usually denoted a sequence by {f(n)}>”, or {x,}, with

X, = f(n).

Definition 1.2.19. A sequence {x,}*, in an ordered field (¥, +, -, <) is said to “converge” to a

n=1

limit x € F if for every € > 0, there exists N € N such that
|x, — x| <& whenevern > N.

Denote lim x,, = x or x, = x asn — oo.

n—oo

Lemma 1.2.20. (Sandwich) If lim x, = L, lim y, = L and {z,},. | is a sequence such that x, <
Zn < Yy, then
lim z, = L.

n—oo

Proposition 1.2.21. Ifa < x, < b and lim x,, = x, then a < x < .

n—oo

Proposition 1.2.22. (Uniqueness of Limit) If {x,},. | is a sequence in an ordered field, and
X, = xand x, > yasn — oo, then x =y

Definition 1.2.23. Let {x,}’, be a sequence in an ordered field ¥ .
(@) {x,}~, is said to be “bounded” if there exists M > 0 such that |x,| < M for all n € N.

(b) {x,}>~, is said to be “bounded from above” if there exists B € ¥, called an “upper bound”
of the sequence, such that x, < B for all n € N.

(c) {x,};2, is said to be “bounded from below” if there exists A € ¥, called an “lower bound”
of the sequence, such that A < x,, for all n € N.

Proposition 1.2.24. A convergent sequence is bounded.

 Monotone Sequence Property

Definition 1.2.25. Let {x,} 7, be a sequence in an ordered field . We say that

(@) {x,};2, is “increasing” (or “nondecreasing”) if x, < x,.; for all n € N. It is said “strictly
increasing” if x,, < x,, for all n € N.

v

(b) {x,}>2, is “decreasing” (or “nonincreasing”) if x, > x,,; for all n € N. It is said “strictly

decreasing” if x, > x,,, forall n € N.

(c) a sequence is called (strictly) “monotone” if it is either (strictly) increasing or (strictly)
decreasing.

Definition 1.2.26. An ordered field ¥ is said to satisty the “(strictly) monotone sequence prop-
erty” if every bounded (strictly) monotone sequence converges to a limit in ¥ .

Remark. An equivalent definition of the monotone sequence property is that every monotone
increasing sequence bounded above converges; that is, if each sequence {x,}>> C ¥ satisfying

n=1 =
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(1) x, £ x4 foralln e N,
(ii) there exists M € ¥ such that x, < M for all n € N.

is convergent, then we say ¥ satisfies the monotone sequence property.

Example 1.2.27. (Q, +, -, <) is an ordered field. But it does not satisfy the monotone sequence
property.

Theorem 1.2.28. An ordered field satisfying the monotone sequence property has the Archimedean
property; that is, if ¥ is an ordered field satisfying the monotone sequence property, then for all
x € F, there exists n € N such that x < n.

Proof. Assume that there exists an ordered field (7, +, -, <) and x € ¥ such that x > n for all
n e N.

Let x, = n, then the sequence {x,} is increasing and x is an upper bound of {x,}. By the
monotone sequence property, there exists y € # such that lim x, = y. Therefore, there exists

N € N such that forall n > N, o

1
-y =|x, -y < -.
In—yl = |x, =yl 7

We have
N+1< +1— 1+1<N+1
YTETY 4T 2

Thus, we obtain a contradiction. O

a Completeness

Definition 1.2.29. An ordered field ¥ is said to be “complete” if it satisfies the monotone
sequence property.

Remark. Let ¥ be an ordered field, the following statments are equivalent.

(a) ¥ is complete.

(b) ¥ has the monotone sequence property.

(¢c) ¥ has the least upper bound property.

Theorem 1.2.30. There is a “unique” complete ordered field, called the “real number system

R”.m

1.3 Construction of Real Number System

In this section, we introduce two methods to construct real number system which were estab-
lished by Dedekind and Cantor. The ingredients of these two methods are similar by construct-
ing an extension of rational number system.

R is defined by an ordered field with least upper bound property. (Rudin)
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So far, we have known that (Q, +, -, <) is an ordered field but has no monotone sequence
property.

AR AL e R B - B i e R A R
FALAPE SHMIEBEA LRI - BEE N TR P RRTY ¢ g

Bk ipid o PN E BRLLIB- £ e - Hk o

1 Dedekind Cut

m Heuristical idea: For a point (temporarily called @) in the real line, it separates Q into two
nonempty parts

Aj={xeQ|x<a} and Ay ={xeQ|x>a}

o

I cut here

. .Iﬂ"lff
0 1 I

I\

| S-S

If @ € Q, we can put  in any one of A; or A,. Then we can name the cut @ as (A;, A,). Note
that
i) A, Ay # 0,
(i) AjUA; =Q,
(iii)) Forx € A; and y € A,, x < y. (any two numbers in Q are comparable)

If @ € Q, we also use the same notation (A, A;) to name the cut @. Note that we cannot give an
explicit definition to A; and A, since @ ¢ Q. Hueristically, we know that as long as we separate
Q into two nonempty parts as above, every separation would be corresponding to a unique point
in the number line. Hence, we can use such notation (A, A,) satisfying (i), (ii), (iii) to name
every point in the number line.

There are four situations:
(1) A; contains a maximum and A, contains a minimum. (Impossible!)
(2) A; contains a maximum and A, contains no minimum. (rational number)
(3) A, contains no maximum and A, contains a minimum. (rational number)

(4) A, contains no maximum and A, contains no minimum. (irrational number)
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Define
R = {(Al,Az) } all possible A; and A, satisfying (i), (i7), (iii)}.

Now, we have to define binary operations “+” and “-” as well as additive identity*“0”, multi-
plicative identity “1”, additive inverse, multiplicative inverse and an “order” on R. We give
their defintions here and suggent students check that they are well-defined. Be careful that the
operations + and - can only apply on rational numbers. We should use them to establish new
opertaions @ and ® which can apply on R.

1. (Addition “®”): For (A}, A,), (By, B,) € R, define (A, A,) ® (B, By) = (Cy,C,) where C; =
{a +b | a EAl,b S Bl} and C, = Q\Cl

2. (Additive identity): 0 = (A;,A;) where A; ={a € Q|a<0}and A, ={a € Q|a > 0}.
3. (Additive inverse): —(A;,A,) = (By,By) where By ={b € Q|—b € A,} and B; = Q\B..

4. (Multiplication “©”): For (A, A»), (B, By) € R, define (A, A,) © (By, By) = (Cy, C,) where
C, is defined below and C| = Q\C;.

1. if0 € A;andO € By, thenC, ={a-b|a € A,,b € B,}.

ii. if0 € Ay and 0 ¢ By, then (C1,C,) = —[(A1,A;) © [-(B1, By)]]
iii. if 0 ¢ A; and 0 € By, then (C1,C2) = —[[-(A1,A2)] © (By, By)|
iv. if 0 ¢ A; and O ¢ By, then (C;, C) = [-(A},A,)] © [-(B, By)]

5. (Multiplicative identity): 1 = (A;,A;) where Ay ={a€Q|a<1}andA; ={acQ|a > 1}.
6. (Multiplicative inverse): For 0 # (A, A,), define (A, A,)"' = (B, B,) where

i.if0cA,then B, ={becQ|b'ecA}uUQ
ii. ifO¢ A, thenB, ={beQ|b! €A} NQ".

7. (Order relation): Define (A, A,) < (B, By) if B, C A,.
Theorem 1.3.1. (R, ®, 0, <) is an ordered field and has Monotone Sequence Property.
Proof. Skip |

@ Cantor’s Construction (Sketch)

Heuristically, for a point (called @) in the number line, we use an increasing sequence {x,}
of rational numbers which converges to @. Then we use this sequence {x,} to name the point a.

i

X1 X2

ok |

m Problems:
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(1) The method to denote a point in number line is not well-defined. There has infinitely many
increasing sequences which convege to a single point. Hence, every point is named by
infinitely many sequences.

(2) If @ € Q, the convergence is easy. If @ ¢ Q, what is the convergence?

m Definition of R

Let S be the collection of all increasing and bounded above sequences of rational numbers
S = {{xn},‘;":1 ‘ X, € Q and {x,} is increasing and bounded above.}.

Define an equivalence relation ~ on § that {x,} ~ {y,} if the set of all rational upper bounds of

{x,} is equal to the set of all rational upper bounds of {y,}. Denote every equivalent class by

[{xa}]

(*ﬂbl\»—!’ q’\ﬁi}l s’&‘i%’ - m\!”"ﬁ-‘?ﬂ'\}]\; mj;- ]%‘ LA’F’ ’ K;& t 7 E ..E’Fg ?‘:/{—‘::\’L
}; £33

F 5 A i ©
P{ﬁi‘"ﬁ?ﬂrﬂ“”ﬂ*Eﬁﬁﬁkmpﬂﬁpﬁﬁbiﬂﬁl’ﬁ i

AL H R - )

Define R as the collection of all equivalent classes under the relation ~.

R=5/~={[tx)] | tm) €S},

m Definition of binary operations, identities, inverses and order relation

We will skip the details of those objects. Students can find them in the lecture note.
1. (Binary Operations and order relation): Define “®”, “©”, and “<” on R
2. (Identities):

e Define [0] by the class [{x,}] with the set of upper bound {g € Q | ¢ > 0}.
e Define [1] by the class [{x,,}] with the set of upper bound {g € Q| ¢ > 1}.

Check that [0] is an additive identity on R and [1] is a multiplicative identity on R.

3. (Inverses): Definie the additive inverse of [{xn}} and the multiplicative inverse of [{xn}} for

[{x4}] # [O].
m Check

We should check the following arguments.
1. Check that (R, ®, ®, <) forms a ordered field.

2. Check that the element [1] forms subsets in R by the following the steps of the construction of
natural numbers, integers, rational numbers. We denote them by N*, Z* and Q* respectively.

3. Check that (Q*,®, ®, <) is isomorphic to (Q, +, -, <). Hence, they have the same algebraic
structure.
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4. Check that (R, ®, ©, <) has Monotone Sequence Property.

5. Check that all ordered field with Monotone Sequence Property have the same structure. This
implies that there has a unique complete ordered field.

a Some conclusions of R

Definition 1.3.2. R is defined by an ordered field with monotone sequence property. There are
some equivalent statements as follows.

1. R s defined by a complete ordered field; or
2. Ris defined by an ordered field with the least upper bound preperty.
Remark. (1) A complete ordered field is unique under isomorphism.

(2) R has the Archimedean propety. That is, for all € R there exists n € N such that r < n.
Q Density of Q

Question: What is the distribution of Q in R? What is the role of Q with respect to R?

Definition 1.3.3. Let S € 7 C R. We say that § is dense in 7' if for every r € T and & > 0, there
exists s € S such that
s —f] < e.

Remark. N and Z are not dense in R or in Q.
Proposition 1.3.4. Q is dense in R.

Proof. Given r € R and &€ > 0. Since R has the Archimedean property, there exists N € N such
1 1

that — < N (or — < g).
£ N

Claim:{% | kGZ} Nr—-er+e) #0.

¢ {+1
Proof of Claim: If the claim is false, there exists ¢ € Z such that N <r—e¢and N >r+e.

Then

1 ¢+1 ¢
N = N~ N >(r+¢e)—(r—e)=2e. (Contradition!)
k
Hence, there exists kg € Z such that ‘NO - r| <e&. O

Remark. An equivalent statement of Proposition 374 is that if x,y € R and x < y, then there
exists g € Q such that x < g < y.

0 Appendix

In the end of this section, we review the convergence of sequence in R and give the defini-
tion of extended real number system.

m Review the convergence and divergence




1.4. COUNTABILITY 17

Definition 1.3.5. (1) Let {x,}", be a sequence in R. We say that {x}°  converges if there is

n=1

x € R such that for every € > 0, there exists N = N(¢) € N such that foralln > N,
lx, — x| < &.

We say that {x,}>° . “converges to x” and denote lim x, = x.

n=1 n—o0

(2) If {x,} does not converge, we say that {x,}>  “diverges”.

(3) We say that {x,,}°, “diverges to infintie” if for every M > 0, there is N = N(M) € N such

n=1

that foralln > N,

x, > M.
Denoted by lim x, = co. Also, {x,}, is said to “diverge to —o0” if {—x,} | diverges to oo
n—oo
and to be denoted by lim x, = —co.
n—oo

m Extended real number system

Definition 1.3.6. The extended real number system, denoted by R*, is define by

R* = {—o0o} UR U {c0}.

1.4 Countability

Heuristically, let f : A — B be a function. If f is one-to-one and onto, then the “size” of A
is equal to the “size” of B. Hence, if we want to compare the sizes of two sets, a reasonable
method is to consider whether we can establish an one-to-one correspondence from A to B.

Definition 1.4.1. Let A and B be two sets.

(1) We say that A can be put into 1-1 correspondence with B if and only if there exists a 1-1
and onto map f from A to B.
A and B are called “equinumerous” and denoted by A ~ B.E

(2) We say that A is “denumerable” or “countably infinite” if A can be put into 1-1 correspon-
dence with N. That is, there exists amap f : N — A which is 1-1 and onto.

(3) A setis called “countable’ if it is either finite or countably infinite.
Example 1.4.2. (1) N is countable. Define f(x) = x on N. Then f is 1-1 and onto.

(2) N\{1} ={2,3,4,---}is countable. Define f : N\{1} - N by f(x) = x— 1.

1 ifx=0
(3) Zis countable. Define f : Z — N by f(x) = 2x ifxezZ*
=2x+1 ifxeZ .

Therefore, f is 1-1 and onto. Hence, Z is countable.

(4) The set N XN = {(a, b) | a, b € N} is countable. (Exercise)

A and B have the same cardinality.
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k 2 =2 149 o 1 2 3
k) 7 5 3 1 2 4 6
—_—
-

Theorem 1.4.3. (1) Any nonemtpy subset of N is countable.

(2) Any nonempty subset of a countable set is countable.

Proof. (1) Let S be a nonempty subset of N. If S is finite, then S is countable. Hence, we may
assume that S is infinite.
Since S € N and § # 0, S contains a smallest element, say a;.

Let S := S\{a;}. Since the number of size of S is infinite, S is also nonempty and its size
is also infinite. Then §; contains a smallest element, say a,.

Again, let S, := §1\{ax} = S\{a1, a»}. It is nonempty and its size is also infinite, and hence
S, contains a smallest element, say a;. Continue this process, we can choose a;, a»,as, - - €
S Withal <ar<az<--- andSk = S\{d],ag,"' ,le}.

Claim: S ={a;,as,a3,---}.
Proof of Claim: Clearly, {a, as, as,---} € S. Assume that there is anumber p € S\{a;,as, - }.
Then there exists k € N such that ¢, < p < ay;. Hence, p is the smallest number of

S\ai,ar, -+, ai}.

By the choice of a;, p = aiy1 € {aj,az,---}. It contradicts the assumption and hence
S Claj,az,---}. Then S ={a;,as,- -} and the claim is proved.

Define f : N — § by f(n) = a,. Then f is 1-1 and onto. Thus, § is countable.

(2) (Exercise)
O

Corollary 1.4.4. A nonempty set S is countable if and only if there exists an injection (1-1
function) f: § — N.

Proof. (=)1f S isfinite, say S = {a;,ay,--- ,a,}. we define f(a;) = k. Clearly, f is an injection.
If S is countably infinite, by definition, there exists a bijection f : S — N.

(&) We may assume that S is infinit. Let f : § — N be an injection. Then f(S) C N is
countable. Hence, there exists an 1-1 and onto function g : f(S) — N.

Define h:=go f: S — Nis 1-1 and ont and § is countable.

f
s 5 oS S5 ON
1-1, onto 1-1, onto

O

Remark. If we want to prove the countability of a set S, this corollary says that we only need
to find a 1-1 function f : § — N. The function is not necessary to be surjective.
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Theorem 1.4.5. Let S| and S 5 be two countable sets. Then S| U S, is countable.

Proof. (Exercise) O
Corollary 1.4.6. The union of finite countable sets is countable. That is, if S1,S,,---,S, are
countable, then U S is countable.

k=1
Proof. (Exercise) O

[

Theorem 1.4.7. IfS,S,,S3, -+ are countable sets, then U S is countable.

k=1
Proof. Since S is countable for every k = 1,2,3,---, we may write S = {Xg, Xx2, Xi3, - - - } for
k=1,2,3---. Then
( )
X1 X2 X13 X4 X5
00 Xo1 X2 X23 X44  X2S
U Sy = X31 X3 X33 X44 X35
k=1 X41  X42  X43  X44  X45
L : : : : -
1 -2 -2 -1 2 . C
Define f(x,,) = Lo Dleemd) |, - (e D0n=d 4 . Then f is a injection and hence

Uxe; S« is countable by Corollary T-4-4.

Check that f is 1-1. If f(Xpm) = f(Xnm,)» then

(ny +my — D(ny +my = 2) (ny + my — 1)(ny + my = 2)
3 +m = 5 +

ny.

It is easy to check that m; = m, and ny; = n,.

Corollary 1.4.8. (1) Z is countable.
(2) Q is countable.
Proof. (1) Z=7Z" U{0}UZ".

(2) Let p € N. Define Q, := {% | qE€ Z}. Then Q,, is countable for all p € N. Moreover,

Q= U Q) is an union of countable family of countable sets. Hence, Q is countable.
peEN
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(Method 2: ) Since Q = Q™ U {0} U QT, it sufficies to show that Q" is countable.

Let r € Q*, then r = % for some p,q € N and g.c.d(p,q) = 1. Define f(r) = 2734. Then
f : Q" —» Nis 1-1. By Corollary T4, Q* is countable. This implies that Q is also
countable.

Theorem 1.4.9. Let A and B be countable, then A X B is countable.
Proof. Since A and B are countable, say A = {a;,a»,as,---} and B = {by, by, b3, - - - }, we have
AX B = {(ay,by) | n,meN}.

Define f : AX B — N by f((an, bm)) = 2"3™ Then f is 1-1 and hence A X B is countable.
O

m R is uncountable

Theorem 1.4.10. R is uncountable.

Proof. It suffices to prove thta the interval (0, 1) is uncountable.
Assume that (0, 1) is countable. Then we may arrange the numbers of (0, 1) in a sequence

X1, X2, X3, 4 Xp, -+, Since 0 < x, < 1 forn = 1,2,3,---, every x, has a unique decimal
expansion.

x1 = 0dndodidy -

Xy = 0.dydndydy -

x3 = 0dydndydy -

X4 = 0.dy diydyzdas -

where d;; € {0,1,2,--- ,9} forall i, j € N.

We use the diagonal terms to find a number x € (0, 1) by the following way. Choose

I ifdy #1
2 ifdkk =1

Then d; # dy for all k € N and x € (0,1). But x # x, for every n € N. This says that there
exists a number x € (0, 1) which is not counted and we obtain a contradition.

x=0dydyds;dy--- whered, = { for all k € N.

O
Corollary 1.4.11. (/) R\Q is uncountable.
(2) If A is uncountable. Let B C A be countable. Then A\B is uncountable.
Proof. (Exercise) ]

Remark. Not all uncountable sets have the same cardinality as R. Let S # (). The power set of
S is the set of all subsets of S, usually denoted by P(S) or 2°. The fact is that the cardinalities
of S and 2% are not the same. (There is no 1-1 correspondence between S and 25.)
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1.5 Least Upper Bounds and Greatest Lower Bounds

Definition 1.5.1. Let 0 # S C R.

(1) A number M € R is said to be an “upper bound for S if x < M for all x € §. We say that
S 1s “bounded from above”.

(2) A number m € R is said to be a “lower bound for S” if x > m for all x € §. We say that S
is “bounded from below”.

(3) S is said to be bounded if S is both bounded from above and from below.
(4) A number b € R is called a “least upper bound for S if

(i) b is an upper bound for S, and
(i1) if M is an upper bound for §, then M > b.

(5) A number a € R is called a “greatest lower bound for S if

(1) ais alower bound for S, and

(i1) if m is a lower bound for §, then m < a.
Notation: We denote
(1) the least upper bound for S by “sup S, called “supremum of S”;
(2) the greatest lower bound for S by “inf §, called “infremum of S”.
Remark. Let S C R be a set.
(1) If S is not bounded above, then sup S = co and if § is not bounded below, then inf § = —oo.
(2) Suppose that b = sup S < oo if and only if
(i) b>xforallxe S;

(i) For any &£ > 0, there exists x € S such that x > b — ¢.
(3) sup S orinf S need not to be a member of S.
(4) If 0 # A C B, then supA < sup B and inf A > inf B.
(5) Since 0 is a subset of any set, we define sup® = —co and inf ) = co.
Proposition 1.5.2. Suppose that) # A C BC R. Theninf B <inf A <supA < supB.
Proof. (Exercise) O

Definition 1.5.3. (a) We say that / C R is an interval if for every a,b € I and a < x < b then
xel.

(b) The interval (a,b) = {x | a < x < b} is called “an open interval” in R and [a,b] = {x | a <
x < b} is called “an closed interval” in R.
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Theorem 1.5.4. (Nested interval theorem) Suppose that I, = {x | a, < x < b,} is a sequence of
closed intervals such that I,,,; C I,, forn = 1,2,---. If lim(b, — a,) = 0 then there exists one

and only one number xo which is in every I,.

I, = {ay,} for all n > ny. Let xy = a,, and the theorem is proved.

Proof. 1f a,, = b,, for some ny € N, then a, = b, for all n > ny since 1,,; € I,. We have

We may assume that a,, < b, for all n € N. Since I,,; C I, we have a,, < a,, and b, < b,
for all n € N. Therefore, {a,} is an increasing sequence which is bounded above by b,. By
Monotone Sequence Property, there exists xy such that @, /" xyp as n — oo. Also, {b,} is a
decreasing sequence. By Monotone Sequence Property again, there exists y, such that b, | yg
asn — oo,

Since 0 = lim (b, — a,) = lim b, — lim a, = yy — x¢, we have xy = yo. Moreover, a, < xy =
yo < b, for all n € N. We have x € I, for all n € N.

Now, to prove that this point is unique. Assume that there exists x; € I, for all » € N and
Xo # x1. Let € = |xp — x1|. There exist Ny € N such that

& &
Cln>X()—§ and bn<X0+§

for all n > N,. Then, either x; < a, or x; > b, for all n > N,. It contradicts the hypothesis
x1 € Iy,. Therefore, xy = x; and the point is unique. a

Question: Is the closedness of the intervals in the nested intervals theorem necessary ?(Exercise)

Theorem 1.5.5. (1) (Least Upper Bound Property) If a set 0 # S C R has an upper bound,
then it has a least upper bound.

(2) (Greatest Lower Bound Property) If a set 0 # S C R has a lower bound, then it has a
greatest lower bound.

Proof. (1) Let M be an upper bound for S. If M € S, then M itself is the least upper bound for

S. Hence, we may assume that M ¢ S.

+b
Let by = M and choose a; as any point in S. Consider 4 > L

a +by . . a +b
L Lis greater than every point in S. We define a, = a; and b, = 1 > L.

1 If
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a; + b

(1) If there exists a point in § which is greater than , we define b, = b; and choose

. a+b
apointa, € S and a; > 12 L

In both cases, aj,a, € S, and b; and b, are upper bounds for §. Also, we have [a,, b;] C

b, —
[Cl],b]] andbz—CIzS lzal.

Continue this procedure, we can choose sequences {a,} and {b,} such thata, € S and b, ¢ S
for every n € N and

[an+l,bn+l] - [anabn] c.--C [aZ, bZ] - [Cl],b]]

b —a b_ — dy- b —da

2 - 2 T ST
By the nested interval theorem, there exists a unique xy € [a,,b,] for all n € N and
lim a, = lim b, = x,.

n—00 n—00

bn+1 —Qp1 <

(To prove that x, is an upper bound for S.) For x € §, we have x < b, for every n € N.
Therefore, x < lim b,, = x,. This implies that x, is an upper bound for §'.

n—-oo

(To prove that x, is the least upper bound for §.) Assume that x; is not the least upper

bound for §. There exists y, which is an upper bound for § and y, < x¢. Let &€ = 0 ;yo.

Then yy < x9 — & < Xp.

Since a, < xy and lim a, = xy, there exists N € N such that |a, — x| < & for every n > N.

n—oo

Thus, a, > xo — & > yo for every n > N. It contradicts the assumption that y, is an upper
bound for S'.

(2) The second statement follows by the first one to the set S’ = {—x|x € §}.
O

Theorem 1.5.6. Let (7, +, -, <) be an order field with the least upper bound property. (That is,
if0 #S CF has an upper bound, then it has a least upper bound). Then F is complete.

Proof. It suffices to prove that ¥ has monotone sequence property. Let {x,} >, be an increasing
sequence with an upper bound M. Then the set S = {xy, x,--- , x,, -} 1s bounded above by
M.

Since ¥ has least upper bound property, there exists a least upper bound for S, say s. Hence,
for given € > 0, there exists ny € N such that x,,, > s — &.

Since {x,} is an increasing sequence, s — € < x,, < x, < s for every n > ny. This implies
that 31_210 x, = 5. Since {x,} is an arbitrary increasing sequence, ¥ is complete. O
Remark. Suppose that (¥, +, -, <) is an ordered field. Then ¥ has monotone sequence property
if and only if it has least upper bound property.
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1.6 Cauchy Sequences

Motivation: Suppose that lim x, = x. Then for a given £ > 0 there exists N € N such that

n—oo

|x, — x| < & for all n > N. This implies two facts:
(1) At most N — 1 terms of the sequence are outside the interval (x — &, x + &).
(2) Form,n > N, |x,, — x,| < 2e.

Heuristically, if a sequence {x,}", converges, then any two terms x, and x,, are arbitrarily
close to each other by taking m, n sufficiently large.

Question: How about the converse?

Definition 1.6.1. We say that a sequence {x,} ", is “Cauchy” if for every & > 0, there exists
N € N such that
|x, — x,| <& whenever m,n > N.

Proposition 1.6.2. Every convergent sequence is Cauchy.

Proof. (Exercise) O
Proposition 1.6.3. Every Cauchy sequence is bounded.

Proof. (Exercise.) O

Lemma 1.6.4. Let {x,} | be a Cauchy sequence. If there exists a subsequence {x, ;> of {x,}
converges, say I}im Xn, = Xo, then {x,} converges to x.
—00

Proof. (Exercise) O

m Bolzano-Weierstrass Theorem

Observation: Every convergent sequence is bounded. But not every bounded sequence is
convegent. A divergent, unbounded and monotonic sequence must not contain a convergent
subsequence.

Question: Does a bounded and divergent sequence contain a convergent subsequence? Under
what hypotheses of a sequence that must contain a convergent subsequence?

Theorem 1.6.5. (Bolzano-Weierstrass Theorem) Every bounded sequence (in R) has convergent
subsequence.

Proof. Let {x,} ", be a bounded sequence.
(Method 1:) We sketch the method by following steps
(1) {x,};7, contains a monotonic subsequence {x,,};”,.

(i1) {x,,};>, is also bounded.

(ii1) By using monotone sequence property, {x,, } converges.
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(Method 2:) Since {x,} is bounded, there exist a;, b; € R such that a; < x,, < b forall n € N.
If a; = by, then x,, = a, for every n € N. Hence, {x,} itself converges to a;.

We may assume that a; < by. Let I} = {x|a; < x < by} and I; contains infinitly many terms
a + bl

of {x,}. Divide I, into two equal length subintervals by the midpoint . At least one of

the two subintervals contains infinitely many terms of {x,}, say I,.

Again, divide I, into two equal length subintervals by the midpoint of the endpoints of 1.
At leats, one of these two subintervals contains infinitely many term of {x,}, say /.

Continue this proceduce, we have [;,; C I for every k = 1,2,--- and each interval I
b —
contains infinitely many terms of {x,}. Let I, = [ay, bi] with length b, — a; = lleal -0
as k — oo. By the nested intervals theorem, there exists x, € [; for all k € N. Hence,
lim ay = lim bk = Xp.

k— o0 n—oo

L a |
L |
ai 11 b1
i |

IR = " Haliniitad e
az 12 b2

L 1

a3 Iz bs

Now, we construct a subsequence of {x,} which converges x,. Choose n; € N such that x,,
to be any number of {x,} in /;. Again, choose n, > n; such that x,, to be any number of {x,} in
I,. Continue this procedure, we can choose ny > ny_; > --- > np > n; such that x,, to be any
number of {x,} in ;. Therefore, {x,,}”, is a subsequence of {x,}

[se]
n=1"

Since x,, € I, ay < x,, < by and lim g; = lim by = x¢. Hence, lim x,, = xo.
k—o0 k— o0

k—o0

Theorem 1.6.6. Every Cauchy sequence in R is convergent.
Proof. (Exercise) ]

Theorem 1.6.7. Let ¥ be an ordered field with Archimedean property. If every Cauchy se-
quence in F converges, then F is complete.

Proof. Let {x,} be an increasing sequence which is bounded by M for some M € ¥. We want
to prove that {x,} is Cauchy. Then by hypothesis, {x,} converges in # and hence ¥ is complete

Suppose that {x,} is not Cauchy. By the definition of Cauchy sequnece, there exists 0 < € €
¥, such that for every N € N, there exists m,n € N such that

|X, — x,| > & whenever m,n > N.
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For N =1, choose 1 < m; < n; such that |x,,, — x,,| > €.

For N = n; + 1, choose n; + 1 < my < n, such that |x,,, — x,,| > &.

Continue this procedure, we can choose - - - < my < 1y < Myy; < Mgy < - -+ such that [x,, —x,, | >
¢ for every k € N. Since {x,} is an increasing sequence bounded above by M, we have

Xy S Xy S Xy S Xy < oo 0 S Xy, S Xy S Xy S Xy, <o <ML
Hence, {x,,} is an increasing sequenve boudnd above by M and

X, — Xn | > €.

— xnl

Since ¥ has Archimedean property, for the element € ¥, there exists L € N such

€

—_ xn]

that

< L. Therefore,
£

Xnpoy = Gnpy =X )+ (X, — X, )+ (X, — Xy + 4%y, >€+E+---+E+X, =Le+x, >M.
It contradicts the hypothesis that {x,} is bounded above by M. Hence, {x,} is Cauchy. O
Remark. In an ordered field with Archimedean property,

Completeness = Cauchy completeness

(Every Cauchy sequence converges.)
Remark. So far, we have learned several statements on an ordered field or R:
(1) Completeness
(2) Monotone Sequence Property
(3) Nested Interval Theorem
(4) Least Upper Bound Property
(5) Bolzano-Weierstrass Theorem

(6) Cauchy Criterion
We have proved that

def rsa 3 Csa &3 &A [ew ]
=2, @ =06 =>@=@0, B =06 =06 =2

Any one of the above statements on an order field can imply other statements. Thus, we can
use any one of the statements as the definition of R. (For the statement (4), we should carefully
to define the “interval”).

(7) Archimedean Property
We have the result that
228 A v
2) = (1), () + Cauchy criterion = (2).

Remark. The above statement (2)—(4) only describe the properties of R [(3) can work on R”
] since the partial order is necessary. The statements (5) and (6) are well-defined on general
metric spaces. Therefore, we will use Cauchy criterion as the definition of completeness in the
future.
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1.7 Cluster Points and Limit Inferior, Limit Superior

a Cluster Points

Motivation: In the previous section, we have learned some results of convergent sequences and
divergent sequence (Bolzano-Weierstrass). For a sequence {x,},

(1) if lim x, = x, for any given € > 0, only finitely many terms of {x,} outside the interval

n—oo

(x — &, x + &). Heuristically, all but finitely many terms are clustered near x.

(2) if lim x, # x, there exists £ > 0 such that there are infinitely many terms of {x,} outside
n—0o00

(x —&,x + ¢). In spite of this, it is possible that there still exists infinitely many terms near
x. In this case, a subsequence is also clustered near x.

(3) by Bolzano-Weierstrass Theorem, a bounded and divergent sequence will have two or more
cluster points. (For example, {(—1)"}).

In some situations, those points where sequences are clustered there still to be worthy to study.

(o8]

Definition 1.7.1. A point x is called a “cluster point” of a sequenc {x,} >, if for every &£ > 0,
there are infinitely many numbers of {x,} within (x — &, x + &). (Note that we count x; and x;
separately even if x; = x;).

Remark. (1) The difference between the limit of {x,} and a cluster point of {x,} is that

i. if x is a limit, all tail of {x,} are clustered in neighborhoods of x;

ii. if x is a cluster point, only infinitely many terms of {x,} are clustered in neighborhood
of x.

(2) A limit is also a cluster point, but a cluster point may not be a limit.

Proposition 1.7.2. Let {x,}’", C R and x € R. The following statements are equivalent.
(1) xis a cluster ponit of {x,}.

(2) forany € > 0 and N € N, there exists n > N such that |x, — x| < €.

(3) there exists a subsequence {x,, } converges to x.

Proof. “(1)=> (2)”

For any given N € N, there are only finitely many indies which are smaller than N. By the defi-
nition of a cluster point, for £ > 0 and N € N, there must have n > N such that x, € (x—¢&,x+¢&)
and hence |x, — x| < &.

66(2) : (3)”
For nyp = 1 and &, = 1. There exists n; > ny = 1 such that |x,, — x| < 1.

. 1 )
Again, forn; e Nand g, = 5 There exists n, > n; such that |x,, — x| < 3

) ) 1
Continue this procedure, we can choose &, = z and find n; <n, <--- <ng <--- such that

1
|x,, — x| < T
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Hence, {x,,};-, is a subsequence of {x,} such that hm X = X.

—)OO

6‘(3) : (1)9’
Since {x,, };>, converges to x, for £ > 0, there exists K € N such that

‘xnk - x‘ <& wheneverk > K.

There are infinitely many terms of {x,,} within (x — &, x + ). Hence, there are also infinitely
many terms of {x,} withnin (x — &, x + £). Then x is a cluster point of {x,}.
O

Proposition 1.7.3. Let {x,} | be a sequence in R and x € R. The following statements are
equivalent.

(1) lim x, = x.
(2) {x,};7, is bounded and x is the only cluster point of {x,}," .
(3) every proper subsequence of {x,} ", has a further subsequence which converges to x.

Proof. (Exercise) ]

QO Liminf and Limsup (7™ & 3£ } {&'1)

Motivation:
(1) In some cases, we only focus on the tail of a sequence {x,} but not the whole sequence.

(2) We may only focus on the behavior of a subsequence of {x,}. We may want to understand
whether the behaviors of the tail of a sequence is bounded by two numbers.

Hence, we can track the supremum and infimum of the tails of {x,}. If
sup{x, ), —inf{x,}>, Ny O ask — oo,
then the sequence coverges. Thus, let’s observe the behavior of the sequence {a;} and {b;} where

a; = sup {x,} and by := inf {x,}.

k<n<oo ksn<eo

Definition 1.7.4. Let {x,}, be a sequence in R.

(1) The “limit superior of {x,}",” is the infimum of the seugence { sup xn}k g That is,
k<n<oo

inf( sup {xn}) or 11m ( sup { n}). Denoted by “lim sup x,,”” or “lim x,”.

keN * r<p<oo 0 k<n<oo n—oo n—oo

(2) The “limit infimum of {x,},.,” is the supremum of the seugence { inf xn}: . That is,

k<n<co

sup ( inf {xn}) or hm ( 1nf { n}). Denoted by “liminf x,,” or “lim x,”.

keN  k<n<oo k<n<co n—oo oo
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lim sup x

JAVAVA

lim inf x,,

Remark. The sequence {a;} is decreasing and {b,} is increasing. Hence, if +co are allowed to
be limits of sequences, lim a; and lim b, always exists. Moreover,
k—o0 k—o0

lim ( sup {x,}) = irellg( sup {x,}) and lim ( inf {x,}) = sup ( inf {x,}).

k—co * k<pcoo k<n<oo k—o00 * k<n<oo keN  k<n<oco

Example 1.7.5. (1) x, = (-1)". Then supx, = 1 and in{ x, = —1 for every k € N. Then

n>k
hnm_glf X, = irelmfr (snlg x,,) =1 and hrnn_illp X, = ig£ (}gt]: xn) =-1.
1 ) 1 )
(1) —— kisodd ‘ —— k is odd
2) x, = . Then sup x, = ]f +1 and inf x, = k 1 We
n nzk - k is even nzk ——— kiseven
k k+1

have
lim sup x,, = lim (sup xn) =0 and liminfx, = lim (inf xn) = 0.

n—0co k—o00 n>k n—oo k—oo  n>k

Proposition 1.7.6. Let {x,} ", be a sequence in R. Then
(1) a = liminf x,, > —oo if and only if

(i) for & > 0 there exists N € N such that ifn > N, a — &€ < x,, and

(ii) for e > 0 and M € N, there exists no > M such that x,, < a + &.

(2) b =limsupx, < oo if and only if

n—oo

(i) for € > 0 there exists N € N such that ifn > N, x, < b + &, and

(ii) for e > 0 and M € N, there exists no > M such that b — & < x,,.

Proof. 1t suffices to show (1) and the proof of (2) is similar.

(=) Since a = liminf x,, = lim(in{ x,) > —oo, for given £ > 0, there exists N € N such that

n—oo k—oo n>

. P
for every k > N, 1n£x,, —a| < 3 Hence,
n>,
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(1)
in{ X, >a—& whenever k > N.
n>

Then, forn > N, x,, > inli; X, > a — € and (i) is proved.
nz

.. . . &€ .
(i1) Since mf X, + 3 <a+eg, for given M > 0, we can choose ny > max(N, M) such that

£
0 < 1nf X, + = < a+ € and (i1) is proved.
n>N 2

(&) Fix e > 0, from (ii), for every k € N, mf X, < a+ &. Hence, liminf x, = liminf x, < a + &.

n—oo k—o0 n>k

Also, for € > 0 and from (i), in}i; x, > a — &. Hence,
n>

liminf x,, = supinf x, > 1nf X, >a-e&.
n—eo keN n=zk
We have for € > 0,
a—¢e<liminfx, <a+e.

n—oo

Since ¢ is arbitrary positive number, liminf x,, = a. O

n—oo

Remark. If a = liminf x,, > —oo, then a is the smallest cluster point of {x,}. If b = lim sup x,, < oo,

n—oo n—oo

then b is the largest cluster point of {x,}.
Theorem 1.7.7. Let {x,}" | be a sequence in R. Then

(1) hm 1nf X, < lim sup x,,.

n—oo

(2) If {x,} is bounded above by M, then lim sup x, < M.

n—oo

(3) If {x,} is bounded below by m, then liminf x,, > m.

n—oo

(4) Iflimsup x,, = oo, then {x,} is not bounded above.

n—oo

(5) Ifliminf x, = —oo, then {x,} is not bounded below.

(6) If x is a cluster point of {x,}, then liminf x,, < x < lim sup x,,.

n—eo n—oo

(7) If a = liminf x, is finite, then a is a cluster point.
n—oo

(8) If b = limsup x,, is finite, then b is a cluster point.

n—oo

(9) hm x, = x if and only thmlnfxn = limsup x, = x.

Proof. (Exercise) O
Note. Let S = QN[O0, 1]. Then S is countable. Therefore, we can write S = {q1,¢2,*** ,Gn, " }.

For p € [0, 1] and € > 0, there are infinitely many points in S within (p — €, p + €). Hence, p is
a cluster point of S. We have the set of all cluster point of S is [0, 1].
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1.8 Some Properties of R”

Definition 1.8.1. Euclidean n-space, denoted by R”, consists of all ordered n-tuples of real
numbers.

R" = RxRx--xR={(ar, -+ ,a,)|aseRfori=1,---,n}
RxR"" = {(ab)|acR, beR""}
R‘xR"™ = {(a,b) |aeR", beR"}.

1N

IR

Definition 1.8.2. We define a binary function (metric) d : R” X R" — R by

lx = yll = d(x,y) =

where x = (X1, -+ ,x,), Yy = (1, -+ ,yn) € R

Remark. For x,y,z € R",

(1) d(x,y) 20

(2) d(x,y)=0ifandonly if x =y

(3) d(x,y) = d(y, x)

4) d(x,y)+d(y,z) >d(x,z) (“triangle inequality”)
Remark. For x,y € R",

max |x; - yil < d(x,y) < ) 1% = yil

1<i<n -
i=1

Definition 1.8.3. Let {x;},>, be a sequence in R". We say that {x;} converges if there exists a
point L € R" such that for every € > 0, there exists N € N such that if n > N,

d(x,, L) < e.

Denote by lim x; = L.

n—oo

Lemma 1.8.4. Let x; = (x\", -+ , X"y and L = (L, -+ , Ly). Then

lim x, = L if and only if I}im x,(f) =L, foreveryi=1,--- k.

k—o0
Proof. (Exercise) O

Definition 1.8.5. Let {x;};2, be a sequence in R". We say that {x;} is Cauchy if for every & > 0,
there exists N € N such that if m,n > N, then

d(x,,, x,) < &.

Theorem 1.8.6. Every Cauchy seugence in R" converges. Hence, R" is (Cauchy) complete.
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Proof. (Exercise) O

Definition 1.8.7. We define a “closed interval” in R” by

{(xl,-~~ , Xpn) ‘ a; < x; < b;forevery i=1,--- ,n} = a1, b1] X - -+ X [a,, b,]
and an “open interval” in R" by

{Cer, -+ %) | @ < x; < biforevery i=1,---,n} = (a, b)) X X (ay, by)

Remark. Let I = [a;,b1] X - X [a,,b,] and J = [c1,d ] X - - - X [c,, d,,] be two intervals in R".
Then I C J if and only if [a;, b;] C [¢;,d;] foreveryi=1,--- ,n.

Theorem 1.8.8. (Nested Interval Theorem) Suppose taht I = [a(lk),b(lk)] X - X [a;k),bi,k)],
k=1,2,-- is a sequence of closed intervals in R" such that I**V C I® for every k = 1,2,---.
If ]}im(bgk) - agk)) =0fori=1,---,n, then there exists one and only one point xo which is in

every interval I®.
Proof. (Exercise) O

Definition 1.8.9. We say that a set S c R" is “bounded” if there exists M > 0 such that
SC[-M,M]X---Xx[-M, M].

A sequence {x;};-, is “bounded” if the set {x; | k = 1,2, ---} is bounded.

Remark. S c R" is bounded if and only if therr exists M > 0 such that sup d(x,0) < M where
x€S

0=1(0,0,---,0) is the origin in R".

Theorem 1.8.10. (Bolzano-Weierstrass Theorem) Every bounded sequence in R" has a conver-
gent subsequence.

Proof. (Exercise) O
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1 Metric on a Set

Definition 2.1.1. A metric space (M, d) is a set M associated with a functiond : M X M — R
such that

(1) d(x,y) >0 for every x,y € M.

(2) d(x,y) =0if and only if x = y.

(3) d(x,y) =d(y, x) for every x,y € M.

4) d(x,y)+d(y,z) > d(x,z) forevery x,y,z€ M (Triangle Inequality)

A function d satisfies (1)—(4) is called a “metric” on M.

Example 2.1.2. (1) M C R” and d(x,y) := Z(x,- —y;)> where x = (x1,---,x,) and y =

i=1
(V1> »Yn). Then (M, d) is a metric space. (Check)

33
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(2) M CR"and d(x,y) = max |x; — yil. Then (M, d) is a metric space. (Check)
<i<n

(3) M is any nonempty set and

0 ifx=y

d(x,y) = { 1 ifx#y (discrete metric)

Then (M, d) is a metric space. (Check)

d(x, : .
(4) Let (M, d) be a metric space. Define p(x,y) = & Then p is a (bounded) metric on

1 +d(x,y)
M.

Example 2.1.3. Let C ([O, 1]) be the collection of all continuous function on [0, 1]. That is,
C([O, 1]) = {f :[0,1] - R ’ fis continuous.}.

Define d(f, g) = max | f(x) = g(x)|. Then d is a metric on C([0, 1]).

1
Example 2.1.4. Let M = C([0, 1) and d(f. g) = | f () - g()P dx] . Then d is a metric
0
on M.

Example 2.1.5. Let
M, = { n X m matrix with entries in R}

and

d(A,B): E |aij_bij{-
1<i<n
1<j<m

Then (Mnxm, d) is a metric space.

Remark. From Examplel T, a set M may have many metrics. In fact, different metric will
give rise to different properties for M.

Definition 2.1.6. Let (M, d,) and (M, d,) be two metric spaces. We say that the two metrics d;
and d, are equivalent if there exist two positive numbers a, 8 > 0 such that

a/dl(x’ )’) < dl(x’ }’) < ﬁdl(x’ }’)

for every x,y € M.

Note. Consider the metric spaces (R”, d), (R",d) and (R", d) where d, d and d are defined in
ExamplelZ T2
d(x,y) < d(x,y) < nd(x,y) forevery x,y € R".

Hence, d and d are equivalent. However, d and d are not equivalent. (Check)

Definition 2.1.7. Let (M, d) be a metric space and {x,}. , be a sequence in M. We say that {x,}
converges to x if for every € > 0, there exists N € N such that

d(x,,x) <& whenevern > N.
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[e6]
n=1

Definition 2.1.8. Let (M, d) be a metric space. A sequence {x,}
if for every € > 0, there exists N € N such that

in M is said to be “Cauchy”

d(x,, x,) <& whenever m,n > N.

Proposition 2.1.9. Let d, and d, be equivalent metric on M and {x,})", be a sequence in M.
Then {x,} ", converges to x in (M, d,) if and only if {x,} ", converges to x in (M, d,).

Definition 2.1.10. A metric space (M, d) is said to be “complete” if every Cauchy sequence in
M converges to a limit in M.

Remark. Let d be the discrete metric on a nonempty set M. Then M is complete.(exercise)

a Open Sets
Definition 2.1.11. Let (M, d) be a metric space. 74 o
For x € M and r > 0, then r-ball (or r-disc) ke L \
with center x and radius r is given by the set {C'? F N
{yeMm ‘ d(x,y) < r}. Denoted by B(x,r) ( or \"‘-x';\ T»l—' :I
D(x.r)). . -/

Remark. For 0 < r; < ry, B(x,r) C B(x, rp).

Example 2.1.12. Let M = R?, x = (x;,x,) and y = (y;,y,). Consider the different metrics on
M.

(D) d(x,y) = \/(Xl —y1)? + (2 — )%
(2) di(x,y) = |x; = yil + |x2 = y2l.

(3) dy(x,y) = max(|x; — yil, [x2 — y2l).
The following figure is the 1-ball B(0, 1) in (R?, d), (R?,d,) and (R?, d»).

1 ifx#y ~
4) ds = { 0 ifx - Then BO,r) =
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m Open Sets
Definition 2.1.13. Let (M, d) be a metric space. sl g }{ T2 .
We say that a set U C M is “open” if for every  * / S o
x € U there exists r > 0 such that ] sl
. \\.\“"-- // -~ ¥ 4
B(x,r)C U. K »
5 e '

Example 2.1.14. Let (M, d) be a metric space. The r-ball B(xy, r) is open in (M, d).

Proof.

For y € B(xp,r), we want to find r; > 0 such that e
B(y, 1) € B(xo. 7).

Since y € B(xg, ), d(xp,y) <r. Letr; =r—d(xy,y) > 0.
To show that the ball B(y, r;) € B(xo, r). For z € B(y, r),
d(y, z) < ry. By the triangle inequality,

d(xo,Z) < d(xo,)’)"'d(y,z)
<

d(xo,y) + 1 B
= d(x0,y) + 1 —d(xo,y) = 1. T
Thus z € B(xp,r). Since z is an arbitrary point in B(y, r;), we have B(y r1) € B(xg, 7).
Moreover, since y is an arbitrary point in B(xy, r), the ball B(xy, r) is open. O

Proposition 2.1.15. For M = R? with metric d(x,y) = \/(xl —y1)? + (X2 — y2)?, the set A =
{(x,y) e R? ‘ 0<y< 1} is not open in (R?, d).

Proof.

Let u = (0,0). To prove that no matter how small number & > 0 is,
the ball B(u, &) ¢ A.

For given £ > 0, the point (0, —g) € B(u, ) but (0, —;) ¢ A. Then

B(u,e) ¢ A. There exists no ball with center u contained in A and o
hence A is not open in (R2, d).

Example 2.1.16. Let M = R?, di(x,y) = |x; —yi|+|x2 —y2| and d5(x, y) = max(|x; — y1l, [x2 = y2)).
Then the set A = {(x,y) € R? | x* + y* < 1} is open in (M, d,) and open in (M, d>).

Proof. (Exercise) O
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Remark. Let d and p be equivalent metrics on M. Then U is open in (M, d) if and only if U is
open in (M, p).

Proof. (Exercise) O
Proposition 2.1.17. Let (M, d) be a metric space.

(1) The intersection of finitely many open sets is open. That is, if Uy, --- , U, are open in (M, d),
then m Ui is open.

i=1

(2) The union of arbitrary family of open sets is open. That is, let F = {Ua | U,is openin M, a € I}
is a family of open sets, then U U, is open.

acl

(3) 0 and M are open in M.

- > o
U, ~ d N v U r o 7. e U
l( _.%: } 1 ;'1""_"*-:::‘_(_/; ]
\ / ‘-;' \ \ /~ 'l\ o
\ ! \ -_4} \ l’ \\\ f \%I ;\‘1,’}
\t_‘____ -..__,_.-’I/ J".._____f -n...-j
/ \
N | /
~ — "/ Uk \\"h-___,.-r“/
Proof. (Exercise) O

Corollary 2.1.18. Let (M, d) be a metric space with discrete metric. Then every subset of M is
open.

Proof. Let A C M and a € A. Since d(a, }) = {a} € A, the open ball B(a, 1) € A. Hence, A is
open. O

11
Remark. Infinite intersection of open sets may not be open. Consider U, = ( - -, —). Then
nn

ﬂ U, = {0} is not open in R with usual metric.
n=1
Example 2.1.19. Let A C R” be an open set and B C R" be any set. Then the set

A+B:={a+b|lacAandb e B}

is open.
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Proof.
A+B
For p € A + B, there existsa € A and b € B Y (._———.___k
such that p = a + b. £
Since A is open and a € A, there exists r > 0 B f/ 2t
“

such that B(a,r) € A. It sufficies to show that
B(p,r) CA + B. Bt N

For x € B(p,r), x — b € B(a,r) € A. Thus,

there exists a; € A such that x — b = a;. Then e T A

x=a,+b€A+B. Hence, B(p,r) CA+ Band /T xb 9

A + Bis open. g
O

a1 Interior Points

Definition 2.1.20. Let (M, d) be a metric space and A C M be a subset of M.
(1) We call a point x € A an “interior point” of A if there exists 6 > 0 such that B(x, d) C A.

(2) The “interior” of A is the set of all interior point of A, and is denoted by “int(A)” or “A”.

1

Example 2.1.21. Let M = R with the metric d(x,y) =[x —y]. A =[0,1)and B = {— | ne N}.
n

Then A = (0,1) and B = 0.

Note. The interior of a set might be an empty set.

Theorem 2.1.22. Let (M, d) be a metric space and A C M be a subset of M. Then A is the
largest open set contained in A. In other word, if U C A is open (in M) then U C A.

Proof. (i) By the definition of the interior of A, AcA (fi is contained in A).

(i1) To prove that Ais open.

For x € A, by the definition, there exists 6, > 0 such
that B(x,6,) C A. We will show that A = | | B(x,6.)

xeA

and then A is open.

“C”: Clearly,
A= U{x} c U B(x, 6,).

xeA XA

“2”: For ye€ UB(x, 0,), there exists x € A such

x€A

that y € B(x,0,) and hence d(x,y) < ¢,. Let
g=0,—d(x,Yy),then B(y, &) C B(x,d,) C A.
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This implies that y is an interior point of A, that is, y € A and then U B(x,0,) C A. We

xeA
have

A= U B(x,5,).

Xx€A

(iii) To prove that every open set contained in A is a subset of A.

Let U C A be an open set. For z € U, there exists r > 0 such that B(z,r) € U C A. Thus,
z € A. Since z 1s an arbitrary point in U, we have U C A.
O

Theorem 2.1.23. Let (M, d) be a metric space. The set A C M is open if and only if A = A

Proof. (=) Clearly, A C A. Since A is open and A is the largest open set contained in A, we
have A C A and hence A = A.

(&) This direction is trivial. |

Remark. If A € M is open, then every point in A is an interior point of A.
Remark. (1) Let A and B be two sets in (M, d). Then

AUBC(AUBY.
In general, AUB G (AU B)°. For example A = [0, 1) and B = [1,2].

(2) {y eM | d(x,y) < r} c int({y eM ’ d(x,y) < r})

2

The relation is, in general, “G”. For exampe, let d be the discrete metric and r = 1.
Consider M = {y eM | d(x,y) < 1}. Then int({y eM ‘ d(x,y) < 1}) = M. But
{yeM|dxy <1} ={x}.

2.2 Closed Sets, the Closure of Sets, and the Boundary of Sets

1 Closed Sets

Definition 2.2.1. Let (M, d) be a metric space. A set F C M is said to be “closed” if F¢ = M\F
is open.
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Remark. F is closed if and only if for every x € F*, there exists ¢, > 0 such that B(x, d,) C F°.
Remark. The set {y | d(x,y) < r} is close. (Exercise)
Exercise. (1) [0, 1] c Ris closed and R\[0, 1] = (—00,0) U (1, 00) is open

2) § = {(x,y) € R* | x* + y* < 1} is closed in
R2.

Proposition 2.2.2. Every point in a metric space is closed. That is, for a metric space (M, d)
and a point x € M, the set {x} is closed in M.

Proof. For x € M, lety € M\{x}. (We want to find r > 0 such that B(y, r) C M\{x}.)

1
Since x # y, d(x,y) > 0. Let r = Ed(x, y), then

1
d(x,y) > Ed(x,y) =r. Thus, x ¢ B(y,r). We

have B(y,r) € M\{x}. Therefore, M\{x} is open
and {x} is closed.

Proposition 2.2.3. Let (M, d) be a metric space.

(1) The union of finitely many closed sets is closed. That is, if F'y,-- - , F, are closed, then U F;
i=1
is closed.
(2) The intersection of arbitrary family of closed sets is closed. That is, let ¥ = {F . } F, is closed, a € 1 }
be a family of closed sets. The intersection ﬂ F, is closed.

ael

(3) 0 and M are closed.

n n

Proof. (1) Let Fy,--- , F,beclosed. Then FY,--- , F} are open. Since (UFi)c = (ﬂF") is

i=1 i=1

the intersection of finitely many open sets and hence is open. Thus, U F; is closed.
i=1
(2) Let ¥ = {Fa | F, is closed fora € I} is a family of closed sets. Then F, is open for a € 1.
Then ( ﬂ F Q)L = U F, is the union of a family of open sets and hence is open. Therefore,

ael ael

ﬂ F, is closed.

ael
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(3) Since 0° = M and M* = () are open, @ and M are also closed.
Corollary 2.2.4. Every set consists of finitely many points is closed.

Proof. (Exercise) O

Remark. The union of infinitely many closed sets may not be closed. For example,

1
(i) A={-|neN} isnotclosed since {0} € A but {0} is not an interior point of A°.
n
] 1 )
(i1) U[—, I -—-]=(0,1)is open.
~n n
e | 1 .
(i11) U[O, 1 — =] =10,1) is not open and not closed.
n

n=1

[ Accumulation Points, Limit Points and Isolated Points

Definition 2.2.5. Let (M, d) be a metric space and A C M.

(1) A point x € M is called an “accumulation point” of A if for every £ > 0, the open ball
B(x, ) contains a point y € A and y # x. That is, for every € > 0,

B(x,&) N (A\{x}) # 0.

Example: A = (0, 1), every point in [0, 1] is an accumulation point of A.
Example: A = (0, 1) U {2}, every point in [0, 1] is an accumulation point of A but {2} is not
an accumulation point of A.

(2) A point x € M is called a “limit point” of A if for every € > 0, the open ball B(x, ) contains
a point in A. That is,
B(x,e)NA # 0.

Example: A = (0, 1) U {2}, every point in [0, 1] U {2} is a limit point of A

A
(3) A point x € A is called an “isolated point” if f\ ~—__

there exists € > 0 such that

/ isolated
/ point
\
N

B(x,e) N A = {x}.

~

(4) We denote the set of all accumulation points of A by A" and is called the “derived set” of A.

(5) We denote the set of all limit points of A by A. The set will be called the “closure” of A
later.

Remark. (1) An accumulation point of A may not be in A. For example, let A = (0, 1), the
point {0} is an accumulation point.
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(2) A set A consists of finitely many points has no accumulation point. That is, A" = Q.
Question: How about infinitely many points?

1
Consider Z has no accumulation point and hence Z’ = 0. On the other hand, letA = {- | n € N}
n
and A’ = {0}.

(3) Accumulation points are also called “cluster points” in some books.
(4) A’ C A.

(5) ACA.

(6) An isoloated point is a limit point but not an accumulation point.
Example 2.2.6. (1) A =(0,1)U{2}. Then A’ = [0, 1] and A = [0, 1] U {2}.

(2) {x.},_, € R consists of infinitely many distinct points and is bounded. By Bolzano-
Weierstrass Theorem, there exists a convergent subsequence {xnk};o:l, say ]}im Xp, = Xo.

Then {x¢} is an accumulation point of {x,}>,.
(3) Let (M, d) be a metric space with discrete metric d and A C M. Then A" = (.

Proposition 2.2.7. If A C B, then

B
(1) A’ CB.

(2) ACB.
Proof. (1) Let x € A’. For € > 0 there exists y # x and y € A such that y € B(x, ). Since

A C B, we have y € B. Hence, y is a point in B where x # y and y € B(x, ). Thatis, x € B’.
Since x is an arbitrary pointin A", A" C B'.

(2) (Exercise)

Proposition 2.2.8. Let A CR”, then A C A’

Proof. Let x € fi, there exists 6 > 0 such that B(x,d) C A. For given € > 0, B(x,0) N B(x, &) =
B(x, min(5, €)) C A. Hence, there exist a point y # x, ye B(x, min(6, £)) N A. This implies that
x is an accumulation point in A. O

Note. The above proposition is true for the usual metric, but is false for the discrete metric.

Definition 2.2.9.

Let (M, d) be a metric space, x € M and A C M.
We define the distance from {x} to A by

d(x,A) = inf {d(x, y) | y € A} = inf d(x,y).
yeA
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Proposition 2.2.10.
A
[ —
Let (_M, d) be a metric space and A C M. Then £
x € A ifand only if d(x, A) = 0. Q

Proof. (=) Since x € A is a limit point of A, for every € > 0, B(x,) N A # 0. Then there
exists z € B(x, &) N A and hence d(x, z) < . The distance

d(x,A) = inf {d(x,y) |y € A} <d(x,2) <e.
Since ¢ is an arbitrary positive number, we have d(x,A) = 0.

(=) If d(x,A) = 0, for given € > 0, there exists z € é such that d(x,z) < &. Thus,
Z € B(x,e) N A and then B(x, &) N A # (. This implies that x € A. O

Remark. Let (M, d) be a metric space and x € A’. Then d(x,A) = 0. But the converse is false.
For example, A = (0, 1) U {2} and hence d({2},A) =0.But{2} ¢ A" =10, 1].

Theorem 2.2.11. Let (M, d) be a metric space and A C M, then A is closed if and only if A = A.

Proof.
_ A
(=) Clearly, A € A. On the other hand, since A is —
closed, for every x € A€, there exists 6 > 0 such that / foox
/ oA

B(x,06) C A°. That is, B(x,5) N A = (. Therefore, x is not

a limit point of A, i.e. x ¢ A. Then A¢ C (Z) “ and thus
A CA. Wehave A = A. Q
r 4

—
""'h-_--'/

(&) Since A = A, for every x € A¢, x is not a limit point of A. Hence, there exists 6 > 0
such that B(x,0) N A = (. That is, B(x,0) € A°. This implies that A is open and then A is
closed. O

Theorem 2.2.12. Let (M, d) be a metric space and A C M. Then A=AUA.

Proof. (C) Let x € A. Forevery § > 0, B(x,6) N A # 0. If x € A\A, then B(x,5) N (A\{x}) # 0.
We have x € A" and
A=[(A\A) UA] c A’ UA.

(2) Since ACAand A’ C A, wehave AUA’ C A. O

Corollary 2.2.13. If A C B and B is closed, then A C B.

Proof. Since A C B and B is closed, we have ACB=B8B. m|
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Proposition 2.2.14. Let (M, d) be a metric space and A C M. Then A\A’ is the collection of all
isolated points of A.

Proof. Let B be the set of all isolated points of A. Clearly, A
BCA\A. .
Let x € A\A’. Then x is not an accumulation point of A. o
There exists 6 > 0 such that B(x,5) N A = {x}. Hence x is «
an isolated point of A and x € B. We have A\A’ C B. O A\ A’

Theorem 2.2.15. Let (M, d) be a metric space and A C M. Then A’ is closed.

Proof. Let x ¢ A’. There exists 6 > 0 such that B(x,d) N (A\{x}) = (. (We want to prove
B(x,%) c (A")")

0 1) o
Assume B(x, 5) ¢ (A")°. Then B(x, 5) NA" #0,say y e B(x, E) NA’. Clearly, x # y since
x¢A. 5
Let £ = min <§’ d(x, y)). Since y € A’, we have B(y,&) N

(A\{y}) # 0. Thus, there exists z € B(y,&) N (A\{y}).
Since d(y,z) < € = min (£,d(x,y)), we obtain z # x and

lX
) oS
d(x’ Z) < d(-x’ y) + d(.Ya Z) < E + E = 0. '\‘ S frrmt a

Therefore, it gives a contradiction that z € B(x,0) N
(A\{x}). This implies that B(x, ) C (A’)°. We have (A")°
is open and A’ is closed.

Alternating Proof:
Let x ¢ A’. Then there exists 6 > 0 such that B(x,8) N (A\{x}) = (0. Therefore, A C
(B(x, O)\x})".

Since B(x, 9)\{x} = B(x, 9)N{x}¢ is open, (B(x, 6)\{x})c is closed and thus A C (B(x, 5)\{x})c.
We have A N (B(x, 6)\{x}) = 0.

Also, sinceA=AUA’, A’ N (B(x, (5)\{x}) = 0 and hence B(x, ) C (A’)C. We have that x is
an interior point of (A’)C and A’ is closed.

a Closure

Definition 2.2.16. Let (M, d) be a metric space and A C M. The closure of A is the intersection
of closed set containing A, and is denote by cl(A). In other words,

cl(A) = ﬂ F.

r:closed
ACF

Remark. cl(A) is the smallest closed set containing A.
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Proposition 2.2.17. Let (M, d) be a metric space and A C M.
(1) ACclA).

(2) Ais closed if and only if A = cl(A).

Proof. (1) The proof is direct by definition.

(2) (=) Since cl(A) is the smallest set containing A and A is closed and A C A, cl(A) C A.
Also, A C cl(A) by definition of cl(A) and hence A = cl(A).

() Since cl(A) is closed and A = cl(A), we have A is closed.

Proposition 2.2.18. Let (M, d) be a metric space. Then cl(A) = A.
Proof. (2) Since cl(A) is closed and A C cl(A), we have A C cl(A).

(S) Clearly, A € A. (We want to prove that A is closed.)
For x ¢ A = AU A’, there exists r > 0 such that B(x,r) N A = () and hence A C (B(x, r))

Since (B(x, r)) “is closed, by the definition of the closure, AC (B(x, r)) ‘. Then B(x,r)n A=0
and thus B(x,r) C A" and x is an interior point of A°. We obtain that A" is open and A is closed.

Since cl(A) is the smallest closed set containing A, we have cl(4) C A. O

Remark. In a metric space (M,d) and A C M, since A = cl(A), we also call “A the closure of

A”.
Example 2.2.19. Let A = [0,1) U {2}. Then cl(A) = [0, 1] U {2}.
Remark.
A=AUA" = the collection of all limit points of A.
cl(A) = the intersection of all closed sets containing A.

the smallest closed set containing A.

A = cl(A).
Proposition 2.2.20. In a metric space (M, d), x € cl(A) if and only if d(x,A) = inf {d(x, y) | y €
A} =0.
Proof. (Exercise) ]

Note. In a metric space (M, d), a subset A C M is dense in A.
0 Dense
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Definition 2.2.21. Let (M, d) be a metric space and A C B C M. We say that A is “dense” in B
if
ACBCA.

Remark. (1) If A is dense in B, then for every x € B and every € > 0, B(x,&) N A # 0.

(2) Ais dense in A.
Example 2.2.22. Q is dense in R.

Q Boundary

Definition 2.2.23. Let (M,d) be a metric space and A € M. The “boundary” of A is the
intersection of A and A¢, and denoted by JA. Hence,

Remark. (1) dA is closed since dA = A N A€ is an intersection of closed sets.
(2) 0A = 0(A°).

Proposition 2.2.24. Let (M, d) be a metric space and A € M. Then x € 0A if and only if for
every € > 0,
B(x,e)NA#0 and B(x,e)NA°#0.

Proof. By the definition of limit points, a point x € dA = A N A€ is on the boundary of A if and
only if for every € > 0

B(x,e)NnA#0 and B(x,e)NA° #0.

Proposition 2.2.25. Let (M, d) be a metric space and A C M. Then 0A = Z\A.

Proof. (C) Let x € 0A = A N Ac. Since x € g, for every & > 0, B(x,&) N A° # 0. Then
B(x,e) £ A which implies that x ¢ A. Thus, x € A\A. We obtain dA C A\A.

(2) Let x € A\A. Then x ¢ A. For every £ > 0, B(x,&) € A. Therefore, B(x,&) N A° # 0
which implies that x € A¢. We have x € A N A = JA and hence A\A C 0A. O

Example 2.2.26. Let M = R be a space with metric d(x,y) = |[x —y|and A = [0, 1] N Q. Then
A =10,11, A=[0,1, A=0 and 0A=A\A=[0,1].

Example 2.2.27. Let (M, d) be a metric space with discrete metric and A € M.

(1) Aisopen. (Every set is open.)

(2) Aisclosed. (A€ is open.)

(3) A= A, (A is open.)
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4) A" =0.
(5) A =A. (Ais closed.)
(6) 0A = A\A = 0.
Remark. A € B=0A C 0B.
(i) Let A =(0,1)and B = [0, 1]. Then 0A = {0, 1} = dB.
(i) Let A=Qn[0,1]and B = [0, 1]. Thne 0B = {0, 1} € [0, 1] = 0A.
(iii) Let A = [1,2] and B = [0, 3]. Then 0A = {1,2}, 0B = {0,3} and A N B = 0.
Remark. (1) 0A ¢ A’. For example, A = {0}, then A’ = () and 0A = {0}.
(2) A # d(A). For example, A = [0, 1] U {2}, then dA = {0,1,2}, A = (0, 1) and 04 = {0, 1}.
Proposition 2.2.28. Let (M, d) be a metric space and A, B C M. Then
(1) (AU B) C 0A U OB, and
(2) (AN B) C A UIB.
Proof. (1)

x€0(AUB) ifandonlyif foreverye >0, B(x,e)N(AUB) # () and
B(x,e) N (AU B)° = B(x,&) N (A°N B°) # 0.

Hence, either (i) B(x,e) N A # 0 and B(x,&) N A° # 0, or (i) B(x,e) N B # 0 and
B(x,e) N B¢ # (. Case(i) implies x € dA and case (ii) implies x € dB. Thus, x € 0A U 0B
and (A U B) C 0A U 0B.

(2) By (1),
(AN B)=0[(ANB)] = (A°UB) CIA°UIB° = AU IB

2.3 Sequences and Completeness

Q Sequence

Definition 2.3.1. Let (M, d) be a metric space and {x,} >, be a sequence in M.
(1) We say that {x,} | “converges to x” if for every & > 0, there exists N € N such that
d(x,,x) < e whenever n > N.

Denoted by lim x,, = x or x, = xasn — oo.

n—oo
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(2) {x.}>2, is said to be “Cauchy” if for every & > 0 there exists N € N such that

d(x,, x,) < & whenever m, n > N.

(3) {x.}_, is said to be “bounded” if there is a point xo € M and a number R > 0 such that

d(x,,x)) <R for every n € N.

(4) (M,d) is said to be “complete” if every Cauchy sequence in M converges to a limit in M.
Remark. (1) Every Cauchy sequence is bounded.
(2) Every convergent sequence is Cauchy.

(3) If a subsequence of a Cauchy sequence converges, then this sequence converges.

(4) Let {xk}:;l be a sequence in R” where x; = (x(l), e ,x,((")). Then {xk}:’:] is convergent

(Cauchy) in R” if and only if {x{"}2*  is convergent (Cauchy)in R fori =1,2,--- ,n.

Componentwise convergenece <=  Convergence

(5) R"is complete.

Proposition 2.3.2. Let (M, d) be a metric space and A C M. Let x € M be a point. Then x € A
if and only if there exists a sequence {x,},. | C A such that lim x, = x.

n—oo

Proof. (=) Since x € A, for every n € N, B(x, i) N A # (. We can choose any point in

B(x, %) N A and denote this point x,. (We will prove that the sequence {x,};” , converges to x.)

Given ¢ > 0, choose N € N such that ﬁ < &. Then, for n > N, we have x, € B(x, %) and
hence

1
dx,,x) < — <e.
n

Therefore, the sequence {x,}” , converges to x.

(&) Let {x,};7, € A converges to x. For every £ > 0, there exists N € N such that
d(x,,x) < e when n > N. Therefore, xy € B(x,&) N A. Since ¢ is an arbitrary positive number,
we have x € A.

O

Proposition 2.3.3. Let (M, d) be a metric space and A C M. Lety € M be a point. Then'y € A’
if and only if there exists a sequence {y,} | € A converges to y where y, #y for every n € N.

Proof. (Exercise) |

Remark. A is closed if and only if .
A=cl(A)=A

if and only if

A= {x eM ‘ there exists {x,},~; € A such that lim x, = x}.

n—oo
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Proposition 2.3.4. Let (M, d) be a metric space and A C M. Then A is closed if and only if
every convergent sequence {x,},.  C A converges to a limit in A.

Proof. (=) Since A is closed, A = A. Let {x.};2, € A be a convergent sequence, say
lim x, = x. (We want to prove x € A.)

n—oo

For given € > 0, there exists N € N such that d(x,,x) < g_whenever n > N. That is,
X, € B(x,e) N A. Hence, B(x,&) N A # 0 and this implies that x € A = A.

(&) To prove that A° is open. (That is, for every y € A, there exists 6, > 0 such that
B(y,0,) € A° which is equivalent to B(y,d,) N A = 0.)

Assume that A is not open. There exists y € A¢ such that B(y, %) ¢ A for every n € N and
then B(y, %) NA # (. Choose y, € B(y, %) N A for every n € N. Then {y,} is a sequence in A
which conveges to y € A¢. It contradicts the hypothesis that {y,} converges in A.

Therefore , there exists N € N such that B(y, +) N A = 0. Then B(x, 1) C A°. We have A° is
open and A is closed. O

Example 2.3.5. Q is not closed in R.
Let {x,},>, € Q such that x, — V2 asn — oo. Then {x,}> | is a convergent sequence in R
but the limit is not in Q.

Theorem 2.3.6. Let (M, d) be a complete metric space and N C M be a closed subset. Then
(N, d) is complete.

[e9)

Proof. Let {x,}" | be a Cauchy sequence in N. (To prove that {x,}~ , convergesin N.)
Since {x,}>, € N € M is Cauchy and (M, d) is complete, there exists xo € M such that
lim x, = xo. Moreover, since N is closed, xo € N. Hence, {x,} converges in N and (N,d) is

n—oo

complete. m|

Theorem 2.3.7. Let (M, d) be a metric space and A is dense in M. (That is, A C M C A.) If
every Cauchy sequence in A converges in M, then (M, d) is complete.

Proof. Let {x,}", be a Cauchy sequence in M. (To prove that {x,} >, is convergent in M.)

(o)

Stepl: (To construct a new sequence {y,},

A))

Since A is dense in M, for every n € N, B(x,, %) NA # 0,sayy, € B(x,, %) N A. Hence,
{ya}>2, is a sequence in A.

Now, to show that {y,}'_ nfty is Cauchy. Since {x,}* is Cauchy, for given & > 0, there
exist N € N such that

in A which is Cauchy by using the denseness of

d(xp, x,) < g whenever m,n > N.
Choose N; € N such that N; > N and Nll < £. Thenif m,n > Ny,

d(Ym, Yn) A, Xm) + d(Xp, Xp) + d(Xp, yn)

1 1
—+d(xy, x,) + —
n m

IA

IA
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Hence, {y,} is Cauchy.

Step2: Since {y,} ., is Cauchy in A, by the hypothesis, {y,}, converges in M. That is, there
exists xo € M such that lim y, = x,.
Step3: (To prove taht lim x, = xo.)

Since lim y, = xo, for every € > 0, there exists K € N such that % < %and
n—0oo

d(yn, x0) < g whenever n > K.

Therefore, if n > K,

1 ¢ 1 ¢
d(xn’XO) < d(xnayn) + d(yn’ xO) < Z + E < E 5

+

Then {x,}~ , converges to xo and hence (M, d) is complete. O

m Cluster points

Definition 2.3.8. Let {x,}, be a sequence in a metric space. We say that x is a “cluster point”
of {x,}”, if there exists a subsequence {x,},”, of {x,}’ converging to x.

Example 2.3.9. 1 and —1 are cluster points of the sequence {(—1)"}",.
Proposition 2.3.10. If {x,}>, is a sequence in a metric space (M, d), then

(1) xis a cluster point of {x,} | if and only if for every € > 0 and N € N, there exists n > N
such that d(x,, x) < &.

(2) lim x, = x if and only if every subsequence of {x,} ", converges to x.
Proof. (Exercsie) O

Theorem 2.3.11. The collection of all cluster points of a sequence is clsoed.

Proof. Let {x,},>, € M be a sequence and A = {x ] x is a cluster point of {x,}~, ;. Fory ¢ A,
(that is, y is not a cluster point of {x,}* ), there exists & > 0 such that B(y, )N {x, | n € N} = 0.
For z € B(y, €), we want to prove that z ¢ A.

Choose r = %(8 —d(y, z)). Then B(z,r) € B(y, ). Hence, B(z,r) N {xn ‘ ne N} = (). This
implies that z is not a cluster point of {x,}*",. Therefore, B(y,e) N A = 0. Then A€ is open and
A is closed.

|

2.4 Compact Sets

1 Idea:

Some important results and properties only applied on the closed interval [a,b] C R. For
example,
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(1) Every sequence has a subsequence which converges to a limit in [a, b].
(2) Every open cover has a finitely many subcover.

(3) closed and bounded.

(4) Extreme Value Theorem

(5) Uniform Continuity.

Question: In a metric space (M, d), is there any set which has some similar properties?

Q Sequentially Compact

Definition 2.4.1. Let (M, d) be a metric space. A subset K C M is called “sequentially compact”
if every sequence in K has a subsequence which converges to a point in K.

Example 2.4.2. [a, b] C R is sequentially compact. (a, b) is not sequentially compact.

Proposition 2.4.3. Any closed and bounded set in (R, | - |) is sequentially compact.

Proof. Let A be a closed and bounded setin (R, |-[) and {x,}” € A. Hence, {x,} ., is bounded.

n=1 =
By Bolzano-Weierstrass theorem, {x,}*  has a subsequence {x,,};-, which converges to a
nJp=1 T k=1

point xy. Moreover, since A is closed, xy € A and thus A is sequentially compact. O

Proposition 2.4.4. Let (M, d) be a metric space and K C M be sequentially compact. If E is an
infinite subset of K, then E has an accumulation point in K. That is, E' N K # (.

Proof. (Exercise) O

Remark. In general, a closed and bounded set in a metric space (M, d) may not be sequentially
compact. For example,

(1) Consider the space C ([0, 1]) = { f | f:00,1] - Ris continuous} with metric

d(f,g) = max |f(x) — g(x)|.

Then <C ([0, 1]),d> is a metric space. Let f(x) = 0 on [0, 1]. Consider the set

B(f,2) = {g | g : [0, 1] — R is continuous, m[(a)ul(] lg(x) — f(x)| < 2}.
x€[0,

Then B(f,?2) is a closed and bounded set in C ([O, 1]).

0 if x € [0, 5]
) - 5 if x € [5h7, 551 _ _
Letﬁl(x) = 1= 2n+2(x _ 2n3+2 ifxe [2"%’ %] . Then d(,ﬁl, fm) = )2}(2)1,)1(] |fm(x) - ﬁl(x)l =1
0 if x € [5,1]

[Se]

for every m # n. Therefore, {f,} ,
subsequence since {f,}” | is not Cauchy. The set B(f,2) is not sequentially compact.

is a sequence in B(f,?2), but there exists no convergent
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f,(x)= EB(f,2)

1 1
2n+l on

(2) Let d be the discrete metric. The sequence {n} in (R, d) is closed and bounded but there
exists no convergent subsequence.

Proposition 2.4.5. Let (M, d) be a metric space and K C M be sequentially compact. Then K
is closed and bounded.

Proof. (Closed) To prove that K contains all its limit points. That is, if {x,}’?, C K converges
to xo then xy € K.

Let {x,};>, € K be a sequence which converges to xo. Since K is sequentially compact,
{x.};7, contains a subsequence {x,,};>, which converges to a point in K, say ]}im Xy, =Yo € K.

Since {x,} >, converges to xq, we have

Xp = lim x,, = lim x,, = yo.
k— o0

n—oo

Hence x, € K and K is closed.

(Bounded) Assume that K is not bounded. Choose a point x; € K. There exists a point
X, ¢ B(xy,1). Again, there exists x3 ¢ B(xl,d(xl,xz) + 1) since K is not bounded. Continue
this process, we can find a sequence {x,}’. , C K such that

d(xy, x,) >dx, x,-1)+1 forn=2,3,---

Hence, d(x,, x,,) > 1 for every m # n. The sequence {x,} . , cannot contain a convergent subse-
quence and this contradicts the sequentially compactness of K. We obtain that K is bounded. O

Remark. In a metric space (M, d),

Sequentially Compact = Closed and Bounded
=

In particular, in (R", || - ||), the converse “<=" holds.
Corollary 2.4.6. If K C R is sequentially compact, then inf K € K and sup K € K.

Proof. Since K C R is sequentially compact, K is closed and bounded in R. Hence, —c0 <
inf K < supK < oo.
Let {x,}’_, € K be a sequence which converges to inf K. Since K is closed, inf K = lim x, € K.

n—oo

Similarly, sup K € K. O
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Theorem 2.4.7. Let (M, d) be a metric space and K C M be sequentially compact. Then every
Cauchy sequence in K is convergent in K.

Proof. Let {x,};>, C K be a Cauchy sequence. Then {x,}, contains a convergent subsequence

n=1 =

{xn )1, with limit in K, say ]}1_210 X, =x €K.

Since {x,} ", is Cauchy, {x,}~  also converges to x.

a Compact Sets

Definition 2.4.8. Let (M, d) be a metric space and A C M.

(1) We say that a collection of sets {Ua } a € I}is acoverof Aif A C U U,.

ael

(2) In particular, if all U,’s are open sets, we say that {Ua}ae , 1s an “open cover” of A.

(3) Let {Ua}ael be a cover of A. We say that {Ua | a € J} is a “subcover” of {UQ | o € I} if
(1) {U"}(IGJ < {Ua}ael

(i1) {Ua} is a cover of A,
(4) We say that {Ua | a € I} is a “finite cover” of A if

(i) {U, | @€} isacoverof A

(i) the number of {U, | @ € I} is finite.
Definition 2.4.9. (Compact) Let (M, d) be a metric space. A set K C M is called “compact” if
every open cover of K contains a finite subcover.

Example 2.4.10. [a,b] C (R,]-]) is compact and (a, b) C (R, |- [) is not compact.

Let U, = (a + ﬁ,b — ﬁ). Then (a,b) C U U,. But there is no finite subcover of {U,}>

n=1
. n=1
which covers (a, b).

Lemma 2.4.11. Every compact set in a metric space is closed and bounded.

Proof. (Closed) Let (M, d) be a metric space and K C M be compact. Let x € K. (We want to
prove that there exists r > 0 such that B(x, r) € K°.)

Since x € K¢, for every y € K, choose 0 < ¢, < %d(x,y). Then B(x,6,) N B(y,6,) = 0.

Hence, {B(y, dy) }yeK is an open cover of K. That is, K C U B(y,0,).
yeK
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77T \\
/ // ¢¢¢¢ \ \
ll | “Sy\ l
[ "

\ \\ “~.)f-' /I /
\ \\ // /
\ -~ /

~

N
Since K is compact, there exists a finite subcover of K, say K C U B(y;, 6,,). Let = min(dy,, - - -

i=1

Since B(x, ¢,,) N B(y;, 0,,) forevery i = 1,2,--- , N, we have

N N
(()Bx.6)) 0 () BOws,) =0.
i=1 i=1

- g -
~~

~
=B(x,r) 2K

Therefore, B(x,r) N K = () and then B(x, r) C K¢. This implies that x is an interior point of K¢.
We have K¢ is open and K is closed.

(Bounded) Since K C U B(x, 1), {B(x, 1)}x€K is an open cover of K. The compactness of K
xeK

N
implies that there exists x;, x,, - -+ , xy € K such that K C U B(x;, 1). LetM = 1m~a)1§/ d(xy, x) + 1.
<i<

i=1
Then fory € K, y € B(x;, 1) for some i € {1,--- , N}. We have

d(xl’Y) < d(xl’xi) + d(xi’y) < M

N
Hence, K C U C B(x;, M) and K is bounded.
i=1

Remark. In a metric space,

Compactness = Closedness and Boundedness
=

0

> YN

).
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Example 2.4.12. Consider the discrete metric d on R. R is closed and bounded. Observe

1
that U B(x, 5) DO R. But {B(x, %)}xeR cannot contain a finite subcover of R. Hence, R is not

xeR
compact.

closedness boundedness

Lemma 2.4.13. Every closed subset in a compact set is compact.

Proof. Let K be a compact set and F' C K be a closed subset of K. Let {U,},c; be an open cover
of F. (We want to prove that {U,},c; contains a finite subcover of F'.)

K: cpt.

Since F is closed , F€ is open. Define V, = U, U F¢ for all @ € I. Then V,, is open for every
a € I since U, and F¢ are open. Consider

kcFurc (| Ju)ur = ]J0.uF) =)V

ael ael ael

Then {V,}.e; is an open cover of K. Since K is compact, {V,}.c; contains a finite subcover of K,
say
N N
Fekcl| Jvi= (| Ju)ure
i=1

N
Hence, F C U, and F is compact. O
i=1
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Remark. In a general metric space, not all closed set is compact. For exmaple, (R, |-|) is closed
but not compact.

Even a closed and bounded set in a general metric space may not be compact. For example,
(R, d) with discrete metric d.

m Heine-Borel Theorem

Lemma 2.4.14. [a,b] C R is compat.

Proof. Assume that [a, b] is not compact. There there exists an open cover {U, }.<; of [a, b] := I
which does not contain a finite subcover. Then at least one of [, ¢2] and [%, b] cannot be cov-
ered by finitely many elements in {U,},;. We call such an interval I; = [ay,b;]. Then I; C I
and |1)] = 311ol.

Again, at least one of [ay, ”1;1’ L] and [‘”gb L. by] cannot be covered by finitely many elements

in {U,}qe;. We call such an interval I, = [ay, b2]. Then I, C I; and || = %|11|.

Continue this process, we can choose
1
o Ch CLC---CLCly and || = §|1k|
such that each /; connot be covered by finitely many elements of {U,}c;.

By Nested Interval Theorem, there exists x, € I for every k € N. Since [a, b] C U U,,

ael
there exists @, € I such that x € U,,. Since U,, is open, there exists 6 > 0 such that (x—¢, x+09) C

U,,. Also, ]}im |I] = 0. There exists N € N such that if kK > N, || < %. This implies that

I € (x=0,x+6) C U,,. It contradicts that each I; cannot be covered by finitely many subcover.
Hence, [a, b] is compact. m]

Remark. Every n-cell [ay,b] X - - - X [a,, b,] € R" is compact.
Corollary 2.4.15. Every closed and bounded subset in R (or R") is compact.

Proof. Let K C R be closed and bounded. There exists M > 0 such that K C [-M, M]. Since
[-M, M] is compact and K is a closed subset of [-M, M], we have K is compact.
O

Theorem 2.4.16. (Heine-Borel Theorem) Let S be a subset of R". Then S is closed and bounded
if and only if S is compact.

Corollary 2.4.17. If F is closed and K is compact, then F N K is compact.

Proof. Since K is compact, it is closed. Also, F is closed and hence F N K is closed. Then
F N K C K isaclosed subset of K and it is also compact.
O
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Q Finite Intersection Property

Definition 2.4.18. Let (M, d) be a metric space, A € M and {F,},c; be a collection of subsets
of M.

(1) We say that {F,},c; have the “finite intersection property” if the intersection over any finite
subcollection of {F,}.c; is nonempty. That is,

ﬂ F, # 0 for any finite subcollection J C I.

aeJ

(2) {F,}aes 1s said to have the “finite intersection property for A” if the intersection over any
finite subcollection of {F,},c; with A is nonempty. That is,

< m F a) NA # ( for any finite subcollection J C I.

acJ

Theorem 2.4.19. Let (M, d) be a metric space and {K,}.c; be a collection of compact sets in
M. If {K,}ocr have the finite intersection property, then

ﬂl{(,ﬂ).

Proof. Fix a member K, of {K,},c;. Assume that K| N ( ﬂ Ka> = ﬂ K, =0.

acla#l ael
Then .
_ ¢
ki (k) =UxK.
(IE{ (ZE{
a* a# K]

Since K, is compact for @ € [, it is closed and
hence K, is open. The collection { K} oes is an
a#l

open cover of Kj. \\\

Since K is compact, {K, } «cs has a finite subcover of K, say
a#l

N N .
Kic| K = ([ )Ka)"
i=1

i=1

Hence, K N (

N
i=1

Ka.) = (. It contradicts that {K, },<; has the finite intersection property. Hence,

ﬂKai(Z).
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1
Remark. The result is false if not all {K,},c; are compact. For example, K, = (0, —). Then
n

{K,}, finite intersection property, but m K, =0.

n=1
Theorem 2.4.20. Let (M,d) be a metric space and K C M. Then K is compact if and only if
every collection of closed sets with the finite intersection property for K has nonempty intersec-

tion with K. That is, for a collection of closed sets {Fy}qcr, if KN ( ﬂ Fa) # 0 for any finite

aeJ

subcollection J then K N < m Fa) # (.

ael

Proof. (=) Define K, := K N F,. Then K, is compact and {K,},c; has finite intersection

property. Then
ﬂKQ —KnN (ﬂFa) £ 0.

ael ael

(&) Let {UQ}QGI be an open cover of K. Thatis, K C | J,c; U,. Then

Km(UUC,)C:Km(ﬂU;):(b.

ael ael

Since U, is open for a € I, U, is closed for @ € I. By the hypothesis, the collection {U;}ael
does not have finite intersection property for K. That is, there exists a finite subcollection

{Ug}aE , such that
o=kn((us)=kn({Ju.)

aeJ aeJ
Hence, K C | J,e; U, and K is compact. O
Example 2.4.21. K = (0,1), F; = [—1,%]. For any finite subcollection of {F j}jeN’ say
{Fj],sz,"' ’FjN |]1 <j2 < vee <jN}- Then
o 1
Km(ﬂFj,.):[o,j—]ﬂ). N
i=1 n K.
. {3
But K N ( th.) =(0,1) N [-1,0] = 0. Hence, K is not 1 0\ % /1
i=1
compact.

Theorem 2.4.22. If E is an infinite subset of a compact set K, then E has an accumulation point
inK. (Thatis, E' N K # 0.)

Proof.

Assume that E’ N K = (. Then for every y €
K,y ¢ E’, there exists 6, > 0 such that K N

(B(y, 6y)\{y}> = (. Therefore, B(y, 6,) contains
at most one element in E (namely, yify € E.)
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Since E contains infinitely many elements, £ cannot be covered by any finite collecction
of {B(y, 6y)}y€K. On the other hand, since K C U B(y,0,) and K is compact, there exists

yeK
N

Y1, -+ ,yn € K such that U B(y;,0y,) 2 K 2 E. It contradicts the above argument that K cannot
i=1
be covered by { B(y, (5y)}yeK. Hence, £’ N K # 0.
O

Theorem 2.4.23. If (K.} | is a sequence of nonempty compact sets in a metric space and

K, CK,forn=1,2,---, thenﬂKn # 0.

n=1

Proof. (Exercise) O
Corollary 2.4.24. Let {U\};2, be a collection of open sets in a metric space (M,d) such that

Ui C Uiy1 and U; is compact for all k € N. Then U Uy # M.
k=1

Proof. Since Uy C Uy, for all k € N, U¢,, € U for all k € N. Hence, {Uf}2, have finite

intersection property. Since every U, is compact, m U, # 0. Therefore,
k=1

o
Example 2.4.25. Let Uy = (-0, —1) U (3,00). Then Uy € U,y and Uf = [—1, ¢] is compact.
Moreover,

U U = (—00,0) U (0, 00) # R.
k=1

a0 Applications

1. Cantor Set

L
L 2
| @
0 1
I,

L 2 L 2
|« @ | @
1 2
0 ? T 1
L5
L. | L. | L. | | |
= @ | 4 - = | | ]
1 2 1 2 7 8

— . = . = — 1
0 9 9 3 3 9 9
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Lo2LoL o 2L 202

(o)

Each [; is compact and any finite intersection of {;};", is nonempty. Then ﬂ I, # 0. In fact,
k=1

C= ﬂ I} is called “Cantor set” which is perfect, and uncountable.
k=1

. Lebesgue Covering Theorem

Let K be compact and {U,},c; be an open cover of K. Then there exists r > 0 such that for
each x € K, B(x,r) C Uy for some a(x) € 1.

Proof.
For x € K, there exists a(x) € I such that

x € Uyy. Since Uy 1s open, there exists
0x > 0 such that B(x,20,) € Upyy. Then

U B(x,6)2K. 7 ~ U
g ——— \ (X(Xj)
XG.K . . ~ o AN AN
Since K is compact, there exists / // \ S o
N ,I / ;”i‘"\\ \ S’ \\\
] [ \
X1,--+ ,xy € K such that UB(xi,dx) 2o K. I.' l\ ' _'T} \
NoX L X;
i=1 \ / /
Let r = min(dy,,--- ,0y,). For x € K, there \\ s P
. . \, \\__ ______
exists 1 < j < N such that x € B(x;,6,). . T T

Hence,

B(X, V) c B(Xj,25xj) - U(I(Xj)'

Remark. The supremum of all such r is called the Legesgue number for the cover {U‘Y}(xe I

. Nearest Point Throrem Let (M, d) be a metric space and ) # A C M be compactand B € M
there exists x, € A such that d(A, B) = d(xy, B).

Let A, = {x € A | d(x,B) < d(A,B) + 1 }. Then Ay is
nonempty and closed. Also, A; is compact since A is
compact and Ay € A. Moreover, A} 2 A D A3 D ---

The collection {Ak}]il has finite intersection property.

Hence ﬂAk # 0.

k=1

Let xy € ﬂAk C A. Then
k=1

1
d(A.B) < d(x.B) < d(A.B) = 7 forallkeN.

We have d(A, B) = d(xy, B).
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Remark. (1) If A is compact and B is closed, then there exists xy € A and yy € B such that

d(.X'(), }’0) = d(A’ B)
(2) The same results are true if replacing compactness of A by sequentially compactness of A.

Qa Totally Boundedness

Definition 2.4.26. Let (M, d) be a metric space. We say that a set A C M is “totally bounded”
if for every r > 0, there exists finitely many balls with radius r, say {B(xl-,r)}?il where

N
X1, , Xy € M such that A C UB(xi, r).

i=1
Remark. (1) Every bounded set in R is totally bounded. (Exercise)

VaVDID> . VIDP5 . VIIP2> N IV5 .VIVYY . VIIIP) VAR N S N 2VYPY . VIIPY »VIIIPA
N4l 4l Sl el A\ YA Y St 4

(2) Let (M, d) be a metric space with discrete metric. Then every set is bounded. But a set
consisting of infinitely many points is NOT totally bounded.

Proof. Letr = % Then B(x, %) = {x}. If the size of A is infinite, then A cannot be covered
by finitely many balls with radius % O

Proposition 2.4.27. Every totally bounded set in a metric space is bounded.

Proof.
Let (M,d) be a metric space and A C M be totally
bounded. For r = 1, there exists xg,--- ,xy € M such

N
that A € | ] B(xi, 1),

i=0
Let L = max d(xg, x;) + 1. For x € A, there exists k €

0<i<N

{0,1,---,N}such that x € B(x;, 1) and

d(xg, x) < d(xg, x3) + d(xg, x) < éna)ls/ d(xg,x1)+1=L.

We have A C B(xy, L) and hence A is bounded.

Remark. In a metric space,

totally bounded - bounded

= (discrete metric)

In (R, || - 1D,
totally bounded <<=  bounded
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Proposition 2.4.28. Every subset of a totally bounded set is totally bounded.

Proof. (Exercise) O

Proposition 2.4.29. Let (M,d) be a metric space and A € M. Then A is totally bounded if

and only if for every r > 0, there exists finitely many balls with centers in A and radius r, say
N

{B(yl-, r)}l.:1 where yy,---yy € A, such that

N
c U By, 1.
i=1

Proof.
(&) It 1s trival by definition.

(=) Since A is totally bounded, there exists
X1, , Xy € MsuchthatUB(x,, =) 2 A. WL.0.G, we

may assume B(x;, 5) N A i (Z) foreveryi=1,---,N.

Choose y; € B(x;,5) N A. Then B(x;, 5) € B(y;,r). We
have
N . N
c ILJB(xl-, 3 < gBm,m.

Lemma 2.4.30. (1) A compact set in a metric space is totally bounded.

(2) A sequentially compact set in a metric space is totally bounded.
Proof. Let (M, d) be a metric space.

(1) Let K € M be compact. For given r > 0, K C U B(x,r). Then {B(x,r)} . is an open
xeK
cover of K. There exists a finite subcover, say { B(x;, r) | for some x;,--- , xy € K }. Hence,

K is totally bounded.

(2) Let K € M be sequentially compact. Assume that K is not totally bounded. Then there
exists r > 0 such that for any set consisting of finitely many point, say y;, y2,- - , Y,

N
K¢ U B(i, ).
Choose (arbitrarily) a point x; € K. Smce K & B(x,,r), there exists x, € K\B(xy,r). Also,

K¢ U B(x;, r). There exists x3 € K\ U B(x;,r).

i=1 i=1

n
Continue this process, K & U B(x;, r). There exists x,.; € K\ U B(x;, r) and hence d(x,,, x,) >
i=1 i=1
rfori=1,2,---,n. Then {x,}> C K is a sequence with d(x;, x;) > r fori # j. Hence
{x,} 7, cannot contain a convergent subsequence. It contradicts that K is sequentially com-

pact.
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O

Theorem 2.4.31. Let (M,d) be a metric space and K C M. The following statements are
equivalent.

(1) K is compact.

(2) K is sequentially compact.

(3) K is totally bounded and complete.

In addition, every one of (1), (2) and (3) implies

(4) K is closed and bounded.

Moreover, if K € (R",|| - ||), then (1)-(4) are equivalent.

Proof. “(1) = (2)”

Let {x,}’7, € K be a sequence. Suppose that {x,}~, contains at most finitely many different
elements. There exists a subsequence {x,,};7, such that x,, = x,, = --- = x,, = --- for every
k € N. Then {x,, }*, converges.

We may assume that {x,};> | contains infinitely many different elements. By Theorem D
there exists a subsequence {x,, };7, converges to xo € K. Therefore, K is sequentially compact

6‘(2) :> (3)”
Let K be sequentially compact. By Theorem Z471 and Lemma 224730, K is complete and totally
bounded.

6‘(3) : (1)”
Let K be totally bounded and complete. Assume that K is not compact. Then there exists an
open cover {U(,[}ae , of K which does not contain a finite subcover.

Ny
Since K is totally bounded, for r = 1, there exists y(l) e, yg\}) € Ksuchthat K C U B(ygl), 1).
i=1
Then there exists 1 < ¢; < N; such that K N B(y(l) 1) cannot be covered by finitely many ele-
ments of {U,}__,

Since K N B(y(l) 1) is totally bounded, for r = 3, there exists y(z) . ,yﬁ) e Kn B(y(l) 1)

such that KﬂB(y(l) D c U?fl B(ygz), ;) Hence, there exists 1 < £, < N, such that KﬂB(y(l) DN

B(yg), é) cannot be coverd by finitely many elements of {U a}ae 7

n—1
) ) 1
Continue this process, we can choose z;,2,,--- € K such that z, € KN ( ﬂ B(z;, —.)) and
l

i=1
n—1

( B(z;, = - ) cannot be covered by finitely many elements of {Ua}(,e,.
i=1
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Claim: {z,}," | is a Cauchy sequence.
Proof of claim: Given &€ > 0, choose N € N such that # < § Form,n > N,

1 1
Zm>Zn € KN ( B(z;, ;)) C KN B(zy, N)-

N
i=1

Then

1 1
d(Zm’Zn) < d(Zm, ZN) + d(ZN, Zm) < N * N <ée&.

Hence, {z,}, | is Cauchy and the claim is proved.

Since K is complete, there exists z € K such that lim z, = z. Also, since U U, 2 K, there

n—o0
ael

exists @y € I such that z € U,,. Moreover, there exists 6 > 0 such that B(z,6) C U,, since U,,
| )
is open. Choose L € N such that 7 < > and forn > L, d(z,,2) < g.
For x € B(z, 1),
1

d(x,2) <d(x,20) +d(z,2) < 7+ 5 <6,

[\SJ %)

Then B(z;, 1) € B(x,6) C Uy,. We have

L
K (()BGs %)) C KN Bz, %) C Uy

i=1

L
1
It contradicts that K N ( m B(z, —.)) cannot be covered by finitely many elements of {Ua’}ae I
i
i=1

Therefore, K is compact. )

In (R, || - 1)), (1) & (4) is proved by Heine-Borel Theorem. |

Remark. Let {x,}>> C (M,d) converge to x. Then A = {x;,x,,---} U {x} is sequentially
compact. Hence, A is compact.

Definition 2.4.32. Let (M, d) be a metric space, U C M be open and A C M.
(1) A is called “precompact” if A is compact.

(2) Suppose A C M. We say that A is compactly contained in U if A is precompact and A C U.
Denoted by A cc U.

Proposition 2.4.33. Every bounded set A in R" is precompact.
Proof. (Exercise) O
Example 2.4.34. Define

{C(R) := {(al,az,a3,---) | a; € R for every i € N and sup |a;] < oo}.
ieN
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For a= (alaa25 asz,: .- )’ b = (bl’bZ’ b39 o ) € foo(R)’ deﬁne
a+b=(a +b,a,+b,y,---) and «aa = (aa,aa,---) foraeR.
Then £*(R) is a vector space. Define || - || : £(R) — R by

llal| = sup |a;|.
ieEN

Then (€°°(R), l| - ||) is a normed space.

(1) (£2@R),|I-1l) is complete.
(2) Let
A = {@ana el |lal< ) @55
b 2 b 2 3 47
111
B - {(a15a29a35”')€€ ‘ llmak_o} (e ( E 5519' )EB)
111
C = {(al,az,a3,--~)€€ ‘hmakconverges} (ex: (1, 537 )e O)
111
D = {(01,02,03"")65 ‘suplakI—l} (ex: (1, 537 )€ D)

A is closed in a complete space. Then A is complete and which implies that A is compact
and totally bounded.

For r > 0 choose N € N such that % <r. Let
N N-=-1 -1 1

{_N+1 N+1’ "N+1’O’N+1’“
{(sl,s2,~--,sN,0,0,0,~--)€€°°|s,-eT}.

N
S

1
Then the size of S is equal to 2N + 1)V < 0o and A C U B(a, N>

acs

B and C are not bounded. Hence, they are not compact. D is not totally bounded and hence
it is not compact (sequentially compact).

a Conclusion

Topological Space Metric Space R"
compact

sequentially compact
totallybounded + complete
closed and bounded

compact

sequentially compact
totally bounded + complete
# closed and bounded

compact
= sequentially compact
= totallybounded + complete
= closed and bounded

H+ W

KU onou
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topological spaces

metric spaces

normed spaces

inner product
spaces

2.5 Connected Sets

1 Connected Sets

Definition 2.5.1. Let (M, d) be a metric space and A C M
(1) Let U,V < M be two nonempty open sets in M. We say that U and V separate A if

O ANUNV =0
i) ANU=+0
(i) ANV +£0
(iv ACUUV
(2) We say thata set A C M is disconnected or separated if there exists two open sets U and V

in M such that U and V separate A. If there exists no such pair of open sets, we say that A
is connected.

-~ -
~ -
S -
~. -

(3) A maximal connected subset of A is called a “connected component” of A.
Example 2.5.2. (1) A =(-1,0)U (0, 1) is disconnected.
2) B={(x,y) eR? |(x+ D*+y* <1} U {(x,y) € R* | (x = 1)* +* < 1} is disconnected.

3) C={(x,y eR*|(x+ D*+y* <1} U {(x,y) € R? | (x = 1)* +)? < 1} is connected.
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///‘—\\\ ///'—‘\\\ // \\
/ \N|/ \ / \
{ \[/ \ I/ \
\ o A ao / \ /
\ / \ /
disconnected connected

Proposition 2.5.3. Let (M, d) be a metric space and A C M. Then A is disconnected if and only
if there exists two nonempty sets A, and A, such that

(l) A:A1UA2
(i) AiNA, =0
(iii) A, N A, = 0.

Proof. (=) If A is disconnected, then there exists open sets U, V C M such that () AN U N
V=0,()ANU0,(D)ANV 0, GVVACUUY.

Let Ay = ANU # Oand A, = ANV £ (0. Then

A=A UA, o @
Since A; NV = 0 and V is open, A; C V¢ and V* is

closed. We have A, C Ve =V Then A; NV = 0 and NG
hence, A; N A, = 0. Similarly, ANA,=0. e T

(&) If there exists A; A, # 0 satisfying (i), (ii) and (iii). Let U = (A;)“ and V = (A;)‘. Then
U and V are nonempty. Then

Aleﬁ([/{?&@, A2:AD(V¢(Z) and A:AIUAngU(V.
Since A; N (A1)" =0and A, N (A;)° =0, wehave A; NV = 0 and A, N U = 0. Then

ANUNY=(ANUNV)U(AHUUUY) =000 =0.
O

Corollary 2.5.4. Let (M,d) be a metric space and A C M be connected. If there exists
Ay,Ay C M such that (i) A = A U A, and (ii) Ay N Ay = Ay N Ay, = 0, then either Ay = 0
or Ay = 0. In other words, A C A; or A C A,.

Theorem 2.5.5. Let A C R be connected if and only if for x,y € A and x < 7 <y then 7 € A.
That is, A is an interval

Proof. (=) If false, there exists x < z < yforsome x,y € Aandz ¢ A. Let A| = (—o0,2) N A
and A, = (z,00) N A. Since x € (—o0,z) and y € (z,0), A; # D and A, # 0. Also, A = A; U A,
(since z ¢ A). We have

A; C(-co,z] and A, C [z, ).
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Then
AlﬂAZZQ) and AlﬂAZZ(Z).

Hence, A is disconnected. It contradicts the hypothesis that A is connected.
(<) Assume that A is disconnected. There exists A;, Ay € R such that (1) Aj, A # 0?2)
A :A] UA2 (3)A1 ﬂAz =A1 mAz = Q)

Since A, A, # 0, there exists x € A; Eld y € A,. By (3), x # y and we may assume that
x <y.Letz=sup ([x, yINnA 1). Then z € A; and thus z ¢ A,. There are only two possibilities:

(a) Ifz¢ Ay, thenz ¢ A = A; U A,. It contradicts the hypothesis that z € A since x < 7 < y.

(b) If z € A, then z ¢ A,. There exists r > 0 such that (z,z + r) N Ay = 0. Thus, x < z + 5 <V,
butz+r ¢ A; UA, = A. Tt contradicts the hypothesis that z + 5 € A.

Therefore, A is connected.

Ay A,

N Y
N

X

2.6 Subspace Topology

Observe that (N, |- [) € (Z,|-]) € (Q,]-D € (R,[-])
e B(1,2)in (N, |- |)is {1,2}.

e B(1,2)in (Z.|-])is {0,1,2}.

e B(1,2)in (Q,]-]is (-1,3) N Q.
e B(1,2)in (R,|-|)is (=1, 3).

Va - N
C . 7
-2 -1 0 1 2 3

Recall that B(x,r) in M is defined by {y € M | d(x,y) < r}. Hence, the set {1, 2} is open in
(N,|-])and in (Z, | - |) but not open in (Q, | - |) and (R, | - |).

If N € M, the metric space (N,d) C (M,d). A set A could be open in (¥, d) but not open in
(M, d). For example, Q is open in (Q, | - |) but not open in (R, | - |).
On the other hand, if (N,d) C (M, d) , for x € N C M, the open ball By(x, r) in N is

{yveN|dx,y)<r}={yeM|d(x,y)<r}NN = By(x,r)NN.
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Hence, we may define the topology of (N, d) induced by the topology of (M, d) with the inter-
section of N.

a Subspace Topology

Definition 2.6.1. Let (M, d) be a metric space and N € M. Then (N, d) is a metric space and
we call the topology of (N, d) “the subspace topology of (N, d)”.

Example 2.6.2.

A is open relative to N
B is closed relative to N

C is compact relative to N

Remark.

E is open (closed, compact) in (M, d) = E N N is open (closed, compact) in (N, d).
==

Proposition 2.6.3. Let (M, d) be a metric space and N C M. A subset 'V C N is open in (N, d)
if and only if there exists a set U € M which is open in M such that 'V = U N N.

Proof. Define a r-ball in (N,d) by By(x,r) = {y € N |d(x,y) < r} and a r-ball in (M, d) by
By(x,r) ={y e M |d(x,y) < r}. Then

By(x,r) = By(x,r) N N.

(=) Since V is open in (N, d), for x € V, there exists r, > 0 such that By(x,r,) € N. Then
VC U By(x,r,) €V and hence V = U Bn(x,1y).

xeV xeV
Define U = U By(x,ry). Then U is open in (M, d) since it is a union of open balls in
xeU
(M, d). Then

UNN = U By(x,r,) NN = U (BM(x, )N N) = U By(x,r,) = V.

xevV xeV xeV

(&) Forx € V C U, since U is open in (M, d), there exists 6, > 0 such that By,(x,5,) C U.
Then
Bn(x,6,) = By(x,6)NNCUNN=V.

Hence, x is an interior point of V in (N, d) and hence V is open in (N, d). O
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Corollary 2.6.4. Let (M, d) be a metric space and N C M. A set E C N is closed in (N, d) if
and only if there exists a set F C M which is closed in (M, d) such that E = F N N.

Definition 2.6.5. Let (M, d) be a metric space and N C M. A subset A C M is said to be “open
(closed, compact) relative to N” if A N N is open (closed, compact) in (N, d).B

Remark. If E is open (closed, compact) in (M, d), then E N N is open (closed, compact) in
(N, d).

Theorem 2.6.6. Let (M, d) be a metric space and K € N C M. Then K is compact in (M, d) if
and only if K is compact in (N, d).

Proof. (=) Let {V,}.<; be an open cover of K in (N, d). Then for each V,, there exists an open
set U, in (M,d) such that V,, = U, " N. Then K C U V, C U U,. Hence, {U,}.c is an open

ael ael

cover of K in (M, d).

Since K is compact in (M, d), {U,}.c; contains a finite subsover of K, say

L
KC U U,,.
i=1

Since K C N, we have
L L L
Kc (| Jua)nN={](UsnN) = Vs
i=1 i=1 i=1
Then {V,}.c; contains a finite subcover of K in (N, d) and K is compact in (N, d).

(&) Let {U,}qcs be an open cover of K in (M, d). Since U, is open in M and N C M, the
set V, := U, N N is open in N. Also, since K C U U,and K C N,

ael

Kc(Ju)nn=]W.nN) = Ve

ael ael ael

Then {V,}.c; 1s an open cover in (N, d).

Since K is compact in (N, d), {V,}.e; contains a finite subcover of K, say

L L
Kggvm:g(UmmN):(

1

Ua.> A N.

i

L
=1

1

L
Then K C U U,, and {U,}.es contains a finite subcover. Hence, K is compact in (M, d).
i=1

“We usually say that A is relatively open in N.
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Remark. Let (M, d) be a metric space and K € N € M. Then K is sequentially compact in
(M, d) if and only if K is sequentially compact in (N, d).

Proof. Let {x,};" be a sequence in K.
(<) Clear.
(=)

K is sequentially if and only if there exists a subsequence {x,,};>, which converges to a
compact in (M, d) point xy € K
if and only if  since the metric d on M is the same as the metric d on
N and K C N, we have {x,,};>, € N and ]11_{1010 Xp, = Xo In
(N, d).
if and only if K is sequentially compact in (N, d).

O

Example 2.6.7. Let K = [0,1]N Q, N = Q and M = R. Let d be the usual metric induced by
|-]. Then[0,1]NQ C R.

K is closed in (Q, | - [) but not compact in (Q, | - |) since it is not sequentially compact.

On the other hand, since K is not compact in (R, | - |), it is not compact in (Q, | - |).

Recill: ACMis dis_connected if there are A|,A, C M suchthat (1) A;, A, #0 (2)A|UA, = A
(3) fll r\142 ::141 r\142 = 0.

By (2) and (3), A, = A\A_z =AN (A_z)c Hence, A, is open relative to A. Similarly, A, is
open
open relative to A.
Also, since A; N Ay = ODand A = A; U A,, we
obtain A; = A N A;. Therefore, A; is closed
relative to A. Similarly, A, is closed relative to
A.

Remark. (1) If A C M is disconnected, then there exists nonempty sets A; and A, which are
both open and closed relative to A.

(2) If A € M is connected, then the set which is both open and closed relative to A is either ()
or A itself.

Remark. Let A C (M, d)

(1) A is connected if and only if there exists no nonempty sets A; and A, such that (i) A
AjUA,, (i) Ay N A, = 0 and (iii) A; and A, are open relative to A.

(2) A is connected if and only if there exists no nonempty sets By and B, such that (i) A
B, UB,, (ii) By N B, = () and (iii) B; and B, are closed relative to A.

(3) A is connected if and only if the only subsets of A which are both closed and open relative
to A are A itself or 0.
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2.7 Normed Spaces and Inner Product Spaces

a Normed Spaces

Definition 2.7.1. A “normed vector space” (V,|| - ||) is a real vector space associated with a
function || - || : V — R such that

(1) |lx|l = O forevery x € V.

(i1) ||x|| = 0 if and only if x = 0.
(ii1) || - x]| = |A|||x]| for every 1 € R and x € V.
@iv) |lx + yll < |Ix|l + |yl| for every x,y € V.

We call the function || - || satisfying (i)-(iv) a “norm” on V.

n

> xF where x = (x1,-++ , x,). Then (V, |- |l2) is
i=1

Example 2.7.2. (1) Let V = R" and ||x]|, =

a normed space and || - || is called 2-norm.
The statements (i), (ii) and (iii) in the definition are trivial. Let’s check (iv) here.

n

Zn:(xi +y) = Z X7+ 2xy; + y7
i=1

i=1

ixiz +22n1xiyz‘+ iylz
i=1 i=1

i=1

2
llx + yll5

IA

IA

13 + 2llxllallyll + 15 = (ldla + lIyll2)?

(2) Let V = R and ||x||, = (Z xl?) """ where x = (x;,--- ,x,), 1 < p < co. Then (V, |- ) is
i=1

a normed space and || - ||, is called a p-norm.

(3) Let V = R" and [|x[|c = max(|x;],---,|x,[). Then (V,] - |l.) is @ normed vector space and
|| - || is called an co-norm.

Example 2.7.3. Let C ([0, 1]) be the collection of all continuous real-valued function on [0, 1].
That is,
C([0,1]) := {f:[0,1] - R | f is continuous. }

Define | .
||f||p:{(f0|f()€)|pdx) I<p<oo

max eqo,17 | (x| p = .

Then (C([O, 1]), [l - IIP) is a normed space. Check

(1) C([O, 1]) is a vector space.
(2) |I-l, satisfies (i)-(iv).
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Q Series on a Normed Space

Definition 2.7.4. Let (V,|| - ||) be a normed space and {x;};7, be a sequence in V.
(1) We say that {x;};7, is “bounded” if there exists B > 0 such that

x|l < B forevery k € N.

(2) We say that {x;};”, converges to xg if for every &€ > 0 there exists N € N such that

[|xy — xo0ll <& whenever k > N.

(3) {xi}, 1s said to a “Cauchy sequence” if for every € > 0 there exists N € N such that

llx, — x,|| <& whenever m,n > N.

(4) We say that (V,]| - ||) is complete if every Cauchy sequence in V converges. A complete
normed space is called “Banach space”.

Definition 2.7.5. Let (V,|| - ||) be a normed space and {x;};7, be a sequence in V.

(1) We define the partial sum of the sequence by
Sp=X1+---+ X, = Zxk
k=1

(o]
and call Z Xy a series of {x;};2 ;.
k=1

o

(2) A series Z X; is said to converge to s if the partial sum {s,}>  converges to s. Denote
k=1

M

Xk -

>~
Il

1

Theorem 2.7.6. Let (V.|| - ||) be a normed space and {x;};, be a sequence in'V.

(1) If Z x; converges, then for every € > 0 there exists N € N such that forn > m > N,
k=1

X + Xpme1 + - - + X4l] < €.

(o)

(2) In addition, if (V,||-|) is a Banach space, then Z xx converges if and only if for every € > 0

k=1
there exists N € N such that forn > m > N,

||xm + Xy 000 xn” <e.
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Proof. (Exercise) O

Corollary 2.7.7. If Z Xy converges, then l}im [|x]| = O.
k:1 —00

[Se]

Proof. Since Z X converges, {s,}>  converges and hence it is Cauchy. We have
k=1

]}Lrilo llxell = ]}gg llsk = si-1ll = 0.
O
Definition 2.7.8. We say that
(1) A series Z X “converges absolutely” if Z ||xx|| converges.
k=1 k=1

[

(2) A series Z X “converges conditionally” if Z X converges but not converges absolutely
k=1 k=1

Example 2.7.9. Let {x;};2, be a sequence in V with |[x;|| = 1 for k = 1,2,---. Then %
k=1

converges absolutely.

[Se]

Theorem 2.7.10. In a Banach space (V,|| - ||), if Z X aboslutely converges then Z X con-

=1 k=1
verges.

(o8]

Proof. Since Z X converges aboslutely, given £ > 0, there exists N € N such that Z [lxcll < €.
k=1 k=N
For m,n > N,

”xm + Xy + 000 xn” < ||xm|| + ||xm+1|| +--t ”-xn” <é&.

[Se]

Hence, the partial sum {s,} >, is a Cauchy sequence and Z Xj converges. O
k=1

Remark. In general, the result of Theorem 710 is false if (V,|| - ||) is not complete. For
example,

1
. V:C([O,l]) andllfllz‘[0 |f(®) dt.

e V={(a,aza;3--,0,0,0,---)} with ||x|| = sup |a;].
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%
Example 2.7.11. Let V = C([0, 1]) with [|f]| = max |f()]. Let f,(x) = — forn = 01,2,

Then f, € C([O 1]) The series Zf,,(x) = Z — converges in C([O 1])

n=0
n
The partial sum is s, = ka(x) = Z k—k Then s, — s, = Z o
k=0 k=0 X k=m+1
Sn = S’"”C([O,l]) = || kz || [() 1]
+1
m . 1
k
= k; || || [() 1] k_zm;rlH”x ||(;([0,1])

IA

Z — max x|
k! xe[0,1]
k=m+1

1
Z o <& (as m,n sufficiently large.)
k=m+1 """

Hence {s,,}""1 is a Cauchy sequence in C([0,1]). As we know (C([O, 1), 1l - ||) is a Banach

space, Z fi(x) converges to a continuous function on [0, 1].
k=0

Definition 2.7.12. Let V be a vector space and || - ||; and || - ||, be two norms on V. We say that
|| - 1ly and || - ||, are “equivalent” if there exist a, 8 > 0 such that

allxlly < llxll2 < Blixll

for every x € V.

Remark. Let||-||; and || - ||, be two equivalent norms on V. Then the norm spaces (V, II- ||1) and
(V, || - ||2) will have the same topological properties.

Q Inner Product Spaces

Definition 2.7.13. An “inner product space” (V, < -,- >) is areal vector space V associated with
a binary function < -,- >: V X V — R such that

(a) <x,x>>0forevery x V.

(b) <x,x>=0i1fand only if x = 0.

(c) <x,y+z>=<x,y>+ <ux,z>forevery x,y,z€ V.
(d) <Ax,y>=A<x,y>foreveryde€Rand x,y € V.

(e) <x,y>=<y,x>forevery x,yeV.
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A symmetric bilinear form < -, - > satisfies (a)-(e) is called an “inner product on V

n

Example 2.7.14. Let V = R" and < x,y >= Z xiyi where x = (x1,- -+, x,) and y = (1, -, y)-
i=1
Then (R”, < -,- > ) is an inner product space.

1

Example 2.7.15. Let V = C([O, 1]) and (f,g) = f f(x)g(x) dx. Then (C([O, 1]),(~, -)) is an
0

inner vector space.

Remark. (1) A normed vector space (V,|| - ||) is a metric space by defining

d(x,y) :==|lx—yl| foreveryx,y € V.
Check that d(-, ) is a metricon V.
(2) An inner product space (V, <> ) is a normed vector space by defining
Ixll = V< x,x> forevery x € V.

(3) lixll = [lx = Ol = d(x, 0).
Example 2.7.16. (1) (R”, <> ) is an inner product vector space by defining

<X,y >= iny,- where x = (x1,--- ,x,)and y = (y1,- -, yn)-
i=1

(2) (R™ - 1l) is a normed space by defining

lIxll = V< x,x> =

Remark. Since a normed space is also a metric space, we can consider all topological properties
on a normed space.

Metric spaces

Inner
product
spaces
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3.1 Continuity

0 Mappings and Limits

We consider the mappings from one metric space to another one.

Definition 3.1.1. Let (M, d) and (N, p) be two metric spaces and A C M.
(1) A function f : A — N between two metric spaces is usually called a “mapping”.

(2) For xy € A’, we say that yo € N is the “limif” of f at x, if for every £ > 0, there exists
0 = d(xp, €) > 0 such that every x € A with d(x, x) < 9, then

P(f(x),y0> <é&.

Denoted by
lim f(x) =yy or f(x)— ypasx— Xo.
X—X0
xeA

7
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f(Bm(X0,p)\{X0})

Proposition 3.1.2. Let (M, d) and (N, p) be two metric spaces, A C M and f : A — N be a
map. For xo € A’, lim f(x) = yo if and only if for every sequence {x;};>, C A converging to x,
X— X0

in (M, d), the sequence {f(xi)};-., converges to y, in (N, p).

Proof. (=) Given ¢ > 0, since le f(x) = yo, there exists & = d(xp, &) > 0 such thatif x € A
with d(x, xp) < 6, then o
p(f(x),y) <e.
Let {x:};7, € A be a sequence which converges to xo. Then there exists N € N such that if
k> N, d(x;, xg) < 6. Therefore,
p(f(xk),yo) < & whenever k > N.

We have {f(x)},2, converges to yj.

(&) Assume the contrary, there exists £ > 0 such that for every § > 0, there exists x; € A
such that d(xs, xp) < ¢ but p(f(xé), yo) > e.

1 1
Leté = = then there exists a sequence {x;},>, € A such that d(x;, xo) < z but p( f(x0), yo) > &.

[

Hence, {x:},2, converges to xq but {f(x;)};>, does not converge to yo. It contradicts the hypoth-
esis and thus this direction is proved. O

Q Continuity

Definition 3.1.3. Let (M, d) and (N, p) be two metric spaces, xo € AC Mand f: A — N.

(1) f is said to be continuous at xj if either xy € A\A” or lim f(x) = f(xo).
X—X0

X€A
(2) If f is continuous at every point of A, then f is said to be continuous on A.

Remark. If xj is an isolated point of A (that is, xy € A\A’) then f is automatically continuous
at xo.
Proposition 3.1.4. Let (M, d) and (N, p) be two metric spaces, xo € A C M, and f : A — N be

a map. Then f is continuous at x, if and only if for every € > 0, there exists 6 = 6(xg,&) > 0
such that

p(f(x), f(x0)) < &
for all point x € A with d(x, xo) < 0.



3.1. CONTINUITY 79

Proof. (Exercise) O

Remark. f is continuous at xj if and only if for every & > 0 there exists 6 > 0 such that

f(Bu(x0,6) NA) € By(f(x0), ).

(M,d) (N,p)

f(Bu(Xo,0)(1A)

Example 3.1.5. (1) f: R" - Rby
f(x1,x0,++ ,x,) =x; forsomek=1,2,---,n
1s a continuous function.

(2) Anorm || - || : V — R s a continuous function on V.

(3) Let (M, d) be a metric space, A C M. The distance function f(x) = d(x, A) is continuous on
M.

Theorem 3.1.6. Let (M, d) and (N, p) be two metric spaces, A C M and f : A — N be a map.
Then the following statements are equivalent.

(1) f is continuous on A.

(2) For every open set 'V C N, the preimage f~'(V) = U C A is open relative to A; that is,
£ YV) = U N A for some open set U in M.

(3) For every closed set E C N, the preimage f~'(E) C A is closed relative to A; that is,
Y (E) = F N A for some closed set F in M.

(M,d) (N.p)
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Proof. “(1) = (2)”

Assume that f~1(V) # 0. Let xo € f~'(V), then f(x,) € V. Since V is open, there exists & > 0
such that By ( f(x0), 8) C V. Moreover, since f is continuous at xo, there exists ¢6,, > 0 such
that f (B (xo,6x,) NA) C By(f(x0),€) € V. Then By(xo,65) NA C f7(V).

Similarly, since f is continuous on A, for every x € A, there exists d, > 0 such that
f(Bu(x,6) NA) € V. Hence, By(x,6,) NA C [~ (V).

Define U = U By(x,6,). Then U is open in M and f~'(V) € U N A. On the other

xef~H(V)
hand, since

fUNA) = f( U Bu(x,6) NA) = U f(Bu(x,6,)nA) €V,

xef (V) xef~H(V)

we have U NAC f7'(V)and hence U NA = f~1(V).

“(2) = (1)”
Let x € A and then f(x) € N. For given € > 0, By (f(x), s) is open in N. By (2), there exists an

open set U C M such that U NA = f! (BN (f(x),g)). Hence, for x € U, there exists 6, > 0
such that By (x,0,) € U. Then

f(Bu(x,6) NA) C f(UNA) = By(f(x),¢).

Thus, for y € A and d(x,y) < 0, p( Jf(x), f (y)) < &. Hence f is continuous at x. Furthermore,
since x is an arbitrary point in A, f is continuous on A.

“(2) = (3)’9
Since E is closed in N, the complement E€ is open in N. By (2), f~'(E°) is open relative to A
and there exists U open in M such that f~'(E¢) = U N A.

Let F = U°. Then F is closed and
FNA=UNA=A\ANU) = A\f(E) = NNFE)=F(E)
is closed relative to A.

“(3) = (2)” (Exercise)

Remark. Let f : (M,d) — (N, p) be continuous. Then

f~'(open set in N) is open set in M
f~!(closed set in N) is closed set in M.

The pullback of an open (closed) set through a continuous function is open (closed). But the
pushforward of an open (closed) set in M by a continuous function may not be open (closed).
For example, f(x) = x* and f((—1,1)) = [0, 1).
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Example 3.1.7. Let f : R” — R” be a continuous function. The set

[x e R"| IfWllen < 1} = £ (B0, 1)

is open.
Example 3.1.8. Let f : R? — R be defined by

ifx=0o0ry=0

1
foey) = { 0 ifx#0andy#0.

Then £(0,0) = 1. Along x =y, f(x,x) = 0if x # 0. Hence, f is not continuous at (0,0). The
set {0} is closed in R. But 7' ({0}) is not closed in R?.

Remark. Let (M, d) and (N, p) be two metric spaces, A € M and f : M — N be a map. We
define amap g : A — N by g(x) = f(x) for x € A. We usually denote g by f|A.

Question: If f : M — N is continuous on M, is f ‘ 4, continuous on A?
Answer: Yes!

Question: If f | 4 1s continuous on A, is f continuous on M?

Answer: No! For example, f(x) = 1 on Q and f(x) = 0 otherwise.

Remark. Let V be a vector space and N be a metric space. The norms || - ||; and || - ||, are
equivalent. Let f : V — N be a map. Then f is continuous on (V, || - ||;)) if and only if f is
continuous on (V, || - [|»).

Proof. (Exercise) O

3.2 Operations on Continuous Maps

(M., d) (N,p)

To consider f(x)+g(x), N
should be a vector space.

Definition 3.2.1. Let (M, d) be a metric space and (V, ||-||) be a normed vector space and A C M.
Let f,g: A — Vbemapsandh: A — R be a function. Define

(f£ex) =fx)+xgx) xeA
(@f)(x) =af(x) x€A, aeR
(hf)(x) = h(x)g(x) x€eA
(%)(x) _ S(x)

—m XEA,h(X)¢O
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Proposition 3.2.2. Let (M, d) be a metric space, (V, ||-||) be a normed space, AC M, f,g :A -V
be maps, h : A — R be a function. Suppose that x, € A’ and lim f(x) = v, lim g(x) = w,
X— X0

X— X0
lim h(x) = c. Then

Iim(f+£g)(x)=vxw
lim(hf)(x) = cv

X— X0
lim (]—C) = 1v ifc #0.

x—xo " h c
Proof. (Exercise) O

Corollary 3.2.3. Under the hypothesis of Proposition B22, suppoe that f, g and h are contin-

uous at xo € A. Then f + g, hf are continuous at xy and n is continuous at x, if h(xgy) # 0.

Corollary 3.2.4. Under the hypothesis of Proposition 322, suppose that f, g and h are contin-

uous on A. Then f + g and hf are continuous on A and 7 is continuous on {x € } h(x) # 0}.

Definition 3.2.5. Let (M, d), (N, p) and (P, r) be metric spaces, AC M, BC Nand f:A — N,
g : N — P be maps such that f(A) € B. The composite function go f : A — P is the map

defined by g o f(x) = g(f(x)).

(M. d) (N,p) (P.r)

gof(x)=g(f(x))

Theorem 3.2.6. Let (M, d), (N, p) and (P, r), f and g satisfy the hypothesis of Definition Z23.

(1) Suppose that f is continuous at xo and g is continuous at f(xy). Then g o f is continuous at
X0.

(2) Suppose that f is continouos on A and g is continuous on f(A). Then g o f is continuous
on A.

Proof. (1) (Exercise)

(2) Let ‘W be an open set in P. Since g is continuous on f(A) C N, g~' (‘W) is open relative to
f(A). Thus, there exists V which is open in N such that g~' (‘W) = V N f(A).
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Similarly, since f is continuous on A, f~!(V) is open relative in A. There exists U which
is open in M such that f~'(V) = U N A. Then

(go f) W)= (g W) = FH (VN FA) = (VNA=UNA

is open relative to A.

Since ‘W is an arbitrary open set in P, g o f is continuous on A.

3.3 Uniform Continuity

Definition 3.3.1. Let (M, d) and (N, p) be metric spaces, A C M and f : A — N be a map. We
say that f is “uniformly continuous” on A if for every & > 0, there exists 6 > 0 such that

p(f(0), f) <e

for all x,y € A for which d(x,y) < 6.

(™, ) . )

RN

- y , } LoE /
/ T EBE) A
/ / N

! 1) H

L / i

Uniformly Continuous function

Remark. (1) Continuity is a property of a function at a single point. Uniform continuity is a
property of a function on a set.

(2) For a uniformly continuous function, ¢ only depneds on & but independent of x.

Proposition 3.3.2. Let (M, d) and (N, p) be metric spaces, AC M and f : A — N be a map. If
f is uniformly continuous on A, then f is continuous on A.

Proof. (Exercise) O

Example 3.3.3. f(x) = |x| is uniformly continuous on R since | f(x) = f()| = [lx|=Iyl| < [x=l.



84 CHAPTER 3. CONTINUOUS MAPS

1
Example 3.3.4. f(x) = — is uniformly continuous on [a, o) for all @ > 0 but is not uniformly

continuous on (0, o).
Fix a > 0, for a < x <y < oo, by mean value theorem,

1
JO) - f) = fOy-x = —2(—x) forsomec € (x.y).

Hence,

1 1

fO) = )| = 5y —x < 5ly -l

c a
Example 3.3.5. Let f : R — R be differentiable and |f"(x)| < M for every x € R. Then f is
uniformly continuous.
Definition 3.3.6. (1) Let f: A C R — R be a function. We say that f is “Lipschitz function” is

there exists K > 0 such that
) = FOI _

<K
lx =yl

for every x,y € A and x # y, or

lf(x) = fO)I < Klx = yl.

for every x,y € A.

(2) Let (M,d) and (N, p) be two metric spaces and f : M — N. We say that f is “Lipschitz
function” if there exists K > 0 such that

p(f(0, f))

< K forevery x,y € M and x # y.
d(x,y)

Note. A Lipschitz function is uniformly continous.
Definition 3.3.7. We say that a function f : A € R — R is “Holder continuous with exponent
a” if there exists K > 0 and 0 < @ < 1 such that

[f(x)— f)| < K|x—y|* forevery x,y € A.

Note. A function f which is Holder continuous with exponent « is uniformly continuous.

Remark.

Bounded first derivative fuctnions = Lipschitz functions
= Holder continuous functions

= Uniformly continous functions

Theorem 3.3.8. Let (M, d) and (N, p) be metric spaces, A € M and f : A — N be a map.

[

Then f is uniformly continuous on A if and only if for any two sequence {x,}" |, {ya}7-, € A, if
lim d(x,, yn) = 0 then hmp(f(xn)’ f(yn)> =0.
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Proof. (=) Suppose the contrary. There exists two seuqnece {x,}" |, {y.},-; € A such that
lim d(x,,y,) = 0 but lim d(f(x,), f(v»)) # 0. That is, there exists &£ > 0 such that for every

k € N, there exists n; > k such thatp(f(xnk),f(ynk)) > &.
Since f is uniformly continuous, there exists 6 > 0 such that for every x,y € A with
d(x,y) <6, p( f(x), f(y)) < &. Since lim d(x,,y,) = 0, there exists M € N such that for ev-

ery n > M, d(x,,y,) < 6. Then we can choose n), > M and we have d(x,,,,y,,) < ¢ but

P(fn)s fOny)) > €.

(&) Suppose the contrary. There exists € > 0 such that for every n € N, there exists
1

Xn, Yo € A withd(x,,y,) < —, butp(f(xn), f(yn)) > &. Then for the sequence {x,}> |, {y.} -, €A
n

n=1 =

with lim d(x,, y,) = 0, we have lim p(f(x,), f(y,)) # 0 and obtain a contradiction. o

Remark. Let (M, d) and (N, p) be metric space, A € M and f : A — N be a map. Then the
following statements are equivalent

(1) fis NOT uniformly continuous on A.

(2) There exists two sequences {x,}>" |, {y,},-, with lim d(x,, y,) = O butlim sup p (f(xn), f(y,,)) > 0.

n=1
n—oo

(3) There exists two sequences {x,} , {y,} -, with lim d(x,, y,) = 0 but lim p(f(x,,), f(yn)) > 0.

(4) There exists € > 0 such that for every n € N, there exists two point x,,y, € A such that
1
d(xn’ yl’l) < ; butp(f(xl’l)’ f(y}’l) > E.

Remark. (1) Let / C R be an interval and f : I — R be a differentiable function with |f’(x)| <
M for all x € 1. Then f is uniformly continuous on / by using mean value theorem.

(2) The converse of above statement is false. A differentiable and uniformly continuous func-
tion may not have bounded derivatives. For example, f(x) = y/x on [0, 1].

Example 3.3.9. (1) f(x) = x? is uniformly continuous on [0, M] for any M > 0 but it is not
uniformly continuous on R. Let x, =n,y, =n+ % Then |x, — y,| — 0 but
1 1
|f) = f(n+=)| =12— =|>1 forevery n.
n n

(2) f(x) = sin(x?) is not uniformly continuous on R.

1
(3) f(x) = sin — is not uniformly continuous on (0, 1).
X

a Continuity v.s. Uniform Continuity

Let (M, d) and (N, p) be two metric spaces, A C M and f : A — N.



86 CHAPTER 3. CONTINUOUS MAPS

e Suppose f is continuous on A. For given £ > 0, there exists § = d(x,&) > 0 such that if
d(x,y) < ¢ then p( f), f (y)) < &. Therefore,

f(Bu(x,6) N A) C By(f(x),€).
Note that 6 depends on € and x.
(M, d) (N, p)

; A f(A)

SRR

/ v
B { / i
S RBEa) ™ R

fx)

VI

Continuous function

e Suppose f is uniformly continuous on A. For given € > 0, there exists 6 = d(g) > 0 such
that if d(x, y) < 6 then p( f), f (y)) < &. Therefore,

f(Bu(x,8) NA) C By(f(x),¢).

Note that 6 depends only on & but indenpendent of x.

(M, ) (N, p)

By

o8 . ' / X |
. ’ ,] Ve !
R ‘ .

- EBES) R
! o

Uniformly Continuous function

Remark. Let f : A — f(A) be continuous. For every £ > 0, there exists d(x, €) > 0 such that
p(f(x),f(y)) < & whenere x,y € A with d(x,y) < 6(x,&). Define 6/(¢) := in£6(x, g)>0. If
XE.

0(e) > 0 for every & > 0, then f is uniformly continuous on A.

Note. This is the idea that continuity on a compact set gives rise to the uniform continuity.



3.3. UNIFORM CONTINUITY 87

Theorem 3.3.10. Let (M, d) and (N, p) be metric space, A C M and f : A — N be a map. If
K C A is compact and f is continuous on K, then f is uniformly continuously on K.

AC (M,d) f(A)S (N,p)

Proof. Since f is continuous on K, given € > 0, for every x € K, there exists §, > 0 such that
fory € K with d(x,y) < J, then

~
yeBp(x,0,)NK

p(f(x), f) <

N M

L
0, . Oy
Since K is compact and K C U By(x, E)’ there exists x;,--- ,x; € K suchthat K C U By (x;, 7’).

xeK i=1

1 ——
Defined = = min 6,.. Let u,v € K with d(u,v) < 6. Since 7 ~
2 1sisL / AN
L S / \
K C U By (x;, %) there exists 1 < € < L such that u € [ /. \
! [ ]
i=1 ( e ' U \
Bu(xg, 52) € Bu(xp, 6,,). Thus, VN
N
O, N /
dv,x;) <dWw,u) +d(u, x;) < 6 + > < 0y, ~_ _ _“
Then v € B(x,, d,,) and we have
e €
P(f(bl),f(v)) < P(f(u), f(x{’)) +P(f(xf),f(v)) < 5 + 5 =&
Hence, f is uniformly continuous on K. m|

Lemma 3.3.11. Let (M, d) and (N, p) be metric spaces, A C M and f : A — N be uniformly
continuous. If {x,}>, € A is a Cauchy sequence in (M,d), then {f(x,)}, is also a Cauchy
sequence in (N, p).

Proof. Since f 1s uniformly continuous on A, given € > 0, there exists > 0 such thatif x,y € A
with d(x,y) < 6, then

p(f(x).f) <e.
Since {x,}’7, € A is Cauchy in (M, d), there exists L € N such that if m,n > L then d(x,, x,,) < 9.

n=1 =

Thus, for m,n > L, we have

p(f(xm), f(x)) <e.
Hence, {f(x,)} _, is Cauchy in (N, p). o
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0 Extension of a Function

Let f : R\{a} — R be continuous and lim f(x) = L. /\/\_/
R — R which is

Question: Is there a function g :
continuous on R and g(x) = f(x) on R\{a}? :

Answer: Yes! Define g(x) = { ]2 (x) jcc f Z

Suppose that f : A — R be a continuous function. /\/O

S yd
7 <
a

It doesn't make sense to define value of T at a.

Question: Is there a continuous function g : A — R such
that g(x) = f(x) on A?

1

Answer:No! For example, f(x) = | on (0,1). There
exists no continuous function g : [0,1] — R such that

g(x) = f(x) on (0, ).

Corollary 3.3.12. Let (M,d) and (N, p) be two metric spaces, A C M and f : A — N be
uniformly continuous. If N is complete, then f has a unique extension to a continuous function
on A, thatis g : A — N such that

(1) g is uniformly continuous on A.

(2) g(x) = f(x) on A.
(3) (uniqueness) If there is h : A—>N satisfying (1) and (2), then g(x) = h(x) on A.

AES (M,d) f(A)
- &= !
< EA Lo
T —————"" uniformly
continuous

Proof. We only need to define the value of g on A\A. Let x € A\A. There exists {xah, €A
converging to x. Hence, {x,} ", is Cauchy sequence in A. Since f is uniformly continuous on
A, by Lemma B3TT, {f(x,)} ", is also a Cauchy sequence in (N, p).



3.3. UNIFORM CONTINUITY
Since N is complete, there exists y = y, € N such that lim f(x,) = y. Define

) xeA
g(x)—{ y, x€A\A

(I) To check that g(x) is well-defined.

89

For x € A\A, let {x.}2, and {z,}>" | be two sequences in A which both converge to x. Then
d(x,,2,) = 0 as n — oo. Since f is uniformly continuous on A, p(f(x,), f(z,)) — 0 as
n — oo. Therefore, lim f(x,) =y, = lim f(z,). We have g(x) is well-defined on A and

the statement (2) holds.

(II) Check that g is uniformly continuous on A

Since f is uniformly continuous on A, given & > 0, there exists 6 > 0 such thatif x,y € A

with d(x,y) < 6, then
E
p(f(0), ) < 3

5 _
Let r = —. For u,v € A with d(u,v) < r, by the definition of g, there are v',u’ € A with

d(u,u’) < rand d(v,v") < r such that

p(f@), f)) <= and  p(fO), f0))) <

W] M
Wl M

Then
d' V) <dw',u) +du,v) +dv,v) < 3r=06.

We have p(f(u’), f(v’)) < g and hence
p(8w),gv)) < p(gw), g)) +p(g), g(v)) + p(g(v'), g()) < €.

The statement (1) is proved.

A< (M.d) 5 g(A)

d(u,v) < 3

i f(u'
...... (.1.111.).""(1.1").. g(u)

.
ooooooooooooo

d(u',v") < d(u',u)+d(u,v)+d(v,v') <o

(IIT) To check the extension is unique.

If there exists 4 : A — N satisfying statements (1), (2) and (3), then h(x) = f(x) = g(x)
for every x € A. Let x € A\A. Given € > 0, there exists 01,9, > 0 such that if d(x,y) < ;
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then p(g(x), 8(»)) < £ and if d(x, y) < 65, then p(h(x), h(y)) < £.
Since x € Z\A, there exists y € A such that d(x,y) < min(d;, ). Then
p(gx),h(x) < p(g(x),80)) +p(g0). h(»)) + p(h(y), h(x))
< S+p(g0)h) +3 =&
~—_———
=0 since yeA

Since € is an arbitrary positive number, we obtain g(x) = h(x) and hence g(x) = h(x) for
every x € A. The statement (3) is proved.

3.4 Continuous Maps on Compact Sets

Theorem 3.4.1. Let (M, d) and (N, p) be metric spaces, A C M and f : A — N be a continuouos
map. If K C A is compact, then f(K) is compact in (N, p)

Proof. Let {U,}., be an open cover of f(K). Since f : A — N is continuous and U, is open
for every a € I, f~1(U,) is open in A. Therefore, there exists V,, which is open in M such that
fY(U,) = V,N A forevery a € 1.

Since f(K) C U U, and K C A, we have K C U V,. Thatis, {V,} _ is an open cover of

ael ael
K. The compactness of K implies that there exists a1, - - - , @, € I such that

KC O Vo, NA = Of_l(Ua,-)-
i=1 i=1

Then f(K) C U U, and hence f(K) is compact.
i=1

O

Corollary 3.4.2. Let (M,d) be a metric space and K C M be compact. If f : M — R is
continuous, then f attains its maximum and minimum in K. That is, there exists xo, x; € K such
that

f(xo) =max f(x) and  f(x;) = min f(x).
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Proof. Since f is continuous and K is compact, f(K) is compact in R. Hence, f(K) is sequen-
tially compact in R and then f attains its extreme values in K. O

Corollary 3.4.3. (Extreme Value Theorem) Let f : [a,b] — R be a continuous function. Then
f attains its maximum and minimum.

Proof. (Exercise) |
Remark. Let (M, d) and (N, p) be two metric spaces and f : M — N be continuous.

(1) Continuous maps send compact sets to compact sets. But the converse is false. For example,
f is a constant map on R.

Compact Set N Compact Set

=
!

(2) Continuous maps send connected sets to connected sets. But the converse is false. For
example, f(x) = x*> on {1, —1}.

Connected Set i) Connected Set
=

f—l

Remark. Let f : M — R be continuous and K € M be compact. Then f attains its extreme in
K. The extreme points are not unique. For example, f(x) = sinx on [-27x, 27].

2w

o
ol
IS
o

Corollary 3.4.4. Let (M,d) be a metric space, K € M be compact and f : K — R be a
continuous map. Then the set {x ek ‘ f(x) is the maximum of f on K } is a nonempty compact
set.

Proof. Let L =sup f(x). Then f~'(L) # 0. Since {L} C R is closed and f is continuous,
xekK

F7Y({L}) is closed. Hence, f~'({L}) N K is closed set in K and it is compact. O
Theorem 3.4.5. Let E be a noncompact set in R. Then
(1) there exists a continuous function on E which is unbounded.

(2) there exists a bounded and continuous function on E which has no maximum.
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Proof. (1) Since E is noncompact in R, either E is not bounded or E not closed (or both). If E
is unbounded, then the function f(x) = x on E is an unbounded function.

If E is bounded but not closed, then there exists x, € E\E. Hence, there exists a sequence

is defined on E but not

{x,}>>, € E such that lim x, = xo. The function f(x) =

n=l = X=X X — X

bounded.

2
(2) If E is unbounded, we define f(x) = I al - Then sup f(x) =1 but f(x) < 1 for every

X xeE

xeE. )

If E is unbounded but not closed, let xo and {x,}”, be defined as above. We define

1
f(x) = ——— . Then sup f(x) = 1 but f(x) < 1 forevery x € E.
1+ (x = xp)? xeE

O

Theorem 3.4.6. Let (M, d) and (N, p) be metric space, A C M and f : A — N be a map. If
K C A is compact and f is continuous on K, then f is uniformly continuously on K.

Proof. Since f is continuous on K, given € > 0, for every x € K, there exists d, > 0 such that
for y € K with d(x,y) < d, then

yeBu(x,6.:)NK

p(f(0), f) <

N &

L
) ) Ox ) Oy,
Since K is compact and K C U By (x, 5)’ there exists x;,--- , x; € K suchthat K C U By (x;, 7’).
xeK i=1

1 t Sy ,
Define 6 = = min 6,,. Let u,v € K with d(u,v) < 6. Since K C U By(x;, 7’), there exists

1<i<L \
i=1

| <€ < L such that u € By(x¢, 2£) € By(x, S,). Thus,

O
dv, x;) <d(v,u) +d(u, x;) <6 + 7"" < 6y,
Then v € B(x,, d,,) and we have

p(f@w), f)) < p(f@), f(x)) +p(f(x0), fV)) <

Hence, f is uniformly continuous on K.

AC (M,d) f(A)S (N,p)

+

(SYR)
(SYR)
I
X
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a Appendix

Definition 3.4.7. Let V be a vector space and || - ||; and || - ||, be two norms on V. We say that
[ - 1l; and || - ||, are quivalent if there exists @, 8 > O such that

allxll; < |lxll, < Blixll; for every x € V.

Remark. Suppose that || - ||; and || - ||, are equivalent norms on V. Then U is open in (V, || - ||;)
if and only if U is open in (V, || - [|2).

n
Z x? where
i=1
x = (x1, X2, -+, X,). Then every norm || - || on V is equivalent to || - ||,. This implies that every
two norms on R” are equivalent.

Example 3.4.8. Let V = R” and || - ||, be the usual norm on R”. That is, ||x||, =

Let || - || be a norm of R". To prove that || - || ~ || - ||.. Lete; = (0,0,---,0,1,0,---,0). Then
x=(x1, " ,X,) = Zx,-ei. Then

i=1

n

Z x2 > max(|xyl, - -, [x)).

i=1

llxll2 =

Letfs = Z lle;|>. Then B > max(|leq]],- - -, |lenl]). We have
i=1
n n n 1/2 n 2
bl = " xiedl < > lllled) < (D 1l?) (D lled?)” < Bllxla.
i=1 i=1 i=1 i=1
On the other hand, since || - || is a norm, f(x) := ||x|| is continuous on (R, || -|,). Let $"~! = {x €
R" | |Ixll, = 1}. Then $"' is compact in (R”, || - |l2). Therefore, there exists a € S"~! such that
0 < f(a) = min f(x). For x € 8", f(x) 2 f(a).
xesS"
Consider 0 # y € R”, J e S"!and
[Iyll2
f@ < F(Z) = [ 2] = =il
lIvll2 [Iyll2 [Iyll2

Hence, f(a) llyll2 < [Iyll.
~~

=a
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Remark. Let || - ||; and || - ||, be two norms on a vector space V, N be a metric space and
f:V — N be amap. Suppose that || - ||; ~ || - |l.. Then f is continuous on (V, || - ||;) if and only
if £ is continuous on (V, || - ||2).

0 Review of Continuous Maps

Let (M, d) and (N, p) be two metric spaces, A C M and f : M — N be a map.
(1)

f is continuous on M.
« f'(F)is closed for every closed subset F C N.
& f'(U) is open for every open subset U C N.

(M.d) (N.p)
. S
closed
f -1

(2) Suppose that f is continuous on M. Then f(K) is compact for every compact subset K € N.

(M.d) (N.p)

. f

——

f e——
f—l

Observation: Let f : A — f(A) C N.

e The inverse function of f may not exist. If f is 1-1, then the inverse fucntion of f exists and
denoted by 7! : f(A) — A.

e If f: A — f(A)is 1-1 and continuous, is the inverse function f~' : f(A) — A continuous?
Idea: let M be compact and £ € M be closed. Then E is compact in M. The set f(E) is
compact in N since f is continuous. This implies that f(E) is closed in N. We have f send
every closed set E in M to a closed set f(E) in N. Therefore, f~! is continuous.

Theorem 3.4.9. Let (M, d) and (N, p) be two metric spaces, K € M be compactand f : K - N
be a I-1 and continuous function. Then the inverse function f~' : f(K) — K is continuous.

Proof. It suffices to prove that for every closed set E in M, the preimage, ( ! ) - (E) of E under
f~!is relatively closed in f(K).
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(')

Since E is closed in M and K is compact in M, the intersection £ N K is compact in M. Also,
since f is continuouos, f(E N K) is compact in N and hence it is closed in N. Moreover, since

fis 1-1, we have f(ENK) = (f‘l)_l(E) is closed in f(K). Therefore, f~! is continuous on
JF(K). m

Remark. Theorem B4 is false if K is not compact. For example, f : R — R? by f(1) =
(cost,sint) on K = [0,2n). Then f is 1-1 and continuous on [0, 27) and f([O, 271)) = S'. But
f~!is not continuous at (1,0) = £(0).

3.5 Continuous Maps on Connected Sets and Path Connected
Sets

0 Path Connected Sets

Definition 3.5.1. Let (M, d) be a metric space, x,y € M. We say that a path in M from x to y is
a continuous map ¢ : [0, 1] — M such that ¢(0) = x and ¢(1) = y.

(M.d)

Remark. We can replace [0, 1] by [a,b]. If ¢ : [a,b] — M such that ¢(a) = x and ¢(b) =y,
define ¢(1) = ¢(a + (b — a)t). Then ¢ : [0, 1] — M such that ¢(0) = a and ¢(1) = b.

Definition 3.5.2. Let (M, d) be a metric space. A subset A C M is said to be “path connected”
if every pair of points x,y € A can be joined by a path in M. That is, there is a continuous map
¢ : [0, 1] — A such that $(0) = x and ¢(1) = y.

Definition 3.5.3. A set A in a vector space V is called “convex” if for all x,y € A, the line
segment joining x and y, denoted by Xy, lies in A.



96 CHAPTER 3. CONTINUOUS MAPS

convex not convex

Example 3.5.4. An open (closed) ball in a vector space is convex. If M = N the open ball
B(@3,2) ={2,3,4} is not convex.

Remark.

A convex set in a normed
space is path connected by
taking ¢(¢) = (1 — t)x + ty.

p()=(1-t)x+ty
Example 3.5.5. A set S in a vector space V is called “star-shaped”, if there exists p € § such
that for every g € S, the line segment joining p and g lies in §. Note that A star-shaped set is
(1-2nx+2tp 1€l0,3]

path connected by taking ¢(7) = { Q-20p+Qt—1)y tell1]
2>

Remark. Let A, B C M be path-connected. If there existsa € A and b € B and a pathin A U B
joining a and b, then A U B is path connected.

A B

Theorem 3.5.6. Let (M,d) be a metric space and A C M. If A is path-connected, then A is
connected.

Proof. Assume that A is disconnected. Then there exist open sets U and V in M such that

HDACUUY G(HDANU£D G(GDANV 0 (VANUNV =0
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By (ii) and (iii), choose x € AN U and y € A N V. Since A is path connected, there exists a
continuous map ¢ : [0, 1] — A such that ¢(0) = x and ¢(1) = y. then ¢~'(U) and ¢~' (V) are
open relative to [0, 1]. Hence, there exist ‘W, and ‘W, open in [0, 1] such that ¢~'(U) = W,
and ¢~'(V) = W..

By (1), [0,1] € W; U ‘W,. Also,by (ii) and (iii), 0 € W, and 1 € W,. We have
[0, 11N W, #0and [0,1] "W, # 0.

By (iv), [0, 11 N W, N W, = ¢ {(U) N ¢~ (V) = 0. (Otherwise, there exists t, € [0,1] N
W, N W,. Then ¢(ty) € AN U N V). It contradicts the fact that [0, 1] is connected.

o'W o'W 0 N/
Y _—— i
0 1 ¥

P
e
-

O

Remark. From the above theorem, a path-connected set is connected. But the converse is
1

false. For example, A = {(x, sin —) ‘ x € (0, 1)} U ({O} X [-1, 1]) is connected but not path
X

connected. Let x = (1,sin 1) and y = (0, 1). There exists no path in A joining x and y.

1 ﬁn(i)

1| T —
— W

—1

Theorem 3.5.7. Let (M,d) and (N, p) be two metric spaces, A € M and f : A — N be a
continuous map.

(1) If A is connected, then f(A) is connected.
(2) If A is path connected, then f(A) is path connected.

Proof. (1) Assume that f(A) is disconnected. Then there exists U and V open in N such that

i) FACUUYV (i) FANU£O (i) FANV£O (v) FANUNYV =0
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Since f is continuous and U and V are open in N, f~'(U) and f~'(V) are open relative
to A. Therefore, there exists ‘W, and ‘W, open in M such that f~'(U) = A N W, and
U VY=ANnW,.

By (i), A € W; U W,. From (ii) and (iii)), AN W, # 0 and AN W, # 0. By (iv),
AN W; N W, =0. Hence, A is disconnected and we obtain a contradiction.

Let y;,y> € f(A). Then there exists x;, x, € A such that y; = f(x;) and y, = f(x,). Since
A is path connected, there exists a continuous map ¢ : [0, 1] — A such that ¢(0) = x; and

¢(1) = x5
Define y(t) := f(¢(r)). Clearly, ¥(¢) maps from [0, 1] to f(A). Since f and ¢ are continuous,
 is continuous on [0, 1]. y(0) = £(¢(0)) = f(x1) =y and y(1) = f(¢(1) = f(x1) = yr.

Hence, ¢ is a path in f(A) joining y; and y,. Since y; and y, are arbitrary pair of points in
f(A), f(A) is path connected.

A f(A)

&

O

Corollary 3.5.8. Let f : [a,b] — R be continuous. If f(a) # f(b), then for any value L between
f(a) and f(b), there exists c € (a, b) such that f(c) = L.

Proof. Since [a, b] is connected and f is continuous, f ([a,b]) 18 connected in R. Hence, for
fla), f(b) € f ([a, b]) and L between f(a) and f(b) then L € f ([a, b]). Therefore, there exists
c € |a, b] such that f(c) = L. Since L # f(a) and L # f(b), we obtain c € (a, b).

O

Definition 3.5.9. Let V be a vector space and ¢ : [0, 1] — V be a continuous map. We say that

¢ is “piecewise linear” if there exists t,t,--- ,t, € [0,1] witha =1 <t; <--- <t, = 1such
that ¢ is a linear map on each [#,_y,#] fori=1,2,--- ,n.
vV
0t b e 1
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Remark. Let A be a convex or star-shaped subset in a vector space V. Then for any pair of
points x,y € A, there exists a piecewise linear mapping in A joining x and y.

Lemma 3.5.10. Let x,y,z € V. If there are piecewise linear mappings ¢,,¢, : [0,1] —» V
such that ¢, joins x and y and ¢, joins y and z, then there exists a piecewise linear mapping
¢ : [0,1] = V such that ¢ joins x and z.

Theorem 3.5.11. Let G be a connected and open set in a vector space V. Then for any x,y € G,
there exists a piecewise linear mapping ¢ : [0, 1] — G such that ¢$(0) = x and ¢(1) = y.

Proof. Let x € G. Define
G, = {z eG ‘ there exists a piecewise linear mapping ¢,(¢) : [0, 1] — G such that ¢,(0) = xand ¢.(1) = z.}

Clearly, x € G,. It sufficies to show that G; = G.

Claim 1: G, is open.
Proof of Claim 1: Let z € G. Since G is open, there exists 6 > 0 such that B(z,9) € G. Since
B(z, 0) is convex, for any point z € B(z, 0), there exists a piecewise linear mapping joining z and
z1. Hence, by LemmaB 511 there is a piecewise linear mapping joining x and z;. Then z; € G,
and hence B(z,6) € G;. Thus, G, is open.

Claim2: G\G, is open.
Proof of Claim 2: If w € G\G1, then there exists no piecewise linear mapping joining x and w.
Since G is open, there exists r > 0 such that B(w, r) C G. For any point w; € B(w, r), there is a
piecewise linear mapping joining w and w.

Assume that w; € G;. Then, by LemmaB-57T0, there exists a piecewise linear mapping join-
ing x and w. Thus, w € G| and we obtain a contradiction. Hence, B(z,r) € G\G;. Then G\G,
is open.

By Claim 2, G, is closed in G. Then G is both open and closed relative to G. Since G is
connected, either G; = 0 or G; = G. But G; # 0 and hence G; = G.
O
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4.1 Pointwise and Uniform Convergence
A i A
" |
S ~—
Py '
L” convergence pointwise convergence I? convergence

uniform convergence

Definition 4.1.1. Let (M, d) and (N, p) be two metric spaces, A C M and f;, f : A — N be maps

fork =1,2,---. The sequence {f},, is said to converge (pointwise) to f on A if
lim p(fi(@), f(@))
for every a € A. We denote f; — f pointwise (p.w.)

101
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Remark. (precise definition) Suppose f; — f pointwise if for every € > 0 and every a € A,
there exists N = N(g,a) € N such thatif k > N,

p(ful@), f(@) <e.

Note that N depends on & and a.

Definition 4.1.2. Let (M, d) and (N, p) be two metrics, BC A C M and f, f : A — N be maps
for k = 1,2,---. We say that the sequence {f;};”, “uniformly converges” to f on B if for every
g > (0, there exists N = N(g) > 0 such that for every x € B,if k > N

p(fix), f(x)) <e.
We write f; — f uniformly on B.

Note that this “N” only depends on & but is indenpendent of x.
Remark. Let (M,d) and (N, p) be two metrics, BC A C M and f;,f : A — N be maps for
k=1,2,---. We say that the sequence {fi};2, “uniformly converges” to f on B if

lim (supp(fil). f()) = 0.

xeB

Example 4.1.3. Let f;, f : [0,1] = Rby

B 0, xel[i1] _{0, x € (0,1]
fk(x)_{—kx+1, xefoy A SO=1 1o

0 173 172

Then f; converges to f pointwise but does not converges to f uniformly.

0 xe[0,1)

Example 4.1.4. Let f; : [0,1] = R by fi(x) = x* and f(x) = { 1 x=1
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(1) Fixx € [0, 1),

>0 ask— oo A
1 4
Clearly, 1¥ = 1 for every k. Hence, fi(x) —
f(x) pointwise on [0, 1].
(2) Let ¢ = % For every N € N, choose
v/2
Xy = \/j € [0, 1). Then .
3 0 1

/
N2
3

2
| fvCen) = fOw)| = ’5 -0| >«

Hence, { f;};, does not converges to f on [0, 1]
uniformly.

I
(3) Fix 0 < a < 1. Given & > 0, choose N € N with N > 12_8 For every x € [0,a] and k > N,
a

i) = f(0)| = 1" -0l < d' <&

Hence, {fi};2, converges to f uniformly on [0, a] forevery 0 <a < 1.

Example 4.1.5. Let f; : R - Rby fx) = % and f(x) = 0. Then f; — f uniformly on R.

Proposition 4.1.6. Let (M, d) and (N, p) be two metric spaces, A € M and fi,f : A — N be

[0e]

maps fork = 1,2,---. If { fi};2, converges to f uniformly, then {fi};>, converges to f pointwise.
Proof. (Exercise) O

Remark.

Uniform Convergence = Pointwise Convergence
=

Proposition 4.1.7. Let (M, d) and (N, p) be two metric spaces, A C M and f;, : A — N be a
sequence of maps. Suppose that (N,d) is complete. Then {fi};?, converges uniformly on A if

and only if for every € > 0, there exists L € N such that for every x € A and m,n > L,

p(fn(2), £u(0) <&

Proof. (=) Let f: A — N be amap where f; — f uniformly on A. Given & > 0, there exists
L € N such that forevery x e Aand k > L,

P (fr (0, f(0)) <

N M

For every m,n > L,

+

P (fu(X), £,(0) < p(f0), F(0) + p(f(x), fu(0)) <

N M
N M
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(&) Let { fy};2, be a sequence of maps on A with the Cauchy criterion. Fix a € A, the sequence
{fil@}, is a Cauchy sequence in N. Since (N, p) is complete, there exists y, € N such that

fil@) = ya in (N, p).
By the same argument, for every x € A, there exists y, € A such that f;(x) — y,. Define a map
f:A— Nby f(x) =y,. Then f; — f pointwise on A.

Given & > 0, by the Cauchy creiterion, there exists L € N such that for every x € A and
m,n>1L,

p(fu0), fu(2)) < ;

Since f; — f pointwise on A, for every x € A, there exists L, > L such thatif m > L,,

p(ful), £(2)) < g

Hence, for every x € A and k > L, we choose m, > L, > L. Then

2

Cauchy criterion pointwise convergence

PR ) < P2, f, ) + p(fu (0. f(D) <5 +5 =,

Therefore, f; — f uniformly on A. O
Remark. The completeness of (&, p) is NOT necessay in the direction (=).

Theorem 4.1.8. Let (M,d) and (N, p) be two metric spaces, A C M and f, : A — N be a
sequence of continuous maps converging to f : A — N uniformly on A. Then f is continuouos
on A.

Proof. Since f; — f uniformly on A, for given & > 0, there exists L € N such that for every
xe€Aand k> L,

p(fulx), f(x)) < g
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Since f; is continuous on A, for a € A, there exists 9, > 0 such that if x € A with d(x, a) < d,,

p(fila), fi(x) <

Wl M

Hence,

p(f(), f@) < p(f(x), f1(0) +p(fr(x), fl@) +p(fr(a), f(@))
< g + g + g —c

for every x € A with d(x,a) < ¢,. Thus, f is continuous at a. Since a is an arbitrary point in A,
f is continuous on A. O

Remark. (1) The uniform convergence of {f;};>, suggests a switch of the limit of points and
the limit of sequence. That is, f, — f uniformly on A and a € A, then

im (fim /i) = fim (1im /i)

(2) The uniform limit of a sequence of continuous
functions might not be uniformly continuous.
Question: How about the uniform limit of a \/
sequence of uniformly continuous functions?

Is it uniformly continuous?
Answer: Yes.

Suppose f; : I — R uniformly converges to f.
Question: If each f; is differentiable, is f

differentiable? If yes, does f; — f? /_/’\/_/
Answer: No. W

Question: If each f; is integrable, is f inte-
grable? If yes, does ffk dx — ff dx?
I I

Answer:Yes.

Recall: Let f : [a,b] > Rand P = {a =t < t; < --- < t, = b} be a partition of [a, b].

The upper and lower sums of P for f are — ] \\_

U f) = Z M;(ti—ti.y) and L(Pf) = Z m;(ti—ti_1)
i=1 i=1

where M; = sup f(¢) and m; = inf ]f(t). We
I3

telti1,1] elti-1ti B
have I "
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(1) LP, f) < U, )).
(i) If P, is a refinement of P (that is, P C P,), then
L(P, f) < L(Py, f) < U(Py, f) S U(P, f).

(iii) For any two partitions P; and P, of [a, b], we have

L(Pl’f) < U(P2’f)

b —b
@iv) f f(x) dx :=sup L(P, f) and f f(x)dx = il’}l)f U(P, f). Clearly,
P a

b —b
ff(x) dx < f f(x) dx.

—b
If f ’ f(x)dx = f J(x) dx, we say f is (Riemannian) integrable on [a, b] and denoted by

b
f f(x) dx.

(v) A function f is integrable on [a, b] if and only if for every € > 0, there exists a partition P
of [a, b] such that
U f)- L f)<e.

Theorem 4.1.9. (Uniform convergence and integration) Let f; : [a,b] — R be a sequence of
integrable functions which converge umformly to f onla,b]. Then f is integrable and

hm fk(x) dx = f f(x)dx

Proof. Since {f;};., converges umformly to f on [a, b], for given &€ > 0, there exists N € N such
thatif k > N and x € [a, b],

Ife(x) — f(0)] < &.
Since fy is integrable on [a, b], there exists a partition P of [a, b] such that U(P, fy) — L(P, fy) <
e. Let

M;= sup f@), m= inf f(@), MY = sup fy(t), m™ = inf fy(0).

reltioi ] [fi-1.4i] reltio ] 1€lti-1.ti]

Then
(M- M®| < sup |f() - fu()l <& and |m—m™| < sup |f() - fu(0)l <e.

telti—1 1] relti-1,t]

We have
UPf)-LPf) < \U(Pf)—U(PfN)} \U(P, fy) = L(P, fv)| + |L(P, fx) = L(P, )]

Z\M M|t - - 1)+s+Z|mz AR

2¢e Z(l’,‘ —ti_1)+e
i=1

[2(b_— a) + 1]e.

A

A
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Hence, f is integrable on [a, b]. Moreover, for k > N,

b b b b
[ rwar- [ awad=| [ fo-swd < [0 il <eb-a,

Therefore,

b b
f f(x)dx = ]}im f Jfi(x) dx.

Example 4.1.10. (Using the integrabtion to determine the convergence is not uniform)
The set Q N [0, 1] is countable. Write Q N [0, 1] = {gx | k € N} Define fi(x) : [0,1] — R by

fk(x): { 1 XE{QI,QZ,"' ,CIk} andf(X): { 1 erm[Oal]

0 otherwise 0 otherwise.

Then f;, — f pointwise on [0, 1]. On the other hand, every fi(x) is integrable on [0, 1], but f is
not integrable on [0, 1]. Hence, { fi(x)};>, does not converge to f uniformly.

Note that we can check this result directly.
Remark. Suppose that f; — f pointwise and f fedx — f f dx. It cannot imply that f; — f
uniformly.

Theorem 4.1.11. (Uniform convergence and differentiation) Let I C R be a finite interval.

(69

Suppose that {fi};>, is a sequence of functions which are differentiable on I and such that
{fll@}, converges for some a € 1. If {f/};., converges uniformly to g on I, then {fi};2,
converges uniformly on I to a function f, and

’ d /. ) d . ,
£ = g (Jim fi0) = im (FoA0) = fim £
Proof. Since {fi(a)};>, converges, given & > 0, there exists N € N such that for m,n > N,
£
[ful@) = f(@)] < 3

Since {f/};2, converges uniformly on /, there exists
N; € N such that for every x € I and for m,n > Ny,

f //"v
£ - o) < = x)

2011 fr(X)

For x € I and m,n > max(N, N;), by M.V.T, there
exists ¢, € (xp, x) [or ¢, € (x, xp)], such that

a

€

2|1

(500 = £u0) = (i) = fulxo)) | = |fi(ed = (el =l < 3= M =3 @)
Then

ymw—mun$umm—muM+§<§+§=a
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Therefore, {f;};2, converges uniformly on /. That is, there exists f : I — R such that f; — f
uniformly on /.

(To prove f'(x) = gim fix).) Fixx e L.

Define
L0~ [l £ = £
¢k(t):{? tel, t #x and ¢(I)Z{T tel, t+x
fk,(x) r=x g(x) f=x

Then /}im (1) = ¢(¢) and lim ¢ (¢) = f/(x) fork =1,2,3,---
—00 1—x

Given € > 0, for m,n > N and for every ¢ € I\{x},

1
3.0 = 00| = 1| [0 = 100 = [fult) = 0]

1
< ﬁ |t — x| for some ¢, € (, x)

Ja () = fr(Cex)
- X
&
m.

<

Hence {¢(x)};2, satisfies the Cauchy criterion on I\{x}. Then {¢;(x)};>, converges uniformly
on /\{x}. Moreover,

fim 700 = Jim (1imgu(0) = lim ( Jim 9x(0) = lim (o) = lim === = f'(2.

J@) - f(x)
X

O

(o)

Remark. Under the same hypothesis of the theorem, assume that {f/};>, is a sequence of con-
tinuous function. We can use the ET.C to prove it.

Theorem 4.1.12. (Uniform convergence and differentiation) Let I C R be a finite interval,

(o8]

Ji : I = R be a sequence of differentiable functions. Suppose that { fy(a)};., converges for some
a € I and {f}}}, converges uniformly to a function g on I. Then

(1) {fi};2, converges uniformly to some function f on I.

(2) the limit function f is differentiable on I and f'(x) = g(x) for all x € 1. That is,
_d o dy
8@ = Jim (TA0) = Jim i) = (0 = 7-(lim £(9).
Proof. For x € I, by the ET.C,
Ji(x) = fila) + f Ji(0) dt.

Since {fi(@)};2, converges and by Theorem BT, { fa * fi(@) dt}}2, converges for every x € I.
Since {fi(x)};2, converges for every x € I, we can define

s = fim (@) + [0 a).
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Hence,

f@ = fim i@ and f00 - fla) = fim [ forar= [ grar

We have f’(x) = g(x).

(To check that f; — f(x) uniformly on /.)

Since I}im fi(a) = f(a), given € > 0, there exists N; € N such that if £k > Ny, |fi(a) — f(a)| < g
Since f/(x) — g(x) uniformly on /, there exists N, € N such that for every x € I and k > N,

&

fi(x) — g(0)] < S0

Therefore,

lf() = filol =
< |f(@) - fila)l +f lg(0) = fi (D)l dt
< & + & _ ‘
= 5 5 =E&.

Thus, fy — f uniformly on /.

Remark. In the theorem,

@+ [ swa] - i@+ [ g

(1) the conditioin “fi(a) — f(a)” is necessary. For example, fi(x) = k, then f] = 0. But {f;},7,

does not converge.

(2) the finiteness of the interval is necessary. For
example f;(0) = 0 and f/(x) = % Then
fi(x) = g(x) = 0. But {fi};2, does not con-

verge uniformly.

(59

Remark. Suppose that {f;}}"
It cannot imply that f is differentiable. For example

A

ﬁ{(X):{E?d—L lfl

2k %

is a sequence of differentiable functions and f; — f uniformly.

k2 if x <t

and f(x) = |x].

Then f;, — f uniformly and f; is differentiable.
- But £ is not differentiable at 0.
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Q Pointwise Convergence v.s. Uniform Convergence

[Se]

A sequence of functions {f;},>, which converges uniformly to f automatically converges
to f pointwise. But the converse is false. For example, fi(x) = k>x*(1 — x*)* on [0, 1]. Then
Ji(x) = 0 pointwise but does not converge uniformly.

Question: Is the converse true under certain conditions? By observing the convergence of a

monotonic sequence and monotone sequence property, we know that a monotonic sequence will
be closer and closer to its limit. We hope this situation will occur on a sequence of functions.
We hope that

{x] [h0 = rf <8} € {x | [fun @ = f(0)] < &}.

However, there may have some possible troubles.

1. For some a € A, it is possible that a € {|fy - f| < &} buta ¢ {|fyr1 - f| < &}. We
expect an additional condition that

flsfzs...sfnsfnﬂs...-

2. The rate of the convergence of the sequence at some point is too slow. If the domain
contains finitely many points, it will not be a trouble. But when the domain contains
inifitely many points, this situation will be happend. A compact domain may be overcome
this trouble.

Theorem 4.1.13. (Dini’s Theorem) Suppose that K is compact and
(a) f,: K — Ris continuous on K forn=1,2,3,---;

(b) {f.}", converges pointwise to a continuous function f on K;
(c) fu < fus1forallneN.

Then {f,},", converges uniformly to f on K.

Proof. Define g, = f — f, for all n € N. Since f, — f pointwise, f, < f.+1 and f, f, are
continuous on K for every n € N, we have g, — 0 pointwise, g, > g,+1, &, = 0 forevery n € N
and g, are continuous on K. It sufficies to show that g, — 0 uniformly on K.
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. f Zn-
/\/fnﬂ /\—\/ 1
/\/f e — /\/ g,
-1 /_:\/gnJrl

L L

K, = g;l ([s, oo)) is closed in K. Then K, is compact since K is compact. Moreover, since
8n = 8n+1 for every n € N, we obatin K,,,; € K, for every n € N. Fix x € K. Since g,(x) — 0

Given ¢ > 0, we define K, = {x e K ’ gn(x) > 8}. Since g,(x) is continuous on K,

asn — oo, x ¢ K, as n is sufficiently large. We have x ¢ ﬂ K, for every x € K. That is,

n=1

ﬂ K, = 0. By the finite intersection property, there exists N € N such that

n=1
N
ﬂ K, = 0.
n=1

That is, if n > N, g,(x) < & for every x € K. Hence, f, — f uniformly on K.
O

Remark. (1) The result of Theorem is true if the condition (c) is replaced by f, > f.11.

(2) The compactness is necessary. For example, f,(x) = 1 on (0, 1). Then f, — 0 point-
nx

wise but not uniformly.

1

0 x € [0, ]

T . 2 1 1 1 n +2n1+1

(3) The monotonicity is necessary. For exampe, f, = nn+ Dx - 57) X €57 500 ]
“2n(n+ D(x =) x €[5, 1]
0 xell1]
A
f,= on [0,1]
-
1 1
0 — 1




112CHAPTER 4. UNIFORM CONVERGENCE AND THE SPACE OF CONTINUOUS FUNCTIONS

4.2 Series of Functions

Definition 4.2.1. Let (M, d) be a metric space, (V, || - ||) be a normed space, A € M and g, g :
A — V be functions.

(1) We say that the series Z gi converges pointwise to g if the sequence of partial sum {sn }:;1
k=1
given by

$2(X) = ) &)
k=1

converges pointwise to g.

(2) We say that Z gr converge to g uniformly on A if {s,,},‘f’:1 converges to g uniformly on A.

k=1
o n 1 _ xn+1
Example 4.2.2. For the geometric series Z xK, s5,(x) = Z X = 1—x if x # 1
k=0 k=0 n+l ifx=1
1 oy 1 N
(1) Forxe (-1,1), s, > ——. Hence, Z x* = —— converges pointwise on (-1, 1).
1-x k:O 1—-x

(2) For x € (=00, =11 U [1, 00), {s,}", diverges. Hence Z X diverges on (—co, —1] U [1, c0)
k=0

1
(3) LetO<a < 1and g(x) = T+ For x € [-a, a],
- X

1 - xn+l 1 xn+l |a|n+]
=li= =

< 0.
1—a—)

‘sn(x)—g(x)|:‘ l-x 1-xl I1-x
|an+1

Given & > 0, choose N € N such that if n > N, then I

< € and thus ‘s,,(x) — g(x)| <e&

(e8]
for every x € [—a, a] whenever n > N. Hence, Z X converges uniformly on [—a, a].
k=0

@) Z x* does not converge uniformly on (-1, 1) since sup |sn(x) — g(x)| = 00,

k=0 xe(-1,1)
Theorem 4.2.3. (Cauchy Criterion) Let (M, d) be a metric space, (V,|| - ||) be a normed space,
A C Mandg,: A —V be functions. If Z g converges uniformly on A, then for every € > 0,

k=1
there exists N € N such that forn > m > N,

| > o] <
m+1

for every x € A. In addition, if (V,|| - ||) is a Banach space, then the converse holds.
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Proof. (=)

Let Z gr(x) converges uniformly to g(x) on A. For £ > 0, there exists N € N such that for

k=1
n>N,

Sp(x) — g(x)” < g for every x € A.

Hence, forn >m > N,

| D) s =

k=m+1

mm—gmww%urguM<§+§=s

Sn(-x) - Sm(X)” <

for every x € A.

(=)
Suppose that (V, || - ||) is a Banach space. Fix x € A, for € > 0, there exists N € N such that for
n>m>N,

5,00 = su@)| =[] D] s <&

k=m+1

Hence, {sn(x)}j; , 18 a Cauchy sequence in V. Since (V; || - [|) is complete, {sn(x)}:;1 converges
in V, say lim s,(x) = g(x). Hence, {s,(x)} _ converges to g(x) pointwise on A.

Now, we check that s,(x) — g(x) uniformly on A. Given & > 0, there exists N € N such that
n>m>N,

Sp(x) — sm(x)” < g for every x € A.

Since s5,(x) — g(x) pointwise on A, for every x € A, there exists m, > N such that ||smx(x) -
g(x)” < § Then, for every x e Aand n > N,

520) = 5, O + s, (0 = g < 5 + 5 = &

su(x) — g0 <

Therefore, s,(x) — g(x) uniformly on A. O

Corollary 4.2.4. If Z gr(x) converges uniformly on A, then g, converges to 0 (O-function)

k=1
uniformly on A.

Theorem 4.2.5. Let (M, d) be a metric space and (V,|| - ||) be a normed space, A C M and

g8 + A — V be functions. If g : A — V are continuous and Z gr(x) converges to g
=
uniformly on A, then g is continuous.

n

Proof. Since g are continuous on A for every k € N, 5,(x) = Z gr(x) are continuous on A for
k=1

every n € N. Since {s,(x)},., converges to g(x) uniformly on A, g(x) is continuous on A. |
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Corollary 4.2.6. If g; : [a,b] — R is integrable on |a,b] and g(x) = Z gi(x) converges uni-

k=1
formly on |a, b], then

b © b
f s dx= ) f gu(x) dx.
a k=1 Y4a

Proof. (Exercise) O

1 Weierstrass M-Test

Theorem 4.2.7. (Weierstrass M-Test) Let (M, d) be a metric space, (V,|| - ||) be a Banach space,
ACMandg,: A — V bea sequence of functions. Suppose that there exists My > O such that

sup ||lg(xX)|| < My for every k € N and Z M, converges. Then Z gi(x) converges uniformly
xeA k=1 k=1

and absolutely (that is, Z lgx(X)|| converges uniformly ) on A.
k=1

Proof. To show that {s,}> , satisfies the Cauchy criterion. Since Z M, converges, given € > 0,

k=1
there exists N € N such that if n > m > N, then

Zn: M, < &.

k=m+1

Thus,

sup

550 = 50| = sup| Z g < Z supllge(ll < Z M <.

k=m+1 k=m+1 * k=m+1

Hence, {s,(x)} _, converges uniformly on A. Similarly, let £,(x) = Z llge(x)||. forn > m > N,
k=1

sup [1,(x) = tu(M| =sup D" Nl < Y supllgill < > My <e.
xeA XA} S+ k=m+1 €A k=m+1
Therefore, Z |lgx(x)|| converges uniformly on A. O

k=1
m Application
(I) (Continuous and nowhere differentiable function) (Reference from [Rudin])

Theorem 4.2.8. There exists a real continuous function on R which is nowhere differen-
tiable.
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Proof. Define ¢(x) = |x| on [—1, 1] and extend ¢(x) to a 2-period function on R (still call
#(x)). Then, ¢(x + 2) = ¢(x) for every x € R.

Thus, for s,t € R,
¢(s) — p()| < s —1] (4.2)

and ¢ is continuous on R.

> 3. ) ) )
Define f(x) = Z (4_1) #(4"x). Since 0 < ¢p(x) < 1, by M-Test, the series converges uni-

n=0 <

formly on R. Hence, f(x) is continuous on R.

Now, we want to prove that f is nowhere differentiable. Fix x € R. (We will show that

h) —
}lin(} A 2 fx) does not exist). Fix m € N and let §,, = i% .

chosen such that Z N (4"x,4™(x + 6,,)) = 0 or Z N (4"(x + 5,,),4"x) = 0.

47" where the sign is

A(xH8,) § e 4™
/ 2
- = -
1\
0 1 2 n n+— 4my n+1
0 X
1
n  4"x nt— n+1
< 1
47(x+3y) ; 5.11:7'4

¢ (4"(x + 6,,)) — d(4"x)

Define r, = 1
Om
e When n > m, then 4§, = i% - 4 s
an even integer. Since ¢(x + 2) = ¢(x),

¢(4"(x + 6,,)) — ¢(4"x) = 0 and hence r,, = 0.

e When 0 < n < m, by (B2),

0 n 47 47(x+8,,) n+l1
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(x4 8,) -4
_ 5 _

and hence, |r,,| = 4™. We obtain

) m m—1
f(x+5(,;i f(X)‘ _ ’Z(%)”r,, z(%)mlrml—\z_:(%)n’"}

|7l

4" and  G(4"(x +6)) — A" x) = £4"5,

v
(O8]
3
|
M
2
I
21
(O8]
3
+
3
8
g
3
3
8

Asm — o, §,, — 0, we have lim flet 6(';1) i)

tiable at x. m]

does not exist and f is not differen-

(II) (Approximate a smooth function by polynomials)
Let f have n-th derivatives at a. We want to use a n-the degree polynomial P,(x) =
ag+ay(x —a) + a(x —a)*> + - - - + a,(x — a)" to approximate f near a. We have q; = %
fork =0,1,---,n and the polynomail is called the Taylor polynomail of n-th degree for

f at a. We have known that

J(x) = Pu(x)

-0 asx—a.
(x—a)

(@)

n!

Question: If f has infinite derivatives at a, what can we say about Z
n=0

(x—a)"?

(i) Does the series converge at x?

(i1)) How much is the Taylor series close to f(x)? Consider R,(x) = f(x) — P,(x) and
use the mean value theorem to estimate the errors.

Moreover, by the same ideas, for a continuous function, we want to use a power series
(o)

Z c,(x — a)" to approximate it. Hence, we nned to consider the issues of the convergence
n=0 .
of the series.

4.3 Taylor Series and Power Series

a Power Series

Definition 4.3.1. We call a series of the form

[ee)

D alx—af

k=0
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a “power series about a” (or “centered at a”) for some sequence {c;};>, € Randa € R. In
particular, if a = 0, we call the series

(o)

S el

k=0
a “Maclaurin series”.
Remark. We can also define a power series in complex number.

Definition 4.3.2. For z € C, we call a series of the form

(o)

D alz—)

k=0

a power series about zq (or centered at zp) for some {¢;};., € Cand zo € C.

Theorem 4.3.3. Let Z cx(x — a)* be a power series in R. Suppose that the series converges at
k=0

some point b # a and define h := |b — a|. Then the series converges on (a — h,a + h). Moreover,

the series converges uniformly on |a,B] if [a, B] C (a — h,a + h).

h h
s - -
converge
c-h OIVEIEES  p=cth
a unif. converges B
I ]
"L J
c-h c b=c¢cth
Proof. W.L.O.G, we may assume that a = 0 and the series
cpx converges at some b # 0. Then h = |b|. b 0 %
k=0 h

[ee)

Since Z cib* converges, |cilh* = |c;b*| = 0 as k — oo. Then there exists N € N such that
=0
for every k > N, |c;[h* < 1. Thus

lck] < for every k > N.

g
For xg € (=h, h),

gmx’a = ;Mllxolk < g%mﬂk = i (%)" <o

k=N
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(o) (o)

Then Z ckx’{, converges absolutely and hence Z ckx'g converges. Since X is an arbitrary num-

k=0 k=0
ber in (—=h, h), Z cpxk converges on (—h, h).
k=0
For [a,B] C (—h, h), choose 0 < ¢ < h such that [a@,8] C A b
(=h +6,h = 9). N
0
Then for xj € [a, ], % <1- W Hence, fore >0andm >n > N,
‘ z”: ckxk‘ < Zn: |lex|HE - (1 - é)k <eg
o~ h
k=m+1 k=m+1
as m, n sufficiently large. Therefore, Z cxx* converges uniformly on [e, ]. O

k=0

Remark. Every series is convergent at the center.

Remark. Let Z cn(z — z0)" be a complex power series. Suppose that the series converges at
n=0

some wy # Zo and define 4 := |wy — zo|. Then the series converges on the set B(zo, /). The series

converges uniformly on any set A where A C B(z, h).

Ri S
- ~
-~ ~—e converges
e ~——
// ///r’ /\\\
/ / \\
/ / uniformly conv. X
" / \

A i P
l

I I
{ ] Z 0 1 1
\ \ /]
\ / \ N /

\ /
\ \ S 7 0

\ Nae , /
~ 4
\\ ~~~~~~ /’/ g
~. @ Sem—mm——- ”
S ————— === R
0

Corollary 4.34. (1) Let Z ci(x — )k be a real power series and diverges at some d # a.
k=0
Define h :=|d — al|. Then the series diverges on (—oo,a — h) U (a + h, ).

c-h

<
-

)
A

cth
> c
7 e
d

diverges diverges

diverges
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(2) Let Z cx(z — 20)* be a complex power series and diverge at some wy € C. Define h =
k=0
[wog — zol. Then the series diverges outside B(zy, h).

/7 diverge

~—— diverge

Definition 4.3.5. (1) A number R is called the radius of convergence of the real power series

(o)

Z ce(x — @)* if the series converges for all x € (a — R,a + R) but diverges if x € (—00,a —

k=0
R)U (a + R, ).
(2) A number R is called the radius of convergence of the complex power series Z ez — z20)
k=0
if the series converges for all z € {z € C | |z — 2| < R} but diverges for all z € {z €
C } |z — 2ol >R}.

Remark. (1) R = sup {r >0 | Z ce(x — a) converges in [a — r,a + r]}.
k=0

(2) R=sup{r>0| Z ci(z — 20)* converges in B(zo, 1) }.
k=0

Question: How to find the radius of convergence of Z cr(x — a)*?
k=0

By Raito Test (or Root Test), consider the series Z by.

k=0
. bk+1 .
If limsup <1 = the series converges.
k—o0 k
.. bk+l . .
If liminf > 1 = the series diverges.
k—o0 k
‘ Dy Crar (x — a)f*! Ck+1 .
For x # a, let ci(x — a)* = by then = —| = |x — a|. Consider
by cr(x —a) Ck
. Cis1 1 .. Cr
limsup |—||x —a| < 1 = |x —al < — — = liminf | —
k—co Ck lim sup,_,, | =+ k—>oo | Cryq
.. Ck+1 . Ck
liminf | —|jx —a| > 1 — |x —al > — - = limsup |—
k—eco | Cg liminf;_, o % koo | Chal
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Ci Ck

= lim inf = R. Hence, the num-

k—o00 Ck+1

If lim
koo | Cryr

= limsup
k—o0 Cik+1

converges, then lim
k—oco | Cpyq

(o)

ber R is the radius of converges and the series Z cx(x — a)* converges on (a — R,a + R) and

k=0
diverges on (—co,a — R) U (a + R, ).
diverges converges diverges
>Ya p >
£ 4 ¥ X
c-R c ctR

Question: How to find the interval of convergence?
(1) Find the radius of convergence

(2) Check whether the series converges at the endpoints a — R and a + R.

Theorem 4.3.6. Let Z ci(x — a)* be a power series with the radius of convergence R, and

k=0
la,B] € (@a—R,a+ R). Then

(a) the power series Z cx(x — a) converges uniformly on [a, B].
k=0

(b) the power series Z(k + Deger(x = a)f converges pointwise on (a— R, a + R) and converges
k=0
uniformly on [a, B].

Proof. 1t suffices to prove (2). For x € [a,B] C (a — R,a + R), choose 0 < h < R such that
[a,B] € (@a—h,a+h)C (a—R,a+R).

c-h cth
I m B
(— m
c-R a c x B ctR

(o)

< 1.Sincea+h € (a—R,a+R), Z ck(a+h) - a)k = Z cih* converges.
k=0 k=0
Thus |ch¥| — 0 as k — oo. Then there exists N € N such that if k > N, then || < 1.

Therefore,

Thenr = x—dl

) 0 |)C—Ll| k &) .
‘(k+ 1)ck(x—a)k‘ = N+ 1) |t - <N+ 1) <o sincer<1

= 7k

By Weierstrass M-test, Z(k + Deger(x = a)f converges uniformly on [a, 5].
k=0
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For x € (a — R,a + R), choose 0 < 6 < R such that c-R+d e+R-3

r u
T J

xX€la—R+6,a+R-1]. R ¢ x R

Since Z(k + Degpr(x — a)f converges uniformly on [a—R+9, a+R—¢], the series converges

k=0
at x and hence the series converges pointwise on (a — R,a + R). m|

Corollary 4.3.7. Let Z ci(x — a)* be a power series with the radius of convergence R. Then
=0

the power series Z cx(x — )X is differentiable on (a — R, a + R). Moreover,
k=0

%[Zw(x—a)k} - i %[ck(x—a)k} _ chk(x—a)k‘l,

k=0 k=0
Remark. Check that

(D Z kep(x — a)<! converges uniformly on [a, 5] for every [@,5] C (a — R,a + R).
k=1

) Z kep(x — a)<! converges pointwise on (a — R,a + R).
k=1

Corollary 4.3.8. Let Z ci(x — a)* be a power series with the radius of convergence R and
=0

(9]

[a,B] C (a — R,a + R). Then the power sereis Z cx(x — a)* is integrable on [a, B). Moreover,

5=0
B
f Z cr(x —a) dx = Zf ci(x — a)t dx.
(07 k=0 k=0 a
Example 4.3.9. The function e¢* = Z — converges on R.
'k I - R gt
edx—f —dx— —dx = = — = ——1=é-1.
f 0 “ 0 :O o k! ; (k+ D'lo — k! e k!
1
Remark. If f(x) = Z ci(x — a)* converges on (a — R,a + R), then f', f”,--- , f® converge on
k=0

(a — R,a + R) and we can take the derivatives term by term.

ok
Example 4.3.10. The series Z % converges on (—1, 1). Hence

(i%) :ki::di% ;x"‘l :ixkzrlx for every x € (-1, 1).

k=1 k=0
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On the other hand, forr € (-1, 1),

© ko o -
;%F£C£E<Z?>dx=fo 1_xdx:—1n(1_,)_

o0
k=1

Question: How about when r = —1?

Observe that Z ( k)
k=1

converges by alternating series test.

(o)

. 11 (- »
tion: -1 + — — — 4 --- = E = _1n2?
Question + 3+ A n2

= —In2. Consider

n—0oo

n ~1 k
Check whether lim Z ( k)
k=1

Then

We have

n _1k 0 1 0 xn 0 1
! )—(—1n2>\:\f dx—(—lnz)\+\f dx\<\fx"dx\: 50 asn— o,
=1 k N _1l_x B _11—x -1 n+1
0

g

o (=1
Therefore, Z

k=1
Example 4.3.11. Find a function y(x) such that

=—In2.

¥’ (x) + y(x) = 0.
Suppose that a solution in the form of a power series about a = 0,
y(x) = Z cext.
k=0

and assume that the series converges on (-6, d). Then
y(x) = Z ke and  y7(x) = Z k(k — 1)cx*2.
k=1 k=2

Plugging into the equation, we obtain

[ee) (o)

0=y +y= > kk= D2+ " et = Y [tk +2)k + Degr + ] 5.
k=2

k=0 k=0
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The coefficients satisfy (k +2)k+ 1)cgyp + ¢ =0 for k = 0,1,2--- and thus the recurrence

Ck
_ % Weh
T+ Dk 42y enave

(R0 : —
Cr = { 2n)! Co ifk=2n

smer ifk=2n+1

relation is ¢y4p =

Therefore,
> X! (=D" ,, X0 (=D" o

X
y = [1—5 4—+---+®x + - ]+C1|:x—§+§+' +(2n+1)‘x +}

D DT
Z(z TR Zin+

= ((pCOS X+ ¢y sinx.

Qa Taylor Series

Let / C R be an interval, @ € I and f : I — R where 7, f,---, f® exist at a. We want to
use polynomials to approximate f when x is near a. In Elementary Calculus, we have knwon
that the n-th Taylor polynomials for f at a would be the best approximation among all n-degree
polynomials near a.

Definition 4.3.12. Suppose that f is a function such that f'(a), f”(a),--- , f*(a) exist. Define

f(")( )

Poar(x) =co+ci(x—a)+cx— a) +- -+ (x—a)' = Z (x— a)k

(k) a)

where ¢, = fork =0,1,---,n. The polynomial P, , s(x) is called the “Taylor polynomial

of degree n for f at a”.
Theorem 4.3.13. Suppose that f is a function such that f'(a), f”(a),--- , f™(a) exist. Then
li f(.X,') - Pn,a(-x)
im ——— -

x—a (x — a)”

=0

Proof. Consider

f@-Pu® - 0 -af @

(x—a) - (x - a)" n!
A
Let O(x) = f(x) - Z R a)* and g(x) = (x — a)". Then, for 1 <i<n-—1,
k=0 ’

F" V(@) — ay' !

() — £ —_ £ _ £U+D _ .
0" = 1) - f@) - D (@)x - a) IR

Hence, lim Q”(x) =0 fori =0,1,2,--- ,n — 1. On the other hand,

@) =nn-1---(n—i+Dx-—a)
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and hence lim g”(x) = 0fori = 0,1,2,--- ,n — 1. By applying L’Hopital’s Rule z — 1 times,

i L9 = Pral®) Q) f “(a)
x—a (x=—a) T xoa g(x) n!
e QW )
~ xoa g'(x) n!
LH. .
e . Q" V() ™)
B }cl—rg g"D(x)  nl
i W - @ @
T xoa nl(x —a) n!
= 0.

O

Theorem 4.3.14. Let P and Q be two polynomials in (x — a), of degree less than or equal to n.
Suppose that P and Q are equal up to order n at a. Then P = Q.

R
Proof. We claim that if R(x) is a polynomial of degree less than or equal to n and lim @) =0,

x—a (_x - a)”
then R(x) = 0.

Proof of claim: Expressing R(x) as a polynomial in (x — a)

R(x) = by + by (x —a) + by(x —a)* + --- + b,(x — a)",
we want to show that b; = 0 fori =0, 1,2,--- ,n by induction.

R
Since lim (x)
x—a (X — a)”

= 0, we have
0 <lim|R(x)| < lim|(x — a)|" = 0.
Then R(a) = limR(x) = 0. Thus, fori =0, by =0and R(x) = by(x —a) + - - + b,(x — a)".
Ifby=by =---=b;=0for1 <i<n,then R(x) = by ;(x —a)™ +--- + b,(x —a)". By

. - .. R
using the similar argument as above, since lim ¥
x—=a (X —dad

= (0, we have

R .

lim & < lim|x — /"D = 0.

x—a (x - a)”'l x—a
Hence,

R .
0 = lim L)_ =1limbi, + bisa(x —a) + -+ + by(x — @)V = by,
x—a ()C - a)H'l x—a

By the induction, we have by = b; = --- = b, = 0 and the claim is proved.

Now, define R(x) = P(x) — Q(x). Since P and Q are equal up to order n at a, R(x) is a
polynomial of degree less than or equal to n and

T Rx) .. PXx)-0(x)

im =lim ——~ =
x—a (x —a)t x—a  (x —a)

By the claim, R(x) = 0 and hence P(x) = Q(x). O

0.
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Corollary 4.3.15. Suppose that f has nth derivative at a and P is a polynomial in (x — a) of
degree less than or equal to n which equals f up to order n at a. Then P(x) = P, 4 ¢(x).

Proof. Since

m P()C) - Pn,a,f(x) - lim P(X) - f(x) + lim f(x) - Pn,a,f(x)

= =0,
x—a (x=a) xa (x—a) x—=a (x—a)y

P(x) and P, , s(x) are equal up to order n at a. Also, P and P, , ;(x) are polynomials of degree

less than or equal to n. By Theorem E3.14, P(x) = P, , s(x). O

Question: Can we estimate the difference between f(x) and P, ,(x) when x is in some interval
of a?

Definition 4.3.16. We define the remainder term R, ,(x) by
Rn,a(x) = f(x) - Pn,a(x)
By the definition of the remainder,

f(”)( )

f,l( ) a)Z +- ()C - ) + Rn a(x)

() = Pua(%) + Ryo(x) = f(@) + f(@)(x —a) +

Observe that

f = f(a)+ff’(t)dt
&«

RO,u(x)
f [ (0t dt

P fa)+ f (o -
= f@)+ f(0)x - fa)a - f P di

- @+ flat-a- fa@rs o | fGo d
= f@+ @G-+ (£ - f@)x - f " o de
Y @+ r@e-as ([ roas- [ o
- @+ fax-a+ [ 0 di

Xf///(t) _ )
a+fa 5 (x—0"dt

= fla)+ f(a)(x - a)+f”() a)2+fxf,;(t)(x—t)2dt

N -

Rz::(x)

R 1‘:()6)

I.B.P (x - t)2

= f@+f(@x-a)-f"0-
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By induction, if f®*V is continuous on [a, x], then

X L(n+)
R,4(x) = f / ‘ © (x—1)" drt (integral form)
a n!

a Taylor Theorem

Theorem 4.3.17. (Taylor Theorem) Let f(t) be a n + 1 times differentiable function on [a, x)
and R, ,(x) be defined by

(@)

n!

f(x) = f@ + fla)(x—a)+--+

(x—a)" + R,.(x).

Then

(a) (Cauchy form)

(n+1)
R,.(x) = ! - © x=8"(x—a) for some & € (a, x).
(b) (Lagrange form)
(n+1)
R, .(x) = ](Cn - l(f') (x —a)™"! for some & € (a, x).

(c) (Integral form)

X r(n+1)
Roa(x) = f PO G ar

n!

Proof.

Recall the Cauchy Mean Value Theorem: If F and G are continous on [a, x] and differen-
tiable on (a, x), there exists & € (a, x) such that

F(x) - Fa) _ F'(&)

G(x)-G(a) G

Define F on [a, x] by

JARO)

n!

F)=fO+f(Ox—1)+---+

(x—0)".
Let G be a differentiable function on [a, x] such that G’(f) # 0 on (a, x). By the Cauchy Mean

Value Theorem, there exists a number & € (a, x) such that

F(x) - F(a) _ F'(§)
G(x)-G@) G'(&)

4.3)
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Also,
(1)
F) = Fa) = )~ [f@ + F@=a+ -+ T ay] = Ry
and
f(n+1)(€;) f(n+1)(€;) .
F'(é) = fA4&) - fAO) + [ &x=8) - fUOH=E) + -+ ——(x —f)—T( - &)
By (E3),
f ("“)(f) G(x) — G(a)
R, .(x) = -& s —.
a(x) = (x—&)"- )
(a) Let G(¢) =t — a. Then G(x) — G(a) = x —a and G'(¢) = 1. Hence,

(n+1)
Rn,a(-x) = ‘%(X - é;)n(x - a)-

(b) Let G(t) = (x —)""'. Then G(x) — G(a) = —(x — a)**! and G’(¢) = —(n + 1)(x — €)". Hence,

(n+1)
TG P

Rn,a(-x) = (I’l n 1)‘ ()C

The part(c) is proved by using integration by parts. O
Remark. In Theorem B3 17,

(i) the £ in part(a) and part(b) are usually different.

(i1) the £ in part(a) and part(b) depend on a and x.

(i) by part(b), if | f"*1(r)| < M for all ¢ € [a, x], then

Ix—al"”
Rua M-
[RuaCO] < M- <05,
(iv) by part(c), if | f™*P ()| < M, then
M| (* M . M
Rya S_‘ —l‘ndl“: ’— — ! = — gl**!
[Rna0)] n!fa(x ) el - ET e =

Theorem 4.3.18. Let f : (a,B) — R be an infinitely differentiable function and a € (a, ).

(1) Foreveryn € Nand x € (a,f5),

n (k) X p(n+l)
f(x) = Z ! (a)(x— a) + f A py (t)(x— N dt.

!
ekl
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(2) Moreover, for some O < h < oo such that (a — h,a + h) C (a,f3), suppose that there exists
M > 0 such that | f®(x)| < M for all x € (a — h,a + h) and k € N. Then

[ee)

(k)
f@w=>y F7D ¥ forallxea—ha+h.

k=0 k!
- [P(a) k
Proof. 1t suffices to prove (2). Let s,(x) = Z T(x —a).Forxe(a—h,a+h),
k=0 ’
X (n+1)(t)
- sl < | [ B
< —h"-|x-d
n!
n+l
< M- ' (independent of x)
n
Given € > 0, there exists N € N such thatif n > N,
n+1
lsn(x) = f(Ol < M <&
. . - f(k)(a) k
Hence, {s,(x)} 7, converges to f(x) uniformly on (a—h, a+h). We obtain f(x) = Z 0 (x—a)

k=0
uniformly on (a — h,a + h).

4.4 The Space of Continuous Functions

m Some common spaces of functions

Let X, Y be two sets (metric spaces, normed spaces). We introduce some specific spaces of
functions which are often used.

C(X;Y), C(X)=C(X;X), C(X)=C(X;R).Forexample, C([a,b]).
Ch(X:Y)

L(X;Y), L(X:X).

e B(X;Y).

Remark. The above notations are usually used for the field of mathematical analysis but not
for all fields in mathematic. Also, those notations are not universal for all authors. Different
books may have different definitions for every notation.

Definition 4.4.1. Let (M, d) be a metric space, (V,|| - ||) be a normed vector space and A C M.
We define
C(A; V) = {f AV } f is continuous onA.}.
and
Cy(A;V) := {f: A > V| fis continuous and bounded on A.}.
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Remark.

(1) Cy(A;V) CC(A; V).

(2) Both C(A; V) and C;(A; V) are vector spaces.

(3) If K € M is compact, then C(K; V) = C,(K; V).
Definition 4.4.2. We can define a norm on C,(A; V) by

1Al = supllfCo)ll - for every f € Cr(A;V)

We call “|| - || the “sup-norm” of f.

Note: We should be careful that || - || is the norm on V and || - || is the norm on C,(A; V).
Remark. || - || is not a norm on C(A; V) since it is possible that there esists a function f €
C(A; V) such that || flle = 0.

Proposition 4.4.3. Let (M, d) be a metric space, (V,|| - ||) be a normed space and A C M. Then
(Cb (A : V), [l - ||00> is a nomed vector space.

Proposition 4.4.4. Let (M,d) be a metric space, (V,|| - ||) be a normed spaces, A € M and
fof €Cy (A; V) for every k € N. Then {fi};7, converges uniformly to f on A if and only if

{fil2, converges to f in (C’b (A V), 1l- ||oo).

(C(AV), [ o)

Proof. (Exercise) O

Theorem 4.4.5. Let (M, d) be a metric space, (V, || - ||) be a normed vector space and A C M. If
(V| - 1) is complete, then (Cb (A; V), l| - ||oo> is complete.

Proof. Let {fi};2, be a Cauchy seugnece in (Cb (A; V).l - ||oo>.

To prove that there is f € C,, (A; V) such that {f;},2 , converges to f in (Cb (A; V), ||'||oo).
That is, ]}im Ilfx — fllo = 0.
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For € > 0, there exists N € N such that if m, n > N then

1fon = falleo = Sup /() = fu(OIl < &.

Hence, for every x € Aand m,n > N,

lfn(x) = fu(Il < €.

Since (V,|| - ||) is complete, by the Cauchy criterion, there exists a function f : A — V such that
{fi}iz, converges uniformly to f on A.

Since {fi},=, is a sequence of continuouos functions, f is continuous on A. That is, f €

(C(A V)l )

Now, we need to show that f is bounded on A. Since f; — f uniformly on A, there exists
N; € N such thatif k£ > Ny,

I1fi(x) = fFOll < 1

for every x € A.

Since fy, € Cp (A; V), there exists M > 0 such that ||fy,(x)|| < M for every x € A. Then
IF N < NIf(x) = fay Ol + [ fv, I < 1+ M for every x € A.
Hence, f € C,(A; V) and this implies that {f;};>, converges to f in (Cb (A V), 1l- ”oo). o

Example 4.4.6. The set U = {f € C([O, 1];R) ‘ f(x) > 0 forevery x € [0, 1]} is open in
(€ (10. 11:R). 11 Il ) -
Proof. Let f € U. to prove that there exists 6 > 0 such that the ball

B(f.6) = {g € C(I0. 11:R) | |If ~ glln < 6} € U.

Since f is continuous on [0, 1], there exists xo € [0, 1]
such that f(xy) = n%(%rll] f(x) > 0. Choose 6 = % f(xp). For A

g € B(f,0) and for every x € [0, 1],

g = () - (f) - g(x)
> f() - 1f () - g “
= S0 ZR U e .
= fGo) -~ If ~ gl _
1 X '
> 5f(x) ’ ° !
> 0.

Hence g € U and this implies B(f,d) € U. Since f is an arbitrary element in U, U is open
in (G (A V).l 1.
O
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4.5 Arzela-Ascoli Theorem

Review: Let {a,} ", be a sequence of bounded real numbers. By the Bolzano-Weierstrass theo-
rem, there exists a subsequence {a,,};”, and a € R such that a,, — a as k — oo.

Let (M, d) be a metric space, A € M and f; : A — R be a sequence of functions such that
for every x € A, {f,(x)}", is a bounded sequence of real numbers. [That is, for every x € A,
there exists M, > O such that |f,(x)] < M, for every n € N. But it may not have a universal
number M > 0 such that |f,(x)| < M for every n € N.]

Question: Is there a subsequence {f,, };7, and f : A — R such that f,, — f on A (pointwise or
uniformly).

Definition 4.5.1. Let (M, d) be a metric space, (V,|| - ||) be a normed vector space, A € M and
Z be a family of function from A into V. (Thatis, # C {f | f: A - V}).

(1) We say that .# is pointwise bounded (precompact, compact) on A if for every x € A, the set
Fy:={f(x) | f € #} is bounded (precompact, compact) in (V]| - |)).

(2) We say that .# is uniformly bounded on A if the set F := U F,= {f(x) ’ feZ, xe A}

x€A

is bounded in (V, || - |]).

(3) In particular, if .% is pointwise bounded, then there exists a function ¢ : A — R such that
for every x € A and every f € .

If (Ol < ¢(x).

Moreover, if .% is uniformly bounded, there exists M > 0 such that for every f € %,

If (ol < M.

1
Example 4.5.2. (1) f,(x) = — on (0,1). Then {f,}>, is a pointwise bounded sequence of
nx

n=1

functions on (0, 1), but is not uniformly bounded on (0, 1).

(2) fu(x) = sin(nx) on R. Then {f,}", is uniformly bounded on R.

n=1
[e6]

Rewritten Question: Suppose {f,}, is pointwise (uniformly) bounded sequence of real-
valued functions on A. Is there a subsequence {f,, };7, which converges on A?

Answer: No! Even if {f,}2, is uniformly bounded sequence of continuous function on a
compact set A, there need not exist a subsequence which converges (pointwise) on A.

Example 4.5.3. Let f,(x) = sin(nx) on [0, 27r]. Assume that there exists a subsequence {f, };7,
which converges (pointwise) on [0, 27]. Then

2
lim [sin(nkx) - sin(nk+1x)] =0

for every x € [0, 2x]. Thus,

27

2
lim | sin(n,.x) - sin(n.1x)] " dx = 0. (Skip the proof)
- Jo
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But )
d 2
f [sin(nkx) — sin(nkﬂx)} dx =2n
0

for every k € N.

Remark. If A is countable, it is doable.

Theorem 4.5.4. Let {f,}" | be a pointwise bounded sequence of real-valued functions on a

countable set A, then {f,}~ | has a subsequence {f,,}- | such that { f,, (x)};7, converges for every
x €A

(o)

Proof. Since A is countable, we can write A = {x; | i = 1,2,3,---}. Since {f,(x)}2, is a
bounded sequence in R, {f,}” | contains a subsequence { f +},>, such that { f; x(x1)};>, converges.
Denote this subsequence S ;.

Take x; into {fx},>,. Since {f;«(x2)};2, is a bounded sequence in R, {fi};7, contains a

subsequence {f21},2, such that {f>4(x2)};2, converges. Denote this subsequence S .

Continue this procedure, there exists S, S5,,53, -+ which we represent by the array

Sii Al fa As fa s
S2: fars , f3s faas Sass
S3: far, S , fas frss
Sa: furs  fire fize |[fas) fis

Sn: fn,l, fn,z, fn,3, fn,4, fn,s, T, ,

and which have the following properties.

(a) S,411s asubsequence of S, forn=1,2,3,---

(b) {fux(x,)};2, converges as k — oo.

(c) The order where the functions appears is the same in each seugence.

Now, we choose the sequence S = {fix},2,. By (¢), S (except possible its first n — 1 terms) is a

o0

subsequence of S, forn = 1,2,---. Hence, by (b), {fix(x)};2, converges for every x; € A. O

Review: Let (M, d) and (N, p) be two metric spaces, A € M and f;, f : A — N be maps. If
Ji — f uniformly on A, then f; — f pointwise on A. But the converse is false.

Question: Under what additional conditions, the pointwise convergence implies the uniform
convergence?

By Dini’s theorem, suppose that

(1) K € M is compact,
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(2) fu,f : K — R are continuous, and

(3) fur1 = f foreveryn € N.

Then if f, — f pointwise on K, we have f, — f uniformly on K.

Remark. Conditions (1), (2) are reasonable hypotheses, but the monotonic condition (3) is
unusual. Is there any substitute condition?

Review: Let (M, d) and (N, p) be two metric spaces, A € M and f;,f : A — N be maps. If
Ji — f uniformly on A, then f; — f pointwise on A. But the converse is false.

Question: Under what additional conditions, the pointwise convergence implies the uniform
convergence?

By Dini’s theorem, suppose that
(1) K € M is compact,
(2) fu, f : K — R are continuous, and
(3) fu+1 = f, forevery n € N.

Then if f, — f pointwise on K, we have f, — f uniformly on K.

Remark. Conditions (1), (2) are reasonable hypotheses, but the monotonic condition (3) is
unusual. Is there any substitute condition?

a Equicontinuous Family of Functions

Let (M, d) be a metric space and (V, || - ||) be a normed vector space and A € M. Recall that
if a function f : A — V is uniformly continuous on A, then for every & > 0, there exists 6 > 0
such that for x,y € A with d(x,y) < 9,

1f () = fOl < &.

Consider f;, f, : A — V are both uniformly continuous on A. Then for € > 0, there exist
01,02 > 0 such that for x,y € A with d(x,y) < ¢y,

/i) - il <e
and for x,y € A with d(x,y) < 65,

() = LIl < &.
Let 6 = min(dy, 9,). Then if x,y € A with d(x,y) < 0,

i) = fidll <& and |f2(x) = LO)II < &.

Question: How about .# is a family of infinitely many uniformly continuous function on A?

In general, if .# consists of infinitely many uniformly continuous function on A, for given
g > 0, it is impossible to find 6 > 0 such that |[f(x) — f(y)]| < & whenever x,y € A with
d(x,y) < 6 forevery f € F.
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x2

Example 4.5.5. Let {f,}*2, be a sequence of function defined by f,(x) = m on
- nx
[0,1]. Then |f,(x)] < I and hence {f,}**, is uniformly bounded on [0, 1]. Also, for every

x € [0,1], lim f,(x) = 0 but fn(%) = 1 for every n € N. Therefore, there exists no subsequence

which can converge uniformly on [0, 1].

Definition 4.5.6. Let (M, d) be a metric space, (V, || -||) be a normed vector space and A C M. A
family .% of continuous function in C(M; V) is said to be “equicontinuous” if for every & > 0,
there exists 6 > 0 such that

IfCx) - fWll <&
whenever x,y € A with d(x,y) < § and f € 7.
Remark.

(1) A subfamily of an equicontinuous family of functions is equicontinuous. (That is, if .Z# is
equicontinuous and ¢ C .% then ¥ is equicontinuous.)

(2) Let.# be an equicontinuous family of functions. For every f € .%, f is uniformly continu-
ous.

(3) Every family consists of finitely many uniformly continuous functions is equicontinuous.
2

X

Example 4.5.7. (1) Let f(x) = 21 -nxe

equicontinuous.

on [0,1]. Then . = {fn | n € N} is not

(2) Let ¥ = {f :R->R ‘ |f"(x)| < M for every x € R}. Then .% is equicontinuous.

Lemma 4.5.8. Let (M, d) be a metric space, (V,|| - ||) be a normed vector space and K C M be
a compact subset. If B is precompact in (C (K ; V) Wl - ||00), then B is equicontinuous

Proof.
Assume that B is not equicontinuous. There exists Compactness implies (1) infinity
€ > 0, a sequence of functions {f;};>, in B and — finiteness; (2) convergent sub-
X, Vi € K with d(xg, y) < %, but sequence
Precompactness implies conver-
fi(xi) = Sl = &. gent subsequence
Since B is precompact in (C (K5 V), I- ||oo> and K is compact in M, there exists subsequences

{fi, )2, and {x,}%2, such that {f;,}%2, uniformly converges in B c (K;V), say fi, — f uni-

formly, and {xkj}‘;.‘;l converges to xy € K.

1 . .
Since d(xi,yr) < —, the corresponding subsequence {ykj};';l converges to xp. Since f is

continuous at x, for € > 0, there exists 6 > 0 such that if x € K with d(x, xp) < 6,

£ () — fxo)ll < Z
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Since f;; — f uniformly on K, x;;, — xo and y;, — xo as j — oo, there exists N € N such that
for every j > N and every x € K,

I1fie,(x) = Ol < Z d(xy;, Xo) < 6 and d(y;, xo) < 6.

We have
e < |finOery) = Siy Qi)
< IIka(ka) f(ka)||+||f(ka) f(xO)||+||f(xO) f(yk,1)||+||f(ykN) ka(ykN)II
unlf conv. contlnuous contmuous un1f conv.
e &€ s £
< —+ =4 - =&
4 4 4 4

Therefore, we obtain a contradition.

O

Corollary 4.5.9. Let (M, d) be a metric space, (V,|| - ||) be a normed vector space and K C M
be a compact subset. If {fi}2, < C(K; V) converges uniformly on K, then {fk | k € N} is
equicontinuous.

Proof. Since {fi};>, converges uniformly on K, the set { Jr ‘ ke N} is precompact in C ( )
By Lemma B3R, { f; | k € N} is equicontinuous. O

Remark.

1
(1) The compactness of K is necessary. For example, fi.(x) = — on (0, 1) for every k € N. Then
X

{fi}i2, converges uniformly on (0, 1). But the function — is not uniformly continuous on
X
0, 1).

)

{filiz, € C(K; V) converges uniformly on K = {f; | k € N} is equicontinuouos.
e

For example, fi.(x) = k for k € N. Then { fx | k € N} is equicontinuous. But {f;}77, does
not converges on K.
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Question: Under what additional conditions does the converse hold?

Guess: There are two possibilities:
(1) “pointwise convergence on K + “equicontinuous”, or

(2) “pointwise convergence on a dense subset E of K’ + “(V, [| - ||) is a Banach space” +
“equicontinuous’.

Lemma 4.5.10. Let (M, d) be a metric space, (V,||-||) be a Banach space, K C M be a compact
set and { Jx ‘ k e N} cC (K ; V) be equicontinuous. If {fi};., converges pointwise on a dense
subset E of K, then { fi};., converges uniformly on K.

fy

uniformly conv. on the finite set

Proof. It suffices to show that {f;};” | satisfies the Cauchy criterion. That is, for given & > 0,
there exists N € N, such that for k, £ > N,

1fi = flleo < &.

Let £ > 0 be given. Since { Ji ‘ k e N} ccC (K ; V) is equicontinuous, there exists § > 0
such that if x,y € K with d(x,y) < 9,

E
/(%) = frII < 3 for every k € N.

Since K is compact, K is totally bounded. Also, E is dense in K. We can choose x;,--- ,x; € E
such that

Since {fi};2, converges pointwise on E, there exists N € N such that for every k, £ > N,

||fk(x,-) —fg(x[-)” < g foreveryi=1,---,N. 4.4)
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L

0
Fix x € K. Since K C UB(x,-, 5), there exists 1 < j < L such that x € B(x;,2). Fork,£ > N,
i=1

1) = 0l < A = RGN + 1) = Flepll+ i) = £l

equicontinuouos =) equicontinuous
E E &

< —+-+=-=¢.
3 3 3

Since x is an arbitrary point in K and (V, || - ||) is complete, by Cauchy criterion, there exists
fecC (K ; V) such that {f;};>, converges uniformly to f on K. |

Remark. Let (M, d) be a metric space, (V,|| - ||) be a Banach space and K C M be compact.
Then {f,}>>, € C (K ; V) converges uniformly on K if and only if {f,}’ | is equicontinuous and
pointwise converges on K.

For the direction “="", the compactness is necessary.
For the direction “<=", it only needs totally boundedness.

Heuristically review that for f,, f € C(K; V),

(1) Observe that f, — f pointwise on K but not uniformly. It is possible that the functions
J» rapidly increase somewhere (for example, f,(x) = x" on (0, 1)). In order to exclude
this situation, we add the hypothesis of equicontinuity.

(2) Lemma B5R = Corollary B39 = if f, — f uniformly on K, then {f,} is equicon-
tinuous. = the rapid oscillation cannot happen.

(3) Uniform convergence on K = equicontinuity. But the converse is false. Under what
additional conditions the direction “<=" holds?

Guess:

(i) pointwise convergence on K + equicontinuous

(i) pointwise convergence on E which is dense in K + (V,||-||) is complete + equicon-
tinuous.

Recall our questions: let (M, d) be a metric space and A C M.

(o)

1. Let {f,};>, : A — R be pointwise bounded. Is there a subsequence {f,},>, which con-

verges on A?

2. Let{f,}2, € C (A;R), f» — f pointwise on A. Under what additional conditions, the

n=1 =
convergence is uniform?

Known facts:
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(1) If A is countable and {f;};7, is pointwise bounded, there exists a subsequence {f,, };,
which converges on A.

(2) If A € M is compact, {f,}>, is equicontinuous and f, — f pointwise on a dense subset

of A, then f, — f uniformly on A.

(3) Every compact set in a metric space contains a countable dense subset.

Organize the above conditions:

A C M : compact subset {fike,:A—>R {fu) S C(A;R)
~—_——
(@)
3) ﬂ +
+
there exists a countable pointwise bounded on A
dense subset E of A s
: . equicontinuous
~—_———

(©)

(Dﬂ

there exists a subsequence {f,, };”, which convergs on E

2) ﬂ

Resultl: {f, };2, converges uniformly on A.

Result2: {f,, };2, is uniformly bounded on A.

a Arzela-Ascoli Theorem

In this section, we start with two questions:

Question 1: If f, : A — R is pointwise bounded, is there a subsequence {f,, };2, converges on
A (pointwise or uniformly)?

Question 2: If f, — f pointwise on A, under what additional conditions, we obtain uniform
convergence?

Answer 1: Yes, if A is countable; but no if A is uncountable.

Answer 2: Suppose that
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(1) K is compact (totally bounded)
(i1) {f,} is equicontinuous
(iii) Either
(a) f, — f pointwise on K or
(b) f, — f pointwise on a dense subset E of K and (V, || - ||) is complete.

Then f, — f uniformly on K.

Theorem 4.5.11. (Arzela-Ascoli Theorem) Let (M, d) be a metric space, K C M be a compact
subset and f, : K — R be a sequence of functions. Suppose that {f,}, is pointwise bounded
and equicontinuous on K. Then

(1) {fu)2, is uniformly bounded on K.

(2) {fu);2, contains a uniformly convergent subsequence.

Proof. Let & > 0 be given. Since {f,}, is equicontinuous on K, there exists 6 > 0 such that if
x,y € K with d(x,y) <6,

|fu(x) = f()| < & foreveryn e N.

Since K is compact, there are finitely many points x;,--- , xy € K such that K C U B(x;,0).
i=1
(1) Since {f,},7, is pointwise bounded on K, fori = 1,--- , N, there exists M; > 0 such that

|f,(x)| < M; forevery n € N.

Let M = max(M,,---,My). Since K C U B(x;,0), for x € K, there exists 1 < j < N such
i=1
that x € B(x;, ). Hence,

[/l < 1fu(x) = fulxp)l+1fu(x)] < M + & forevery n € N.
~———— N —

<& <M

Therefore, {f,}, is uniformly bounded on K.
(2) Since K is compact, K contains a countable dense subset, say E. Moreover, we can choose
finitely many point y,--- ,y, € E such that K C U B(y;, 9).

Since {f,}", is pointwise bounded on E, there ex1sts a subsegeuence {f,, };2, converges
pointwise on E. Then there exists Ny € N such that if k, £ > Ny,

| i) = fo, )l <& foreveryi=1,2,---,r
If x € K, there exists 1 < s < r such that x € B(yy, 9). Thus for k, £ > Ny,
|fo (%) = fa, (0] < Lf;zk(x) = Ju V)l +Lfnk(ys) - fn(()/s)Jl"' [faes) = S, (X

equi. conti. pointwise conv. equi.conti.
< g+e+e=3e

By the Cauchy criterion, {f,,};7, converges uniformly on K.
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Review: Let (M, d) be a metric space and K € M be compact.

(o)

(1) {fu}u=1 € C(K;R) is equicontinuous and pointwise bounded on K if and only if {f,}*, has
a uniformly convergent subsequence.

(2) BcC (K ; R) is equicontinuous and pointwise bounded on K if and only if every sequence

in B has a uniformly convergent subsequence in (C (K ; R) NIE ||oo).

Note that, so far, we do not prove that the set B is compact in (C (K ; R) NIE ||oo> yet since we

only prove that there exists a subsequence converges in (C (K ; R), Il - IIm) rather than in B.
. uniformly ]

}B:equicontinuous

+
p.w bdd

m
L
|
<

0 Compact Sets in C(K; V)

Theorem 4.5.12. Let (M, d) be a metric space, (V,|| - ||) be a Banach space, K € M be com-
pact. If B C C(K ; V) is equicontinuous and pointwise precompact, then B is precompact in

(C(&: V).l I ).

Proof. To prove that every sequence in B has a convergent subsegence in <C’ (K ; V), Il - ||0<,>.
[That is, if {f,}°7 , € B, then there exists a subsequence {f,, };>, which converges uniformly.]

Let {f,}’>, € B be a sequence in B. Then {f,}, is pointwise precompact on K. Since K
is compact, K contains a countable dense subset £ C K. By using the diagonal method, there
exists a subsequence {f,,};>, which converges pointwise on E. (Note that we can do this since
{f»})7, 1s pointwise precompact.)

Since E is dense in K and {f,, };, is equicontinuous on K, {f,, };>, converges uniformly on
K. i

Remark.
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(1) AsetBCC (K ; V) is precompact if and only if B is equicontinuous and pointwise precom-
pact.

(2) Aset BC C(K;V) is compact if and only if B is closed in (C (K5 V). l- ||oo>, equicontinu-
ouos and pointwise compact on K.

Proof. (“=")
Since B is compact in <C(K; V) e ||oo>, Bis closed in <C(K; V) Al ||Do). By Lemma E3R,
B is equicontinuous on K.

It suffices to show that B is pointwise compact on K. For a fixed x € K, let B, = { f(x) | fe
B} C (VI - 1. To prove that B, is compact in (V, || - |]).

Let {f,(x)}’>, be a sequence in B,. Since {f,}*, € B and B is compact in (C’(K; V) NE ||oo>,
there exists a subsequence {f,,},>, which converges to a function f € B. Then {f,, };”, con-
verges uniformly to f on K. Hence, {f, (x)};2, converges to f(x) € B,. We have B, is

compact in (V|| - |]).

(“=")
By Theorem BE5T2, B is precompact and B is closed in (C(K; V), | - ||oo>. Thus, B is
compact in (C(K; V), || - IIOO). O

4.6 Stone-Weierstrass Theorem

a Introduction

Let A C R (orR") and {p,}>", : A — R be a sequence of polynomials. Suppose that p, — f
uniformly (that is, ||p, — fll« = 0 as n — oc0), then f is continuous.

Question: How about the converse? If f € C (A; R) , 1s there a sequence of polynomials {p,}  :
A — Rsuch that ||p, — fllc = 0 asn — 00?

Theorem 4.6.1. Let f : [0,1] — R be a continuous function and & > 0 be given. Then there
exists a polynomial p : [0, 1] — R such that ||f — plle < €.

Proof. (Probabilistic viewpoint)(Law of large numbers)
Consider the binomial expansion

n _ C n k. n—k n _ I’l‘
(x+y)" = kZ:(;Ckx y where C} = —k!(n ey 4.5)

Then taking differentiation,

- d n c n k-1, n—
n )" = )T = ) Gy
k=0
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and multiplying by x,

nx(x+y)"! = Z kCixry" . (4.6)
k=0

Again,

d? -
nn = DR =)' = Sl )T = ) k= DOyt
k=0

and

nn—Dx*(x+y)"? = k(k — 1)CPxky™* 4.7
k
=0

For 0 < x < 1, taking y = 1 — x, then

M=

@) = 1"=) -0t 1

re(x) (4.8)
=0 \_r:(,x)_/ =0
EB) = nx= ) kn(x) [Expected value| (4.9)
k=0
ED) = (- Dx* =) ktk— Dri(x) (4.10)
k=0
Then
D= n0?r(0) = " [kk= 1)+ (1 = 200k + 0% (%) = nx(1 = x). (4.11)
k=0 k=0 T —

Variance

Since f is continuous on [0, 1], f is uniformly continuous on [0, 1]. Then, for £ > 0, there exists
0 > 0O such that if x,y € [0, 1] with |x — y| < 6,

1) = fO)] < g
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Define P,(x) = E f(li)rk(x) . Then for every x € [0, 1],
n
k=0

—
Berstein’s polynomial

- k - k
f@-Pwl 2| 2 G- 1) )| < 2 FC) = ()|t
= 3 - slnms Y ) - i
|K—x|<5_~,§—/ |&—x>6
P (k — nx)?
< 5 + 2| flleo lk-mzn(sm ri(x)
2 00
< £k 2 GG
D e A
s, 2
-2 ne*
Then we can choose N sufficiently large such that 2l <Z Hence,

Né&? 2
|f(x) — Py(x)| <& forevery x € [0, 1].
O
Remark. The statement of the above theorem is equivalent to each of the following statement

(1) Let f: [0,1] — R be a continuous function. Then there exists a sequence of polynomials
{pn}~, which converges uniformly to f on [0, 1].

(2) The collection of all polynomials is dense in (C (10, 11;R), |l - ”oo).

Corollary 4.6.2. The collection of polynomials on |a, b] is dense in (C’ ([a, bl; R) Wl ”oo).

Review of the proof (binomial distribution)

Consider an asymmetric coin with probabilities of head and tail are x and 1 — x respec-
tively. After n-times tosses,

Z k(1 -

cg(1 — )"+ Clx(1 = x)" e+ O = )"+ O
————

=[x+ -x]"

rk(x)
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where r;(x) means the probability of exactly k-times head within n-times tosses. Then

n

Z (%) = 1. (4.12)

k=0

The expected valued of head with n tosses is

Z kri(x) = nx. (4.13)
k=0
Then
"k , o ,
Z Sr(x)=x (D b5 kK EE A B Y ) (4.14)
n

k=0
The variance is X = X; + -+ + X, where X; & % $ % i =X F¥ e7 independent Bernoulli
distributed random variable. We have

Var(X;) = (1 = x)* - x + (0 — x)*’(1 = x) = x(1 — x)

and
Var(X) = Var(X;) + - - - + Var(X,)) = nx(1 — x).

From (BId), 2 ¥ 12 8 f 8 3t n = 15 » N ILEE ch=c Bl M= Bt B L ABiT 2t
MILEF P x, 0 4 #iE B

k
P(I——x|>8)—>0 as n— oo
n
k kti head
FORR - BEH A - R E P E 2 e Sl f(y, P o= S
5

- , FIE n &
, .. ey v n  ntimes tosses
<P AR R E RGBS RELT f(x) 0 A
k
P(f() - f@l>e) -0 as n— oo
n

AR o AP F Y B i f(x) 4_discontinuous. This suggests that
= k
flx) ~ D) = pa(x)
0
S —— .
expected value of the gambling

Bernstein polynomial: Z airi(x).
k=0

C k
1£(x) = pa()] < \ = fC] rk(x)‘ <...
k=0
Var(f()) _ 211/l

n2s2 T n%2o?

nx(1 —x)

P(1f(x) - f(g)l >6) <

Chebyshev inequality
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Question: If K € R (or R") is compact, is the collection of all polynomials on K dense in

(C(K:R). I+l )?

We will start with discussing some abstract theorems and the answer of the above question
will be the application of those theorems.

Let (M, d) be a metric space and K € M be compact. Consider X := (C(K; R), II - ||oo>. If
f,g € X and @ € R then

(D ftgeX (f geX (afeX
Note that f/g may not belong to X.

(ancestor)
Question: Is there any set of functions § = { f1,-++, fu} such that every function in X can be
generated by S under the operators (1), (2) and (3) with finite steps? In other words, is the
family (posterity) of S equal to X?

Answer: It seems to be impossible.

Question: If S = {fi,---, f,} € X, what is the distribution of the family generated by S ?

Definition 4.6.3. Let (M, d) be a metric space and E C M be a subset. A family .7 of real-
valued functions defined on E is said to be an “algebra” if

(1) f+ge o forevery f,g e o/
(i) f-ge o forevery f,g € of
(ili) af € o7 forevery f € &/ anda € R

Remark. An algebra o7 is closed under addition, multiplication and scalar multiplication.

Example 4.6.4. A function g : [a,b] — R is called a “simple function” if there exists finitely
many subintervals of [a, b], say Ay, --- , A, such that

AinA;j=0 and  [ab]=| A
i=1

and real number a;,a,, - - - , a, such that

gx)y=a; forxeA;, i=12,---,n.

Oo——O
o—-e
o—e
*—ae

*—=0
C e T N ¥ |
L -~ -~ = -~ A
a b
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Then the collection of all simple function is an algebra. (Exercise)
Example 4.6.5. Let E C R" . The collection of all polynomials on E is an algebra.
Example 4.6.6. Let E C R? and the set

n

PeoenE) = {p(%,9,2) = Y @hpon, 'y where ki, ko, ks € NU[O}, ki+ky+ks = 2k and ag,ioi, € R}

k=0
is an algebra.

Example 4.6.7. Let #,(T) be the collection of all trigonometric polynomials of degree n.

P(T) = {%0 + ) cpcoskx+ dgsinkx ( (o (i, C R},
k=1

then P(T) = | ] P,(T) is an algebra.

n=0
Example 4.6.8. Let E C R". Then C(E;R) is an algebra.

Proposition 4.6.9. Let (M, d) be a metric space and E C M be a subset. If o/ C (C b (E ; R) Al ||c><>)

is an algebra, then o is also an algebra.

Proof. Let f,g € /. Then there are sequences {f,}o>,, {gn)e; C & such that f, — f and
gn — g uniformly on E.

since <7 is an algebra, f, + g, € &, f, - g, € & and af, € o/. Also,

fi+g — f+g uniformlyonFE
fn *8n f -8 unifonnly on E

af, — «af uniformlyon E
(Note that || f,[lc and ||g,ll are bounded is necessary.) Then f + g € E, f-g€ o and af € .
Hence, 7 is also an algebra. O

Remark. (Cy(E:R).||-Il) is closedin {f : E - R | [|fll < o}

Question: Is it possible to find a set of functions S = {f;,---, f,} € X such that the family
generated by S dense in X?
Question: If yes, what the sufficient and necessary conditions does the family need to have?

We will rule out some “bad” members of this family.
(1) There exists x # y such that f(x) = f(y) forevery f € S

(2) There exists x € K such taht f(x) = O forevery f € S.

Guess: If .7 C X is dense, then .7 must satisfy
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1. “Separate points on K”: if for every x,y € K and x # y, there exists f € .%# such that

J) # f(y)

2. “Vanish at no point of K”: if for each x € K, there exists f € .% such that f(x) # 0.

Definition 4.6.10. Let (M, d) be a metric space and E C M be a subset. A family .% of functions
defined on E is said to

(1) “separate points on E” if for every x,y € E and x # y, there exists f € .% such that

Jx) # f()
(2) “vanish at no point of E” if for each x € E, there exists f € .% such that f(x) # 0.

Example 4.6.11. P([a, b]) is the collection of all polynomials on [a, b]. Then £ ([a, b]) sepa-
rates points on [a, b]. (e.g. f(x) = x) and vanishes at no point of [a, b] (e.g. f(x) = 1).

n

Example 4.6.12. .., ([a, b]) is the collection of all polynomials of the form p(x) = Z apx’*.

k=0
Then

P oven ([—1, 1]) vanishes at no point of [—1, 1], but does not separate points on [—1, 1].
P even ([O, 1]) vanishes at no point of [0, 1] and separates points on [0, 1].

Lemma 4.6.13. Let (M, d) be a metric space and E C M be a subset. Suppose that <f is an
algebra of funcrtion on E, <f separates points on E, and </ vanishes at no point of E. Suppose
X1, Xy are distinct points of E, and cy, c, are constants. Then </ contains a function f such that

f(x1) =cpand f(x;) = ca.

Proof. Since «f separates points on E, there exists g € &7 such that g(x;) # g(x;). Since &
vanishes at no point on E, there exist &, k € .7 such that h(x;) # 0 and k(x;) # 0. Let

[8(0) — glr)ln(x) [8(x) — g(x)Ik(x)

x)=c c .
/ Mgl — g)Ih(x) — [g(x) — g 1k(xa)
Then f(x;) = ¢ and f(x;) = c». O
Idea:
C
We want a function f satisfying f(a) = c and f(b) = d. ?
- b _
Naturally, we set f(x) = cx b + dz a' But x—a or
a-— -a
x — b may not be in .«/. Hence, we figure out the role ¢

of g(x) [separates points on E].

X X
Why do we need “vanish at no point of £”? How about

Cg(x) - 8(b) N dg(X) - g(a)
gla)—gb)  gb) - gla)

J) = (4.15)
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It is possible that

____c _ cg(b) _ d _ L
1O i =0 s s 305" 50 @
e ¢ o e ¢

Remark. (1) If </ contains a nonzero constant function, then (213) works. But this im-
plies .o/ vanishes at no point of E. Hence, the lemma is more general.

(2) If o separates point on E (or vanishes at no point of E), then so does 7.

Idea of the proof of Stone-Weierstrass Theorem

Given f € C(K;R) and € > 0.
Is there a function g € &7 such
that || f — glle < €7

E +—
K
Hope: For a € K, there exists g, € o such

that
(1) gu(x) > f(x) — e and

(2) lga(x) — f(x)| < enear a

In fact, we could hope g(x) > f(x) — € for
every x € K. Then we can keep part of g, say Fe > +—= M
ga- Viox

Then we can choose a;,a5, - ,a, € K
and set h = min(g,,, " - , &q,)-

Question: Is maxf,g € & or
min(f, g) € o

Consider max(f,g) = % — @ If we
can show f € o = lf] € o, then we
obtain max(f, g), min(f, g) € <.
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Theorem 4.6.14. (Stone) Let (M, d) be a metric space, K € M be a compact set. Let o/ C
(C (K ; R) W - ||0<,> be an algebra, separates point on K, and vanishes at no point of K. Then </

is dense in C(K; R).

Proof. Tt suffices to show that for € > 0, there exists g € </ such that || g—f ||oo <e.

Step 1: If f € <7, then |f| € /.
Proof of Step I:

Let a = sup|f(x)| < oo and let € > 0 be given. Since ¢(y) = |y| is continuous on [—a, a], there

xeK
n

exists a polynomial p(y) = Z ay* on [—a, a] such that ’ p(y) — Iyl‘ < g for every y € [—a,al.

k=0
Then

<& forevery x € K.

P(£09) = IF o)

Since </ is an algebra and f € o7, p(f) = Zakfk € o/ . Hence, |f] € o .

k=0
Step2: If f, g € <, then max(f, g) € o and min(f, g) € o where

BE ORI e i f@ 2 g0
max(/.8) = { o0 if f() < g(xy and min(f.8)= { £ if ) < g)

Proof of Step 2:

f+g If+g —

f+g |f+gl <

+ —
2 2 2 2

Moreover, by iteration, if fi,--- , f, € <, then max(fi, -+, fu) € o and min(fi, -+, fu) € o.

€ o and min(f, g) =

By Step 1 and .7 is an algebra, max(f, g) =

Step 3: For given f € C (K ; R) and a € K, there exists g, € o such that g.(a) = f(a) and
ga(x) > f(x) — & for every x € K.

Proof of Step 3: o
Since &7 separates points on K and vanishes at no point of K, so does .7 Then for every y € K
and y # a, there exists A, € ./ such that

hf(a)= f(@)  and  hy(y) = f().
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Since h, is continuouos on K, there exists an open set V), containing y such that for every x € V,,

hy(x) > f(x) —e.

R

Since K is compact and K C V,, there exist y;,- -+ ,y, € K such that K C V..
p ) yi

yeK i=1

Let g, = max(hy,,--- ,h,,) € o . Then g.(a) = f(a) and g,(x) > f(x) — e for every x € K.

Step 4: Given f € C(K ; R) and & > 0, there exists & € <7 such that
‘h(x) - f(x)| <& forevery x € K.

Proof of Step 4: o
For every a € K, by Step 3, there exists g, € o/ such that

8a(a) = f(a)  and  gu(x) > f(x) —&.
Since g, is continuous on K, there exists an open set U, containing a such that for every x € U,,

ga(x) < f(x) +&.

m
Since K is compact and K C U U,, there exist a;, - -+ ,a,, € K such that K C U U,.
i=1

ack

Let h(x) = min(g,,, - , &, ). Then h € o and
h(x) > f(x)—¢ and h(x) < f(x)+ ¢

for every x € K.
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Corollary 4.6.15. Let (M, d) be a metric space, K C M be compact and </ C C (K ; R) be an

algebra. Then < is dense in (C (K ; R), Il - IIDO) if and only if o separates points on K and
vanishes at no point of K.

Corollary 4.6.16. The set of all polynomials defined on K is dense in (C(K; R), Il - ||oo).

Corollary 4.6.17. Let K C R" be compact and P(K) be the collection of all polynomials on K.
Then P(K) is dense in (C(K:R). || - Il

Example 4.6.18. P, ([0, 1]) is dense in (C([0, 11;R). || [ls ). But Peye, ([-1, 11) is not dense
in (C(I-1L.11:R). 1l - lls)-

Question: Why cannot Taylor series tell us the dense of (C (K;R), |- ||c>o> ?

There may have some reasons.
(1) The Taylor polynomial for f of degree n is
n f(k)(c)

P = )

k=0

(x — o).

But a continuous function f needs sufficiently many times derivatives f®(c).
(2) Even the Taylor series exists, we cannot say that P,(x) — f(x)asn — oo

(3) Evenif P,(x) — f(x)asn — oo on (¢ — R, ¢ + R), the interval of convergence may not
contain the domain of f.

(4) Even if the Taylor series converges on R, it may not converges to f uniformly on the

domain of f. For example, f(x) = { (c)osx ii {:%E)EIO]\ _z 1) Then the Taylor
; 2

2 b
polynomial P, o(x) conveges to cos x which will not converge to f on [-10, 10].

Remark. The Stone-Weierstrass Theorem says that for every continuous function defined on a
compact set can be approximated (uniformly) by polynomials. Unfortunately, the converging
rate of this approximation is too slow.

4.7 Contraction Mappings

Definition 4.7.1. Let (M, d) be a metric space and ¢ maps M into M. We say the map ¢ a
“contraction mapping” if there is a constant O < ¢ < 1 such that for every x,y € M

d(¢(x), () < cd(x,y).

Remark. (1) A contraction mapping is uniformly continuous.
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(2) Let f : R — R be differentiable such that |f’(x)| < ¢ < 1. Then f is a contraction mapping
on R.

Example 4.7.2. Let f(x) = x*> on [0,7]. For 0 < x < y < r, there exists ¢ € (x,y) such that
JO) - f(x) = f'(c)(y — x) = 2c(y — x). Hence, if r < % then 2¢ < 2r < 1 and this implies that f
is a contraction mapping on [0, r].

Question: Is f(x) = x* a contraction mapping on [0, %]?
Assume that f is a contraction mapping on [0, %]. There exists 0 < ¢ < 1 such that

’f(x) - f(y)! <clx—y| foreveryx,y € [0, %].

Letx, = . Then

1_1
2 n

1 1 I 1, 1.1 1
S - fa)|=7-(G-= = (1- )5 - = - fliciently large.
’f(z) f(x)] 1 G n) ( n)|2 X >c|2 x,| asn as sufficiently large

. . . 1
Hence, f is not a contraction mapping on [0, 5].

m Fixed point
Definition 4.7.3. Let (M, d) be a metric space and ¢ : M — M be a mapping. We call a point
Xo € M a fixed point for ¢ if ¢(xp) = xo.

Theorem 4.7.4. (Contraction Mapping Theorem)(Banach Fixed Point Theorem)
Let (M, d) be a complete metric space and ¢ : M — M be a contraction mapping. Then there
exists a unique fixed point for ¢.

Proof. Since ¢ is a contraction mapping on M, there exists a constant 0 < ¢ < 1 such that for
every x,y € M,

d(¢(x), ¢(y)) < cd(x,y).
(Existence) Taking arbitrarily a point xo € M and define x,,.; = ¢(x,) forx =0,1,2,---. Then

d(-xn+] s xn) = d(‘p(xn)’ ¢(-xn—l)
< cd(Xy, Xp1) = Cd(¢(xn—1)’ ¢(xn—2))
< Czd(xn—la xn—Z)
<
< 'd(xy, xp).
If n > m,
d(xn’ -xm) < d(xn’ xn—l) + d(xn—la xn—) +---t d(xm+1, xm)
< (@ HTE 4 MY (x, Xo)

(1 +c+-+ " Nd(x, x0)
Cm(l +c+ 6'2 + .- -)d(XI, )C())

IA

Since0 <c¢ < 1,

1
d(xn’ xm) < " - d(xl, xO)'
1-c¢
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Hence, for given &£ > 0, there exists N € N such thatif n > m > N, d(x,, x,,) < €. Thatis, {x,}
is a Cauchy sequence in M. Since M is complete, there exists x € M such that lim x, = x.

n—oo

Check that x is a fixed point for ¢. Since lim x,, = x and ¢ is continuous,
x = lim x, = lim ¢(x,_1) = ¢(lim x,_1) = P(x).
(Uniqueness) Assume y € M is also a fixed point for ¢. Then

d(x,y) = d((x), $(¥)) < cd(x,y).
Thus, d(x,y) = 0 and this implies x = y. O
Remark. (1) Let x be the fixed point for ¢ in the above theorem. For any starting point xy € M,
X = 31_{{)10 3" (x0).
(2) The condition ¢ < 1 is necessary. For example, M = R and ¢(x) = x + 1 (¢ = 1). Then
d(¢(x), () = d(x + Ly + 1) = d(x,y)
But there exists no fixed point for ¢.
(3) Even if ¢ satisfies d (¢(x),¢(y)) < d(x,y), there may not exist a fixed point for ¢. Fox

example M = [1, 00) and ¢(x) = x + % For x >y,

1 1
|6(x) — 9(»)| :x—y+<;—§)<|x—y|.
0

But there exists no fixed point for ¢.

(4) If M is compact and ¢ satisfies d (¢(x), ¢(y)) < d(x,y), then there exists a fixed point for ¢.
Consider g(x) = d (¢(x), x). Then g has minimum x, which is a fixed point for ¢.

Example 4.7.5. Let f(x,y) = ( %x + %y -2, %x - %y + 3) . Determine whether there exists a fixed
point for f . Consider

1 1 1 1
Sx,3) = flx2,32) = (Z(xl - X))+ §(Y1 = y2), g(xl - X2) — g(yl -n)).
Then

1 1 1 2
£ Cey) = foam)|” = (Tg + 5900 = 0)* + 25(01 = 1) = y2) + 501 —32)

IA

1
Sl = x)* + (1 = ¥2)°1

Hence, f is a contraction mapping on R? and there exists a fixed point.

Exercise. Determine whther the functon f(x,y) = (% sin x — % cosy + 2, % cos x + % siny — 1)
has a fixed point.
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a Application

m The Secant Method

Let f be a continuously differentiable on [a, b], f'(x) > 0 on (a, b) and f(a)f(b) < 0. Then
f 1is strictly increasing. By I.V.T, there exists a unique zero of f.
Question: How to find the zero of f?

(x,£(x))

é%o Jox)  x b

Let yo be the zero of f. For x € [a, b], we want to define ¢ : [a, b] — [a, b] such that ¢(x) is
between x and the zero of f (located on the same side of zero as x). By M.V.T,

X Sstays on

f(X) -0 the sa:e side f()C) M,:V,T f’(é:)
x = ¢(x) X = Yo

f/(x) . Assume sup f'(x) <oco.LetM = sup f'(x)+ 1.
f (é:) x€la,b] x€la,b]

Then f(x) > f'(£) (x—</)(x)) and hence ¢(x) > x —

Define ¢(x) = x — % Hence, ¢(x) = x &< f(x) = 0. Consider
¢’(x):1—f;‘(;) > 0.
By M.V.T,
60 - 60)] = 6@l 1 < (1 - min LD 1y

'
c

for every x,y € [a,b]. Since ¢'(x) > 0, ¢ is strictly increasing on [a,b]. For x € [a,b],
a < ¢(a) < ¢(x) < ¢(b) < b. Then ¢ maps from [a, b] to [a,b] and thus ¢ is a contraction
mapping on [a, b]. There exists yy € [a, b] such that ¢(yg) = yo. Choose an arbitrary point
X1 € [a, b] and define x,,; = ¢(x,) and we obtain }}1_{?0 X, = Yo.

m The Newton’s Method (Newton-Raphson Iteration)
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Let f be a continuously differentiable on [a, b], f(a) < 0
and f(b) > 0. By LLV.T, there exists yy € [a, b] such that

Sf(o) = 0.
Choose ¢(x) = x — c(x) f(x) where c(x) is a nonvanishing
function. Then f(x) = 0O if and only if ¢(x) = x. Hence, / :
$(¥0) = Yo. a/
Observation:
Suppose that there exists an interval / of y, such that I ' Ml<e<l
|p'(x)| <c<1 forevery x €l. e
¢'(%)=0
f Choose xq € I and x,,,; = ¢(x,). Then

M.V.T

lx1 = yol |6(x0) = d(v0)| =" 16" (10)llxo — Yol < clxo — yol

2
Xy — < clx; - < c|xp —
X, X, Xo |2 = yol lx1 = yol lxo = yol
E ——

a % b :
I lx, =yol < c"lxo=yol >0 asn— co.

Hence, we will choose a suitable c(x) such that ¢(x) is continuously differentiable and there
exists an interval I of yy such that [¢'(x)] < ¢ < 1 on I. Then we can choose an initial point
Xo € I such that yy = lim ¢(x0).

Now, let’s choose a nonvanishing function c(x). Observe that

d(x) = x—c(x)f(x)
= @ = 1-W)f(x)—cx)f(x)
= o) = 1-=c(o)f o)

Choose c(x) = ]%x) (lqb’(yo)l =0< 1). Since ¢ is continuously differentiable, there exists an
interval I of y, such that |¢’(x)] < c < 1 onI.

Then
f(x) (X, f(X4))

yideo)

P(x) = x = c(x)f(x) = x -

J(xn)

. . ) ) f/(xn). a Xp1 X, b
This method is called “Newton’s iteration”.

Choose x; € I and x| = ¢(x,) = x,

Example 4.7.6. Find a positive root of the equation
26 +2x0° =32 -5x-5=0

with an accuracy of three decimal places.
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Proof. Let f(x) = 2x* + 2x3 = 3x> = 5x — 5. Then f’(x) = 8x* + 6x* — 6x -5, f(1) = -9 and
f(2) = 21. Choose x; = 1.6.

61
o) _ | o 06193

= x - — 16— -2 — 15815
2O NI 33.528
f(x2) 0.114
- ~ 1.5815 — ~ 1.5780
BT R0 32.1623
yo= xs— T8 5780 40,0031 = 1.5811

J(x3)
O
(Sufficient condition:) Let f be a twice continuously differentiable function on [a, b] with

fl@)f(b) < 0. (By LLV.T, there exists yy € [a, b] such that f(yy) = 0.). Suppose that f'(x) # 0
—f(x)f”(x) We have

(r)

|¢'(x)] < c <1 as xis sufficiently close to yy.

for every x € [a, b]. Then ¢'(x) =

Also, we want to find an interval I of y, such that ¢ maps from 7 into /.

Exercise. Problem 5.29

Exercise. Suppose that f is continuously differentiable, f* > 0 on [a,b] and f(a)f(b) < O.
Then there exists yy € [a, b] such that f(yy) = 0. If f'(yp) > O then there exists an interval / of

X) . . .
—— 1S a contraction mapping on I.
J'(x)

m Error of Newton’s Method (Newton-Raphson Iteration)

yo such that ¢(x) = x —

1
Assume [f'(x)] = — and |f"(x)] < 2M for every x € I.
m YN =T

(D @ i
O f) |
From x,,1 = x, Iz )’ E
e = Tl = ]Jf((fc)) < MGl Ko Ko %o
By Taylor’s theorem,
1
f(xn+1) = I(xn) + f,(-xn)(xnﬂ - xn2+§fﬂ(§)(xn+l - xn)2- (416)
-0
Then
1 17 2 @ 2
|f Cene )l = Elf ONxns1 — x0)” < M|x11 — Xl 4.17)
By (B&18), (&17),

2 2
|xn+1 - xnl < le(xn)l < M |xn - xn—ll .

Hence, if |f(x;)| < 1 and M < 1 then f(x,) — 0 by (ETX7) and |x,.; — x,| < |x, — x,_1
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Remark. Let f be a twice continuously differentiable function. Suppose that there exists y
such that f(yy) = 0 and f’(yy) > O (or < 0). Then there exists a neighborhood I of y, such that
6) = x - Jf(x)

J'(x)

Proof. Since f is twice continuously differentiable and f”(y,) > 0, there exists 6; > 0 such that
f/()C) > (0 forx e (y() - 51,}70 + 61) and

is a contraction mapping on /.

PR ICTAC)

(f(0)’

is continuous on (yy — 01, Yo + 01).

Since f(yp) = 0 and f'(x) > 0, ¢’(yp) = 0 and f(x) is increasing on (yy — 61, Yo + d1) and
&(yo) = yo. Then there exists 0 < § < d; such that for x € (yg — 9, yo + 0),

lp'(0)] < 1 (4.18)

<0 x€[yo—96,y0)

20 x€Gpyot o) TOFEvery X €lyo—6.yo+ 6] Thus,

and f(x) {

, (EIm)
lp(x) — Yol = lp(x) — p(yo)l = 1¢"(Ollx — yol < |x—yol < 6.
This implies that
¢(x) € [yo — 8, y0 + 9] (4.19)
By (BE18) and (B19), ¢ is a contraction mapping on [yy — 9, yo + 0]. O
Remark. Under the above assumption, if x; € [y — 6,yo + 6] and x,,1 = ¢(x,), then {x,}
converges to yo which is the fixed point for ¢(x). Also, xj is the zero of f(x).

Remark. The Newton’s method might fail.

£ )
F@) F)

Case 1: |x,| — o0 as n — oo. For example f(x) = x'/* and x; = 1.

and x,, = x,

$(x) = x -
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Case 2: X1 =X3=X5="""=Xopq4] = * " andxzzx4:x6:~-:x2n:~--

For example f(x) = x> —x+ 1 and

X1=x4=x7=---=1,
3

x2:x5:x8:"‘:Z,
1

X3:X6:X9:"':§.

For example, f(x) = x> — 2x + 2 and

Xp=x3=x5=---=0,

Xp=X4=Xg=--+=1.

Case 3: f'(x,) = 0.

Hp) T

Case 4: |x, — yo| > 1

Example 4.7.7. Consider x> —3x — 1 = 0. Let f(x) = x> — 3x — 1 and the three zero of f(x) be
71 <22 <2Z3.

such that the Newton’s iteration {x,}, converges to z3 if

VA
we choose any initial point x; € 1. 7 -l \\/

J )

’

We can check that zz € [1,2]. Find an interval I of z3 /
72 73
0 1 2

Strategy: Let ¢(x) = x — . To find an interval I of z3 such that ¢(x) is a contraction map-

ping on I. To prove (i) ¢ : I — I and (i1) |¢(x) — ¢(¥)| < c|x — y| for some 0 < ¢ < 1 and for
every x,y € I.
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m
NN}

Z3 - D(23) 73

Consider f’(x) = 3x*> =3 = 3(x> = 1) and f”(x) = 6x. Then f’(x) > 0 and f”(x) > 0
<0 xe [1,23)
>0 x€(z3,2] °

Consider

for every x € [1,2]. Hence, f is increasing on [1,2] and f(x) {

¢'(x) = Mﬁ(? For x € [§,2], 5 < f'(x) £9and f"(x) < 12. If |x — z3] < 6,
(f’(x)) 2 4
If(x) = 0l = |f(x) = f(z3)] < |f )llx — z3] < 9lx — z3| < 99.
Therefore,

12-95 192

¢ (0l < 57272 - 25

Then we can choose ¢ sufficiently small such that (i) and (ii) hold.

m Compare the secant method and the Newton’s method

e The Secant Method

d(x) = x— % where M = sup |f'(x)| + 1.

x€la,b]

The slope is never zero. But the rate of convergence
is slow and this method needs to detect the sign of
f’(x) in advance.

e The Newton’s Method

- f’(x) where M = sup [f'(x)| + 1.
J(x) xefab]

The slope f’(x) may be zero. But the rate of conver-

gence is faster and —— will automatically detect the

. 700
sign of f'(x).

$(x) = x
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4.8 The existence and uniqueness of the solutions to ODE’s

R//, t

x(t)
dx(t)
—ar —_FO
>t direction field
pd ~N \ \ ]
e N \ ~ =
- N\ \ -~ -
m Ordinary Differential Equations (ODE)
Let’s consider the initial value problem (I.V. P) for the ODE.
{x’(r) =f(x(0),1) fort € [ty, 1o + Af] (4.20)
x(f) = X (4.21)

Definition 4.8.1. Let / be an interval and ¢, € I. A function x(¢) : I — R" is called “a solution
of the ODE (B20) with initial condition (BZ21l) on I’ if X'(¢) exists on I, and x(7), X'(¢) satisfy
(220) and (E2T).

Question: For given f(x,7) : R”" X I — R" and X € R”, is there a solution to (&220) and (EZXT)?

Question: For what sufficient condition of f, there exists a solution to (22200) and (&_211)?

Question: If the solution exists, is it unique? That is, if x(#) and y(¢) are solutions to (220) and
(B20), are they equal for every ¢ € I?

Heuristic Idea: Suppose g(1) : I — R”, g(1) = (g1(1),-- ,g:(1), &) : I = R, x(t) =
(x1(0), -+, x,(1)) and X = (xp, -+ , x) € R" such that
{ X'(1) (810, . 8u(D)
XO(tO) (x(ly ) xg)

g(1) (X} @), -+, x,(D))
X0 { (x1(10), -+ > xa(to))
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By the Fundamental Theorem of Calculus,

!

x1(t) = x(l) + f gi(s)ds, -+, x,(t) = x5 + f gn(s) ds.

1o fo
Denote

x(1) = xg + f g(s) ds.

fo

In our case, f(x,1) : B(Xq,7) X [tg, T] = R", x(¥) satisfies
{ X'(1) = £(x(1),1)

x(f) = Xo

Then X(f) = Xo + f f(x(s), s) ds.

fo

Theorem 4.8.2. (Fundamental Theorem of ODE) Suppose that for some r > 0, T > ty, f :
B(xy,r)X[ty, T] — R" is continuous in (x,t) and is Lipschitz in x; that is, there exists K > 0
1

C R
such that for every x,y € B(xg,r) and t € [ty, T],

£ 1) = £, 0)|| < Kllx = .

Then there exists 0 < A < R such that there exists a unique solution to (B220) and (B_XT]).

Observe that our goal is to find an element x = x(¢) € C ([to, to + Al, R”) such that

x(1) = X + f f(x(s),s) ds fort € [to,fp + Al

fo

Hence,if M C C ([to, to + AJ; R”) is certian subset and @ : M — M is defined by

d)(x(t)) =Xg + f f(X(s), s) ds.

Iy
Then our targent function (the solution) is a fixed point for @. That is x(¢) satisfies

x(1) = d)(x(t)) =Xg+ ftf(x(s), s) ds.

fo

Proof. Note that we will use the notationi || - || = || - ||z» and abuse x, € R"” or Xg = Xo(?) as

a constant function in the proof. Also, we use [|[x — X||.oc = sup ||x(¢) — Xo(?)|| and f(xg, ) =
telty,to+A]

f(xo("), -).

Let

M = {x(t) € C(lto, o + AL, R”

r
sup ||X(t) - XOH < —}.
1€[10,101 /] ] 2
X is a
constant function
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Define a mapping @ on M by

!
O (x(1)) = xo + f f(x(s),s) dx for every 1 € [tg, foAt].
to

The number A is to be determined later. That is, we will choose Af such that @ has a
fixed point in (M, [| - ||oo) by the following steps: (1) ® : M — M, (2) ® is a contraction on
M, and (3) M is complete.

(1) (i) To check that ® € C([1o, o + Af];R") for every x € M
For x € M, given &€ > 0, to find 6 > O such that if #,,#, € [ty, 1y + At] and |t; — | < O

|e)@) - o)) = | f £(x(s),5) ds — f £(x(s), 5) ds||

l f £(x(s), 5) ds|| < f || (x(s), 5)|| ds

Alt) — | < K6

IA

for some large number A > 0 satisfying ||f (x(s), 5) || < A for every s € [ty, to + Af].
We can choose 6 = % and hence @ is continuous in z. That is, ® € C([to, o+ At]; R”).

(ii) To show that ® : M — M.
Fort e [ty,tp + Aland x € M,

fttf(x(s), s) dx”

e - %000

< ft [f(x(s), s) - f(xo(s), s)} ds + ftf(xo(s), s) dsH
< ft [f(x(s), s) - f(xo(s), s)} dsH + H ftf(xo(s), s) ds”

fo+ AL o+ AL
(Lipschitz in x) < f K||x(s) — Xo(t)”ds + f ||f(x0(s), s) } ds
° to+At 0 to+At
< Kf K”X(s) - XO(S)” ds + f ||f(X0(S), s) || ds
tolo+Al o fo+At
< K f sup [Ix(s) = Xo(s)I| ds + f sup  ||f(xo(s), 5)]| ds
f SEL to+AL to 1€ty to+t]
: = |Ix—Xollo ! = Ifx0(),)leo
< at[K X=Xl + [ (%00, )| ]
1 )
<3 fixed number
Hence,

||(D(x) - x0||w = sup | ||(D(x) (1) — Xo(t)” < At [K ||X — XOHoo + ||f(x0(.), )

telto,to+At

°°.}'

r r
Choose 0 << . Then [|®(x) — Xp|| < = and hence ®(x) € M.
Kr+ 20 (%), ) llo | ol <3

<3 fixed number
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(2)

3)

For x,y € M, to prove that when At is sufficiently small (TBD),

|2x) - POl = sup [|@(x)®) - (y)@)|| < c[[x - y]_..

telto,to+A]

forsome 0 < ¢ < 1.

For t € [ty, ty + At],

lox)@ - o (y)a)

| fzf(x(s), s) ds - fff(y(s), s) dsH
| [ rx9.5) = £33 ) as]
[l 9) - £(35.9)] as

f K”x(s) - y(s)” ds

to+At
[ -yl as
to

AtK”x - y||oo.

IA

IA

IA

Then

”CI)(X)—(D(y)H = sup

D(x)(1) - D(y) )| < ALK ||x -
® 1€to,to+At] (X)( ) (y)( )H ITI ||X y||oo
Choose 0 < A such that AtK < 1, say A < % Then ® : M — M is a contraction mapping.

To prove that M is complete in the norm || - ||,
Since (C ([t0, 0 + At];R™), ]| - ||0<,> is complete, if suffices to show that M is closed in

(C(lto. 10 + AR, - Il ).
Let {x,}, C Mandx € (C([to, to + At];R”), Il - ||oo> such that
X, > X asn— oo.

That is,

X, — X|loo = 0 as n — oco. We will prove that x € M.

For £ > 0, choose N € N such thatifn > N,

x| <e.
) r
Since x,, € M for every n € N, ||XN - X0||oo < R Then
< < d
Ix = o], < [l =]l + [lxw = o]l <&+ 3.

. . . . r
Since ¢ is arbitrary, taking & N, 0, we have ||X - XO”oo < > Thus, x € M.
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By (1), (2) and (3), for 0 < At < min (T — Iy, P 2||rf(Xo, )| Oo, %{), there exists a unique

fixed point x = x(¢) € M. That is ,

!
x(f) = xg + f f(x(s), s) ds forevery t € [ty, ty + At].

fo

(Uniqueness) Let x, y be two solution of (820) and (B2T)) on [#y, o + At]. Then

t

X(t) = xg + f f(x(s), s) ds and y(t) =X+ f f(y(s), s) ds.

to 0]

Then
! t
||x - y||oo =  sup f f(x(s), s) ds —f f(y(s),s) dsH
t€lty,to+At] 1o 1o
!
< f sup ||(x(s), s) — £(y(s), s)|| ds
to te€lto.to+At]
SN
< slx-yl
s 3 o
Hence, | X — Y|l = 0 and we have x(¢) = y(¢) for every ¢ € [t, tp + At].

In fact, it is not necessary to prove this part since fixed point theorem already gives the
uniqueness.

O
Example 4.8.3. Find a function x(¢) : [0, T] — R such that
X)) = x@)
{ X0) = 1. (4.22)

Proof. Define
(D(X)(t) =1 +f x(s)ds, ,xp(t)=1
0
and x,.,1(f) = ©(x,)(»). Then

!
x(1) = 1+f1ds:1+t
0

t tz
X)) = 1+f1+sds:1+t+—
0 2
t sz ZZ l3
x3() = 1+£1+s+3ds:1+t+5+§
A *
x(@) = =1+t+—=+—+---

STIEY s
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Then {x;};2, converges to x(7) = Z o = ¢' which is the solution of I.V. P for (&27).
k=0 "°

Example 4.8.4. Find a function x(¢) such that

Proof. Define

and x,.1(1) = ®

- t 2
We have x(t) — x(1) =3+ 3 Z T(Zk) = 3e? which is the solution of the I.V. P for (£23).
k=1

tx(t)

{ x'(1)
x(0) = 3

(I)(x) =3+ f sx(s)dx, xo(t) =3
0

(xn) (). Then

! ! 3
xi(t) = 3+fsx0(s)ds:3+f3sds:3+—
0 0 2
! ! 3 32
0 = 3+fsxl(s)ds+3+f3+—52:3+—+
0 0 2 2
3 3¢ 3%k
(@) = 3+ —+-—

+ +...+—
2 2.4 2-4---(2k)

2k

Remark. This process is called the “Picard iteration”.

Example 4.8.5. Let x.(7) = { 1

0 if0<t<c
_Th
S(t—c) iftxc en
4
x.(2)
x:(0)

1/2

(()x(t)) for all ¢ > 0.

Hence, this initial value problem has infinitely many solution. Why?
f(x0,1) = +/xis not Lipschitz near 0. That is, no matter what K > 0 is, there exists x, y € (=3, )

such that

|f(x0) = f(r. 0] > Klx =y,

3t

2.4

165

(4.23)

O
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5.1 Bounded Linear Maps

Definition 5.1.1. (1) Let X and Y be vector spaces. A mapping L : X — Y is said to be “linear”
if
L(cxy + xp) = cL(x1) + L(x,) forevery c € Rand x;, x; € X.

We usually write “Lx” instead of L(x). Denote the collection of all linear maps from X to Y
by L(X;Y). Note that £(X;Y) is a vector space.

(2) Let (X,|| - |lx) and (Y, || - |ly) be normed spaces. A linear map L : X — Y is said to be
“bounded” if
sup |[Lx|ly < oo.

xeX
IIxllx=1

(3) The collection of all bounded linear maps from X to Y is denoted by B (X; Y ) and the
number sup ||Lx]|y is denoted by ||L||gx.y)-

xeX
Ilxllx=1

Example 5.1.2. Let A € M,,»,(R) be a m X n matrix. For x € R", define

Lx = Ax.

167
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That is,
ai Ain X1
A= : and x =
A1 Amn Xn
Then
ar Ain X1
Lx=Ax= : e R"
mi - Q| | X2
Consider
IAXIZ,  (Ax, Ax)pn
B4 (X, Opr
Since

(Ax, Ax)pn = (Ax)"Ax = x"ATAx = (x, ATAx)pn = (AT Ax, X)po < |AT Allggozm|1x] [

we have )
1A xI[z
(B[
Therefore, L € B(R”; R’") and ||L||gwr»rn) 1s equal to the square root of the largest eigenvalue of
ATA.
Proposition 5.1.3. Let (X, || - ||x) and (Y, || - |ly) be normed spaces and L € B(X; Y). Then

ILx|ly .
ILllgcx;y) = sup L = inf {M>0|IlILxlly < Mllxllx}.
x% [Ix[|x

T 2
< ”A A”B(Rn;Rn)

Proof. (Exercise) O
Remark. ||Lx|ly < [ILllgux:y)llxllx-

Proposition 5.1.4. Let (X,|| - ||x) and (Y, || - |ly) be normed spaces and L € .E(X; Y). Then L is
continuous on X if and only if L € B(X; Y).

Proof. (=)

X Y

Le #B(X;Y) means for

L
—
M:||LH%(X;Y)::§2£|‘LX||Y<°O
[Ix[|x=1
L(Bx(0x,1)) < By(0v,M)
X Y PN L(Bx(0,1)) _ .
_ = . NP . L is continuous at 0xE X
//’ 17~ - N .
ey V= VI1>0 36>0 s.t. if |[x-0x/|x<d
L ) | ! then [|Lx-0v|[y<1
N0 O /
Y - //




5.1. BOUNDED LINEAR MAPS 169

Since L is linear, LOy = Oy. Since L is continuous at Oy, for 0 < & = 1, there exists 6 > 0
such that if ||x — Ox||lx < 6, then ||[Lx|ly = ||Lx — LOx|| < 1. Thus, for x € X with ||x||x = g,
||ILx|ly < 1.

Since L is linear, for x € X with ||x||x = 1, ||[Lx]ly < %. Then we have

SOl

sup ||Lx[ly <
xeX
[Ixllx=1
and hence L € B(X;Y).
(=)
If L e B(X;Y), then M = ||Lllgwx.y) < co. Then
ILx1 — Lxolly = IL(x; — x2)lly < M|lx; — x2llx  for every xi, x; € X.
Hence, L is (uniformly) continuous on X. O
Remark. A linear map L is continuouos on X if and only if L is continuous at Qy.

Proposition 5.1.5. Let (X, || - |lx) and (Y, || - |ly) be normed spaces. Then
(1) (B(X; Y), [| - ”gg(x;y)) is a normed space.

(2) Moreover, if (Y,|| - |ly) is a Banach space, then (B(X; Y), I| - ”B(x;y)) is a Banach space.
Proof. (1) (Exercise)

(2) Let {Ls};2, € B(X;Y) be a Cauchy sequence. Then ||L,, — Lllgx.y) — 0 as m,n — oo and

there exists M > O such that ||L||gx.y) < M for every k € N.

To prove that there exists L € 8(X; Y) such that L, — L in (B(X; Y).l- IIB(X;Y)>.

For x € X,

ILix = Loxlly = I(Lx = L)xlly < I = Loly lIxllx = 0 as k,n — co.
~—————

— 0 as k,n—0

Since (Y, || - |ly) is a Banach space, there exists y = y(x) € Y such that Lyx — yin (Y, || - ||y)
as k — oo,

Note that for every x € X, there exists a correspoiding y € Y such that L;x — y.

Defineamap L: X — Y by Lx := gim Lix. To check that

Lo~ L in (B0GY), ] llsn).

That is, to check
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@
(ii)
®

(ii)
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LeB(X:;Y)
IILy — L”B(X;Y) — 0ask — oo.

For x;,x, € X and 0 # ¢ € R, since L; € B(X;Y) for every k € N, Lx; = ]}im Lix;

and Lx, = ]}im Lix>, we have

Licx; + x) = I}im Li(cx1 + x) = cl}im Li(x)) + l}im Li(xy) = cLx; + Lx,.
Thus, L € L(X;Y). Moreover, for ||x||x = 1, there exists N, € N such that if k > N,,
||ILx — Lix|ly < 1. Then

ILxlly < |ILx = Lixlly + [[Lgxlly < |ILx = Lixlly + ILellgxy) |lxllx < M + 1.
<1 <M =1
Since x is an arbitrary element in X with ||x||x = 1, we have
I|Lx|ly
ILllgx.y) = sup <

xeX “x”X
IIlxllx=1

+1

and hence L € B(X; Y).
Since {L;}?, is Cauchy in (B(X; Y).l- ||B(X;Y)>, for £ > 0, there exists N € N such
thatif k,n > N,

>
IILy — Ln”B(X;Y) < 5

For x € X, ||x|]lx = 1, since lim L,x = Lx, there exists N; = N;(x) € N such that if
n> N],
e
IL,x — Lx|ly < 5

Hence, for k > N, we choose n > max(N, N;) and then

E E
ILex — Lxlly < ||Lxx — Loxlly + [|IL,x — Lxlly < 5t3=¢
Since x is arbitrary, ||Ly — L||gx.yy = sup |[(Lx — L)x|ly < & whenever k > N. There-

[lxllx=1

fore, Ly — L in (B(X; Y), Il ||B(X;Y)>-

O

Proposition 5.1.6. Let (X, || - ||x), (.|| - lly) and (Z,|| - ||7) be normed spaces, L € B(X; Y) and
KeB(Y;Z). Then K o L € B(X;Z) and

IIK o Lllgx.zy < IK|lgey:z)llLllgcx. vy

Note that we often write K o L as KL if K and L are linear.

Proof. Check K o L is linear (exercise).
Check K o L is bounded.

I(K o L)xllz = IIK@IIZ < IKllg:zlILxlly < 1Kl :z)l|Llsocylxllx-
ey
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Example 5.1.7. If A € M,,«,(R) and B € M,+(R), then
AeB(R"R") and BeB(R,R")

and
AB € M,([R) and ABe B(R4R").

Lemma 5.1.8. Let X be a finite dimensional vector space. Then every norm on X is equivalent.
That is, if || - ||, and || - ||, are two norms on X, then there exists a, 8 > 0 such that for every x € X,

alxlly < [lxll2 < Bllxdl.
Proof. (Exercise) O

Theorem 5.1.9. Let (X, ||-|))x and (Y, || |ly) be normed spaces and X be finite dimensional. Then
every linear map from X to Y is bounded. That is, L(X;Y) = B(X;Y).

Proof. Let T € L(X;Y). Since X is finite dimensional, say dim X = n, all norms on X are
equivalent.

Let {e;,--- ,e,} be a basis of X. For x € X, there exist ¢;,---,c, € R such that x =
cie) + -+ - + cpe,. Define a norm

II|x|l| == max lcil  (Check that ||| - ||| is a norm on X)
<isn
Then there exists M; > 0 such that ||| x||| < M,||x||x for every x € X. Let M, = Z ITe;|ly. Then

i=1
for every x = cie; + -+ + c,e, € X,

ITxlly = 1T ciedlly =11 ) ciTeilly < > led ITeilly
i=1 i=1 i=1
< maxlel Y IITeily < My || x ||| < My Myl
1<i<n P
Hence,TeB(X;Y). O

Theorem 5.1.10. Let GL(n) be the set of all invertible linear maps on R". That is,

GL(n) = {L e L(R";R") { L is one-to one (and hence onto).}
(1) If Le GL(n) and K € B(R”; R”) satisfying ”K_L”B(Rn’Rn)”L_] llgw»rry < 1, then K € GL(n).
(2) GL(n) is an open set ofB(R”; R”).

(3) The mapping L — L' is continuous on GL(n).
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m Heuristical Ideas:

(1) First of all, consider a function f : R — R and f(a) = b. Imagine that L is the
derivative of f at a. That is, L = f'(a). Then

f'(a) # 0 (say f'(a) > 0)
f is increasing near a.

L is invertible.

f is one-to-one near a.

1 exists near a.

/ 1

-1 -1

b)=—-—=L

0= 56

Suppose K is the derivative of g at a. That is, K = g'(a). If |[K — L| = |f'(a) — g'(a)| >
|f"(a)|, then g’(a) could be O and hence it is possible that g is not invertible near a.

LUl

In order to hope g is invertible near a, we hope

/(@) - g'@) I
VD =8N _\p k. — <1
Far R e

Moreover, consider L € GL(n). Then L € L(R";R”) is invertible. Recall that L is
linear and invertible. Then Lx = 0 if and only if x = 0. Also, the linearity implies

that L is continuous at 0 and the graph of L is symmetric about the origin. Imagine the
Graph(L)

If"(@) - g' (@l <|f' (@)

L=GL(n), L= AR™;R") invertible
n
R A A R™

N v Tk
N2

lIx][=1

Y

L is linear and invertiable =® Lx = 0 if and only if x = 0.
The linearity of L =® L 1s continuous and Graph(L) is symmetric about 0.

Hence, L is linear and invertible if and only if the graph of L(&B(O, 1)) is a distorted
sphere with center at the origin.

Let K € B(R”; R”). If we hope that K is invertible, we want the graph of K (6B(0, 1))

is a certain “distored sphere” with center 0. (That is, the graph K <8B(0, 1)) does not
touch the origin.)
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LeGL(n), L AR";R") invertible
Rn A Rn A

AN v
L

Question: If L € GL(n), how to achieve that K € GL(n)?

Heuristically, we may achieve this goal as long as the distance of the farthest point on
(K-L) (6B(0, 1)) is less than the distance of the nearest point on L(@B(O, 1)).

Let a = HI_I} ILx|l. Suppose that for x € 0B(0,1), ||[Kx — Lx|| < ||IK = Lllgre g < .

Then K (33(0, 1)) will not attain the origin. Moreover, it works if
1
IK — Lllgwrrny < @ & ||K — Ll||gw g - P <1

. 1 1
Question: How large is 5? Is 1LY | g oy = E?

Rn A

<
o

(0

Let a = HHIIIH% ||ILx]. Choose 6 = %a and ask that for every x € R", ||KX — LX|[g» < >
X||=

(hence ||K — L||ggrgn < %). Then K(@B(O, 1)) will not atain 0.

1
Moverover, it works if ||K — Lllggrgn < @ & ||K — Ll||ggr gy - — < 1. Heuristically,
a

2 1

-1 27
IIL™ |l grrrry = —.
a
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Y

1L

/‘1‘,,1“\../:1
e M\

|| Lax]]
IL||lggezmy = sup ||Lx]| = sup ——
llxfl=1 =1 1l
L Lx 1
1L g ey S LA = 1/ inf IEA| =_
=1 Il ldi=1 ||| a

Remark. L € .E(R”; R”). Then L is invertible if and only if the graph of L(S"!) must
be a distorted sphere, centered at 0 and symmetric about 0 as well as every line through
0 intersect L(S"!) exact two times, say y and —y.

(=) By linearity and invertibility.

(&) Let {ey, - ,e,} be a basis. Check that {Ley,---,Le,} are linearly independent.
Suppose not, there exists y # 0 but y ¢ Span{Le,,---, Le,}. Choose a line ¢ passing
0 and y. By the hypothesis, there exists z € £ and z € L(S™"). Then z = cy for some
¢ # 0 and z € Span{Ley,---,Le,}. Hence, y € Span{Ley,---,Le,} and we obtain a
contradiction.

m Heuristical Ideas:

corresp.

(2) We imagine that L € L(R", R”). Then L «— A e M,,,(R).

L € GL(n) A is invertible
[ |
L is invertible detA #0

If perturbing L a little bit, the determinant of the corresponding matrix is still nonzero.
Hence, L is an interior point of GL(n).




5.1. BOUNDED LINEAR MAPS 175

1
Proof. (1) Let ||L™"||g@szn = — and ||[K — Ll|g@»zs = B. Then B < a. Hence, for every x € R”,
a

-1 -1
allL™ Lx|| < allL™ [|g@n r |ILx]|

allx|

=1
< K = Dxll + [[Kxll < 1K = Ll o llx]] + (| K x|

A

Then (a — B)||x|| < ||Kx||. We have Kx = 0 if and only if x = 0. Therefore, K is invertible.

(2) Let L € GL(n). Then L™' € GL(n) and L™" € 8(R";R"). Choose 6 = . By (1),

IL~!|ggn rr)

B(L.6) = {K € BR".R") | K — Lllge s <

C GL
o) € L

Hence, GL(n) is open.

1 £
2L Y| ggn gy 2||L~

(3) Given € > 0, choose 6 = min < ) For ||[K — Ll|lggn gny < 0,

1”2
B(R",R™)

L™ = K gy = KT (K = L)L llgn 2

1 -1
< K lgwepnllK = Lllgge g llL™ |l gwe gmy
S gl -1 -1
< <||K — L™ ||lgwr ) + |IL ”B(R”,R”))”K — Lllgwr znlIL™ [|gn mr)
1 gl -1 “12
< K7 = L7 lg@nrn 1K = Lllg@n pmlIL ™ |lg@nzen + 1K — Lllg@e z)llL™ [ ggn g
£

S - K_I_L_l B(R" R" +—.

2|| llg@n rr) 5

Hence, [|[K™' — L7Y||ggez) < &.

O Matrix Representation

Let (X, ||-|lx) and (Y, ”'”’i) be finite dimensional vector spaces withdim X = nanddim Y = m.
Let # ={e},--- ,e,} and & = {&,,--- ,€,} be basis of X and Y respectively.

For x € X, there exists unique n-tuple (cy,- - -, c,), ¢; € R such that
X =cie; +---+cue,.
Similarly, for y € Y, there exists unique m-tuple (dy, - - - ,d,,), d; € R such that
y=d& +---+d,e,.

‘We denote
C1 d 1

[x]z = | : and [ylz =
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aip 0 A4y C1
LetA=| : | e My (R)yand x = | ¢ |. Define
aml  *° Amn _Cn
_ -
- Z a1kCr
app o A Ci k=1
Ax = =
n
ami - amn_ Cn
AmkCr
L k=1 J
n n m n
Then Ax = y where y = Z acié) + - + Z Ak Ci€m = < agkck)é,;. Therefore,
k=1 k=1 =1 k=1

A € B(X;Y) is a bounded linear map from X to Y. (Check)!
Question: A m x n matrix A € £(X;Y), how about the converse?

Let L € L(X;Y). Consider Le;, Le,, - - , Le, € Y. Then there existd;; € R, 1 <i < m and
1 < j < n such that

dl]
Lel = d“él + dz[éz + -+ dmlém N>
_dml_ y.
d12
Lez = d]zé] + d22é2 + -+ dmZém N>
_dml_ Y,
dln
Len = dlnél + dznéz + -+ dmném N :
dmn P
Then
dll d12 e dln
I I L L d21 d22 e dZn
L] 5= [Ler Lex - LeJ=| = -
dml dmZ dmn
For x = cie; +--- + c,€,,

dy - dinm (6]
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Remark. For given basis # and 4 of X and Y respectively, the space of linear maps from X to
Y is one-to-one corresponding to the space of m X n matrics.That is,

1-1 corresp.

L(X;Y) = Mpu®)

Note. In our class, we use the stardard basis {e;, - - ,e,} on R” where e; = [0 cee 1 e O] r

5.2 Definition of Derivatives and the Matrix Representation
of Derivatives

Goal: Let U C R" be an open set, f : U — R™ and a € U. To define the derivative of f at a.

Recall: Let / C R be an open interval, f : I — R and a € I. We say that f is differentiable at a
, ... fla+h) - fla)
if the limit lim

lim . exists and denote the limit f”(a).

Question: How about the derivative of a function on higher dimensions?

Guess: We try to find the derivative by similar way. For f : ¢ C R” — R™ and a € U, consider

. f(a+h)-f(a)
lim —
h—0 h
It does not make sense since the denominator is a “vector’ rather than a number . Thus, we

need a new definition of derivative.

Reconsider the meaning of f’(a)

) ay _ fla+h) - f@
¥ AX h
flath)
dy . sy . fla+h)-fla)

f o T @

0 means the slope of the tangent line of f at a. Then
dy = f'(a) dx.
where

dx is the instantaneous displacement in the x-direction
dy is the instantaneous displacement in the y-direction

dy

f(a)
f ( f'(a)
dx

- -
f’(a) maps the vector dx to the vector dy

(= f/(x)dx)
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Remark. f’(a) is not only a number, but also a “map” from the vector space R to the vector
- - —
space R. This map, f’(a), sends a vector dx to a vector dy(= f’(a)dx). ForV € R,

f@:V — flayv
Check that for 7,71/) e Randc € R,

fa+h(ev+w) - fla) fa+h(cv+w) - fla)

=(ov+w) }11—{% h(cv +w)

lim h

= f'(a)(cv + w).
Hence,
f@(EV +W) = cf' )V + f(@w
and the map f’(a) is linear. That is, f'(a) € 8 (R; R).
Example 5.2.1.

Let f(x) = x> + 2. Then f’(1) = 2. We can regard “2” as a map which sends every vector v
to 27.

f(x)=x*+2
2v .
v =R
3
v
R
1
1
m Rewrite the definition of the derivative of f at a
If the Timit 1im £ = T(@ i, then
h—0 h
. fla+h-fl@ _ ,
b n =f@
i f@rh) @~ f@h _
h—0 h
i M@t~ f@ @l _
[h1—0 ||

The derivative f”(a) reflects the instantaneous change of f(a + h) — f(a) satisfying
fla+h)— f(a) = f'(a)h + error

where
lerror]|

-0 as h—0.
1d
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Therefore, we can rephrase the definition of derivative. If there exists a map (number)
L € B(R;R) (or € R) which sends & to Lh such that

L L@t = fl@) - Lal _

0
h—0 A

then we say that f is differentiable at a and denote the number L by f’(a).

mf:/CR—R

Look at the case f : I C R — R”, f(r) = (ﬁ(t),~~- ,f,,(t)) and a € 1. As we know,
f'(a) = (f{(@),- -, fi(a).

Consider the case n = 2.

. h) — h) —
i (10 2 fil@ fa+ ;l LY _ (pa), fi(@).
RZ A

fi(ath)-fi(a) H(ath)-f;(2)

f(t im
i O tim (5 , )
/\ fa)  fath) =(f,'(a).f,'(a))

f
( df i ’
dfzzfz'(a)dt
dt
> R

a ath df,=f,'(a)dt
I

m

f’(a) maps the vectorz to the vector < flaydt, 15 (a)dt>.

Remark. f'(a) = ( fia), f; (a)) is not only a vector, but also a map from the vector space R
to the vector space R2. The map

f'@): 7 — (fil@y L@y

eR €R2

Check that f'(a) is linear. Hence f'(a) € L(R,R?).

B UCR" —R: flxg,-,x)

Consider the case n = 2. Leta = (a;,a;), e, = (1,0),e, =0, 1), h = (hy, h,) = hje; + hye,.
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f: UCR"-R  f(xi,...,Xn) Range f(a) f(a+th)

1
Graph

We hope to find some quantity which can reflect the rate of change of the value with
respect to the variables in every direction

(1) h=he,
/} rnO f(a + hl;l) - f(a) — aa_f(a) = f(a1 +hy,ay) — f(al’aZ) _f(a)hl
1= 1 X1
(i1) h = hye,,
hl mo fa+ hz;;z) - f(a) — g_f(a) = flay,ar + h) — f(ay,a) = a_f(a)hz_
2= 2 X 9%

(i) h = hie; + hes,

df = fa+h)-f(a)=f(a+hy,a+h)
= flai+hi,ay + ) — f(ai,ar + hy) + f(ar,ax + ho) — f(ay, az)
~ ﬂ(a)hl + ﬁ(fll)hz
0x,

f of

= (—(a) (a)> (s o)
\_\,_/

=h

=Vf (a)

V f(a) maps the vector h to the vector Vf(a) - h
~~ ——

€R? €R
of . of
Remark. Vf(a) = <—( ), 8—(3)) is not only a vector, but also a map from the vector
X2

space R? into the Vector space R. The map

Vi@: vy —Vf@-v
——

eR2 €eR
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We hope to find some “object” which can reflect the rate of change of the value with respect
to the variable in every direction (like the gradient of multi-variable real-valued function V f).

Definition 5.2.2. Let (X, || - ||x) and (Y, ]| - ||y) be two normed spaces, U C X be open.

(1) Amap f : U — Y is said to be differentiable at a € U if there exists a bounded linear map
L € B(X;Y) such that the limit

i W) = f(@) — Lix = a)lly
11m

o llx — allx

=0

We denote this bounded linear map D f(a) and call it the “derivative of f at a”.

(2) If f: U — Y is differentiable at every point in U, we say that f is differentiable on U.
Hence, Df : U — B(X; Y) is a map from U into (B(X; Y), I| - ”B(X;Y))-

Remark. If f : U — Y is differentiable at a € U, then

(D
lim W — f(@) - Dfa)x - a)lly _
im =0
s/ llx — allx
or takingh = x —a,
lim @+ - f@ - Df@hlly
im =0
=3 il

Note that “Df(a)(x —a)” or “Df(a)h” is a linear operator D f(a) applying on the vector
x — a or h, but not the product of D f(a) and x — a (or h).

(2) Df(a) € B(X;Y) maps a vector h € X to Df(@)h € Y.
(3) For given & > 0, there exists ¢ > 0 such that if x € B(a, 5) N U, then

1Lf(x) = f(a) = Df(a)(x = a)lly < &llx - allx.

Definition 5.2.3. For a € U, if there exists a bounded linear map 7" € B(X BXY )) such that

’ IDf(x) — Df(a) - T(x = a)llgwxy)
im

[ llx — allx

exists, we denote the linear map 7 by D?f(a)

Remark.
D*f(a) € B(X; B(X;Y))
D’f(a)(x) €B(X;Y) for every x € X
D*f(a)(x)(z) €Y for every z € X.

a Geometric Meaning
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Df(a)e;=a; € +ay;€,1a3,€;

Df(a)e,=a,€;+a,,E,+a3,€;

f: ICR—R?
\y Df(a)e;=a;€;+ay,€;
& .
f(
€
a
Letf(x,y):(x,yz,x2+y4):R2—>R3. ‘ [g:|
4
[ofi AN ‘
Ox ady y
[Dra,n] = | 2
s 9fh
Lox ay d (xy)=(11)
! 0 10 <
= 0 2y =10 2| =A
2x 4y’ 2 4

f(

(x,y)=(1,1)

1 0 y

Ae; = |0] = 18, + 08, +28; and Ae, = |2]. / i b L
2 D7,

4
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Example 5.2.4. Let (X, || - [lx) and (¥, || - [ly) be normed spaces. Then every L € B(X;Y) is
differentiable on X and DL(a) = L for every x € X since
lim ||[Lx — La — L(x — a)||ly _0

x—a llx — allx

Example 5.2.5. Define L € B(R;R) by Lx = 2x. Find T € B(R;R) such that

x—2x

. 2x=2a-T(x - a)|
lim =
x—a |x — al

0

For T € B(R;R), let T(1) = c. Then Tx = cx for every x € R. Suppose that

2x - 2a—c(x—a)| _

lim

x—a |x —al

0
then ¢ = 2 and we have Tx = 2x. Hence, for f(x) = 2x, f'(x) =2 € B(R; R).
Example 5.2.6. Let f(x) = x°.

lim x> —a® = 3a*(x — a)| _

x—a |x —al

0

Then Df(a) € B(R;R) defined by
Df(a)x = 3ax.

Example 5.2.7. Let f(t) = (¢, 7). Find L € B(R;R?) such that

@, ) = (10, 83) — Lt — 10)|ge
lim
-1 |t — t0|

Define [L(%))](s) = (s, 2tys). Then

C @) = (10, 85) — Lt = to)lle . |I(t = 1o, 1 — 1) — (t — to, 210(t — 19))lIg2
lim = lim =0
-1y |t — 1o =1 |t — 1o

Theorem 5.2.8. Let (X, || - ||x) and (Y, || - |ly) be normed space, U C X be openand f : U —- Y
be differentiable at a € U. Then (D f ) (a) is uniquely determined by f.

Proof. Let Ly, L, € B(X ; Y) such that

Ilf(x) = fla) = Lo(x = @l

o W) = fl@) = Litx - a)lly

li =0 =lim 5.1
sy llx — allx el llx — allx

It sufficies to show that for every z € X and ||z|]|x = 1, L1z = L,z.

By (&), given € > 0 choose ¢ > 0 such that B(a,d) € U and if x € B(a, §) then

1f(x) = fla) = Li(x — a)lly < gllx —allx
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and e
I1f(x) = f@) — Lo(x — a)lly < Ellx —dlx.

Fix z € X and ||z]|x = 1, choose O < r < 6. Let x = a + rz. Then

rliLiz — Lozlly IILi(rz) = La(r2)lly

< \fla+rz) = fl@) — Li(rlly + [[f(a + r2) — f(a) — La(r2)lly
& &
< §||FZ||X + E”rZ”X
= erllzllx
= ¢&r
Hence, ||Liz — L,7|ly < &. Since ¢ is arbitrary, Lz = L,z. m|

From now on, we will consider the function f : U C R" — R” and we assume R" ( or R™)

is a vector space with the standard basis {e,--- ,e,} (or {€, - ,€,}).
Remark. (1) f: U CR" - R", a e U. Rewrite f(a+h) — f(a) = Df(a)h + r(h). Then
e _

1m
iz =0 |[h|gn

This represents that f(a+h) — f(a) * Df(a)h (or f(a+h) ~ f(a) + D(a)h) as ||h|z. is
sufficiently small. This suggests that if f is differentiable at a, then f is continuous at a.

(2) The derivative of f at a, Df(a), is also called “the total derivative of f at a”, to distinguish
it from the partial derivative.

(3) For every x € U, Df(x) € B(R”,R"’) and Df : U — B(R”,Rm) is a map from U to
B(R";R™).

For every x €U, Df(x) € Z(R",R™)

U Df B(R",R™
° Df(X)
« Df(2)
Df

Definition 5.2.9. (1) Let 4 CR", f : U — R and a € U. If the limit

i f(a+he)) — f(a)
m
h—0 h

exists, we call the limit * the partial derivative of f at a in the direction e; and denote the

limit a—f(a).
0x;

J
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(2) Letf: U > R"anda e U. Thenf = (fi, o, , fu) = Zf,-(x)éi where {€;,--- ,€,]} is the
i=1
standard basis of R”. We obatin f;(x) = f - €. Then
afi fi(a + he)) — fi(a)

a_xj(a) = Jim h

forl <i<mand 1 < j < nprovided the limit exists.

Remark. We want to determine whether a function f is differentiable at a point. For a single
variable function, the existence of derivative is sufficient. But for several variables functions,
the continuity or at least boundedness of the partial derivatives is needed.

Letf : U C R" — R™ be differentiable ata € U, f = (f1, -, fn)-
To guess what the form of Df(a).
Since Df(a) € B (R”; R’”) , there exists A € M,,.,(R) such that
Df(a)x = Ax forevery x € R".
We can wrtie
A = [Df(a)e; Df(a)e, --- Df(a)e,]
Vi
Find Df(a)e; = v= | : | € R". By the definition of Df(a),
Vin
fi(a+ hej) fi(@) Vi
AR
. lif(a + he;) — f(a) — Df(a)(he))llzn . fm(a+ he;) Jm(a) Vi |l
0 =1lim = lim .
h—0 ||hej||R” h—0 |h|
Hence,
. |fita + he)) — fi(a) — hvil
lim =0.
h—0 |h|
We have .
UL (a)
afz Bx_/-.
v; = ——(a) and then Df(a)e; = :
GXj Ot
a_xj(a)
Therefore,
af af;
@ - @
A=| .| = [Df(@)]
Ofn Ofm
g(a) s E(a)
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or
of;
(Df(a))l.j = a—?(a) forl<i<m, 1<j<n.
J
X1
Hence, forx = | : | € R",

Xn

X1

(pf@)x = [(Df@) |

Xn

Theorem 5.2.10. Suppose f : U C R* — R™ is differentiable at a € U. Then the partial
derivative %(a) existfori=1,---,m, j=1,--- ,nand
J

Df(a)e; = Z (%)(a)éi forl1 < j<n.

P an
Proof. Fix j, since f is differentiable at a,
If(a + he;) — f(a) — Df(a)(he))||r» . |If(a + he;) — f(a) — hDf(a)(e;)r~
0 = lim = lim
h—0 ||7e jl|rn h—0 ||
fi(a+ he)) fi(a) Vi
: AR
_ |[Uma+hep] | fu(@) |
= lim

70 A

For each component of f,

lim \fi(a + he)) — fi(a) — hDfi(a)e;| _ 0
h—0 A

By the definition of partial derivative,

Df(a)e; = g—z(a)-
That is,
Dfi(a)e; 1 0
Df(a)e; = : = Dfi(ae; |:| +---+ Df,(a)e;
Df.(a)e; 0 1
C Ofi
= Z] o, @
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Definition 5.2.11. Let U C R" be open and f : U — R™. The matrix

af af; afi af
JE(x) = | l(x) = : :
Ofm Ofm Ofm Ofm

is called the “Jacobian matrix of f at X”.

Remark. The Jacobian matrix of a function f might exist even if f is not differentiable.
If £ is differentiable at x, then the Jacobian matrix must exist and

[Df(a)] = Jf(a)

Df(x) exists — Jf(x) exists and [Df(x)} = Jf(x)
=

Importance: In the future, we will prove some functions are differentiable at a. For
example, product rule, quotient rule, chain rule. We have to guess a linear map first. The
first and the only guess must be [Jf(a)].

(x,y) #(0,0) of f

Xy
0
For example, f(x,y) = { X2 +y? . Then 3—(0, 0)=0= 6_(0’ 0). But fis
X y

0 (x,y) = (0,0)
not continuous at (0, 0) and hence f is not differentiable at (0, 0).

Assume that f is differentiable at (0,0). Then Df(0,0) = [0 0]. But

y

‘f(x,y)—f(O, 0-[0 0]

;

a Compute Jf(x) and Df(a)

I o
- (x2 + y2)1/2

-+ 0 along the direction x = y.

Example 5.2.12. Let f : R? — R by f(x.y) = (27, \yz/ : x:yj)-

hop s

of  of

93—];1 63—? 2x 0
Jfey =5 Gl=] 0 2

s 0fs -

oL a_; 4x°y= 2x"y

Suppose that f is differentiable at (x, y), then
2x 0

[Dfx,y)] =Jfy)y=| 0 2y

4x3y* 2xty
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Check that for h = {hl} e R2.

hy
1f e+ i,y + ho) = f(x,y) = [Jf(x, )] hllgs
[La]i:®
2x 0 "
((x + hl)29 (y + h2)29 (-x + hl)4(y + h2)2> - (XQ, y29 x4y2) - 0 2y |: 1:|
3,2 4y | e
_ 4xy> 2xMy &3
(A1, 7o)l
— 0 as(h,h) — (0,0).
Hence, f is differentiable at (x, y).
Definition 5.2.13. Let «/ C R"be openand f : U — Rand a € U.
[Df@)] = [fr@ fa@ - @)= i@

The derivative of f at a is called the “gradient of f at a”.

5.3 Continuity of Differentiable Maps

Theorem 5.3.1. Let (X, || - ||x) and (Y, || - |ly) be normed spaces, U C X be open, and f : U — Y
be differentiable at a € U. Then f is continuous at a.

Proof. Since f is differentiable at a, there exists L € 8 (X ; Y) such that
Ilf(x) — fl@) — L(x — a)lly

llx — allx
Then for 0 < £ < 1, there exists 6; > 0,

lf(x) = fla) = L(x = a)lly < ellx - allx

whenever [|x — dlly < 6;. Choose 0 < & < min(8;, —————). If ||x — allx < 6,
”L”B(X;Y) +1

-0 as|lx—alx — 0.

1 (x) = f(@lly < |ILlIgwxnllx — allx + llx — allx = (”L”B(X;Y) + 8)||x —dllx <e.
Hence, f is continuous at a. O
Remark.

f is differentiable ata = f is continuous at a.
=

Example 5.3.2. Let f(x,y) = { F ii Ej i; i Eg’ 8;

£x(0,0) = E(O, 0) = 1 and £(0,0) = %(O, 0) = 0. Assume that f is differentiable at (0, 0),

ox

then [Df(O, O)] = [1 0]. But

. Then f is continuous at (0, 0) (Check).

fmw—ﬂam—hOHﬂ y?

||(X, y)”RZ B (x2 + y2)3/2
Hence, f is not differentiable at (0, 0).

-+ 0 as (x,y) — (0,0)along x =y.
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5.4 Conditions for Differentiability

Proposition 5.4.1. Let U C R" be open, a € U and £ = (f1,--- ,fn) : U — R". Thenf is
differentiable at a if and only if f; is differentiable at afori=1,--- ,m.

Proof. (=)
Since f is differentiable at a, [Df(a)] = Jf(a) and for £ > 0, there exists § > 0 such that if
Ix — allz: <6,

lif(a) — f(a) — (D(a))(x — a)llz» < &llx — allzn.

Let {e;}", be the standard basis of R™. Define L; € L(R”; R) such that for h € R",

i=

Li(h) = ¢/ [Df(a)| h.

gi(a) @(a) ) )
(ll' ('h,,' Dfi(a)
[Df(a)] = a(a) Ix. @l = |D f,'(a) = [Le, Le,]
: : D)
_(‘),’Cl axﬂ =

Then L; € B(R”; R) and for ||x — a||g» < 0,
| /(%) — fi(@) - Li(x — a)| < [If(x) - f(a) — Df(a)(x — a)||zn < &lX — al|z.
Thus, f; is differentiable at a and Df;(a) = L;.
(=)

Since f; is differentiable at a for i = 1,--- ,n, there exist L,---,L,, € B(R’";R) and for
& > 0, there exists 6 > 0 such that if ||x — a||g: < 0,

|fi(x) - fi(@) - Li(x — a)| < %nx —allp fori=1,---,m.

Define L € L(R";Rm) by Lx = (Lx,---,L,x) for x € R". Then L € B(R”;R’”) and if
Ix — allz: <6,

If(x) — f(a) - L(x — a)llzn < Z | /i(%) = fi(a) = Li(x — a)| < &llx - allp.

i=1

Hence, f is differentiable at a and Df(a) = L. |
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Remark. (1) For a vector-valued function defined on an open subset of R".

Componentwise differentiable < Differentiable

2)
[ [
o m] [ph@
Jf(a) = : = : (if f is differentiable, then D f; exists)
{)fln afm
T Df,(a)
= [Le; --- Le,| (ff if differentiable, then L exists.)

The proposition does not mean that if G_ﬁ exists at a for every i, j, then f is differentiable at

Xj

ofi . . o :
a since 8—f exists for all 1 < j < m does not imply f; is differentiable at a.

Xj
The proposition means that fi, - - - , f,, are differentiable at a if and only if f is differentiable
at a. Hence Dfy,--- , Df,, exist at a if and only if f is differentiable at a and
Dfi(a) _
[Df(a)] = : = —(a)existsforeveryl <i<m, 1<j<n
x .
Df,.(a) ’

=

of; . .
Question: In what conditions on a—f(a) (or Jf(a)), we can say f is differentiable at a?
Xj
Theorem 5.4.2. Let U CR" be open,ac€ Uand f : U — R. If

(1) %, e % exist in a neighborhood of a, and
(2) g){l I % are continuous at a (except possibly one of them). That is, at most one of

of .. of
ax1 ’ > Oxp

then f is differentiable at a.

is discontinuous at a.

. . 0
Proof. W.L.O.G, we may assume n = 2, —— 1s continuous at a (and a—f may or may not be
X1 X2
continuous at a).

. of . . . . .
Since —f is continuous at a, given € > 0, there exists 6 > 0 such that if ||x — a|[z2 < 6,
X1

of
L - 2La| <3 (5:2)

0 0
Since —f(a) and —f(a) exist, there are 67, 0, > 0 such that if |A| < 63,
0x 0xy

0
@+ her) = @ - 55| < Sin
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and if |h| < 65,
0
‘ f(a + hey) — f(a) - _af (a)h‘ <Em (5.3)
%) 2

Letx = (x1,x),a=(a;,a) and k =x—a = (x; —ay, x, —ay) = (k, k;). Consider

0 0
Fx) - fla) - [a—f(a) (x1 — 1) +a—f(a) (2 - )|
0 0
= |[f@ +h.a+ k) - flara+ k) - a—f(aﬂq} + [fara + k) = fana) - 2L @] |
X1 8X2

d 9 -
M.V.T [_f(al + 01, ar + ko)ky — _f(a)kl} + [f(al,az + ko) — flar, az) - _f(a)kz} ‘ (5.4)
(?x1 8)61 axz

for some 6; € (0, k).

/ 7
\\\ - =

\\_——’/

Choose ||k|[g2 < min(9, d, 6»). Then

E E
B4 < S|kl + zlko| < glKl[g2 = &llx — al[ga.
E2),63) 2 2

Hence f is differentiable at a. |

of of

Remark. If two or more of —, - - -,
0x 0x,
Do (x,y) # (0,0)

tiable. For example, f(x,y) = { ¥*?
ple. vy {0 (x.y) = (0,0)

(0,0). The partial derivatives are

are discontinuous at a, then f could be not differen-

. The function f is not differentiable at

of  ¥0P- ) of  x?—y)
ox  2ryr M e T @

Definition 5.4.3. (1) Let U C R" be open and f : U — R™ be differentiable on L. We say that
f is continuously differentiable on U if Df : U — B(R”; R’”) is continuous on U.

(2) The collection of all continuously differentiable functions from U to R™ is denoted by

C'(U;R") = {f : U - R" is differentiable | Df : U — B(R";R™) is continuous. }
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(3) The collection of all bounded differentiable functions from U to R™ is denoted by

C,(U;R") = {f : U - R" is differentiable. | sup |[[f(X)|lz» + sup [| DEX)llggszm < oo}
xeU xeU

Example 5.4.4. Let f : ] CR — R. Then

Cy(I;R) = {f : I - Ris differentiable. | sup |f(x)| + sup|f’(x)| < eo}.

xel xel

Corollary 5.4.5. Let U C R" be open and f : U — R™. Thenf € C! (7/[; Rm) if and only if all

of;
— exist and are continuous for 1 <i<mand1 < j<n.

x .

J

Proof. For a matrix A = [ai J-} e M,, and x € R",

3

Allgerzn Xl < (D layl)Ixlles < mnllA sz Xl
=1 j=1
(=) 5
Since f is differentiable on U, a—fl exist fori = 1,--- ,mand j = 1,---,n (by Proposition
Xj
6547T). Since Df is continuous on U, for a € U and for given € > 0, there exists & > 0 such that
if ||x — a|lg < 0,

Then, fori=1,---,nand j=1,--- ,m

0
8_f( ) — 8_){( )| < [IDE(x) — Df(a)||grezrm < &.

of; . ) ) ) ) ) of; . )
Therefore, —— is continuous at a. Since a is arbitrary in U, a—' 1s continuous on U.

X; X
J J

(=)

Since all partial derivatives i exist and are continuous on U, by Theorem 647, f is

Xj
afi . . . )
differentiable on U. Since (9_f is continuous at a € U, for £ > 0, there exists §; > 0 such that if
Xj
IIx — allg» < 61, f
G0~ —( | <—
fori=1,---,nand j=1,--- ,m. Hence,

IDEX) — DE@)llgeeize < Z Z \—( - @] <

and we have Df is continuous at a.

Since a is arbitrary in U, Df is continuous on U. m|
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1 1 1
2 . - . . - - .
Example 5.4.6. Let f(x) = { * 05 1370 o pryy = § 2esiny —eos o w200
0 if x=0 0 if x=0

Therefore, f is differentiable, but f” is not continuous at 0.
Definition 5.4.7. Let U C R" be open. We define a norm on C} (U;R) by

s = sup (1000 + Y, |§—Q<x>|}.

-1 =1
Proposition 5.4.8. (C} (U;R™); |l - |lci@zm ) is a Banach space.
p b cl(urm)

Definition 5.4.9. Let & C R" be open, a € U and f : U — R. The derivative of f is called
“the gradient of f” and denoted by “gradf” or “Vf”. Thatis, Df = Vf and Df(a) = V f(a).
Definition 5.4.10. Let «/ CR"beopen,ac U, f: U — R. Let ve R" be a unit vector. Then

fa+1tv) - f(a)
1

f(@a+1tv) =Ilim
t—0

d
(Dvf) (@) := ELO

is called “the directional derivative of f at a in the direction v”.

0
Remark. Lete; = (0,---, '1], ---,0). Then a—f(a) = D, f(a) is the directional derivative of f
ith xj

at a in the direction e;.

5.5 The Product Rules and Chain Rule

a Proerties of Differentiation

Theorem 5.5.1. Let U C R”" be an open set, a € U, £,g : U — R" be differentiable at a,
h: U — R be differentiable at a, @ € R and v € R" be a vector. Then

(1) f + g is differentiable at a and

D(f + g)(a) = Df(a) + Dg(a).

(2) of is differentiable at a and
D(af)(a) = aDf(a).

(3) hf : U — R" is differentiable at a and

€ B(R™;R™) € BR™"R™) € B(R™";R)
1 T 1 T 1
D(hf)(a)v = h(a) Df(a) v+ (Dh)(a)vf(a).
e N —
eRm™ eR eR™ eR erm™

f
(4) If h(a) # O, then W : U — R" is differentiable at a and

f h(a)(Df(a)v) — (Dh)(a)vf(a)
D(—)(@v = e
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Proof. We only prove (3) here. Letf = (f},:--, f,). Consider the Jacobian matrix of A =
[J(hD)] (a),

_ dmf) fio . O

of; h
A (@) = ha) > —(@) + ——()fi(a).
J J

_awend
v 8Xj BXJ'

For v e R*, Av = h(a)Df(a)v + Dh(a)vf(a). Consider

ox

()Y — (hf)(@) ~ A(x =) = h(a) [f(x) - f(@) - DE(a)(x ~ a)|
L (1) ]
+ [h(x) - h(a) - Dh(a)(x — a) |f(x) + | Dh(a)(x - a)| |f(x) - f(a)]

an n)
(1) Since f is differentiable at a,
0 < tim Iy i ) @) — DY@ ~ 2l _
x—>a ||X — al[g x—a X — al[z-

(i1) Since f is differentiable at a, f is continuous at a. Then there exists K > 0 such that
|If(x)|lz» < K as X is near a.

Since h is differentiable at a,
lA(x) — h(a) — Dh(a)(x — a)||z»

I I m .
WD _ e o
wa = alle o %= allz

(ii1) Since Dh(a) € B(R“; R) and f is continuous at a, || DA(a)||gg:x) < oo and lim [|f(x) — f(a)|[g» = 0.
X—a

Then
IZIDllgn .. |IDA@)||g@eg)lIX — allp: |[f(x) — £(a)||z~
——— < lim =

xoa [[X —allgn  x—a lIx — al|g
Hence, Af is differentiable at a and D(hf)(a) = A. O

m Matrix Representation

Letf,g: U — R™, h: U — R are differentiable on Y. The matrix representation of the
derivatives of f and g are

9h ... 94 91 .. G
0xy 0xy 0x| Oxp
. . . . l dh
[Df] x)=1: D (), [Dg] x)=|: : | (x)and [Dh] (x) = [ﬁ 0_xn] (%).
O .. Ofn 98m .. Om
a)C] a)Cn aX] 6x,,
Then
afi dg1 ofi 981
o T an v, T ax,
[Df )] (x) = : : (x)
O0fm 0gm Ofm Ogm
ax T o ax, T ox,
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Fohf) . A
0x1 0x,
[D(h)] (x) = : Dl
hf) Okt
L Ox; 0x,
o) 5(f 1
h 0xy 6x1 oo h Bx
= : : (x)
ﬂ(fm oh 6(fm oh
6x 1 3}( 1 f m T 0x, f m
afi ofi oh
ax; ax, 8x1f1 6x,,f1
= h(x) | : 0+ C | X
Ofm Ofm (')h ... Oh
E o m Ox fm 0xy fm

1 Chain Rule

Theorem 5.5.2. Let U C R" be open, f : U — R™ be differentiable ata € U, g : £f(U) — R
be differentiable f(a). Then F = g o f : U — R’ is differentiable at a and for a vector h € R",

[PF@]h) = [Dg] (f@) [(OD@h]

€ B(R" RC) € B(R’” RO € BE"R™)
Moreover, let £ = f(xy,--- ,x,)and g = g(Y1, <+ y) then
0g; 0
(DF(a))ij g T (1) 5 i( )

and

(DF@)],,,, = [Dg(f@)],,,, [Df@],,,

Df(a): R"—>R" Dg(b): R" - R¢
v — Df(a)v u — Dg(b)u

DF(a) : R" — R’
DF(a)v = Dg(b)(Df(a)v)
[DF(@)] = [Dg(b)] [Df(a)]
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Proof. Let b = f(a), A = Df(a) € B(R";R") and B = Dg(b) € B(R™;R). To prove
[DF(a)] = BA.

Let £ > 0 be given. Since f is differentiable at a and g is differentiable at b = f(a), there
exists 01,0, > 0 such that if ||x — a|[z» < I7,

&
’ 2||B||B(R’”;R[) + 1

IIEx) — f(a) — A(x — a)||z» < min (1 )IIx — allz (5.5)

e
[”A”B(R";Rm) + 1}

Since f is continuous at a, there exists 63 > 0 such that if ||x — a||g» < 3, then

Ig(y) ~ g(b) ~ By ~ Bl < min (1 + )y = il (5.6)

f(x) — f(@)llz» < 6>. (5.7)

Let h € R” such that ||h|[z» < min(d;, 05). Then

B3 E
If(a +h) — f(a) - Ahllzgn < ————/lh][g. (5.8)
2|Bllgm zey
and
(EB)(E2) E
lg(fa+h)) —g(f@) - B(f(a+h) —f@)llre < z———If(a+h)—f@lz. (5.9
2||Allgwrzm)
Hence,
IF(a + h) — F(a) — BAh||
< |[F(a+h)-F(a) - B[f(a+h)—f(a)]llz + |B[f(a+h) - f(a)] — BAh]|n
(B9) g
< If(a + h) — f(@)llz» + | Bllg@nzollf(a + h) — f(a) — Ahl[z.
2[”A”B(R”;R’") + 1]
) € el|Bllggnre)
If(a +h) — f(a) — Ah|lzn + [|[AD||gn | + —_||h||
Z[HA”B(R";R'") + 1} [ « « } 2||Bllggm:rey + 1 "
° 2 (bl + 1A el + =)
R” BER"R) | ][R A M|~
Z[IIA”B(R";R’”) + 1} 2
< ¢lhllgn.
Therefore, F is differentiable at a and DF(a) = BA. O

Example 5.5.3. Let x = rcosf, y = rsiné, f(x,y) : R> - R. Let

F(r,0) = f(rcos@,rsinf) : [0,00) X [0,27] — R.

Ox Ox
_|[oF oF]| _[0f g} ar a0l _ {g of [COSQ —rsin 9}
[DF] ¢6) = {E %} B L?x dyl |9y Oy| ~ Lax 9yl Lsin6 rcosd

or 06
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[0,20)x[0,27) R? R
0
(rcos 0,rsin ) y f
P e
X
> r
0

F(1,0)=f(rcos 0,rsin 0)

Example 5.54. r: (0,1) - R", f : R" —» R. Let

F(t) = f(r®) : (0,1) > R.

Then
, , - Of )
F'(t) = Df(r(1) ¥'(t) = ) ==(r(®)ri(t)
— A iy
BR;R) BR"R) BRR" i=1

where r(7) = (r1 @, -, rn(f))~

197

Example 5.5.5. Let f(u, v, w) = u®v + wv?, g(x,y) = (xy, sirvl X, ew"). Let h(x,y) = f(g(x, y)) :

R2 - R.

oh 6f8u+(9f6v+6f8w

dx  Oudx Ivox Owdx
= 2uv-y+ @wv) cosx+1?- e
= 2xy*sinx + (x%y? + 2xysin x) cos x + ¢ sin® x

oh

dy

Review:
Df(a): R* — R™ Dg(b) :R"™ — RS
v — Df(a)v u — Dgbu

DF(a) : R" — R’
DF(a)v = Dg(f(a)) (Df(a)v)
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F
F(X],"' 7xn)

gof
g(f(X], Tt 7-xn)>-

Forf = (fi,---,fm).8=(g1,---,g)and F = (Fy,--- ,Fy),then F; = g;of fori=1,--- (.

Let g; = gi(yi, -+ ,ym) and yx = fi(xy,- -+, x,). We have

0x; — Oy 0x; = Oyr Ox;
setting y; = fi(xy,-+ , X,).

[(DF(a))] xn = [Dg (f(a))] {xm [Df(a)]

mxn

[ 1 r 1 9@ ]
ax]'
oF(a _ | 9gib)  dgib) :
Ox; | oy OV :
: 0 fm(a)
_ | I il o,

5.6 Directional Derivative, Gradients, Tangent Plane and Lin-
ear Approximation

In this section, we will discuss multi-variable real-ralued function f : U C R" — R.
Definition 5.6.1. Let -/ C R"be opena € U, f : U — R. Let v € R" be a unit vector. We say
that “f has directional derivtive at a in the direction v if the limilt

. fla+1v) - f(a) d

ltl—{rol t <dt [:Of(a ) >
exists. Denote by D f(a).

0
Remark. Lete; = (0,---,1,---,0). D, f(a) = 6—f(a) is the directional derivative of f at a in
Xj
the direction e;.
Theorem 5.6.2. Let U C R" be open and f : U — R be differentiable at a. The directional
derivative of f at a in the direction v is (D f ) (a)v. That is, Dy f(a) = Df(a)v.

Proof. Since f is differentiable at a,

lim M ®) — f(@) - D@ - a)l _
1im =

x—a X — alle»

0.
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Letx =a+ v, ||V|]lg» = 1. Then

I |f(@a+tv)— f(a) - Df(@@v)| .. |fa+1v)— f(a)
m = lim

t—0 ”lV”R” t—0 t

- Df(a)v| = 0.

Hence,
lim f@a+1tv) - f(a)

t—0 t

= Df(a)v.
O
Remark. To compute the directional derivative Dy f(a), we have to check that v is a unit vector

in advance.

Question: How about u € R” with |[u|[g: # 1?

Letv= —— then compute Df(a)v = Dy f(a) = lim fa+ th) -/ (a).

[z

(Df)@u = (Df)@(lullz:v) = llullDf(a)v
. _f@+m) - fa)
= |lullz» ltl_r)rol :
. f@+ ) - f@
= lim .
t—0 W
(s _ t ) ~ im f(a+ su) — f(a)
[lal|n s—0 s

Remark. Let U CR", f: U > Randa e U.

f is differentiable ata = the directional derivatives of f at a in all directions exist.

D,f(a) = Df(a)v

=
X ,
Example 5.6.3. f(x,y) = X2 +y? if (x,) # (0,0) Let v = (v{,v,). Then
0 if (x,y) = (0,0)
vy, tvy) — £(0,0 V3
va(O,()):limf(vl v2) — f( ): L
10 t vi+v)

But f is not differentiable at (0, 0). Moreover,

3
Vi

—— = (Dyf)(0,0) # J£(0,0)v = v; where Jf(0,0)=[1 0].
Vi + Vs

Remark. The existence of the directional derivative of f at a in all directions does NOT imply

) ) ifx+y>#0
that f is continuous at a. For example, f(x,y) = ¢ x%+)?
0 ifx+y>=0
. f@vi, ) = f(0,0) *vivy _ { vy ifv; #0
(Duf)(0,0) = lim t = 2 - L0 ify =0

But f is not continuous at (0, 0) along x = y°.
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m The Gradients of Functions

Definition 5.6.4. Let U/ C R" be open, a € U and f : U — R be differentiable at a. The row

vector of J f(a) = L;?_f e, gf } is also called “the gradient of f at a” and denoted by Vf(a).
X1 Xn
e . aof of
Therefore, if f is differentiable at a, then [D f (a)} =Jf(a) = FrathiRlr vl b
X1 Xn

Z a:(al 9a2)

£(x)

y

1), slope = = <0

ox

a
X '\

y

slope=——>0
f(x)

—>

direction = sign of slope
magnitude = magnitude of the slope

Remark. Let ¢/ C R" be open, a € U and f : U — R be differentiable at a. For v € R”, the
directional derivative of f at a in the direction v is

Df(a)v =Vf(a)-v.
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Proposition 5.6.5. Let U C R" be open, a € U and f € C! ((LI, R). Then if Vf(a) # 0, the
vector V f(a) is normal to the level set {x eU ‘ fx)=f (a)}.

Proof. Letr : (=6,6) — R" be the curve such that r(r) € {x € U | f(x) = f(a)}, r(0) = a and
r'(tr) # 0. Then f(r(t)) = f(a) for every t € (-6, 9). By the chain rule,

d
E( F(x®)) = Vf(x@®) r'(@)=0 foreverye (-5,06).

Then Vf (r(O)) -1’(0) = 0 and hence Vf(a) L r’(0). Since r is an arbitrary curve on the level
set passing a, V f(a) is normal to the level set at a.

f(a) K
O
Proposition 5.6.6. Let f : U C R" — R be differentiable at a € U. Then v/ ( _ v
- IV fllg IV fllg

is the direction in which the function increases (decreases) most rapidly.

Proof. Let v € R" be a unit vector. The directional derivative of f at a in the direction v is

Df@M)| = Vi@ - v| < IV @l vk = V@l

The equality holds if Vf(a) is parallel to v. (i.e. Vf(a) = cv for some ¢ € R). Hence, if

_ Vf(a) . eo_ Vi@
V= —”Vf(a)”Rn , then D f(a)v has maximum and if v = V7@l

, then D f(a)v has minimum.
O

m Tangent Planes (Spaces) to the Graph

The directional derivative of f at a in the direction (unit vector) v is the rate of change of
f in the direction v. Choose a (continuously) differentiable curve r(¢) : (—6,96) — U such that
r(0) =aand r’'(0) = v. Then f (r(t)) is a cruve on the graph of f and

dt ‘I:Of(r(t)) = Df(l’(()))r’(()) = Df(a)V = va(a) = Vf(a) .V

which is the slope of the tangent line to the graph of f passing (a, f(a)). For a = (a;,--- ,a,)
and v = (vy,- -+ ,v,), the equation of the tangent line is

X1 =a; +1tv

X, = a, + tv,
Xpe1 = f(a) + tDf(a)v
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Let f : U C R" — R be (continuously) differentiable at a. The tangent plane P to the graph
of f passing (a, f (a)) is defined as the plane consisting of all tangent lines to the graph of f
passing (a, f (a)). Hence, the equation of P is

Xpe1 = f(@) + Df(a)(x — a)

or

Xpe1 = f@) + Vf(a) - (x —a).

Note: Forn = 2, let f : U € R> — R be differentiable at (xy, yo) € U. Then the tangent
plane to the graph of f at (xo, yo, 20) 1S

df (x0,¥0)

df (x0,¥0)
ox )+

ay v = yo)

Z =20+ Vf(x0,y0) - {x = X0,y —Yo) = 20 + (x = xo

m Linear Approximation

Let f : U C R" — R be differentiable at a € U. Then

() - f@) - Df@)(x - @) _

x-a X — all

0.

This implies that
fx)=f(@)+Df(a)(x—a)+o(|x—alg) as x — a
Define

L(x) f(a) + Df(a)(x — a)

f@+Vf@)-(x-a).

Then f(x) ~ L(X) as X is near a.

Remark. Letf : U C R" — R™ be differentiable at a € U. Then

i [F®) — f(a) - DE@)(x — a)]lz-
1m

X I — allx

=0.

Let
L(x) = f(a) + Df(a)(x — a).

We still have
f(x) = L(x) + o(||x — allzg») as x — a.

Heuristically, if f is differentiable at a, the behavior of f(x) — f(a) is like the one of the linear
map Df(a)(x — a) when x is near a.
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5.7 The Mean Value Theorem
Recall: If f : [a, b] — R is continuous on [a, b] and is differentiable on (a, b), then there exists

¢ € (a, b) such that

f®) = fla) = f'(c)b - a).

Question: Is there similar result for f : ¢4 € R" — R™? That is, for a,b € U, is there ¢ € U
such that f(b) — f(a) = Df(c)(b — a)?

T
-
57

o)

~
o
P

~——— "

-
~ -
S~ —— —

Answer: No! For example, f : [0, 1] — R? by f(¢) = (2,£). Then f(1) — £(0) = (1, 1).

For any s € [0, 1], Df(s)v = (2sv, 35%v) for every v € R. But there exists no s € [0, 1] such
that (1, 1) = Df(x)(1 = 0) = (25, 35%).

But we still have similar result for each component functions f;.
Theorem 5.7.1. Let U C R" be open, £ : U — R™ withf = (f1, -, f). Suppose that f is

differentiable on U and the line segment joining X and'y lies in U. Then there exists ¢, --- , ¢,
on the segment such that

fiy) = fi(x) = (Dfi)(e)y =x) fori=1,---,m.

U
P e
/ N
/ \
/ \
/ \
/ Ci \
/ y i
[ |
A ]
\ X /,
N /
N e

Proof. Letr : [0,1] —» R"such thatr(¢) = (1 —#)x+ty. Then f;or : [0, 1] — R is differentiable
on [0, 1] and fi(x) = fi(r(0)) and fi(y) = fi(r(1)).

By the Mean value Theorem, there exists #, € [0, 1] such that

d
£ = £i09 = Z[A(r)]| _, (1=0) = D (x(10)) ¥ (1) = Dfie)y = x).
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Corollary 5.7.2. Let U C R" be open and convex and £ : U — R™ be differentiable on U.
Then for every X,y € U, there exists ¢y, -+ , ¢, on Xy such that

Ji(y) = fix) = (Df)(e)(y — x).

Remark. The line segment joining X and y lies in U is necessary.

For example, let

€= (e € B[ e =1 12 0}uf(m 2D |05 x< 1) \ 1

and U be a small neighborhood of C. 3

Fora=(1,1)and b =(1,-1),b—a = (0, -2). Define
X

cos ! ——— ify>0
\/ X2+ y?
fy)y=q 7 ify=0
2t —cos! — ify<0O
X2+ y?
3n

Thus f(1,-1) - f(1,1) = 5 But

-y X 0 2x 3n
(Df(e.y) |(O’ _2)| a [xz +y2 X2 +y2} [—2} TR+ 2

(b—a)
. 2x
for any (x,y) € U since | — 2‘ <3.
X2 +y
X y<0 y (x.y) >0
\\\/_ cosl— - fxy)=cos”
¢ xty? X,y)=cos
\ ﬁ/ Xy / X2+y2
\ > X > X
f(x,y)=2m-cos™!
Xz+y2

(xy)

Example 5.7.3. (1) Suppose that & € R” is an open and convex set, f : U — R” is differen-
tiable on U and Df(x) = 0 [€¢ B(R";R™)] for all x € Y. Then f is a constant function on

i p—
7 \\ ! \‘
! \ i \
! 1 1 \
! ' : \
I 1

(2) Moreover, if U is open and connected, f :
U — R™ is differentiable and Df(x) = 0
for all x € U, then f is constant on U.

Proof. (Exercise)
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Theorem 5.7.4. Let U C R" be open, K C U be compact and f : U — R be of class C'. Then
for every € > 0, there exists 6 > 0 such that

|f(y) = f() = (DAY = %) < glly — Xllg
iflly — X|[[zr < 0 and X,y € K.
Proof. Define g : U X U — R by

|f(¥) = f(x) = (DAY — )|
gx,y) = IIx — yllzn
0 ify=x

ify#x

To check that g is continuous on U X U.

Letx # y and (x,y) € U x U. Since f is of class C',
B : |fw) = f(@) = (DH @)W -2)| |f(¥) = fX) = (DHXY — %)
im g(z,w)= lim = =

(2,W)—>(x.y) (z,W)—>(xy) [lw — z|[g» [x — ¥yl[gn

For x € U and B(x,r) € U, consider w,z € B(x, r). Then the segment wz C B(x, r). By Mean
Value Theorem, there exists & € wz such that

fw) = f(2) = (DF)ENW - 2).

Then
0 = fo -Df@w-z _ . |(Pf&) - Df@)w-2)
(w,zz):“(lx,x) [|Ww — z||gn B (w,zz)g‘i(lx,x) ||w — Z||p»
< (w’zl)iggx’x) IDf(&) — Df(2)llgwnr) =0

ZFEW

Hence, ( l)mg : g(z,w) = 0 = g(x,x) and g is continuous at (x,x). Thus, g is continuous on
w,Z)—(X,X

U xU.

Since K X K € U x U is compact, g is uniformly continuous on K X K. Then for € > 0,
there exists & > 0 such that for every (x,x) € K X K and ||(z, W) — (X, X)||gxgr < 0,

}g(z, w) — g(X, y)} <e.
Hence, if ||x — y||r» < 6, then ||(X,y) — (X, X)||rxrr < 0. We have
lgx,y) - g(x,x) | = [g(x, )| <&.
=0

O

Corollary 5.7.5. Let U C R" be open, K C U be compact and £ : U — R™ be of class C'.
Then for every € > 0, there exists 6 > 0 such that if X,y € K and ||X — y||z» < 9,

1F(¥) = fx) = (DO = X)ller < elly = Xl|g.

gX,y).
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5.8 The Inverse Function Theorem

Recall: Let f : (a,b) — R. The function f is invertible from (a, b) to f((a, b)) if and only if f
1S one-to-one.

Question: What is the sufficient condition such that f is one-to-one?

Observe that f"(x) > 0 (f’ < 0) = f is in-
creasing (decreasing) and then f is one-to-one.

Question: In general, we cannot ask a function has this property everywhere (for exampe,
Jf(x) = sin x). Is there a sufficient condition for f such that f is invertible near a point?

sin X

0 -5 T —n 2n

Guess: f'(a) # 0.

1 1
sin—+—x ifx#0
x 2

1
Then f'(0) = = > 0 but
ifx=0 2

Question: Is it enough? Consider f(x) = {

f’(x) is not continuous at 0.

Hence f is oscillatory near 0 and f is not one- £'(a)=m
to-one in any neighborhood of 0. We may guess
f € C! is necessary. Moreover, if f : I — Ris
continuously differentiable neara € I, f'(a) # 0 / a

(o=
m

and f(a) = b, then (f™')'(b) = @

Considerf: DCR" - R"and a € D.

Question: What is the sufficient condition of f at a such that f is invertible near a?
Guess: (i) Df(a) is invertible (full rank) and (ii) f is of class C' near a.

Heuristically, f(x) = f(a) + Df(a)(x—a)+ o ( |x — a”Rn) as x — a. If Df(a) is invertible, then
f(a) + Df(a)(x — a) is one-to-one. Moreover, if f is of class C!, then f is one-to-one near a.

Theorem 5.8.1. (Inverse Function Theorem) Let D C R" be open, a € D, f : D — R" be of
class C' and Df(a) be invertible. Then there exists an open neighborhood U of a and an open
neighborhood V of f(a) such that

(1) £: U — V is one-to-one and onto.
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(2) The inverse function £=! : V — U is of class C'

(3) Fory € Vandx =f\(y),
DIl (y) = (D)

(4) Iff is of class C" for some r > 1, so is £~}

RO R"
Ll S D f o
J T ~ — -~ Y
/ ™ ’/ s
/ U < \ PR l h
// \\ ’l If Df(a) is invertible |‘ . f( ) \\
— .
I' [ o | / fis of class C' \ ) 4
\ \ a j ! - \ /
! . % / \ //
\ Sea—" // 3 g
\\ // 1 \\ //
g o - f B \\~——’///

f: U=V 1s 1-1 onto

Proof.

Recall:

(1) (Contraction Mapping Theorem) Let (M, d) be complete and ¢ : M — M be a con-
traction mapping. That is,

d(f(x),f(y)) < cd(x,y) forsome( < c < 1 and for every x,y € M

Then there exists a unique fixed point xy € M. That is, xo = f(xo).

(i1) (Secant Method)

Let ¢(x) = x
Then

- % where M = sup |f’(x)| + 1.

e f(x9) = yif and only if xj is a fixed point of
@.

e ¢ is a contraction mapping near Xx.

(i11)) By Theorem BT10, if A € GL(n) and K € B(R"; R") such that

-1
lIA = KllgmrnllA™ lgmerny < 1,

then K € GL(n).
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Let A = Df(a) € GL(n). Then A" exists and A™' € GL(n) € B(R";R"). Choose 1 > 0 such
that
2|A™ Y lgnpn = 1.

Since f is of class C' and D is open, there exists § > 0 such that B(a, §) C D and if ||x — al[z» <,
then

IDE(x) — Allggnrny = ||IDE(X) — DE(a)llggnmn < A.
Hence,

_ 1
IDE(x) — Allg@eznllA™ gz < 3 (5.10)

for every x € B(a,9).

Step 1: Let U = B(a, o). Then f : U — R" is one-to-one. (Hence, f : U — f(U) is bijective.)
Proof of Stepl: To prove that for every y € R”, at most one x € U such that f(x) = y. Fix
y € R”, define ¢y(x) = x — Al (f(X) — y). f(x) =y & ¢y(x) = x| Then

D¢y(x) = Id + A~ (Df)(x) = A™' (A — Df(x))

where Id is the identity map. By (&10),

_ 1
1D@y(X)|lg@rzn < 1A lg@ngnllA — DEX)|g@ezn < R (5.11)

Thus, if X, X, € B(a, ¢), by the mean value theorem,

1
levx) =yl < | sup ID4 @l 1 = Xallze < 11 = olle (5.12)

éeB(a,0

Hence, ¢y has at most one fixed point in Y. That is, at most one x € U such that f(x) = y.
Since y is arbitrary in R", f is one-to-one in R".

Step 2: Let V = f(U). Then V is open.

/‘—\

/ B(xo,r)C’U\ f ,,,,,, NV

{ i
I SN N
l \ / /\ A
1-1 onto 3 l\ ]
\

\ o N P //
— A -
AN / - -~ N b f(a)///
~ _ P R

Proof of Step2: Lety, € V. There exists Xy € U such that f(xy) = yo. Since U is open, there
exists 7 > 0 such that B(xy,r) C U.

To prove that for every z € B(yy, Ar), there exists w € B(Xy, r) such that f(w) = z. Then
B(yg, Ar) € V.
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Let z € B(yo, Ar). To prove ¢,(x) = x — A~} (f(x) - z) is a contraction mapping on B(Xy, r).
(W) =2 = ¢,(W) = W]

(i) To prove ¢, maps from B(xo, r) into B(Xo, r).
For x € B(xg, r),

lp2(X) = Xollzs < [|#2(X) = P2(X0)llrn + [|P2(X0) — Xollps
< sup [IDg,(&)llg@rzn |IX = Xollrs +IA™" (£(Xo) — )|l
el ———

~ <r

S

A
DI

r -1
< 3 + |A7 || grn e I (X0) — Zl|rn
—_—

<Ar

r -1
< E + /lllA ||B(R}1;Rn) r
N————
=1
2
= r.

Thus, ¢,(x) € B(x, r) for every x € B(xo, ).

(ii) By (EI2),

1
lp2(X1) — o(X0)llpr < §||X1 — Xo|lg»  for every X, Xo € B(Xo, 1)

Hence, ¢, is a contraction mapping on B(X, r).

By the contraction mapping theorem, there exists w € B(Xo, r) such that ¢,(w) = w. Thus
f(w) = z. We have B(yy, Ar) € V and therefore V is open. The statement (1) is proved.

Step 3: f~' : V — U is differentiable.
Proof of Step3: Fory € V, there exists x € U such that f(x) = y. Since

_ _ 1
IDE(x) — DE(@)l| g l|A ™ lg@ezn < AA lg@nzn = 5 < 1.
2

Then Df(x) is invertible and thus [Df(x)] ! exists.

— T~ u
Ve ~ f _____
//h/ oh N T N
/ 5 l \ R
Pt K \
U | .
\ ° //
\ /] - N _f(a) s
N / f -1 N
N 7



210 CHAPTER 5. DIFFERENTIATION OF MAPS

To prove that there exists a bounded linear map L € B(R"; R") such that

f_l k - f_l - Lk n
lim O +K) ) [

=0.
k—0 |1K] |

We geuss that L = [Df(x)] -

For every k € R” such that y + k € V, there exists h = h(k) such that f(x + h) = y + k. Then
f(x + h) — f(x) = k. By Mean Value Theorem, fory € U,

lh—A"Kllz = [x+h) -x-A""(f(x +h) - (X))l
= [[[x+h)-A"(fx+h) -y)] - [x—AT (fx) = y)] Il
= ligy(x +h) — ¢y (X)l|z
1
(M.V.T) < Ellh”R"'
Then {
il < 1A~ Kl + 10~ A™'Kllze < A7 Klleo + 5l
We have 1
il < 204 e IKllze < Kl (5.13)
Hence,
Iy + k)~ £7(y) - (DE®) 'Kllee  llx+h) —x = (DEX)) Kl [|(DEX)) ™ [DEON = K] [l
IKllz IKllz K]l
_ Ik = DE(x)h||
< 1(DEX)) ™ g B
K]l
. If(x + h) — £(x) — DEOhl|e [l
< 1(DE®)) ™ oz
I(DfC0) s =2 Iz UKl
bounded e bouvn ded

Since h — 0 as k — 0, by (513) and f is differentiable at x, (A) — 0 as k — 0. Then

Ny k) - £ (y) - (DEX)) Kl
Iim
k—0 K[z

-1
Therefore, f~! is differentiable at y and (Df ‘1) (y) = (Df (X)) . The statement (3) is proved.

Step 4: To prove the statements (2) and (4).
Proof of Step 4: Since the map g : GL(n) — GL(n) by g(L) = L' is infinitely many times
differentiable,

(DE")(y) = (DE) ™ = g(DEx)) = g(DE(E'(y)) = (g0 (Df) of ')y, (5.14)

By Chain rule, let f € C”, then Df € C"~!. Fork =0, 1,--- ,r — 1 and by (514), if f~! € C* then
Df~! € C*. This implies f € C**!. Continue this process until f~! € C"~!. We have Df~! € C"~!
and hence f~! € C". The statements (2) and (4) are proved.
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ftect - =\
1 k+1 Dftect
f—recC - .
until
flectl=Dfrlect=rtec

O

Remark. If f € C(U;R") and Df(x) is invertible for every x € U, then each x € U has a
neighborhood in which f is one-to-one. Hence, f is locally one-to-one in U, but f need not be
globally one-to-one in U.

Example 5.8.2. Let f : R? — R? given by f(x,y) = (e* cos y, e* siny). Then

e‘cosy —e*siny
e“siny e‘cosy

[Df(x,y)] = {

det [D f(x, y)] = Jp(x,y) = e** # 0. But f is not globally one-to-one.

Remark. Let f : U € R" — R” and Df(a) is invertible and f is of class C" near a. By the
Inverse Function Theorem, there exists open neighborhoods U of a and V of f(a) such that

f:U — V isone-to-one and onto and f~! is of class C".

Hence, for every y € V, there exists a unique x € U such that f(x) = y. That is, we can solve y
in terms of x. Similarly, we can also solve x in terms of y.

Remark. Letf : U C R" — R", Df(x() € B(R“; R”) is invertible if and only if det [Df(xo)] # 0.

Forf = (f1,---,f,) and x = (x1,- -+, x,,), the determinant of the Jacobian matrix of f at X, is

“a(fl".. ’fn) E2)
———"(Xp)”. The value

a(X], e ,xn)
|/¢(X0)| is the volume of the parallel hexahedrom generated by the column vector of the Jaco-

bian matrix.

called “the Jacobian of f at X,” and denoted by “Jy(x()” or

xt+y

Example 5.8.3. Let wx,y) = X The equation says that # and v are expressed in
v(x,y) = sinx + cosy
terms of x and y. Find the points (x, y) where we can solve for x, y in terms of u, v.

4

4, 4
Proof. Let f(x,y) = (u,) = (*—

,sinx + cosy) : R* = R?. Then

ou oOu
— — 3xt -yt 4 . 3
u, v) ox 0 - siny 4 o4 4y
a(x ) = av a% = x2 x = 7(}7 - 3x )— 7 COS X.
Y — — cosx —siny
ox oy

sin 4y3
Hence for those (x, y) such that x # 0 and —zy(y4 — 3x4) > cos x # 0, x,y can be solved in
X X

terms of u, v.
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T 7r) o(u,v)

2727 0(x, y) lxoyo)=(%.5)
1s, near (g, 7—2r), x = x(u,v),y = y(u,v) and (x,y) = f~'(u,v). Moreover, we can find

o)

# 0. We can solve x, y in terms of u, v. That

ox ox oy
ou’ v’ Ou

For example (xo, yp) = (

and 3 at f(;—r, g). Consider
0ox Ox
qu | — [pg _ -1
8_5 8_; = [Df @) wn=f(3.5 [Df(x. )] (ep=(5.5) "
ou Ov
% % 3x4 _ y4 4y3
_|lox oy| _ -
[Df(x,y)} =lov avl| = x2 X
— = cosx  —siny
ox Oy
1 1 ? _? 1 i 4y’
Dftey)] =— | 9 0| =- . ST
ox Ox x
. nr ox 2
Taking (x,y) = (5, 5), then £ = T O

0 Applications for Inverse Function Theorem

(I) (Change of Variables)

f: R?—~R? f
R2 (X’y) - (Sat) RZ
y t
. u A
///— 5555555555 f -~ NV
y N A
/ \ i \
H Ix \ D \
H ] T S
\ P4 — _— N yd
\ 7 /
\\_ _____ \\ ____
K-—D

For example, let g(s,7) : D — R Find the maximum of g on D. We define h(x,y) =
g( fx, y)) : K — R. Hence, we consider the extreme problem for /# on K.

(I1) (Geometric Application)
A surface S C R? is locally a graph of a function define on an open subset V C R2.

S ={(x,y,2) | x=xu,v), y = yu,v), z=zu,v)}.
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S is parametrized by two variables. It is reasonable to think z as a function of x,y (or
o(x,y)

o(u,v
Function Theorem, there exists a one-to-one correspondence between the variables (i, v)

and (x,y) locally. Hence, u = u(x,y) and v = v(x, y). We have

S = {<X,y,Z(u(x’y)’V(x’y)))}'

y as a function of x,z; or x as a function of y, z) locally. If that

# 0, by Inverse

(ITII) (PDE Applications)
Consider the wave equation u(¢, xi, x,, x3) where x = (xy, x;, x3) satisfies

u

0
ax,-c'ixj

0*u 3
a0+ Z‘f a;(X) x)=0 (5.15)
ij=

which is defined on S? C R>.
R? S?2C R?
P=(91,92,93)
—
Define v(t, x1, x2, x3) = u(t, ¢1(X), $2(X), $3(x)). Then we can convert the wave equation
(B-19) into

2y

9
oo, =0

0%*v 3
7™ = Z‘f bi{(X)
ij=

(IV) (Others) Lagrange Multipliers, etc

0 Open Mappings

Definition 5.8.4. Let X and Y be two metric spaces and f : X — Y, xp € X.
(1) We say that f is an “open mapping” if for every open set U C X, f(U) is openin Y.

(2) We say that f is a “local open mapping at x,” if there exists an open neighborhood U of x,
such that f(U) is openin Y.

Remark. If f~! is continuous, then f is an open mapping.

Corollary 5.8.5. (1) Iff € C! ((L[; R“) and Df(X) is invertible for every x € U, then f('W) is an
open subset of R" for every open set W C U. That is, f is an open mapping of U into R".

(2) Iff e C! ((LI ; R”) and Df(xy) is invertible, then £ is a local open mapping at X.



214 CHAPTER 5. DIFFERENTIATION OF MAPS

5.9 The Implicit Function Theorem
Recall: (Implicit Differentiation) Consider
Xy+xy =2

d
Find d_y at (1, 1). Differentiating the both sides with respect to x,
X

d d
2xy + 22 y o+ 5xy4—y =0
dx dx
Then
dy
dx

_ —Qxy+y) 1

@=L X2+ 504 lap=ay 2

- dx
Similarly, we can compute o
Yy

As x and y satisfy the equation x?y + xy° = 2, we can regard y as a function of x, or x as a
function of y.

@=Ll

Question: For a function f : R" x R"™ — R’, suppose that (x,y) € R" x R™ satisfies f(x,y) = 0.
Can we express y as a function in x? That is, y = y(x) such that

F(x, y(x)) =0.

e Rm e R" € R"

Letf :R"XR" > R"”. Denote z =(Xx,Yy)

R"R™

W W

Let f: R"x R™—[R™ Denote @z=(x,y)
Rm RHXRH‘I

There must be some w € Range(f) such that the level set { (x,y) € R*"™ | f(x,y) = w}
(the preimage of w under f) contains infinitely many points. Heuristically, it is a n-dimensional
(geometric) object.

Question: (Geometry) Is the level set a geometric surface? How smooth is it?
(Analysis) Can we express y as a function of x such that preimage of w under f is the graph of

y(x)?
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Example 5.9.1. Consider the equation
Xy +xy° =2.

Let f(x,y) = x*y + xy°. Then f maps from R X R to R and the point (1, 1) is on the level set
with f(x,y) = 2. We may think whether the level set is locally a graph of function y = y(x) or
x = x(y).
Heuristically, the level set is a 1 dimension curve. It is supposed to be expressed by a single
variable.

Example 5.9.2. For example, let f(x,y) = xy : R""! — R. Then f(1, 1) = 1 and the preimagle

xy=1
1
I ={Gy e R [ay =1} = {(xy(0) €R*|y(0) = -}, | h

Hence, the preimage of 1 under f containing (1, 1) is the 1
1
graph of y(x) = — and f(x, y(x)) =1.
X
Example 5.9.3. Let f(u,v, Iv_vl) = u® +v* + w? with £(1,0,0) = 1. Then
¥ R
w

the preimage (level set) of 1 under f is the sphere

S = {(u,v,w)eR3|u2+v2+w2:1} (100)
= {(uv,w) eR| flu,v,w) =1} u
e

Question: Is there a function w = w(u, v) (locally) such that (u, v, w(u, v)) cSs?

Answer: No!, Clearly, by vertical line test, the surface is not a graph of a single function
w = w(u,v) near (1,0, 0).

Question: What’s happen at (1,0, 0)?

> Let gw) = f(1,0,w) = 1 +w? : R - R.

g’(0) = 0 and g has a local extreme value at
local min of g 1+w? ¥ 1. Hence, the graph of g will go forward and
. R backward. Also, g’(0) = f,,(1,0,0) = 0.

(u,v)E RZ (170)

In general, f(x,y) : R” X R" — R”. For (X(,y9) € R” X R”. Consider the level set § =
{(X7 y) e R"xR" f(X7 y) = f(XOa YO)}

Suppose that there exists no function y = y(x) such that § = the graph of y(x) near (xo, yo).
What’s happen?




216

wo=1(X0,¥0)

X0
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Let g(y) = f(x9,y) : R” — R™. If m = 1, there
exists a local minimum of g at y,. If m > 1, the
space {(Xo,y)} will be tangent to the level set S
at (Xo, yo)- Since any curve r(f) on S

- g is not invertible near y = yy, then

——S Dyf(Xo, o) = Dg(yo) is not invertible.

R4
m Linear Maps

Let L € B (R”*’";Rm). We can split L into two linear maps Ly € B (R”;Rm) and L, €

B(Rm; R’") by

Lih = L(egn, ?R,%) and Lyk = L(0,, FR(m)

cRn €

where h € R", k € R™ and (h, k) € R"*™. Hence,

L(h,k) = L(h,0,,) + L(0,,k) = Lyh + L,k

Write
ay; - Qi bll blm
[L} mx(n+m) = [LX}LY} -
mxXn  mxm Au1 A bml e bmm
Ly Ly
R™=range L
A
the world of L
the world of L, !
- RM
]Rn

If rank(L) = m, then the dimensions of Ker(L) = n. That is, the level set of 0,, under L has
dimension n. Also, Ker(L) is the graph of a function of variable x. In other words, there exists
a function k : R" — R" such that Ker(L) = { (h,k(h)) | h e R"}.

Theorem 5.94. IfL € B(R”*’"; R’”) and Ly is invertible, then there corresponds to every h € R"
a unique k € R™ such that L(h,Kk) = 0,,. (That is, k = k(h) is a function of h). Moreover, k can
be computed from h by

k=—(Ly) L.
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A __-Graph(L)

Proof. Since L(h,Kk) = Lyh + Lk, we have

L(h,kK) =0,

L(h,k)=0
L, is invertible

& the plane is skew
( not parallel to R"x R™ plane)

ifand only if Lih+ Lk =0,

Thus, if L(h,k) = 0,, and L, is invertible, then k = —L; 'Lh.
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O

Moreover, if L(Xg,Yo) = W, then the preimage of wy is L™ (wg) = (X0, yo) + Ker(L) is also
the graph of a function of variable x. In other words, there exists a function g : R" — R” such
that the preimage of w, under L is L™ (wg) = {(x, g(x)) ’ X € R”}.

On the other hands, if rank(L) < m, then L~!(w,) has dimension greater than n and it must
not be a graph of a function of variable x. That is, for L(Xo,yo) = W, there exists y; € R” and
Yo # ¥y1 such that L(Xg, yo) = L(Xo,y1). Thus,

Lyxo + Lyyo = L(X0,¥0) = L(X0,¥1) = LxXo + Lyy;.

Therefore,

is not invertible.

Notation: LetF : R"™™ — R"” where F = (Fy, - - -

Denote
0F

(9_x1
[DF| = :
oF,,
Ox 1

Lyyo = Lyy;.
We have Ly : R" — R™ is not invertible. This implies the m X m matrix

b]l

bml

DyF

oF,
ox,

oF,,
ox,

blm

bmm

9F,
Oy,
oF,,
Oy

,Fm),X:(Xl,-'

D,F

oF,
Oy
oF,,
OYm

s Xp)andy = (yp, -+

2> Ym)-
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Theorem 5.9.5. (Implicit Function Theorem) Let D C R" X R™ be open and F : D — R™ be a
function of class C", r € N. Suppose that ¥(Xy, yo) = 0,, for some (Xy,yo) € D and

oF, oF,
[DyF(x0,50)] = | : .| (X0, Yo0)

oF,, oF,,

ayl o aym

is invertible. Then there exists an open neighborhood U C R" of X¢, an open neighborhood
YV CR"of ypand f : U — V such that

(1) F(x, f(x)) =0, foreveryx € U.
(2) yo = £(xo).
(3) DE(x) = —[D,F (x,£(x))] ' [DsF (x,£(x))] for every x € U where

or, . or,
0x ox,
[(DF)(x,y)] = | : Dl xy)
OF, _ OF,
6X1 Hxn
(4) tis of class C"
Rm
A f: U—V
F(x0,y0)=0

D F(Xo Yo)#0

IY

u
n - >
R — ‘5\ along y-direction

(X() Y())

Proof. Denote z = (x,y) and w = (u,v) where x,u € R" and y,v € R”. Define G(x,y) =
(X, F(x, y)). Then G : R — R™™ and

I, | -
DGO = | DF(x, )

where I, is the n X n identity matrix. Since the matrix [DyF(xo,yo)] is invertible and F € C”, the
matrix [DG(XO, yo)] is invertible, G € C".

By the Inverse Function Theorem, there are an open neighborhood O of (xy, yo) and an open
neighborhood W of (xo, F(Xo, ¥o)) = (Xo,0,,) such that
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(i) G : O — ‘W is one-to-one and onto.

(ii) the inverse function G™' : W — Ois of class C.

(i) DG (x,F(x,y)) = (DG(x,y)) " for every (x,y) € O.

R™ R™
A F A
—_—l
y e (X,Y)
X0
- = R™ 01 F(x0,¥0)
(X0:¥0) F(x.y)
° y()
R™ 2 R™
A A
y . (X,y) ,12—]”/ “‘\
Xq {(x0.F (xoy0)!
~Rr ) ~R"
____________ . S P X
0/ } G__—» T
;0 Xeyo) 1-1 onto F(x.y) " G
:‘ ° // yO 4‘_—_‘_/_1 :
\ ,//, G (X,F(Xa)’))

Choose an open neighborhood U of x, and an open neighborhood V of y, such that

(a) (x,0,) € W forevery x € U,

(b) UXV CO;

() G'(x,0,,) € U xV forevery x € U.

R™
A G
y
XO u
S -R"
_____________ X

0/’ (XOsyo) \

I/ T

{\ f /// 1Yo

\\ AN %

-
-
B

R™
l/ \\\\\ \
\
W,’I \\
= 1
P 1
{ i
e N = [R"
- < 7 —
C(%0.0) 7

~~~~~~
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Hence, if x € U, then (x,0,,) = G(X,y) = (X, F(x, y)) for some y € V since O g W is
bijective. Then F(x,y) = 0,, for this y.

So far, we have shown that for every x € U, there exists y € V such that F(x,y) = 0,,.
Now, we will show that y is the unique point in V such that F(x,y) = 0,, and hence x — y
is a function.

With the same x, suppose that there exists y’ € V such that F(x,y’) = 0,,. Then

Gx,y) = (xFx,¥)) = x,0,) = (x, Fx,y)) = G(x,y)

Since G is one-to-one, y = y’ and hence we can define f : U4 — V such that F(X, f(x)) =0,.
Moreover, due to G is one-to-one, G(Xy, Yo) = (X, 0,,) = G(XO, f(xo)). Then f(xy) = yo.

Thanks to (x,f(x)) = G™'(x,0,,) and G is of class C", f is of class C". The statement (4)
()

is proved.
-1
For (u,v) = G(x,y), since DG™'(u,v) = (DG(X, y)) ,

1 In 011><m
In 0n><m :| _

-1
[DG(x,y)] = [DXF(X,y) DyF(x,y)

~(D,Fx.y) (DFxy)  (DExy)

By (%),

Let H(x) = (X, f(x)) : R" - R™™, Then

1,

bt = (DG 5,0,)

[DH) = |

Note that G™!(x,0,,) = (x, f(x)). Thus,

DEx) = [DyF (x,£00) ] [DeF (x,£00) . (5.16)

Check (B18).
Consider F : D C R"" — R™, DF(x,y) € B (R’”’"; R”). Let (h,Kk) € R"™ be a vector.
(DF(x,y))(h,k) = DyF(x,y)h + DyF(x, y)k (5.17)
Define ®(x) = (x, f(X)) U CR" - R"™", Then

DO(x) = (Id, Df(x)) € B(R";R"™™).
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For h € R”,
D®(x)h = (h, Df(x)h) € R™". (5.18)

Since F(®(x)) = 0,, (U € R" — R™), by the chain rule,

B(R";R") 30 = D(F(0(x) ) = DF((x)) DO(x)

By BERN™)

For every h € R",

0, =D(F(0x))h = DF(®(x))DO(xh

*= DF(®(x)) (h, Df(x)h)

*=" D,F(®x))h + D,F(®(x)) DE(x)h

Then
—DyF (®(x))h = DyF(d(x)) Df(x)h.
Thus,
DE(oh = - (D,F(0(x)) " DF(0(x))h.
We have

DE(x) = —(DyF (0(x)) >_1DXF ().

Moreover, consider O(x) = (x, f(x)) and F : D C R™" — R™, Then

w0 o <[ ]

(n+m)xn WX

[D(F(ow))]

[DF(0(x)] [DO(X)] = [DF(D(x)) DyF(d(x)] {Df('x)}

[DF (O(x)) + DyF(d(x)) DE(x)]

mxn = |:O:| mxn

Therefore,
DF(®(x)) + DyF(D(x)) Df(x) = 0,,

O

Remark. (1) Inthe Implicit Function Theorem, we can generally write the value 0,, as F(xo, yo).
Then the statement (1) is changed by F(X, f (x)) = F(x, yo) for every x € U.

(2) In the Implicit Function Theorem, F : D € R"™ — R™. The variables x € R" and y € R”
are only notations. We only concern the hypothesis DyF(xo, yo) is invertible.
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For example, if F(x;, x5, X3, X4, X5) : R> — R?is a C! mapping where F = (F|, F,). Suppose
that

(9F1 8F1
0 0
6%22 6%52 (xl B xZ’ -x37 .X4, )
axz (9)65
is invertible. Then x = (xy,x3,x4) and y = (x2,x5) as well as x, = (xl,x?,, ) and

Yo = (13, x2).

By the Implicit Function Theorem, there exist an open neighborhood U of x,, an open
neighborhood V of y, and a C! mapping f : ¢ — <V such that F(x, f(x)) = F(x, yo).

For example, f(u,v,w) = u> + v> + w? and [Df] = Bf ‘;f gf} [2u 2v 2w].
u o ow

0
AL(0,1,0), 0—{?

the Implicit Function Theorem, there exist an open neighborhood U of x,, an open neigh-
borhood V of y, and a function g : U — V such that f(u, glu,w), w) = 1.

=2#0. Theny = vand x = (u,w) as well as xo = (0,0) and yo = 1. By

Geometrically, the sphere
S = {(u,v,w) | w+ v +w = 1}
) (1,0,0)
can be expressed as the graph of the function u
g(u, w) near the point (0, 1, 0). ‘
\

Example 5.9.6. Let F(x,y) = x*> +y* — 1.

(i) At(1,0), D,F(1,0) = 2 # 0. By the implicit function theorem, near (1,0), x = x(y) such
that F (x(y), y) =

(i) At(0,-1), D,F(0,-1) = =2 # 0. By the implicit function theorem, near (0, —1), y = y(x)
such that F (x, y(x)) =

(i11) At (—— \/_) D.F(— é, \zf) =—-1#0and D F(_E’ > ) = V3 #0. By the implicit func-

tion theorem x can be expressed as a function of y, say x = x(y) such that F (x(y), y) =0.
Similary, y can be expressed as a function of x, say y = y(x) such that ' (x, y(x)) =
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z

)<)< {(Y)IF(x,y)=0} \/FY(X)

dy - 2
— =~ (DF(x.)) (D () = 2x

(i) (differentiation of single variable function) F(x,y) =0 & x?>+y? = 1. Then

To find —

(x.y)=(x0,y0)

d d
E(XZ +y)) =2x+ 2y%€ =0.

We have @ = —Q.
X 2x

(i1) (partial derivative of two variables function) F (x, y(x)) = 0. Then

d dy
E(F(x,y(x))) F.+F,- I =0.
dy Fy 2
Then — = —— =
en dx F, 2
Example 5.9.7. Consider the equation
xu+yv? =0
{ xv? +yy2u6 _( |Dear (X0, Y0, tos vo) = (1,—1,1,-1). (5.19)
Let F(x,y,u,v) = (xu + yv2, o+ y2u6). Then
F F>
(9F1 6F1
ox Oy 2
1 1
D, ,F = = [”‘3 Y 6} = [ ] is invertible.
D }(1’_1’1’_1) 0F, OF, v 2yl Ly D2

Ox dy (1,-1,1,-1)

By the implicit function theorem, to satisfy the equation (519), (x,y) can be expressed as a
function of (u,v), say x = g;(u,v), y = g2(u,v) near (1, —1) such that

F (x(u,v), y(u,v),u,v) = F(1,-1,1,-1) = (0,0)
Let (x,y) = g(u,v) = (gl (u,v), g2(u, v)). Then

Dg(u,v) = — [D,yF(x,y,u,v)] - (D, F(x,y,u,v)] .
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Example 5.9.8. Consider the equation f(x, y, z) = (xe’ + ye®, xe* + z¢*) : R® — R%near (-1, 1, 1).
L 1 L I

fi(xy.2) fa(xy.2)
on on
ay 8Z Y V4 z
+ 0 . .
(D] LLD = = [xe ye ;e y] = { 8} is invertible.
” of, 0f ze xet+ el
dy 0z (—1L,1,1)

By the implicit function theorem, to satisty f(x,y,z) = f(-1,1,1), y,z can be expressed as a
function of x, say y = g1(x), z = g2(x) such that f(x, y(x), z(x)) = f(-1,1,1) near —1.

Let g(x) = (y,2) = (81(x), g2(x)). Then

~ Y+ ¢F V4 - y
[Dg(x)] == [Dy,zf(x’ Y, Z)} ] [Dxf(x, Y Z)] - {xezey ’ xegi ey} Ez}

Example 5.9.9. Let f : R*** — R? where f = (fi, f») is given by

flx, X2, y1,y2,¥3) = 2e™ +xy1 — 4y, +3
X1, X2, Y1, ¥2,¥3) = Xpc08x; —6x1 +2y; —y3

Let xy = (0,1) and yo = (3,2, 7). Then f(xo, yo) = 0. Consider

2 31 -4 0
[DE(xo, ¥0)] = {—6 12 0 —J

We have
[Dsf(x0,¥0)] = {_26 ﬂ and  [Dyf(xo,¥0)] = B —04 _OJ.

Then, [Dxf (xo, yo)} is invertible. By the Implicit Function Theorem, there exist an open neigh-
borhood V of (0, 1), an open neighborhood U of (3,2,7) and a C'-mapping g = (g1,22) : U —
V such that

f(g(y).y) = 0.
Moreover,
dyy Oy, 0y B
[Dg(3.2,7)] = (3,2,7) = [Df(x0,¥0)] " [Dyf(x0, ¥0)]
08, 0g2 0g2
dyy 0Oy, 0y3

_ L[l —3H1 -4 0}_i{—5 4 3}
20106 2]12 0 -1/T20010 24 2

QProve the Inverse Function Theorem by using the Implicit Function Theorem
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m Implicit Function Theorem

Let F : D —-C R™" — R” is of class C!. Denote z = (gé, y ). If DyF(xo,Yyo)
ER" crm
is invertible and F(xy,yo) = 0,,, then there exist open neighborhoods U C R”" of x, and

V CR"of ypand f : U — V such that
(1) F(x,f(x)) =0, for every x € U.
(2) £(xo0) = Yo

(3) DI = (DF(x£)) " (DF(xfx)))
(4) if F is of class C”, then so is f.

m Inverse Function Theorem

Letf : D -C R" — R™ is of class C!, f(a) = b, Df(a) is invertible, then there exist
open neighborhoods U € D of a and V C (D) of b such that

(a) f: U — V is ono-to-one and onto.
(b) £7! : V — U is of class C'.
(c) Df\(y) = <Df(x)>_1 foreveryy € V and y = f(x)

(d) if fis of class C", sois f'.

m Sketch the proof of the Inverse Function Theorem by using Implicit Function Theorem

(1) Let F(x,y) : D x R" — R" be given by F(x,y) = f(x) —y. Then F € C', F(a,b) = 0, and
DyF(a,b) is invertible.

(2) By the Implicit Function Theorem, ther exist open nbighborhoods O; C D of a and ‘W, €
R*of band g : U — W such that g : U — V such that (1)-(4) hold. [Note that U and V
is not given. Also, f : U — V is not one-to-one and onto.]

Hence

F(x, g(x)) =0, foreveryx e O
— f(x)-gx)=0, foreveryxe O,
& f=gon0,.
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Rn
A F(x,g(x))=0
LZZN .. 0 =f W; = %
g(x) /// \\\\\ L\ /L ///l/// N\
Il \\ // b \l
b /, a i [\ ° /]
/ . i not 1-1, onto | /
A\ t‘ ,’I \\ //
\\\\ - 2 \\\ ////
< = = R
a U

(3) Since Df(a) is invertible, DyF(a,b) is invertible. By the Implicit Function Theorem, there
exists open neighborhoods W, of b and O, of a and h : ‘W, — O, such that (1)-(4) hold.

F(h(y), y) =0, foreveryyeVW, f(h(y)) =y foreveryye W,.

) W, N (i) There exists O; of a, W ofb,g: 0, —» W,
e - A such that F(x, g(x)) = 0, for every x € O,
VA { A Thus, f = g.

\ .' : ”l' (ii) There exists ‘W, of b, O, of a, h : W, — O;
AN hee W, such that F(h(y),y) = 0, for every y € W,
Thus, f(h(y)) =y for every y € W,.

Let U = O, N O, and V = W, NnW,. To prove

(1) f: U — V is well-defined, one-to-one and onto.

(i) h=f"'onYV.

-1

(ili) Dh(y) = (Df(x)) foreveryy e Vandy = f(x).

(iv) iff e C", thenhis C".
Proof of (i): For x € U, there exists y € ‘W, such that x = h(y). Then

y= f(h(y)) =f(x) € W,.

Hence,
f(X)ZYE(Wl NW,=%V.

We have f : U — V is well-defined.

If x1, X, € U such that f(x;) = f(x,), then there exists y;,y, € W, such that y(y;) = x; and
h(y,) = x,. Then
yi = f(h(y)) = f(x;) = f(x2) = £(h(y»)) = y>.
Hence,
x; = h(y;) = h(yz) = x..
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We have f is ono-to-one.

Ify € V=W;NW,, thenh(y) € O, and f(h(y)) =y.

5.10 Higher Derivatives

LetYU CR"andf : U — R” be differentiable on U. Suppose that Df(x) exists for every x € U.
Then Df is a map from U into B(R”; R’"). We may ask whether this map is differentiable.

Definition 5.10.1. Let (X, | - ||x) and (Y, ]| - ||y) be normed space, ™/ C X be openand a € U. A
function f : U — Y is said to be “twice differentiable at a” if

(1) f is differentiable in a neighborhood at a.
(2) there exists L, € B(X; B(X;Y)) such that
IDf(x) — Df(a) - Lox — a)llsecn _

lim 0
x—a IIx — allx
or
. _|IDf(a+h) - Df(a) — Lh||gx.y)
lim =0.
h—0 |hl|x

The linear map, L,, is denoted by “D?f(a)” and is called “the second derivative of f at a”.
Remark. For every u,v € X, (D*f(a))(v) € B(X;Y) and [(D’f(a))(V)](u) € Y.
| P | | S ——
eB(X;B(X;Y)) eB(X;Y)
D? f(a)(v)(u) is usually denoted by D?f(a)(u, v).
Definition 5.10.2. In general, a function is said to be “k-times differentiable at a € U if

(1) f1is (k- 1) times differentiable in a neighborhood of a.
(2) there exists L, € B(X; B(X; B(X,---B(X;Y)))---) such that

k times
lim D! f(x) = D' f(a) — Li(X = a)llgx.s0c8x.-B0cr)-) 0
x—>a lIx — allx
or k-1 k-1
lim ID™" f(a+h) - D" f(a) — Lhllsxsxse. -8 0

h—0 lIllx
The linear map L, is denoted by D* f(a) and is called “the k-th derivative of f at a”.

Remark. For any k vectors u,--- ,u® € X,
k-1
D'fam®) e BX:BX;BX; - BX:BX;Y))---)))
k=2

D f@@®)mt) e B(X;BX:BX: - BX: BX;Y))--+))

Dif@@®)@m*y...@?) e v
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Dffa)u®)u*=D)... ") is usually denoted by D* f(a)(m,--- ,u®).
Example 5.10.3. Let (X, | - ||x) and (Y, || - ||y) be normed spaces and L € B(X; Y). Then for any
ac X, DL(a) = L. Hence,
._lIDL(a + h) — DL(a) — Ohllgx,yy . [IL = Lllgx.y
lim = lim =

h—0 h—0
10 ]l 10 [

0

Hence, D*L(a) = 0.
Note. In order to find a representation of D?f(a), let us look at the following two observations

Remark. Let f : U C X — Y be twice differentiable at a € U. Consider the “directional
derivative” of Df at a in the direction v € X. Let x = a + ¢tv with ||v||y = 1.

. IDf(a +tv) - Df(a) — tD* f(@)Wllsxy) _
1m =

=0 llzvllx

0.

Hence, for u € X with |jully = 1,

lim |2/ (@ + ¥)(w) - Df(a)) - tD* f@@)lly

= evlix

. (Df(@a+1v) - Df(a) - tD* f@)V) ) Wlly
= 1m

t—0 |l|
i IDF@+ 1) - Df (@) — 1D f@W)llscxn
= 0 I
=0

Since

Df(a +tv)(u) — Df(a)(u) — hrr(} [f(a +1v+ su) — f(a +1v) _ f(a + su) — f(a)} ’

§ S
we have
t - V) —
D f@)(v)(u) = limlim fla+1tv+su)— f(a +tv) f(a+ su) + f(a)
t—0 s— s
fat+tvisu)—f@a+ty)  flatsw-f(a)
= limlim S s
t—0 s—0 ¢t
= 1im1(1imf(a+ tv+su) - fla+v)  fla+su) —f(a))
=0 N s—0 s S
_ i Puf@+1v) - Duf(a)
t—0 t
- DV<Duf)(a)-

Proposition 5.10.4. Let U C R" be open, a € U and f = (f1,---, fn) : U — R". Then f is
k-times differentiable at a if and only if f; is k-times differentiable at a for all i = 1,--- ,m.

Proof. (Exercise) by induction. O
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Note. The proposition suggests that, in order to study the differentiation of f = (f, -+, f,) :
U C R" — R™, it sufficies to study the differentiation of f; : U € R" — R since

Df(a)(uy, -+ ,uy) = (Dkfl(a)(ula cw), e, D fu(a)(uy, - ,llk))

Another viewpoint: By Theorem 567, let u and v be vectors in X with [Ju|lx = [|[v[y = 1.

D*f(a)(v)
D*f(a)(v)(u)

Dy(Df)(a)
(@) ) = (Dy(Df) (@) ) (w)

Forf: X - Y,Df(a) x o f 2 2 w e B x5
> g A s 5 (£ )(since [Jully = 1). Dy(Df)(a)
e

Dyf(a) = Df(a)u » - f . a gL/ u
FpeDfteaBhisv™ et cpi
%
2

e oAy Efhagh b g E o Flpt ¥ g Df(a)u 5 f fagh

ud e b fARTEE o SR E L aBR Ao
Dv(Duf)(a) LY v b gueg g
X v T(a+tv)u Y T(at+v)u

/ f(a-l-tv/ O
attv
— = D(D,f)(a)
f(a)
u
a T(a)u T(a)u

Therefore, D*f(a)(v)(u) is obtained by first differentiating f in the u-direction and then
differentiating D,f at a in the v-direction.
Similarly, (D*f)(a)(uy) - - - (u;) is obtained by first differentiating f at a in the u;-direction.
Then continuing similar procedure, Dy, ,(Dy,_,(Dy, (- - - Dy,f)))(@) in the u;-direction.

Remark. (1) The second derivative D*f(a) € B(X; B(X;Y)) is a linear map. Then, for v, v, €
Xandc € R,

D*f(cvy + Vo) = cD*(a)(v)) + D*f(a)(v,) € B(X;Y).

Foru e X,
D*f(a)(cvy + v2)(w) = cD*f(a)(vi)(w) + D*f(v;)(w) €Y.

Also, for every v € X, since D*f(a)(v) € B(X;Y) is a linear map, for u;,u, € X,
D*f(a)(v)(cu; + wp) = cD*f(a)(v)(uy) + D*f(a)(v)(wy).

Hence, D*f(a)(u,v) = D*f(a)(v)(u) is linear in both u and v. We call a map with this
property a “bilinear map”.

(2) Similarly, D'f(a)(uy, - -- ,uy) is linear in uy,--- ,u. A map with this property is called
“k-linear map”.
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m Matrix Representatioin of D*f(a)

This remark suggests that, in order to define D*f(a) clearly, it suffices to define D*f(a) on
the basis pair (e;, ;) where 1 < i, j < n.

Let X be a finite dimension with dim X = n and {e;,--- ,e,} be abasis of X and Y = R. Then
D?f(a) : X x X — Y is a bilinear form.

Letu =ue; +---+u,e,and v=vye; +---+v,e,. Then

Df@)wv) = D*f@)( ) ue, Y vie)) = > > uv,Df@)e;e))
i=1 j=1 i=1 j=1
D’f(a)(er,e;) -+ --- D>f(a)(e;,e,)] [vi]
= [w o o ow) : '
D*f@)ene) - - D f(a)enen] Lval
[D’f(a)(e;,e;) --- -+ D>f(a)(e,e)] [ui]
= [n Vi)
D f@)ere) - - D f(a)enen) Lin
I A v
dx? 0x10x, | [w
= [v wl | .
o @ e
| 0x,0x, ox2 |

Example 5.10.5. Let f : R? — R be twice differentiable at (a, b).

0 0
[Df(x,y)] = {a—i(x,y) a—]yv(x,y)} = [fulxy) filx,y)]

Denote L, = D*f(a, b) € B(R?; B(R?*;R)). Then

IDfCx.y) = Df(@.b) = Lo (x = a.y = b) || o,

0 = im
(xy)—(a.b) l(x —a,y — bl
o ey A] - [Aeh) f@b] - Lo(x= a0y =) e,
(xy)—(a,b) \/(x —a)? + (y - b)?

| [fex. ) = fil@.b)  f(x.y) = fy(@. )] = Lo(x — a,y = b)

. BR*R)
lim :
(x.y)—(a,b) \/ (x —a)? + (y — b)?
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Let (x,b) — (a,b) and [L2e1} = [a“ alz} € B(R%;R). Then

0 = lim ” [fX(x’ b~ Ja,b) fy(xb)~ ja, b)} —(x—a) [Lze1] ||B(R2;R)
x—a |)C — Cll
— 0=lim |fe(x, b) — fila,b) — (x — a)ay| and 0 < Tim If,(x, b) = fy(a, b) — (x — @)ay,|
x—a |X—a| Y—a |x_a|
& an = fula,b) and ap = fi(a,b)

— [Lzel] = [fxx(a’ b) fyx(a’ b)] .

Similarly, let (a,y) — (a, b), then
|:L2e2} = [fxy(a’ b) f;)y(aa b)] .

Hence, for v = vie; + ve,,

|:L2V} = [Lzel} + vy [Lzeg}
= i [fula.b)  fix(a,b)] + vy [fo(a,b)  fy(a,b)]
(symbolically) = [[fxx(a, b) fila,b)] [fola,b) fyy(a,b)}:| m

- 1)

Letu = u;e; + ure,. Then

L(u,v) = L) = L] [Zj
= wltan] ]+ (e 1]
= i [futad) fu@h] Y] 4 [fo@d) fotab)] "]
- (v e Feol) b
([ Bl o) [o]
Hence,

[DZf (a,b)(e, ) sz(a,b)(el,ez)} _ {fxx(a,b) f(a,b)
D’f(a,b)(er, e1) D*f(a,b)(es, €) fix(a,b)  fyy(a,b)

Note: The above matrix is an informal expression as

[DZ f(a,b)(e;,e;) D*f(a,b)(e;,e,)

— 2 2
D*f(a,b)(es, e;) D*f(a,b)(e,, ez)} = [D*f(a,b)e; D’f(a,b)es] .
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It applies v = [VI} by
V2

[D*f(a,b)e; D*f(a,b)e,] m € BR%:R).

However, we usually express it as

[V v ] |:D2f(a’ b)el:| _ [V v ] |:D2f(a’ b)(el9el) sz(a’ b)(eZ,el)
b D fa be;] T U A D f(a,b)(er,e2) D f(a,b)(es, er)

Viewpoint of Identification :
We identify B(R?; R) as R? (That is, B(R?;R) = R?). Then
Df : UCR?>— BR*R)
= UCR*—>R?

Define )
_ |5 T, 2
g(x,y) = [fy(x,y) = [Df] :UCR > R
_ Ja(x,y) fxy(x»y)
De(x.y) = {fyx(x, M ful, yJ
Hence,

D*f(a,b) € B(R?*; BR*;R))

I 1-1 correspondence

fula,b)  fu(a, b)}
fixla,b)  fiy(a,b)

u
such that for u = { 1},V =
17%)

V :|
2

D*f(a, b)(u, V)

D*f(a, b)(v)(u)

-  frx(a, b) fyx(a9b)i| {ul]
! 2 _fxy(aa b) fyy(a, b) up
(O O
0ox?  0x0 U
= [V] VZ] aZf 82]2) [u2:|
| dyox (9_)12
0? 0? 0? 0’
= a—xJ;vlul + ay—af)‘cvzul + 6x§yv1u2 + a—y2V2M2
_ v O
= 'V,'I/lj
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Note. fr:iz42 [Dg(x, y)} % Hessian matrix or [D f(x, y)] g ¥ et o g F)E_F itk
e Lt e (D) ] e v e R s A kg gRiel AP ag
2

5 & (v w] [D2fCey)]" A& 167 b v 21t linear map ¢

Question: How about k-times derivative on R"?

Proposition 5.10.6. Let U C R" be open and f : U — R. Suppose that f is k-times differen-
tiable at a € U. Then for k vectoruV,--- u® e R",

Y Fr@ 0

Dkf(a) u®, o u®) = o
( ) Jis k=1 axjkaxjk_l s """ 8_)(:]1 J1 Jk

_ 0o Jof " “

) Ji ZJ; 1 axjk (ﬁx]k l asz (ale )))(a)ujl ”jk

where u") = (u(’) e u) foralli=1,--- k.

Proof. Let ey, - ,e,} be the standard basis of R". Since D* f(a) is a k-linear map, it suffices to
show that

ok f
k . . e . . = k e . [
D f(a)(e;)(e;_,)---(e;,)(e;) = D" f(a)e; -~ ,e;) ox, 0%, (a). (5.20)
If so,
Dkf(a) (u(l)’ ce u(k)) — Dkf(a)< (l)e/l , , Z (k)ejk>
J1=1 Ji=1
:AZEZAZDvweN-ew“”uf
J1=1 jp=1 Je=1

When k =1,

0]

0 : 0
Df(a)e; = {0_){1(21) f ] 1 :6_){-(2[) forj=1,---,n
j
0]

Therefore, the proposition holds when k = 1. Assume that (52200) holds when k = £. That is, f
is (¢ — 1)-times differentiable in a neighborhood of a and f is ¢-times differentiable at a.

Suppose that f is (¢ + 1)-times differentiable at a and f is {-times differentiable in a neigh-
borhood of a. ‘We will prove that (520) holds when k = € + 1. ‘ Then

lim ID*f(x) = D f(a) = D' f@)(x = @)llgs;-s@rmy-)
x—a lIx — allz»

=0 (5.21)
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and
o' f

Oxj, -+ - 0x;,

D f(x)(ej, - ,ej,) (X) (5.22)

for every x in a neighborhood of a. Hence,

o'f o'f
— — Dl e X — ‘
 lox;, - ax, (%) dx;, -~ 0x}, (@) f@)(ej, ej, X - a)
lim
x=a Ix — allz
= . Dl’f(x)(ejl, - ,ej[) - fo(a)(ejl, .. ,ej[> _ D[“f(a)(x _ a)(ejl’ o ,ej[)
x—a Ix — 2|z
[D'f(x) - D' f(a) - D™ fa)x — @) (e, - . e;)
= lim
x=a Ix — allx
; ID f(x%) = D' f(@) = D! @)X = @)l . gz 1€l =<l e
< m ; ;
xa Ix — all
= 0.

Letx = a+rej,,. Then

ot o
Ox; ..j.fax. @+re).,) - Ox; ..].Cax_ (@) — D" f(a)(e;. - ej,)
lim —% g1 Je Ji _o.
t—0 |l|
Thus,
4 a[
. f@ (a+1e;,) = o fa (a)
li XJ[ x]] XJ[ le D€+1 0
t1—I>1£)l t - f(a)(ejla"' 7ej(+1) = VU.
We have

at’+1f
axjm T ale

DHIf(a)(ejl LI ejm) = (a).

O

Example 5.10.7. Let f(x,y) : R? — R, then D’f(a) € B(RZ;B(RZ;B(Rz;R))>. Letu =
(11, ), v = (v, v,) and w = (w, w») be vectors in R2. Then

3 3 3
D f(a)(u,v,w) = :xgiglulvlwl + —gy;}iglulvlwz + jxg}(]glulvzwl
+ rr@ upvowy + mulvlwz + Fr@ UpViwy
0ydyox 0x0xdy 0yoxoy
& f(a) & f@)
+ Up VW, .

8x8y6yulv2w2 " Oydydy
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Example 5.10.8. Let f(x,y,2) : R? > R. Then D*f(a) € B(R*; B(R*R)). Let u = (uy, un, u3)
and v = (v{, v2, v3) be two vectors in R%. Then

D’ f(a)(u,v) = D* f(a)(v)(u)
I ACYIN CO N (G
= Taxox VT Taxay V2T Taxa
ri@ - ri@ - ri@ )
Oyox 27 0ydy 27 0yoz 27
*f (a)u >’ f (a)u N *f (a)u
070x 3V 0z0y 312 8207
Example 5.10.9. Let f : R> — R be given by f(x,x) = x;cos x, and u’ = (2,0), u® =
(1,1),u® =0, -1)..

& f(0,0) ) o Oﬁf(OO) 2.3
D3 0,0 (1) ) (3) — ()( ()()()
f( )( ) Oxlaxlaxlw ﬁxlaxlaxz it

8 £(0,0) 4D,2 0 3*(0,0) ONCNS
0x18x26x1M Bxlaxzaxz "2
8 £(0,0) FUNE Oﬁf(OO) D2
E)xzﬁxl@xlw 6x2(9x1(9x2M
é)f(OO) e 08f(00) e
0x2(9xz6x1M 6x20x26xzw
= [ 2811’1)62](0,()) 2-1- ( 1) - [2X1 COS )Cz](()’()) -1-1- (—1)
=0

+

Corollary 5.10.10. Let U < R”" be open and f : U — R be (k + 1)-times differentiable at
acU. Then foru®, ... u® u*D e R

n

i O
(Dk”f)(a)(u(]), .. ’u(k+1)) — Z u;k 1)3_

=1 Xjlx=a

(D)) (u?, - ,u®).

k+1) at

That is, (D' f)(a)(uV,--- ,u**") is the directional derivative of D*f(-)(u,--- | u
a in the direction u**V by multiplying |[u**V||z..

Proof.

n k+1
(D' f)@ @, uk!) = Z #(a)uq) e

Jusjerr=1

n n k+1
<k+1)< Z ;f (1) (k))
u. —_—a)u. - u.
Z Jk+1 y axjkﬂ ...ale( ) J1 Jk

Jk+1=1 Ji k=1
n n k
_ &y 0 ’f M ®
= u, — @u.”--u,’ ).
Jl Oy Ox: ++-0x; J1 Jk
Jre1=1 Jk+1 | x=a Jrae k=1 Jk J1

D f(a) (um,... ,u(m)



236 CHAPTER 5. DIFFERENTIATION OF MAPS

Example 5.10.11. Let f : R? — R be twice differentiable at a = (a;,a,) € R%. Then for
u = (uy,u), v=(vi,v) € R?,

2 2 2 2

0
DwﬂmwﬂW@@Wz6M®Wﬁ&ﬁ#WM+Mwﬁmwv%®Wz
Ff Ff
T R
- 0? f 0? f
0x20x, (a) ﬁ_xg(a) U

Definition 5.10.12. In general, if f : R” — R be twice differentiable at a and v = (vy,--- ,v,),
u={uy, - ,u,) be vectors in R", then

- Pf & .
) u
Ox7 @) 0x,0x, @) :]
D’ f@)(v)(w) = D*f@a)(u,v) = [vi -+ V] : :
82 f 62 f .
| 0x,0x, (@ --- 6_x,%(a) | Uy,
e Pf .
8_36%(2‘) 0x,0x, @)
We call this n X n matrix : : “Hessian matrix of f” and denote
o’ f 0’ f
| 0x,0x; @ - ox2 @) i

H(f)(a) or H¢(a).
The bilinear form B : R" X R" — R given by
B(u,v) = (D*f)(a)(v)(u) forevery u,v € R"

is called the “Hessian of f”.

Remark. (1) If all second partial derivatives of f at a exist, then the Hessian matrix of f is
defined even if f is not twice differentiable at a.

(2) The Hessian matrix may not be symmetric (D*f(u, v) # D*f(v,u)).

(3) If all second partial derivatives of f are continuous at a, then f is twice differentiable at a
and the Hessian matrix is symmetric.

4)
2
sz(a) exists — D (a) exists forevery i, j = 1,--- ,n = H/(a) exists
Xi0X
==
o’ f . ) . .
are continuous <= D~ f(a) exists and are continuous
Bx,@xj

= Hy(a) is symmetric.
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xy(x*=y?)

For example, f(x,y) = iy if (x,y) # (0,0)

0 if (x,y) = (0,0)

Definition 5.10.13. (1) A function is said to be “of class C" if the first r derivatives exist and
are continuous.

then f,,(0,0) = —1 and f,,(0,0) = 1.

(2) A function is said to be “smooth” or “of class C*” if it is of class C” for all positive integer
r.

Theorem 5.10.14. Let U C R” be open and f : U — R. Suppose that all k-times partial
ak
derivatives —f exist in a neighborhood of a € U and are continuous at a. Then f is
[ axj] .
0
k-times differentiable at a. Moreover, if ﬁ is continuous on U, then f is of class C*.
Xj o 0Xjy

Theorem 5.10.15. Let U C R" be open and f : U — R. Suppose that the mixed partial
aof of #f &f

derivatives —, —
ox;’ HxJ 8x,(9x] 0x;0x;

exist in a neighborhood of a and are continuous at a. Then
o’ f o’ f

Ox;0x; 6xj6x,-
Proof. W.L.O.G, it suffices to show the case n = 2 and
Pf o Of

Ox10x,  Ox0x,

Let S(a,h, k) = f(a+ he; + key) — f(a+ he)) — f(a + key) + f(a).

(a).

[0}
Define ¢(x) = f(x + he;) — f(x) and Y(X) = f(x + ke;) — athe, athotke,
f(x). Then .

S(a,h, k) = ¢(a + key) — ¢p(a) = Y(a + he;) — y(a). 4, , v
By the Mean Value Theorem, there exist ¢ = a + ke, a <;1 athe,
and d = a + 6,he; such that

0 0 0
S(a,hk) = ¢(a+key)—¢(a)= ka—(p(c) = k(—f(c + he;) — —f(c))
X2 sz 6)(2
_ 02 a = n( L _9f
= Y(a+he)—y(a) = haxl ) = h(ax1 (d + key) o d).

Hence, if h, k # 0,

(oL@ ke - @) -

S(a,h k)
. a—;‘,<f f)

o —(c+he)) — —(¢

By the Mean Value Theorem, there exists ¢; € ¢(c + he;) and d; € d(d + ke;) such that

0 f 3 62]’
pep 1( )=

(Cl)
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Since

0’ f o’ f )
(x) and (x) are continuous at a, thend; — aand ¢; — aas h,k — 0 and
Xanl 8X10X2

thus oy oy
8X16.X2 (a) - 8X26.X1 a)

Corollary 5.10.16. Let U C R be open and f is of class C*. Then

D*f(a)(u,v) = D*f(a)(v,u)
forae Uandu,v eR",

Remark. If f : U — R is of class C> and a € U, the Hessian of f at a is the bilinear form
He(a) : R" x R" — R given by

H¢(a)(u,v) = sz(a)(u, v) foreveryu,veR

Since f € C%, Hy(a)(u,v) = D*f(a)(u,v) = D*f(a)(v,u) = Hy(a)(v,u). The Hessian matrix

- oy P
(')_x% 0x10x,
[Hy(a)] = : : (a) is a symmetric matrix
o f O f
| 0x,00, a2

and

[u]" [Hy@)] [v] = Hy@)(v,u) = Hy@)(u,v) = [v]" [Hy@)] [u]

5.11 Taylor Theorem

Review: Let f : (a,b) — R, € C**! and c € (a, b). For x € (a, b), there exists £ € (a,b) and £ is
between ¢ and x such that

k .
f(J)(C) ) f(k+1)(§) .
f(X):jZ_;‘ B (x—c)f+(k+1)!(x—c)" I

Question: Is there a similar result for higher dimensional cases?

Question: For f : U CR" — R, f € C**!, can we apply 1-dimensional result to higher dimen-
sional cases?

Theorem 5.11.1. Let U C R" be open and f : U — R be of class C**1. Let x,a € U and the
line segment Xa C U. Then there exists a point ¢ on Xa such that

1
f(X)_f(a)+Z .D]f(a) ,X—a) (k+1)'Dk+1f(c)(x a, ,x—al).

j—copies (k+1)—copies
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Proof. Letr(¢): [0,1] — U be given by r(z) = (1 — f)a + tx. Hence, r(0) = a and r(1) = x and
r € C*. Define g(1) = f(r(s)). Then g : [0, 1] — R be of class C**'. By the Taylor theorem (for
single variable fucnions), there exists #, € (0, 1) such that

LINNG)! (k+1)
_ 8 (0) Y 8 (tO) kL
g(1) = g(0) + JZ; i (1-0) + T (1 —0)F", (5.23)
By the chain rule,
"0 t
g = Df(rm)r'(®) = [Df(r())](x-a) = Z #(xi - a;)
i=1 !
20 f(r(t
g’ = Z M(x,- —a)(x;—aj) =D*f(r(®)(x—a,x—a).

8)(7]‘6)(,‘

ij=1
By the induction, ‘ .
g0 =DVf(r®)(x-a,--- ,x—a).

By (E23), let ¢ = r(1),

1 +
,x—al) T klf(c)(x a, X—al).

Jj—copies (k+1)—copies

ﬂm4@+2_WM)

Definition 5.11.2. Let ¢/ C R be open and f : U — R be of class C**!. We call
k

|
Zﬁfo(a)(x—a,m ,X —a)

J=0
“the kth degree Taylor polynomial for f centered at a.
Corollary 5.11.3. Let U C R" be open and f : U — R be of class C**', and define

k
1
Rea(®) = f(x) - Zﬁwm> - ,x—a).
Jj=0
Then lim L() = 0. We usually write Ry 5(X) = 0(||X - allk,,) asx — a.

x—a || — allg,

Example 5.11.4. Let f(x,y) = sin(x + y*). Find the third degree Taylor polynomial for f
centered at (0, 0).

Proof.

3 1 ‘
feny) = f0.00+ 2 DU0.0)((() = (0,00, ((x.3) = (0,0))
=17

1
F(0.0) + (£:0.00x + £,(0,0)y) + 55 | fuu(0. 00 + £15(0, 0)xy + £2(0, O)yx + £,(0, 0)y7]

1
3 |:fxxx(0, 0)X° + fuy(0,0)x%y + f1,:(0,0)x%y + f1,,(0, 0)xy*

+ a0, 00 + f10(0,00% + £,(0, 00x” + £,4,(0,0)y°]
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Then

fx,y) = 0+ (cosO-x+0-cos0-y)

1
+5[—sin0~x2—2-0~sin0~xy—2-0~sin0-yx+(2coso—4~sinO)yZ]

1
+§[—cos0~x3 +2-0c0s0-x*’y—2-0-cos0-x’y + (=2sin0 — 4 - 0 cos 0)xy*

—2-0-cos0- x>y +(=2sin0—4-0-cos0)xy> + (—2sin0 — 4 - 0 - cos 0)xy*
+(=4-0-sin0-8-0-sin0 - 80 cos0)y’]
1 3

x+y2—8x.

Note. We can check whether the above Taylor polynomial is reasonable. Let t = x + y%.
The third degree Taylor polynomial for f(¢) = sintatz = 01is

3 -
f20) ;- £ o (x4’
2T S g s e T

J=0

1
= x+y - 6()63 +3x%y% + 30" +)°)

1 1 1 1
2 3 2.2 4 6
= + - =X —= - = - =y.
third degree

Taylor polynomial

Remark. The second degree Taylor polynonial for f centered at a is

1
Pa(x) = f(@) + Df@)(x —a) + 7 [x~a]" [H @) [x~a]

Hessian
martrix

Remark. Let f : U C R" - Rand f € C*. If a € U is a critical point of f and Hy(a) is
positive definite, then f has a minimum value at a.

Proof. By the Taylor theorem,
1
f() = f(@) + Df@)x~a) + 5 [x~a] "[Hy@)] [x - a] + Rya(®).

. R2,a(x) _
where lim — =
x—a |Ix — allg,
Since a is a critical point of f, Df(a) = 0. Since Hy(a) is positive definite, there exists ¢ > 0
such that for every 0 # v € R”,
vi [Hp(@)] v > clVI[..
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Then
0@ = 3 [x-a] [H@] [x-a] + Routx)
> %cllx —a|lZ, + Rya(x)
> ZC”X - allﬂzin (as ||x — al|z» is sufficiently small.)
> 0.

Hence, f(a) is a local minimum. Note that the number c is the smallest eigenvalue of H¢(a). O

5.12 Maximum and Minimum

Review: Let f : (a,b) — R be twice differentiable. Find the maxima (or minima) of f on (a, b).
(1) find all critical points (f"(x) = 0 or f’(x) DNE)
(i) Using the first derivative test or the second derivative test

Question: How about the two or more variables functions? Is there similar results for higher
dimensional cases?

Definition 5.12.1. Let U € R” be open and f : U — R. We say that
(1) apoint xg is a “global (absolute) minimum (maximum) point of f” if
f(x0) < f(x) foreveryxe U.
(=)

(2) apoint Xy € U is a “local minimum (maximum) point of f” if there exists a neighborhood
YV C U of x, such that

f(xg) < f(x) foreveryxe V.
(=)

(3) a point xg € U is a “local (global) extreme point of f if X, is either a lcoal (global)
minimum point or a local (global) maximum point of f.

(4) apoint xg € U is a “critical point of [ if either

Of oy 29 _
8_x1(X0) = T (x0) =0

0 .
or at least one of 8—f(x0) does not exist.
x.

Note that if f is diflferenitable at Xy and X, is a critical point of f, then Df(xy) = 0 (or
Vf(x0) = 0).
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(5) apoint X, is a “saddle point of f” if f is differentiable at X, and X, is a critical point, but not
an extreme point of f.

Theorem 5.12.2. Let U — R" be open, f : U — R be differentiable and Xy € U be an extreme
point of f. Then X, is a critical point of f.

Proof. W.L.O.G, let X be a local minimum point of f. Suppose that Df(xq) # 0. Then there
exists a unit vector 0 # u € R” such that Df(xp)u = ¢ # 0. We may assume that ¢ < 0 (other-
wise replacing u by —u).

Since f is differentiable at x,, there exists 6 > 0 such that if ||h|[z» < J,

| f(x0 +h) = f(x0) = Df(x0)h| < M||h||Rn.
2

Taking 0 < A < 6, then

|c] |Ac|
Alel < f(Xo + Aw) = f(Xo) = Df (Xo)(AW) < —flAuller = ==
L >0 =1c<0 ,
>Ac|
Then we obtain a contradiction and hence Df(xy) = 0. o

Definition 5.12.3. Let B : R* X R” — R be a bilinear form. B is called
(1) “positive definite” (“negative definite”) if B(u,u) > 0 (< 0) for every 0 # u € R”.
(2) “positive semi-definite” ("negative semi-definite”) if B(u,u) > 0 (< 0”) for every u € R".

Remark. From the second degree Taylor polynomial for f centered at x,

1
f(X) = f(x0) + Df(Xo)(X — Xg) + 3 [x — xo] ’ [Hy(x0)] [x —xo] .

Let xy be an extreme point of f. Then

f(x) ~ f(Xo) + % X — x| ! [H(x0)] [x —xo] .
Hence,
(1) if [H f(xo)] is positive definite, then X is a local minimum.
(i) if [Hy(xo)] is negative definite, then X, is a local maximum.
Theorem 5.12.4. Let U C R" be open and f : U — R be a function of class C*.

(1) If xq is a critical point of f such that the Hessian H ((X,) is negative (positive) definite, then
f has a local maximum (minimum) point at X,. (sufficient condition)

(2) If f has a local maximum (minimum) point at X, then H((X,) is negative (positive) semi-
f 8 p
definite. (necessary condition)
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Idea: Since H(xo) is negative definite and f € C?, H(X) is negative definite as X ~ Xo. By
the Taylor theorem,

1
f@=ﬂW+MﬁﬂP«&+§WﬂWPmﬂ—w
=0 L 1
= 0] [H (o) [x = x0]

Proof. (1) Let S = {u e R” ‘ [la|lgn = 1} be a compact subset in R”. Define g : § — R by
g(u) = H¢(xp)(u, u) (: u’ [H f(xo)] u). Then g is continuous on S and hence g attains its
maximum. That is, there exists uy € S such that

0 > Hy(xo)(ug,up) = g(up) = max g(u) = max H(xp)(u,u).
pi i g00) =g 8 = e,

Hence, foru € R", u # 0,

u

Hy(xo)(u,u) = [jullZ,H(x ’
f( 0)( )bilinear” ”R f( O)<”u”R" ”u“R"

) < Al <0 (5.24)

Since f is of class C?, there exists 6 > 0 such that if ||x — Xo||z» < 6,

|1

||H (%) - Hf(XO)”B(R”;B(R";R)) <7

Thus,
2 Ao
Hy(x)(u,0) = H (%)W, 0)| < [[H (%) = H(%0)| gz 00 < T I0IE (5.25)

for every |[x — Xg|lz» < 60 and every u # 0.

By Taylor Theorem, for ||x — Xg|[g» < 0,

fX) = f(xo) + Df(Xo)(X = Xo) +%D2 F(€)(X — Xo, X — Xo) for some ¢ € XXo
el po
= f(xo)+ %Dz F(Xo)(X = Xo, X — Xo) + %(D2 F(%) = D*f(X0) ) (X — X9, X — X))
= o0+ o] [H )] [x-x0] + 5 [x—x] [Hi©) - Hyxo)] [x %
T ) + A = xall — Sl - sl

< f(Xo)

Hence, x is a local maximum point of f.
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(2) Assume that H¢(X,) is not negative semi-definite. Then there exists u € R”, |[ullg» = 1 such

that H¢(xo)(u, u) > 0. ’ To prove that f is not local maximum along the direction u. ‘

Since X, is a local maximum point of f, Df(xy) = 0 and there exists 6 > 0 such that if

X — Xollrr < 0, f(X) < f(Xo). By the Taylor theorem,

1
FX) = f(0) + Df (o)X = X0) +5 [x = %] [Hy(e)] [x — %]

=0

for some ¢y € Xx,. Hence,

[x = x0] " [Hy(eo)] [x—%o] = 2(f(x) = f(%0)) <0.

(5.26)

Let x = Xo + ru. Then x — xy as t — 0. Therefore, ¢ — Xy as t — 0. By (B28),
H¢(cex)(u,u) < 0fort € (0,0). Since f € C*and ¢y, — xgast — 0,

H(Xp)(u,u) = 1t11’1(’)1 Hy(ey)(u,u) <0

We obtain a contradition and hence H ¢(X,) is negative semi-definite.

Remark.

Question: How to determine whether a matrix A € M,,,(R) is positive (negative) (semi)-

definite?

Method 1: If A is symmetric, diagonalizing A.

A 0

A — where A; : eigenvalue.

0 An

(1) IfAy,---,4, >0, then A is positive definite.

(i) If 44,---,4, >0, then A is positive semi-definite.

(i) If A,---, 4, <0, then A is negative definite.

(iv) If 44,---, 4, <0, then A is positive semi-definite.
[ay

Method 2: (Sylvester’s criterion) For the matrix A = |aj
LAn1

ap -0 Ak
Ax = fork=1,---,n.

i v Aik

aik

Ak

aln

Akn

ann_

, we define
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(1) if det(ag) > O for every k = 1,--- ,n, then A is positive definite

(ii) ifdet(a;) < Ofork =1,3,5--- anddet(a;) > Ofork = 2,4,6,--- (or write (—1)* det(a;) >
0), then A is negative definite.

(ii1) if det(ay) > Ofork =1,2,--- ,n— 1, detA = 0, then A is positive semi-definite.
(iv) if (=1)*det(ay) > O0fork=1,2,--- ,n—1 and det A = 0, then A is negative semi-definite.

In particular, let A = {Z b} .

(i) if @ > 0 and detA > 0, then A is positive definite.

(i1) if @ < 0 and detA > 0, then A is negative definite.
(ii1) if det A < 0, then A is indefinite.
Theorem 5.12.5. Let f € CA(R%R), Vf(x0,y0) = 0, D = furfyy — (fi)
(1) If fox > 0and D > 0, then f has a local minimum at (xg, o).
(2) If fuix <0and D > 0, then f has a local maximum at (xg, o).
(3) If D <O, then f has a saddle point at (xy, o).
(4) If D = 0, no conclusion can be drawn.
Example 5.12.6. Let f(x,y,2) = ¢~ + & + ¢* + z2. Then

Vilx,y,z) =( -+ 2xex2, eV + &7, 22).

The point (0, 0, 0) is the only critical point. The Hessian of f is

— 2 2 — —
e+ +4xPet +2e° eV - 0

Hf(x,y,2) = - — e eV +e™ 0
0 0 2
3 =20
At (0,0,0), H¢(0,0,0) = (-2 2 O0f. We compute that det(A;) = 3, det(A;) = 2 and
0O 0 2

det(a3) = 4. Hence, H¢(0, 0, 0) is positive definite. We have (0, 0, 0) is a local (global) minimum
point of f.

0 Lagrange Multipliers

In this section, we will study the “Lagrange multipliers” which gives a method to find the
maximum or minimum of a function h(x) subject to a constraint (or side condition) f(x) = C.

In the course of Elementary Calculus, we have learned some special cases. For example, to
find the maximum (or minimum) of f(x,y) subject to the constraint g(x,y) = k.

m One Constraint
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We want to find a point(s) (xo, yo) on the level curve C = {(x,y) | g(x,y) = k} such that

f(x0,y0) > f(x,y) forall (x,y) €C.

Suppose that (xg,yo) € C satisfying (527) and
f(x0,y0) = M. Then (xp,y9) 1s also on the level
curve C| = {(x, Il fx,y)=M } Moreover, since
(X0, yo) 1s the maximum point, the two level curve C
and C| must be tangent each other at (xy, o).

Since C and C; are level curves of g and f respec-
tively, the gradient vectors Vg L C and Vf L C;.
Then Vg(xo, yo) is parallel to V f(xo, yo). Therefore,
there exists a number A (“Lagrange multiplier”) such
that

V f(x0,y0) = AVg(xo, yo).

m Two Constraints

and

Furthermore, we also discuss the Lagrange multipliers with two constraints.

Find the maximum and minimum values of f(x, y, z) subject to two constraints g(x,y,z) = k

h(x,y,z) = c.

Let C be the intersection of the two level surfaces
g(x,y,z) = k and h(x,y,z) = c¢. Find P(xo, yo,20) € C

such that f(xo, yo, Z0) ahs extreme value along C.

To find the level surface S = {(x,y,2) | f(x,y,z) = M}
which tangnet to C. Then , at the intersection of C and

S,Vf L C. Wehave

V£ (x0,¥0,20) = AVg(x0, Yo, 20) + £Vh(xo, Yo, 20)-

m General Cases

Theorem 5.12.7. Let m < n, V be open in R", and f,g; : V — R be C' function on V for

j=

1,2,--- ,m. Suppose that there is an a € V such that
g1, . 8m)
— > (a) # 0.
0(xy, -+ ,xm)( :

If f(a) is a local extremum of f subject to the constraints gi(a) = 0 for k = 1,---m, then there
exist scalars Ay, Ay, - -+ , A, sSuch that

Vi@ = ) 4Vgia) =0,
k=1

(5.28)

(5.27)
YA
flx,y)=1
/x flx,y)=10
g(x,y) flx,y)=9
flx,y)=8
flo,y)=17 .
0 X
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(1)

(1)

(I %

PR E ™ gy, gm B i 3 #B R b gi(xny) = 2x + 3y fo ga(x,y) =
4x+6y—1, PlEz23H5 3 acR" # 7 gi(a) = g,(@) = 0. § & IHeeh level sets 4p
2 *’@i&;}*ﬁl » W AR A "’#Jvi 27 gk a, Vgi(a) & Vga(a) 2 ¢ T {7 o

a(gla""gm)
—— 0.
olxy, -+, xm)(a)i
EET . VA TS level sets 4prr & T ﬁ;[&,\z; o PNV BT foa BLIHIT A K
S PR B & 0 W level sets 3 B ﬂ{xev‘ (x) = }{_ Bn—m
j=1

BRSO G o

Aot k> AP A Sficlevel sets S P H R f fRER o F
constraints = 5 (m>n)> B|¥ i % 4

(1) #4535 i & 4975 constraints <77 {7 8% ;

(2) “‘lﬁ:' % & (constraints) 2. ¥ ac (L AR BE (P A A I AE L),

(3) & 5 - gt Rl level sets ch &> - BRR > § m=npF > ¥ i WF7
Kr’? f—rg‘!:.

ﬂ{xev{gj(x) OV ie®n-mBR¥ & 145 feteEsar Bl S

& a ,ﬂ!'«mlf Z B TS 0 orthonormal space <T S)l F-Bmads s F>
d Span{Vgi(@),--- . Vgu(@} “rH = o ¥ f tra F B f taiz- & level
set {x € V| fx) = f@)} Bt agss #w C B Vi) ¢ B (TLS) =
Span{Vgl(a), e ,ng(a)}. ]t

V@ =) AVea) =0
k=1

Note. Let M and N be two smooth manifolds with dimensions m and n, say m < n. Suppose
1 1
M and N are tangent to each other at a. Then T,M C T,N. This implies (TaN ) C <TaM ) .

Hence,ifu L N ata, thenu € (TaN>L C <T3M>l.
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Proof. Equation (528) can be written as

(Of 0g Ogm
—@+4—@+--+4,—@=0
axl(a) 1ax1(a) axl(a)
af 0g Ogm
—@+4—@+--+4,—@=0
axz(a) 1ax2(a) aXz(a)
af 0g, 08m, .
. (a) + 4 o @+---+ 4, Ix. @a=0
of dg1 08
+ A4 +-ot+Ay—@) =0
\ 8Xh(a) 16Xh(a) aXh(a)
o o N N o N . a(gl""agm)
which is a system of n linear equations with m unknown variables Ay, - - - , A,,. Since ﬁ
X1, 5 Xm
the first m equations in the system determines uniquely the A;’s. Hence, it suffices to show that
for those Ay, - - - , 4,,, the remaining system with n — m equations
(?f 6g1 agm
+ A4 + Ay =0
axm+l (a) : axm+1 (a) axm+1 (a)
A o+ A,—(@) =0
a}ﬁ(a)+- 1axn(a)+- + axn(a)

holds.

Let p = n —m. As in the proof of the Implicit Function Theorem, write vector in R"*7 int
the form x = (y,t) = (y1,- - ,Ym, 11, -+ , 1,). We have to show that

aof N Ogk
—(a) + A— @) =0
@ ; 5, @
for{=1,---,p.
Letg = (g1, ,8m) : R" = R". For x € R", write X = (y,t) wherey € R" and t € R”.
Choose a = (yo.tp) for some y, € R" and t, € R”. Then g(yo,t)) = 0,, and Dyg(yo, to) is

invertible.

By the Implicit Function Theorem, there exists an open set W C R” which contains t, and a
function h : W — R such that h is continuously differentiable on W, h(z,) =y, and

g(h(t),t) =0, foreveryte W.
Foreveryte Wandk =1,--- ,m, define

Gi(t) = gr(h(t),t) and F(t) = f(h(t),t).
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Since g(h(t), t) = 0,, on W, G,(t) is identically zero on W fork = 1,-- -, k and hence DGy(t) =
0, ( the zero matrix [0] )"

Since ty € W and (h(to), to) = (Yo, tp) = a, by the Chain Rule,

-ahl 6h1 T
- Y €'
3 t1 (to) 3 tp( 0)
08 0gx ahm.
015, = DiGi(to) o (a) I (a) . 8t1 = (to) ar,) (to)
1 e 0
L 0 I
nxp
Hence, the £th component of DG(ty) is
0 0
Z ﬁ( )—(to) ﬁ( ) (5.29)
fork=1,2,---,m. Multiplying (529) by A; and adding, we have
m m a
0 =2 24 6xj< )—(to) * Z Ak—( )
= J—l
OO, 08k Oh; O, 0%
= A= @) | —=(to) + ) A——(a).
; |:k:1 j :| ot, ; ot,
Therefore,
0=- —( )—(to) Z@—( ). (5.30)
/‘ —

Suppose that f(a) is a local maximum subject to the constraints g(a) = 0,,. Let Ey = {X €
\% } g(x) = 0}, and choose an n-dimensional open ball B,(a, r) such that

f(x) < f(a) foreveryx € B,(a,r)N E,.

Since h is continuous, choose a p-dimensional open ball B,(ty, ) scuh that (h(t), t) € B,(a,r)
for every t € B,(ty, ). Since F(ty) is a local maximum of F on B,(t), VF(ty) = 0,. Applying
the Chain Rule as above, we obtain

- 0
0= jz 6—f( )—(to> —f(a> (5.31)
Adding (830) and (53T, we conclude that

:—() Z@—()

[Note that the proof is refered to the book “Introduction to Analysis 4th Ed.”, William R. Wade,
page 443-445.] O
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Example 5.12.8. Find all extrema of x?> + y* + z* subject to the constraints x —y = 1 and
2 2
y—-z- =1

Proof. Let f(x,y,2) = x> +y? + 2%, g(x,y,2) = x —y— 1l and h(x,y,2) = y* — 2> — 1. Then
Vflx,y,2) =(2x,2y,2z), Vg(x,y,z) =(1,-1,0) and Vh(x,y,z) =(0,2y - 2z).
Consider Vf + AVg + uVh = 0. That is,
2x+ 4,2y — A+ 2uy,2z — 2uz) = 0,0,0).

To solve
2x+1=0 (5.32)
2y —A+2uy=0 (5.33)
2z -2uz =90 (5.34)

By (B34), eitherz =0oru =1
(1) If u = 1, by (832) and (B33), A = —2x = 4y. Thus, x = —=2y. From g(x,y) =x—-y—-1 =0,

1
we have (x,y) = (5, _5)’ But it cannot make h(x,y,z) = y* -z — 1 = 0.

2) If z = 0, by h(x,y,2) = y¥» =22 -1 = 0 and g(x,y,2) = x—y—1 = 0, we have
(x,y) = (2,1) or (0,—1). Therefore, the only possible extreme points are (2,1,0) and
(0,—1,0). The only candidates for extrema of f subject to the constraints g = 0 = h
are f(2,1,0) =5 and f(0,-1,0) = 1.

Geometrically, this problem is to find the points on the intersection of the plane x —y = 1
and the hyperbolic cylinder y* — z> = 1 which lie closest to the origin. both of these
points correspond to local minima, and there is no maxima. In particular, the minimum of
x% +y? + 7% subject to the given constraints is 1, attained at the point (0, -1, 0).
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6.1 Integrable Functions

Review: Let f : [a,b] — R be a bounded function.

T~ P Let P = {xp < x; < --- < x,} be a partition of
[a, b]. The upper and lower sums of P for f are
UPf) = ). sup fOO0xi—x1)
=1 Yelxi-1.xi]
a x ox - b LP.f) = ), inf f(x)(x—xi1)
)n(o )”(n = XE[Xi-1,Xi]

If P, and P, are two partitions of [a, b] and P; C P,, then

L(Plaf) SL(PZ’f) < U(PZ’f) < U(Pl’f)

The lower and upper integrals are

b —b
f F(x)dx = sup L(P, f) and f f(0) dx = inf(P, f)
P a

and

" —b
L(P, f) < f f(x)dx < f f(x)dx < U(P, f).

251
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" —b
If f f(x)dx = f f(x)dx, we call f is “(Darboux) integrable” on [a, b] and denote the num-

b
ber f f(x) dx.

Remark. A function f is integrable on [a, b] if and only if for every € > 0, there exists a
partition P of [a, b] such that U(P, f) — L(P, f) < e.

Definition 6.1.1. Let P be a partition of [a, b] and x} € [x;_y, x;] fori=1,2,--- ,n.

(1) We call the form Z S(x)(x; = x;_1) the “Riemann sum for f over [a,b]”.

i=1
(2) If lim Z FH(x; — x;-p) exists where ||P|| = max(x; — x;_1), we say f is “(Riemann) inte-
1P| —0 = 1<i<n

b
grable on [a, b]” and hence f f(x) dx exists.

m Multi-variable Functions

Question: Let ¢/ C R? be a bounded set and f : U — R. How to compute the volume below

the graph of f?
A
e

=Y

Let D = [a;,b;] X [az, b,] CR?, f: D — R be a bounded function. Denote

Px = {611:X0<X1<"'<Xn:b1},
P, = {ay=yo<yi <--+<y,=by} and
/,_\ P = {a;=[xnx]xyLyl|1<i<n 1<j<m}.
ﬁ“Z b”z The lower and upper sums of P for f are
Yo Y1 i - -en Ym -
B y UPS) = > sup fRA(;)
, 7 1<i<n X€4ij
] = |/ 1<j<m
by £ A A .
x /0 D LPf) = > inf A
<en XEA;j
1<j<m

where A(a;)) = (xi—xi-1)(yj —yj-1) 1s the area of A;;.
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Suppose that P’ be a refinement of P (P’ C P). Then

L(P, ) < L(f,P") < U(f,P") < U(f,P).

We want to ask whether sup L(P, f) 2 ir;f UP, f).
P

Question: How about if D is not a rectangle?

Let D C R? be a bounded set and f : D — R be a bounded function.

b,

y
A

Definition 6.1.2. Let D C R? be a bounded set.

a;

b,

> X

In order to consider the integral, we may deal
with two things

(i) Compute the area of domain which is not
rectange.

(i) Set a new function from f which is de-
fined on a rectangle covering D and has
the same integral as f.

a, = inf{xeR| (x,y)eDforsomeyeR}
by = sup{xeR]|(x,y)eDforsomeyeR}
a, = inf {y eR ‘ (x,y) € D for some x € R}
b, = sup {y€R| (x,y)EDforsomexeR}

{a1 =xp<x<---<Xx,= bl} be a partition of [ay, b ],

{ar = xo <y1 <+ < ym = by} be a partition of [a»,b,] and

y
A
Ym:bz T _
1 99 [0 S N I > T
Yi 1 \
Yo=4ay ¢ —
A X| e e b,
[l Il
X0 Xn
Let
P, =
P, =
P =

{A,‘j = [)C,'_I,X,'] X [yj—l’yj] { 1 <i< n, 1 S]S m}

The mesh size of the partition P, denoted by ||P||, is defined by

Remark.

1P| = max \/(xi = Xie1)? + (O = yj-1)*

1<j<m
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A;
Y,
Note. The number \/(xi - xi_l)z + (yj — yj_l)Z disen(ay)
is called “the diameter of A;;” and is denoted by y
diam(A,-‘,-).
Yi

We try to define the upper sums and the lower sums corresponding to partitions.

Problem: f may not be defined on some subrectangles.

To extend f from A to [ay, b;] X [az, by] by

v fxy) (x,y)eD
xX,y) =
Foen =17 (x,)) ¢ D. by
a4 sl 4
Then we can compute the volume of the re- y 7
gion below f on [ay, b] X [az, b>].
b] L J
X

Definition 6.1.3. Let D C R? be a bounded set and f : D — R be a bounded function. Let
P={n;=[x1,x]x[yy]|1<i<n 1<j<m}.

(1) The upper sum and the lower sum of f with respect to P are defined by

UP.f= ) sup Fxy)Ab)
I<i<n (BY)E4;)
I<j<m

and
LPf) = inf  f(x,)A;
(P.f) IZ L O y)Ay)
1<j<m
where A(A;;) = (x; — x;1)(y; — yj-1) is the area of A;; and

s _ f(x’y) (-x’y)ED
f(x,y)—{ 0 (x,y) ¢ D.

The upper integral and lower integral of f over D are defined by

ff(x,y)dA= inf U(P, f)
D P

. partition

and

ff(x,y)dA: sup U(P, f).
=D

P: partition
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We say that a function f is Riemann (Darboux) integrable (over D) if
f f(x,y)dA = f f(x,y) dA.
b Y p

The number is denoted by fD f(x,y) dA and is called “the integral of f over D”.

Question: How about higher dimensional cases?

Definition 6.1.4. Let D C R" be a bounded subset. Define ay,--- ,a, and by, --- , b, by

ap = inf{xeR|(x;,--+,x,) €D forsomexy, -, X1, Xs1, - Xy € R}

b, = sup{xk eR } (x1,+++ ,x,) € D forsome xi1, -+, Xi—1, Xir1,* * * Xn ER}
Let PO = {q; = x(()k) < x(lk) <eee < x%‘) by} fork=1,--- ,nand

P = {A,-l..-in = [x;lz], xfll)] X [x f”)l, E")] ‘ 1 <iy<Nifork=1,--- ,n}.

The mesh size of the partition P, denoted by ||P||, is defined by

1 1
1= e VD =2 2 (a2
The number 1max \/ (x(l) (1) 1)2 +(x E”) - xl("i D? is called “the diameter of A;,..;,” and is
<1<Nk n n

denoted by dlam(Al,...,n)
Definition 6.1.5. Let D C R” be a bounded set and f : D — R be a bounded function. Let

P={j.i, |1 Six < Npk =1, ,n} beapartition of [a;, 5] X -+ X [a,, b,].
(1) The (Darboux) upper sum and the (Darboux) lower sum of f with respect to P are defined
by
UPS = > sup FEOV(ai.)
Bijinep XEAilmin
LPf) = ), inf fOOV(a;.)
Ailmingp XEAilwin

where f(x) = { ! g‘) gz Zg nd V(2.) = (0 =0 ) xcox (8 = x® ) is the

volume of the rectangle A, .. .

(2) The (Darboux) upper integral and the (Darboux) lower integral of f over D are defined by

(fo(X) dv(x) = ) fD fx)dx = inf U(P,f)

P:partition

([ rwavw=) [ roax= s wep
~Y D =D

P:partition
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(3) We say that a function is Riemann (Darboux) integrable over D if

TDf(x) dx = in(x) dx

and the number is denoted by f f(x) dx.
D

Remark. (1) U(P, f) and L(P, f) are Darboux upper sum and lower sum. Let P = {A,- -, Ay}
N

be a partition of D. We called the sum Z f(&)V (o) for some &, € Ay “the Riemann sum

k=1
of f over D”.

(2) fis Riemann integrable over D if

lim " f(EV(80)
ArEP

IPlI—0

converges to a number /.

(3) f is Riemann integrable over D if and only if f is Darboux integrable over D.

Remark. Let K € R” be compact and f is continuous on K. Then f is integrable over K. (How
to prove? Is it true?)

Definition 6.1.6. Let D C R” be a bounded set P, P’, Py, - - - , P, be partitions of D.

(1) We say that P’ is a refinement of P if for any A" C P, there exists A € P such that A" C A.

(2) We say that P is a common refinement of Py,---, P, if P is a refinement of P; for j =
1,-- k.

Proposition 6.1.7. Let D C R" be a bounded set, Py and P, be partitions of D, and f : D — R
be a bounded function.

(1) Suppose that P is a common refinement of Py and P,. Then

L(Py, f) < L(P, f) < U(P, ) < U(Py, f)

(2) By (1), any upper sum U(P, f) is an upper bound of all lower sums and any lower sum
L(P, f) is an lower bound of all upper sums. Hence, for any partition P,

sup L(P',f)<UPf)
P’:partiition
and
inf  U(P,f)>LZPf)

P’:partiition
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(3) pr inf U(P, f)= sup L(P f)=c, then cis the unique number which is less than any
-partition P:partition
upper sum and greater than any lower sum.

(4) It is possible that
sup L(P,f)< inf U(P,f).

P:partition P:partition

1 xeQ,yeQ

For example, D = [0,1] X [0, 1] and f(x,y) = { 0 othermise

Proposition 6.1.8. Let D C R” be a bounded set and f : D — R be a bounded function. Then f
is Darboux integrable over D if and only if for every € > 0, there exists a partition P of D such
that

UP, f) - L(P, f) < e.

Proof. (Exercise) O

Proposition 6.1.9. Let D C R" be a bounded set and f : D — R be a bounded function with
extension f. Then f is Riemann integrable if and only if there exists a number I € R such that
for every € > 0, there exists 6 > O such that if P = {Al, cee, AN} be a partition of D with
[|P|| < 6, then

\i Ve -1| <e.
k=1

Proof. (Exercise) O

Theorem 6.1.10. Let D C R" be a bounded set and f : D — R be a bounded function. Then f
is Darboux integrable over D if and only if for given € > 0, there exists 6 > 0 such that for any
partition P of D with ||P|| < 6, then

UP, ) - L(P, f) <e.

Proof. (Exercise)
O

Theorem 6.1.11. Let D C R" be a bounded set and f : D — R be a bounded function. Then f
is Darboux integrable over D if and only if f is Riemann integrable over D.

Proof. (=) Since f is bounded, there exists M > 0 such that |f(x)| < M for every x € D.
W.L.O.G, we may assume that f(x) > O for every x € D. Otherwise, we can replacing f by
f+M.

Since D is bounded, D C [ay,b;] X --- X [a,, b,] € R". Set L = max(b; — a;). Also, since f

1<i<n
is Darboux integrable over D, there exist / € R and partitions

1 1
Pl = {012X8)<"‘<X§v1):b1}

P, = fa,=x" < <y =b,}
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and

P = {Aij = [X(l) xgll)] XX [x(n) (_n) } 1< <N, k=1,--- ,l’l}

i-1° i,—1°

such that U(P, f) — L(P, f) < g and L(P, f) < I < U(P, f).

! £
Let (P) = N (= N;) and set § = ——————. For
D SM(L+ 1)'N

Q ={0O,,---,Ok} be a partition of D such that ||Q|| < 6.

Separate Q into two classes, say Q; and Q,. Let Q; be
the subset of O such that if O € Q; then O is contained in
asingle A;; € Pand 0, = Q\Q.

Q;

‘We obtain

> (sup f0 - inf F0) V(@) < UP.H - LP.f) < . 6.1)

;€01 Xxen;
XN2
e

ke{l,--- ,n}and i, € {1,--- ,Nk} such that for

K
X0 € [endd. 0 C lan bl X+ X [a-1, beet] X

[x{ - 6x<">+6]><[ak+1,bk+1]>< - X [y, by].

2 3

dz“
ForoO = [c;,di] X - X [c,, d,] € QZ’ there exist 1 Cy

[}

Then
n—1ammn e
D V(@) < 281N < 4M
0,€0»

Hence,

‘ D sup feOV(@))

0jeQ, X0

We have
U(Q?f) - L(Qaf)

0,€0>

2, (supfo — inf fo)via) + )

gieQ; XM 0,0

UP.H=LP.H+]| 3 sup fv(@| +

0/e0, X0

IA

< &

Also
U@Q.f)= ), supfov@)+ Y sup fxv(@,)

0;€0; Xxen;

<M v@) < and ’ Z inf V(@)

<M Z V(o)) <

0;€0»

(sup fx) — inf 7)) V(o))

Xeo;

’ Z inf f(0V(@))

<UPH+73.
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Leté en;fori=1,---,K, we have

Zf(fl)V(D) I<UWQf)- I<U(Pf)+——I<U(Pf) L(Pf)+—<8
0;eQ

and

D FEV@) 1210, N-12UQ,f)-e-I<LPf)—1-s2 -2
0;€Q

Therefore,

| e 1] <2

0;eQ
and f is Riemann integrable over D.

(&) Since f is bounded and Riemann integrable, there exists / € R and for given € > 0
there exists 6 > 0 such that if a partition P = {Ay,--- , Ay} of D with ||P]| < 6,

N
‘Z FEV () — 1] < Z forany & € Ay, k=1,--- ,N.
k=1
Define M; = sup f(x) and m; = inf f(x). There are T;, t; € A; such that
XEA; XEA;

M; < f(T) +

& - &
4V(D) and m; > f(t,) - m

Then

N

N
;Mkvmu < ; (f(To + 4V(D)>V( o

U(P, f)

< 1

N
& &
+ 1 + VD) ; V(Ay)

£
= [+ -
2

and

N

N
LPf) = kavmk»Z(f(tk)—m) V(a0

4 4V(D)Z V&)

e
= [-—.
2

Hence, U(P, f) — L(P, f) < € and f is Darboux integrable over D. i

Remark. From now on, we will also call the above integrals fD f(x) dx “Riemann-Darboux
integral”.
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Recall: Let {f,}”, be a sequence of integrable functions on [a, b] and f, — f uniformly on

[a, b], then . ,
f Ju(X) a’x—>f f(x) dx.

Theorem 6.1.12. Let D C R" be a bounded set and f;, : D — R be a sequence of Riemann
integrable functions over D such that { f;},>., converges uniformly to f on D. Then f is Riemann
integrable over D and

lim | fi(x)dx = f f(x) dx.
k=eo Jp D
Proof. (Exercise) O

Remark. There are other definition of Darboux integral. We can divide D into serveral pieces
of subregions such that

(i) D= U D;
i=1

(i1) Int(D;) N Int(D;) = 0
(iii) each D; has nonnegative volume V(D;)

Define

n

U f)= Y sup fGVD) and L(a.f) = ) inf fGIV(D))

i=1 X€Di i=1

Then _
f f(x)dx =sup L(a, f) and f f(x)dx =inf U(a, f)
YD D

By using this method, we need to compute the volume of D; in advance. But we don’t need to
extend f tof and D; need not be a rectangle.

1 Volume of Sets

Definition 6.1.13. Let £ C R" be a bounded set.
(1) The “characteristic function 1g (or xg)” is defined by

1 xeE
Lp(x) = { 0 xeR\E.

(2) E is said to have volume if 1z is Riemann integrable (over E), and the volume of E is
denoted by V(E) where

V(E) = f]lE(x) dx.
E

(3) E is said to have volume zero if V(E) = fE 1(x)dx =0.
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Remark. That “a set does not have volume” (“a set has no volume™) is different from that “a
set has volume zero”. Not all bounded sets have volume. For example, E := Q N [0, 1] has no
volume. It does NOT mean that E has volume V(E) = 0 since 1 is not Riemann integrable.

Remark. (1) Arectangle S = [a;,b] XX [a,,b,] CR" [or (a;, b)) x---x(a,b,) C R”} has
volume
V(S) = (b1 —a))(by —ay)--- (b, — a,).

(2) An open rectangle(set) has nonzero volume.
(3) If E| and E, have volumes and E; C E,, then V(E;) < V(E,).

Proposition 6.1.14. Let E C R" be bounded. The E has volume zero if and only if for every

e > 0, there exists finite (open) rectangles S 1, --- ,S y such that
N N

EQUSk and ZV(Sk)<8
k=1 k=1

Proof. (=) Since 0 = V(E) = fE 1(x) dx = TEILE(X) dx, for given € > 0, there exists a
partition P = {Ay,--- , Ay} of E such that

N
ZSUP Ig(x)dx = U(lg, P) < f 1g(x) dx+§ = g
E

k=1 XEAL

1 xenrNE

Since sup 1p(x) = { 0 otherwise ’

XEAL

> Ve = UL < 5.

AEP
ANE#D

Moreover, for every A, € P with Ay N E # (0, we can find an open rectangle O; such that
A € O and V(Op) < 2V(Ap).

Then
N N
EC A C© U O Ok
k=1 k=1
Ay
and
N N
Z V(D) <2 Z V(o < e.
k=1 k=1
(&) Let S, --,Sy be rectangles such that .
N N
Ec| s and Y visp<e
k=1 k=1
W.L.O.G, we may assume that for each «, | ]

max length of side of S

min length of side of S, —
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Otherwise, we can divide S such that it satisfies the above preperty.

For each S, we can choose a (cubic) rectangle O0; side | .

length of 3 times multple of max side length of S, such 3 bsk,

that S, C O;. Then V(O;) < -t 3'V(S ).

3¢
Let P be a partition of E such that for each A € P with AN E # (), then A C O; for some

k=1,---,N. Hence,

N N
UPP 1) = Z V(a) < Z V(o) < 2" 3. Z V(S,) < 2" 1. 3,
k=1 k=1

AEP
ANE#Q

Since ¢ is an arbitrary positive number, TEIL £(x) dx = 0 and therefore V(E) = 0. O

Example 6.1.15. (1) A set consisting of finite points is volume zero. (finite set)

1
(2) The set {— | ne N} C [0, 1] is volume zero. (infinitely countable set)
n

(3) The Cantor set is volume zero. (uncountable set)

4) If f : [a,b] — R" for n > 1 is of class C!, then f([a, b]) has volume zero. (at most
1-dimensional set in R")

Proof. Let P, = {a = xo < x; <--- < xy = b} be apartition of [a, b] with x;—x;_; = bT = 0.
Since f is of class C!, there exists M > 0 such that ||V f(x)|lz» < M for every x € [a, b].

By the Mean Value Theorem, for f = (fi,--- , f,) and let ¢ € [x;_y, x;],
fi(x) = fi(0) = f7(cij(0) (xi — 1) for some ¢;(1) € [t, x;].
Then
I£(x;) = £@llpr < Z | i) = (0] <

J=1 J=1

Fi(cii®) |1 = xi1| < nMs.

Since 7 is an arbitrary pointin [x;_, x;], we have f([xi_1,x;]) € B(f(x;),nM5) and moreover

(la, b]) UB £(x,), nM6).

Also, since
V(Ustennms) < Sv(stem) < ¢ w5l
i=1 i=1 depending on n

ClnM®b-a)]"N'™ -0 asN — 0.
e
constant

We have V(f([a.b])) =0. |
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Remark. We can extend the proposition to countable cover of E and obtain “meazero zero”.
We will skip this argument.

Remark. Let D = [a,b] X [c,d] € R? and f : D — R be a bounded function. If f is continuous
on D except on a volume zero subset E C D, then f is integrable over D.

6.2 Properties of the Integrals
Proposition 6.2.1. Let A C R" be bounded and f,g : A — R be bounded. Then

(1) If BC A, then

f (f15)(x) dx = f f(x)dx and f (f15)(x) dx = f f(x) dx.

2 A
ff(x)dx+f g(x)dx < f f+g(x)dx
fAf(x)dx+ng(x)dx f (f+g)(x)dx

f(cf)(x)dX:cf f(x)dx and fA(cf)(x)dX:cfAf(x)dx.

A -—A

(2)

and

(3) If ¢ > 0, then

If c <0, then

f(cf)(x)dx:cfAf(x)dx and fA(Cf)(X)dX:Cf f(x) dx.
YA

_—A

(4) If f < gon A, then

ff(x)dxsfg(x)dx and ff(x)dx<f g(x) dx
YA 2 a

(5) If A has volume zero, then f is Riemann integrable over A and f f(x)dx =0.
A

Proof. (5) Since f is bounded, there exist m, M € R such that m < f(x) < M for every x € A.
Then
mla(x) < f(x) < M1s(x) foreveryx € A.
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We have
0=mV@A) = mfﬂA(X)dX:fm]lA(x)dx
A A

ff(x)dxsff(x)dx
>~ A A

we don’t know whether or not f is integrable yet.

fM]l(x)dX:Mf]l(x)dx:MV(A):O.
A A

IA

IA

Hence, f is integrable over A and f f(x)dx =0.
A

Remark. Let A C R” be a bounded set and f, g : A — R be bounded functions. Then

i (g i - i 9(x) d

A
and

ff(X)dX—fg(X)dXsf (f - g)(x) dx.
A A A

Proof. (Exercise) O

Corollary 6.2.2. Let A, B C R" be bounded such that AN B has volume zero, and f : AUB — R
be bounded. Then

(1)
ff(x)dx+ff(x)dx§f f(x) dx
) Y B ~_AUB
and
(2)
f(x)dxsff(x)dx+ff(x)dx
AUB A B
Proof. (1)

—
Kh
%
S
b
_I_

—
=
¥
=

I

f (f1a) () dx + f (f1s)(x) dx

YA ~ B X _AUB = _AUB
< f (F1a+ f15) () dx
X _AUB
= f (f]lAuB - ( - f]lAﬂB))(X) dx
X _AUB .
< f (/Laug) (x) dx ~ f = (fLans) () dx
~_AuB o_AvB 1

=0 since V(ANB)=0



6.2. PROPERTIES OF THE INTEGRALS 265

(2) (Exercise)
O

Theorem 6.2.3. Let A C R" be bounded, c € R and f,g : A — R be Riemann integrable. Then

(1) f + gis Riemann integrable andf (f + g) (x) dx = ff(x) dx + fg(x) dx.
A A

A

(2) cf is Riemann integrable andf (cf) xX)dx=c ff(x) dx.
A A
(3) |f|is Riemann integrable and ’ ff(x) dx‘ < f}f(x)| dx.
A A

(4) If f < g, then ff(x) dx < fg(x) dx.
A A

(5) If A has volume and |f| < M, then

‘ fA £(%) dx‘ < MV(A).

Proof. (Exercise) ]

Theorem 6.2.4. (Mean value Theorem for Integrals) Let A C R" be connected and compact,
and have volume. Suppose that f : A — R is continuous, then there exists X, € A such that

f J(x) dx = f(x0)V(A)
A

1
V(A)

If V(A) # 0, we call the number f f(x) dx “the average of f over A”.
A

Proof. It suffices to show the case V(A) # 0. Since A is compact and f is continuous on A,
there exists m, M € R such that m = mijl f(x)and M = makx f(x). Then
X€. X€E.

mla(x) < f(x) < M1s(x) foreveryx € A.

Hence,

mV(A):fm]lA(x)dxsff(x)a’xsfMllA(x)dx.
A A A

1
and we obtainm < —— f x)dx < M.
V(A) Ja /

Since A is connected and f is continuous on A, f(A) is a connected subset in R and hence
f(A)is an interval. Since m = mi/P f(xX)and M = ma;‘x f(x), f(A) = [m, M]. There exists X, such
Xe X€E.

that .
f(Xo) = V) Lf(X) dx.
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Definition 6.2.5. Let BC A C R"and f : A — R be a function. The restriction of f to B,
. is defined by

f|B(x) = f(x) foreveryxe B (f‘B : B —> R).

Lemma 6.2.6. Let B C A C R" be bounded and f : A — R be a bounded function. Suppose
that f1p is Riemann integrable over A. Then f is integrable over B and

fA(f]B)(x)dx:j;f(x)dx.

Remark. There exist B C A C R"and f : A — R such that f is integrable over A but not
integrable over B. For example f = 1on A = [0,1] and B = QN [0, 1]. (Consider the exmaple
again!)

6.3 The Fubini Theorem

LetA CR"and f : A — R be continuous (Riemann integrable) over A.

Question: How to compute f f(x) dx?
A

Recall that f : [a,b] — R is continuous. By the Fundamental Theorem of Calculus, if F(x)
satisfies F’(x) = f(x), then

b
f f(x)dx = F(b) — F(a).

But there is no E'T.C for multi-variables functions. Can we rewrite a Riemann integral for a
multi-variable function into several one dimensional Riemann integrals by iterating?

For example, let D = [0, 1] x [0, 1] € R? and consider the three integrals

f Fry) d, f f fexy) dx) dy, f f fery) dy) d
D

Are those integrals equal?

o
Example 6.3.1. Let D = [0, 1] [0, 1]and f(x,y) = { | TX=5Y€Q ppep
0 otherwise.

ff(x, y)dA =0 (Checkit!)
D

1
For any y € [0, 1], the function f*(x) := f(x,y) = O (except perhaps at a single point x = 5).

1
Hence, f f7(x,y) dx = 0 for any y € [0, 1]. Then
0

fol(j:f(x,y)dx) :folodyzo.
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I yeQ
0 yel[0,11N\Q.

1
Hence fi,2(y) is not (Riemann) integrable and fol f(x,y) dy is not defined when x = 5 Thus,

1 1
we cannot compute f ( f f(x,y) dy) dx.
0 0

1 1
For any x € [0, 1], consider the function f,(y) := f(x,y). If x = 7 fip(y) = f(E,y) = {

Note that for a function, the lower and upper integrals are always defined. We will solve
the problem of undefined integrals by using upper and lower integrals. Let’s start with the case
n=2and D = [a, b] X [c,d].

Definition 6.3.2. Let D = [a,b] X [c,d] and f : D — R be bounded. For a fixed x € [a, b],
f(x,-) is a function from [c, d] into R.

fd f(x,y) dy := the lower integral of f(x,-).

and

—d
f f(x,y) dy := the upper integral of f(x, ).
J —d
If f flx,y)dy = fcf(x, y) dy, we write

f f(x,y) dy = the integral of f(x,-) over [c,d].

Similarly, we can also define

b —b b
f fx,y) dx, f f(x,y)dx and f f(x,y) dx.

Lemma 6.3.3. Let D = [a, b] X [c, d] be a rectangle in R* and f : D — R be bounded. Then

—d

o b d —=b -
[ ranan [([ranaars [ ([ rena)as [ g s
YD Yo, Y . a c D

d b
[ renans [([sepaars [ ([ sendx)ars [ foan
~ Y Y c a D

D

and

Proof. Tt suffices to prove (x). By the definition of the lower integral f f(x,y) dA = sup L(P, f).
P
D

For given & > 0, there exist partitions P, = {a = xp < -+ < x,, = b}_of [a,b], Py = {c =y <
e < Yy = d} of [c,d] and P = {Aij = [xi1, xi] X [yj-1, )] } 1<i<n 1<j< m} of D such
that

f f(x,y)dA — e < L(P, f).
Y p
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| ' | %f(x,y) dy)dx

Then
b

Il
= [

(Zm: fy f(x,y) dy)dx (Check!)
e
- Zf f) fxy) dy

=1 Ty J=l Z—ya

" feny) dy)da

Xi-1 —Yj-1

M= T
INgE

1

i=1 j

s |

NgE

R dy)dx

Xi-1 —Vj- l| 1
constant

/.
S

I
—_
~.
Il
—

M§

inf  f(x, y)(xz xi—l)()’j—)’j—1)l

(x.Y)€nj

Il
—_

~.

Il
—

=V(aij)

I
=
e
3

> ff(x,y)dA—a.
Sa))

b d
ff(x,y)dAsf(f F(x.) dy)dx
—D -—a —=

Theorem 6.3.4. Let D = [a,b] X [c,d] be a rectangle in R*> and f : D — R be Riemann
integrable. Then

Since ¢ is arbitrary,

O

—d
(1) the functions ¢(x) = f ¢ f(x,y) dy and y(x) = f . f(x,y) dy are Riemann integrable over
[a,b); -

—b
(2) the functions p(y) = f ’ f(x,y)dx and o(y) = f J(x,y) dx are Riemann integrable over
[c,d], and -

(3) The integral of f over D

ff(x, y) dA
D

b( f flx dy)ax = [ b (Tﬂx,y) dy)dx
f ff(xy)dx dy = f ff(xy)dx

Proof. (1) To prove ¢(x) = f ¢ f(x,y) dy is integrable over [a, b]. That is, to prove

fb<ff(x,y) dy)dx = Tz(fdf(x,y) dy)dx
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By Lemmab373,

b d —=b
[ renan = f ( f fay ds)d< | ( f ferdy)ds  (62)
=D

—b —d

f f Fx,y) dy)d f fCx.y) da.

Since f is Riemann integrable over D,

fb<ff(x,y) dy)dx = Tz(fdf(x,y) dy)dx

—d b —b
(2) By the similar results for f fG,y) dy, f f(x,-)dx, f f(x,-) dx, the statement (2) is
proved. —

(3) The proof of (3) is direct from (B2).
O

Theorem 6.3.5. (Fubini’s Theorem) Let D = [a,b] X [c,d] € R* and f be Riemann integrable
over D. Suppose that for each x € [a,b], the function f(x,-) is integrable on [c,d] and ¢(x) =

fc f(x,y) dy is integrable on [a, b]. Then

(fo(x,y)dA>:fo(x,y)dA:Lh(ff(x,y)dy>dx_

double integrals iterated integrals

Likewise, if f(-,y) is integrable on [a, b] and the function Y(y) = fa ’ f(x,y) dx is integrable on

[c,d], then .
[ ey an- f ([ sy dx)dy
D c a

Remark. (1) We usually use

b
| f fxoy) dyd f Fxoy) dy)d
f f f(x,y) dydx to denote f f f(x.y) dy)dx
=

fff(x y) dydx f(i f(x.y) dy)dx

and so on

(2) In the viewpoint of the concept of integral

b
[[ roeman= [ swan= | fender+ [ f fx,y) dydx
D D D T a c
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P %%

AN ~

Y

Remark.

J —d
f(x,y) is integrable over D - f f(x,y) dy and f f(x,y) dy are integrable over [a, b] and

) —b
¥ f f(x,y) dy and f f(x,y) dy are integrable over [c, d].

But f(x, -) is integrable over [c, d]
or f(-,y) is integrable over [a, b].

I/p ifx,yeQ, 0#x= gWith(p,q)zl
p .

Example 6.3.6. Let f : [0, 1]x[0, 1] —» Rby f(x,y) =
0 otherwise

Then f(x,y) is integrable over D (Skip, not easy to prove) and f f f(x,y)dA = 0.
D

(1) Fory € Q°, f(x) = f(x,y) = 0 forevery x € [0, 1]. Then f(-,y) is integrable.

. q
1 ifx=—=
Fory e Q, f'(x) = f(x,y) = /pifx p . Then f(-,y) is integrable over [0, 1].
0 ifyeQ
For x € Q° U {0}, fi(y) = f(x,y) = 0 forevery y € [0, 1]. Then f(x, ) is integrable.

_ 1 if
(@) For x= = with (p.g) = 1, f(x.) = f(.5) = { 0 ;fiigc |

integrable.

Then f(x,-) is not

Remark. Suppose that f(x,-) and f(-,y) are Riemann integrable over [c,d] and [a, b] respec-
tively. It cannot imply that f is Riemann integrable over D. For example

k ¢
Flxy) = 1 if(x,y) = (5’ 5), 0 < k,€ < 2" are odd numbers and n € N
0 otherwise
onD =1[0,1] x[0, 1]. For x € [0, 1],
k
if x # o for some n € N and 0 < k < 2" is odd, then f(x,-) = 0.

k
if x = 5forsomeneNand0<k<2”isodd,then

k1 k3 ko2n—1
1 f s =\ =5 )\ =) \Z
f(x,y):{ ) =G o) Go g (G =)

0 otherwise
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Then f(x, ) is integrable over [0, 1]. Similarly, f(-, y) is integrable over [0, 1].

1 1
Also, f fx,y)dy=0= f f(x,y) dx. But f is not Riemann integrable over [0, 1]x[0, 1].
0 0

Corollary 6.3.7. (1) Let ¢1,¢> : [a,b] — R be of class C' such that ¢;(x) < ¢»(x) for every
x €la,b], E = {(x,y) ‘ a<x<b¢g(x)<y< ¢2(x)} and f : E — R be continuous. Then
[ is Riemann integrable over E and

b )
fEf(x,y) dA =f ( f(x,y) dy)dx.

$1(x)

y
A

()

(O

\j
>

(2) Let Y1, ¢ : [c,d] — R be of class C' such that y,(y) < Y (y) for every y € [c,d], E =
{(x, y) | c<y<d, y(y) <x< tﬁz(y)} and f : E — R be continuous. Then f is Riemann
integrable over E and

W2 (y)
[ s an- f ([ ronavay
E c I216))

y
A
d \
vi(y)) A Waly)
E \
/ |
( )
N y:
. e
> X

Proof. (1) Since ¢; and ¢, are of class C', then graphs of ¢; and ¢,, { (x,$1(x)) | a < x < b}
and { (x, $2(x)) | @ < x < b} have volume zero.

Also, the left and right sides of E, {a} X [¢1(a), $»(a)] and {b} X [¢1(D), $,(b)], have volume
zero. Then boundary of E has volume zero.
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Let M = mayz ¢r(x)and m = mir}) #1(x). Hence, fF is continuous on [a, b] X [m, M]\OE and
a<x< asx<

then f¥ is integrable over [a, b] x [m, M].

On the other hand, for every x € [a,b], M 1
fE(x,-) is continuous on [m, M] except two \/
points ¢;(x) and ¢,(x). Hence, f£(x,-) is in-
tegrable over [m, M] and

M _ 2(x) m +
f ffy) dy = f(x,y) dy.
m $1(x) +—
a b
By the Fubini Theorem,
B b M b $2(x)
[revaxty= [ Fomaa= [ ([ Fana)i= [ ([ )
E [a,b]1x[m,M] a m a ¢1(x)

(2) Similar as proof of (1)
O

Remark. The corollary is also true if ¢, ¢, 1, ¥, are of class C instead of C!. (Skip the proof)
Example 6.3.8.

LetE:{(x,y)eRz‘OSxSl,xSyS1}and

f(x,y) = xy. Since f is continuous on E, for every E
x € [0, 1], f(x, ) is continuous on [x, 1]. By Fubini’s
Theorem,

1 1 1 1 1
fEf(x’Y)dA:fo (fx Xydy)dx:fox(fxydy)dxzfox(%—%xz)dx:%.

On the other hand, E{(x,y) e R? [0 <x <y, 0<y < 1}.

1 Y 1 Y 1
ff(X,y)dA:f (fxydy)dy:fy(fxdx)dy:§.
E 0 0 0 0

Example 6.3.9.

LetE={(x,y) eR?|0<x<1, Vx<y<1} | y={%
and f(x,y) = ¢’ . Since f 1s continuous on E,
by Fubini’s Theorem,

1 1
f ¢’ dA = f f ¢ dydx =77
E 0 Vx > X
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We don’t know how to integrate ¢*’. On the other hands, E = {(,y) eR?|0<x <y’ 0<y< 1},

: Lo e—1
fey‘ dA:f (f e dx) dy:f yey dy = ——.
E 0 0 3

Theorem 6.3.10. (Fubini’s Theorem) Let A C R" and B C R be rectangles, and f : AXB — R
be bounded. Forx € R" andy € R™, write z = (X,y). Then

fA f(z)dz < fA(iBf(x,y) dy)dxs fA<fo(x,y) dy)dx < foBf(Z) dz
f f(z)dz < f B( i Af(x,y)dx)dy< f f f(x, y)dx)dy< AXBf(z)dz_

~ _AXB

an

In particular, if f is Riemann integrable over A X B, then

A f f f(x.y) dy)d f f f(x.y) dy)dx
fff(xy)dx dy = fff(xy)dx)dy

Proof. (Ignore)(see 2-dimensional case) O

Corollary 6.3.11. Let S C R”" be a bounded set with volume, ¢,,¢, : S — R be continuous
such that ¢,(x) < ¢,(x) for everyx € S. Let E = {(X,y) eR*XR ‘ xeSpx)<y< ¢2(x)}
and f : E — R be continuous. Then f is Riemann integrable over E and

2(X)
f f(x,y) d(x,y) = fs ( F(x.y) dy)dx
E

#1(x)

A(Pz

/ ”/// :
f: E=-R (Pl
s >

Proof. (Ignore) O
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Example 6.3.12. Let E = {(x,y,2) € R* | x
f(x,y,2) = (x+y+2)* Then E = {(x,y,2) | 0 <

zZ

0,y>0,2>0 x+y+z < 1} and

= 0,
2<1-x-y,0<y<1-x0<x<I1}.

1 f(x,y,2)=(x+y+z)>

LetS = {(x,y) €R? |0 <y <1-x, 0<x< 1} anddefine ¢,(x,y) = 0 and ¢p(x,y) = 1 —x—y.

We have
1-x-y
f(f (x+y+2)? dz) d(x,y)
s ~Jo
1

fg[l—(x+y)3} d(x,y)

s

1 1-x 1 3
I) (\fo 5[1—(x+y)]dy)dx

"1 x ¥ 1

X
= LZ—§+EdX—E.

Example 6.3.13. Let w, be the volume of the n-dimensional unit ball. Find the formula of w,.

f fx,y,2)d(x,y,2)
E

1
n=1, ————>— wi=2
Forn=1,w, =2

n=2, Wo =T
Forn=2,w,=nm

Forn=3,letD = {(x,y) eR? | X¥* +)* < 1}. n=3, W3=%n

Let
E = {(xy0eR|0<+y +77 <1}
= {(x,y,z)eR3’ —V1-2 -y <z<J1-x2-y, —Vl-x<y< Vl—xz,—ISxﬁl}

N y
J

A
=
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S
I

1- xz—y

[

fI]-E(-x Y, Z) d(-x’ Y, Z) = fDI ,—1_x2_y2

1
1 dzdy dx:f wy(1 — x* dx

1 dzd(x,y)

275

1- xz—y 1 -1 X‘\‘
1 |
the volume(area) of the 2—dimensional
disk with radius V1-x2 = wy(V1-x2)?
4 4
3
= wix—=x )’ = —wy = =T.
3 71 3 3
How about w,?
Consdier
E, = {(xl,'-' X)) ERMOS KT+ x5+ 4+ < 1}
= {(xl,--- X)) ERY| — \/1 Xt =Xt <x, < \/1 —xi - =X,
_ — e — — X2 . 2L
\/1 x1 x 5, <X < \/1 Xy X o

—\/l—xlé

n<y/l-a -1<x <1}

w, = f Lg, (X1, x) d(x1, -+, X,)
1 x —---—x
= f f f f f ldxndx,,_l ceedxy dx
1- )c1 xz 1 x —~~—x
[ |
the volume of (n—1)—dimensional ball with radius l—x%
= W (VIR = 0,0(1-)'T
Then
1
W, = W, f (1 —xz)%1 dx
-1
721
= w,,_lf cos" 6 do
-3
3 n—1 2
= 2w, f cos" 0do = 2w, f cos" 26 do
0 0
3 1 3
= 2. (an_zf cos"” Hde)f cos" 6 df
0 0
= Wp-1
Since
- D(n=3)---2 3
(n=Din=3) --3f cosfde if nis odd
5 n(n—2) 0
f cos"8do = ,
0

nm—-1Dmn-3)---1

if n is even

nin—2)

i
--2f 1d6
0
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-2
"~ n. Therefore,
n

we have w,, =

nl

(2m) ™ e
mwl if nis odd
w,; =
ks if niseven
—— W, 1I ni1sev
nn—2)---4"°

Example 6.3.14. Find the mass of the tetrahedron 7" formed by the three coordinate planes and
the plane x + y + 2z = 2 if the mass density is p(x,y,z) = e”°.

sze_ZdV.
T

2

2—x 1-(x+y)/2
(0,0,1) f e * dzdydx (6.3)
0

1 227 2y22

X
(0,2,0)
x+y+2z=0 or

2 2—x 2
():f f 1—e¢7 ! dydx:f 2ei —xdx=2-4de".
0 0 0

Example 6.3.15. Evaluate

2 1 4 4 y:2x
f f yve ' dxdy = fye T dA A
0 Jyr D

“dxdydz

0

2 1-(y/2) -y-2z
f e dxdzdy
0

(2,0,0)

%og;og;

1 2x s 1 s 2
= f f ye " dydx = f 2x%e™ dx
o Jo 0
2
= 5(1 —eh D ‘
wher D is the region bounded by x = 1,y = 2x !

and x-axis.
b

Remark. In general, f fd f(x,y) dydx + fd f f(x,y) dxdy (See exercisel3 in “Folland”,
page 176 or lecture note Problem 7.8)

m Some Applicaitons

(D) If f(x,y) = 0, f fs f dA can be interpreted as the volume of the region in R* between the
graph of f and the xy-plane that lies over the base region S .
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(2) Evaluate a quantity of some substance (ex: mass, electric charge, chemical compound)
M = fp(x, ¥,2) d(x,y,2), S CR"
s

(3) centroid of the region S. For a region (or an object) S C R® and the density function
p(x,y,z), the mass of the object is

M = fp(x,y,z) d(x,y,7)
N

and the centroid (&, y,Z7) of S is

1 S
X = Mﬁxp(x,y,z) d(x,y,z),
1
y = u fs yo(x,y,z) d(x,y,2),
1
7 = Mﬁzp(x,y,z) d(x,y,z),
(4) moment of inertia(i& & {f )
L [=mr?
>
r m
0

Let r(x,y, z) = distance from (x,y, z) to L.

1= f r(x,y,2)p(x, y,2) d(x,y,2)
S

For example, L is z-axis, then r(x,y,z) = /x* + y%.

6.4 Change of Variables

Recall:
Differentiation Integration

Product Rule «— Integration by parts

Chain Rule &S Change of variables
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For h(x) = f(g(x)), let u = g(x), then du = g'(x) dx. By the change of variables and F.T.C,

g(D)

b b
ﬂMW=ff@mﬂmM=fhmﬂmm

g(a)
For example,

2 s e (81 1 (@
f et dx "= f e —du=— f(u) du
1 1 3 3 Juny

(f) =€, ux) = 2, h(x) = f(u(x)) =)

Note. If g : [a,b] — R is differentiable and increasing, then g’(x) > 0 and g(a) < g(b).
b b g(b)

f fg)lg’ (0l dx = f f(g(0)g'(x) dx = f f(u) du.

a a &

(a)

If g : [a,b] — R is differentiable and decreasing, then g’(x) < 0 and g(a) > g(b).

b g(b)
f f(8®)g' (x) dx = " f(u) du.
a gla
We have
b g(a)
f f(g)Ig’ (x| dx = f(u) du.
a g(b)

Hence, in each case,

g\la.b]

Lmﬂammumuzf()ﬂmm.

Geometrically, in 1-dimension,

R
|
h(x)=f(g(x)) r e ) ’
g
X
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2(b) n fw) 4
faydu ~ 3 f) (u =)
g@) =1 _
where u} = g(x))| = Zf (8(xD)) &/(t)(x; = xi-1) |
e — | .
Ui—uj—1= g(xl) g(x, 1) i i i
(M.V.T) =¢'(t)(xi—xi-1) 1 H ey
gla) w W g(b)
Il
Uy Uy
b n h(x)
[ rax = Y e -
= Z f(g(xf)) (xi = xi-1) |
i=1
AU; — X
— ~ g'(t a X X b
A g )

In 2-dimensions,

f(ui‘-Vi*)A(Dij)

(" viD=g(x"yi")

h(x,y)=f(g(x,y))

g(D)=R

y
g:R?—~R? D
one-to-one ‘ h(x,y) /7

h(x”y Ay
=f(e(x" .y DAy

y
= D
P={A;;} partition of D /@
Q= = X —

{0y | where o;=g(A;))}

f h(x,y) d(x,y) ~ Z h(x",y") A(A)  where (x*,y") € A
D AEP

f(u,v)du,v) = Z f@*,v") A(@) where (u*,v") =g(x",y") eO
¢(D) 50

D Fley) (—)Am.

AeP )
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AWy | AT o As 1Pl = 0, 1]l - 0.

A(x,y) AL O

U
1 A(M, V) _ (9(g1, gz) . A R §:[D8(X0s}’0)]e1
im0 ACy) | a0 y) R I e E-[Dexoyolles
-
(Xo:¥0)”  &=<1,0>
Heurestically,

f(u,v) d(u,V)=ff(g(x,y))|Jg(x,y)\d(x,y)-
D

8(D)

Note: Some situations need to be avoided. For example, g cannot be degenerated.

In general, for E C R, g : E — g(E) (one-to-one) and f : g(E) — R. We may guess

f(u) du = fE flex) 72 dx.

8(E)
" The term _ ??  is supposed to represent “the
— E rate of change of volumes between O and g(0O0)
/RN under the transform g”.
g(E)SR"

— R

h=f-g

Example 6.4.1. Let g(r,0) = (rcos @, rsin6).

g(r,0)=(rcos0,rsinb) (x¢,Y0)=(1¢c080,13sin0)
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~

i drd®
as dr,df very small

@ r drd6
al]
dr

0 y
A
A g

—_— f
“‘IIII’I’ Eg
g
——> 1T

—————— X

Then

f(x,y) dxdy = ff(r cos 6, rsiné) r drdf
8(E) E

or

ff(x, y) dxdy = f(rcos@,rsin6) r drd6.
R

g'®

Theorem 6.4.2. (Change of Variables Formula) Let U C R" be an open bounded set, and
g : U — R" be an one-to-one C' mapping with C! inverse; that is, :g(U) — U is also
continuously differentiable. Assume that the Jacobian of g, Jq = det ( [ g] ), does not vanish
inU, and E cC U has volume. Then g(E) has volume. Moreover, if f:8(E)— Risbounded
and integrable, then (f o g)|J4| is integrable over E and

tf ﬂwdy=foogunguﬂdx:j]fog@ﬂgég;ﬁ@
g(E) E £

dx
(Xl, . ’xn)

UCR" g(U)SR"

—_———
~

~.
S——— T

S————

Proof. (Skip the proof) we will only show the special case g = A € M,(R).
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Sketch the proof (Consider the case that f is a continuous function)

g: R"—R"

/ E Rr 1-1 / Rr
@ g(E)

o [f the mesh size is sufficiently small, f is (almost) a constant function on each A (e.g. let
f = ave(f) on A). Hence, we may assume f is a constant function and prove that

V(g(E) = f Loy (y) dy = f Lor) (8(X)) [g(X)| dx = f |Jg(x)| dx
g(E) E E

e If the mesh size is sufficiently small, since g € C!, for x, X, € A,

g(X) ~ g(XO) + Dg(XO)(X - Xo)
= g(a)~gxo)+ L(A") where A" =A-X, =A-x=A'
—
L=Dg(xo) -
= V(g0) = V(L)) = V(L(»)) xo|-a
L is linear
L(A)
A
g g
X0 2(x¢)
I
A L(A")

Since g € C',
Jo(X) & Jg(Xo) = det [Dg(xo)] .

Hence, we may assume that g is a linear map. That is, g(x) = Lx for some L € 8(R”; R”)
and thus Dg(x) = L for every x € R". To prove

V(gm) = V(L@D) = f |det L| dx.
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Let g(x) = Lx for some L € 8 (R”; R”). Then Dg(x) = L for every x € R.

Question: What’s the intuition of the rate of change of volumes under the transformation?
Question: Why is the rate equal to |[J4(x)| = ‘ det [Dg(x)] ‘?

detA = Z sgn(o) ﬁ Aig(i)-
i=1

oes,
m Gaussian Elimination
P P
c d|f 0 1|h
m Gaussian Elimination
{ablO}_}[ ]_}_”_>{10ef}
c d|0 1 0 1|g h

Note. By the observation of Gaussian elimination, we find that every linear map can be
expressed as the composition of several “elementary transformations” as follows.

m Three elementary transformations:

(1) g(xb.” s Xiy =t a-xj9"' a-xn):(xb”' ,.Xj,"' s Xiy© e axn)

V4

(2) g(xl,..-’xi,..-xn):(xl’..-’Cxi’-..’xn)

VA Z
1 C
.,
1 1
7 y y
X X
(3) g(_xl,...’xl.,...,xj,...,xn):(xl’...,xl.+cxj,...,xj,...,xn)
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For example, g € B(R?; R?),
(a b] 1l [a b (¢ d
d = 1 oo)le d T b
LC _®:® L 1 LC i La
o b] _ [ 0]fa b] _ [a b}
lc dlg 0 a] lc d = l|lac ad
Xa
(a b] _ 1 a]fa b] _ [a+ac b+ad
c @xas @ 0 1] lc d c d

Lemma 6.4.3. Let g € B(R”; R) and A C R" be a set which has volume. Then g(A) has volume

and

V(gA)) = f Lo (y) dy = f |Jg(X)| dx.
g(4) A

Proof. Forevery g e B (R”; R"), there exists L € M,(R) such

D A =la;,b1] x---Xa,,b,] is a rectangle.
Case (I-1):

1 0
0 1
: 0 1
L=|: :

: 1 0
0

T T

ith column  jth column
Thatls’ g(xla".7-xia"'7‘xj7".?xn):(xl"""xj""

Thus,
L(A) = [ay, b1]X- - -X[aj-1, bi—11X[a;, bj1X[ais1, Disi ]X- - -

Hence, V(L(A)) = V(A) = | det(L)|V(A).

that g(x) = Lx for every x € A.

«— ith row

— jthrow

, Xy ,X,). Then det(L) = —1.

Xlaj-1,bj11X[a;, bilX[a1, bje]X- -

'X[ana bn]
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Case (I-2):

1
0
1
L= ¢ | «— ith row
0
- 1_
T
ith column

That is, g(xy,- -, x,) = (X1, ,¢x;, - -+, X,). Then, det(L) = ¢. Thus,
L(A) = [a1,b1] X -+ - X [a;_1, bi_1] X [ca;, cb;] X [ajr1, bir1] X -+ - X [ay, by].

Hence, V(L(A)) = [c|V(A) = | det(L)|V(A).

Case (I-3):

— ith row

Jjth column
That is, g(x;, -+ ,x,) = (x1,--+ ,x; + cxj,+ -+, x,). Then, det(L) = 1. Thus,
L(A) = U [a1,b1] X -+ - X [ai-1,bi-1] X [a; + cxj, b; + cx;] X [ajs1, bisi]

ij[aj,bj]

X Xlaj1,bj-1] X {x;} X [ajs1,bj1] X -+ X [ay, by].

XiO Xiol [ ; ;7
A L A

|
|
— [
I el
Wt
4 4
/ /
/ 2
L
> X. - —-> X.
i] i)
(le' oXiO-I:Xi0+Io"'aXn) hyper-space (Xl>~ :Xi0-17Xi0+17"'7Xn) hyper_space
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Let D = [ay, bi]X- - -X[aj_1, bi_11X[@it1, bix11X- - -X[an, byl and X = (xp, -+, Xiop, Xigp =+ 5 Xn)s
by the Fubini’s Theorem,

V(L(A)) = f (

D

bi+cx;
f 1dx;)d%; = V(A) = | det(L)| V(A).

aj+cx;

Letg € B(R";R"), then g = g; o --- o g is a composition of several elementary trans-
formations gy, - - - , g, where eahc g; is one of the transformation in Case (I-1) - Case (I-3).

LetL,Ly,---, L € M,(R) be the matrics corresponding g, g, - - - , 8. Thendet(L;) = Jg,(X)
for every x € A.

V(g4) V(gio--ogA)) = |det(L)|V(g2 0o g(A))

| det(Ly)|| det(Ly)|V (g3 o - - - 0 gi(A))

| det(Ly)| - - - | det(Ly)| V(A)
|det(Ly o Ly o--- 0 L)|V(A)
| det(L)|V(A)

[Je(x)|V(A)

f | J(%)| dx.
A

(II) A is an arbitrary set with volume.

Case (II-1): det(L) = 0.

Let R be a rectangle in R” such that A C R. Then L(A) C L(R). Thus
V(L(A)) < V(LR)) = | det(L)|V(R) = 0.

We have
V(L(A)) = 0 = | det(L)|V(A).

Case (II-2): det(L) # 0.

Since A has volume, 1,4 is integrable and f 14(x) dx = V(A). Then for given &€ > 0,
A

there exists a partition P of A such that

E
U(P,14) — L(P, 1) < | det(L)‘ .
We have
UP.1,) - V()| <« —5— and  |L(P,1,) - V(A)| <« —E—.
| det(L)| | det(L)|
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Let

A
~ Ci = {preP|anA+0}and
( \) C, = {A€P|AQA}.

Define R| = U Aand R, = U A. Then R, C A CR,.
AeCy 2eCs
Since det(L) # 0, L is one-to-one. Thus L(A;) and L(A))
fec, e, are not overlapping if A; # A; for every A;, Aj € P.
We have

V(L(R)))

v m) = v Lw) = > v(Lw)

AeCy AeC AeC

| det(L)| Y V(8) = | det(L)|U(P, 1)

AeCy

| det(L)|V(A) + &.

A

Also,

V(LRy) = ZV(L(A))

AeCy

= [det(L)] ) V() = |det(L)|L(P, 1)

AeCy

> |det(L)|V(A) - &.

Since L(R,) € L(A) C L(R)),

f 1 dx —f 1dx < V(LRR)) - V(L(Ry)) < 2e.
L(A)

~ 1(4)

Since € > 0, 1dx = f 1 dx and hence 1, is integrable over L(A). Therefore,

L(A) L1
L(A) has volume and V (L(A)) = fL(A) 1y dx = | det(L)|V(A).

O

Example 6.4.4. Let A C R? be the region which is bounded by x = 4, y = %x and x-axis.
f A — Rbe defined by f(x,y) =y+/x—2y. Find ff(x, y) d(x,y).
A

u—

Method 1: Let (#,v) = (x,x — 2y) and define g(u,v) = (u, > v) = (x,y). Then g is defined

on E C R? which is bounded by u = 4, u = v and u-axis. Thus, g : E — A is bijective. The
Jacobian of g is

Jo(u,v) = ‘

l— =
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u=v

4

g(uw)z(x,y):(u,%)

We have

fA fx,y) dx,y)

f Sx,y)d(x,y) = f f (g, v)) |[Jgu, v)| d(u,v)
g(E) E

lf(u—v)ﬁdu,v:lffu(u—v)\/\_zdvdu
4 Je 4Jo Jo

1

4

256

“~ 105

Method 2: Let u = y and v = x—2y. Then x = v+2u. Define g(u,v) = (v+2u, u). The Jacobian

1

1 o':_l'

is Jg(u,v) = ‘

Consider 0 <v+2u <4 and 0 < u < 1v + u. This implies u > 0,v> 0and 0 < v +2u < 4.
The set E is the region in uv-plane which is bounded by u-axis, v-axis and v = —=2u + 4. Then

g : E — A s bijective.

g(u,v)=(x,y)=(v+2u,u)

‘We have

f fx,y) d(x,y)

A

2—%v
qul—lld(u,v):ff u\v dudv
E 0 Jo

2—%v
du)d
fOA\A_/(f(; u u) %

1, _ 256
f:\/;(2—v+§v)dv_ 05"

256
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Example 6.4.5. (Polar Coordinate)

Let x = xo + rcos@ and y = yy + rsiné.

Consider the function

289

(X0,Y0)

¢ :(0,R)x (0,21) = {(x,y) | 0 < (x = x0)* + (v = o) < R*}\{(x,y0) | %0 < x < xo + R}
e — | L 1

E

D

where ¢(r, 0) = (xo + rcos 6,y + rsin6) is bijective from E to D.

0 y D
“ /"‘\\

! i

2 pmmmm———— = | (P I/ R\ f
| I —_— | O—— ] R
| | \ Coyo)
| E : \ Xo.Yo) /
! ! N

_i. ........ e - X

0 R

The Jacobian is J4(r, 0) = cos6 —rsing | _ r. For f : D — R, we have
A7 sin@ rcosf | T : ’

f S, y)dx,y)
D

#(E)

fx,y) dx,y)

fE f(o(r,0))|[J4(r,0)| d(r,6)

R 27
f f F(¢(r,0))r dédr
0 0

R 21
f f f(xo + rcos@,yy + rsin)r dodr.
0o Jo

Example 6.4.6. (Spherical Coordinate) Define ¥(r, 6, ¢) = (xo+r cos 8 sin ¢, yo+r sin 6 sin ¢, 7o+
rcos¢). Let D = (0,R) x (0,2m) x (0, ) be a rectangle in (r, 6, ¢)-space. Then ¢ is a bijective
from D to B((xo, Y0, 20), R) a ball in R®. The Jacobian is

cos #sin ¢
sin @ sin ¢
cos 6

Jy(r,6,¢) =

—rsinfsing rcos6écos¢@
rcos @sin ¢

rsinfcos¢ | = —r’sin¢.
0 —rsing
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y(1,0,0)=(x,+rcosOsing, yo,+rsinbcose, z,+rcose)

Let f : B — R be Riemann integrable. Then

fB f(x.y,2) d(x,y,72) fD F(W(r,0,9))|Jy(r.6.)| d(r,6., )

R 271 T
f f f f(xorcos@sin@,y, + rsin@sing, zo + rcos ¢)r” sin ¢ dpdodr
o Jo Jo

0 BCR3
D RN
5 : v /IR N ¢
i - —_ /:'1’; R R— R
: / / e \ (X07YO>ZO) /l

/R‘ ---------- g \
N /
r ~___7"

Example 6.4.7. Let P be the region bounded by x—y =0, x+2y =0, x—y =1and x+2y = 6.

Find f xy dA.
P

Proof. Letu = x —yand v
(%(2u + V), %(v - u)) and R
Jacobian is

x+2y. Then x = $2u + v) and y = 1(v — u). Define ¢(u,v) =
[0,1] x [0,6]. Then ¢ : R — P is one-to-one and onto and the

2

Q| =

3
Jy(u,v) = =

W
W[ =
W =

We have

fR%Qu +v)- %(V— u)- % d(u, v)

1 1 )
= —ff2—u2+uv+v2dvdu
77

27

f xy d(x,y)
b
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\Y y

A — A

X+2y=6 x-y=0
6 \ H x-y=1
f(x,y) = xy
R —
? x+2y=0 [ p R
» U > X
|
¢ () =(F Quv), L(v-w)=(x)
O

Example 6.4.8. Let S be the region bounded by x-axis, x = 1-1y?, x = 1y’ —1 and x = 4— £y
Find fxy d(x,y).
s

Proof. Let ¢(u,v) = (u? —v*,2uv) = (x,y) and R = {(u,v) | 1 <u <2, 0 <v < 1}. The
Jacobian is

_ 2M —2V _ 2 2
Jo(u,v) = ' v o | d(u” + v°).
We have
fxy dA(x,y) = f W? = v - 2uv - 4@® +v?) dA(u,v)
s [1.2]x[0.1]
2l
= 8[ f uv(u® —v?) dvdu
1 Jo
= 40.
1
v )(:4-Ey2 y
A
.
Rt
¢ f(x,y)=xy
1 R —_— —_—
> U
0 1 2

¢ (u,v) =(U” - v?, 2uv) = (x,y)
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6.5 Improper Integrals

b
Recall: Let f : [a, b] — R be bounded. We can define f f(x) dx.

Question: How about the domain is unbounded or f is unbounded?
(1) Let f: R > R (or f : (a,00) = Ror f : (—o0,b) — R). Then we define

ff(X)dx: lim ff(x)dx.
R 52 Js

00 t b b
(orf f(x)dx = tlirnf f(x) dx orf f(x)dx = ‘lir_n f f(x) dx).
(2) Let f(a,b) = R and lim+ f(x) = co. We define

b b
f f(x) dx = lim f f(x) dx.

How about the improper multiple integrals?

For example, f : R> — R is bounded (and continuous). What is f f(x,y) dA?
R2

) 00 11 15}
[remar? [ [ seyady= tim [ [ e duy
R —00 J —00 181 == S 52

t1,lp—00

The values could be equal, but it is not the definition of fRz f(x,y) dA.

Idea: f f(x) dA = lim f f(x) dA where D, are a family of sets with volumes that fill
R2 r—oo D,

out R? as r — oo.

Difficulty: For different families D,, the limit lim f f(x) dA may not be equal.
D,

r—00

In order to discuss the existence of the above limits and the integrals, we start with the
assumption that all functions are nonnegative and all sets have volumes.

(1) Let D € R" be bounded and f : D — R be unbounded. Define f; : D — R by

AN

if k , k
fio = { 7SO <K min (100.8) Vadi

fl((X)
(fi 1s usually denoted by f A k)

1
| |

D
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Then f; is bounded on D for each k and f;,1(x) > fi(x) for each k € N and for every
x € D. Suppose that each f; is integrable over D. Then the sequence { fD fi(x) dx}:;l
is increasing and hence we can consider its limit and define the improper integral

ff(x) dax = limffk(x) dx.
D k—=co Jp

(2) Let D € R" be unbounded, f : D — R. Let D be the union of an increasing sequence
of sets Uy, U,, - - - such that

D:UUk (U, CU,--)
k=1

where each U, has volume and f is integrable on each U;. Then the sequence
{ ka f(x) dx}zo:l is increasing. Hence the limit ]}I_)I‘Elo f f(x) dx exists, provided that

Uk
we allow oo as a value.

Remark. Suppose that {Uy},_, is another sequence of sets satisfying the above conditions.

Then
lim f f(x) dx = lim f £(x) dx.
k—o00 Us k—o0 Uk

Definition 6.5.1. Let A C R” be a set with volume and f : A — R be nonnegative. Let
{Bi};2, € R" be any sequence of bounded sets with volumes satisfying

(1) By C By, forevery k € N

(ii) for every R > 0, B(0,R) C B, when & is sufficiently large.
We define the integral of f over A by
f(x) dx = lim (f Ak)(x) dx
A k—co Jang,

provided the limit exists (we allow oo as a limit) and where the limit is independint of the choice
of the sequence {By};.,. We say that “f is integrable over A” if the integral converges. That is,

ff(x) dx < o0,
A
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Note that we can use the same indices By, f A k since f is nonnegative. It may not be
true if f is a general function.

Remark. Let A C R” be a set with volume® and f : A — R be nonnegative.

(1) If f is continuous on A or (at most) discontinuous on a volume zero subset B of A, then

f is integrable over A.
L 1

wrong??

(2) Suppose that f is integrable over A. To evaluate the improper integral f f(x) dx, one can
A
choose B, = [—k, k] X - - - X [—k, k] for convenience.

00

Example 6.5.2. Compute f ¢ dx. Consider

—00

o k k
f @ gA = lim 0D ga M iy f f e dxdy
R k=00 J|_k kIx[—kk] koo Joke J—k

ko ok k :
= lim f f e - e dxdy = lim [( f e dx) ( f e dy)]
k—o0 Do_k —k N k—oco Do_k —k
(f e dx)(f e’ dy) = (f e dx)z.

00 2
f e—(x2+y2) dA:f f e_rz-rdﬁdr:n' (x:rCOSH, y:rsin@),
R2 0 0

f e dx = V.

(%)

Since

Example 6.5.3. Let E; = {x € R" | 0 < [IX|lz» <1} and E; = {x € R" | [[X|]a» > 1}. For p € R,
find the range of p such that

(1) f |Ix|l5 dx converges
E

1
() f |||z dx converges.
E

(Exercise)

m Nonnegative functions

Question: What about the improper integral of functions that are not nonnegative? Let A C R”

“If A is unbounded or A has volume oo, then A is suppose to be replaced by A N B(0, R) which has volume.
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be a set with volume and f : A — R. For L < K and define

f(x)
K
K iffx)>k /\
Sro(x) = f(x) %fL <fxX)<K / \ / \fK L(x)
L if f(x) <L . ’
AR Ny
Let A be the union of an increasing sequence of sets Uy, U,, - --. That is,

A:UU,- (U CU, C---)

i=1
where each U; has volume and fx; is integrable over U, for every L < K and i € N. Consider

f fxo(X) dx. If f is integrable over A, then
Ui

) Srr(X) dx — ff(x) dx‘ —0 asK,i—>ooand L —» —oo
U; A

Definition 6.5.4. Let A C R” be a set with volume and f : A — R be a function. We say that “f
is integrable over A” if for each sequence {B;};°, C R"of bounded sets with volume satisfying

(1) B; C B;;; foreveryi e N

(2) forevery R > 0, B(0,R) C B; when i is sufficiently large then the limit

lim Jfro(Xx) dx

Ko JANB;

L——
exists.

(Another viewpoint for nonnegative functions) Let f : A — R. Define f*, f~ : A - R by

o fX) i fX) 20 {0 iffm=0
f(x)_{ 0 iffxy<o nd f(x)_{—f(x) if f(x) < 0

/\ f-‘r
\ / \ / \
\ / \ il \
\ / \ j \
\ / \ / \
\ / \ / A
\ \ / \
Nt \ ! N
b \ / \
\ / .
\ / ~
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Remark. (1) f*, f~ are nonnegative.

(2) f*(x) = max{f(x),0} and f~(x) = max{—f(x),0}.
Q) Ifl=f"+f and f=f"—f".

(4) If f is continuous, then so are f* and f~.

Definition 6.5.5. Let A C R” be a set with volume and f : A — R be integrable over A. The
improper integral f f(x) dx is said to be “absolutely convergent” if f | f(x)| dx converges.
A A

Lemma 6.5.6. f f(x) dx absolutely converges if and only if f* and f~ are integrable over A.
A
(That is, ff+(x) dx < oo and ff_(x) dx < ©.)
A a

Theorem 6.5.7. (Comparison Test) Let A C R" be a set with volume and f,g : A — R be
continuous (except possibly on a volume zero set). If |f| < g on A and g is integrable over A,
then f is integrable over A.

Proof. Since |f| = f*+ f~ < gon A and f* and f~ are nonnegative, 0 < f*(x), f~(x) < g(x)
for every x € A.

For every k € N and Dy = [—k, k] X --- X [k, k],

f (f* Ak (x) dx < f g(x) dx < fg(x) dx < oo .
ANDy, ANDy, A

g is integrable over A

Since f (f* Ak)(x) dx is increasing in k and bounded above, lim f (ff Ak)(x) dx
ANDy ANDy

k— o0

converges. Hence, f is integrable over A.

Similarly, f~ is integrable over A and then f is integrable over A. O
: sin x )
Example 6.5.8. Let f : [0,00) — R be given by f(x) = . Then |f(x)| < . Since
x> +1 x> +1

I) 21 dx converges, by the comparison test, f is integrable over [0, o0).

Question: Are “Fubini’s Theorem” and “change of variables” still true for improper integrals?

6.6 Fubini’s Theorem and Tonelli’s Theorem

In order to prove the Fubini’s Theorem for improper integral, we will introduce the “Monotone
Convergence Theorem”.
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Theorem 6.6.1. (Monotone Convergence Theorem) Let A C R" be a set with volume, f :
A — R be a continuous function (except possibly on a volume zero set) and f, : A — R be
integrable functions such that

(i) fn = fne1 (or [ < fur1) for every n € N,

(ii) f, converges pointwise to f

ff(x) dx = limffn(x) dx.
A n—=eo Ja

Theorem 6.6.2. (Fubini) Let A C R" and B C R™ be sets with volumes in R" and R™ respectively
and f : AX B — R be a function such that f(X, -) is integrable over B for every x € A and f(-,y)
is integrable over A for everyy € B. If f is absolutely integrable over A X B, then

[ raxyday= [ ([ rapav)ax= [ ([ s axay
AXB A B B A

Proof. (Sketch) Since f(x, ) is integrable over B for every x € A, f*(x,-) and f (X, -) are inte-
grable over B for every x € A.

Then

By the Fubini’s Theorem, for f* Ak and f~ Akon Dy = [k, k] X --- X [k, k] = [k, k]"*",

f ( f (f* AK)(xy) dy)dx = f (f* AKX y) dx,y).  (6.4)
AN[—k.k]" BN[—k.k]™ AXBN[—k k]m+m

Since f*(x, ) is integrable over B for every x € A and f* is integrable over A X B,

f]”(x,y) dy = lim (f* Ak)(x,y)dy forevery x € A
B k=eo J Br[—k,k]m
and
f fT(x,y) d(x,y) = lim (f* Ak)(x,y) d(x,y)
AXB AXBA[—k ]+
Moreover,
f ff(x y) dy)dx = lim (f (/" AK)(x.y) dy)dx
AN[=k k" J BA[—k k]
since f* is nonnegative. (Check!) Then the theorem is proved. O

(Proof of the Fubini’s Theorem (Improper Integral))

Since f(x,-) is integrable over B for every x € A, f*(x,-) and f~ (X, -) are integrable over B
for every x € A. Then

(f+ A k) (X7 ) /‘ f+(X, ) and (f_ A k) (Xa ) /| f_(X7 )
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for every x € A and as k — oo. Therefore,

(M.C.T)
f[kk] (f+Ak)(X,y)dy=f(f AKX () dy f(x y) dy.
BN[=kk]™ B

Also,
f (f_/\k)(X,Y)dy/‘ff_(X,y)dy as k — oo,
BA[—k,k]™ B

Define f,7(X,y) := ((f+ A k)l[_hk]nx[_k’k]m)(x, y). Then f;" 7 f*. Hence,

T

l:f%xwﬂxw ST dim | ey dixy)
XB

AXB
= lim (f* Ak)(x,y) d(x,y)
k=00 J Ax BN ([—k. k] X[k &™)
FLD - im ( f (f* Ak)(xy) dy)dx
k=eo Jani—kin ~ J Bk k1

k—oc0

= lim ( f (f* nk)x,y) dy) L (X) dx
B

increasing to fo+(x,y) dy

M.CT "
= L<Lf (x,y) a’y)dx.

Similarly, f f(xy) dxy) = f ( f fxy) dy)dx. Therefore,
B

AXB A

f(X’ Y) d(X’ y) f+(X’ Y) d(X’ Y) - f_(X7 Y) d(X, y)

AXB AXB AXB

[ ([ rava)a- [ ([ o)
L jl;f(x, y) dy dx.

Remark. To apply Fubini’s Theorem, the integrability of f is a necessary condition. That is,

f'Vmwwmw<m
AxB

Counterexample Let R = [0, 1] x [0, 1] and define

2 2
f(x,y) = x(y;i—yzy)g) if (x,y) € R\(0,0)
0 if (x,y) = (0,0)

Let AC0) = [ f(x,y) dy. For x # 0, setu = x> + 2,

X2 +1 2
3 x(2x° — u) 3 X
ao= [T e
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Note that this formula is true for x = 0. Then

1 1 2 1
f f Sf(x,y) dydx = f Ax)dx = —.
0 0 0 8

On the other hand, let B(y) = fol f(x,y)dx. Fory # 0, setu = x*>+y?, we have B(y) =

This formula remains valid for y = 0.

1l |
1
fff(x’)’)dXdy:fB(y)dy:_g.
0o Jo 0
Lol 1 Pl
Therefore, f f f(x,y) dxdy + f f f(x,y) dydx.
0 o 0o Jo

Question: What happened here?
Answer: The function f is not (absolutely) integrable over R. In fact, f has a bad discontinunity

at (0,0).
f 0w dixy) =2 f f x(yx(2x+;2y)3 f — dx=oo

Theorem 6.6.3. (Change of Variables) Let U C R" be an open set with volume, and g : U — R"
be an one-to-one C' mapping with C' inverse (that is, g7 : g(U) — U is also continuously
differentiable). Suppose that the Jacobian of g, J4(X), does not vanish in U and f is absolutely
integrable over g(U). Then (f o g)J, is absolutely integrable over U and

B ] _ o g)| 281780
fy)dy = fﬂ (0 g)0)|Jg(x)] dx = f,u(f 8) 3, o | O*

A
202 + )2

g(U)

Proof. Let {(le};; be a sequence of bounded open sets with volumes such that
U= JU ) U ccU (i) Uy C U forevery k € N,

Define f," = f* Ak and f = f~ A k. By the change of variables formula for bounded sets and
bounded fucntions,

L (fif o g)®)|Jg(®)] dx = fE(y) dy.

g(Up)
Since fif (8(x)) Lo, (%) /' f*(8(%)) Los(x) and fi5(¥) Lgeany(¥) ./ f*(¥) Lgean(y) as well as

fw (fF o g)®|Jgx)] dx = iy < fA(y) dy < oo.

g(Up) g(U)
(Hence, ( fio g) (x)14,(x) is integrable over Y. ) By the monotone convergence theorem,

.C. .
Frwdy " Im | ) L) dy
g(U) T Jg)

“2¥ fu (f£ 0 8) ()14, (%)|Jg(x)| dx

M.C.T

f (f* o 8)(x) |Jg(x)| dx.
Uu
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Hence,

ff+(y)dy—f f(y) dy
g(U) g(U)

f (f* 0 ) ()| J4(x)| dx - f (f 0 £) ()| 40| dx
u Uu
fw (f o g)®)|Je(x)] dx.

f f(y) dy
g(U)

O

Example 6.6.4. Let A be the region in the first quadrant and bounded by xy — x + y = 0 and
x—y=1and f(x,y) = ¥*y*(x + y)e‘(x‘Y)z. Find ff(x, y) d(x,y).
A

Proof. Let g(x,y) = (u,v) =(xy—x+y,x—y)and E = {(u,v) e R? | O<v<l, —v<uc< 0}.
Then the map g : A — E is one-to-one and onto (hence g~' : E — A is one-to-one and onto).

B |75 73! |- ee
v
A X x-y=1
g xy-x+y=0 ;
=u 1-1, onto Wf///////////%z& -
g’ 1
‘1/

g(x,y)=(xy-xty,x-y)=(u,v)

o(u,v) d(x,y)
Oand J,-1(x,y) = = —
Gy T O e ) = 5 = T

f(u + v)zwe_VZ% d(u,v)
E Ty

b > 12
f f (u+v)e” dudv=—-=(=-1)
0 J-v 6 ¢

Remark. J,(x,y) — oo as (x,y) — (0,0). Hence, there exists no open set U C R? such that
A cc U and g is of class C' in U.

Remark. The lecture note also introduces another theorem, called “Tornelli’s Theorem’, which
involves the identity of multiple integrals and iterated integrals. In our course, we skip the Tor-
nelli’s theorem and students can take advacecd course to learn it.

. We have

For (x,y) € Int(A),

f G,y dx,y)
A

O

The main difference between Fubini’s Thereom and Tornelli’s Theorem is:
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e The Fubini’s Theorem needs that f(x) is absolutely integrable. Hence, the integral fD f(x) dx
must be a real value.

e The Tornelli’s Theorem needs that f(x) is nonnegative (nonpositive). Hence, the integral
fD f(x) dx could be +oo.

Fubini Tornelli
(absolutely integrable) (positive)
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7.1 Physical Examples

0 Simple Harmonic Motion

Simple harmonic motion describes the behavior of the most basic oscillatory system and
is a natural place to start the study of vibrations. For example, simple pendulum, horizaontal

spring.

Simple pendulum

Simple harmonic oscillator

Horizontal spring

“The content of this chapter is referred to Fourier Analysis; E. Stein, R. Shakarchi.

303
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Consider the horizontal spring and let y(f) denote the displacement of the mass at time 7.
Applying Newton’s law, we have

—ky(t) = my”(t),

where k£ > 0 is a given physical quantity called the spring constant and m is the mass. Let
¢ = Vk/m. Then the equation becomes

V' (1) + c*y(t) = 0.

The equation can be solved by

’

y(t) = y(0)cos ct + y©O sin ct.

Consider
acosct+ bsinct = Acos(ct — ¢)

where A = Va? + b? is called “amplitude” of the motion, c is its “natural frequency”, ¢ is its
“phase”, and 2rr/c is the “period” of the motion.

Awil
SV

The graph of A cos(ct — )

a Standing and Traveling Waves

m Wave Equation

Uy — czum =0 ‘

7 ‘

where ¢ = /7/p > 0is the velocity of the spring, Tisthe () L
tension of the spring, and p is the density of the spring. I\/ \/‘

L
e

By changing of “units” in space, x — ax, the spatial scale becomes 0 < x <L — 0<x <
Let v(¢, x) = u(t, ax), then
2
c

V[t - _zvxx = 0.
a

Similarly, we also change the unit in time, ¢t — bt, the temporal scale becomes 0 <t < T —
0<t< %. Let v(z, x) = u(bt, x).
vy —b*c*v,, = 0.
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Hence, by choosing appropriate constants a,b > 0 such that x — ax and ¢t — bt, we may
assume that the wave equation is

Uy —uUee =0 on0<x<m t>0.

e Traveling Wave

Observe that if F' is any twice differentiable function, then u(x, f) = F(x+1t) and u(x, t) = F(x—1)
solve the wave equation. The speed of u(x, ) = F(x —¢) is 1 and more forward to the right.

. Flz+t) ¢ Flz —1)
¥y \\\ F(z) i N
\\/ o
£ g
g X

: B i e

| e a o

e e P Flz+t)

Waves traveling in both directions

Since u,; — uy, = 0 is linear, for every F,G € C*(R),
ut,x) =Fx+t)+Gx—-1)

is a solution. For given initial data, u(0, x) = f(x), u,(0, x) = g(x), the d’Alembert’s formula

gives
X+1

1 1
u(t,x) = E[f(x+r)+f(x—t)} + Ef g(y) dy.

x—t

e Superposition of standing waves

First of all, we try to look for special solutions to the wave equation which are of the form
u(x,t) = ¢(x)y(r). In mathematics, this procedure is also called “separation of variables” and
constructs solutions that are called “pure tones” (¥ 3 ).

Y

u(z,0) = p(x)

A standing wave at different moments in time:
t=0 and { = to
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Then by the linearity of the wave equation, we can expect to combine these pure tones into
a more complex combination of sound.

Note that the method of separation of variables gives rise to reduce the PDE problem to an
ODE problem. Plugging ¢(x)y(¢) into the wave equation, we have

Q" () = ¢” () (t)
Thus,
v _ ¢ _
Y@ d(x)

Note that A is a constant. The wave equation redueces to

{ () - W) = 0
¢"(x) = Ap(x) = 0

If the constant 4 > 0, the solution ¢ will not oscillate as time varies. Hence, we assume
A = —m? < 0. Then we can solve

Y(t) = Acosmt + Bsinmt

and
¢(x) = A cos mx + Bsinmx.

We take into account that the string is attached at x = 0 and x = . The boundary condition
gives ¢(0) = ¢(m) = 0. Hence, A = 0, and if B # 0 then m € Z. Moreover, we can absorb the
cases m < 0 into the cases m > 0 and reduce the solution to

Un(t, x) = (A, cosmt + B, sinmt) sinmx

which is of the form of standing wave.B

0 \ 5 I f\ = (]

TR T 2T
L T I T
v vl
V! v
~ -

(a) Fundamental tone or first harmonic (b) First overtone or second harmonic
of the vibrating string (m=1) (m=2)

"The readers could browse some websites listed below to figure out the overtone.
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch”’v=01JmDhNoca()


https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch?v=0iJmDhNocaQ
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Since the wave equation is linear, we can construct more solutions by taking linear combinations
of the standing waves u,,. This technique is called “superposition” and gives the solution of the
wave equation

(o8]

u(t, x) = Z (A, cos mt + B, sinmt) sinmax.

m=1

Suppose that the initial data is given. That is, u(x, 0) = f(x) for f(0) = f(m) = 0. Then

i A, sinmx = f(x).
m=1
Question: Given f(x) on [0, ] with f(0) = f(m) = 0, can we find coefficients A,, such that
flx) = iAm sinmx ?
m=1
Question: If yes, how to find A,,?

Observe that

i 0 ifm#n
f sinmxsinnxdx =4 7 F o =
0 > ifm=n
Then, formally,

JT [ee)
( Z A, sin mx) sinnx dx

m=1

ZAmf sinmxsinnxdx = A, - E.
0 2

m=1

fﬂ f(x)sinnx dx
0

S—

0

Hence,
2 T
A, = —f f(x)sinnx dx.
T Jo

Question: How about the given initial data F(x) is defined on [—x, 71]?

We can express F(x) = f(x) + g(x) where f is odd and g is even. Then f(x) and g(x) can be
expressed as a sine series and a cosine series respectively. That is,

gx) = Z A}, cos mx.

m=0

Thus,

(o) o A/
F(x):ZAmsinmx+ZA;ncosmx+70 (7.1)

m=1 m=1
1. . . .
Remark. (1) The constant 3 in the last term is for making the formula consistant where

1 T
Ay == f F(x) dx.
V-

74
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(2) When F(x) is defined on [—, 7] and is of the form (1), the formulas of the coeflicients A,,
and A/, are similar but a slightly different.

1 (" 1 i , ,
A, = - f F(x)sinmx dx = — f F(x) (e""x - e_”"x) dx
nJ . 2 J_,
, 1 (" 1 (" , »
A, = - F(x)cosmxdx = — F(x) (e’"” +e ’mx) dx.
nJ . 2 J_,

Remark. Let f(x) be a function defined on [a, b] with b — a = 2n. Then we can extend F(x)
[still called F(x)] defined on R with period 2x. That is, F(x) = F(x + 2x). Suppose that

(o) (o) A/
F(x) = ZAmsinmx+ZA;ncosmx+ ?0

m=1 m=1

Then we can find the formulas of the coefficients by similar method.

An

1 [ 1 [
—f F(x)sinmxdx:—f F(x)sinmx dx
nJ nJ,

7s

1 (" 1
A, = —f F(x)cosmxdx:—f F(x)cosmx dx
_ T Ja

T 74

Q Euler Identity

We recall the Euler identity e = cost + isint. Suppose that we can express F(x) as the
form

[Se]

F(x) = Z ane™  where a,, € C.

m=—0o

”imx —inxd _{0 lfl’l?ﬁm
_e ¢ YT\ 2n ifn=m

/4

Similarly, since

we have

1 (" ,
a, = —f F(x)e " dx.
2 J_,

The quantity a, is called the nth Fourier coefficient of F'.

m Heuristic Viewpoint?

Consider the complex exponential function

2rimx

eq(x)=e = cos(2rmx) + i sin(2rmx)

as a function of x. While x lies in R, the function e,,(x) are complex numbers that lie on the unit
circle S! in C. If m > 0, then as x increases through an interval of length 1/m, the values e,,(x)
moves once around S! in the counter-clockwise direction.

The reference of this part is from Section1.1.2 of Introduction to Harmonic Analysis, Christopher Heil
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The function e, is periodic with period 1/m and we therefore say that it has “frequency m”.
In some sense, the function e, is a “pure tone”. We can imagine that an ideal vibrating string
creates a pressure wave in the air. In general, a real string (wave) is much more complicated than
a pure tone with frequency m. The sound created from a musical instrument usually consists of
pure tones, overtones and other complications. But let’s start with a single pure tone e,, here.

Graph of ¢(z) = cos(2my/Tx).

For a fixed m the function a,,e?™™* is a pure tone whose “amplitude” is the scalar a,,. The
larger a,, is, the larger the vibrations of the string and the louder the perceived sound. With
several different frequencies m € Z, the function

N

F(x) = Z e

m=—N

is a superposition of several pure tones.

10

IN

1 \ M | "M |

f'/
5
1

llﬁ‘” ‘ ‘ | W ‘.

\
(i

Il
il
i

Graph of 75 superimposed pure tones:

e — =

\"| ;
|

=L

Graph of o(x) = 2cos(2n3x) + 0.7 cos(279x)
Pp(x) = Z a,, cos(2wmx)

m=1

Suppose that any function F can be represented as a series of pure tones a,,e”™ over all

possible frequencies m € Z. By superimposing all the pure tones with the correct amplitudes,
we create any sound that we like. Once we have a representation of F in terms of the pure tones,
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we can act on it. In this sense, we can regard the convolution as a kind of “filter”.

Question: Given any reasonable function F on [—n, ], with Fourier coefficients define above,
is it true that

(o9

F(x) = Z Ape™?

m=—00
m Fourier Series on General Intervals

Let F(x) be defined on [—-L, L] with F(—L) = F(L). Suppose that F' has the form of Fourier
series

(o] A’
A, sin (@) + ZA”" cos (@) + 2
L p L

F(x) >

M

1

3
I

o0

E ametmnx/L

m=—oo

Then the formulas of the coefficients are

1t . mnrx
A, = ZI F(x)sm(T) dx

L
1 L
A = —f F(x) cos (@) dx
L), L
_ 1 LF( ) —imﬂx/Ld
ay = L . x)e X

Let F(x) be a function on [a, b] with F(a) = F(b) and b — a = L. Extend F(x) to a new
function [still called F(x)] defined on R and is with period L. Suppose that

00 oo A/
Fx) = ZA," sin (27rmx) + ZA’I" cos (27me) + ?0
m=1 m=1
— i am€27rimx/L.

Then the formulas of the coefficients are

b
4, = 2 f F(x)sin(z’TZ”) dx

L
2 (P 2

A, = 7 f F(x) cos ( ”Z”) dx
1 [ .

a, = _f F(x)e—mex/de
LJ,

Remind that the above discussions are based on some ideal situations of F. For example,
the integrability of F, the convergence of Fourier series, etc. We need to discuss them carefully.
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7.2 Basic Properties of Fourier Series

In this section, we will rigorously study the convergence of Fourier series. Observe that, for
a complex-valued function f(x) defined on [0, L], the Fourier coefficients of f are defined by

1 [t .
a, = — f Ff(x)e L dx, forn € Z.
L Jo
In order to make sure that all those coeflicients a, exist, f needs some suitable integrability
conditions. Therefore, for the remainder of this chapter, we assume that all functions are at least

Riemann integrable.

m Periodicity and Functions on the Circle

Definition 7.2.1. A function f is said to be periodic with period p if

Jx+p)=fx)

for every x in the domain.
Example 7.2.2. sin(x + 27) = sin x.
Note. 2 is a period of sinnx, cosnx and ™ for all n € Z.

First of all, we consider a 2x-periodic function f defined on R. We can identify f as a
function F defined on a circle T (or S!) in the complex number plane by

fO) = F(e")

The integrability, continuity and other smoothness properties of F' are determined by those
of f. If f is continuous on R, then F is continuous on T.

Moreover, if f is a function defined on [0, 27] for which f(0) = f(2n), it can be extended to
a 2m-periodic function on R by and then it can be identified as a function on the circle.

We conclude that two kinds of functions can be regard as functions on the circle. They are
“functions on R with period 27, and “functions on an interval of length 27 that take one the

same value at its endpoints”.

A Definitions and Some Examples

Definition 7.2.3. Let f be an integrable function defined on [a, b] with b —a = L.
(1) The nth “Fourier coefficient” of f is defined by

b
f(n) =a, = % f f(x)e ™™/ dx, neZ. (7.2)

(2) The “Fourier series” of f is given by

Z ﬁn)e2ninx/L
n=—oo
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and we use the notation

f(x) - Z f"\(n)eZITinx/L.

n=—0oo

Definition 7.2.4. If f is an integrable function on [, 7], then the nth Fourier coefficient of f

is
- 1 4 ‘
f(n)=a, = —f f(x)e™ dx, neZ
2 J_,

and the Fourier series of f is

(o)

f(x) ~ Z a,e™.

Note. If f is a function with period L, the resulting integrals () are independent of the chosen
interval. Thus the Fourier coefficients of a function on the circle are well-defined.

Remark. Let f be integrable on [0, 27r] and

f@~ > fme™.

Define g(x) = f(2nx). Then g is integrable on [0, 1] and

(o)

g0 ~ ) Fme™™

Check that 2(n) = f(n).
Example 7.2.5.
_ (_1);1+] )
(2) f(x) = xon[-ma]. Then f(n)= 4 —5, ~ Hn#0
0 ifn=0
D™t (D" sinnx
f(x)NZ in ¢ ‘2Zf

n#0 n=1

(b) f(x) = ——e™9 on [0, 2n].
SInmTa

b inx

f(X) - Z l’le+ (0

whenever «a ¢ Z.

eZm’nx/L

[S]
The “trigonometric series” is a series of the form Z Cn where ¢, € C. Similarly,

n=—oo
the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N

Z ¢, for some M, N > 0.
n=—M
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Example 7.2.6. If f is a trigonometric polynomial function, that is,

N M
fx) = Z s, sinnx + Z Cp COS NX,
n=1 n=0
then
N M
f(x) ~ Z s, sinnx + Z C, COS NX.
n=1 n=0

In other words, the Fourier series of f is itself.

Example 7.2.7. (Dirichlet kernel) For N € N, letc, = 1 foreveryn = -N,-N+1,--- ,-1,0,1,---
1, N and ¢, = 0 otherwise. The trigonometric polynomial defined on [, ] by
N
Dy(x)= ), ™
n=—N

is called the Nth “Dirichlet kernel ”. Denote w = ¢™*. For x # 0,

N -1
1 - N+1 -N _ 1

Zw" - @ and Z t .

oy l-w — l-w
Hence,

N -N _ N+l -N-1/2 _ ,\N+1/2 gin ((N + H)x
Dy(x) = Z W' = w w _w w _ (‘( 3) ) (73)
l-w w12 — 12 sin(x/2)

n=—N
For x = 0, it is easy to check that Dy(0) = 2N + 1. The equation ([Z3) is also true by taking
limit.
Note that we will see below that S y(f)(x) can be expressed as the convolution of f and
Dy (x) by defining f + g(x) = 3% [ f(")g(x —y) dy.
Example 7.2.8. (Poisson kernel) Let O < r < 1, the function defined on [—x, 7] by

[

P.(0) = Z rire?

n=-—00

is called the “Poisson kernel ”.

For fixed 0 < r < 1, since the series is absolutely and uniformly convergent in 6, to calculate
the Fourier coefficients, we can interchange the order of integration and summation. Moreover,
the nth Fourier coefficient equals . Set w = re®. Then

Z W'+ Z @" (where both series converge absolutely)

P0) =
n=0 n=1
_ L e _l-et(-we
l-w 1-0 (1 -w)(1-o)
1—|a)|2_ 1—r?

-—w]? 1-2rcosf+r?
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m Some Questions

2rinx/L

[s]
The “trigonometric series” is a series of the form Z cpe where ¢, € C. Similarly,

n=—o0o
the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N

Z ¢, ™ for some M, N > 0. In order to study the convergence of Fourier series, it is natual

n=—M
to consider the limit of its partial sum. But the convergence of the trigonometric polynomials

N N
here Z F(n)e¥™™/1 is slightly different the typical forms Z F(n)e¥ it

n=—N n=—M
Definition 7.2.9. Let N € N, then the Nth “partial sum” of the Fourier series of f is

N
SN(H) = > Flmpe™ k.
n=—N

Note that the above sum is symmetric since n ranges from —N to N because of the resulting
decomposition of the Fourier series as sine and cosine.

N

Sn(HX)

f(n)eZm'nx/L
N

n=-—

ZIZ;A,, sin (27;,‘”) + ZN]A; cos (27”6) + %.

n=1

For the convenience, we consider the functions defined on intervals with length 2. ([0, 27],
[—m, ] or etc).

00 N
Question: Does the limit Z f(n)e™ = 1\1}1_1}1(30 ZN f(n)e™ = 1\171_{1(}0 S n(f)(x) converges and for

what values of x the limit converge?

Question: If S y(f) converges to f, in what sense does S ,(f) converge to f as N — co (point-
wise, uniformly, or under a certain norms for instance || - |[z»)?

Observe that the Fourier coefficients come from an integral f f(x)e”™ dx. When f and g

have different values only at finitely many points, they will have the same Fourier coefficients.
Hence, without any additional assumption for f, it is unreasonable to obtain the convergent
result that

Al]im Sn(f)(x) = f(x) forevery x.

Question: Under what conditions of a function is uniquely determined by its Fourier coeffi-
cients?
m Uniqueness of Fourier Series

The question of uniqueness is equivalent to the statement that if a function f has Fourier
coefficient f(n) = 0 for all n € Z, then f = 0.
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Theorem 7.2.10. Suppose that f is an integrable function on the circle with j?(n) = 0 for all
n € Z. Then f(xy) = 0 whenever f is continuous at the point x.

Proof. Firstly, we consider f is real-valued. W.L.O.G, we say that f is defined on [—n, 7] and

—

continuous at xo = 0. (We will prove, by a contradiction, that f(0) = O whenever f(n) = 0 for
all n € Z).

The idea is that if f(0) # 0, we can construct a family of trigonometric polynomials {py}

that “peak”™ at O such that f pi(x)f(x) dx — oo. It is impossible since f(n) =0foralln € Z.
f(0)

Assume that f(0) > 0. Since f is continuous at 0, there exists 0 < ¢ < 7_2r such that f(x) > —
E

for every x € [-0,0]. Choose a sufficiently small number & > 0 such that ‘8 + cos x{ <1l- 3

whenever ¢ < |x| < . Denote p(x) = € + cos x and define

pr(x) = [p)]~.

P15

Pe

-m/2

ol p(x) =€+ cosx The functions p, pg, and p;5
when € = 0.1

Since f(n) = (0 foreveryn € Z, f()pi(x) dx = 0 for every k € N U {0}. Moreover, f is

integrable over [, xr]. It implies that f is bounded on [—, 7], say | f(x)| < B. Also, we choose

0 < 71 < ¢ such that p(x) > 1 + g for every 0 < |x| < 7.

p(x) = e+ cosx

N ®
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We have
f f(x)pi(x) dx = f +f +f fpr(x)ydx=1+11+1I1.
- 0<|xl<n n<|xl<é O<|xlsm
0 v
For 0 < |x| < 7, f(x) > % and py(x) > (1 + g)k, then
12277-@.(1+§)k—>oo as k— o D)
y=/x)
0
Forn§|x|<(5<g,p(x)ZOandf(x)>§>O,then S y
11> 0. - \
For 6 < || < 7, | pu(x)] < (1 - S)%, then s
=S PER = =50 -7 05w

mgzn-B-(l—g)k—m as k — oo,

Hence, we can choose k sufficiently large such that

f f(x)pe(x) dx >0 (Contradiction!).
Thus, £(0) = 0.

Generally, suppose that f is complex-valued, say f(x) = u(x) + iv(x). Define f(x) = f(x).
Then u(x) = LT gy = 7O
continuous at 0. Since }:(n) = ﬂ—n), we have u(n) = Wn) = O for all n € Z. Therefore,

u(0) = v(0) = 0. O

. Hence u and v are integrable over [, 7] and

Corollary 7.2.11. If f is continuous on the circle and ]?(n) =0foralln € Z, then f(x) = 0on
the circle.

Corollary 7.2.12. Suppose that f is a continuous function on the circle and that the Fourier

series of f is absolutely convergent, that is Z |]T(n)| < 0o, Then

n=—o0o

Al/im Sn(fH)x) = f(x) uniformly.

Proof. Since Z If(n)l < oo, then series

n=—oo

0 N
@)= ) flme™ = lim ;Nf(n)e"“

n=—o0o
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converges uniformly. Hence, g is continuous on the circle and the Fourier coefficients g(n) =
f(n) foralln € Z.

—

On the other hand, since f — g is continuous on the circle and ( |- g) (n) =0 forall n € Z.
Thus, f = g on the circle. Then

f@ = ) Fwe™ = lim Sy()().

n=—oo

Question: In what conditions of f, the Fourier series of f converges absolutely?

Corollary 7.2.13. Suppose that f is a twice continuously differentiable function on the circle.
Then

]?(n) = 0(L> as |n| — oo

In?

Hence, the Fourier series of f converges absolutely and uniformly to f.

Proof. By the integration by parts twice, for n # 0,

21

f(x)e™™ dx

0

27rf(n)

e—inx o0 271

1 .
[f (x) - — } 0 T F(x)e™™ dx
—in in
~—————

0
=0

@

=0

27
f/l(x)e—inx dx

—inx

e }271 1

+
0 (in)* Jo

—in

Since f is twice continuously differentiable on the circle, f”(x) is bounded, say |f”(x)| < B
for all x € T. Then

27
2ninP| f(n)] < f lf”(x)l dx < 27B.
0

—~ B ) 1 .
Thus, [f(n)| < W Moreover, since Z — converges, the proof is complete. O
n n

Remark.
(1) Heuristically, the index “n” represents the frequency and ]T(n) reflects the amplitude of nth
harmonic with frequency n when regarding f as a superposition of infinite standing waves

with different frequencies. Hence, the larger frequencey will be corresponding to the size
(weight) of derivatives of f.

(2) More rigorously, we can compute that
f'(n) = inf(n), forall neZ.

Thus if f is differentiable and f ~ 3 a,e™, then f’ ~ 3 a,ine™ . Also, if f is twice contin-
uously differentiable, then " ~ 3" a,(in)*e™, and so on. Further smoothness conditions on
f imply better decay of the Fourier coefficients.
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(3) Similar as the corollary, to make the Fourier series of f converges absolutely and uniformly
to f, we only need

f(n):o(i) as  |n| = oo (7.4)

|

for @ > 1/2. If f satisfies a “Holder condition” of order a, with @ > 1/2, that is

sup|f(x+1)— f(x)| < Alf|* forall ¢,
we can obtain ([Z4).

7.3 Convolutions of periodic functions and good kernels

Recall that, for given two 2r-periodic integrable functions f and g on R, the convolution of f
and g on [—m, 7] is defined by

1 T
(f* )0 = 7 f F3g(x — ) dy.
T Jn

m Properties of Convolution

Proposition 7.3.1. Suppose that f, g and h are 2n- periodic integrable functions. Then
(1) f+(@+h)=fxg+fxh

(2) (cf)xg=c(fxg) = f*(cg)foreveryceC.

(3) frg=g*f.

(4) (fxg)xh=(f*g) *h

(5) f = g is continuous.

(6) [+ gn) = fnign).

Proof. The proofs of (1)-(5) are left to the readers. We will prove part(6) here.

JE——

1 (" .
frgnm) = — f (f * 9™ dx
T J-n
1 (™1 " .
= 5 f FO)glx -y dy)e ™ dx

),

1 i | i .
- =iy ( _— _ —in(x—=y)
o Lf(y)e (52 Lg(x Ve d) dy

1 g —in 1 " —inx
= 52 [ 10 (5 [ s ax) ay

—_

= f()gn).
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Remark. Property (5) exhibits that the convolution of f * g is “more regular” than f or g.

Note. One of our goal is to understand whether a function f can be expressed as its Fourier
series. That is, Al/im Sy(f)(x) = f(x) for every x? Consider the partial sum of the Fourier series

of f

Sn(H)

N —

D, fime™

n=—N

_ ZN<%T I ﬂ o) dy)en
S

= 5> f O D ) dy

=-N

= (f*Dy)(x)
where Dy is the Nth Dirichlet kernel given by
N
Dy(x)= )" ™.
n=—N

Hence the problem of understanding S y(f) reduces to the understanding of the convolution
f * DN.

1 Good kernels

In Section3.10 we can regard the convolution f * g as a “weighted average” of f when
f g(x) dx = 1. Moreover, if g is a highly peaked functoin and is concentrated at 0, the value
of (f = g)(x) is close to f(x) if f is continuous there. The same phenomenon also occurs in
the proof of Theorem[ZZZT0. It motivates us to study the “kernels” of operators and discuss the
characteristic properties of such functions.

Definition 7.3.2. Let {K,(x)}>, be a family of functions defined on the circle. This family is
called a family of “good kernels” if it satisfies the following properties:

(a) Foralln > 1,
1 T
—f K,(x)dx = 1.
2 J_,

(b) There exists M > 0 such that foralln > 1,

f K, (x)| dx < M.

(c) Forevery ¢ > 0,
f |IK,(x)|dx —» 0, asn — oo.
o<|xl<m
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Note.

Property (a) says that K, assigns unit mass to
the whole circle [-m, 7] and K, is interpreted as
weight distributions on the circle. Property (c)
exhibits that the mass concentrates near the ori-
gin as n becomes large.

Theorem 7.3.3. Let {K,}* | be a family of good kernels and f be an integrable function on the
circle. Then

lim (f % K,)() = f(x)

whenever f is continuous at x. If f is continuous everywhere, then above limit is uniform.

Proof. Since f is continuous at x, for given € > 0 there exists 6 > 0 such that

fx=y)-fl<e (7.5)

as |y| < 8. Consider

1 T
(f * Kn)(x) = f (X)‘ o f K. [f(x=y) = f(x)] dy (by condition (a))

IA

L KOy - £ dy

27 Jiyi<s

1
o K WIIf(x = y) = £l dy

o<lylsm

= I+1I

M
By the condition (b) and (I3), I < 2—‘9
JT

Since f is integrable on the circle, it is bounded, say |f(x)| < B on the circle. From condition
(©),

2B
Il < — |K,(»)|dy - 0 asn — oo.
T Js<iyl<n

Hence, as n sufficiently large,

I(f * K,)(x) — f(x)| < Ce.

We have
lim (f % K)() = £(0).
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Moreover, if f is continuous everywhere, then f is uniformly continuous on the circle. For
the given € > 0, there exists 6 > 0 (which is independent of x) such that

fx=y) = fl<e

for every x on the circle. Hence, f * K, (x) converges to f(x) everywhere and this convergence
is independent of x. That is, f * K, — f uniformly. O

Remark.

(1) Heuristically, the weighted distribution K, concentrates its mass at y = 0 as n becomes
large. Therefore, the value f(x) is assigned the full mass as n — co. The convolution

1 T
(Ko =5 [ Sk dy
is the average of f(x — y), where the weights are given by K,,(y).
(i) The family {K,} is refered to as an approximation to the identity.

m Dirichlet Kernel

N

Question: Is the family of Dirichlet kernels { Dy(x) = Z ei”"};vozl a family of good kernels?
n=—N

1 T
It is easy to check that 7 f Dy(x) dx =1 for all N > 1. Thus, condition (a) holds. Unfortu-
74 /4

nately, the absolute integral

f |IDy(x)| dx > clogN, asN — co.

/4

Then the condition (b) does not hold. This observation suggests that the pointwise convergence
of Fourier series may fail at points of continuity. In fact, the function Dy(x) oscillates very
rapidly as N gets large.
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The Dirichlet kernel for large NV

7.4 Fejér kernel and Poisson kernel

a Fejér kernel
n—1
Definition 7.4.1. Let {a,} . , be a sequence of numbers and s, = Z ay. be the nth parital sum of
k=0
{an}.
(1) The average of the first N partial sums
N-1
So+ ST+ -+ Sy-q 1
ON = == Sn
N N

n=

is called the Nth “Cesaro mean” of the sequence {s,} or the Nth “Cesaro sum of the series
a,.

n=1

(2) If oy converges to o as N tends to infinity, we say that the series ) a, is “Cesaro summable”

to o.
Exercise.
I 1+ ((=DNV! 1
(1) Leta, =(-1)". Then oy = 3 + (4—1\/) and oy converges to 3

(2) If {a,} is summable to L (that is s, converges to L), then oy converges to L.
(3) If s, diverges to +oo, then oy diverges to +oo.

Note. The Dirichlet kernels fail to belong to the family of good kernels. But their averages are
very well behaved functons, in the sense that they indeed form a family of good kernels.
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Definition 7.4.2. Let D,(x) be the family of Dirichlet kernel. We call the function

Dy(x) + -+ + Dy_1(x)

Fy(x) = N

the Nth “Fejér kernel .

Consider the Cesaro mean of the Fourier series

So(f)+ -+ Sy 1(HX)
N
(f * Do)(x) + - -+ (f * Dy_1)(x)
N
Do+ -+ Dy_
0 N N 1)()6)

on()x) =

(/=
(f * Fy)(x).

Lemma 7.4.3. The Fejér kernel

1 sin>(Nx/2)
F =_ ¥ "= 7.6
) (7.0

and it is a good kernel.
w—N _ wN+1

Proof. Since Dy(x) =
l-w

putation.

with w = €™, the equality (IZ6) is obtained by direct com-

1 T
Moreover, since Fy > 0 from ([Zf) and o f D,(x) dx =1 for every n € N, the average
bl

of partial sum of {D,}>  is also equal to 1. That is_,ﬂ

1 T
— F = 1.
7 j:,, (X)) dx

The conditions (a) and (b) of good kernels hold. For every ¢ > 0, there exists Cs > 0 such that
sin®(x/2) > ¢ for every |x| > 0. Hence, Fy(x) < 1/(Ncs) and

f |[Fy(x)|dx —> 0 as N — oo,
o<lxi<n

This implies that the condition (c) of good kernel holds. O

Theorem 7.4.4. If f is integrable on the circle, then the Fourier series of f is Cesaro summable
to f at every point of continuity of f. That is,

on(f)(x) = f(x) asN — oo

for every x where f is continuous.
Moreover, if f is continuous on the circle, then the Fourier series of f is uniformly Cesaro
summable to f.

Corollary 7.4.5. If f is integrable on the circle and f(n) = 0 for all n, then f = 0 at all points
of continuity of f.
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Proof. Since Sn(f) = i j?(n)e"’” = 0 for every N € N, the Casaro mean of {S,} is equal to 0
and hence the Nth Fejél;:l;grnel Fyn(x) =0 for every N. Then

0=f*Fyx)— f(x)
at every continuity of f. m|

Corollary 7.4.6. Continuous functions on the circle can be uniformly approximated by trigono-
metric polynomials. That is, if f is continuous on [—n, ] with f(—n) = f(rn) and € > 0, then
there exists a trigonometric polynomial P such that

If(x)— P(x)| <& forall —n<x<nm.

Proof. The corollary is followed by the theorem since the Cesaro means are trigonometric poly-
nomials.
O

a Poisson kernel

Definition 7.4.7. A series of complex number } ;- ¢, is said to be “Abel summable” to s if for
every 0 < r < 1, there series

(59

A(r) = Z e

k=0
converges, and

lirrll A(r) = s.
The quantities A(r) are called the “Abel means” of the series.

Remark. If } ;7 ¢ is Cesaro summable to s, then it is also Abel summable to s. But the
converse is not true. For example, ¢; = (—1)*(k + 1). Then

A(r) = Y (-Dfk+ Drf = ——.
kzz(; (1+ r)?

The series is Abel summable to lirrll A(r) = 1/4 but it is not Cesaro summable.

Definition 7.4.8. Let f(x) ~ Y.°°_ a,e™. Define

n=—o0o

(59

AHE) = Y Mae™.

n=—0oo

Remark. Since f is integrable (that is, f |f(x)] dx < 0),

1 T . 1 T
] = \— f F(x)ens dx] < — f £ ()] dx < oo
2 J_, 2 J_,

The uniform boundedness of |a,,| implies that A,(f) converges absolutely and uniformly for each
0<r<l.
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Definition 7.4.9. We define the “Poisson kernel” by

(o)

P.(x) = Z e,

n=—oo

Note. The Abel mean of f is equal to the convolution (f * P,)(x). In fact,

(o)

§ rlnlanemx

n=—oo

A () ()

(o9

— Z rlnl(% Iﬂ f(y)e—iny dy) einx

= (f*P)().

where the interchange of the integral and infinite sum is justified by the uniorm convergence of
the series.

Lemma 7.4.10. If0 <r < 1, then

1-72

—2rcosf@ + r?’

Pr(x) = 5 (7.7)

The poisson kernel is a good kernel, as r tends to 1 from below.

Proof. The identity is obtained by direct computation by setting w = e™*. Since P,(x) is positive
and evaluating the integral term by term, we have

1 T
ZTIHPr(X) dx =1.

The condtions (a) and (b) of good kernel hold. Moreover, for 1/2 <r < 1land¢ < |x| <,
1 -2rcosx+r*=(1—=r)*+2r(1 —cosx)>cs >0

(1-r")

Cs

where cs could be given by 1 — cosé. Then P,(x) < when ¢ < |x| < &. Then

1-— 2
f |P(x)] dx < u -0 asr—1".
o<|xl<m Cs

The condition (c) of good kernel holds.
O

Theorem 7.4.11. The Fourier series of an integrable function on the circle is Abel summable to
[ at every point of continuity. Moreover, if f is continuous on the circle, then the Fourier series
of f is uniformly Abel summable to f.
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7.5 Convergence of Fourier Series

In the present section, we will discuss the convergence of Fourier series in three different senses,
mean-square, pointwise and uniform convergence. The mean-square convergence reflects the
global bahaviors of the partial sum S y(f). The pointwise and uniforn convergence reveal the
local behaviors of S y(f). We want to find the sufficient conditions of these convergence.

Recall that a Hilbert space is a complete inner product space.

Example 7.5.1.

(1) Let £*(Z,C) = {(--- ,a-y,ap,a1,--+) | a, € C with Z |a,|* < eo}. Define

nez

@b)= ) ab,

nez
fora=(---,a_y,ap,a,,---)and b = (--- ,b_y, by, by,---). Then ¢*(Z, C) is a Hilbert space.
2) R= { f:10,2n] - C | f 1s a Riemann integrable function on [0, 27r]} with
27

1 -
(f.8) = o f(x)g(x) dx.
T Jo

R is not a Hilbert space.

Let L )
)X if xe[,n]
In(x) = { 0 otherwise

Then f, is a Cauchy sequenc of R. For any bounded function f € R,
lim |1£, = gll # 0.
Hence, R is not complete.

Before discussing the convegence of Fourier series, we review some properties of inner
product spaces and Hilbert spaces.

a Orthonormal Sequence

Definition 7.5.2. Let X be a vector space with an inner product (-, -) and || - || be the incuced
norm on X which is defined by

Ix|? = (x,x) for every x € X.

We say that the two vectors X,y € X are “orthogonal” if (x,y) = 0.

m Some Properties
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(1) (Pythagorean theorem) If x and y are orthogonal, then

IIx + yII> = [IxII* + [Iyll*.
(2) (Cauchy-Schwarz inequality) For x,y € X,
%, y)| < IIxllllyll.
(3) (Triangle inequaltiy) For x,y € X,

lIx + yll < [IxI] + llyll.

Definition 7.5.3. Let (X, (-, -)) be an inner product space over C. We say that {e,},cy iS a se-
quence of orthonormal vectors if

(0, ifi#j
<ei’ej>_ { 1’ lfl:J

Remark. Let {e,},cv be a sequence of orthonormal vectors in a Hilbert space X. The closed
span
M = spanie,}

is a closed subspace of X.

Theorem 7.5.4. Let X be a Hilbert space and {e,},cn be an orthonormal sequence in X. Then
the following statements hold.

(a) Bessel’s Inequality:
D kx e < X
n=1

foreveryx € X.

(b) If the series X = Z cpe, converges, then c, = (X, e,) for each n € N.

n=1

(c) The following equivalence holds:

(o) (o)
Z c,e, converges Z |c,,|2 < 00,

n=1 n=1
(o)

Furthermore, in this case the series Z cqe, converges unconditionally, i.e., it converges

n=1

regardless of the ordering of the index set.

(d) If x € X, then
pP= Z(x, €,)e,
n=1

is the orthogonal projection of x onto M := span{e,}, and ||p||2 = Z I(x, e,)%.

n=1



328 CHAPTER 7. FOURIER SERIES

(e) If x € X, then the following three statements are equivalent

(i) x € M := spanie,}.

(i) x = Z(x, e,)e,.
n=1

(iii) 1P = > % en)P.
n=1

Proof. (a) Choose x € X. For each N € N define

N
Py = Z(X, e,e, and gy =X-—Ppy.

n=1

Since the e, are orthonormal, the Pythagorean Theorem implies that

N N
Ipwll® = Zl I1(x, e,)e,|* = 21 (X, &),

Also,

N
(P> ) = (P> X) = (P, i) = ) (%, €,)e, X) = [Ipyll* = 0.

n=1

Then the vectors py and qy are orthogonal. By the Pythagorean Theorem again,

N
Z IKx, e = [IpwI* < lIpall” + llawl® = llpy + qull® = X1,
n=1

Let N — oo, we obtain Bessel’s Inequality.

(b) If x = Z cpe, converges, for each fixed m, we have
n=1

[Se] [

(x,e,) = <Z c,,en,em> = ch<en,em) =Cp.

n=1 n=1

(Notice that the second equality is valid since the sequence is convergent.)

(¢) (=) By part(b), ¢, = (x, e,) since X = Z cqe,. Thus, by Bessel’s inequality,
n=1

[

(o]
2 2 2
§ leal” = § (%, e, < [Ix]|"
n=1

n=1

(&) Suppose that Z lea]* < 0. Set

n=1

N N

s, = Z ce, and fy = Z e, 2.
n=1

n=1
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To prove that {s,} __is a convergent sequence in X. If M < N, then

N
| > e

n=M+1

2

2
lIsy — Sl

N
Z llc,enll? (Pythagorean Theorem)
n=M+1

N
2
D el = Ity =t

n=M+1

is a Cauchy sequence. Hence, {sn} is a

neN neN

(o8]
Since Z le]> < oo, the sequence {t,,}
n=1

Cauchy sequence in X. Since X is a Hilbert space, the sequence {S"}neN converges and

[

so does Z Cn€,.

n=1

Furthermore, since Z lea* < oo, the sequence {|c,[*}, , is absolutely summable and the

n=1
(o]

summation does not change if reordering of the series. Thus, Z cpe, converges uncondi-
n=1

tionally.

(d) By Bessel’s inequality and part(c), the series p = Z(X, e,)e, converges. For fixed k,

n=1

(X, ) — <i<x €,)€n, ek>
n=1

[

(X, €)= Z(X, €,){€n, e)

n=1

= <X’ ek> - <X’ ek> =0

(X —p,e)

(Convergence) —

The vector x — p is orthogonal to each vector e; and thus it is orthogonal to every vector in
M. We have that p € M and x — p € M~. This implies that p is the orthogonal projection of
x onto M.

(e) By part(d), p = Z(X, e)e, is the orthogonal projection of x onto M and

n=1

bR = p.p) = D [(xen)]
n=1

“@1) = (i1)” If x € M, the orthogonal projection of x onto M is x itself. Thus,x = p = Z(X, e,e,.

n=1

“(ii) = (ii))” If x = p, then [[x|* = ||p|I* = Z (x, €,)I.

n=1
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“(iii) = (i)” Suppose ||x||* = Z |(x, e,)°. Then since x — p L p,

n=1

2
[l

lIx = p) + pI* = lIx - pII* + lIpl*

Ix —pl* + Z Kx, &) =[x = plI* + [Ix|I*.

n=1

Hence [x —pll=0andx =p € M.

Remark. We say that the sequence {e,},cy 1S “complete” in X if

span{e,} = X.

7.5.1 Mean-Square Convergence
Consider the space R of integrable functions on the circle with inner product
27

1 _
(f,8 = 7 f(0)g(x) dx
T Jo

and the induced norm

1 271
HN=mﬂ=§LLWWM

Note. The norm || - || is equivalent to || - ||;2. In fact,

2 2
271'” . || = || . ”Lz([o,zﬂ])'

We will prove that ||S y(f) — fI| = 0 as N tends to infinity. It also implies S y(f) converges to f
in L? norm.

Set e,(x) = . Then {e,},cz is an orthonormal sequence. Let

1 27 ) .
a, ={f,e,) = o fe™ dx = f(n)
T Jo

be the Fourier coefficient of f. Then

SN = ) ae.

[n|<N

Lemma 7.5.5. For every N € N,

(f— Z anen> 1 Z bue,

[n|<N [n|l<N

for any b, € C.
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f=8n(f)

©  Sn(f)

en ai e

The best approximation lemma

Proof. For every |n| < N,

<f’ en) - Z am<em’ en>

<f_ Z A€,y en>

|m|<N |m|l<N
= a,—a,=0.
By the linear combination, we have ( f- Z anen) L Z b,e,. m|
|n|<N |n|l<N

m Bessel’s Inequality

By Lemmall 55, we write f = (f — Z a,e,) + Z a,e, and

|n|l<N |n|l<N
2 2 2
AP = If = > aeal? +11 Y ae,l*  (Pythagorean Theorem)
In|<N [nl<N
2 2 2
= If = ) aed?+ ) lallel
[n|<N [n|<N
= If = ) aell + ) lal’
|n|l<N n|l<N
2 2
= NIf =SnHIP+ D Il
In|<N

Hence, for every N € N, Z la. > < || f I%. Letting N — oo, we have the Bessel’s inequality
Inl<N

[
2 2
D lanl <IIfIP.

n=—oo

Remark. Suppose that {u,} is any orthonormal sequence and b, = (f,u,) for every n. We still
have a corresponding Bessel’s inequality,

Db < IAR.

Lemma 7.5.6. (Best approximation) If f is integrable on the circle with Fourier coefficients a,,
then

1f = SN IF = D cuel (7.8)

|n|l<N

for any c, € C. Moreover, the equality holds precisely when c, = a, for all |n| < N.
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Proof. Letb, = a, — c,. Then
f_ chen :f_SN(f)+ anen

[n|l<N |n|<N

By Pythagorean theorem, since ( f=5n( f)) 1 Z b,e,,

Inl<N
= D cneal = IIF = Sw(AIP + D 1bal’.
[nl<N [nl<N
Thus, the inequality ([Z8) is proved. O
Theorem 7.5.7. If f is Riemann integrable on the circle, then

ISv(f)—fll=0 as N — .
Proof.

Step1: To show that the theorem is ture if f is (2z-periodic) continuous on the circle. For given
e > 0, by CorollarylZ48, there exists a trigonometric polynomial P with degree M such that

[

P||L°° ([o,zn]) <&

Therefore,
1f%lf P|2a’<122 ?
— — X< — - 2ne” =¢g°.
2 0 2

Then ||f — P|| < €. By the best approximation,

If =Su(HI<If =Pl <e.
Step2: If f is a continuous function (but possibly f(0) # f(2r)), we define

0, x=0

linear, 0<x< 9§
k(x) =< f(x), o6<x<2m-9¢

linear, 27 -0 <x<2nm

0, x=2r

The function k (dashed) is close in LZ-norm to f (solid), and also satisfies

k(Q) = k(2w).
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Then k is continuous on [0, 2] with £(0) = k(27) and
If -kl <e
if ¢ 1s sufficiently small. Also, f — k is integrable on the circle. By the Bessel’s inequality,
ISn(H) = Sv@Il = ISn(f —BIl <IIf —kll <&
for every N € N.

Step3: If f is integrable on the circle, by using the method of mollifiers, we can choose a
continuous function g on [0, 27r] such that

IIf—gll<e
and hence [|S y(f) = Sn(@Il = ISy(f = Il < |If — gll < &. Then

ILf =SnvOI < NIf =gl + llg = Sn@I + IS n(g) = Sn(I

< €+e+e=3¢
as N is sufficiently large. O

Corollary 7.5.8. (Parseval’s Identity) Let f be an integrable function on the circle. If a, is the
nth Fourier coefficients of f, then
D lanl = 1IfIP.

n=—oo

Proof. The identity is clear since

AP = If =SxHIF +ISn(AIF  (Pythagorean Theorem)
N
= If =SnHIP+ D laaf
n=—N
Let N' - co and we obtain " la, [’ = I|fI%. O

n=—oo

Theorem 7.5.9. (Riemann-Lebesgue lemma) If f is integrable on the circle, then f(n) -0
as |n| — 0.

Proof. Since f is integrable on the circle, f is bounded and this implies that ||f]|*> < co. By
Bessel’s identity,

DA =P < oo.

Then f(n) — 0 as |n| — oo.
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Note. An equivalent result of this theorem is that if f is integrable on [0, 2r], then

271

f(x)sin(Nx)dx - 0 asN — o
0

and
2

f(x)cos(Nx)dx - 0 asN — o
0

Lemma 7.5.10. Suppose F and G are integrable on the circle with

F ~ Z a,e™ and G ~ Z b,e"*.

1 2 - o
5 fo F(x)G(x) dx = Z a,b,.

n=—oo

Then

Proof. Since

(F,G) = Z[IIF + G’ = |IF = GI? +i(|IF +iG| ~ |IF - iG|”*)]

ENT

by Parseval’s identity

27
i f F(x)G(x) dx = (F,G)
27T 0

[IF +GIP = IF = GI + i(IIF +iGIP ~ IF - iG|I*)]

e Bl S e

M

[l + bal* = lay = by + i (1ay + b, = |, — ib, ) |

n=—o0o

S an

n=—

7.5.2 Pointwise Convergence

The mean-square convergence theorem does not guarantee that the Fourier series converges for
any x. In order to obtain the pointwise convergence of Fourier series, the function may have
good local behaviors near x;.

Observe that

1 T
Sn(f)(x0) = f(x0) o f f(xo = y)Dn(y) dy — f(x0)

1 T
- > f [f(xo = ) = F(x0)] Dx(y) dy

1 T 1 N+l
= Ef [f(xo—y)—f(xo)}wdy

,T sin(3)
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We expect the integral decays to 0 as N tends to infinity. However, the denominator sin(3)
S0 —y) = f(x0)

sin(3)

become small as [y| tends to 0. Hence, we hope to obtain a better control of
that will give the pointwise convergence.

Theorem 7.5.11. Let f be an integrable function on the circle which is differentiable at a point
Xo. Then S n(f)(x9) = f(xp) as N — oo.

Proof. Define
Sxo = y) = f(x0)

ify#0and|y| <nm
y
—f"(x0) ify=0
Since f is differentiable at x,, there exists & > 0 such that F is bounded for [y| < 6. Moreover,

F is integrable on [—m, —0] U [0, ] because f 1s integrable on the circle. Then F is integrable on
the circle.

F(y) =

On the other hand, since is continuous on [—s, 7]\{0}, the functions

y
sin(y/2)
F@)-

Yy
Sn072) cos(y/2) and F(y)y

are Riemann integrable on [—, ]. Also,
sin ((N + 1/2)y) = sin(Ny) cos(y/2) + cos(Ny) sin(y/2).

Then

1 T
SAN00) ~ fw) = 5 f (o = y)Dy() dy - f(x0)

- L f (£ - y) — f(x0)] Dy(y) dy

sin ((N + )y)
in(3)

cos(y/z)) sin(Ny) dy

1
= z—f f(xo—Y) f(xo)}

5l

+2—f F(y)ycos(Ny) dy.
T Jn

By Riemann-Lebesgue lemma, the above two integrals converge to 0 as N — 0 and the theorem
is proved. O

f(xo—y) — f(x0) as
sin(y/2)

[y| is small. In fact, the conclusion of the theorem still holds if we assume that f satisfies a
“Lipschitz condition” at xo; that is,

[f(x) = f(xo)| < M|x — xo

Remark. According to the above analysis, we need to control the term

for some M > 0 and all x.
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Theorem 7.5.12. Suppose f and g are two integrable functions defined on the circle, and for
some X there exists an open interval I containing x, such that

f(x)=gx) forall xel
Then S n(f)(x0) = Sn(8)(x9) > 0 as N — .

Proof. Since the function f — g is 0 in /, it is differentiable at x,. Therefore, by Theorem[Z5TT],

Sn(H)(xo0) = Sn(g)(xo) = Sn(f = g)(xo) = (f = g)(xo) = 0.

m Piecewise Continuous Functions

If f is a piecewise continuous function on the circle, then it is bounded and integrable on the
circle. Denote

fG=)=lim f(x—#) and f(x+) = lim f(x+h).

Let f(x) be the average value

— 1
FG) = SLf0e) + fa-).

Note that if f is continuous at x, then f(x) = f(x+) = f(x=) = f(x).

Definition 7.5.13. A piecewise continuous function f is said to be “one-sided differentiable” at
x if the two limits

T S(x=)— f(x—h) . f(x+h) = flx+)
m and lim

h—0* h h—0* h

both exist.

Example 7.5.14. The function f(x) = |x| is one-sided differentiable at x = 0 since

lim O =1=Al _ ~1 and lim Al =101 _
h—0+ h h—0+

1.

Theorem 7.5.15. Let f be a piecewise continuous function on [—n, ] such that its 2r-periodic
extension is one-sided differentiable for all x € R. Then S y(f) converges pointwise to f(x) for
all x e R.

Proof. Since Dy(y) is an even function, then

1‘foD()d = 1‘[”D()d -1

We have .
| n
7o =5z [ Dusenrdy+ [ Dy ).
T-J- 0

T
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_ 1 0
$xNW =T = 5[ [ Duo(Fee=n - feen) dy

+fOﬂDN(y)<f(X—y) _f(x_)> dy}

- 5l Dun (f ) - ) ()

+ fo DV (f ) = fm)) ()] ety - —y)

= 5[ Doy - ) v

0
+ [ Dy (40 - fam)) ] (Dyiseven)

_ i[f”f(ﬂy)—f(xﬂ.
- 2nl Y, sin(y/2)

sin (N + 1/2)y) dy

0
Jx+y) - flx-) .
Loy 2 @]
27 —
_ l[ fx+ ZZ) f(x+) . sin ((2N+ l)z) dz
T 0 Sin zZ
0 _ —
S+ 20 2 707) G (on + 1) dz| (lety =22)
o S1n g
= I+1I

By the similar argument as the one of Theorem[Z3TTl, since f is one-sided differentiable, the

functions
Jfx+22) = f(x+) and fx+22) = f(x-)
sinz sinz

are integrable on [0, 2] and [-2n, 0] respectively. From Riemann-Lebesgue lemm, both / and
11 converge to 0 as N tends to infinity. The theorem is proved.
]

Example 7.5.16. Let f(x) = |x| be defined on [, 7r]. Then the Fourier coefficients of f are

R g ifn=0
J) =<9 214 (=1

— ifn#0

T

Then the Fourier series

(o)

n -1+, 7 4 cos(nx)
M~ 3+ ) "= 2

[n|=1 n=1, odd

Since f is continuous on [—, ] and one-sided differentiable, f can be expressed as its Fourier
series. That is

(o)

4 cos(nx)
T . Z n?

=1,odd

x| =

NN
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Taking x = 0, we have
i I n?
2 _— .
n=1, odd n 8
7.5.3 Uniform Convergence

In the present subsection, we want to find the sufficient condition for the uniform convergence
of Fourier series. Corollary[ZZ2ZT3 says that the twice continuous differentiability of f will give
rise to the uniform convergence. Besides, since uniform convergence automatically implies
pointwise convergence, we naturally expect the sufficient conditions for uniform convergence
are strong than the hypotheses in Theorem[Z5.T1l.

The following theorem will apply CorollarylZ"ZTT and give a better hypothesis than the ones
of Corollaryl2T3.

Theorem 7.5.17. Let f be a function defined on [—n, ] such that its periodic extension is con-
tinuous (i.e f(—n) = f(r)) and let f" be piecewise continuous. Then S y(f) converges uniformly
to f on [—n,n].

Proof. By Corollary[Z2TTl, it suffices to show that Z If(n)l < oco. Since f” is piecewise con-

tinuous, it is integrable on [—, 7] and hence its Fourier coeflicients are well-defined and

— 1 T .
P = 5 f F0e ™ dx.
T Jrn

Moreover, from Bessel’s inequality,

DUF@E < IfIP < .

n=—o0o

On the other hand, for every n € Z,
1 " / —inx
o f(x)e"™ dx
1 —inx d . " —inx
= o [f(x)e . +in f(x)e dx}

_ 0+é—’; f Cf@edx (since f(-m) = ()

= (n)f(n).
By Cauchy-Schwarz inequality,

i fm

Z0)

o+ 3 L@

In|

nl=1

ol (35" Fwr)”?

lnl=1 |nl=1

IA

< 09,
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By CorollarylZZTTl, S y(f) converges to f uniformly. O

Example 7.5.18. Let f(x) = |x| be defined on [—x, 7] and the 27 periodic extension of f and
f'(x) = sign(x) is piecewise continuous. Therefore, S y(f) converges to f uniformly.

1 J T T T T T T

o \ 7

DAk \ ?:.I

o7t \\ P{j
o6t kY i

%,
i, I;
DA-
N\ ¥4
o4t \ F
"\ Fi
oa \ /
Y f
b2 ":;._ ;"
i 1\ & 1
L e o f
o L I 1 L \‘/ RS U LS o ST T
=1 -pa 08 -04 02 o 1R 0.4 (] na 1

Sa2(f) (dashed) and S+(f) when f(z) = |z|.

Example 7.5.19. Let f(x) = sign(x). Since f is not continuous, we cannot conclude that S y(f)
converges to f uniformly on [, 7r]. If fact, it is impossible that S y(f) convergs to f uniformly
since the limit function of uniform convergence of continuous functions should be continuous.

N=1

N=3

1 05 0 05 1 4 05 0 05 1 -1 -05 0 05 1

S2n-1 for different values of N when f(x) = sign(x)
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7.6 Smoothness and Decay of Fourier Coeflicients

From the proofs of CorollarylZZT3 and Theorem[Z5T7, we have an insight that the smoother
f 1s the faster the Fourier coefficients will converge to zero. The rate at which the Fourier
coefficients tend to zero will be measured by checking if

Z 2" F () < oo

n=-o0o

for positive integers m.

Let C’" denote the set of functions on R such that f, f’, ---, £ are all continuous and 27
periodic. Hence if f € C7), then

Theorem 7.6.1. Let m > 1 be an integer. Assume that f € CI’Z’_I and ™ is piecewise continu-
ous. Then

[Se]

D nFmP = 11

n=—o0o

Proof. Assume that m = 1. Then f is continuous on the circle and f” is piecewise continuous
on [—m, r]. Hence, f” is integrable on [—m, ] and

F'(n) = inf(n) foralln e Z.

By Parseval’s inequality,

2177002 2
D fmP = 1P
n=—oo
Assume that the theorem holds for m. Let f € C) with f™*! piecewise continuous, then
[ e Crt with 42 7 = fm*1 piecewise continuous. Then

S m vy N AVEIRNY; 2 N m| 7, 2 m
DR = Y amfm)| = Y e | Pl = 1.
The theorem is proved by induction on m. O

Example 7.6.2. In ExamplelZ5T8, we consider the function f(x) = |x| on [-m, ]. The Fourier
coefficients are

R g ifn=0
=49 Z1 4 (=1)y
D ez 0
mn
Hence,
2, Il = Z == Z —.

n=-—oo n=1, n=1,
It is easy to check that f € Cg and f'(x) = szgn(x) is piecewise continuous. Also, we can
compute that ||f’|[> = 1. This also implies that
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7.7 Applications
In the present section, we will use the Fourier series to solve an PDE problem.

m Heat Equation

We consider the heat equation on the domain (0, 1) satisfying

u(t, x) — u(t,x) =0 x€[0,1], =0 (7.9)
u(t,0) =u(t,1)=0 t>0 (7.10)
u(0,x) = f(x) € C*([0,1]) 0<x<1 (7.11)

We want to look for special solutions of the form
u(t, x) = A(t)B(x).
The heat equation implies that
A'(t)B(x) — A(t)B"(x) = 0.
Hence,
A'(t) _B"(x) _
A0 B(x)

The number A is a constant since it is independent of both x and ¢. Then we have

A() = e and B(x) = bye V¥ + bye V2,

From the boundary condition(ZZ10), we have B(0) = B(1) = 0. Then B(x) is a 1-periodic
function and hence A < 0 and /4] is an integer multiple of 27r. Set 1 = —4n’n? for n € N. Let

An(t) = e_4n2n2[ and Bn(X) — blneZm'nx + bzne_Z”i"".
The for every n € N, the function
u,(t,x) = A,(t)B,(x) = e_4ﬂ2n2t (blnezm‘nx + bzne—Zm'nx>’ by, by, € C

satisfies (Z9) and ([Z10). Since the heat equation is linear, the linear combination

(o)

Ut )= Y ADB) = Y ae I

n=—oo n=—o0o

also solves ([Z9) and ([Z10). To determine whether u(¢, x) satisfies (1), setting t = 0 and

(59

f@ =uw0,x) = > ae”™

n=—oo
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1
where a, = f(n) = f(x)e™>™"* dx are the Fourier coefficients of f.

0
Since f is a twice continuously differentiable function, the Fourier coeflicients a; s are bounded.
Also, for every t > 0, et decays repidly as n tends to infinity. Hence the series

(o)

_Ar22 :
M(t, X) — Z a,e Arn t€2mnx

n=—o0o

converges for every ¢ > 0. Thus, the above series solves (Z9), (Z10) and (ZI0). In fact, u € C°.

Question: Does u(t, x) converge to f(x) as ¢ tends to 0?

That is,
N
. . . _A42n? i
limu(t,x) = lim lim e T g?min
t—0 t—0 N>
n=—N
N
Z limlim Y e e
N—oo t—0 "
n=—N
N
— lim a, eZmnx
N—oo
n=—N
= f(x).
Since f is twice continuously differentiable, Z lf(n)| = Z |a,| < co. For given £ > 0, there
nez nez
. £
exists Ny € N such that Z la,| < 3 We have
[n|=No
, &
‘f(x) _ Z aneZmnx < §

|n|<N0
for every x € [0, 1]. Choose ¢ > 0 such that 0 < ¢ < 6, then

422 ; ;
) E a,e 4n°n teZmnx _ § ane2mnx

[n|<No [nl<No

<

e
3
for every x € [0, 1]. Then for 0 <t < 6,

. 42,2 . .
|f(.X) _ u(t, X)| < ‘f(x) _ Z aneZmnx’ + ’ Z a,e 4n°n teZmnx _ Z aneZmnX

[n|<No [n|<No [nl<No
CA2,2 .
+ ‘ E a,e 4n°n l€2mnx
|n|>Ny
& & &
< —+=-+=-—=¢&.
3 3 3

Therefore, u(¢, x) converges to f(x) uniformly on [0, 1] as ¢ tends to O.

Question: Is the solution of (IZ10) and (Z11l) unique?
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Suppose that u; and u, are solutions of (10) and ([Z1T). Let v = u; — u,. Then v satisfies

vi(t,x) —vi(t,x) =0 x€[0,1], 120
v(t,0) =v(t,1) =0 >0
v(0,x) =0 0<x<1

Define w(t, x) = e 'v(t, x). Then

wit,x) —w(t,x) +w(t,x)=0 x€[0,1], >0
w(t,0)=w(1)=0 t>0
w(0,x)=0 0<x<l1

Claim: w(t,x) <Ofort>0and0 < x < 1.

Suppose the contrary, there exists 7o > 0 and 0 < xy < 1 such that w(#, xo) > 0. Since
w(ty, x) is continuous on {zy} X [0, 1], we may assume that x; such that w(z, x) = (gnaxl w(ty, X).
<x<
Then
Wxx(to’ XO) < O

Therefore, w,(to, x9) < —w(ty, xo) < 0. We have

max w(t,x) >0 forall0 <t <1

0<x<1

We can repeat the above argument on [0, #y] X [0, 1] until the process goes back to the initial
time ¢ = 0. It will implies that maxy<,<; w(0, x) > 0 and obtain a contradiction.

The claim w(z, x) < 0 shows that v(¢, x) < 0. On the other hand, the same argument also
holds with v replaced by —v. We will obtain that v(z, x) > 0 and hence v(z, x) = 0. This proves
that the solution of (1) and ([Z1T) is unique.






Homework

Homework 1

1. Let (M, d) be a metric space, (V,|| - ||) be a normed vector space and A € M. Check that
(Cb(A; WLl IIOO) is a normed vector space.

2. Let (M, d) be a metric space and A € M. Define R* := {f : A - R} = the set of all
real-valued functions defined on R. Prove that (Cb (A; R), Il - ||oo> is closed in R*.

3. Let U = {f € C((O, 1);R) ! f(x) > 0 forevery x € (0, 1)}. Determine whether U is
relatively open in (C((0, 1); R), |l - lleo)-

X2k+1

4. Let fo(x) = ;(—Nm forn=1,2,--- and f(x) = sin x.

(a) Determine whether {f,}>  converges to f in (C;,([O, 1]; R), [| - ||o<,).
(b) Determine whether {f,}>, converges to f in (Cb(R; R), || - ||c>o).

(c) Prove that the set {f, fi, /2, f3, - } is compact in (Cb([O, 11:R), || - ”oo).

0, X € (—oo,n—1)
x—(m-1), xe€[n-1,n]
n+1)—x, xenn+1]
0, xem+1,00)

element in (Cb (R; R), Il - ”00).

5. Let f,(x) = for n = 1,2,--- and let 0 be the zero

(a) Prove that every f,, is in the unit ball m C (Cb (R; R) N ||oo>.
(b) Prove that the sequence {f,} >, does not contain a convergent subsequence in (Cb (R; R) NIE ||oo) .
(c) Prove that the set {fi, f», f3, - - - } is closed in (Cb (R;R), II- ||00).
(d) Prove that B(0, 1) is closed and bounded in (Cb (R;R), |I- ||00>, but is not compact in
(Ch(RsR), M- )
6. Let f € C(R™;R). Prove that (f o ¢)(x) = f(¢)(x) € Cy([a,b];R) for every ¢ €
Cy([a, b];R").

2

7. Let f,(x) = 5 on [0, 1]. Show that ¥ = {f, |n € N} is not equicontinuous.

x2+ (1 -nx)

345
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Lecture Note :(Page 200)

8. Problem 5.13
9. Problem 5.14(1)(3)

346



HOMEWORK

Homework 2

Part I:

1. Let (M, d) be a metric space, (V,||-||) be a Banach space and A C M be a countable subset.
Suppose that { f;};2, be pointwise compact on A. Prove that {f;};7 | contains a subsequence
which converges (pointwise) on A.

2. Let (M, d) be a metric space and A € M, (V,|| - ||) be a normed space and K € M be a
compact subset. Prove “directly” (without using the “contradiction argument’” & L)
that if B is precompact in (C(K VL - ||0<,) , then B is equicontinuous.

N
3. Fix N e N. Let¥ = {P(x) ‘ P(x) = Zakxk, where — 1 < agp,ay,--- ,ay < 1} be the

k=0
collection of all polynomials of degree < N with coefficients in [-1, 1]. Prove that ¥ is

equicontinuous on any bounded set in R.

4. Suppose that {f,}, be a sequence of twice differentiable functions on [0, 1] such that
f2(0)=0,|f,0)] < 1and|f,(x)| < M for all x € [0, 1] and every n € N.

(a) Suppose that {f,}, converges pointwise on [0, 1], then it also converges uniformly
on [0, 1].

(b) Prove that even {f,}, itself does not converge pointwise on [0,1], it still contains a
uniformly convergent subsequence on [0, 1].

Lecture Note :(Page 200)
5. Problem 5.15 (1)(3)

6. Problem 5.16

7. Problem 5.20 (in this problem A = K)

Part I1:

1. Suppose f is a real continuous function on R, f,(t) = f(nt) forn =1,2,3,---, and {f,} is
equicontinuous on [0, 1]. What conclusion can you draw about f?

2. Lleta<b<cand BCC ([a, cl; R). Suppose that B is equicontinuous on [a, b] and on
(b, c] respectively. Determine whether B is equicontinuous on [a, c].

3. Let BC C'([a,b]:R).

(a) If there exists M > 0 such that |f"(x)| < M for every f € B and x € (a, b), prove that
B is equicontinuous on [a, b].

(b) Determine whether the converse of (a) still holds.

Lecture Note:(Page 201)
4. Problem 5.18(2)

347



HOMEWORK

Homework 3

Part I:

1. Let {f,} be a uniformly bounded sequence of functions which are integrable on [a, b], and
put

R = [ hd
for x € [a, b]. Prove that there exists a subsequence {F,, } which converges uniformly on
[a, b].

1
2. Define j; :R->R b}’j;(lj = E;?:j;;iii;_f.

(a) Prove that the sequence of functions {f,}, is uniformly bounded and converges to
0 pointwise.

(o8]
n=1

(b) Prove that there exists no subsequence of {f,}™ . that converges uniformly.

(c) Which hypothesis of Arzela-Ascoli theorem is not satisfied and show your assertion.

3. Check that each of the following families of real-valued functions defined on the given
set is an algebra.

(a) The collection of simple functions defined on [a, b].
(b) P(K ) denote the collection of polynomials defined on K C R".
(©) Peven([a,b]) in Example 5.84

4. Prove that <Cb([0, 11;R), |I- ||oo> is separable. (That is, C, ([0, 1];R) contains a countable
dense subset.)

5. Leta > 0. Prove that there exists a sequence of polynomials {P,}> , such that P,(0) = 0
and P,(x) — |x| uniformly on [—a, a].

Lecture Note :(Page 202)

6. Problem 5.23 (Hint: (1) Use the Weierstrass Theorem to show that fol A dt=0.)
7. Problem 5.26

Part I1:

1
1. For every n € N, define Q,(x) = ¢,(1 — x*)" where ¢, is chosen so that f 0,(x)dx = 1.
-1
(a) Show that ¢, < +/n by proving that

1
1

(1-x>)"dx>— foreveryn=1,2---.
j:l \n
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(b) Prove that forevery0 <d < land¢d < x| <1,

0,(x) < Vn(l —6*)" (Hint: show that (1 — x*)" > 1 — nx?)

and prove that for any given 0 < 6 < 1, Q,(x) — 0 uniformly on {x | 6 < |x| < 1}.
(c) Let f be a continuous function on [0, 1] with f(0) = f(1) = 0. We extend f outside

1

[0, 1] such that f(x) = O for x ¢ [0, 1] and still called f. Define P, (x) = f f(x+0Q,(1) dt.
-1

Prove that P,(x) is a polynomial in x on [0, 1].

(d) Prove that P,, — f uniformly on [0, 1]. [Hint: Consider

1 -5 5 1
Pn(X)—f(X)=f1 [f()6+t)—f(X)]Qn(t)a't=f1 +f6+f6 edt <

and choosing suitably small ¢ and sufficiently large n to estimate |P,(x) — f(x)| < e.

].

k
2. Let I; = [aj,b;] be disjoint intervals in R for j = 1,---k and I = Ulj. Let f be a
=1
continuous function defined on /. Prove that there exists a sequnce of polynomials {P,}> |
such that P, — f uniformly on /.
(Note: until now, we only know the Weierstruass theorem holds on any single interval

la,b].)
3. Suppose that f is an integrable function on [a, b]. Given € > 0.

(a) Prove that there exists a simple function g on [a, b] such that

b
f }f(x) —g(x)‘ dx < &.

(b) Prove that there exists a continuous function /4 on [a, b] such that

b
f }f(x) - h(x)‘ dx < e.

4. Let f be an integrable function on [a, b]. Prove that there exists a sequence of polynomials
{P,};>, such that

b
f |f(x) = P,(x)|dx -0 asn — oo.

(Be careful, f may not be continuous.) (Hint: use Problem 2)
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Homework 4

Part 1:

1. For a given set A C R, let (A) be the collection of all polynomials defined on A and let
X be a given collection of functions defined on A. Determine whether P(A) is dense in

(X1 lleo) -
(a) A=Rand X = C,(R;R).
(b) A=Rand X = {f € C®R:R) ) lim f(x) =0},

(c) A=(0,1)and X = C((0, 1);R).
(d) A=(0,1)and X = C,((0, 1);R).

2. Let I = [a, b] and A be the subset of C(I;R) consisting of all piecewise linear (continu-
ous) functions. Determine whether A is dense in C(/; R).

3. Letf = (f1,--,fy) : la,b] — R". We say that f is integrable on [a, b] if each f; is
integrable on [a, b] and define

ff(t)dt:: (f filo) dt,--- f fi(n)dt) = F(x)

for x € [a,b]. Let X := {f : [a,b] - R" ‘ f is integrable on [a, b]}. Define a map @ on X
by
o) =F.

Prove that ® maps from (C’([a, bl;R™), | - ||oo) to itself.
4. Let f(x) =1+ x'73,

(a) Show that f is a contraction mapping on [1, 8].

(b) By the Contraction Mapping Theorem, there exists a fixed point a € [1, 8] for f. Set
x; = 1 and x,,,; = f(x,). Find a number N € N such that for every n > N,

1
—al< ——.
b = al < 15550

Lecture Note :(Page 202)

5. Problem 5.28
6. Problem 5.29
7. Problem 5.30

Part I1:
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1. Show that the Stone-Weierstrass Theorem fails to hold if the set K (domain of continuous
functions) is not compact.

a

2. LetA = [b

IZ] be a 2 x 2 matrix. Define @ : R> — R? by

oy =4t =5 2]

Prove that @ is a contraction mapping on R? if and only if all eigenvalues of A are between
—1 and 1 (thatis,—1 < A;, 4, < 1).

Lecture Note:(Page 203)

3. Problem 5.24

4. Problem 5.25
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Homework 5

Part 1:

1. Let f(x) = x> —5x—2. Then there exists a zero, say xo, of f(x)in (1,2). Find a subinterval

X) . . .
1S a contraction mapping on

(
1)

I of x( contained in (1, 2) such that the map ¢(x) = x —
I

2. Let (R", [l llg), (R™, || - [ln) and (R, || - [lz+) be normed spaces.

(a) Let L € L(R™;R¥). Write the condition (definition) if L is bounded.
(b) LetT € L(R"; BR™, R")). Write the condition (definition), if 7" is bounded.

(c) Let A = { g 2 } € Myn(R) be a 2 X 2 matrix with real-valued entries and
X = { 1 } e R2.
X2
Define

AX-_{a O} xl}_ ax]}
o 0 b X2 B sz '
Prove that A € B(R* R?) and ||Allgg2 z2) = max(|al, |b]).

(d) Let A be defined as above and define a map T on R? by
T(r,s,t) = (r+s+1A.
Prove that T € B(R% B(R* R?)) and find |IT1],, (

R3;B(R2 ;RZ)) )

3. Let (X,]| - |lx) and (Y, || - ||y) be normed spaces, and L € B(X; Y). Prove that

|[Lx]|y
IILllgx.yy = sup |[Lx|ly = sup ||Lx|ly = sup
lxllx=1 lxllx<1 w0 |Ixllx

= inf {M >0 ) ILAlly < Milxllx} -

4. Let (X, ||-|lx) and (Y, || - ||y) be normed spaces. Prove that (B(X; ), IIfB(X;Y)) 1s a normed
space.

Lecture Note :(Page 205, 261)

5. Problem 5.33
6. Problem 5.35

7. Problem 6.2

Part I1:
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1. Let X be a finite dimensional vector space. Let || - ||; and || - ||, be two norms on X. Prove
that the identity map idy : (X, || - |l1) — (X, ]| - |l.) is a bounded linear map.

2. Let K(x,y) : [0,1]X[0, 1] — R be a continuous function. Denote X = (C([O, 1];R), ||'||oo).
Define a map @ on X by

1
[D(HI) = fo KCey)f () dy

for every f € X.

(a) Prove that ® € B(X; X)
(b) Assume that K(x,y) > 0. Find [|D||gx.x).

Lecture Note:(Page 205, 261)

3. Problem 5.32

4. Problem 6.3
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Homework 6

Part I:

1. Let (X, - |Ix), (Y, - lly) and (Z, ]| - ||z) be normed spaces, and L € B(X,Y), K € B(Y, Z).
Prove that K o L € B(X, Z) and

IIK o Lllgx.z) < lIKllgyzllLllsx.y)-

2. Letn,m e Nand A € M, ..,(R).

(a) If n > m and rank(A) = m, prove that A is a surjective mapping.
(b) If n < m and rank(A) = n, prove that A is a injective mapping.
(c) Let A € M,x,(R). Prove that A is invertible if and only if det A # 0.

(d) Let A = H i] Find § > O such that B = {‘C’

la—1]<6,lb-2|<6,c=3|<dand|d -4 <

d } is invertible whenever

3. Prove that to every A € L(R",R) corresponds a unique y € R” such that Ax = x-y. Prove
also that [|A|lgr: r) = [lyllr»-

4. Let f : I € R — Rbe continuously differentiable on /. Foreverya € I, define7,: R - R
by
fla+ah) - f(a)
h
(a) Prove thatforeverya € I, T, € B(R,R) and find ||T,||g® r)-

(b) Prove that for given € > 0 there exists 6 > 0 such that if |a — b| < 0, then
WTa — Tollgrr) < €.

(c) Define @ : I —» B(R,R) by ®(a) = T,. Prove that ® is continuous on /.

T, := }lin& for every 4 € R.

5. (a) Find the matrix representative of 7" if T'(xy, X2, -+ , X,) = (X1 — X, X — X1).
(b) Find the matrix representative of 7 if 7(1,1) = (3,7,0) and 7(0, 1) = (4,0, 1).

6. Let f(x) = (x?,sinx). Find the matrix representative of a linear map 7T € B(R;R?) such

that
5 If(1+h)— f(1) = Thilg>
im =
70 I

7. Let (S, p) be a metric space and a, b, c,d,e, f : S — R be continuous functions. Define
A:S — Mys(R) by

_ a(p) b(p) c(p)

~ ld(p) e(p) f(p)l°

for every p € S. Prove that A : § — B(R*; R?) is continuous on S.

A(p)

Part I1:
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. Give an example of normed spaces (X, || - ||x) and (Y, || - ||ly) such that
L(X,Y)28BX,Y).

1
inf) =1 [ILXIRe

. Let L € GL(n). Prove that ||L™! lg®n gy =

. Let (X,]|-]lx) and (Y, ||-|ly) be two finite dimensional normed vector spaces, say dim X = m
and dim Y = n. In Homework 6, we have knows that B(X ;Y ) is a vector space. Prove
that the dimension of B(X; Y) is finite and find its dimensions.

. LetA = [1 2

_ | 2
3 4] € M>»(R). For x = LJ € R4,

_ 1 2 xl} _ |:X1+2X2:|
AX = |:3 4:| |:X2 B 3X1+4X2 EMZXl(R)

For a given x € R?, we want to regard Ax as a linear map from R? to R by defining

X1+ 2x
(AX> W= y]AX]= [y y)] 3xl N 4; = y1(x1 + 2x2) + y2(3x1 + 4x2)
N 1 2
€ BER2R)

for every y = B 1} . Find ||AX]|gz2:z)-
2

(Note: s 32— B xR “AX” 5 - B RZ¥ e £ 5 L £ 74 5 BR%R)
? - 1% linear map T_& 4ot o F|P - B x, ¥k B(R%ER) ¢ - 1B linaer map e

t“%{’ﬁtl’? drdk x =
f’"—_'&% g Xy, % %\33 4 i °)

X . " 1. " s s v
xl} &2, P ¥R 90 linear map “Ax” 0 operator norm & 3% & @ ?
2
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Homework 7

Part I:
1. Let £ : R® = R?, f(x,y,2) = (x*y, xé°).

(a) Find the Jacobian matrix of f at (a, b, ¢).

(b) Use the definition of differentiation to show that f is differentiable at (a, b, c¢) and
find the matrix representation of D f(a, b, ¢).

2. Let ) s
X7y

- — ) s 050

=4 ey VFED

0 ,(x,y) =(0,0)

Determine whether f is differentiable at (0, 0).

3. Let (X, || - |lx) and (Y, || - |ly) be two normed spaces and f, g : X — Y be differentiable at
a € X. Prove that

D(f + g)(a) = Df(a) + Dg(a).

4. Let f: R?* - R?, f(x,y,2) = (x*y,xe?) and a = (1,1, 1). A point moves along a curve C
with equation r(¢) = (¢, 2, #’) and hence r(1) = a.
(a) Find the tangent vector when the point passes a.

(b) Consider another point moves along the curve s(f) = f (r(t)). Find the tangent
vector when the point passes f(a).

(c) Find the matrix representation of D f(a) and check that

d
(D] = E[f (r(t))]’ = [Df(@)] [r'(D)].

=1
5. Let S be a surface in R* with equation z = x> + y> anda = (1,1,2) € S.

(a) Find a function f : R?> — R3 such that S is the range of f and f(1,1) = a.
(b) Find a linear map L € B(R?; R?) such that the corresponding affine plane
Va = f(1,1)+ Range(L) = {a +v } \AS Range(L)}
—— N——
vector vector space

is the tangent plane of S at a.
(c) Show that the value of f(x,y) can be approximated by the value of f(1, 1)+L(x -1,y —1)
~—_————

L maps the vector
(x=1,y-1)
as (x,y) near (1, 1). That is,

Jy) = f(L D+ Lx =1,y = 1)+ R(x,y)

. IR(x, Yllps
where lim =
=D [[(x = 1,y = D||p2
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Lecture Note :(Page 262)

6. Problem 6.4

7. Problem 6.10

Part 11:

1. Let X and Y be two vector spaces and f : X — Y be a mapping. Suppose that || - ||x is a
norm on X, and || - ||; and || - ||, are two equivalent norms on Y. Prove that f : (X, ||-||x) —
(Y, 1] - |ly) 1s differentiable at a if and only if f : (X, |- |[x) — (.|| - |l») is differentiable at a.

2. Letf: U CR" = R,a € U andube aunit vector in R". Define the directional derivative
of f at a in the direction u by

f(a + hu) — f(a)
P :

Dyf(a) = lim

Use the definition of derivative of f to prove that D, f(a) = Vf(a) - u.

Lecture Note:(Page 262)

3. Problem 6.5

4. Problem 6.9
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Homework 8

Part I:

1. Suppose that f,g : R — R™ are differentiable at a and there exists a 6 > 0 such that
g(x) #0forall 0 < |x —a| < 6. If f(a) = g(a) = 0 and Dg(a) # 0, prove that

[1£C0)| [ _ ”Df(a)”B(R;R'")
xa ||g(X)|rn  |IDg(a)law:rm)

2. Prove that

Yyl <
ey )l
fGx,y)=<¢ sin \/m R
0 (x,y) = (0,0)
is not differentiable at (0, 0).
3. Prove that 3 2
X — Xy
fay =4 a2ayr NF (0,0)
0 (x,y) = (0,0)

is continuous on R? and has first-order partial derivatives everywhere on R?, but f is not
differentiable at (0, 0).

4. Let U C R". Prove that the following two norms on C' (U, R™) are equivalent.

£l := sup [|f(Ollrn + sup [|Df ()l g zm)
xeU xeU

and

wwnmew+ii§%m]
J

xeU i=1 j=1

Lecture Note :(Page 263)

5. Problem 6.11
6. Problem 6.12

7. Problem 6.13

Part 11:

1. Let r > 0, f : B(0,r) € R* — R, and suppose that there exists an @ > 1 such that
|f(x)| < |[x]|%, for all x € B(0, r). Prove that f is differentiable at 0. What happens to this
result when a = 1?
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2. Let f : R?* — R be defined by

1 ifo<y<a?
S(x.y) = { 0 otherwise

Prove that all directional derivatives of f at (0, 0) exists but f is not differentiable at (0, 0).

3. Let L be a linear map of R” — R, let g : R" — R be such that ||g(x)|[g» < M||x||%§n, and
f(x) = L(x) + g(x). Prove that Df(0) = L.

4. Let f(x,y) = (xy,y/x) and h € R? be a vector.

(a) Compute [D f} B (with respect to the standard basis B = {ej, e,})

(b) Compute the matrix of [D f(x, y)] 5, with respect to the basis By = { Lﬂ , [” }

(c) Write the two expressions of h with respect to the two basis B and B, respectively.

(d) In Problem(c), we have two expressions of h, say [hl,hz] 3 and [ul, uz} B Show

that [Df(1, D], [Z;

and [D f(1, 1)] 5, [Zj represent the same vector in R?.
B B
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Homework 9

Part I:
1. Let f(x,y) = x*y and g(s, 1) = (¢t — 52, ts%). Define h(s, t) = (f o g)(s, 1).

(a) Find [Df(x,y)], [Dg(s,t)] and [Dh(s,1)].

(b) Check that
[Dh(s,1)] = [Df(g(s, ))I[Dg(s, )]

2. Let f(x,y) = xe’.

(a) Find the equation of the tangent plane to the graph of z = f(x,y) at (1,0, 1).

(b) Define F(x,y) = (x,y, f(x,y)). Itis easy to see that the range of F is equal to the
graph of f. Lete; =< 1,0 > and e; =< 0,1 >. Find (DF)(1,0)e; and (DF)(1,0)e;.

(c) Suppose that n € R? is the normal vector to the tangent plane in problem(a). Prove
that for any vector v € R?, (DF)(1,0)v L n.

3. For every z € R"™™, we express z = (X,y) = (X1, , Xs, Y1, * ,Ym) Where x € R” and
y € R™. Suppose that f : R — R" is differentiable everywhere and denote

o ... 9L oh .. O
ox1 0x, oy1 Oym
[Dxf(x, )] =] .t | xy)and [Dyf(x, )] = | &Y.
m ., Ofm m . Ofnm
ox 1 Gxn ayl 8)’ m

(a) Define F(x,y) = (x, f(x, y)) : R™™ — R™™. Prove that F is differentiable every-

where and
]I Ol’an’l

Dxf(X’ Y) Dyf(X, y)
where [, is the n X n identity matrix and 0,,, is the n X m zero matrix.

(b) If [Dy f(x,y)] is invertible, prove that [DF (X, y)] is invertible.

[DF(x,y)] =

4. If f,g : R* — R are differentiable real functions, prove that V(fg) = fVg + gV f and
\%

V1If) =~

5. Let f : U € R?> — R be differentiable at (xg,yy) € U and zy = f(xp,y). Define
F:UXR - Rby F(x,y,2) = z— f(x,y). Use the gradient of F at (x, o, Z20) to prove
the equation of the tangent plane to the graph of f at (xy, yo, z0) 18

A (xo, y0)

X

72=20+ —(x—x

a1 (x0,¥0)
)+ ———
P 0

By (y = yo)-

6. Let f(x,y,z,w) = e sin(ny) + E. Use the linear approximation of f at (0, 1,2, 3) to esti-
w
mate f(0.1,0.9,1.8,2.7).
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Lecture Note :(Page 264)

7. Problem 6.14

Part 11:

1. Suppose that f is a real-valued function defined in an open set ¢4 C R”, and that the

of af

partial derivatives —, - - are bounded in U. Prove that f is continuous on U.

(9)(1 - c’ixn

2. Suppose that / is a nonempty, open interval and that f : I — R™ is differentiable on /. If
f(I) € 0B(0, r) for some fixed r > 0, prove that f(¢) is orthogonal to f'(¢) for all 7 € I.

Lecture Note:(Page 264)

4. Problem 6.15
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Homework 10

Part I:

1. Let f : A € R" — R be differentiable with A convex, and suppose ||V f(x)|[rn < M for
x eA.

(a) Prove that |f(x) — f(I < M|lx = yllz-.

(b) Is the result still true if A is not convex?

2. Let U C R" be a connected and open set. Suppose that f : U — R” is differentiable on
U and D f(x) = 0 for every x € U. Prove that f is a constant function.

3. Suppose that V is convex and open in R” and that f : V — R” is differentiable on V. If
there exists an a € V such that Df(x) = Df(a) for all x € V, prove that there exist a linear
function § € B(R";R") and a vector ¢ € R” such that f(x) = S(x) + cforallx e V.

af (x,
4. If f(x,y) is differentiable on a connected open set S € R? and %
X
S.

=0 forall (x,y) €

(a) Show that if S is convex, then f is independent of x on S.

(b) Show that the result of Part (a) is false if S is not convex.
5. For a point (r, 8, ¢) in R?, define
F(r,0,¢) = (rsinfcos ¢, rsinfsin¢, rcosb).

At what point (79, 8y, ¢o) in R? does the Inverse Function Theorem apply to the mapping
F?

6. Let u(x,y) = x* — y?, v(x,y) = 2xy. Show that the map (x,y) — (u, v) is locally invertible
at all point (x,y) # (0,0).

7. Let F(x,y,z) = (x + y + z, x*y, xyz). Determine whether F has an inverse near the point
(1,1,0). If the inverse function F~! exists and is defined on an open neighborhood of
F(1,1,0), find its derivative at F(1, 1,0).

Part I1:

1. If f: R" — R is a real-valued function and if the directional derivative D, f(x) = 0 for
every x € R” and every direction u. Prove that f is a constant function.

2. Let f : R* — R. Suppose that for each unit vector u € R”, the directional derivative
Dy f(a + ) exists for 7 € [0, 1]. Prove that

fa+u) - f(a) = Dyf(a+ )

for some ¢ € (0, 1).
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3. Let F(x,y) = (x’y, x> =y, x> +y). Prove that there exists an open neighborhood U of
(1, 1), an open neighborhood V of (1, 0) and a function f : V — R such that the set F(U)
is equal to the graph of f on V. (DO NOT try to find the exact expression of f)
(Hint: (i) define u(x,y) = x*y and v(x,y) = x> —y°, then the map (x,y) — (u,v) satis-
fies the Inverse Function Theorem; (ii) use the inverse map to solve x,y in terms of u,v
theoretically (iii) define f(u,v) = x*(u,v) + y(u, v).)

Lecture Note:(Page 267)

4. Problem 6.28 (6)(7)
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Homework 11

Part I:
1. Investigate whether the system
u(x,y,z) = x+xyz
v(xX,y,2) = y+xy
w(x,y,z) = z+2x+37

can be solved for x, y, z interms of «, v, w near (0, 0, 0).

2. Give an example of a continuously differentiable mapping F : R" — R”" with the property
that there is no open subset U of R" for which F(U) is open in R".
(Hint: Do Problem 6.16 first).

3. Suppose that the function ¢ : R* — R and ¢ : R* — R are continuously differentiable.
Define, for (x,y,z) € R?

F(x,y,2) = (#(x, 3, 2),¥(x,,2), $*(x, 7, 2) + ¥ (x, ,2)).

(a) Explain analytically why there is no point (xo, Yo, z0) € R? at which the assumptions
of Inverse Function Theorem hold for the mapping F.

(b) Explain geometrically why there is no point (x, yo,z0) € R* at which the conclusion
of the Inverse Function Theorem holds for the mapping F.

4. Letf(x,y) = (e*cosy, e* siny) be amapping from R?> — R?. Leta = (0, 7/3) and b = f(a).
Let g be the continuous inverse of f, defined in a neighborhood of b such that g(b) = a.

(a) Use the Inverse Function Theorem to find Dg(b).

(b) Find an explicit formula for g and compute Dg(b) directly and check whether it
equals the answer of Problem(a).

5. Let L = (L, L,) : R®> — R? be defined by
L(x1, x2, X3, X4, X5) = (X1 + 2%2 + 3x3 + 4x4 + 4x5, 2x1 + 3x5 + 4x3 + 5x4 + 5x5).

(a) Show that

oL Il
6X2 0)(5
oLy 3Ly
sz 8X5

is invertible.
(b) Find two maps f>, f5 : R* — R such that for every (xj, x3, x4) € R?
L(x1, fa(x1, X3, X4), X3, X4, f5(x1, X3, 4)) = (1,2)

(That is, if the differentiation matrix with respect to x, and xs is invertible, then the
preimage L™ ((1, 2)) can be expressed as the graph of a function f = (f, f5) of the
variables x;, x3 and x4.)
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6. Let U be an open setin R? and f : U — R3 be a continuous differentiable function on U
defined by f(u,v) = (x(u,v), y(u, v), z(u, v)) where

2

x(u,v) = uv
yu,v) = u+v
z(u,v) = u?

Let § C R? be the range of f, then f(1,1) = (1,2,1) € S. Use the Inverse Function
Theorem to show that, near (1,2, 1), S can be expressed as the graph of a function.
That is, there exists an open set V of (1,2) and a function ¢ : V — R such that ¢(1,2) = 1

and near (1,2,1), S = {(x, v, ¢(x,y)) | (x,y) € V}.
Lecture Note :(Page 267)

7. Problem 6.16

Part 11:

1. Construct a function f : R> — R? which satisfies that f is differentiable everywhere,
D f(x,y) is not continuous at (0, 0) and the Inverse Function Theorem fails near (0, 0).

3. Let (X, || - llx) and (Y| - |ly) be normed spaces and let T : X — Y be a linear map. Prove
that the following statements are equivalent.
(1) The linear map T is an open mapping.
(2) There exists a constant K > 0 such that, for all y € Y, there exists x € X with
lIxllx < K]||ylly such that T(x) = y.

4. Let (r,¢1, 02, , 1) € R"and letf = (f1,--- , f,) : R" = R" defined by

i dr,¢a, - s Pu1) = rcos(ér)
L d1, 02, ,dum1) = rsin(@y)cos(¢,)
B dL,¢o, - du1) = rsin(¢y) sin(¢y) cos(¢s)

Joa1(r 1,00, L bumy) = rsin(y) - - - sin(@,—2) cos(d,—1)
S 1,02, ,du1) = rsin(¢y)---sin(¢,—) sin(@,_)

of1,-- . f)
a(r7¢la' v ’¢n—1)'

Find the Jacobian of f,
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Homework 12

Part 1:

1. Construct a C' mapping u(x,y) : R> — R?, say u = (u, u»), such that [Du(O, O)} is NOT
invertible. But there exist an open neighborhood U of (0,0) and an open neighborhood
V of u(0,0) such that u : U — V is one-to-one and onto.

(Thus, we can still solve (x,y) in terms of (u1,u>) near (0,0) even if [Du(0,0)] is not
invertible.)

2. Consider the transformation for spherical coordinates:

x(r,¢,0) = rsingcos6
y(r,¢,0) = rsingsiné
z2(r,¢,0) = rcos¢

o(x,y,z)
ar,¢,6)
(b) When can we solve for (r, ¢, 6) in terms of (x,y, z)?

(a) Show that 7 sin ¢.

(c) What happened for those point (r, ¢, 6) which cannot be solved in terms of (x,y, z)?
(Explain more details than just saying 7> sin¢ = 0.)

3. For the system of equations

3x+y-z+u* = 0
x—y+2z+u = 0
2x+2y—-3z+2u = 0,

use the “Implicit Function Theorem” to determine whether any three of the four variables
X,y,Z,u can be solved in terms of the remaining one.

4. Define f : R —» R by
foy=xy+e +z

(a) Show that there exists a differentiable function g(y,z) in some neighborhood of
(1,—1) in R? such that g(1,—1) = 0 and

f(g(.2).y.2) =0
(b) Find 251, -1) and 281, -1).
dy 0z

5. Let (X,]| - |lx) and (Y, ]| - ||y) be normed spaces and f : X — Y. Suppose that f is twice
differentiable at a € X. Let u, v, v, € X and ¢ € R. Prove that

(a)
D?f(a)(evi +va)(u) = eD? f(@)(vi)(u) + D? f(@)(v2)(u)
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(b)
D? f(@)u)(cvy +v2) = eD? f(a)u)(v1) + D* f(a)()(v2)

Definition: Let X be a vector space. A map B : X X X — R is said to be a “bilinear
form" if B satisfies

(1) B(cuy + u,v) = ¢B(uy,v) + B(u,, v) for every u,v,v, € X and ¢ € R; and

(i) B(u,cvy +v,) = ¢B(u,vy) + B(u, v,) for every u;, u,v € X and ¢ € R.

Suppose that dim X = n, {e;,--- ,e,} s abasis of X and B : X X X — R is a bilinear form.

n n
Prove that there exists a n X n matrix A such that for every u = Z uie; and v = Z vie;
i=1 j=1

Vi
Bu,v)=[u -+ u, |A
Vi
Lecture Note :(Page 264)
7. Problem 6.18

Part I1:
1. As Problem 1 of Part I, for the system of equations
3x+y—z+u? = 0
xX—y+2z4+u = 0

2x+2y—-3z4+2u = 0,

in order to satisfy the equation, use the “Inverse Function Theorem” to determine whether
X, Y,z can be solved in term of u.

2. Let f = (fi, f») : R* = R? be smooth and satisfy the Cauchy-Riemann equations

oh _0p . Oh_ ok
ox ay and dy  Ox’
a(fl’fZ)

(a) Show that, at (xo, yo),

9y) = 0 if and only if Df(x¢,yo) = 0 and hence that f is
locally invertible if and only if Df(x,y) # 0.
(b) Prove that the inverse function also satisfies the Cauchy-Riemann equations.
Lecture Note:(Page 264)
3. Problem 6.19

4. Problem 6.20
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Homework 13
Part I:
I. Let f: UCR? > R,ae€ Uandu =< uy,u,uz > R3.

(a) If fis of class C?, prove that

3! & f(a
Df@uuuw= > PP pes kaffn(; U5 U
O<tmngs [T 0X10X; 0X3
k+m+n=3

(b) If fis of class C", prove that

r! 0 f(a
D' f(a)(u,---,u) = g il 3 kaf(; nu’fu?u’g
; 0<k,m,n<r min: X )C? X3
reopies k+m+n=r

2. Let f : R" — R be twice differentiable at a. Prove that all second partial derivatives
2

0x;0x ;

J

(a)existfori,j=1,---,n.

3. Let f(x,y) = e*siny.

(a) Use the Taylor formula for the multi-variable functions to compute the second-order
Taylor polynomial for f centered at (0, 0).

(b) Use the Taylor formula for the single variable functions to compute the Taylor poly-
nomials for ¢* and siny centered at x = 0 and y = 0 respectively. Use them to
compute the second Taylor formula for f centered at (0, 0).

Definition: Let A be a n X n matrix. We say that A is “positive definite” if
u’Au >0
for every 0 # u € R" and A is “negative definite” if

uAu<0

forevery 0 # u € R".

Let A be a n X n matrix be positive definite. Prove that there exists ¢ > 0 such that for
every 0 #u e R”,

u’ Au > cljul3..

Moreover, prove that the smallest eigenvalue of A satisfies this number ¢ provided A is
symmetric.
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Lecture Note :(Page 265)

5. Problem 6.21(1)(2)
6. Problem 6.22(1)

7. Problem 6.25

Part I1:

1. Let f(x,y) = x* + 2xy*. Determine the point (x, y) such that the Hessian matrix H(x,y)
is positive definite, negative definite or neither.

2. Let f : R? — R be given by

0 = { exp(—nxll@) ifx#0

0 ifx=0
where x = (xy, x,). Find the kth degree Taylor polynomial for f centered at 0.

Lecture Note:(Page 265)

3. Problem 6.21(3)

4. Problem 6.28(5)
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Homework 14

Part 1:

I.

Let f(x,y,2) = x> + y* + 22 — xy + yz — xz. Find all extreme value(s) of f.

I if(x,y)=(,1)

0 if(x,y) € D\(1, 1). Determine whether f is

Let D = [0,2] X [0,2] and f(x,y) = {

integrable over D.

.Let D =[0,1]x[0,1]and A = {(x, X) ’ 0<x< 1} be the diagonal in D. Suppose that

f(x,y) be an arbitrary bounded and integrable function on D. Define

_ (x,y) €A
§(ey) = { fx.y) (ny) € D\A.

Prove that g(x, y) is also integrable over D and f f(x,y)dA = f g(x,y) dA.
D D

Let D € R" be a compact box, thatis, D = [ay, b;]X---X[a,, b,]. Suppose that f : D — R
is a continuous function on D. Prove that f is integrable over D.

. Prove Theorem 7.9 (Page 272)

Let D c R" be a bounded set and f : D — R be a bounded function. If f is Riemann
integrable over D, prove that |f| is Riemann integrable over D.

Lecture Note :(Page 266)

7. Problem 6.26

Part 11:

1.

Let f(x,y,2) =+ + e+ 22

(a) Find the second degree Taylor polynomial for f centered at (0, 0, 0).
(b) Use the Taylor theorem to explain that f has a local minimum point at (0, 0, 0).

2. Let D = [0,1] x [0, 1] € R%. Give an example of a function f defined on D such that

f f(x) dA < f f(x) dA.
YD D

3. LetD=1[0,11x[0,1]and A = | | {%} x [0,1] € D.

neN

1 if(xy)€eA
Fxy) = { 0 if (x,y) € D\A.

Determine whether f is integrable over D.

Lecture Note:(Page 266)

4. Problem 6.27
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Homework 15

Part I:

1.

Let Ay, -+ ,A; € R" have volumes. Prove that

1
2. Prove that the set {— { ne N} c [0, 1] has volume zero.
n
3. Let f : D — R be integrable over D such that fDl f(x)ldx = 0. Suppose that the sets
1
E = {x e D] f(x) # O} and E, = {x eD | l[f(x)| > —} have volume for every n € N.
n
Prove that V(E) = 0.

4. Let D = [a,b] x [c,d] € R?, E ¢ D have volume zero and f : D — R be a bounded
function. Suppose that f is continuous on D\E. Prove that f is integrable over D.

5. Let n < m and D C R" be a rectangle in R". Suppose that f : D — R™ is of class C'.
Prove that the set f(D) C R™ has volume zero.

6. Let P = {a = xy < x; <--- < x, = b} be a partition of [a,b] and f : [a,b] - Rbea
bounded function. Prove that

b n X
f f(x)dx = Zf f(x) dx.
—_a i=1 —Xi-1

7. Let D = [a,b] X [c,d] and f; : D — R be continuous for all k € N such that {f};7
converges pointwise to a continuous function f : D — R. Suppose that f; > f;,; for all
k € N. Prove that

lim f fi(x,y) dA = ff(x, y) dA.
k= Jp D
(Ref: Theorem 5.19)
Part II:

1. Let D € R” be an open set with volume V(D) > 0 and suppose that f : D — R is
continuous on D. Suppose that for every continuous function g : D — R, we have
[,(f&)(x)dx = 0. Prove that f = 0 on D.

2. Prove that a Cantor set has volume zero.

3. LetA,A,A,, -+ CR"” be bounded sets with volume.

(a) Prove that JA has volume zero.
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(b) Suppose that Ay CA, C---CA A= UAk. Prove that ]}im V(A = V(A).

k=1

Lecture Note:(Page 340)

4. Problem 7.4(2)
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Homework 16

Part I:

1. Evaluate

(a) f fs (x+3y*) dA, where S is the upper half (y > 0) of the unit disc x> +y* < 1. (Ans:
?)

(b) f fS (x? — \Y) dA, where S is the region between the parabola x = y* and the line
x =2y. (Ans: %(5 - V2))

(c) Find the volume of the region above the triangle in the xy-plane with vertices (0, 0),
(1,0), and (0, 1) and below the surface z = 6xy(1 — x — y). (Ans: %

(d) Let S ¢ R? be the region between the paraboloid z = x> + y* and the plane 7 =
1. Express the triple integral f f fS f dV as an iterated integral with the order of
integration (i) z,y, x; (i) y, z, x; (iii) x, y, 2.

2. Find the volume of the region inside both the sphere x> + y? + z2 = 4 and the cylinder
X +y* = 1. (Ans: 4n(8 - V3))

3. Calculate fs(x +y)*(x — y)™ dA where S is the square -1 < x+y < 1,1 <x-y < 3.
(Ans: 84—1

4. Let S be the region in the first quadrant bounded by the curves xy = 1, xy = 3, x>—y? = 1,
and x*> — y? = 4. Compute fs(x2 +y?) dA. (Ans: 3)

5. Use cylindrical coordinates to evaluate the triple integral

[[[ xav

where E is the solid bounded by the planes z = 0 and z = x + y + 5 and the cylindrical
65r

shells x* + y* = 4 and x> + y* = 9. (Ans: %%

6. Use spherical coordinates to evaluate the triple integral

fff(x2+y2)dv
H

where H is the solid that is bounded below by the xy-plane, and bounded above by the
4

sphere x* + y> + 2> = 1. (Ans: &

Lecture Note :(Page 342)

7. Problem 7.14 (1) (2)

Part I1:
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1. Find the centroid of the portion of the ball x*> + y* + z> < 1 lying in the first octant
(x,y,z > 0). Note that the centroid (X, ¥,Z) on D is defined by x = fD x dV and similar for

yandz. (Ans: (3,3,2))

2. Let0<a<b<ooand p € R. Define D := {X eR” | a < |x|lgr < b}, Compute

1
f > dx
p IIXIlg.

Lecture Note:(Page 341)

3. Problem 7.9

4. Problem 7.14 (3)
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Homework 17

Part I:

1.

00 );2
Compute f ¢ 27 dx = V2n|o]| for every o # 0.

Let f : R" — R be a nonnegative function and {B;};7, be any bounded sequence of open
sets with volume which satisfies

(i) By C By forevery k e N
(i) For any R > 0, the ball B(0, R) C B, when £ is sufficiently large.

k—o0

Prove that lim f f(x) dx converges if and only if gim f f(x) dx converges. More-
[—kk]" e JBy

over, the above limits are equal if they exist.

.LetpeRand D = { xeR” ‘ [|1x|lgr = 1}. Find the range of p such that the integral

1
f > dx
p |Ixllgs

Let f : R" — R be a continuous function such that f(x) = O(e”™=") as ||x|| — 0. Prove
that f is integrable over R".

converges.

. Determine whether the following improper integrals converge, and evaluate them if they

do.

1 1
(a) ffx,y>0 —(1 PRI dA. (Ans: ;1)

(b) f f xe” P A, (Ans: Vr/2)
x>0

2
X
() f ———— dA. (Ans: Diverges)
2+y2<1 (X2 + )’2)2

Lecture Note :(Page 342)

6. Problem 7.12

7. Problem 7.15
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Advanced Calculus Midterm 1- 2022 Spring Page 1 of 3

. (25 points) Let A = [0, 1] x [0, 1] be a closed square in R? and K : A — R be continuous
on A. Define

T(f)(x) = / K (e, 9)f(y) dy,

where f is a real-valued function defined on [0, 1] such that the integral makes sense.

(a) (10 points) For a family of functions F consisting of f such that T'(f) is well-
defined and |f(y)| < M for all y € [0,1], let G = T'(F). Show that each sequence
of G contains a uniformly convergent subsequence.

(b) (8 points) Let X = (C([O, 1;R), | - Hm). Prove that T € B(X; X).
(c) (7 points) Assume that K (z,y) > 0. Find ||T'||gx,x)-

. (10 points) Let C' > 0 be a number and
F={fec(-1,1]; [0.00)) | f(-=1) = 1 = f(1) and | f(2)~ ()] < Cla—y| Y2,y € [-1,1]}.

Define the area function A on C([—1,1];R) by

A= [ /(@) de.

Determine whether A attains its minimum on F'. That is, determine whether there exists

fo € F such that A(fy) = }Q}f?A(f)

. (15 points)
(a) (10 points) Prove that (Cb([a,b];R), | - Hoo) is separable. (That is, Cy([a,b];R)
contains a countable dense subset.)

(b) (5 points) Determine whether Cy(R;R) contains a countable dense subset.

. (10 points) Let f:[0,1] — R be continuous. Show that

lim 1 f(z)sin(nx) dx = 0.

n—oo 0

. (10 points) Determine whether every continuous function in C([0,1];R) can be uni-
formly approximated by a sequence of even polynomials. (Even polynomial means all
its terms are of even degree.)

. (15 points) Let the equation z* — x = 0 be given.

(a) (6 points) Use Newton’s method with 21 = 3 to find a3, the third approximation
to the root of the equation.

(b) (9 points) Find an interval I containing 0 such that if we choose an arbitrary point
x1 € I as the initial point, then the Newton iterations {x, }>°, will converge to the
root 0. Explain your reason.
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7. (10 points) Consider the mapping 7" : C([l, rl; ]R) — C([1,7];R) defined by

T(f)(z) = 1+3/1Zt2f(t) dt.

(a) (5 points) Find a number r > 1 such that 7" is a contraction mapping on C([1,7]; R).
(b) (5 points) What is its fixed point?

8. (15 points)

a 0O
(a) (6 points) Let A = |0 b| € Ms42(R) be a 3 x 2 matrix with real-valued en-
00
. a 0 . ary
tries and x = ( 1) € R%. Define Ax := [0 b ( 1) = | bxy |. Prove that
L2 L2
0 0 0
I Allsgeeszs) = max(lal, b]):
(b) (9 points) Let (S,d) be a metric space and a1, as,--- ,a6 : S — R be continuous

functions. Define A : S — My.3(R) by

B al(p> az(p) CL3<]?)
Alp) = [a4(p) as(p) aﬁ(p)]'

for every p € S. Prove that A: S — B(RS; RZ) is continuous on S.

9. (10 points) Prove that to every A € L(R™;R) corresponds a unique y € R" such that
Ax = x-y. Prove also that ||A|ggnr) = ||¥]/r»-
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Bonus Problem A: (10 points) Let
9 L.
flz,y) = (e —S,Zsmx—l).

(a) (4 points) Prove that f is a contraction mapping on E := (—o00,0] x (—o0, 0].

(b) (6 points) Let xo = (0,0), x,11 = f(x,) and a € E be the fixed point for f. Find
N € N such that for n > N,

%0 — allge < —
X, —a —
RS 700

(Hint: To show ||x, —a||lgz < <=

< 1= |I%0 — f(x0)|lr2 where c is the contraction constant.)

Bonus Problem B: (10 points) Let K C R be a compact subset and let C* (K; R) be the
collection of all continuously differentiable functions on K with the norm || - ||c1 defined
by

£ ller = 1[flloo + 11/ 1o

Determine whether P(K), the collection of all polynomials on K, is dense in

(¢ (R - ).

I will do Problem
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. (15 points) Let U C R™ be open and f : U — R™ be a function where f = (f1,--- , fin).
(a) (5 points) State the Mean Value Theorem for f.
(b) (10 points) State the Inverse Function Theorem and the Implicit Function Theorem

. (10 points) Let f : R? — R? be given by

fa y):{ (spaety) @y #00)
(0,0) if (,y) = (0,0)

(a) (5 points) Use the definition of differentiation to prove that f is differentiable at
(1,0).

(b) (5 points) Determine whether f is differentiable at (0,0) and explain it.

. (10 points) Let f(x,y) = (zy?, 2* + y?, 3z + 2y) and the range of f, S = Range(f), be

a surface in R3. Then f(1,1) = (1,2,5) € S. Find the equation of the tangent plane of

S at (1,2,5).

. (10 points) Let f(z,y, z) = xy?23.

(a) (5 points) Use the linear approximation for f at (3,2, 1) to estimate f(3.1,1.8,0.9).

(b) (5 points) Let S be the level surface of f for the value 12. Prove that the gradient
Vf(3,2,1) is perpendicular to the surface S at (3,2,1).

. (15 points) Let U C R? be a connected and open set.

(a) (10 points) Suppose that £ : U — R™ is differentiable on U and Df(x) = 0 €
B(R?* R™) for every x € U. Prove that f is a constant function.

. o . 9g(z,y)
(b) (5 points) If g(x,y) is differentiable on U and 0 = 0 for all (z,y) € U. De-
x

termine whether ¢ is independent of x on U.

. (15 points) Let f : R? — R? be given by f(z,y) = (¢"siny, e® cosy) and g : R? — R? be

of class C! such that [Dg(0,1)] = [ ? g ] Define h(zx,y) := (go f) (x,y).

(a) (5 points) Prove that there exist an open neighborhood U of (0,0) and an open
neighborhood V' of h(0,0) such that A is a bijection from U onto V.

(b) (5 points) Let U and V be the open neighborhoods in Problem(a). Prove that
h:U — V is an open mapping on U.

(c) (5 points) Find the matrix representation of (Dh™1)(yo) at yo = h(0,0).

. (10 points) Define f(x,y,z) = (ac +yz+e*, a2 -y + xz) on R3.

(a) (5 points) Determine whether the zero set Z = {(z,y,2) € R® | f(z,y,2) = (0,0)}
near (—1,1,0) can be written as the graph of some function g in the variables x.
Explain the reason.
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(b) (5 points) If the function ¢ in Problem(a) exists, find the matrix representation of
Dg(-1).

8. (10 points) Let (r, ¢,0) be the spherical coordinate of R? so that
r=rcosfsing, y=rsinfsing, z=rcoso

(a) (5 points) Find the Jacobian of the map (r, 0, ¢) — (x,y, z). That is, find .y, z)

a(r,0,¢)
(b) (5 points) Suppose that f : R — R is a differentiable function which only depends
on r. Prove that V f(z,y, z) is parallel to (z,y, z) for every (z,y,z) # (0,0,0).

9. (10 points) Let (X, |-|lx) and (Y, ||-||y) be normed spaces and let 7" : X — Y be a linear
map. Suppose that there exists a constant K > 0 such that, for all y € Y, there exists
r € X with ||z||x < K]||y||y such that T'(x) = y. Prove that T is an open mapping.

Bonus Problem: (10 points) Let X := M,(R) be the set of all n x n matrics and
[ M,(R) = M,(R) be given by f(A) = A? for A € M,,(R). Prove that f is differentiable
on M,(R).

(Hint: For A € M,(R), we want to prove that f is differentiable at A and find a linear
map Df(A) € B(X,X). Observe f(A+ H) — f(A) and think how to define Df(A)(H). )
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e In this exam, you may assume that every set has volume.

¢ n-dimensional spherical coordinate

(

r; =rcosb
To = rsinf; cos by
T3 = rsin 6 sin 0, cos O3
Tp1 =rsinfy---sinb,_ocosb,_;
[ Zn =T sinf; ---sinf,,_»sinf,,_;
where 0 <r<oo,0<6y,---,0,_ o <mand 0 <6,_; < 2m.

a(xl)x% to 7xn)

8(7”, 917 92a e aen—l)

= " Lsin® 26, sin® 36y - - -sin6,,_3sin b,,_o
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. (15 points) Let f : R* — R be given by f(z,y) = ¢*“¥ a = (0,0), u =< 1,2 > and
v=<3,4>.
(a) (8 points) Find the third degree Taylor polynomial for f centered at a.

(b) (7 points) For the linear map D3 f(a)(u,v) € B(R? R), find its matrix representa-
tion.

. (10 points) Let f(x,y) = ¥ ®/@+®) and A be the region as the below graph. Find the
average of f over A.

. (10 points) Let
f(m7y7 Z) =e" VeV €z2 + 22,

Find all extreme point(s) and value(s) of f.
. (20 points) Let A C R™ be a set with volume zero.

(a) (5 points) Suppose f: A — R be a bounded function. Prove that / f(z) dx = 0.
A

(b) (7 points) Determine whether the result of Problem(a) is still true if f is an un-
bounded and integrable function over A.

(c) (8 points) Let L € B(R",R™), E := L(A) be a set in R" and g : £ — R be an

integrable function over E. Determine whether [ g¢(z) dx = 0.
B

. (15 points) Let A C R" be a bounded set with volume and f; : A — R be a sequence of

integrable functions which uniformly converges to f on A.

(a) (10 points) Prove that f is integrable over A and / f(z) doe = klim / fr(z) dx.
A —o A

(b) (5 points) Determine whether the result of Problem(a) is still true if A = R?.

. (15 points) Let f: R? — R be a bounded function.

(a) (8 points) Suppose that f is integrable over R%. Prove that f? is also integrable
over R2.

(b) (7 points) Suppose that [;, f?(z) dz = 0. Prove that the set {z € R? | f(z) # 0}
has volume zero. (Note: You may assume that every set has volume.)
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. (10 points) Let p € R and D = {x € R" | ||x||g» > 1}. Define f: D — R by

1
1) = e

Determine the range of p such that f is Riemann integrable over D. (Note: If necessary,
you may assume that foﬂ sin®t dt = ¢, is a positive constant for k € N.)

. (10 points) Find the volume of the solid that is enclosed by the cone z = /x? 4 y? and
the sphere 22 + y* + 2% = 2. (Hint: use cylindrical coordinates)

. (10 points) Let Q = {(z,y) € R? |z >0, y > 0} be the first quadrant in R
Let
R = {(w,y)EQ‘x—1<y<x}and
S = {(zyeQ|lr-2<y<z—1}

Define f(z,y) : Q — R by

f(x,y) = ﬂs(l’,y) - ]lR(xvy)'

(a) (5 points) Check that /OOO /000 f(z,y) dydx # /OOO /OOO fx,y) dxdy.

(b) (5 points) Explain why the Fubini’s Theorem does not apply on f(x,y) over Q.

Bonus Problem A:(10 points) Prove that the double series

[ee]

> oy
o (m+n)3
converges. (That is, there exists L € R such that for every € > 0, there are M, N € N
1

kool
such that if £k > M and [ > N, then‘zzm
m-+n

m=1 n=1

—L} <€)

Bonus Problem B:(10 points) Prove that

- 1 = [~ 1
> v = 2 (X )

m,n=1 m=1 n=1

I will do Problem
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Appendix

. 2% 7 https://www.youtube.com/watch?v=01JmDhNocaQ)

. Makewave: https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_'T'W.html
% = ¥ % % https://www.youtube.com/watch?v=spUNpyF58BY
% = ¥ % 4% https://www.youtube.com/watch?v=r18Gi8ISktM

. Convolution: https://www.youtube.com/watch?v=acAw5 W Gtzuk
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