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0.1 Preliminaries

o Sets

o Functions

f : S (domain) −→ T (codomain)

If f is an ono-to-one function, then the “inverse function of f ”, f −1 : f (S ) −→ S exists.

In general, f −1 may not exist. But we can still define the “pre-image” of f , f −1(B).

Definition 0.1.1. Let f : S → T be a function and A ⊆ S . We call f (A) =
{

f (x)
∣∣ x ∈ A

}
“the

image of A under f ”. For B ⊆ T , we call the set f −1(B) =
{

x ∈ S
∣∣ f (x) ∈ B

}
“the pre-image

of B under f ”.

1
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1.1 Motivation and Some Ideas
Question: We seem to be much familiar with the real numbers. Why do we want to investigate
the real number system?

• We live in R3 (Really? What’s R?)

• We are too familiar with R to describe it.

• Many results of Calculus are based on some properties of R. For example,

Limit Continuity Differentiation Integration

Least Upper I.V.T. Rolle’s Theorem
Bound Property ⇒ Extreme Value Theorem ⇒ M.V.T. ⇒ F.T.C.

• R has “Least Upper Bound Property” but Q does not. For example

S =
{

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, · · ·
}
⊂ Q

There is no number in Q such that the number is the least upper bound of S .

Question: Does R really have “Least Upper Bound Property (L.U.B.P)”?
In fact, R is defined by an “ordered field with least upper bound property”(賦序體)

Question: Does this set really exist?

3
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Question: How many this kind of set are there?

Question: How much do we recognize R or how about a set without L.U.B.P.?

o Five Axioms

■ Euclidean Geometry (B.C 325 ∼ B.C. 265) The Euclidean geometry is based on five ax-
ioms:*

(1) To draw a straight line from any point to any point.

(2) To produce (extend) a finite straight line continuously in a straight line.

(3) To describe a circle with any centre and distrance (radius).

(4) That all right angles are equal to one another.

(5) That, if a straight line falling on two straight lines make the interior angles on the same side
less than two right angles, the two right angles, the two straight line, if produced indefinitely,
meet on that side on which the angles are less than two right angles.

■Non-Euclidean Geometry

o Origin of irrational numbers

■The Age of Pythagoras (B.C 570. ∼ B.C. 495) (萬物皆數)

For any two segments with lengths a and b,
there exists another segment with length ℓ and
two integers mand n such that a = mℓ and
b = nℓ. Hence,

a
b
=

m
n
∈ Q.

But people find that the ratio of the lengths of some seg-
ments may not be a rational number. For example, the
lenghts of the side and a diagonal line in a regular pen-
tagon as in the figure have no common factor. This causes
the well-known first crisis in mathematics.

People knew that there are many numbers which are not rational. But they do not figure out
the real numbere system until Dedekind (1831-1916) and Cantor(1845-1918).

Question: Is there any number a satisfying a2 − 2 = 0?
Obviously, there is no rational number satisfying the above equation. How about any number

*the following descriptions are from wiki.



1.1. MOTIVATION AND SOME IDEAS 5

which is not a rational number?

o Observation

■Properties of rational number system Q

For a, b, c ∈ Q,

(i) Two operators on Q: addition “+” and multiplication “×”, and Q is closed under these two
operators: a + b ∈ Q and a × b ∈ Q.

(ii) The commutative law unber “+” and “×”: a + b = b + a and a × b = b × a.

(iii) The associative law under “+” and “×”: (a+b)+c = a+ (b+c) and (a×b)×c = a× (b×c).

(iv) The distributive law: a × (b + c) = a × b + a × c.

■ Some questions of real number system

Question: Does R have above properties? Does R have any hole?

Question: Is there a set of numbers which has above properties and Q is densely contained in
this set?

We are interested in the “structure” of R, rather than the “members” of R. In Algebra, we
emphasis on the “structure of a set” more than the “members of a set”. In analysis, we take
attention on what changes of functions rather than the values of functions.

Question: Do we really figure out the real number system well?

In high school algebra, we have learned some operations and computation of real numbers.
For example,

3√
2 × 3√

3 =
3√
6. (1.1)

Teachers told us that it is true. Is it really reasonable? The three symbols “ 3√2”, “ 3√3” and “ 3√6”
means the “numbers” which satisfy x3 − 2 = 0, x3 − 3 = 0 and x3 − 6 = 0 respectively.

Question: Do these “numbers”, “ 3√2”, “ 3√3” and “ 3√6” really exist?
Question: If 3√2 really exists, it should be between 1.25992 and 1.25993. Is the argument really
true? (Ordered Field).
Question: What does the product of two irraional numbers mean?
Question: Why is the equation (1.1) true under the definition of multiplication? How to explain
it?
Question: What is the multiplication on irrational number system? Why is the area of a rect-
angle equal to the product of length and width (if they are irrational)?
Question: Is the equation (

√
3+
√

2)(
√

3−
√

2) = 3−2−1 true? (Commutative law, distribution
law, associative law)
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o Students’ Difficulties:

To understand how to construct a real number system, a second-year college student may
have some difficulties:

(i) Unfamiliar with set theory, field theory, number theory, convergence, equivalent classes
and other abstrct language.

(ii) Abuse notation: students usually do not notice that the symbols “+” in f +g and f (x)+g(x)
are different. But the symbols “×” in u × v = w and 2 × 3 = 6 are easily to distinguished.

(iii) We are too familiar with the computation on R. It is difficult to forget that some facts (for
example 1 < 2) are not so trivial.

(iv) We should remind ourselves to focus on the structure of real number system rather than
how to obtain the correct answers.

我們在對 (Q,+, ·,≤)有一定程度了解的情形下，試圖將「數系」描述清楚。已經發現
許多的「數」並不屬於有理數，如

√
n, n ∈ N。是否將那些非有理數的「數」加入到有

理數系，如 Q(
√

2,
√

3,
√

5, · · · )，即可成為所有的數系。

事實顯然並非如此，人們無法得已該加入哪些以及多少無理數才能形成整個數
系。我們暫時先稱呼整個數系為 F，Q ⊂ F，並期望上面帶有加法 ⊕與乘法 ⊙，稱為
(F ,⊕,⊙)。而其運算法則與有理數中的運算法則一致，仍有交換律、分配律及結合律。
且當拿兩個有理數來做運算時，其結果當與原本在有理數中的運算一致。即

a + b = a ⊕ b and a · b = a ⊙ b for every a, b ∈ Q.

此外，有理數中有「大小」、「距離」，則 F 當定一「順序」以形成大小關係。我們
還需解決實數系中有無「洞」的問題，此問題需透過等價於「Completeness」的設定來
達成。

1.2 Ordered Fields and the Number Systems

o Fields

In order to prevent that students may abuse and misunderstand the familiar symbols “+” and
“·”, we temporarily use “⊕” and “⊙” to denote the two binary operations on fileds. After careful
explaination and understanding, we will still use the usual symbols “+” and “·”.

Definition 1.2.1. (First Version) A set F is said to be a “field” if there exist two binary opera-
tions ⊕ and ⊙ such that

(a) (Closedness) For x, y ∈ F , x ⊕ y ∈ F and x ⊙ y ∈ F .

(b) (Commutative law of addition) x ⊕ y = y ⊕ x for all x, y ∈ F .

(c) (Associative law of addition) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for all x, y, z ∈ F .
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(d) There exists an element e ∈ F such that x ⊕ e = x for all x ∈ F . (“additive identity”)

(e) For every x ∈ F , there exists y ∈ F such that x ⊕ y = e. The element y is usually denoted
by −x and is called the additive inverse of x.

(f) x ⊙ y = y ⊙ x for all x, y ∈ F .(Commutative law of multiplication)

(g) (x ⊙ y) ⊙ z = x ⊙ (y ⊙ z) for all x, y, z ∈ F . (Associative law of multiplication)

(h) There exists an element i ∈ F such that x ⊙ i = x for all x ∈ F . (“multiplicative identity")

(i) For every x ∈ F where x is not the additive identity(x , e), there exists y ∈ F such that
x ⊙ y = i. The element y is usually denoted by x−1 and is called the multiplicative inverse
of x.

(j) x ⊙ (y ⊕ z) =
(

x ⊙ y
)
⊕
(

x ⊙ z
)

for all x, y, z ∈ F (Distributive law)

(k) e , i.

We can easily observe that the rational number system Q with the two usual binary op-
erations: addition “+” and multiplication “·” satisfies all the above conditions. The additive
identity is 0 and the multiplicative identity is 1. Hence, (Q,+, ·) is a filed.

If students have no misunderstanding with the two binary operations, from now on, we
replace the notation ⊕ and ⊙ by “+” and “·” respectively. Also, the additive and multiplicative
identities are denoted by “0” and “1” respectively. Therefore, we rewrite the defition of a filed
as follows.

Definition 1.2.2. A set F is said to be a “field” if there exist two binary operations + and · such
that

(a) (Closedness) For x, y ∈ F , x + y ∈ F and x · y ∈ F .

(b) (Commutative law of addition) x + y = y + x for all x, y ∈ F .

(c) (Associative law of addition) (x + y) + z = x + (y + z) for all x, y, z ∈ F .

(d) There exists an element 0 ∈ F such that x + 0 = x for all x ∈ F . (“additive identity”)

(e) For every x ∈ F , there exists y ∈ F such that x + y = 0. The element y is usually denoted
by −x and is called the additive inverse of x.

(f) x · y = y · x for all x, y ∈ F . (Commutative law of multiplication)

(g) (x · y) · z = x · (y · z) for all x, y, z ∈ F . (Associative law of multiplication)

(h) There exists an element 1 ∈ F such that x · 1 = x for all x ∈ F . (“multiplicative identity")

(i) For every x ∈ F where x is not the additive identity(x , 0), there exists y ∈ F such that
x · y = 1. The element y is usually denoted by x−1 and is called the multiplicative inverse of
x.

(j) x · (y + z) = x · y + x · z for all x, y, z ∈ F (Distributive law)
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(k) 0 , 1.

Remark. The additive identity 0 and multiplicative identity 1 in a field (F ,+, ·) are unique. If
a set satisfies conditions (a)-(j) and 0 = 1, then the contain only one element.

o Partially Ordered Sets

Definition 1.2.3. Let P be a set. A “partial order” over P is a binary relation ≼ which is
reflexive, anti-symmetric and transitive. That is,

(a) x ≼ x for all x ∈ P (reflexive).

(b) If x ≼ y and y ≼ x, then x = y (anti-symmetric).

(c) If x ≼ y and y ≼ z then x ≼ z (transitive).

A set with a partial order is called a “partially ordered set” and is usually denoted by (P,≼).

Example 1.2.4. Let S be a set and 2S be the power set of S ; that is,

P = 2S =
{

A
∣∣ A ⊂ S

}
= the collection of all subsets of S .

Consider the binary relation ⊆. Then

(a) A ⊆ A (reflexivity).

(b) If A ⊆ B and B ⊆ A, then A = B (anti-symmetry)

(c) If A ⊆ B and B ⊆ C then A ⊆ C (transitivity).

Hence, (P,⊆) is a partially ordered set.

Note that for a partially ordered set P, not any two elements in P have relation between
them. For example, let S = {1, 2} and P = 2S =

{
∅, {1}, {2}, {1, 2}

}
. There is no inclusive

relation between the two element {1} and {2}.
Definition 1.2.5. Let (P,≼) be a partially ordered set. Two elements x, y ∈ P are said to be
“comparable” if either x ≼ y or y ≼ x.

Example 1.2.6. Let S = {1, 2} and P = 2S =
{
∅, {1}, {2}, {1, 2}

}
. In the partially ordered set

(P,⊆), {1} and {1, 2} are comparable. But, {1} and {2} are not comparable.

Definition 1.2.7. A partial order under which every pair of elements is comparable is called a
“total order” or “linear order”.

Definition 1.2.8. An “ordered filed” is a totally ordered (F ,+, ·,≼) satisfying that

(a) If x ≼ y, then x + z ≼ y + z for all z ∈ F .

(b) If 0 ≼ x and 0 ≼ y, then 0 ≼ x · y.

From now on, the total order ≼ of an ordered field will be denoted by ≤.

Definition 1.2.9. In an ordered field (F ,+, ·,≤), the binary relations <, ≥ and > are defined by
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(a) x < y if x ≤ y and x , y.

(b) x ≥ y if y ≤ x.

(c) x > y if y < x.

Definition 1.2.10. The “magnitude” or the “absolute value” of x, denoted |x|, is defined as

|x| =
ß

x if x ≥ 0,
−x if x < 0.

Note. There are several results mentioned in the lecture note. Students are suggested to read
them by yourselves.

o The natural numbers, the integers and the rational numbers

■ Preparation在開始建構實數系統前，我們希望學生們先有一些心理準備。

1. 我們所要建構的是一個與預期中的實數系具有相同「結構」的物件。例如: {1, 2, 3, 4, · · · }
、{2, 4, 6, 8, · · · }或 {a, a + a, a + a + a, a + a + a + a, · · · }從集合論的角度是不同的物
件，但就代數結構來說它們是一樣的，都是由一個生成元經重覆迭代產生出的物件，
因此應被視為是同一物件。
我們要建立的實數系統是

(i) 一個包含有自然數、整數、有理數結構在內的代數物件

(ii) 有理數密集分布於該物件中。為了解釋何為密集，此處需考慮到「順序」(大小)
關係，因此涉及到 “≤’’的關係.

(iii) 物件中的每個成員彼此 comparable，且可以做加法與乘法的運算。

(iv) 在有順序的結構下，我們希望此物件是沒有「洞」的存在。(有理數系統是有洞
的)。此處涉及到實數的完備性、最大下界性質等。

2. 希望學生暫時忘記熟悉的自然數、整數、有理數系統。我們試圖重新由結構上定
義自然數、整數及有理數系，以此為出發點考慮是否存在能滿足上述結構的「實數
系」。

Definition 1.2.11. Let (F ,+, ·,≤) be an ordered field.

(a) The “natural number system”, denoted byN, is the collection of all the number 1, 1 + 1︸ ︷︷ ︸
2

, 1 + 1 + 1︸       ︷︷       ︸
3

, 1+

1 + 1 + 1, · · · . We write 2 ≡ 1 + 1, 3 ≡ 1 + 1 + 1, · · · , n ≡ 1 + 1 + · · · + 1︸              ︷︷              ︸
n

. Therefore,

N = {1, 2, 3, · · · }.
Since 1, 2, 3, · · · ∈ F , their additive inverses −1,−2,−3, · · · also in F .

(b) The “integer number system”, denoted by Z, is the set Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
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(c) For every non-zero element 0 , n ∈ F , the multiplicative inverse n−1 exists and is usually

denoted by
1
n

. We also use
m
n

to denote m · n−1. The “rational number system”, denoted by

Q, is the collection of all numbers of the form
q
p

with p, q ∈ Z and p , 0. That is,

Q =
{

x ∈ F
∣∣ x =

q
p
, p, q ∈ Z and p , 0

}
.

Definition 1.2.12. An ordered field (F ,+, ·,≤) is said to have the “Archimedean property” if
for every x ∈ F , there exists n ∈ Z such that x < n.

Theorem 1.2.13. Q has the Archimedean property.

Proof. If x ≤ 0, it is clear by choosing n = 1 since x ≤ 0 < 1 (transitivity of ≤). If 0 < x = q
p

with p, q ∈ N, let n = q + 1. Then,

x =
q
p
≤ q < q + 1 = n.

The above relations ≤ and < are from the hypotheses of ordered field and the fact 0 < 1. □

Definition 1.2.14. A “well-ordered” relation on a set S is a total order on S with the property
that every non-empty subset of S has a least (smallest) element in this ordering.

Theorem 1.2.15. (Peano axiom)(Principle of mathematical induction)
If S is a subset of N ∪ {0} (or N) such that 0 ∈ S (or 1 ∈ S ) and k + 1 ∈ S if k ∈ S , then
S = N ∪ {0} (or S = N).

Proposition 1.2.16. If S ⊂ N and S , ∅, then S has a smallest element; that is there exists
s0 ∈ S such that s0 ≤ x for every x ∈ S .

Proof. If 1 ∈ S , then 1 is the smallest element in S .
Now, we consider that case that 1 < S . Assume that S does not contain a smallest element.
Define

T = N\S and T0 =
{

n
∣∣ {1, 2, 3, · · · , n} ∈ T

}
.

Since 1 < S , 1 ∈ T and 1 ∈ T0. For k ∈ T0, be definition of T , 1, 2, · · · , k ∈ T . Therefore,
1, 2, · · · , k < S .

If k+1 ∈ S , then k+1 is the smallest element in S . It contradicts that assumption that S has
no smallest element. Hence, k+1 < S and then k+1 ∈ T . This implies that 1, 2, · · · , k, k+1 ∈ T .
We have k + 1 ∈ T0 by the definition of T0.

By the Peano axiom, T0 = N. Then T = N and S = ∅. We obtain a contradiction. □

Proposition 1.2.17. If r1, r2 ∈ Q and r1 < r2, then there exists r ∈ Q such that r1 < r < r2.

o Sequence and Limits
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Definition 1.2.18. A “sequence” in a set S is a function f : N → S . The values of f are
called the “terms” of the sequence. We usually denoted a sequence by { f (n)}∞n=1 or {xn}∞n=1 with
xn = f (n).

Definition 1.2.19. A sequence {xn}∞n=1 in an ordered field (F ,+, ·,≤) is said to “converge” to a
limit x ∈ F if for every ε > 0, there exists N ∈ N such that

|xn − x| < ε whenever n ≥ N.

Denote lim
n→∞

xn = x or xn → x as n→ ∞.

Lemma 1.2.20. (Sandwich) If lim
n→∞

xn = L, lim
n→∞

yn = L and {zn}∞n=1 is a sequence such that xn ≤
zn ≤ yn, then

lim
n→∞

zn = L.

Proposition 1.2.21. If a ≤ xn ≤ b and lim
n→∞

xn = x, then a ≤ x ≤ b.

Proposition 1.2.22. (Uniqueness of Limit) If {xn}∞n=1 is a sequence in an ordered field, and
xn → x and xn → y as n→ ∞, then x = y

Definition 1.2.23. Let {xn}∞n=1 be a sequence in an ordered field F .

(a) {xn}∞n=1 is said to be “bounded” if there exists M > 0 such that |xn| ≤ M for all n ∈ N.

(b) {xn}∞n=1 is said to be “bounded from above” if there exists B ∈ F , called an “upper bound”
of the sequence, such that xn ≤ B for all n ∈ N.

(c) {xn}∞n=1 is said to be “bounded from below” if there exists A ∈ F , called an “lower bound”
of the sequence, such that A ≤ xn for all n ∈ N.

Proposition 1.2.24. A convergent sequence is bounded.

o Monotone Sequence Property

Definition 1.2.25. Let {xn}∞n=1 be a sequence in an ordered field F . We say that

(a) {xn}∞n=1 is “increasing” (or “nondecreasing”) if xn ≤ xn+1 for all n ∈ N. It is said “strictly
increasing” if xn < xn+1 for all n ∈ N.

(b) {xn}∞n=1 is “decreasing” (or “nonincreasing”) if xn ≥ xn+1 for all n ∈ N. It is said “strictly
decreasing” if xn > xn+1 for all n ∈ N.

(c) a sequence is called (strictly) “monotone” if it is either (strictly) increasing or (strictly)
decreasing.

Definition 1.2.26. An ordered field F is said to satisfy the “(strictly) monotone sequence prop-
erty” if every bounded (strictly) monotone sequence converges to a limit in F .

Remark. An equivalent definition of the monotone sequence property is that every monotone
increasing sequence bounded above converges; that is, if each sequence {xn}∞n=1 ⊆ F satisfying
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(i) xn ≤ xn+1 for all n ∈ N,

(ii) there exists M ∈ F such that xn ≤ M for all n ∈ N.

is convergent, then we say F satisfies the monotone sequence property.

Example 1.2.27. (Q,+, ·,≤) is an ordered field. But it does not satisfy the monotone sequence
property.

Theorem 1.2.28. An ordered field satisfying the monotone sequence property has the Archimedean
property; that is, if F is an ordered field satisfying the monotone sequence property, then for all
x ∈ F , there exists n ∈ N such that x < n.

Proof. Assume that there exists an ordered field (F ,+, ·,≤) and x ∈ F such that x ≥ n for all
n ∈ N.

Let xn = n, then the sequence {xn} is increasing and x is an upper bound of {xn}. By the
monotone sequence property, there exists y ∈ F such that lim

n→∞
xn = y. Therefore, there exists

N ∈ N such that for all n ≥ N,

|n − y| = |xn − y| < 1
4
.

We have
N + 1 < y +

1
4
= y − 1

4
+

1
2
< N +

1
2
.

Thus, we obtain a contradiction. □

o Completeness

Definition 1.2.29. An ordered field F is said to be “complete” if it satisfies the monotone
sequence property.

Remark. Let F be an ordered field, the following statments are equivalent.

(a) F is complete.

(b) F has the monotone sequence property.

(c) F has the least upper bound property.

Theorem 1.2.30. There is a “unique” complete ordered field, called the “real number system
R”.†

1.3 Construction of Real Number System
In this section, we introduce two methods to construct real number system which were estab-
lished by Dedekind and Cantor. The ingredients of these two methods are similar by construct-
ing an extension of rational number system.

†R is defined by an ordered field with least upper bound property. (Rudin)
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So far, we have known that (Q,+, ·,≤) is an ordered field but has no monotone sequence
property.

我們想要了解數線上的所有點及其結構。目前知道的是有理數是有賦序體，(且密集的分布在整個數線上)。
首先，我們要為數線上每個點命名，給予一個適當的「符號」，此符號需用已知的有理
數來構造，且對於每個點是獨一無二的一一對應。

o Dedekind Cut

■ Heuristical idea: For a point (temporarily called α) in the real line, it separates Q into two
nonempty parts

A1 = {x ∈ Q
∣∣ x < α} and A2 = {x ∈ Q | x > α}.

If α ∈ Q, we can put α in any one of A1 or A2. Then we can name the cut α as (A1, A2). Note
that

(i) A1, A2 , ∅,

(ii) A1 ∪ A2 = Q,

(iii) For x ∈ A1 and y ∈ A2, x < y. (any two numbers in Q are comparable)

If α ∈ Q, we also use the same notation (A1, A2) to name the cut α. Note that we cannot give an
explicit definition to A1 and A2 since α < Q. Hueristically, we know that as long as we separate
Q into two nonempty parts as above, every separation would be corresponding to a unique point
in the number line. Hence, we can use such notation (A1, A2) satisfying (i), (ii), (iii) to name
every point in the number line.

There are four situations:

(1) A1 contains a maximum and A2 contains a minimum. (Impossible!)

(2) A1 contains a maximum and A2 contains no minimum. (rational number)

(3) A1 contains no maximum and A2 contains a minimum. (rational number)

(4) A1 contains no maximum and A2 contains no minimum. (irrational number)
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Define
R =

{
(A1, A2)

∣∣ all possible A1 and A2 satisfying (i), (ii), (iii)
}
.

Now, we have to define binary operations “+” and “·” as well as additive identity“0”, multi-
plicative identity “1”, additive inverse, multiplicative inverse and an “order” on R. We give
their defintions here and suggent students check that they are well-defined. Be careful that the
operations + and · can only apply on rational numbers. We should use them to establish new
opertaions ⊕ and ⊙ which can apply on R.

1. (Addition “⊕”): For (A1, A2), (B1, B2) ∈ R, define (A1, A2) ⊕ (B1, B2) = (C1,C2) where C1 =

{a + b | a ∈ A1, b ∈ B1} and C2 = Q\C1.

2. (Additive identity): 0 = (A1, A2) where A1 = {a ∈ Q | a ≤ 0} and A2 = {a ∈ Q | a > 0}.

3. (Additive inverse): −(A1, A2) = (B1, B2) where B1 = {b ∈ Q | − b ∈ A2} and B1 = Q\B2.

4. (Multiplication “⊙”): For (A1, A2), (B1, B2) ∈ R, define (A1, A2) ⊙ (B1, B2) = (C1,C2) where
C2 is defined below and C1 = Q\C1.

i. if 0 ∈ A1 and 0 ∈ B1, then C2 = {a · b | a ∈ A2, b ∈ B2}.
ii. if 0 ∈ A1 and 0 < B1, then (C1,C2) = −

[
(A1, A2) ⊙ [−(B1, B2)]

]
iii. if 0 < A1 and 0 ∈ B1, then (C1,C2) = −

[
[−(A1, A2)] ⊙ (B1, B2)

]
iv. if 0 < A1 and 0 < B1, then (C1,C2) = [−(A1, A2)] ⊙ [−(B1, B2)]

5. (Multiplicative identity): 1 = (A1, A2) where A1 = {a ∈ Q | a ≤ 1} and A2 = {a ∈ Q | a > 1}.

6. (Multiplicative inverse): For 0 , (A1, A2), define (A1, A2)−1 = (B1, B2) where

i. if 0 ∈ A1, then B1 = {b ∈ Q | b−1 ∈ A2} ∪ Q−

ii. if 0 < A1, then B1 = {b ∈ Q | b−1 ∈ A2} ∩ Q−.

7. (Order relation): Define (A1, A2) ≼ (B1, B2) if B2 ⊆ A2.

Theorem 1.3.1. (R,⊕,⊙,≼) is an ordered field and has Monotone Sequence Property.

Proof. Skip □

o Cantor’s Construction (Sketch)

Heuristically, for a point (called α) in the number line, we use an increasing sequence {xn}
of rational numbers which converges to α. Then we use this sequence {xn} to name the point α.

■ Problems:
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(1) The method to denote a point in number line is not well-defined. There has infinitely many
increasing sequences which convege to a single point. Hence, every point is named by
infinitely many sequences.

(2) If α ∈ Q, the convergence is easy. If α < Q, what is the convergence?

■ Definition of R

Let S be the collection of all increasing and bounded above sequences of rational numbers

S =
¶
{xn}∞n=1

∣∣ xn ∈ Q and {xn} is increasing and bounded above.
©
.

Define an equivalence relation ∼ on S that {xn} ∼ {yn} if the set of all rational upper bounds of
{xn} is equal to the set of all rational upper bounds of {yn}. Denote every equivalent class by[
{xn}

]
.

(概念上是數列遞增到同一點視為是同的等價類，定義上不能這麼設計，因為不知道什
麼是無理數。因此改用具有相同的有理數上界集合來定義同一等價類的遞增數列。)

Define R as the collection of all equivalent classes under the relation ∼.

R = S
/
∼=
¶[
{xn}

] ∣∣∣ {xn} ∈ S
©
.

■ Definition of binary operations, identities, inverses and order relation

We will skip the details of those objects. Students can find them in the lecture note.

1. (Binary Operations and order relation): Define “⊕”, “⊙”, and “≼” on R

2. (Identities):

• Define [0] by the class
[
{xn}

]
with the set of upper bound {q ∈ Q | q ≥ 0}.

• Define [1] by the class
[
{xn}

]
with the set of upper bound {q ∈ Q | q ≥ 1}.

Check that [0] is an additive identity on R and [1] is a multiplicative identity on R.

3. (Inverses): Definie the additive inverse of
[
{xn}

]
and the multiplicative inverse of

[
{xn}

]
for[

{xn}
]
, [0].

■ Check

We should check the following arguments.

1. Check that (R,⊕,⊙,≼) forms a ordered field.

2. Check that the element [1] forms subsets inR by the following the steps of the construction of
natural numbers, integers, rational numbers. We denote them by N∗, Z∗ and Q∗ respectively.

3. Check that (Q∗,⊕,⊙,≼) is isomorphic to (Q,+, ·,≤). Hence, they have the same algebraic
structure.
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4. Check that (R,⊕,⊙,≼) has Monotone Sequence Property.

5. Check that all ordered field with Monotone Sequence Property have the same structure. This
implies that there has a unique complete ordered field.

o Some conclusions of R

Definition 1.3.2. R is defined by an ordered field with monotone sequence property. There are
some equivalent statements as follows.

1. R is defined by a complete ordered field; or

2. R is defined by an ordered field with the least upper bound preperty.

Remark. (1) A complete ordered field is unique under isomorphism.

(2) R has the Archimedean propety. That is, for all r ∈ R there exists n ∈ N such that r < n.

o Density of Q

Question: What is the distribution of Q in R? What is the role of Q with respect to R?

Definition 1.3.3. Let S ⊆ T ⊆ R. We say that S is dense in T if for every t ∈ T and ε > 0, there
exists s ∈ S such that

|s − t| < ε.
Remark. N and Z are not dense in R or in Q.

Proposition 1.3.4. Q is dense in R.

Proof. Given r ∈ R and ε > 0. Since R has the Archimedean property, there exists N ∈ N such

that
1
ε
< N (or

1
N
< ε).

Claim:
{

k
N

∣∣ k ∈ Z
}
∩ (r − ε, r + ε) , ∅.

Proof of Claim: If the claim is false, there exists ℓ ∈ Z such that
ℓ

N
< r − ε and

ℓ + 1
N

> r + ε.
Then

1
N
=
ℓ + 1

N
− ℓ

N
> (r + ε) − (r − ε) = 2ε. (Contradition!)

Hence, there exists k0 ∈ Z such that
∣∣k0

N
− r

∣∣ < ε. □

Remark. An equivalent statement of Proposition 1.3.4 is that if x, y ∈ R and x < y, then there
exists q ∈ Q such that x < q < y.

o Appendix

In the end of this section, we review the convergence of sequence in R and give the defini-
tion of extended real number system.

■ Review the convergence and divergence
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Definition 1.3.5. (1) Let {xn}∞n=1 be a sequence in R. We say that {x}∞n=1 converges if there is
x ∈ R such that for every ε > 0, there exists N = N(ε) ∈ N such that for all n ≥ N,

|xn − x| < ε.

We say that {xn}∞n=1 “converges to x” and denote lim
n→∞

xn = x.

(2) If {xn} does not converge, we say that {xn}∞n=1 “diverges”.

(3) We say that {xn}∞n=1 “diverges to infintie” if for every M > 0, there is N = N(M) ∈ N such
that for all n ≥ N,

xn > M.

Denoted by lim
n→∞

xn = ∞. Also, {xn}∞n=1 is said to “diverge to −∞” if {−xn}∞n=1 diverges to ∞
and to be denoted by lim

n→∞
xn = −∞.

■ Extended real number system

Definition 1.3.6. The extended real number system, denoted by R∗, is define by

R∗ = {−∞} ∪ R ∪ {∞}.

1.4 Countability
Heuristically, let f : A → B be a function. If f is one-to-one and onto, then the “size” of A
is equal to the “size” of B. Hence, if we want to compare the sizes of two sets, a reasonable
method is to consider whether we can establish an one-to-one correspondence from A to B.

Definition 1.4.1. Let A and B be two sets.

(1) We say that A can be put into 1-1 correspondence with B if and only if there exists a 1-1
and onto map f from A to B.
A and B are called “equinumerous” and denoted by A ∼ B.‡

(2) We say that A is “denumerable” or “countably infinite” if A can be put into 1-1 correspon-
dence with N. That is, there exists a map f : N→ A which is 1-1 and onto.

(3) A set is called “countable” if it is either finite or countably infinite.

Example 1.4.2. (1) N is countable. Define f (x) = x on N. Then f is 1-1 and onto.

(2) N\{1} = {2, 3, 4, · · · } is countable. Define f : N\{1} → N by f (x) = x − 1.

(3) Z is countable. Define f : Z→ N by f (x) =

 1 if x = 0
2x if x ∈ Z+

−2x + 1 if x ∈ Z−.
Therefore, f is 1-1 and onto. Hence, Z is countable.

(4) The set N × N = {(a, b) | a, b ∈ N} is countable. (Exercise)
‡A and B have the same cardinality.
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Theorem 1.4.3. (1) Any nonemtpy subset of N is countable.

(2) Any nonempty subset of a countable set is countable.

Proof. (1) Let S be a nonempty subset of N. If S is finite, then S is countable. Hence, we may
assume that S is infinite.

Since S ⊆ N and S , ∅, S contains a smallest element, say a1.

Let S 1 := S \{a1}. Since the number of size of S is infinite, S 1 is also nonempty and its size
is also infinite. Then S 1 contains a smallest element, say a2.

Again, let S 2 := S 1\{a2} = S \{a1, a2}. It is nonempty and its size is also infinite, and hence
S 2 contains a smallest element, say a3. Continue this process, we can choose a1, a2, a3, · · · ∈
S with a1 < a2 < a3 < · · · and S k = S \{a1, a2, · · · , ak}.

Claim: S = {a1, a2, a3, · · · }.
Proof of Claim: Clearly, {a1, a2, a3, · · · } ⊆ S . Assume that there is a number p ∈ S \{a1, a2, · · · }.
Then there exists k ∈ N such that ak < p < ak+1. Hence, p is the smallest number of
S \{a1, a2, · · · , ak}.
By the choice of ai, p = ak+1 ∈ {a1, a2, · · · }. It contradicts the assumption and hence
S ⊆ {a1, a2, · · · }. Then S = {a1, a2, · · · } and the claim is proved.

Define f : N→ S by f (n) = an. Then f is 1-1 and onto. Thus, S is countable.

(2) (Exercise)
□

Corollary 1.4.4. A nonempty set S is countable if and only if there exists an injection (1-1
function) f : S → N.

Proof. (⇒) If S is finite, say S = {a1, a2, · · · , an}. we define f (ak) = k. Clearly, f is an injection.
If S is countably infinite, by definition, there exists a bijection f : S → N.

(⇐) We may assume that S is infinit. Let f : S → N be an injection. Then f (S ) ⊆ N is
countable. Hence, there exists an 1-1 and onto function g : f (S )→ N.

Define h := g ◦ f : S → N is 1-1 and ont and S is countable.

S
f−→

1−1, onto
f (S )

g−→
1−1, onto

N.

□

Remark. If we want to prove the countability of a set S , this corollary says that we only need
to find a 1-1 function f : S → N. The function is not necessary to be surjective.
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Theorem 1.4.5. Let S 1 and S 2 be two countable sets. Then S 1 ∪ S 2 is countable.

Proof. (Exercise) □

Corollary 1.4.6. The union of finite countable sets is countable. That is, if S 1, S 2, · · · , S n are

countable, then
n⋃

k=1

S k is countable.

Proof. (Exercise) □

Theorem 1.4.7. If S 1, S 2, S 3, · · · are countable sets, then
∞⋃

k=1

S k is countable.

Proof. Since S k is countable for every k = 1, 2, 3, · · · , we may write S k = {xk1, xk2, xk3, · · · } for
k = 1, 2, 3 · · · . Then

∞⋃
k=1

S k =



x11 x12 x13 x14 x15 · · ·
x21 x22 x23 x44 x25 · · ·
x31 x32 x33 x44 x35 · · ·
x41 x42 x43 x44 x45 · · ·
...

...
...

...
...

. . .


.

Define f (xnm) = [1+(n+m−2)](n+m−2)
2 + m = (n+m−1)(n+m−2)

2 + m. Then f is a injection and hence⋃∞
k=1 S k is countable by Corollary 1.4.4.

Check that f is 1-1. If f (xn1m1) = f (xn2m2), then

(n1 + m1 − 1)(n1 + m1 − 2)
2

+ m1 =
(n2 + m2 − 1)(n2 + m2 − 2)

2
+ m2.

It is easy to check that m1 = m2 and n1 = n2.
□

Corollary 1.4.8. (1) Z is countable.

(2) Q is countable.

Proof. (1) Z = Z− ∪ {0} ∪ Z+.

(2) Let p ∈ N. Define Qp :=
{q

p

∣∣ q ∈ Z
}

. Then Qp is countable for all p ∈ N. Moreover,

Q =
⋃
p∈N
Qp is an union of countable family of countable sets. Hence, Q is countable.



20 CHAPTER 1. THE REAL LINE AND EUCLIDEAN SPACE

(Method 2: ) Since Q = Q− ∪ {0} ∪ Q+, it sufficies to show that Q+ is countable.
Let r ∈ Q+, then r = q

p for some p, q ∈ N and g.c.d(p, q) = 1. Define f (r) = 2p3q. Then
f : Q+ → N is 1-1. By Corollary 1.4.4, Q+ is countable. This implies that Q is also
countable.

□

Theorem 1.4.9. Let A and B be countable, then A × B is countable.

Proof. Since A and B are countable, say A = {a1, a2, a3, · · · } and B = {b1, b2, b3, · · · }, we have

A × B =
{

(an, bm) | n,m ∈ N
}
.

Define f : A × B→ N by f
(
(an, bm)

)
= 2n3m. Then f is 1-1 and hence A × B is countable.

□

■ R is uncountable

Theorem 1.4.10. R is uncountable.

Proof. It suffices to prove thta the interval (0, 1) is uncountable.
Assume that (0, 1) is countable. Then we may arrange the numbers of (0, 1) in a sequence

x1, x2, x3, · · · , xn, · · · . Since 0 < xn < 1 for n = 1, 2, 3, · · · , every xn has a unique decimal
expansion.

x1 = 0.d11 d12 d13 d14 · · ·
x2 = 0.d21 d22 d23 d24 · · ·
x3 = 0.d31 d32 d33 d34 · · ·
x4 = 0.d41 d42 d43 d44 · · ·

...

where di j ∈ {0, 1, 2, · · · , 9} for all i, j ∈ N.

We use the diagonal terms to find a number x ∈ (0, 1) by the following way. Choose

x = 0.d1 d2 d3 d4 · · · where dk =

ß
1 if dkk , 1
2 if dkk = 1 for all k ∈ N.

Then dk , dkk for all k ∈ N and x ∈ (0, 1). But x , xn for every n ∈ N. This says that there
exists a number x ∈ (0, 1) which is not counted and we obtain a contradition.

□

Corollary 1.4.11. (1) R\Q is uncountable.

(2) If A is uncountable. Let B ⊂ A be countable. Then A\B is uncountable.

Proof. (Exercise) □

Remark. Not all uncountable sets have the same cardinality as R. Let S , ∅. The power set of
S is the set of all subsets of S , usually denoted by P(S ) or 2S . The fact is that the cardinalities
of S and 2S are not the same. (There is no 1-1 correspondence between S and 2S .)
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1.5 Least Upper Bounds and Greatest Lower Bounds
Definition 1.5.1. Let ∅ , S ⊆ R.

(1) A number M ∈ R is said to be an “upper bound for S ” if x ≤ M for all x ∈ S . We say that
S is “bounded from above”.

(2) A number m ∈ R is said to be a “lower bound for S ” if x ≥ m for all x ∈ S . We say that S
is “bounded from below”.

(3) S is said to be bounded if S is both bounded from above and from below.

(4) A number b ∈ R is called a “least upper bound for S ” if

(i) b is an upper bound for S , and

(ii) if M is an upper bound for S , then M ≥ b.

(5) A number a ∈ R is called a “greatest lower bound for S ” if

(i) a is a lower bound for S , and

(ii) if m is a lower bound for S , then m ≤ a.

Notation: We denote

(1) the least upper bound for S by “sup S ”, called “supremum of S ”;

(2) the greatest lower bound for S by “inf S ”, called “infremum of S ”.

Remark. Let S ⊆ R be a set.

(1) If S is not bounded above, then sup S = ∞ and if S is not bounded below, then inf S = −∞.

(2) Suppose that b = sup S < ∞ if and only if

(i) b ≥ x for all x ∈ S ;

(ii) For any ε > 0, there exists x ∈ S such that x > b − ε.

(3) sup S or inf S need not to be a member of S .

(4) If ∅ , A ⊆ B, then sup A ≤ sup B and inf A ≥ inf B.

(5) Since ∅ is a subset of any set, we define sup ∅ = −∞ and inf ∅ = ∞.

Proposition 1.5.2. Suppose that ∅ , A ⊆ B ⊆ R. Then inf B ≤ inf A ≤ sup A ≤ sup B.

Proof. (Exercise) □

Definition 1.5.3. (a) We say that I ⊆ R is an interval if for every a, b ∈ I and a < x < b then
x ∈ I.

(b) The interval (a, b) = {x | a < x < b} is called “an open interval” in R and [a, b] = {x | a ≤
x ≤ b} is called “an closed interval” in R.
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Theorem 1.5.4. (Nested interval theorem) Suppose that In = {x | an ≤ x ≤ bn} is a sequence of
closed intervals such that In+1 ⊆ In for n = 1, 2, · · · . If lim

n→∞
(bn − an) = 0 then there exists one

and only one number x0 which is in every In.

Proof. If an0 = bn0 for some n0 ∈ N, then an = bn for all n ≥ n0 since In+1 ⊆ In. We have
In = {an0} for all n ≥ n0. Let x0 = an0 and the theorem is proved.

We may assume that an < bn for all n ∈ N. Since In+1 ⊆ In, we have an ≤ an+1 and bn+1 ≤ bn

for all n ∈ N. Therefore, {an} is an increasing sequence which is bounded above by b1. By
Monotone Sequence Property, there exists x0 such that an ↗ x0 as n → ∞. Also, {bn} is a
decreasing sequence. By Monotone Sequence Property again, there exists y0 such that bn ↘ y0

as n→ ∞.

Since 0 = lim
n→∞

(bn − an) = lim
n→∞

bn − lim
n→∞

an = y0 − x0, we have x0 = y0. Moreover, an ≤ x0 =

y0 ≤ bn for all n ∈ N. We have x0 ∈ In for all n ∈ N.

Now, to prove that this point is unique. Assume that there exists x1 ∈ In for all n ∈ N and
x0 , x1. Let ε = |x0 − x1|. There exist N0 ∈ N such that

an > x0 −
ε

2
and bn < x0 +

ε

2

for all n ≥ N0. Then, either x1 < an or x1 > bn for all n ≥ N0. It contradicts the hypothesis
x1 ∈ IN0 . Therefore, x0 = x1 and the point is unique. □

Question: Is the closedness of the intervals in the nested intervals theorem necessary?(Exercise)

Theorem 1.5.5. (1) (Least Upper Bound Property) If a set ∅ , S ⊂ R has an upper bound,
then it has a least upper bound.

(2) (Greatest Lower Bound Property) If a set ∅ , S ⊂ R has a lower bound, then it has a
greatest lower bound.

Proof. (1) Let M be an upper bound for S . If M ∈ S , then M itself is the least upper bound for
S . Hence, we may assume that M < S .

Let b1 = M and choose a1 as any point in S . Consider
a1 + b1

2
.

(i) If
a1 + b1

2
is greater than every point in S . We define a2 = a1 and b2 =

a1 + b1

2
.
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(ii) If there exists a point in S which is greater than
a1 + b1

2
, we define b2 = b1 and choose

a point a2 ∈ S and a2 ≥
a1 + b1

2
.

In both cases, a1, a2 ∈ S , and b1 and b2 are upper bounds for S . Also, we have [a2, b2] ⊂
[a1, b1] and b2 − a2 ≤

b1 − a1

2
.

Continue this procedure, we can choose sequences {an} and {bn} such that an ∈ S and bn < S
for every n ∈ N and

[an+1, bn+1] ⊂ [an, bn] ⊂ · · · ⊂ [a2, b2] ⊂ [a1, b1]

and

bn+1 − an+1 ≤
bn − an

2
≤ bn−1 − an−1

22 ≤ · · · ≤ b1 − a1

2n .

By the nested interval theorem, there exists a unique x0 ∈ [an, bn] for all n ∈ N and
lim
n→∞

an = lim
n→∞

bn = x0.

(To prove that x0 is an upper bound for S .) For x ∈ S , we have x ≤ bn for every n ∈ N.
Therefore, x ≤ lim

n→∞
bn = x0. This implies that x0 is an upper bound for S .

(To prove that x0 is the least upper bound for S .) Assume that x0 is not the least upper
bound for S . There exists y0 which is an upper bound for S and y0 < x0. Let ε =

x0 − y0

2
.

Then y0 < x0 − ε < x0.

Since an ≤ x0 and lim
n→∞

an = x0, there exists N ∈ N such that |an − x0| < ε for every n ≥ N.
Thus, an > x0 − ε > y0 for every n ≥ N. It contradicts the assumption that y0 is an upper
bound for S .

(2) The second statement follows by the first one to the set S ′ = {−x | x ∈ S }.
□

Theorem 1.5.6. Let (F ,+, ·,≤) be an order field with the least upper bound property. (That is,
if ∅ , S ⊆ F has an upper bound, then it has a least upper bound). Then F is complete.

Proof. It suffices to prove that F has monotone sequence property. Let {xn}∞n=1 be an increasing
sequence with an upper bound M. Then the set S = {x1, x2, · · · , xn, · · · } is bounded above by
M.

Since F has least upper bound property, there exists a least upper bound for S , say s. Hence,
for given ε > 0, there exists n0 ∈ N such that xn0 > s − ε.

Since {xn} is an increasing sequence, s − ε < xn0 ≤ xn ≤ s for every n ≥ n0. This implies
that lim

n→∞
xn = s. Since {xn} is an arbitrary increasing sequence, F is complete. □

Remark. Suppose that (F ,+, ·,≤) is an ordered field. Then F has monotone sequence property
if and only if it has least upper bound property.
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1.6 Cauchy Sequences
Motivation: Suppose that lim

n→∞
xn = x. Then for a given ε > 0 there exists N ∈ N such that

|xn − x| < ε for all n ≥ N. This implies two facts:

(1) At most N − 1 terms of the sequence are outside the interval (x − ε, x + ε).

(2) For m, n ≥ N, |xm − xn| < 2ε.

Heuristically, if a sequence {xn}∞n=1 converges, then any two terms xn and xm are arbitrarily
close to each other by taking m, n sufficiently large.

Question: How about the converse?

Definition 1.6.1. We say that a sequence {xn}∞n=1 is “Cauchy” if for every ε > 0, there exists
N ∈ N such that

|xm − xn| < ε whenever m, n > N.

Proposition 1.6.2. Every convergent sequence is Cauchy.

Proof. (Exercise) □

Proposition 1.6.3. Every Cauchy sequence is bounded.

Proof. (Exercise.) □

Lemma 1.6.4. Let {xn}∞n=1 be a Cauchy sequence. If there exists a subsequence {xnk}∞k=1 of {xn}
converges, say lim

k→∞
xnk = x0, then {xn} converges to x0.

Proof. (Exercise) □

■ Bolzano-Weierstrass Theorem

Observation: Every convergent sequence is bounded. But not every bounded sequence is
convegent. A divergent, unbounded and monotonic sequence must not contain a convergent
subsequence.
Question: Does a bounded and divergent sequence contain a convergent subsequence? Under
what hypotheses of a sequence that must contain a convergent subsequence?

Theorem 1.6.5. (Bolzano-Weierstrass Theorem) Every bounded sequence (inR) has convergent
subsequence.

Proof. Let {xn}∞n=1 be a bounded sequence.

(Method 1:) We sketch the method by following steps

(i) {xn}∞n=1 contains a monotonic subsequence {xnk}∞k=1.

(ii) {xnk}∞k=1 is also bounded.

(iii) By using monotone sequence property, {xnk} converges.
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(Method 2:) Since {xn} is bounded, there exist a1, b1 ∈ R such that a1 ≤ xn ≤ b1 for all n ∈ N.
If a1 = b1, then xn = a1 for every n ∈ N. Hence, {xn} itself converges to a1.

We may assume that a1 < b1. Let I1 = {x | a1 ≤ x ≤ b1} and I1 contains infinitly many terms

of {xn}. Divide I1 into two equal length subintervals by the midpoint
a1 + b1

2
. At least one of

the two subintervals contains infinitely many terms of {xn}, say I2.

Again, divide I2 into two equal length subintervals by the midpoint of the endpoints of I2.
At leats, one of these two subintervals contains infinitely many term of {xn}, say I3.

Continue this proceduce, we have Ik+1 ⊂ Ik for every k = 1, 2, · · · and each interval Ik

contains infinitely many terms of {xn}. Let Ik = [ak, bk] with length bk − ak =
b1 − a1

2k−1 → 0
as k → ∞. By the nested intervals theorem, there exists x0 ∈ Ik for all k ∈ N. Hence,
lim
k→∞

ak = lim
n→∞

bk = x0.

Now, we construct a subsequence of {xn} which converges x0. Choose n1 ∈ N such that xn1

to be any number of {xn} in I1. Again, choose n2 > n1 such that xn2 to be any number of {xn} in
I2. Continue this procedure, we can choose nk > nk−1 > · · · > n2 > n1 such that xnk to be any
number of {xn} in Ik. Therefore, {xnk}∞k=1 is a subsequence of {xn}∞n=1.

Since xnk ∈ Ik, ak ≤ xnk ≤ bk and lim
k→∞

ak = lim
k→∞

bk = x0. Hence, lim
k→∞

xnk = x0.
□

Theorem 1.6.6. Every Cauchy sequence in R is convergent.

Proof. (Exercise) □

Theorem 1.6.7. Let F be an ordered field with Archimedean property. If every Cauchy se-
quence in F converges, then F is complete.

Proof. Let {xn} be an increasing sequence which is bounded by M for some M ∈ F . We want
to prove that {xn} is Cauchy. Then by hypothesis, {xn} converges in F and hence F is complete

Suppose that {xn} is not Cauchy. By the definition of Cauchy sequnece, there exists 0 < ε ∈
F , such that for every N ∈ N, there exists m, n ∈ N such that

|xm − xn| > ε whenever m, n ≥ N.
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For N = 1, choose 1 ≤ m1 < n1 such that |xm1 − xn1 | ≥ ε.
For N = n1 + 1, choose n1 + 1 ≤ m2 < n2 such that |xm2 − xn2 | ≥ ε.
Continue this procedure, we can choose · · · < mk < nk < mk+1 < nk+1 < · · · such that |xnk−xmk | ≥
ε for every k ∈ N. Since {xn} is an increasing sequence bounded above by M, we have

xm1 ≤ xn1 ≤ xm2 ≤ xn2 ≤ · · · ≤ xmk ≤ xnk ≤ xmk+1 ≤ xnk+1 ≤ · · · ≤ M.

Hence, {xnk} is an increasing sequenve boudnd above by M and

|xnk+1 − xnk | ≥ ε.

Since F has Archimedean property, for the element
M − xn1

ε
∈ F , there exists L ∈ N such

that
M − xn1

ε
< L. Therefore,

xnL+1 = (xnL+1 − xnL)+ (xnL − xnL−1)+ · · ·+ (xn2 − xn1 ++xn1 > ε+ ε+ · · ·+ ε+ xn1 = Lε+ xn1 > M.

It contradicts the hypothesis that {xn} is bounded above by M. Hence, {xn} is Cauchy. □

Remark. In an ordered field with Archimedean property,

Completeness ⇐⇒ Cauchy completeness
(Every Cauchy sequence converges.)

Remark. So far, we have learned several statements on an ordered field or R:

(1) Completeness

(2) Monotone Sequence Property

(3) Nested Interval Theorem

(4) Least Upper Bound Property

(5) Bolzano-Weierstrass Theorem

(6) Cauchy Criterion

We have proved that

(1)
def⇐⇒ (2), (2)

1.5.4⇒ (3)
1.5.5⇒ (4)

1.5.6⇒ (2), (3)
1.6.5⇒ (5)

1.6.6⇒ (6)
1.6.7⇒ (2)

Any one of the above statements on an order field can imply other statements. Thus, we can
use any one of the statements as the definition of R. (For the statement (4), we should carefully
to define the “interval”).

(7) Archimedean Property

We have the result that

(2)
1.2.28⇒ (7), (7) + Cauchy criterion

1.6.7⇒ (2).

Remark. The above statement (2)−(4) only describe the properties of R [(3) can work on Rn

] since the partial order is necessary. The statements (5) and (6) are well-defined on general
metric spaces. Therefore, we will use Cauchy criterion as the definition of completeness in the
future.
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1.7 Cluster Points and Limit Inferior, Limit Superior

o Cluster Points

Motivation: In the previous section, we have learned some results of convergent sequences and
divergent sequence (Bolzano-Weierstrass). For a sequence {xn},
(1) if lim

n→∞
xn = x, for any given ε > 0, only finitely many terms of {xn} outside the interval

(x − ε, x + ε). Heuristically, all but finitely many terms are clustered near x.

(2) if lim
n→∞

xn , x, there exists ε > 0 such that there are infinitely many terms of {xn} outside
(x − ε, x + ε). In spite of this, it is possible that there still exists infinitely many terms near
x. In this case, a subsequence is also clustered near x.

(3) by Bolzano-Weierstrass Theorem, a bounded and divergent sequence will have two or more
cluster points. (For example, {(−1)n}).

In some situations, those points where sequences are clustered there still to be worthy to study.
Definition 1.7.1. A point x is called a “cluster point” of a sequenc {xn}∞n=1 if for every ε > 0,
there are infinitely many numbers of {xn} within (x − ε, x + ε). (Note that we count xi and x j

separately even if xi = x j).
Remark. (1) The difference between the limit of {xn} and a cluster point of {xn} is that

i. if x is a limit, all tail of {xn} are clustered in neighborhoods of x;

ii. if x is a cluster point, only infinitely many terms of {xn} are clustered in neighborhood
of x.

(2) A limit is also a cluster point, but a cluster point may not be a limit.

Proposition 1.7.2. Let {xn}∞n=1 ⊂ R and x ∈ R. The following statements are equivalent.

(1) x is a cluster ponit of {xn}.

(2) for any ε > 0 and N ∈ N, there exists n > N such that |xn − x| < ε.

(3) there exists a subsequence {xnk} converges to x.

Proof. “(1)⇒ (2)”
For any given N ∈ N, there are only finitely many indies which are smaller than N. By the defi-
nition of a cluster point, for ε > 0 and N ∈ N, there must have n > N such that xn ∈ (x−ε, x+ε)
and hence |xn − x| < ε.

“(2)⇒ (3)”
For n0 = 1 and ε1 = 1. There exists n1 > n0 = 1 such that |xn1 − x| < 1.

Again, for n1 ∈ N and ε2 =
1
2

. There exists n2 > n1 such that |xn2 − x| < 1
2

.

Continue this procedure, we can choose εk =
1
k

and find n1 < n2 < · · · < nk < · · · such that

|xnk − x| < 1
k
.
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Hence, {xnk}∞k=1 is a subsequence of {xn} such that lim
k→∞

xnk = x.

“(3)⇒ (1)”
Since {xnk}∞k=1 converges to x, for ε > 0, there exists K ∈ N such that∣∣xnk − x

∣∣ < ε whenever k ≥ K.

There are infinitely many terms of {xnk} within (x − ε, x + ε). Hence, there are also infinitely
many terms of {xn} withnin (x − ε, x + ε). Then x is a cluster point of {xn}.

□

Proposition 1.7.3. Let {xn}∞n=1 be a sequence in R and x ∈ R. The following statements are
equivalent.

(1) lim
n→∞

xn = x.

(2) {xn}∞n=1 is bounded and x is the only cluster point of {xn}∞n=1.

(3) every proper subsequence of {xn}∞n=1 has a further subsequence which converges to x.

Proof. (Exercise) □

o Liminf and Limsup (下極限與上極限)

Motivation:

(1) In some cases, we only focus on the tail of a sequence {xn} but not the whole sequence.

(2) We may only focus on the behavior of a subsequence of {xn}. We may want to understand
whether the behaviors of the tail of a sequence is bounded by two numbers.

Hence, we can track the supremum and infimum of the tails of {xn}. If

sup{xn}∞n=k − inf{xn}∞n=k ↘ 0 as k → ∞,

then the sequence coverges. Thus, let’s observe the behavior of the sequence {ak} and {bk}where

ak := sup
k≤n<∞

{xn} and bk := inf
k≤n<∞

{xn}.

Definition 1.7.4. Let {xn}∞n=1 be a sequence in R.

(1) The “limit superior of {xn}∞n=1” is the infimum of the seuqence
¶

sup
k≤n<∞

xn

©∞
k=1

. That is,

inf
k∈N

(
sup

k≤n<∞
{xn}

)
or lim

k→∞

(
sup

k≤n<∞
{xn}

)
. Denoted by “lim sup

n→∞
xn” or “ lim

n→∞
xn”.

(2) The “limit infimum of {xn}∞n=1” is the supremum of the seuqence
¶

inf
k≤n<∞

xn

©∞
k=1

. That is,

sup
k∈N

(
inf

k≤n<∞
{xn}

)
or lim

k→∞

(
inf

k≤n<∞
{xn}

)
. Denoted by “lim inf

n→∞
xn” or “ lim

n→∞
xn”.
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Remark. The sequence {ak} is decreasing and {bk} is increasing. Hence, if ±∞ are allowed to
be limits of sequences, lim

k→∞
ak and lim

k→∞
bn always exists. Moreover,

lim
k→∞

(
sup

k≤n<∞
{xn}

)
= inf

k∈N

(
sup

k≤n<∞
{xn}

)
and lim

k→∞

(
inf

k≤n<∞
{xn}

)
= sup

k∈N

(
inf

k≤n<∞
{xn}

)
.

Example 1.7.5. (1) xn = (−1)n. Then sup
n≥k

xn = 1 and inf
n≥k

xn = −1 for every k ∈ N. Then

lim inf
n→∞

xn = inf
k∈N

(
sup
n≥k

xn
)
= 1 and lim sup

n→∞
xn = sup

k∈N

(
inf
n≥k

xn
)
= −1.

(2) xn =
(−1)n

n
. Then sup

n≥k
xn =


1

k + 1
k is odd

1
k

k is even
and inf

n≥k
xn =


−1

k
k is odd

− 1
k + 1

k is even
We

have
lim sup

n→∞
xn = lim

k→∞

(
sup
n≥k

xn
)
= 0 and lim inf

n→∞
xn = lim

k→∞

(
inf
n≥k

xn
)
= 0.

Proposition 1.7.6. Let {xn}∞n=1 be a sequence in R. Then

(1) a = lim inf
n→∞

xn > −∞ if and only if

(i) for ε > 0 there exists N ∈ N such that if n ≥ N, a − ε < xn, and

(ii) for ε > 0 and M ∈ N, there exists n0 ≥ M such that xn0 < a + ε.

(2) b = lim sup
n→∞

xn < ∞ if and only if

(i) for ε > 0 there exists N ∈ N such that if n ≥ N, xn < b + ε, and

(ii) for ε > 0 and M ∈ N, there exists n0 ≥ M such that b − ε < xn0 .

Proof. It suffices to show (1) and the proof of (2) is similar.

(⇒) Since a = lim inf
n→∞

xn = lim
k→∞

(inf
n≥k

xn) > −∞, for given ε > 0, there exists N ∈ N such that

for every k ≥ N,
∣∣ inf

n≥k
xn − a

∣∣ < ε

2
. Hence,
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(i)
inf
n≥k

xn > a − ε whenever k ≥ N.

Then, for n ≥ N, xn ≥ inf
n≥N

xn > a − ε and (i) is proved.

(ii) Since inf
n≥N

xn +
ε

2
< a + ε, for given M > 0, we can choose n0 > max(N,M) such that

xn0 < inf
n≥N

xn +
ε

2
< a + ε and (ii) is proved.

(⇐) Fix ε > 0, from (ii), for every k ∈ N, inf
n≥k

xn < a + ε. Hence, lim inf
n→∞

xn = lim
k→∞

inf
n≥k

xn ≤ a + ε.

Also, for ε > 0 and from (i), inf
n≥N

xn ≥ a − ε. Hence,

lim inf
n→∞

xn = sup
k∈N

inf
n≥k

xn ≥ inf
n≥N

xn ≥ a − ε.

We have for ε > 0,
a − ε ≤ lim inf

n→∞
xn ≤ a + ε.

Since ε is arbitrary positive number, lim inf
n→∞

xn = a. □

Remark. If a = lim inf
n→∞

xn > −∞, then a is the smallest cluster point of {xn}. If b = lim sup
n→∞

xn < ∞,

then b is the largest cluster point of {xn}.

Theorem 1.7.7. Let {xn}∞n=1 be a sequence in R. Then

(1) lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

(2) If {xn} is bounded above by M, then lim sup
n→∞

xn ≤ M.

(3) If {xn} is bounded below by m, then lim inf
n→∞

xn ≥ m.

(4) If lim sup
n→∞

xn = ∞, then {xn} is not bounded above.

(5) If lim inf
n→∞

xn = −∞, then {xn} is not bounded below.

(6) If x is a cluster point of {xn}, then lim inf
n→∞

xn ≤ x ≤ lim sup
n→∞

xn.

(7) If a = lim inf
n→∞

xn is finite, then a is a cluster point.

(8) If b = lim sup
n→∞

xn is finite, then b is a cluster point.

(9) lim
n→∞

xn = x if and only if lim inf
n→∞

xn = lim sup
n→∞

xn = x.

Proof. (Exercise) □

Note. Let S = Q∩[0, 1]. Then S is countable. Therefore, we can write S = {q1, q2, · · · , qn, · · · }.
For p ∈ [0, 1] and ε > 0, there are infinitely many points in S within (p − ε, p + ε). Hence, p is
a cluster point of S . We have the set of all cluster point of S is [0, 1].
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1.8 Some Properties of Rn

Definition 1.8.1. Euclidean n-space, denoted by Rn, consists of all ordered n-tuples of real
numbers.

Rn = R × R × · · · × R =
{

(a1, · · · , an)
∣∣ ai ∈ R for i = 1, · · · , n

}
� R × Rn−1 =

{
(a,b)

∣∣ a ∈ R, b ∈ Rn−1}
� Rk × Rn−k =

{
(a,b)

∣∣ a ∈ Rk, b ∈ Rn−k}.
Definition 1.8.2. We define a binary function (metric) d : Rn × Rn → R by

∥x − y∥ = d(x, y) =

Ã
n∑

i=1

(xi − yi)2

where x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn.

Remark. For x, y, z ∈ Rn,

(1) d(x, y) ≥ 0

(2) d(x, y) = 0 if and only if x = y

(3) d(x, y) = d(y, x)

(4) d(x, y) + d(y, z) ≥ d(x, z) (“triangle inequality”)

Remark. For x, y ∈ Rn,

max
1≤i≤n
|xi − yi| ≤ d(x, y) ≤

n∑
i=1

|xi − yi|.

Definition 1.8.3. Let {xk}∞k=1 be a sequence in Rn. We say that {xk} converges if there exists a
point L ∈ Rn such that for every ε > 0, there exists N ∈ N such that if n ≥ N,

d(xn, L) < ε.

Denote by lim
n→∞

xk = L.

Lemma 1.8.4. Let xk = (x(1)
k , · · · , x(n)

k ) and L = (L1, · · · , Lk). Then

lim
k→∞

xk = L if and only if lim
k→∞

x(i)
k = Li for every i = 1, · · · , k.

Proof. (Exercise) □

Definition 1.8.5. Let {xk}∞k=1 be a sequence in Rn. We say that {xk} is Cauchy if for every ε > 0,
there exists N ∈ N such that if m, n ≥ N, then

d(xm, xn) < ε.

Theorem 1.8.6. Every Cauchy seuqence in Rn converges. Hence, Rn is (Cauchy) complete.
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Proof. (Exercise) □

Definition 1.8.7. We define a “closed interval” in Rn by{
(x1, · · · , xn)

∣∣ ai ≤ xi ≤ bi for every i = 1, · · · , n
}
= [a1, b1] × · · · × [an, bn]

and an “open interval” in Rn by{
(x1, · · · , xn)

∣∣ ai < xi < bi for every i = 1, · · · , n
}
= (a1, b1) × · · · × (an, bn)

Remark. Let I = [a1, b1] × · · · × [an, bn] and J = [c1, d1] × · · · × [cn, dn] be two intervals in Rn.
Then I ⊆ J if and only if [ai, bi] ⊆ [ci, di] for every i = 1, · · · , n.

Theorem 1.8.8. (Nested Interval Theorem) Suppose taht I(k) = [a(k)
1 , b

(k)
1 ] × · · · × [a(k)

n , b
(k)
n ],

k = 1, 2, · · · is a sequence of closed intervals in Rn such that I(k+1) ⊆ I(k) for every k = 1, 2, · · · .
If lim

k→∞
(b(k)

i − a(k)
i ) = 0 for i = 1, · · · , n, then there exists one and only one point x0 which is in

every interval I(k).

Proof. (Exercise) □

Definition 1.8.9. We say that a set S ⊂ Rn is “bounded” if there exists M > 0 such that

S ⊆ [−M,M] × · · · × [−M,M].

A sequence {xk}∞k=1 is “bounded” if the set {xk | k = 1, 2, · · · } is bounded.

Remark. S ⊂ Rn is bounded if and only if therr exists M > 0 such that sup
x∈S

d(x, 0) < M where

0 = (0, 0, · · · , 0) is the origin in Rn.

Theorem 1.8.10. (Bolzano-Weierstrass Theorem) Every bounded sequence in Rn has a conver-
gent subsequence.

Proof. (Exercise) □
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2.1 Metrics and Topology

Motivation: 透過對於數列收斂概念的了解，只要有一個適當計算「距離」方式，我們
可以將此想法推廣至平面或空間，甚至是討論 Rn 中點集的收斂問題。更進一步，若能
在一個集合中定義適當的「距離」，我們亦可以探討集合的收斂現象，例如我們曾經學
習過泰勒多項式收斂至函數的現象。
此外，在集合上定義「距離」，我們可以討論集合上函數的連續、微分、積分等問

題。

o Metric on a Set

Definition 2.1.1. A metric space (M, d) is a set M associated with a function d : M × M → R
such that

(1) d(x, y) ≥ 0 for every x, y ∈ M.

(2) d(x, y) = 0 if and only if x = y.

(3) d(x, y) = d(y, x) for every x, y ∈ M.

(4) d(x, y) + d(y, z) ≥ d(x, z) for every x, y, z ∈ M (Triangle Inequality)

A function d satisfies (1)−(4) is called a “metric” on M.

Example 2.1.2. (1) M ⊆ Rn and d(x, y) :=

Ã
n∑

i=1

(xi − yi)2 where x = (x1, · · · , xn) and y =

(y1, · · · , yn). Then (M, d) is a metric space. (Check)

33
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(2) M ⊆ Rn and d̄(x, y) = max
1≤i≤n
|xi − yi|. Then (M, d̄) is a metric space. (Check)

(3) M is any nonempty set and

d̃(x, y) =
ß

0 if x = y
1 if x , y (discrete metric)

Then (M, d̃) is a metric space. (Check)

(4) Let (M, d) be a metric space. Define ρ(x, y) =
d(x, y)

1 + d(x, y)
. Then ρ is a (bounded) metric on

M.

Example 2.1.3. Let C
(
[0, 1]

)
be the collection of all continuous function on [0, 1]. That is,

C
(
[0, 1]

)
:=

{
f : [0, 1]→ R

∣∣ f is continuous.
}
.

Define d( f , g) = max
x∈[0,1]

∣∣ f (x) − g(x)
∣∣. Then d is a metric on C

(
[0, 1]

)
.

Example 2.1.4. Let M = C
(
[0, 1]

)
and d( f , g) =

î∫ 1

0
| f (x) − g(x)|2 dx

ó1/2
. Then d is a metric

on M.

Example 2.1.5. Let
Mn×m :=

{
n × m matrix with entries in R

}
and

d(A, B) =
∑

1≤i≤n
1≤ j≤m

∣∣ai j − bi j
∣∣.

Then
Ä

Mn×m, d
ä

is a metric space.

Remark. From Example2.1.2, a set M may have many metrics. In fact, different metric will
give rise to different properties for M.

Definition 2.1.6. Let (M, d1) and (M, d2) be two metric spaces. We say that the two metrics d1

and d2 are equivalent if there exist two positive numbers α, β > 0 such that

αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y)

for every x, y ∈ M.

Note. Consider the metric spaces (Rn, d), (Rn, d̄) and (Rn, d̃) where d, d̄ and d̃ are defined in
Example2.1.2.

d̄(x, y) ≤ d(x, y) ≤ nd̄(x, y) for every x, y ∈ Rn.

Hence, d and d̄ are equivalent. However, d and d̃ are not equivalent. (Check)

Definition 2.1.7. Let (M, d) be a metric space and {xn}∞n=1 be a sequence in M. We say that {xn}
converges to x if for every ε > 0, there exists N ∈ N such that

d(xn, x) < ε whenever n ≥ N.
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Definition 2.1.8. Let (M, d) be a metric space. A sequence {xn}∞n=1 in M is said to be “Cauchy”
if for every ε > 0, there exists N ∈ N such that

d(xn, xm) < ε whenever m, n ≥ N.

Proposition 2.1.9. Let d1 and d2 be equivalent metric on M and {xn}∞n=1 be a sequence in M.
Then {xn}∞n=1 converges to x in (M, d1) if and only if {xn}∞n=1 converges to x in (M, d2).

Definition 2.1.10. A metric space (M, d) is said to be “complete” if every Cauchy sequence in
M converges to a limit in M.

Remark. Let d be the discrete metric on a nonempty set M. Then M is complete.(exercise)

o Open Sets

Definition 2.1.11. Let (M, d) be a metric space.
For x ∈ M and r > 0, then r-ball (or r-disc)
with center x and radius r is given by the set{

y ∈ M
∣∣ d(x, y) < r

}
. Denoted by B(x, r) ( or

D(x, r) ).

Remark. For 0 < r1 < r2, B(x, r1) ⊂ B(x, r2).

Example 2.1.12. Let M = R2, x = (x1, x2) and y = (y1, y2). Consider the different metrics on
M.

(1) d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

(2) d1(x, y) = |x1 − y1| + |x2 − y2|.

(3) d2(x, y) = max(|x1 − y1|, |x2 − y2|).
The following figure is the 1-ball B(0, 1) in (R2, d), (R2, d1) and (R2, d2).

(4) d3 =

ß
1 if x , y
0 if x = y . Then B(0, r) =

ß
{0} if r ≤ 1
M if r > 1.
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■ Open Sets

Definition 2.1.13. Let (M, d) be a metric space.
We say that a set U ⊆ M is “open” if for every
x ∈ U there exists r > 0 such that

B(x, r) ⊆ U.

Example 2.1.14. Let (M, d) be a metric space. The r-ball B(x0, r) is open in (M, d).

Proof.

For y ∈ B(x0, r), we want to find r1 > 0 such that
B(y, r1) ⊆ B(x0, r).

Since y ∈ B(x0, r), d(x0, y) < r. Let r1 = r − d(x0, y) > 0.
To show that the ball B(y, r1) ⊂ B(x0, r). For z ∈ B(y, r1),
d(y, z) < r1. By the triangle inequality,

d(x0, z) ≤ d(x0, y) + d(y, z)
< d(x0, y) + r1

= d(x0, y) + r − d(x0, y) = r.
Thus z ∈ B(x0, r). Since z is an arbitrary point in B(y, r1), we have B(y, r1) ⊆ B(x0, r).

Moreover, since y is an arbitrary point in B(x0, r), the ball B(x0, r) is open. □

Proposition 2.1.15. For M = R2 with metric d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2, the set A ={
(x, y) ∈ R2

∣∣ 0 ≤ y < 1
}

is not open in (R2, d).

Proof.

Let u = (0, 0). To prove that no matter how small number ε > 0 is,
the ball B(u, ε) 1 A.

For given ε > 0, the point (0,−ε
2

) ∈ B(u, ε) but (0,−ε
2

) < A. Then
B(u, ε) 1 A. There exists no ball with center u contained in A and
hence A is not open in (R2, d).

□

Example 2.1.16. Let M = R2, d1(x, y) = |x1−y1|+ |x2−y2| and d2(x, y) = max(|x1−y1|, |x2−y2|).
Then the set A =

{
(x, y) ∈ R2

∣∣ x2 + y2 < 1
}

is open in (M, d1) and open in (M, d2).

Proof. (Exercise) □
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Remark. Let d and ρ be equivalent metrics on M. Then U is open in (M, d) if and only if U is
open in (M, ρ).

Proof. (Exercise) □

Proposition 2.1.17. Let (M, d) be a metric space.

(1) The intersection of finitely many open sets is open. That is, if U1, · · · ,Un are open in (M, d),

then
n⋂

i=1

Ui is open.

(2) The union of arbitrary family of open sets is open. That is, letF =
{

Uα

∣∣ Uαis open in M, α ∈ I
}

is a family of open sets, then
⋃
α∈I

Uα is open.

(3) ∅ and M are open in M.

Proof. (Exercise) □

Corollary 2.1.18. Let (M, d) be a metric space with discrete metric. Then every subset of M is
open.

Proof. Let A ⊆ M and a ∈ A. Since d(a, 1
2 ) = {a} ∈ A, the open ball B(a, 1

2 ) ⊆ A. Hence, A is
open. □

Remark. Infinite intersection of open sets may not be open. Consider Un =
(
− 1

n
,

1
n
)
. Then

∞⋂
n=1

Un = {0} is not open in R with usual metric.

Example 2.1.19. Let A ⊆ Rn be an open set and B ⊆ Rn be any set. Then the set

A + B :=
{

a + b
∣∣ a ∈ A and b ∈ B

}
is open.
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Proof.

For p ∈ A + B, there exists a ∈ A and b ∈ B
such that p = a + b.

Since A is open and a ∈ A, there exists r > 0
such that B(a, r) ⊆ A. It sufficies to show that
B(p, r) ⊆ A + B.

For x ∈ B(p, r), x − b ∈ B(a, r) ⊆ A. Thus,
there exists a1 ∈ A such that x − b = a1. Then
x = a1 + b ∈ A + B. Hence, B(p, r) ⊆ A + B and
A + B is open.

□

o Interior Points

Definition 2.1.20. Let (M, d) be a metric space and A ⊆ M be a subset of M.

(1) We call a point x ∈ A an “interior point” of A if there exists δ > 0 such that B(x, δ) ⊆ A.

(2) The “interior” of A is the set of all interior point of A, and is denoted by “int(A)” or “Å”.

Example 2.1.21. Let M = R with the metric d(x, y) = |x − y|. A = [0, 1) and B =
{1

n

∣∣ n ∈ N
}

.

Then Å = (0, 1) and B̊ = ∅.
Note. The interior of a set might be an empty set.

Theorem 2.1.22. Let (M, d) be a metric space and A ⊆ M be a subset of M. Then Å is the
largest open set contained in A. In other word, if U ⊆ A is open (in M) then U ⊆ Å.

Proof. (i) By the definition of the interior of A, Å ⊆ A (Å is contained in A).

(ii) To prove that Å is open.

For x ∈ Å, by the definition, there exists δx > 0 such
that B(x, δx) ⊆ A. We will show that Å =

⋃
x∈Å

B(x, δx)

and then Å is open.
“⊆”: Clearly,

Å =
⋃
x∈Å

{x} ⊆
⋃
x∈Å

B(x, δx).

“⊇”: For y ∈
⋃
x∈Å

B(x, δx), there exists x ∈ Å such

that y ∈ B(x, δx) and hence d(x, y) < δx. Let
ε = δx − d(x, y), then B(y, ε) ⊆ B(x, δx) ⊆ A.
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This implies that y is an interior point of A, that is, y ∈ Å and then
⋃
x∈Å

B(x, δx) ⊆ Å. We

have
Å =
⋃
x∈Å

B(x, δx).

(iii) To prove that every open set contained in A is a subset of Å.

Let U ⊆ A be an open set. For z ∈ U, there exists r > 0 such that B(z, r) ⊆ U ⊆ A. Thus,
z ∈ Å. Since z is an arbitrary point in U, we have U ⊆ Å.

□

Theorem 2.1.23. Let (M, d) be a metric space. The set A ⊆ M is open if and only if A = Å.

Proof. (=⇒) Clearly, Å ⊆ A. Since A is open and Å is the largest open set contained in A, we
have A ⊆ Å and hence A = Å.

(⇐=) This direction is trivial. □

Remark. If A ⊆ M is open, then every point in A is an interior point of A.

Remark. (1) Let A and B be two sets in (M, d). Then

Å ∪ B̊ ⊆ (A ∪ B)◦.

In general, Å ∪ B̊ $ (A ∪ B)◦. For example A = [0, 1) and B = [1, 2].

(2)
{

y ∈ M
∣∣ d(x, y) < r

}
⊆ int
Ä{

y ∈ M
∣∣ d(x, y) ≤ r

}ä
.

The relation is, in general, “$”. For exampe, let d be the discrete metric and r = 1.
Consider M =

{
y ∈ M

∣∣ d(x, y) ≤ 1
}

. Then int
Ä{

y ∈ M
∣∣ d(x, y) ≤ 1}

ä
= M. But{

y ∈ M
∣∣ d(x, y) < 1

}
= {x}.

2.2 Closed Sets, the Closure of Sets, and the Boundary of Sets

o Closed Sets

Definition 2.2.1. Let (M, d) be a metric space. A set F ⊆ M is said to be “closed” if Fc = M\F
is open.
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Remark. F is closed if and only if for every x ∈ Fc, there exists δx > 0 such that B(x, δx) ⊆ Fc.

Remark. The set
{

y
∣∣ d(x, y) ≤ r

}
is close. (Exercise)

Exercise. (1) [0, 1] ⊂ R is closed and R\[0, 1] = (−∞, 0) ∪ (1,∞) is open

(2) S =
{

(x, y) ∈ R2
∣∣ x2 + y2 ≤ 1

}
is closed in

R2.

Proposition 2.2.2. Every point in a metric space is closed. That is, for a metric space (M, d)
and a point x ∈ M, the set {x} is closed in M.

Proof. For x ∈ M, let y ∈ M\{x}. (We want to find r > 0 such that B(y, r) ⊆ M\{x}.)

Since x , y, d(x, y) > 0. Let r =
1
2

d(x, y), then

d(x, y) >
1
2

d(x, y) = r. Thus, x < B(y, r). We
have B(y, r) ⊆ M\{x}. Therefore, M\{x} is open
and {x} is closed.

□

Proposition 2.2.3. Let (M, d) be a metric space.

(1) The union of finitely many closed sets is closed. That is, if F1, · · · , Fn are closed, then
n⋃

i=1

Fi

is closed.

(2) The intersection of arbitrary family of closed sets is closed. That is, let F =
{

Fα

∣∣ Fα is closed, α ∈ I
}

be a family of closed sets. The intersection
⋂
α∈I

Fα is closed.

(3) ∅ and M are closed.

Proof. (1) Let F1, · · · , Fn be closed. Then Fc
1, · · · , Fc

n are open. Since
Ä n⋃

i=1

Fi

äc
=
Ä n⋂

i=1

Fc
ä

is

the intersection of finitely many open sets and hence is open. Thus,
n⋃

i=1

Fi is closed.

(2) Let F =
{

Fα

∣∣ Fα is closed forα ∈ I
}

is a family of closed sets. Then Fc
α is open for α ∈ I.

Then
Ä⋂
α∈I

Fα

äc
=
⋃
α∈I

Fc
α is the union of a family of open sets and hence is open. Therefore,⋂

α∈I

Fα is closed.
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(3) Since ∅c = M and Mc = ∅ are open, ∅ and M are also closed.
□

Corollary 2.2.4. Every set consists of finitely many points is closed.

Proof. (Exercise) □

Remark. The union of infinitely many closed sets may not be closed. For example,

(i) A =
{1

n

∣∣ n ∈ N
}

is not closed since {0} ∈ Ac but {0} is not an interior point of Ac.

(ii)
∞⋃

n=1

[
1
n
, 1 − 1

n
] = (0, 1) is open.

(iii)
∞⋃

n=1

[0, 1 − 1
n

] = [0, 1) is not open and not closed.

o Accumulation Points, Limit Points and Isolated Points

Definition 2.2.5. Let (M, d) be a metric space and A ⊆ M.

(1) A point x ∈ M is called an “accumulation point” of A if for every ε > 0, the open ball
B(x, ε) contains a point y ∈ A and y , x. That is, for every ε > 0,

B(x, ε) ∩
(
A\{x}

)
, ∅.

Example: A = (0, 1), every point in [0, 1] is an accumulation point of A.
Example: A = (0, 1) ∪ {2}, every point in [0, 1] is an accumulation point of A but {2} is not
an accumulation point of A.

(2) A point x ∈ M is called a “limit point” of A if for every ε > 0, the open ball B(x, ε) contains
a point in A. That is,

B(x, ε) ∩ A , ∅.
Example: A = (0, 1) ∪ {2}, every point in [0, 1] ∪ {2} is a limit point of A

(3) A point x ∈ A is called an “isolated point” if
there exists ε > 0 such that

B(x, ε) ∩ A = {x}.

(4) We denote the set of all accumulation points of A by A′ and is called the “derived set” of A.

(5) We denote the set of all limit points of A by A. The set will be called the “closure” of A
later.

Remark. (1) An accumulation point of A may not be in A. For example, let A = (0, 1), the
point {0} is an accumulation point.
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(2) A set A consists of finitely many points has no accumulation point. That is, A′ = ∅.
Question: How about infinitely many points?

Consider Z has no accumulation point and hence Z′ = ∅. On the other hand, let A =
{1

n

∣∣ n ∈ N
}

and A′ = {0}.

(3) Accumulation points are also called “cluster points” in some books.

(4) A′ ⊆ A.

(5) A ⊆ A.

(6) An isoloated point is a limit point but not an accumulation point.

Example 2.2.6. (1) A = (0, 1) ∪ {2}. Then A′ = [0, 1] and A = [0, 1] ∪ {2}.

(2)
{

xn
}∞

n=1 ⊂ R consists of infinitely many distinct points and is bounded. By Bolzano-
Weierstrass Theorem, there exists a convergent subsequence

{
xnk

}∞
k=1, say lim

k→∞
xnk = x0.

Then {x0} is an accumulation point of {xn}∞n=1.

(3) Let (M, d) be a metric space with discrete metric d and A ⊆ M. Then A′ = ∅.

Proposition 2.2.7. If A ⊆ B, then

(1) A′ ⊆ B′.

(2) A ⊆ B.

Proof. (1) Let x ∈ A′. For ε > 0 there exists y , x and y ∈ A such that y ∈ B(x, ε). Since
A ⊆ B, we have y ∈ B. Hence, y is a point in B where x , y and y ∈ B(x, ε). That is, x ∈ B′.
Since x is an arbitrary point in A′, A′ ⊆ B′.

(2) (Exercise)
□

Proposition 2.2.8. Let A ⊆ Rn, then Å ⊆ A′.

Proof. Let x ∈ Å, there exists δ > 0 such that B(x, δ) ⊂ A. For given ε > 0, B(x, δ) ∩ B(x, ε) =
B
(

x,min(δ, ε)
)
⊆ A. Hence, there exist a point y , x, y∈ B

(
x,min(δ, ε)

)
∩ A. This implies that

x is an accumulation point in A. □

Note. The above proposition is true for the usual metric, but is false for the discrete metric.

Definition 2.2.9.

Let (M, d) be a metric space, x ∈ M and A ⊆ M.
We define the distance from {x} to A by

d(x, A) = inf
{

d(x, y)
∣∣ y ∈ A

}
= inf

y∈A
d(x, y).
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Proposition 2.2.10.

Let (M, d) be a metric space and A ⊆ M. Then
x ∈ A if and only if d(x, A) = 0.

Proof. (=⇒) Since x ∈ A is a limit point of A, for every ε > 0, B(x, ε) ∩ A , ∅. Then there
exists z ∈ B(x, ε) ∩ A and hence d(x, z) < ε. The distance

d(x, A) = inf
{

d(x, y)
∣∣ y ∈ A

}
≤ d(x, z) < ε.

Since ε is an arbitrary positive number, we have d(x, A) = 0.

(⇐=) If d(x, A) = 0, for given ε > 0, there exists z ∈ A such that d(x, z) < ε. Thus,
z ∈ B(x, ε) ∩ A and then B(x, ε) ∩ A , ∅. This implies that x ∈ A. □

Remark. Let (M, d) be a metric space and x ∈ A′. Then d(x, A) = 0. But the converse is false.
For example, A = (0, 1) ∪ {2} and hence d

(
{2}, A

)
= 0. But {2} < A′ = [0, 1].

Theorem 2.2.11. Let (M, d) be a metric space and A ⊆ M, then A is closed if and only if A = A.

Proof.

(=⇒) Clearly, A ⊆ A. On the other hand, since A is
closed, for every x ∈ Ac, there exists δ > 0 such that
B(x, δ) ⊆ Ac. That is, B(x, δ) ∩ A = ∅. Therefore, x is not
a limit point of A, i.e. x < A. Then Ac ⊆

(
A
)c and thus

A ⊆ A. We have A = A.

(⇐=) Since A = A, for every x ∈ Ac, x is not a limit point of A. Hence, there exists δ > 0
such that B(x, δ) ∩ A = ∅. That is, B(x, δ) ⊆ Ac. This implies that Ac is open and then A is
closed. □

Theorem 2.2.12. Let (M, d) be a metric space and A ⊆ M. Then A = A ∪ A′.

Proof. (⊆) Let x ∈ A. For every δ > 0, B(x, δ) ∩ A , ∅. If x ∈ A\A, then B(x, δ) ∩
(
A\{x}

)
, ∅.

We have x ∈ A′ and
A =

[(
A\A

)
∪ A

]
⊆ A′ ∪ A.

(⊇) Since A ⊆ A and A′ ⊆ A, we have A ∪ A′ ⊆ A. □

Corollary 2.2.13. If A ⊆ B and B is closed, then A ⊆ B.

Proof. Since A ⊆ B and B is closed, we have A ⊆ B = B. □
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Proposition 2.2.14. Let (M, d) be a metric space and A ⊆ M. Then A\A′ is the collection of all
isolated points of A.
Proof. Let B be the set of all isolated points of A. Clearly,
B ⊆ A\A′.
Let x ∈ A\A′. Then x is not an accumulation point of A.
There exists δ > 0 such that B(x, δ)∩ A = {x}. Hence x is
an isolated point of A and x ∈ B. We have A\A′ ⊆ B. □

Theorem 2.2.15. Let (M, d) be a metric space and A ⊆ M. Then A′ is closed.

Proof. Let x < A′. There exists δ > 0 such that B(x, δ) ∩
(
A\{x}

)
= ∅. (We want to prove

B(x, δ2 ) ⊆
(
A′
)c.)

Assume B(x,
δ

2
) * (A′)c. Then B(x,

δ

2
) ∩ A′ , ∅, say y ∈ B(x,

δ

2
) ∩ A′. Clearly, x , y since

x < A′.

Let ε = min
(δ

2
, d(x, y)

)
. Since y ∈ A′, we have B(y, ε) ∩(

A\{y}
)
, ∅. Thus, there exists z ∈ B(y, ε) ∩

(
A\{y}

)
.

Since d(y, z) < ε = min
(
δ
2 , d(x, y)

)
, we obtain z , x and

d(x, z) ≤ d(x, y) + d(y, z) <
δ

2
+
δ

2
= δ.

Therefore, it gives a contradiction that z ∈ B(x, δ) ∩(
A\{x}

)
. This implies that B(x, δ2 ) ⊆ (A′)c. We have (A′)c

is open and A′ is closed.
□

Alternating Proof:
Let x < A′. Then there exists δ > 0 such that B(x, δ) ∩

(
A\{x}

)
= ∅. Therefore, A ⊆(

B(x, δ)\{x}
)c.

Since B(x, δ)\{x} = B(x, δ)∩{x}c is open,
(
B(x, δ)\{x}

)c is closed and thus A ⊆
(
B(x, δ)\{x}

)c.
We have A ∩

(
B(x, δ)\{x}

)
= ∅.

Also, since A = A ∪ A′, A′ ∩
(
B(x, δ)\{x}

)
= ∅ and hence B(x, δ) ⊆

(
A′
)c. We have that x is

an interior point of
(
A′
)c and A′ is closed.

o Closure

Definition 2.2.16. Let (M, d) be a metric space and A ⊆ M. The closure of A is the intersection
of closed set containing A, and is denote by cl(A). In other words,

cl(A) =
⋂

F:closed
A⊆F

F.

Remark. cl(A) is the smallest closed set containing A.
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Proposition 2.2.17. Let (M, d) be a metric space and A ⊆ M.

(1) A ⊆ cl(A).

(2) A is closed if and only if A = cl(A).

Proof. (1) The proof is direct by definition.

(2) (=⇒) Since cl(A) is the smallest set containing A and A is closed and A ⊆ A, cl(A) ⊆ A.

Also, A ⊆ cl(A) by definition of cl(A) and hence A = cl(A).

(⇐=) Since cl(A) is closed and A = cl(A), we have A is closed.
□

Proposition 2.2.18. Let (M, d) be a metric space. Then cl(A) = A.

Proof. (⊇) Since cl(A) is closed and A ⊆ cl(A), we have A ⊆ cl(A).

(⊆) Clearly, A ⊆ A. (We want to prove that A is closed.)
For x < A = A ∪ A′, there exists r > 0 such that B(x, r) ∩ A = ∅ and hence A ⊆

(
B(x, r)

)c.

Since
(
B(x, r)

)c is closed, by the definition of the closure, A ⊆
(
B(x, r)

)c. Then B(x, r) ∩ A = ∅
and thus B(x, r) ⊆ A

c
and x is an interior point of A

c
. We obtain that A

c
is open and A is closed.

Since cl(A) is the smallest closed set containing A, we have cl(A) ⊆ A. □

Remark. In a metric space (M, d) and A ⊆ M, since A = cl(A), we also call “A the closure of
A”.

Example 2.2.19. Let A = [0, 1) ∪ {2}. Then cl(A) = [0, 1] ∪ {2}.
Remark.

A = A ∪ A′ = the collection of all limit points of A.

cl(A) = the intersection of all closed sets containing A.
= the smallest closed set containing A.

A = cl(A).

Proposition 2.2.20. In a metric space (M, d), x ∈ cl(A) if and only if d(x, A) = inf
{

d(x, y)
∣∣ y ∈

A
}
= 0.

Proof. (Exercise) □

Note. In a metric space (M, d), a subset A ⊆ M is dense in A.

o Dense
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Definition 2.2.21. Let (M, d) be a metric space and A ⊆ B ⊆ M. We say that A is “dense” in B
if

A ⊆ B ⊆ A.

Remark. (1) If A is dense in B, then for every x ∈ B and every ε > 0, B(x, ε) ∩ A , ∅.

(2) A is dense in A.

Example 2.2.22. Q is dense in R.

o Boundary

Definition 2.2.23. Let (M, d) be a metric space and A ⊆ M. The “boundary” of A is the
intersection of A and Ac, and denoted by ∂A. Hence,

∂A = A ∩ Ac.

Remark. (1) ∂A is closed since ∂A = A ∩ Ac is an intersection of closed sets.

(2) ∂A = ∂(Ac).

Proposition 2.2.24. Let (M, d) be a metric space and A ⊆ M. Then x ∈ ∂A if and only if for
every ε > 0,

B(x, ε) ∩ A , ∅ and B(x, ε) ∩ Ac , ∅.

Proof. By the definition of limit points, a point x ∈ ∂A = A ∩ Ac is on the boundary of A if and
only if for every ε > 0

B(x, ε) ∩ A , ∅ and B(x, ε) ∩ Ac , ∅.

□

Proposition 2.2.25. Let (M, d) be a metric space and A ⊆ M. Then ∂A = A\Å.

Proof. (⊆) Let x ∈ ∂A = A ∩ Ac. Since x ∈ Ac, for every ε > 0, B(x, ε) ∩ Ac , ∅. Then
B(x, ε) * A which implies that x < Å. Thus, x ∈ A\Å. We obtain ∂A ⊆ A\Å.

(⊇) Let x ∈ A\Å. Then x < Å. For every ε > 0, B(x, ε) * A. Therefore, B(x, ε) ∩ Ac , ∅
which implies that x ∈ Ac. We have x ∈ A ∩ Ac = ∂A and hence A\Å ⊆ ∂A. □

Example 2.2.26. Let M = R be a space with metric d(x, y) = |x − y| and A = [0, 1] ∩ Q. Then

A′ = [0, 1], A = [0, 1], Å = ∅ and ∂A = A\Å = [0, 1].

Example 2.2.27. Let (M, d) be a metric space with discrete metric and A ⊆ M.

(1) A is open. (Every set is open.)

(2) A is closed. (Ac is open.)

(3) A = Å, (A is open.)
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(4) A′ = ∅.

(5) A = A. (A is closed.)

(6) ∂A = A\Å = ∅.

Remark. A ⊆ B��HH⇒ ∂A ⊆ ∂B.

(i) Let A = (0, 1) and B = [0, 1]. Then ∂A = {0, 1} = ∂B.

(ii) Let A = Q ∩ [0, 1] and B = [0, 1]. Thne ∂B = {0, 1} ⊆ [0, 1] = ∂A.

(iii) Let A = [1, 2] and B = [0, 3]. Then ∂A = {1, 2}, ∂B = {0, 3} and ∂A ∩ ∂B = ∅.

Remark. (1) ∂A * A′. For example, A = {0}, then A′ = ∅ and ∂A = {0}.

(2) ∂A , ∂(Å). For example, A = [0, 1] ∪ {2}, then ∂A = {0, 1, 2}, Å = (0, 1) and ∂Å = {0, 1}.

Proposition 2.2.28. Let (M, d) be a metric space and A, B ⊆ M. Then

(1) ∂(A ∪ B) ⊆ ∂A ∪ ∂B, and

(2) ∂(A ∩ B) ⊆ ∂A ∪ ∂B.

Proof. (1)

x ∈ ∂(A ∪ B) if and only if for every ε > 0, B(x, ε) ∩ (A ∪ B) , ∅ and
B(x, ε) ∩ (A ∪ B)c = B(x, ε) ∩ (Ac ∩ Bc) , ∅.

Hence, either (i) B(x, ε) ∩ A , ∅ and B(x, ε) ∩ Ac , ∅, or (ii) B(x, ε) ∩ B , ∅ and
B(x, ε) ∩ Bc , ∅. Case(i) implies x ∈ ∂A and case (ii) implies x ∈ ∂B. Thus, x ∈ ∂A ∪ ∂B
and ∂(A ∪ B) ⊆ ∂A ∪ ∂B.

(2) By (1),
∂(A ∩ B) = ∂

[
(A ∩ B)c] = ∂(Ac ∪ Bc) ⊆ ∂Ac ∪ ∂Bc = ∂A ∪ ∂B

□

2.3 Sequences and Completeness

o Sequence

Definition 2.3.1. Let (M, d) be a metric space and {xn}∞n=1 be a sequence in M.

(1) We say that {xn}∞n=1 “converges to x” if for every ε > 0, there exists N ∈ N such that

d(xn, x) < ε whenever n ≥ N.

Denoted by lim
n→∞

xn = x or xn → x as n→ ∞.
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(2) {xn}∞n=1 is said to be “Cauchy” if for every ε > 0 there exists N ∈ N such that

d(xn, xm) < ε whenever m, n ≥ N.

(3) {xn}∞n=1 is said to be “bounded” if there is a point x0 ∈ M and a number R > 0 such that

d(xn, x0) < R for every n ∈ N.

(4) (M, d) is said to be “complete” if every Cauchy sequence in M converges to a limit in M.

Remark. (1) Every Cauchy sequence is bounded.

(2) Every convergent sequence is Cauchy.

(3) If a subsequence of a Cauchy sequence converges, then this sequence converges.

(4) Let
{

xk
}∞

k=1 be a sequence in Rn where xk = (x(1)
k , · · · , x(n)

k ). Then
{

xk
}∞

k=1 is convergent
(Cauchy) in Rn if and only if

{
x(i)

k }∞k=1 is convergent (Cauchy) in R for i = 1, 2, · · · , n.

Componentwise convergenece ⇐⇒ Convergence

(5) Rn is complete.

Proposition 2.3.2. Let (M, d) be a metric space and A ⊆ M. Let x ∈ M be a point. Then x ∈ A
if and only if there exists a sequence {xn}∞n=1 ⊆ A such that lim

n→∞
xn = x.

Proof. (=⇒) Since x ∈ A, for every n ∈ N, B(x, 1
n ) ∩ A , ∅. We can choose any point in

B(x, 1
n ) ∩ A and denote this point xn. (We will prove that the sequence {xn}∞n=1 converges to x.)

Given ε > 0, choose N ∈ N such that 1
N < ε. Then, for n ≥ N, we have xn ∈ B(x, 1

n ) and
hence

d(xn, x) <
1
n
< ε.

Therefore, the sequence {xn}∞n=1 converges to x.

(⇐=) Let {xn}∞n=1 ⊆ A converges to x. For every ε > 0, there exists N ∈ N such that
d(xn, x) < ε when n ≥ N. Therefore, xN ∈ B(x, ε) ∩ A. Since ε is an arbitrary positive number,
we have x ∈ A.

□

Proposition 2.3.3. Let (M, d) be a metric space and A ⊆ M. Let y ∈ M be a point. Then y ∈ A′

if and only if there exists a sequence {yn}∞n=1 ⊆ A converges to y where yn , y for every n ∈ N.

Proof. (Exercise) □

Remark. A is closed if and only if
A = cl(A) = A

if and only if

A =
¶

x ∈ M
∣∣∣ there exists {xn}∞n=1 ⊆ A such that lim

n→∞
xn = x

©
.
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Proposition 2.3.4. Let (M, d) be a metric space and A ⊆ M. Then A is closed if and only if
every convergent sequence {xn}∞n=1 ⊆ A converges to a limit in A.

Proof. (=⇒) Since A is closed, A = A. Let {xn}∞n=1 ⊆ A be a convergent sequence, say
lim
n→∞

xn = x. (We want to prove x ∈ A.)
For given ε > 0, there exists N ∈ N such that d(xn, x) < ε whenever n ≥ N. That is,

xn ∈ B(x, ε) ∩ A. Hence, B(x, ε) ∩ A , ∅ and this implies that x ∈ A = A.

(⇐=) To prove that Ac is open. (That is, for every y ∈ Ac, there exists δy > 0 such that
B(y, δy) ⊆ Ac which is equivalent to B(y, δy) ∩ A = ∅.)

Assume that Ac is not open. There exists y ∈ Ac such that B(y, 1
n ) * A for every n ∈ N and

then B(y, 1
n ) ∩ A , ∅. Choose yn ∈ B(y, 1

n ) ∩ A for every n ∈ N. Then {yn} is a sequence in A
which conveges to y ∈ Ac. It contradicts the hypothesis that {yn} converges in A.

Therefore , there exists N ∈ N such that B(y, 1
N ) ∩ A = ∅. Then B(x, 1

N ) ⊆ Ac. We have Ac is
open and A is closed. □

Example 2.3.5. Q is not closed in R.
Let {xn}∞n=1 ⊆ Q such that xn →

√
2 as n → ∞. Then {xn}∞n=1 is a convergent sequence in R

but the limit is not in Q.

Theorem 2.3.6. Let (M, d) be a complete metric space and N ⊆ M be a closed subset. Then
(N, d) is complete.

Proof. Let {xn}∞n=1 be a Cauchy sequence in N. (To prove that {xn}∞n=1 converges in N.)
Since {xn}∞n=1 ⊆ N ⊆ M is Cauchy and (M, d) is complete, there exists x0 ∈ M such that

lim
n→∞

xn = x0. Moreover, since N is closed, x0 ∈ N. Hence, {xn}∞n=1 converges in N and (N, d) is
complete. □

Theorem 2.3.7. Let (M, d) be a metric space and A is dense in M. (That is, A ⊆ M ⊆ A.) If
every Cauchy sequence in A converges in M, then (M, d) is complete.

Proof. Let {xn}∞n=1 be a Cauchy sequence in M. (To prove that {xn}∞n=1 is convergent in M.)

Step1: (To construct a new sequence {yn}∞n=1 in A which is Cauchy by using the denseness of
A.)

Since A is dense in M, for every n ∈ N, B(xn,
1
n ) ∩ A , ∅, say yn ∈ B(xn,

1
n ) ∩ A. Hence,

{yn}∞n=1 is a sequence in A.
Now, to show that {yn}in=1n f ty is Cauchy. Since {xn}∞n=1 is Cauchy, for given ε > 0, there

exist N ∈ N such that
d(xm, xn) <

ε

3
whenever m, n ≥ N.

Choose N1 ∈ N such that N1 > N and 1
N1
< ε

3 . Then if m, n ≥ N1,

d(ym, yn) ≤ d(ym, xm) + d(xm, xn) + d(xn, yn)

≤ 1
n
+ d(xm, xn) +

1
m

≤ 1
N
+
ε

3
+

1
N
< ε.
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Hence, {yn} is Cauchy.

Step2: Since {yn}∞n=1 is Cauchy in A, by the hypothesis, {yn}∞n=1 converges in M. That is, there
exists x0 ∈ M such that lim

n→∞
yn = x0.

Step3: (To prove taht lim
n→∞

xn = x0.)

Since lim
n→∞

yn = x0, for every ε > 0, there exists K ∈ N such that 1
K < ε

2 and

d(yn, x0) <
ε

2
whenever n ≥ K.

Therefore, if n ≥ K,

d(xn, x0) ≤ d(xn, yn) + d(yn, x0) <
1
n
+
ε

2
≤ 1

K
+
ε

2
<
ε

2
+
ε

2
= ε.

Then {xn}∞n=1 converges to x0 and hence (M, d) is complete. □

■ Cluster points
Definition 2.3.8. Let {xn}∞n=1 be a sequence in a metric space. We say that x is a “cluster point”
of {xn}∞n=1 if there exists a subsequence {xnk}∞k=1 of {xn}∞n=1 converging to x.

Example 2.3.9. 1 and −1 are cluster points of the sequence {(−1)n}∞n=1.

Proposition 2.3.10. If {xn}∞n=1 is a sequence in a metric space (M, d), then

(1) x is a cluster point of {xn}∞n=1 if and only if for every ε > 0 and N ∈ N, there exists n ≥ N
such that d(xn, x) < ε.

(2) lim
n→∞

xn = x if and only if every subsequence of {xn}∞n=1 converges to x.

Proof. (Exercsie) □

Theorem 2.3.11. The collection of all cluster points of a sequence is clsoed.

Proof. Let {xn}∞n=1 ⊆ M be a sequence and A =
{

x
∣∣ x is a cluster point of {xn}∞n=1

}
. For y < A,

(that is, y is not a cluster point of {xn}∞n=1), there exists ε > 0 such that B(y, ε)∩
{

xn
∣∣ n ∈ N

}
= ∅.

For z ∈ B(y, ε), we want to prove that z < A.
Choose r = 1

2

(
ε − d(y, z)

)
. Then B(z, r) ⊆ B(y, ε). Hence, B(z, r) ∩

{
xn

∣∣ n ∈ N
}
= ∅. This

implies that z is not a cluster point of {xn}∞n=1. Therefore, B(y, ε) ∩ A = ∅. Then Ac is open and
A is closed.

□

2.4 Compact Sets

o Idea:

Some important results and properties only applied on the closed interval [a, b] ⊂ R. For
example,
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(1) Every sequence has a subsequence which converges to a limit in [a, b].

(2) Every open cover has a finitely many subcover.

(3) closed and bounded.

(4) Extreme Value Theorem

(5) Uniform Continuity.

Question: In a metric space (M, d), is there any set which has some similar properties?

o Sequentially Compact

Definition 2.4.1. Let (M, d) be a metric space. A subset K ⊆ M is called “sequentially compact”
if every sequence in K has a subsequence which converges to a point in K.

Example 2.4.2. [a, b] ⊂ R is sequentially compact. (a, b) is not sequentially compact.

Proposition 2.4.3. Any closed and bounded set in (R, | · |) is sequentially compact.

Proof. Let A be a closed and bounded set in (R, | · |) and {xn}∞n=1 ⊆ A. Hence, {xn}∞n=1 is bounded.
By Bolzano-Weierstrass theorem, {xn}∞n=1 has a subsequence {xnk}∞k=1 which converges to a

point x0. Moreover, since A is closed, x0 ∈ A and thus A is sequentially compact. □

Proposition 2.4.4. Let (M, d) be a metric space and K ⊆ M be sequentially compact. If E is an
infinite subset of K, then E has an accumulation point in K. That is, E′ ∩ K , ∅.

Proof. (Exercise) □

Remark. In general, a closed and bounded set in a metric space (M, d) may not be sequentially
compact. For example,

(1) Consider the space C
(
[0, 1]

)
=
{

f
∣∣ f : [0, 1]→ R is continuous

}
with metric

d( f , g) = max
x∈[0,1]

| f (x) − g(x)|.

Then
Ä
C
(
[0, 1]

)
, d
ä

is a metric space. Let f (x) ≡ 0 on [0, 1]. Consider the set

B( f , 2) =
{

g
∣∣ g : [0, 1]→ R is continuous, max

x∈[0,1]
|g(x) − f (x)| < 2

}
.

Then B( f , 2) is a closed and bounded set in C
(
[0, 1]

)
.

Let fn(x) =


0 if x ∈ [0, 1

2n+1 ]
2n+2(x − 1

2n+1 ) if x ∈ [ 1
2n+1 ,

3
2n+2 ]

1 − 2n+2(x − 3
2n+2 ) if x ∈ [ 3

2n+2 ,
1
2n ]

0 if x ∈ [ 1
2n , 1]

. Then d( fn, fm) = max
x∈[0,1]

∣∣ fm(x) − fn(x)
∣∣ = 1

for every m , n. Therefore, { fn}∞n=1 is a sequence in B( f , 2), but there exists no convergent
subsequence since { fn}∞n=1 is not Cauchy. The set B( f , 2) is not sequentially compact.
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(2) Let d be the discrete metric. The sequence {n}∞n=1in (R, d) is closed and bounded but there
exists no convergent subsequence.

Proposition 2.4.5. Let (M, d) be a metric space and K ⊆ M be sequentially compact. Then K
is closed and bounded.

Proof. (Closed) To prove that K contains all its limit points. That is, if {xn}∞n=1 ⊆ K converges
to x0 then x0 ∈ K.

Let {xn}∞n=1 ⊆ K be a sequence which converges to x0. Since K is sequentially compact,
{xn}∞n=1 contains a subsequence {xnk}∞k=1 which converges to a point in K, say lim

k→∞
xnk = y0 ∈ K.

Since {xn}∞n=1 converges to x0, we have

x0 = lim
n→∞

xn = lim
k→∞

xnk = y0.

Hence x0 ∈ K and K is closed.

(Bounded) Assume that K is not bounded. Choose a point x1 ∈ K. There exists a point
x2 < B(x1, 1). Again, there exists x3 < B

(
x1, d(x1, x2) + 1

)
since K is not bounded. Continue

this process, we can find a sequence {xn}∞n=1 ⊂ K such that

d(x1, xn) > d(x1, xn−1) + 1 for n = 2, 3, · · ·

Hence, d(xn, xm) > 1 for every m , n. The sequence {xn}∞n=1 cannot contain a convergent subse-
quence and this contradicts the sequentially compactness of K. We obtain that K is bounded. □

Remark. In a metric space (M, d),

Sequentially Compact =⇒ Closed and Bounded
��XX⇐=

In particular, in (Rn, ∥ · ∥), the converse “⇐=” holds.

Corollary 2.4.6. If K ⊆ R is sequentially compact, then inf K ∈ K and sup K ∈ K.

Proof. Since K ⊆ R is sequentially compact, K is closed and bounded in R. Hence, −∞ <
inf K ≤ sup K < ∞.

Let {xn}∞n=1 ⊆ K be a sequence which converges to inf K. Since K is closed, inf K = lim
n→∞

xn ∈ K.
Similarly, sup K ∈ K. □
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Theorem 2.4.7. Let (M, d) be a metric space and K ⊆ M be sequentially compact. Then every
Cauchy sequence in K is convergent in K.

Proof. Let {xn}∞n=1 ⊆ K be a Cauchy sequence. Then {xn}∞n=1 contains a convergent subsequence
{xnk}∞k=1 with limit in K, say lim

k→∞
xnk = x ∈ K.

Since {xn}∞n=1 is Cauchy, {xn}∞n=1also converges to x.
□

o Compact Sets

Definition 2.4.8. Let (M, d) be a metric space and A ⊆ M.

(1) We say that a collection of sets
{

Uα

∣∣ α ∈ I
}

is a cover of A if A ⊆
⋃
α∈I

Uα.

(2) In particular, if all Uα’s are open sets, we say that
{

Uα

}
α∈I is an “open cover” of A.

(3) Let
{

Uα

}
α∈I be a cover of A. We say that

{
Uα

∣∣ α ∈ J
}

is a “subcover” of
{

Uα

∣∣ α ∈ I
}

if

(i)
{

Uα

}
α∈J ⊆ {Uα

}
α∈I

(ii)
{

Uα

}
is a cover of A,

(4) We say that
{

Uα

∣∣ α ∈ I
}

is a “finite cover” of A if

(i)
{

Uα

∣∣ α ∈ I
}

is a cover of A

(ii) the number of {Uα

∣∣ α ∈ I
}

is finite.

Definition 2.4.9. (Compact) Let (M, d) be a metric space. A set K ⊆ M is called “compact” if
every open cover of K contains a finite subcover.

Example 2.4.10. [a, b] ⊂ (R, | · |) is compact and (a, b) ⊂ (R, | · |) is not compact.

Let Un = (a + 1
n , b −

1
n ). Then (a, b) ⊆

∞⋃
n=1

Un. But there is no finite subcover of {Un}∞n=1

which covers (a, b).

Lemma 2.4.11. Every compact set in a metric space is closed and bounded.

Proof. (Closed) Let (M, d) be a metric space and K ⊆ M be compact. Let x ∈ Kc. (We want to
prove that there exists r > 0 such that B(x, r) ⊆ Kc.)

Since x ∈ Kc, for every y ∈ K, choose 0 < δy <
1
2d(x, y). Then B(x, δy) ∩ B(y, δy) = ∅.

Hence,
{

B(y, δy)
}

y∈K is an open cover of K. That is, K ⊆
⋃
y∈K

B(y, δy).
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Since K is compact, there exists a finite subcover of K, say K ⊆
N⋃

i=1

B(yi, δyi). Let = min(δy1 , · · · , δyN ).

Since B(x, δyi) ∩ B(yi, δyi) for every i = 1, 2, · · · ,N, we haveÄ N⋂
i=1

B(x, δyi)
ä

︸              ︷︷              ︸
=B(x,r)

∩
Ä N⋃

i=1

B(yi, δyi)︸             ︷︷             ︸
⊇K

= ∅.

Therefore, B(x, r) ∩ K = ∅ and then B(x, r) ⊆ Kc. This implies that x is an interior point of Kc.
We have Kc is open and K is closed.

(Bounded) Since K ⊆
⋃
x∈K

B(x, 1),
{

B(x, 1)
}

x∈K is an open cover of K. The compactness of K

implies that there exists x1, x2, · · · , xN ∈ K such that K ⊆
N⋃

i=1

B(xi, 1). Let M = max
1≤i≤N

d(x1, xi) + 1.

Then for y ∈ K, y ∈ B(xi, 1) for some i ∈ {1, · · · ,N}. We have

d(x1, y) ≤ d(x1, xi) + d(xi, y) ≤ M.

Hence, K ⊆
N⋃

i=1

⊆ B(x1,M) and K is bounded.

□

Remark. In a metric space,

Compactness =⇒ Closedness and Boundedness
��XX⇐=
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Example 2.4.12. Consider the discrete metric d on R. R is closed and bounded. Observe

that
⋃
x∈R

B(x,
1
2

) ⊇ R. But
{

B(x, 1
2 )
}

x∈R cannot contain a finite subcover of R. Hence, R is not

compact.

Lemma 2.4.13. Every closed subset in a compact set is compact.

Proof. Let K be a compact set and F ⊆ K be a closed subset of K. Let {Uα}α∈I be an open cover
of F. (We want to prove that {Uα}α∈I contains a finite subcover of F.)

Since F is closed , Fc is open. Define Vα = Uα ∪ Fc for all α ∈ I. Then Vα is open for every
α ∈ I since Uα and Fc are open. Consider

K ⊆ F ∪ Fc ⊆
Ä⋃
α∈I

Uα

ä
∪ Fc =

⋃
α∈I

(
Uα ∪ Fc) =⋃

α∈I

Vα.

Then {Vα}α∈I is an open cover of K. Since K is compact, {Vα}α∈I contains a finite subcover of K,
say

F ⊆ K ⊆
N⋃

i=1

Vi =
Ä N⋃

i=1

Ui

ä
∪ Fc.

Hence, F ⊆
N⋃

i=1

Ui and F is compact. □
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Remark. In a general metric space, not all closed set is compact. For exmaple, (R, | · |) is closed
but not compact.

Even a closed and bounded set in a general metric space may not be compact. For example,
(R, d) with discrete metric d.

■ Heine-Borel Theorem

Lemma 2.4.14. [a, b] ⊆ R is compat.

Proof. Assume that [a, b] is not compact. There there exists an open cover {Uα}α∈I of [a, b] := I0

which does not contain a finite subcover. Then at least one of [a, a+b
2 ] and [ a+b

2 , b] cannot be cov-
ered by finitely many elements in {Uα}α∈I . We call such an interval I1 = [a1, b1]. Then I1 ⊆ I0

and |I1| = 1
2 |I0|.

Again, at least one of [a1,
a1+b1

2 ] and [ a1+b1
2 , b1] cannot be covered by finitely many elements

in {Uα}α∈I . We call such an interval I2 = [a2, b2]. Then I2 ⊆ I1 and |I2| = 1
2 |I1|.

Continue this process, we can choose

· · · ⊆ Ik+1 ⊆ Ik ⊆ · · · ⊆ I1 ⊆ I0 and |Ik+1| =
1
2
|Ik|

such that each Ii connot be covered by finitely many elements of {Uα}α∈I .

By Nested Interval Theorem, there exists x0 ∈ Ik for every k ∈ N. Since [a, b] ⊆
⋃
α∈I

Uα,

there exists α0 ∈ I such that x ∈ Uα0 . Since Uα0 is open, there exists δ > 0 such that (x−δ, x+δ) ⊆
Uα0 . Also, lim

k→∞
|Ik| = 0. There exists N ∈ N such that if k ≥ N, |Ik| < δ

2 . This implies that
Ik ⊆ (x−δ, x+δ) ⊆ Uα0 . It contradicts that each Ik cannot be covered by finitely many subcover.
Hence, [a, b] is compact. □

Remark. Every n-cell [a1, b1] × · · · × [an, bn] ⊆ Rn is compact.

Corollary 2.4.15. Every closed and bounded subset in R (or Rn) is compact.

Proof. Let K ⊆ R be closed and bounded. There exists M > 0 such that K ⊆ [−M,M]. Since
[−M,M] is compact and K is a closed subset of [−M,M], we have K is compact.

□

Theorem 2.4.16. (Heine-Borel Theorem) Let S be a subset of Rn. Then S is closed and bounded
if and only if S is compact.

Corollary 2.4.17. If F is closed and K is compact, then F ∩ K is compact.

Proof. Since K is compact, it is closed. Also, F is closed and hence F ∩ K is closed. Then
F ∩ K ⊆ K is a closed subset of K and it is also compact.

□
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o Finite Intersection Property

Definition 2.4.18. Let (M, d) be a metric space, A ⊆ M and {Fα}α∈I be a collection of subsets
of M.

(1) We say that {Fα}α∈I have the “finite intersection property” if the intersection over any finite
subcollection of {Fα}α∈I is nonempty. That is,⋂

α∈J

Fα , ∅ for any finite subcollection J ⊆ I.

(2) {Fα}α∈I is said to have the “finite intersection property for A” if the intersection over any
finite subcollection of {Fα}α∈I with A is nonempty. That is,Ä⋂

α∈J

Fα

ä
∩ A , ∅ for any finite subcollection J ⊆ I.

Theorem 2.4.19. Let (M, d) be a metric space and {Kα}α∈I be a collection of compact sets in
M. If {Kα}α∈I have the finite intersection property, then⋂

α∈I

Kα , ∅.

Proof. Fix a member K1 of {Kα}α∈I . Assume that K1 ∩
Ä ⋂
α∈Iα,1

Kα

ä
=
⋂
α∈I

Kα = ∅.

Then
K1 ⊆

Ä⋂
α∈I
α,1

Kα

äc
=
⋃
α∈I
α,1

Kc
α.

Since Kα is compact for α ∈ I, it is closed and
hence Kc

α is open. The collection
{

Kc
α

}
α∈I
α,1

is an
open cover of K1.

Since K1 is compact,
{

Kα

}
α∈I
α,1

has a finite subcover of K1, say

K1 ⊆
N⋃

i=1

Kc
αi
=
Ä N⋂

i=1

Kαi

äc
.

Hence, K ∩
Ä N⋂

i=1

Kαi

ä
= ∅. It contradicts that {Kα}α∈I has the finite intersection property. Hence,

⋂
α∈I

Kα , ∅.

□
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Remark. The result is false if not all {Kα}α∈I are compact. For example, Kn = (0,
1
n

). Then

{Kn}∞n=1 finite intersection property, but
∞⋂

n=1

Kn = ∅.

Theorem 2.4.20. Let (M, d) be a metric space and K ⊆ M. Then K is compact if and only if
every collection of closed sets with the finite intersection property for K has nonempty intersec-
tion with K. That is, for a collection of closed sets {Fα}α∈I , if K ∩

Ä⋂
α∈J

Fα

ä
, ∅ for any finite

subcollection J then K ∩
Ä⋂
α∈I

Fα

ä
, ∅.

Proof. (=⇒) Define Kα := K ∩ Fα. Then Kα is compact and {Kα}α∈I has finite intersection
property. Then ⋂

α∈I

Kα = K ∩
Ä⋂
α∈I

Fα

ä
, ∅.

(⇐=) Let
{

Uα

}
α∈I be an open cover of K. That is, K ⊆ ⋃α∈I Uα. Then

K ∩
Ä⋃
α∈I

Uα

äc
= K ∩

Ä⋂
α∈I

Uc
α

ä
= ∅.

Since Uα is open for α ∈ I, Uc
α is closed for α ∈ I. By the hypothesis, the collection

{
Uc
α

}
α∈I

does not have finite intersection property for K. That is, there exists a finite subcollection{
Uc
α

}
α∈J such that

∅ = K ∩
Ä⋂
α∈J

Uc
α

ä
= K ∩

Ä⋃
α∈J

Uα

äc
.

Hence, K ⊆ ⋃α∈J Uα and K is compact. □

Example 2.4.21. K = (0, 1), F j = [−1, 1
j ]. For any finite subcollection of

{
F j
}

j∈N, say{
F j1 , F j2 , · · · , F jN

∣∣ j1 < j2 < · · · < jN
}

. Then

K ∩
Ä N⋂

i=1

F ji

ä
= [0,

1
jn

] , ∅.

But K ∩
Ä ∞⋂

i=1

F ji

ä
= (0, 1) ∩ [−1, 0] = ∅. Hence, K is not

compact.

Theorem 2.4.22. If E is an infinite subset of a compact set K, then E has an accumulation point
in K. (That is, E′ ∩ K , ∅.)
Proof.

Assume that E′ ∩ K = ∅. Then for every y ∈
K, y < E′, there exists δy > 0 such that K ∩Ä

B(y, δy)\{y}
ä
= ∅. Therefore, B(y, δy) contains

at most one element in E (namely, y if y ∈ E.)
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Since E contains infinitely many elements, E cannot be covered by any finite collecction
of

{
B(y, δy)

}
y∈K . On the other hand, since K ⊆

⋃
y∈K

B(y, δy) and K is compact, there exists

y1, · · · , yN ∈ K such that
N⋃

i=1

B(yi, δyi) ⊇ K ⊇ E. It contradicts the above argument that K cannot

be covered by
{

B(y, δy)
}

y∈K . Hence, E′ ∩ K , ∅.
□

Theorem 2.4.23. If {Kn}∞n=1 is a sequence of nonempty compact sets in a metric space and

Kn+1 ⊆ Kn for n = 1, 2, · · · , then
∞⋂

n=1

Kn , ∅.

Proof. (Exercise) □

Corollary 2.4.24. Let {Uk}∞k=1 be a collection of open sets in a metric space (M, d) such that

Uk ⊆ Uk+1 and Uc
k is compact for all k ∈ N. Then

∞⋃
k=1

Uk , M.

Proof. Since Uk ⊆ Uk+1 for all k ∈ N, Uc
k+1 ⊆ Uc

k for all k ∈ N. Hence,
{

Uc
k}∞k=1 have finite

intersection property. Since every Uc
k is compact,

∞⋂
k=1

Uc
k , ∅. Therefore,Ä ∞⋂

k=1

Uc
k

äc
=

∞⋃
k=1

Uk , M.

□

Example 2.4.25. Let Uk = (−∞,−1
k ) ∪ ( 1

k ,∞). Then Uk ⊆ Uk+1 and Uc
k = [−1

k ,
1
k ] is compact.

Moreover,
∞⋃

k=1

Uk = (−∞, 0) ∪ (0,∞) , R.

o Applications

1. Cantor Set
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I1 ⊇ I2 ⊇ I3 ⊇ · · · ⊇ Ik ⊇ Ik+1 ⊇ · · ·

Each Ik is compact and any finite intersection of {Ik}∞k=1 is nonempty. Then
∞⋂

k=1

Ik , ∅. In fact,

C =
∞⋂

k=1

Ik is called “Cantor set” which is perfect, and uncountable.

2. Lebesgue Covering Theorem

Let K be compact and {Uα}α∈I be an open cover of K. Then there exists r > 0 such that for
each x ∈ K, B(x, r) ⊆ Uα(x) for some α(x) ∈ I.

Proof.
For x ∈ K, there exists α(x) ∈ I such that
x ∈ Uα(x). Since Uα(x) is open, there exists
δx > 0 such that B(x, 2δx) ⊆ Uα(x). Then⋃
x∈K

B(x, δx) ⊇ K.

Since K is compact, there exists

x1, · · · , xN ∈ K such that
N⋃

i=1

B(xi, δx) ⊇ K.

Let r = min(δx1 , · · · , δxN ). For x ∈ K, there
exists 1 ≤ j ≤ N such that x ∈ B(x j, δx j).
Hence,

B(x, r) ⊆ B(x j, 2δx j) ⊆ Uα(x j).

□

Remark. The supremum of all such r is called the Legesgue number for the cover
{

Uα

}
α∈I .

3. Nearest Point Throrem Let (M, d) be a metric space and ∅ , A ⊆ M be compact and B ⊆ M
there exists x0 ∈ A such that d(A, B) = d(x0, B).

Let Ak =
{

x ∈ A
∣∣ d(x, B) ≤ d(A, B) + 1

k

}
. Then Ak is

nonempty and closed. Also, Ak is compact since A is
compact and Ak ⊆ A. Moreover, A1 ⊇ A2 ⊇ A3 ⊇ · · · .
The collection

{
Ak
}∞

k=1 has finite intersection property.

Hence
∞⋂

k=1

Ak , ∅.

Let x0 ∈
∞⋂

k=1

Ak ⊆ A. Then

d(A, B) ≤ d(x0, B) ≤ d(A, B) =
1
k

for all k ∈ N.

We have d(A, B) = d(x0, B).
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Remark. (1) If A is compact and B is closed, then there exists x0 ∈ A and y0 ∈ B such that

d(x0, y0) = d(A, B).

(2) The same results are true if replacing compactness of A by sequentially compactness of A.

o Totally Boundedness

Definition 2.4.26. Let (M, d) be a metric space. We say that a set A ⊆ M is “totally bounded”
if for every r > 0, there exists finitely many balls with radius r, say

{
B(xi, r)

}N
i=1 where

x1, · · · , xN ∈ M such that A ⊆
N⋃

i=1

B(xi, r).

Remark. (1) Every bounded set in R is totally bounded. (Exercise)

(2) Let (M, d) be a metric space with discrete metric. Then every set is bounded. But a set
consisting of infinitely many points is NOT totally bounded.

Proof. Let r = 1
2 . Then B(x, 1

2 ) = {x}. If the size of A is infinite, then A cannot be covered
by finitely many balls with radius 1

2 . □

Proposition 2.4.27. Every totally bounded set in a metric space is bounded.

Proof.
Let (M, d) be a metric space and A ⊆ M be totally
bounded. For r = 1, there exists x0, · · · , xN ∈ M such

that A ⊆
N⋃

i=0

B(xi, 1).

Let L = max
0≤i≤N

d(x0, xi) + 1. For x ∈ A, there exists k ∈
{0, 1, · · · ,N} such that x ∈ B(xk, 1) and

d(x0, x) ≤ d(x0, xk) + d(xk, x) ≤ max
0≤i≤N

d(x0, x1) + 1 = L.

We have A ⊆ B(x0, L) and hence A is bounded.
□

Remark. In a metric space,

totally bounded =⇒ bounded
��XX⇐= (discrete metric)

In (Rn, ∥ · ∥),
totally bounded ⇐⇒ bounded
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Proposition 2.4.28. Every subset of a totally bounded set is totally bounded.

Proof. (Exercise) □

Proposition 2.4.29. Let (M, d) be a metric space and A ⊆ M. Then A is totally bounded if
and only if for every r > 0, there exists finitely many balls with centers in A and radius r, say{

B(yi, r)
}N

i=1 where y1, · · · yN ∈ A, such that

A ⊆
N⋃

i=1

B(yi, r).

Proof.
(⇐=) It is trival by definition.

(=⇒) Since A is totally bounded, there exists

x1, · · · , xN ∈ M such that
N⋃

i=1

B(xi,
r
2

) ⊇ A. W.L.O.G, we

may assume B(xi,
r
2 ) ∩ A , ∅ for every i = 1, · · · ,N.

Choose yi ∈ B(xi,
r
2 ) ∩ A. Then B(xi,

r
2 ) ⊆ B(yi, r). We

have

A ⊆
N⋃

i=1

B(xi,
r
2

) ⊆
N⋃

i=1

B(yi, r).

□

Lemma 2.4.30. (1) A compact set in a metric space is totally bounded.

(2) A sequentially compact set in a metric space is totally bounded.

Proof. Let (M, d) be a metric space.

(1) Let K ⊆ M be compact. For given r > 0, K ⊆
⋃
x∈K

B(x, r). Then
{

B(x, r)
}

x∈K is an open

cover of K. There exists a finite subcover, say
{

B(xi, r)
∣∣ for some x1, · · · , xN ∈ K

}
. Hence,

K is totally bounded.

(2) Let K ⊆ M be sequentially compact. Assume that K is not totally bounded. Then there
exists r > 0 such that for any set consisting of finitely many point, say y1, y2, · · · , yN ,

K *
N⋃

i=1

B(yi, r).

Choose (arbitrarily) a point x1 ∈ K. Since K * B(x1, r), there exists x2 ∈ K\B(x1, r). Also,

K *
2⋃

i=1

B(xi, r). There exists x3 ∈ K\
2⋃

i=1

B(xi, r).

Continue this process, K *
n⋃

i=1

B(xi, r). There exists xn+1 ∈ K\
n⋃

i=1

B(xi, r) and hence d(xn1 , xn) >

r for i = 1, 2, · · · , n. Then {xn}∞n=1 ⊆ K is a sequence with d(xi, x j) > r for i , j. Hence
{xn}∞n=1 cannot contain a convergent subsequence. It contradicts that K is sequentially com-
pact.



2.4. COMPACT SETS 63

□

Theorem 2.4.31. Let (M, d) be a metric space and K ⊆ M. The following statements are
equivalent.

(1) K is compact.

(2) K is sequentially compact.

(3) K is totally bounded and complete.

In addition, every one of (1), (2) and (3) implies

(4) K is closed and bounded.

Moreover, if K ⊆ (Rn, ∥ · ∥), then (1)-(4) are equivalent.

Proof. “(1) =⇒ (2)”
Let {xn}∞n=1 ⊆ K be a sequence. Suppose that {xn}∞n=1 contains at most finitely many different
elements. There exists a subsequence {xnk}∞k=1 such that xn1 = xn2 = · · · = xnk = · · · for every
k ∈ N. Then {xnk}∞k=1 converges.

We may assume that {xn}∞n=1 contains infinitely many different elements. By Theorem 2.4.22,
there exists a subsequence {xnk}∞k=1 converges to x0 ∈ K. Therefore, K is sequentially compact.

“(2) =⇒ (3)”
Let K be sequentially compact. By Theorem 2.4.7 and Lemma 2.4.30, K is complete and totally
bounded.

“(3) =⇒ (1)”
Let K be totally bounded and complete. Assume that K is not compact. Then there exists an
open cover

{
Uα

}
α∈I of K which does not contain a finite subcover.

Since K is totally bounded, for r = 1, there exists y(1)
1 , · · · , y(1)

N1
∈ K such that K ⊆

N1⋃
i=1

B(y(1)
i , 1).

Then there exists 1 ≤ ℓ1 ≤ N1 such that K ∩ B(y(1)
ℓ1
, 1) cannot be covered by finitely many ele-

ments of
{

Uα

}
α∈I .

Since K ∩ B(y(1)
ℓ1
, 1) is totally bounded, for r = 1

2 , there exists y(2)
1 , · · · , y(2)

N2
∈ K ∩ B(y(1)

ℓ1
, 1)

such that K∩B(y(1)
ℓ1
, 1) ⊆ ⋃N2

i=1 B(y(2)
i , 1

2 ). Hence, there exists 1 ≤ ℓ2 ≤ N2 such that K∩B(y(1)
ℓ1
, 1)∩

B(y(2)
ℓ2
, 1

2 ) cannot be coverd by finitely many elements of
{

Uα

}
α∈I .

Continue this process, we can choose z1, z2, · · · ∈ K such that zn ∈ K ∩
Ä n−1⋂

i=1

B(zi,
1
i
)
ä

and

K ∩
Ä n−1⋂

i=1

B(zi,
1
i
)
ä

cannot be covered by finitely many elements of
{

Uα}α∈I .
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Claim: {zn}∞n=1 is a Cauchy sequence.
Proof of claim: Given ε > 0, choose N ∈ N such that 1

N < ε
2 . For m, n ≥ N,

zm, zn ∈ K ∩
Ä N⋂

i=1

B(zi,
1
i
)
ä
⊆ K ∩ B(zN ,

1
N

).

Then

d(zm, zn) ≤ d(zm, zN) + d(zN , zm) ≤ 1
N
+

1
N
< ε.

Hence, {zn}∞n=1 is Cauchy and the claim is proved.

Since K is complete, there exists z ∈ K such that lim
n→∞

zn = z. Also, since
⋃
α∈I

Uα ⊇ K, there

exists α0 ∈ I such that z ∈ Uα0 . Moreover, there exists δ > 0 such that B(z, δ) ⊆ Uα0 since Uα0

is open. Choose L ∈ N such that
1
L
<
δ

2
and for n ≥ L, d(zn, z) < δ

2 .

For x ∈ B(zL,
1
L ),

d(x, z) ≤ d(x, zL) + d(zL, z) ≤ 1
L
+
δ

2
< δ.

Then B(zL,
1
L ) ⊆ B(x, δ) ⊆ Uα0 . We have

K ∩
Ä L⋂

i=1

B(zi,
1
i
)
ä
⊆ K ∩ B(zL,

1
L

) ⊆ Uα0 .

It contradicts that K ∩
Ä L⋂

i=1

B(zi,
1
i
)
ä

cannot be covered by finitely many elements of
{

Uα

}
α∈I .

Therefore, K is compact.

In (Rn, ∥ · ∥), (1)⇐⇒ (4) is proved by Heine-Borel Theorem. □

Remark. Let {xn}∞n=1 ⊆ (M, d) converge to x. Then A = {x1, x2, · · · } ∪ {x} is sequentially
compact. Hence, A is compact.

Definition 2.4.32. Let (M, d) be a metric space, U ⊆ M be open and A ⊆ M.

(1) A is called “precompact” if A is compact.

(2) Suppose A ⊆ M. We say that A is compactly contained in U if A is precompact and A ⊆ U.
Denoted by A ⊂⊂ U.

Proposition 2.4.33. Every bounded set A in Rn is precompact.

Proof. (Exercise) □

Example 2.4.34. Define

ℓ∞(R) :=
{

(a1, a2, a3, · · · )
∣∣ ai ∈ R for every i ∈ N and sup

i∈N
|ai| < ∞

}
.
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For a = (a1, a2, a3, · · · ), b = (b1, b2, b3, · · · ) ∈ ℓ∞(R), define

a + b = (a1 + b1, a2 + b2, · · · ) and αa = (αa1, αa2, · · · ) for α ∈ R.

Then ℓ∞(R) is a vector space. Define ∥ · ∥ : ℓ∞(R)→ R by

∥a∥ = sup
i∈N
|ai|.

Then
(
ℓ∞(R), ∥ · ∥

)
is a normed space.

(1)
(
ℓ∞(R), ∥ · ∥

)
is complete.

(2) Let

A =
{

(a1, a2, a3, · · · ) ∈ ℓ∞
∣∣ |ak| ≤

1
k
}

(ex: (1,
1
2
,

1
3
,

1
4
, · · · ) ∈ A)

B =
{

(a1, a2, a3, · · · ) ∈ ℓ∞
∣∣ lim

k→∞
ak = 0

}
(ex: (1,

1
2
,

1
3
,

1
4
, · · · ) ∈ B)

C =
{

(a1, a2, a3, · · · ) ∈ ℓ∞
∣∣ lim

k→∞
ak converges

}
(ex: (1,

1
2
,

1
3
,

1
4
, · · · ) ∈ C)

D =
{

(a1, a2, a3, · · · ) ∈ ℓ∞
∣∣ sup

k
|ak| = 1

}
(ex: (1,

1
2
,

1
3
,

1
4
, · · · ) ∈ D)

A is closed in a complete space. Then A is complete and which implies that A is compact
and totally bounded.

For r > 0 choose N ∈ N such that 1
N < r. Let

T =
{
− N

N + 1
,− (N − 1)

N + 1
, · · · , −1

N + 1
, 0,

1
N + 1

, · · · , N
N + 1

}
and

S =
{

(s1, s2, · · · , sN , 0, 0, 0, · · · ) ∈ ℓ∞
∣∣ si ∈ T

}
.

Then the size of S is equal to (2N + 1)N < ∞ and A ⊆
⋃
a∈S

B
(
a,

1
N
)
.

B and C are not bounded. Hence, they are not compact. D is not totally bounded and hence
it is not compact (sequentially compact).

o Conclusion

Topological Space Metric Space Rn

compact
, sequentially compact
, totally bounded + complete
, closed and bounded

compact
= sequentially compact
= totallybounded + complete
⇒ closed and bounded
��HH⇐

compact
= sequentially compact
= totallybounded + complete
= closed and bounded
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2.5 Connected Sets

o Connected Sets

Definition 2.5.1. Let (M, d) be a metric space and A ⊆ M

(1) LetU,V ⊆ M be two nonempty open sets in M. We say thatU andV separate A if

(i) A ∩U ∩V = ∅
(ii) A ∩U , ∅

(iii) A ∩V , ∅
(iv) A ⊆ U ∪V

(2) We say that a set A ⊆ M is disconnected or separated if there exists two open setsU andV
in M such thatU andV separate A. If there exists no such pair of open sets, we say that A
is connected.

(3) A maximal connected subset of A is called a “connected component” of A.

Example 2.5.2. (1) A = (−1, 0) ∪ (0, 1) is disconnected.

(2) B =
{

(x, y) ∈ R2
∣∣(x + 1)2 + y2 < 1

}
∪
{

(x, y) ∈ R2
∣∣ (x − 1)2 + y2 < 1

}
is disconnected.

(3) C =
{

(x, y) ∈ R2
∣∣(x + 1)2 + y2 ≤ 1

}
∪
{

(x, y) ∈ R2
∣∣ (x − 1)2 + y2 < 1

}
is connected.
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Proposition 2.5.3. Let (M, d) be a metric space and A ⊆ M. Then A is disconnected if and only
if there exists two nonempty sets A1 and A2 such that

(i) A = A1 ∪ A2

(ii) A1 ∩ A2 = ∅

(iii) A1 ∩ A2 = ∅.

Proof. (=⇒) If A is disconnected, then there exists open setsU, V ⊆ M such that (i) A ∩U ∩
V = ∅, (ii) A ∩U , ∅, (iii) A ∩V , ∅, (iv) A ⊆ U ∪V.

Let A1 = A ∩ U , ∅ and A2 = A ∩ V , ∅. Then
A = A1 ∪ A2.
Since A1 ∩ V = ∅ and V is open, A1 ⊂ Vc and Vc is
closed. We have A1 ⊆ Vc = Vc. Then A1 ∩ V = ∅ and
hence, A1 ∩ A2 = ∅. Similarly, A1 ∩ A2 = ∅.

(⇐=) If there exists A1 A2 , ∅ satisfying (i), (ii) and (iii). LetU =
(
A2
)c andV =

(
A1
)c. Then

U andV are nonempty. Then

A1 = A ∩U , ∅, A2 = A ∩V , ∅ and A = A1 ∪ A2 ⊆ U ∪V.

Since A1 ∩
(
A1
)c
= ∅ and A2 ∩

(
A2
)c
= ∅, we have A1 ∩V = ∅ and A2 ∩U = ∅. Then

A ∩U ∩V =
Ä

A1 ∩U ∩V
ä
∪
Ä

A2 ∪U ∪V
ä
= ∅ ∪ ∅ = ∅.

□

Corollary 2.5.4. Let (M, d) be a metric space and A ⊆ M be connected. If there exists
A1, A2 ⊆ M such that (i) A = A1 ∪ A2 and (ii) A1 ∩ A2 = A1 ∩ A2 = ∅, then either A1 = ∅
or A2 = ∅. In other words, A ⊆ A1 or A ⊆ A2.

Theorem 2.5.5. Let A ⊆ R be connected if and only if for x, y ∈ A and x < z < y then z ∈ A.
That is, A is an interval

Proof. (=⇒) If false, there exists x < z < y for some x, y ∈ A and z < A. Let A1 = (−∞, z) ∩ A
and A2 = (z,∞) ∩ A. Since x ∈ (−∞, z) and y ∈ (z,∞), A1 , ∅ and A2 , ∅. Also, A = A1 ∪ A2

(since z < A). We have
A1 ⊆ (−∞, z] and A2 ⊆ [z,∞).
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Then
A1 ∩ A2 = ∅ and A1 ∩ A2 = ∅.

Hence, A is disconnected. It contradicts the hypothesis that A is connected.
(⇐=) Assume that A is disconnected. There exists A1, A2 ⊆ R such that (1) A1, A2 , ∅ (2)

A = A1 ∪ A2 (3) A1 ∩ A2 = A1 ∩ A2 = ∅.

Since A1, A2 , ∅, there exists x ∈ A1 and y ∈ A2. By (3), x , y and we may assume that
x < y. Let z = sup

(
[x, y] ∩ A1

)
. Then z ∈ A1 and thus z < A2. There are only two possibilities:

(a) If z < A1, thenz < A = A1 ∪ A2. It contradicts the hypothesis that z ∈ A since x < z < y.

(b) If z ∈ A1 then z < A2. There exists r > 0 such that (z, z + r) ∩ A2 = ∅. Thus, x < z + r
2 < y,

but z + r < A1 ∪ A2 = A. It contradicts the hypothesis that z + r
2 ∈ A.

Therefore, A is connected.

□

2.6 Subspace Topology

Observe that (N, | · |) ⊆ (Z, | · |) ⊆ (Q, | · |) ⊆ (R, | · |)

• B(1, 2) in (N, | · |) is {1, 2}.

• B(1, 2) in (Z, | · |) is {0, 1, 2}.

• B(1, 2) in (Q, | · |) is (−1, 3) ∩ Q.

• B(1, 2) in (R, | · |) is (−1, 3).

Recall that B(x, r) in M is defined by {y ∈ M | d(x, y) < r}. Hence, the set {1, 2} is open in
(N, | · |) and in (Z, | · |) but not open in (Q, | · |) and (R, | · |).

If N ⊆ M, the metric space (N, d) ⊆ (M, d). A set A could be open in (N, d) but not open in
(M, d). For example, Q is open in (Q, | · |) but not open in (R, | · |).

On the other hand, if (N, d) ⊆ (M, d) , for x ∈ N ⊆ M, the open ball BN(x, r) in N is

{y ∈ N | d(x, y) < r} = {y ∈ M | d(x, y) < r} ∩ N = BM(x, r) ∩ N.
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Hence, we may define the topology of (N, d) induced by the topology of (M, d) with the inter-
section of N.

o Subspace Topology

Definition 2.6.1. Let (M, d) be a metric space and N ⊆ M. Then (N, d) is a metric space and
we call the topology of (N, d) “the subspace topology of (N, d)”.

Example 2.6.2.

A is open relative to N
B is closed relative to N
C is compact relative to N

Remark.

E is open (closed, compact) in (M, d) =⇒ E ∩ N is open (closed, compact) in (N, d).
��XX⇐=

Proposition 2.6.3. Let (M, d) be a metric space and N ⊆ M. A subsetV ⊆ N is open in (N, d)
if and only if there exists a setU ⊆ M which is open in M such thatV = U ∩ N.

Proof. Define a r-ball in (N, d) by BN(x, r) = {y ∈ N | d(x, y) < r} and a r-ball in (M, d) by
BM(x, r) = {y ∈ M | d(x, y) < r}. Then

BN(x, r) = BM(x, r) ∩ N.

(=⇒) Since V is open in (N, d), for x ∈ V, there exists rx > 0 such that BN(x, rx) ⊆ N. Then
V ⊆

⋃
x∈V

BN(x, rx) ⊆ V and henceV =
⋃
x∈V

BN(x, rx).

Define U =
⋃
x∈U

BM(x, rx). Then U is open in (M, d) since it is a union of open balls in

(M, d). Then

U ∩ N =
⋃
x∈V

BM(x, rx) ∩ N =
⋃
x∈V

Ä
BM(x, rx) ∩ N

ä
=
⋃
x∈V

BN(x, rx) = V.

(⇐=) For x ∈ V ⊆ U, sinceU is open in (M, d), there exists δx > 0 such that BM(x, δx) ⊆ U.
Then

BN(x, δx) = BM(x, δx) ∩ N ⊆ U ∩ N = V.

Hence, x is an interior point ofV in (N, d) and henceV is open in (N, d). □
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Corollary 2.6.4. Let (M, d) be a metric space and N ⊆ M. A set E ⊆ N is closed in (N, d) if
and only if there exists a set F ⊆ M which is closed in (M, d) such that E = F ∩ N.

Definition 2.6.5. Let (M, d) be a metric space and N ⊆ M. A subset A ⊆ M is said to be “open
(closed, compact) relative to N” if A ∩ N is open (closed, compact) in (N, d).*

Remark. If E is open (closed, compact) in (M, d), then E ∩ N is open (closed, compact) in
(N, d).

Theorem 2.6.6. Let (M, d) be a metric space and K ⊆ N ⊆ M. Then K is compact in (M, d) if
and only if K is compact in (N, d).

Proof. (=⇒) Let {Vα}α∈I be an open cover of K in (N, d). Then for each Vα, there exists an open
set Uα in (M, d) such that Vα = Uα ∩ N. Then K ⊆

⋃
α∈I

Vα ⊆
⋃
α∈I

Uα. Hence, {Uα}α∈I is an open

cover of K in (M, d).

Since K is compact in (M, d), {Uα}α∈I contains a finite subsover of K, say

K ⊆
L⋃

i=1

Uαi .

Since K ⊆ N, we have

K ⊆
Ä L⋃

i=1

Uαi

ä
∩ N =

L⋃
i=1

(
Uαi ∩ N

)
=

L⋃
i=1

Vαi

Then {Vα}α∈I contains a finite subcover of K in (N, d) and K is compact in (N, d).

(⇐=) Let {Uα}α∈I be an open cover of K in (M, d). Since Uα is open in M and N ⊆ M, the
set Vα := Uα ∩ N is open in N. Also, since K ⊆

⋃
α∈I

Uα and K ⊆ N,

K ⊆
Ä⋃
α∈I

Uα

ä
∩ N =

⋃
α∈I

(
Uα ∩ N

)
=
⋃
α∈I

Vα.

Then {Vα}α∈I is an open cover in (N, d).

Since K is compact in (N, d), {Vα}α∈I contains a finite subcover of K, say

K ⊆
L⋃

i=1

Vαi =

L⋃
i=1

(
Uαi ∩ N

)
=
Ä L⋃

i=1

Uαi

ä
∩ N.

Then K ⊆
L⋃

i=1

Uαi and {Uα}α∈I contains a finite subcover. Hence, K is compact in (M, d).

□

*We usually say that A is relatively open in N.
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Remark. Let (M, d) be a metric space and K ⊆ N ⊆ M. Then K is sequentially compact in
(M, d) if and only if K is sequentially compact in (N, d).

Proof. Let {xn}∞n=1 be a sequence in K.
(⇐=) Clear.
(=⇒)

K is sequentially
compact in (M, d)

if and only if there exists a subsequence {xnk}∞k=1 which converges to a
point x0 ∈ K

if and only if since the metric d on M is the same as the metric d on
N and K ⊆ N, we have {xnk}∞k=1 ⊆ N and lim

k→∞
xnk = x0 in

(N, d).
if and only if K is sequentially compact in (N, d).

□

Example 2.6.7. Let K = [0, 1] ∩ Q, N = Q and M = R. Let d be the usual metric induced by
| · |. Then [0, 1] ∩ Q ⊆ R.

K is closed in (Q, | · |) but not compact in (Q, | · |) since it is not sequentially compact.
On the other hand, since K is not compact in (R, | · |), it is not compact in (Q, | · |).

Recall: A ⊆ M is disconnected if there are A1, A2 ⊆ M such that (1) A1, A2 , ∅ (2) A1 ∪ A2 = A
(3) A1 ∩ A2 = A1 ∩ A2 = ∅.

By (2) and (3), A1 = A\A2 = A ∩
(
A2
)c

open
. Hence, A1 is open relative to A. Similarly, A2 is

open relative to A.

Also, since A1 ∩ A2 = ∅ and A = A1 ∪ A2, we
obtain A1 = A ∩ A1. Therefore, A1 is closed
relative to A. Similarly, A2 is closed relative to
A.

Remark. (1) If A ⊆ M is disconnected, then there exists nonempty sets A1 and A2 which are
both open and closed relative to A.

(2) If A ⊆ M is connected, then the set which is both open and closed relative to A is either ∅
or A itself.

Remark. Let A ⊆ (M, d)

(1) A is connected if and only if there exists no nonempty sets A1 and A2 such that (i) A =
A1 ∪ A2, (ii) A1 ∩ A2 = ∅ and (iii) A1 and A2 are open relative to A.

(2) A is connected if and only if there exists no nonempty sets B1 and B2 such that (i) A =
B1 ∪ B2, (ii) B1 ∩ B2 = ∅ and (iii) B1 and B2 are closed relative to A.

(3) A is connected if and only if the only subsets of A which are both closed and open relative
to A are A itself or ∅.
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2.7 Normed Spaces and Inner Product Spaces

o Normed Spaces

Definition 2.7.1. A “normed vector space” (V, ∥ · ∥) is a real vector space associated with a
function ∥ · ∥ : V → R such that

(i) ∥x∥ ≥ 0 for every x ∈ V .

(ii) ∥x∥ = 0 if and only if x = 0.

(iii) ∥λ · x∥ = |λ|∥x∥ for every λ ∈ R and x ∈ V .

(iv) ∥x + y∥ ≤ ∥x∥ + ∥y∥ for every x, y ∈ V .

We call the function ∥ · ∥ satisfying (i)-(iv) a “norm” on V .

Example 2.7.2. (1) Let V = Rn and ∥x∥2 =

Ã
n∑

i=1

x2
i where x = (x1, · · · , xn). Then (V, ∥ · ∥2) is

a normed space and ∥ · ∥2 is called 2-norm.
The statements (i), (ii) and (iii) in the definition are trivial. Let’s check (iv) here.

∥x + y∥22 =
n∑

i=1

(xi + yi)2 =

n∑
i=1

x2
i + 2xiyi + y2

i

≤
n∑

i=1

x2
i + 2

n∑
i=1

xiyi +

n∑
i=1

y2
i

≤ ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22 = (∥x∥2 + ∥y∥2)2

(2) Let V = Rn and ∥x∥p =
( n∑

i=1

|xi|p
)1/p where x = (x1, · · · , xn), 1 ≤ p < ∞. Then (V, ∥ · ∥p) is

a normed space and ∥ · ∥p is called a p-norm.

(3) Let V = Rn and ∥x∥∞ = max(|x1|, · · · , |xn|). Then (V, ∥ · ∥∞) is a normed vector space and
∥ · ∥∞ is called an∞-norm.

Example 2.7.3. Let C
(
[0, 1]

)
be the collection of all continuous real-valued function on [0, 1].

That is,
C
(
[0, 1]

)
:=

{
f : [0, 1]→ R

∣∣ f is continuous.
}

Define

∥ f ∥p =

® Ä ∫ 1

0
| f (x)|p dx

ä1/p
1 ≤ p < ∞

maxx∈[0,1] | f (x)| p = ∞.

Then
Ä
C
(
[0, 1]

)
, ∥ · ∥p

ä
is a normed space. Check

(1) C
Ä

[0, 1]
ä

is a vector space.

(2) ∥ · ∥p satisfies (i)-(iv).
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o Series on a Normed Space

Definition 2.7.4. Let (V, ∥ · ∥) be a normed space and {xk}∞k=1 be a sequence in V .

(1) We say that {xk}∞k=1 is “bounded” if there exists B > 0 such that

∥xk∥ ≤ B for every k ∈ N.

(2) We say that {xk}∞k=1 converges to x0 if for every ε > 0 there exists N ∈ N such that

∥xk − x0∥ < ε whenever k ≥ N.

(3) {xk}∞k=1 is said to a “Cauchy sequence” if for every ε > 0 there exists N ∈ N such that

∥xn − xm∥ < ε whenever m, n ≥ N.

(4) We say that (V, ∥ · ∥) is complete if every Cauchy sequence in V converges. A complete
normed space is called “Banach space”.

Definition 2.7.5. Let (V, ∥ · ∥) be a normed space and {xk}∞k=1 be a sequence in V .

(1) We define the partial sum of the sequence by

sn = x1 + · · · + xn =

n∑
k=1

xk

and call
∞∑

k=1

xk a series of {xk}∞k=1.

(2) A series
∞∑

k=1

xk is said to converge to s if the partial sum {sn}∞n=1 converges to s. Denote

s =
∞∑

k=1

xk.

Theorem 2.7.6. Let (V, ∥ · ∥) be a normed space and {xk}∞k=1 be a sequence in V.

(1) If
∞∑

k=1

xk converges, then for every ε > 0 there exists N ∈ N such that for n ≥ m ≥ N,

∥xm + xm+1 + · · · + xn∥ < ε.

(2) In addition, if (V, ∥ · ∥) is a Banach space, then
∞∑

k=1

xk converges if and only if for every ε > 0

there exists N ∈ N such that for n ≥ m ≥ N,

∥xm + xm+1 + · · · + xn∥ < ε.
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Proof. (Exercise) □

Corollary 2.7.7. If
∞∑

k=1

xk converges, then lim
k→∞
∥xk∥ = 0.

Proof. Since
∞∑

k=1

xk converges, {sn}∞n=1 converges and hence it is Cauchy. We have

lim
k→∞
∥xk∥ = lim

k→∞
∥sk − sk−1∥ = 0.

□

Definition 2.7.8. We say that

(1) A series
∞∑

k=1

xk “converges absolutely” if
∞∑

k=1

∥xk∥ converges.

(2) A series
∞∑

k=1

xk “converges conditionally” if
∞∑

k=1

xk converges but not converges absolutely

Example 2.7.9. Let {xk}∞k=1 be a sequence in V with ∥xk∥ = 1 for k = 1, 2, · · · . Then
∞∑

k=1

xk

2k

converges absolutely.

Theorem 2.7.10. In a Banach space (V, ∥ · ∥), if
∞∑

k=1

xk aboslutely converges then
∞∑

k=1

xk con-

verges.

Proof. Since
∞∑

k=1

xk converges aboslutely, given ε > 0, there exists N ∈ N such that
∞∑

k=N

∥xk∥ < ε.

For m, n ≥ N,

∥xm + xm+1 + · · · + xn∥ ≤ ∥xm∥ + ∥xm+1∥ + · · · + ∥xn∥ < ε.

Hence, the partial sum {sn}∞n=1 is a Cauchy sequence and
∞∑

k=1

xk converges. □

Remark. In general, the result of Theorem 2.7.10 is false if (V, ∥ · ∥) is not complete. For
example,

• V = C
(
[0, 1]

)
and ∥ f ∥ =

∫ 1

0
| f (t)| dt.

• V =
{

(a1, a2, a3 · · · , 0, 0, 0, · · · )
}

with ∥x∥ = sup |ai|.
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Example 2.7.11. Let V = C
(
[0, 1]

)
with ∥ f ∥ = max

x∈[0,1]
| f (x)|. Let fn(x) =

xn

n!
for n = 0, 1, 2, · · · .

Then fn ∈ C
(
[0, 1]

)
. The series

∞∑
n=0

fn(x) =
∞∑

n=0

xn

n!
converges in C

(
[0, 1]

)
.

The partial sum is sn =

n∑
k=0

fk(x) =
n∑

k=0

k!
xk . Then sn − sm =

n∑
k=m+1

xk

k!
.

∥∥∥sn − sm

∥∥∥
C
(

[0,1]
) = ∥∥∥ n∑

k=m+1

xk

k!

∥∥∥
C
(

[0,1]
)

≤
n∑

k=m+1

∥∥∥ xk

k!

∥∥∥
C
(

[0,1]
) = n∑

k=m+1

1
k!

∥∥∥xk
∥∥∥
C
(

[0,1]
)

≤
n∑

k=m+1

1
k!

max
x∈[0,1]

|xk|

≤
n∑

k=m+1

1
k!
< ε (as m, n sufficiently large.)

Hence {sn}∞n=1 is a Cauchy sequence in C
(
[0, 1]

)
. As we know

Ä
C
(
[0, 1]

)
, ∥ · ∥

ä
is a Banach

space,
∞∑

k=0

fk(x) converges to a continuous function on [0, 1].

Definition 2.7.12. Let V be a vector space and ∥ · ∥1 and ∥ · ∥2 be two norms on V . We say that
∥ · ∥1 and ∥ · ∥2 are “equivalent” if there exist α, β > 0 such that

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥1

for every x ∈ V .

Remark. Let ∥ · ∥1 and ∥ · ∥2 be two equivalent norms on V . Then the norm spaces
(
V, ∥ · ∥1

)
and(

V, ∥ · ∥2
)

will have the same topological properties.

o Inner Product Spaces

Definition 2.7.13. An “inner product space” (V, < ·, · >) is a real vector space V associated with
a binary function < ·, · >: V × V → R such that

(a) < x, x >≥ 0 for every x ∈ V .

(b) < x, x >= 0 if and only if x = 0.

(c) < x, y + z >=< x, y > + < x, z > for every x, y, z ∈ V .

(d) < λx, y >= λ < x, y > for every λ ∈ R and x, y ∈ V .

(e) < x, y >=< y, x > for every x, y ∈ V .
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A symmetric bilinear form < ·, · > satisfies (a)-(e) is called an “inner product on V

Example 2.7.14. Let V = Rn and < x, y >=
n∑

i=1

xiyi where x = (x1, · · · , xn) and y = (y1, · · · , yn).

Then
(
Rn, < ·, · >

)
is an inner product space.

Example 2.7.15. Let V = C
(
[0, 1]

)
and ⟨ f , g⟩ =

∫ 1

0
f (x)g(x) dx. Then

Ä
C
(
[0, 1]

)
, ⟨·, ·⟩

ä
is an

inner vector space.
Remark. (1) A normed vector space (V, ∥ · ∥) is a metric space by defining

d(x, y) := ∥x − y∥ for every x, y ∈ V.

Check that d(·, ·) is a metric on V .

(2) An inner product space
(
V, < ·, · >

)
is a normed vector space by defining

∥x∥ =
√
< x, x > for every x ∈ V.

(3) ∥x∥ = ∥x − 0∥ = d(x, 0).
Example 2.7.16. (1)

(
Rn, < ·, · >

)
is an inner product vector space by defining

< x, y >=
n∑

i=1

xiyi where x = (x1, · · · , xn) and y = (y1, · · · , yn).

(2)
(
Rn, ∥ · ∥

)
is a normed space by defining

∥x∥ =
√
< x, x > =

Ã
n∑

i=1

x2
i .

(3)
(
Rn, d

)
is a metric space by defining the “induced metric”

d(x, y) = ∥x − y∥ =

Ã
n∑

i=1

(xi − yi)2.

Remark. Since a normed space is also a metric space, we can consider all topological properties
on a normed space.
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3.1 Continuity

o Mappings and Limits

We consider the mappings from one metric space to another one.

Definition 3.1.1. Let (M, d) and (N, ρ) be two metric spaces and A ⊆ M.

(1) A function f : A→ N between two metric spaces is usually called a “mapping”.

(2) For x0 ∈ A′, we say that y0 ∈ N is the “limit” of f at x0 if for every ε > 0, there exists
δ = δ(x0, ε) > 0 such that every x ∈ A with d(x, x0) < δ, then

ρ
(

f (x), y0
)
< ε.

Denoted by
lim
x→x0
x∈A

f (x) = y0 or f (x)→ y0 as x→ x0.

77
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Proposition 3.1.2. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A → N be a
map. For x0 ∈ A′, lim

x→x0
f (x) = y0 if and only if for every sequence {xk}∞k=1 ⊆ A converging to x0

in (M, d), the sequence { f (xk)}∞k=1 converges to y0 in (N, ρ).

Proof. (=⇒) Given ε > 0, since lim
x→x0

f (x) = y0, there exists δ = δ(x0, ε) > 0 such that if x ∈ A

with d(x, x0) < δ, then
ρ
(

f (x), y0
)
< ε.

Let {xk}∞k=1 ⊆ A be a sequence which converges to x0. Then there exists N ∈ N such that if
k ≥ N, d(xk, x0) < δ. Therefore,

ρ
(

f (xk), y0
)
< ε whenever k ≥ N.

We have { f (xk)}∞k=1 converges to y0.

(⇐=) Assume the contrary, there exists ε > 0 such that for every δ > 0, there exists xδ ∈ A
such that d(xδ, x0) < δ but ρ

(
f (xδ), y0

)
≥ ε.

Let δ =
1
k

, then there exists a sequence {xk}∞k=1 ⊆ A such that d(xk, x0) <
1
k

but ρ
(

f (xk), y0
)
≥ ε.

Hence, {xk}∞k=1 converges to x0 but { f (xk)}∞k=1 does not converge to y0. It contradicts the hypoth-
esis and thus this direction is proved. □

o Continuity

Definition 3.1.3. Let (M, d) and (N, ρ) be two metric spaces, x0 ∈ A ⊆ M and f : A→ N.

(1) f is said to be continuous at x0 if either x0 ∈ A\A′ or lim
x→x0
x∈A

f (x) = f (x0).

(2) If f is continuous at every point of A, then f is said to be continuous on A.

Remark. If x0 is an isolated point of A (that is, x0 ∈ A\A′) then f is automatically continuous
at x0.

Proposition 3.1.4. Let (M, d) and (N, ρ) be two metric spaces, x0 ∈ A ⊆ M, and f : A → N be
a map. Then f is continuous at x0 if and only if for every ε > 0, there exists δ = δ(x0, ε) > 0
such that

ρ
(

f (x), f (x0)
)
< ε

for all point x ∈ A with d(x, x0) < δ.
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Proof. (Exercise) □

Remark. f is continuous at x0 if and only if for every ε > 0 there exists δ > 0 such that

f
(
BM(x0, δ) ∩ A

)
⊆ BN

(
f (x0), ε

)
.

Example 3.1.5. (1) f : Rn → R by

f (x1, x2, · · · , xn) = xk for some k = 1, 2, · · · , n

is a continuous function.

(2) A norm ∥ · ∥ : V → R is a continuous function on V .

(3) Let (M, d) be a metric space, A ⊆ M. The distance function f (x) = d(x, A) is continuous on
M.

Theorem 3.1.6. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A → N be a map.
Then the following statements are equivalent.

(1) f is continuous on A.

(2) For every open set V ⊆ N, the preimage f −1(V) = U ⊆ A is open relative to A; that is,
f −1(V) = U ∩ A for some open setU in M.

(3) For every closed set E ⊆ N, the preimage f −1(E) ⊆ A is closed relative to A; that is,
f −1(E) = F ∩ A for some closed set F in M.
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Proof. “(1)⇒ (2)”
Assume that f −1(V) , ∅. Let x0 ∈ f −1(V), then f (x0) ∈ V. SinceV is open, there exists ε > 0
such that BN

(
f (x0), ε

)
⊆ V. Moreover, since f is continuous at x0, there exists δx0 > 0 such

that f
(
BM(x0, δx0) ∩ A

)
⊆ BN

(
f (x0), ε

)
⊆ V. Then BM(x0, δx0) ∩ A ⊆ f −1(V).

Similarly, since f is continuous on A, for every x ∈ A, there exists δx > 0 such that
f
(
BM(x, δx) ∩ A

)
⊆ V. Hence, BM(x, δx) ∩ A ⊆ f −1(V).

Define U =
⋃

x∈ f −1(V)

BM(x, δx). Then U is open in M and f −1(V) ⊆ U ∩ A. On the other

hand, since

f (U ∩ A) = f
( ⋃

x∈ f −1(V)

BM(x, δx) ∩ A
)
=
⋃

x∈ f −1(V)

f
(
BM(x, δx) ∩ A

)
⊆ V,

we haveU ∩ A ⊆ f −1(V) and henceU ∩ A = f −1(V).

“(2)⇒ (1)”
Let x ∈ A and then f (x) ∈ N. For given ε > 0, BN

(
f (x), ε

)
is open in N. By (2), there exists an

open set U ⊆ M such that U ∩ A = f −1
Ä

BN
(

f (x), ε
)ä

. Hence, for x ∈ U, there exists δx > 0
such that BM(x, δx) ⊆ U. Then

f
(
BM(x, δx) ∩ A

)
⊆ f (U ∩ A) = BN

(
f (x), ε

)
.

Thus, for y ∈ A and d(x, y) < δ, ρ
(

f (x), f (y)
)
< ε. Hence f is continuous at x. Furthermore,

since x is an arbitrary point in A, f is continuous on A.

“(2)⇒ (3)”
Since E is closed in N, the complement Ec is open in N. By (2), f −1(Ec) is open relative to A
and there existsU open in M such that f −1(Ec) = U ∩ A.

Let F = Uc. Then F is closed and

F ∩ A = Uc ∩ A = A\(A ∩U) = A\ f −1(Ec) = f −1(N)\ f −1(Ec) = f −1(E)

is closed relative to A.

“(3)⇒ (2)” (Exercise)
□

Remark. Let f : (M, d)→ (N, ρ) be continuous. Then

f −1(open set in N) is open set in M
f −1(closed set in N) is closed set in M.

The pullback of an open (closed) set through a continuous function is open (closed). But the
pushforward of an open (closed) set in M by a continuous function may not be open (closed).
For example, f (x) = x2 and f

(
(−1, 1)

)
= [0, 1).
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Example 3.1.7. Let f : Rn → Rm be a continuous function. The set{
x ∈ Rn

∣∣ ∥ f (x)∥Rm < 1
}
= f −1(Bm(0, 1)

)
is open.

Example 3.1.8. Let f : R2 → R be defined by

f (x, y) =
ß

1 if x = 0 or y = 0
0 if x , 0 and y , 0.

Then f (0, 0) = 1. Along x = y, f (x, x) = 0 if x , 0. Hence, f is not continuous at (0, 0). The
set {0} is closed in R. But f −1

(
{0}

)
is not closed in R2.

Remark. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : M → N be a map. We
define a map g : A→ N by g(x) = f (x) for x ∈ A. We usually denote g by f

∣∣
A.

Question: If f : M → N is continuous on M, is f
∣∣

A continuous on A?
Answer: Yes!
Question: If f

∣∣
A is continuous on A, is f continuous on M?

Answer: No! For example, f (x) = 1 on Q and f (x) = 0 otherwise.

Remark. Let V be a vector space and N be a metric space. The norms ∥ · ∥1 and ∥ · ∥2 are
equivalent. Let f : V → N be a map. Then f is continuous on (V, ∥ · ∥1)) if and only if f is
continuous on (V, ∥ · ∥2).

Proof. (Exercise) □

3.2 Operations on Continuous Maps

Definition 3.2.1. Let (M, d) be a metric space and (V, ∥·∥) be a normed vector space and A ⊆ M.
Let f , g : A→ V be maps and h : A→ R be a function. Define

( f ± g)(x) = f (x) ± g(x) x ∈ A
(α f )(x) = α f (x) x ∈ A, α ∈ R
(h f )(x) = h(x)g(x) x ∈ A( f

h
)
(x) =

f (x)
h(x)

x ∈ A, h(x) , 0
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Proposition 3.2.2. Let (M, d) be a metric space, (V, ∥·∥) be a normed space, A ⊆ M, f , g : A→ V
be maps, h : A → R be a function. Suppose that x0 ∈ A′ and lim

x→x0
f (x) = v, lim

x→x0
g(x) = w,

lim
x→x0

h(x) = c. Then

lim
x→x0

( f ± g)(x) = v ± w

lim
x→x0

(h f )(x) = cv

lim
x→x0

( f
h
)
=

1
c

v if c , 0.

Proof. (Exercise) □

Corollary 3.2.3. Under the hypothesis of Proposition 3.2.2, suppoe that f , g and h are contin-

uous at x0 ∈ A. Then f ± g, h f are continuous at x0 and
f
h

is continuous at x0 if h(x0) , 0.

Corollary 3.2.4. Under the hypothesis of Proposition 3.2.2, suppose that f , g and h are contin-

uous on A. Then f ± g and h f are continuous on A and
f
h

is continuous on
{

x ∈
∣∣ h(x) , 0

}
.

Definition 3.2.5. Let (M, d), (N, ρ) and (P, r) be metric spaces, A ⊆ M, B ⊆ N and f : A → N,
g : N → P be maps such that f (A) ⊆ B. The composite function g ◦ f : A → P is the map
defined by g ◦ f (x) = g

(
f (x)

)
.

Theorem 3.2.6. Let (M, d), (N, ρ) and (P, r), f and g satisfy the hypothesis of Definition 3.2.5.

(1) Suppose that f is continuous at x0 and g is continuous at f (x0). Then g ◦ f is continuous at
x0.

(2) Suppose that f is continouos on A and g is continuous on f (A). Then g ◦ f is continuous
on A.

Proof. (1) (Exercise)

(2) LetW be an open set in P. Since g is continuous on f (A) ⊆ N, g−1(W) is open relative to
f (A). Thus, there existsV which is open in N such that g−1(W) = V ∩ f (A).
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Similarly, since f is continuous on A, f −1(V) is open relative in A. There exists U which
is open in M such that f −1(V) = U ∩ A. Then(

g ◦ f
)−1(W) = f −1(g−1(W)

)
= f −1(V ∩ f (A)

)
= f −1(V) ∩ A = U ∩ A

is open relative to A.

SinceW is an arbitrary open set in P, g ◦ f is continuous on A.
□

3.3 Uniform Continuity

Definition 3.3.1. Let (M, d) and (N, ρ) be metric spaces, A ⊆ M and f : A → N be a map. We
say that f is “uniformly continuous” on A if for every ε > 0, there exists δ > 0 such that

ρ
(

f (x), f (y)
)
< ε

for all x, y ∈ A for which d(x, y) < δ.

Remark. (1) Continuity is a property of a function at a single point. Uniform continuity is a
property of a function on a set.

(2) For a uniformly continuous function, δ only depneds on ε but independent of x.

Proposition 3.3.2. Let (M, d) and (N, ρ) be metric spaces, A ⊆ M and f : A → N be a map. If
f is uniformly continuous on A, then f is continuous on A.

Proof. (Exercise) □

Example 3.3.3. f (x) = |x| is uniformly continuous on R since
∣∣ f (x)− f (y)

∣∣ = ∣∣|x|− |y|∣∣ ≤ |x−y|.
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Example 3.3.4. f (x) =
1
x

is uniformly continuous on [a,∞) for all a > 0 but is not uniformly
continuous on (0,∞).
Fix a > 0, for a < x < y < ∞, by mean value theorem,

f (y) − f (x) = f ′(c)(y − x) = − 1
c2 (y − x) for some c ∈ (x, y).

Hence, ∣∣ f (y) − f (x)
∣∣ = 1

c2 |y − x| < 1
a2 |y − x|.

Example 3.3.5. Let f : R → R be differentiable and | f ′(x)| < M for every x ∈ R. Then f is
uniformly continuous.

Definition 3.3.6. (1) Let f : A ⊆ R→ R be a function. We say that f is “Lipschitz function” is
there exists K > 0 such that

| f (x) − f (y)|
|x − y| ≤ K

for every x, y ∈ A and x , y, or

| f (x) − f (y)| ≤ K|x − y|.

for every x, y ∈ A.

(2) Let (M, d) and (N, ρ) be two metric spaces and f : M → N. We say that f is “Lipschitz
function” if there exists K > 0 such that

ρ
(

f (x), f (y)
)

d(x, y)
≤ K for every x, y ∈ M and x , y.

Note. A Lipschitz function is uniformly continous.

Definition 3.3.7. We say that a function f : A ⊆ R → R is “Hölder continuous with exponent
α” if there exists K > 0 and 0 < α ≤ 1 such that

| f (x) − f (y)| ≤ K|x − y|α for every x, y ∈ A.

Note. A function f which is Hölder continuous with exponent α is uniformly continuous.

Remark.

Bounded first derivative fuctnions ⇒ Lipschitz functions
⇒ Hölder continuous functions
⇒ Uniformly continous functions

Theorem 3.3.8. Let (M, d) and (N, ρ) be metric spaces, A ⊆ M and f : A → N be a map.
Then f is uniformly continuous on A if and only if for any two sequence {xn}∞n=1, {yn}∞n=1 ⊆ A, if
lim
n→∞

d(xn, yn) = 0 then lim
n→∞

ρ
(

f (xn), f (yn)
)
= 0.
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Proof. (=⇒) Suppose the contrary. There exists two seuqnece {xn}∞n=1, {yn}∞n=1 ⊆ A such that
lim
n→∞

d(xn, yn) = 0 but lim
n→∞

d
(

f (xn), f (yn)
)
, 0. That is, there exists ε > 0 such that for every

k ∈ N, there exists nk ≥ k such that ρ
(

f (xnk), f (ynk)
)
> ε.

Since f is uniformly continuous, there exists δ > 0 such that for every x, y ∈ A with
d(x, y) < δ, ρ

(
f (x), f (y)

)
< ε. Since lim

n→∞
d(xn, yn) = 0, there exists M ∈ N such that for ev-

ery n ≥ M, d(xn, yn) < δ. Then we can choose nM ≥ M and we have d(xnM , ynM ) < δ but
ρ
(

f (xnM ), f (ynM )
)
> ε.

(⇐=) Suppose the contrary. There exists ε > 0 such that for every n ∈ N, there exists

xn, yn ∈ A with d(xn, yn) <
1
n

, but ρ
(

f (xn), f (yn)
)
> ε. Then for the sequence {xn}∞n=1, {yn}∞n=1 ⊆ A

with lim
n→∞

d(xn, yn) = 0, we have lim
n→∞

ρ
(

f (xn), f (yn)
)
, 0 and obtain a contradiction. □

Remark. Let (M, d) and (N, ρ) be metric space, A ⊆ M and f : A → N be a map. Then the
following statements are equivalent

(1) f is NOT uniformly continuous on A.

(2) There exists two sequences {xn}∞n=1, {yn}∞n=1 with lim
n→∞

d(xn, yn) = 0 but lim sup
n→∞

ρ
(

f (xn), f (yn)
)
> 0.

(3) There exists two sequences {xn}∞n=1, {yn}∞n=1 with lim
n→∞

d(xn, yn) = 0 but lim
n→∞

ρ
(

f (xn), f (yn)
)
> 0.

(4) There exists ε > 0 such that for every n ∈ N, there exists two point xn, yn ∈ A such that

d(xn, yn) <
1
n

but ρ
(

f (xn), f (yn) > ε.

Remark. (1) Let I ⊆ R be an interval and f : I → R be a differentiable function with | f ′(x)| <
M for all x ∈ I. Then f is uniformly continuous on I by using mean value theorem.

(2) The converse of above statement is false. A differentiable and uniformly continuous func-
tion may not have bounded derivatives. For example, f (x) =

√
x on [0, 1].

Example 3.3.9. (1) f (x) = x2 is uniformly continuous on [0,M] for any M > 0 but it is not
uniformly continuous on R. Let xn = n, yn = n + 1

n . Then |xn − yn| → 0 but

∣∣ f (n) − f (n +
1
n

)
∣∣ = |2 − 1

n2 | > 1 for every n.

(2) f (x) = sin(x2) is not uniformly continuous on R.

(3) f (x) = sin
1
x

is not uniformly continuous on (0, 1).

o Continuity v.s. Uniform Continuity

Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A→ N.
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• Suppose f is continuous on A. For given ε > 0, there exists δ = δ(x, ε) > 0 such that if
d(x, y) < δ then ρ

(
f (x), f (y)

)
< ε. Therefore,

f
(
BM(x, δ) ∩ A

)
⊆ BN

(
f (x), ε

)
.

Note that δ depends on ε and x.

• Suppose f is uniformly continuous on A. For given ε > 0, there exists δ = δ(ε) > 0 such
that if d(x, y) < δ then ρ

(
f (x), f (y)

)
< ε. Therefore,

f
(
BM(x, δ) ∩ A

)
⊆ BN

(
f (x), ε

)
.

Note that δ depends only on ε but indenpendent of x.

Remark. Let f : A → f (A) be continuous. For every ε > 0, there exists δ(x, ε) > 0 such that
ρ
(

f (x), f (y)) < ε whenere x, y ∈ A with d(x, y) < δ(x, ε). Define δ f (ε) := inf
x∈A

δ(x, ε) > 0. If
δ f (ε) > 0 for every ε > 0, then f is uniformly continuous on A.

Note. This is the idea that continuity on a compact set gives rise to the uniform continuity.
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Theorem 3.3.10. Let (M, d) and (N, ρ) be metric space, A ⊆ M and f : A → N be a map. If
K ⊆ A is compact and f is continuous on K, then f is uniformly continuously on K.

Proof. Since f is continuous on K, given ε > 0, for every x ∈ K, there exists δx > 0 such that
for y ∈ K with d(x, y) < δx︸                          ︷︷                          ︸

y∈BM(x,δx)∩K

then

ρ
(

f (x), f (y)
)
<
ε

2
.

Since K is compact and K ⊆
⋃
x∈K

BM(x,
δx

2
), there exists x1, · · · , xL ∈ K such that K ⊆

L⋃
i=1

BM(xi,
δxi

2
).

Define δ =
1
2

min
1≤i≤L

δxi . Let u, v ∈ K with d(u, v) < δ. Since

K ⊆
L⋃

i=1

BM(xi,
δxi

2
), there exists 1 ≤ ℓ ≤ L such that u ∈

BM(xℓ,
δxℓ
2 ) ⊆ BM(xℓ, δxℓ). Thus,

d(v, xℓ) ≤ d(v, u) + d(u, xℓ) < δ +
δxℓ

2
≤ δxℓ .

Then v ∈ B(xℓ, δxℓ) and we have

ρ
(

f (u), f (v)
)
≤ ρ

(
f (u), f (xℓ)

)
+ ρ

(
f (xℓ), f (v)

)
<
ε

2
+
ε

2
= ε.

Hence, f is uniformly continuous on K. □

Lemma 3.3.11. Let (M, d) and (N, ρ) be metric spaces, A ⊆ M and f : A → N be uniformly
continuous. If {xn}∞n=1 ⊆ A is a Cauchy sequence in (M, d), then { f (xn)}∞n=1 is also a Cauchy
sequence in (N, ρ).

Proof. Since f is uniformly continuous on A, given ε > 0, there exists δ > 0 such that if x, y ∈ A
with d(x, y) < δ, then

ρ
(

f (x), f (y)
)
< ε.

Since {xn}∞n=1 ⊆ A is Cauchy in (M, d), there exists L ∈ N such that if m, n ≥ L then d(xn, xm) < δ.
Thus, for m, n ≥ L, we have

ρ
(

f (xm), f (xn)
)
< ε.

Hence,
{

f (xn)
}∞

n=1 is Cauchy in (N, ρ). □
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o Extension of a Function

Let f : R\{a} → R be continuous and lim
x→a

f (x) = L.

Question: Is there a function g : R → R which is
continuous on R and g(x) = f (x) on R\{a}?

Answer: Yes! Define g(x) =
ß

f (x) x , a
L x = a.

Suppose that f : A→ R be a continuous function.

Question: Is there a continuous function g : A→ R such
that g(x) = f (x) on A?

Answer:No! For example, f (x) = 1
x on (0, 1). There

exists no continuous function g : [0, 1] → R such that
g(x) = f (x) on (0, 1).

Corollary 3.3.12. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A → N be
uniformly continuous. If N is complete, then f has a unique extension to a continuous function
on A, that is g : A→ N such that

(1) g is uniformly continuous on A.

(2) g(x) = f (x) on A.

(3) (uniqueness) If there is h : A→ N satisfying (1) and (2), then g(x) = h(x) on A.

Proof. We only need to define the value of g on A\A. Let x ∈ A\A. There exists {xn}∞n=1 ⊆ A
converging to x. Hence, {xn}∞n=1 is Cauchy sequence in A. Since f is uniformly continuous on
A, by Lemma 3.3.11, { f (xn)}∞n=1 is also a Cauchy sequence in (N, ρ).
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Since N is complete, there exists y = yx ∈ N such that lim
n→∞

f (xn) = y. Define

g(x) =
ß

f (x) x ∈ A
yx x ∈ A\A

(I) To check that g(x) is well-defined.
For x ∈ A\A, let {xn}∞n=1 and {zn}∞n=1 be two sequences in A which both converge to x. Then
d(xn, zn) → 0 as n → ∞. Since f is uniformly continuous on A, ρ

(
f (xn), f (zn)

)
→ 0 as

n → ∞. Therefore, lim
n→∞

f (xn) = yx = lim
n→∞

f (zn). We have g(x) is well-defined on A and
the statement (2) holds.

(II) Check that g is uniformly continuous on A
Since f is uniformly continuous on A, given ε > 0, there exists δ > 0 such that if x, y ∈ A
with d(x, y) < δ, then

ρ
(

f (x), f (y)
)
<
ε

3
.

Let r =
δ

3
. For u, v ∈ A with d(u, v) < r, by the definition of g, there are v′, u′ ∈ A with

d(u, u′) < r and d(v, v′) < r such that

ρ
(

f (u), f (u′)
)
<
ε

3
and ρ

(
f (v), f (v′)

)
<
ε

3
.

Then
d(u′, v′) ≤ d(u′, u) + d(u, v) + d(v, v′) < 3r = δ.

We have ρ
(

f (u′), f (v′)
)
<
ε

3
and hence

ρ
(
g(u), g(v)

)
≤ ρ

(
g(u), g(u′)

)
+ ρ

(
g(u′), g(v′)

)
+ ρ

(
g(v′), g(v)

)
< ε.

The statement (1) is proved.

(III) To check the extension is unique.
If there exists h : A → N satisfying statements (1), (2) and (3), then h(x) = f (x) = g(x)
for every x ∈ A. Let x ∈ A\A. Given ε > 0, there exists δ1, δ2 > 0 such that if d(x, y) < δ1
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then ρ
(
g(x), g(y)

)
< ε

2 and if d(x, y) < δ2, then ρ
(
h(x), h(y)

)
< ε

2 .
Since x ∈ A\A, there exists y ∈ A such that d(x, y) < min(δ1, δ2). Then

ρ
(
g(x), h(x)

)
≤ ρ

(
g(x), g(y)

)
+ ρ

(
g(y), h(y)

)
+ ρ

(
h(y), h(x)

)
<

ε

2
+ ρ

(
g(y), h(y)

)︸            ︷︷            ︸
=0 since y∈A

+
ε

2
= ε.

Since ε is an arbitrary positive number, we obtain g(x) = h(x) and hence g(x) = h(x) for
every x ∈ A. The statement (3) is proved.

□

3.4 Continuous Maps on Compact Sets
Theorem 3.4.1. Let (M, d) and (N, ρ) be metric spaces, A ⊆ M and f : A→ N be a continuouos
map. If K ⊆ A is compact, then f (K) is compact in (N, ρ)

Proof. Let
{

Uα

}
α∈I be an open cover of f (K). Since f : A → N is continuous and Uα is open

for every α ∈ I, f −1(Uα) is open in A. Therefore, there exists Vα which is open in M such that
f −1(Uα) = Vα ∩ A for every α ∈ I.

Since f (K) ⊆
⋃
α∈I

Uα and K ⊆ A, we have K ⊆
⋃
α∈I

Vα. That is,
{

Vα

}
α∈I is an open cover of

K. The compactness of K implies that there exists α1, · · · , αn ∈ I such that

K ⊆
n⋃

i=1

Vαi ∩ A =
n⋃

i=1

f −1(Uαi).

Then f (K) ⊆
n⋃

i=1

Uαi and hence f (K) is compact.

□

Corollary 3.4.2. Let (M, d) be a metric space and K ⊆ M be compact. If f : M → R is
continuous, then f attains its maximum and minimum in K. That is, there exists x0, x1 ∈ K such
that

f (x0) = max
x∈K

f (x) and f (x1) = min
x∈K

f (x).
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Proof. Since f is continuous and K is compact, f (K) is compact in R. Hence, f (K) is sequen-
tially compact in R and then f attains its extreme values in K. □

Corollary 3.4.3. (Extreme Value Theorem) Let f : [a, b] → R be a continuous function. Then
f attains its maximum and minimum.

Proof. (Exercise) □

Remark. Let (M, d) and (N, ρ) be two metric spaces and f : M → N be continuous.

(1) Continuous maps send compact sets to compact sets. But the converse is false. For example,
f is a constant map on R.

Compact Set
f−→ Compact Set

��XX←−
f −1

(2) Continuous maps send connected sets to connected sets. But the converse is false. For
example, f (x) = x2 on {1,−1}.

Connected Set
f−→ Connected Set

��XX←−
f −1

Remark. Let f : M → R be continuous and K ⊆ M be compact. Then f attains its extreme in
K. The extreme points are not unique. For example, f (x) = sin x on [−2π, 2π].

Corollary 3.4.4. Let (M, d) be a metric space, K ⊆ M be compact and f : K → R be a
continuous map. Then the set

{
x ∈ K

∣∣ f (x) is the maximum of f on K
}

is a nonempty compact
set.

Proof. Let L = sup
x∈K

f (x). Then f −1(L) , ∅. Since {L} ⊆ R is closed and f is continuous,

f −1({L}) is closed. Hence, f −1({L}) ∩ K is closed set in K and it is compact. □

Theorem 3.4.5. Let E be a noncompact set in R. Then

(1) there exists a continuous function on E which is unbounded.

(2) there exists a bounded and continuous function on E which has no maximum.
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Proof. (1) Since E is noncompact in R, either E is not bounded or E not closed (or both). If E
is unbounded, then the function f (x) = x on E is an unbounded function.

If E is bounded but not closed, then there exists x0 ∈ E\E. Hence, there exists a sequence

{xn}∞n=1 ⊆ E such that lim
x→x0

xn = x0. The function f (x) =
1

x − x0
is defined on E but not

bounded.

(2) If E is unbounded, we define f (x) =
x2

1 + x2 . Then sup
x∈E

f (x) = 1 but f (x) < 1 for every

x ∈ E.

If E is unbounded but not closed, let x0 and {xn}∞n=1 be defined as above. We define

f (x) =
1

1 + (x − x0)2 . Then sup
x∈E

f (x) = 1 but f (x) < 1 for every x ∈ E.

□

Theorem 3.4.6. Let (M, d) and (N, ρ) be metric space, A ⊆ M and f : A → N be a map. If
K ⊆ A is compact and f is continuous on K, then f is uniformly continuously on K.

Proof. Since f is continuous on K, given ε > 0, for every x ∈ K, there exists δx > 0 such that
for y ∈ K with d(x, y) < δx︸                          ︷︷                          ︸

y∈BM(x,δx)∩K

then

ρ
(

f (x), f (y)
)
<
ε

2
.

Since K is compact and K ⊆
⋃
x∈K

BM(x,
δx

2
), there exists x1, · · · , xL ∈ K such that K ⊆

L⋃
i=1

BM(xi,
δxi

2
).

Define δ =
1
2

min
1≤i≤L

δxi . Let u, v ∈ K with d(u, v) < δ. Since K ⊆
L⋃

i=1

BM(xi,
δxi

2
), there exists

1 ≤ ℓ ≤ L such that u ∈ BM(xℓ,
δxℓ
2 ) ⊆ BM(xℓ, δxℓ). Thus,

d(v, xℓ) ≤ d(v, u) + d(u, xℓ) < δ +
δxℓ

2
≤ δxℓ .

Then v ∈ B(xℓ, δxℓ) and we have

ρ
(

f (u), f (v)
)
≤ ρ

(
f (u), f (xℓ)

)
+ ρ

(
f (xℓ), f (v)

)
<
ε

2
+
ε

2
= ε.

Hence, f is uniformly continuous on K.
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□

o Appendix

Definition 3.4.7. Let V be a vector space and ∥ · ∥1 and ∥ · ∥2 be two norms on V . We say that
∥ · ∥1 and ∥ · ∥2 are quivalent if there exists α, β > 0 such that

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥2 for every x ∈ V.

Remark. Suppose that ∥ · ∥1 and ∥ · ∥2 are equivalent norms on V . Then U is open in (V, ∥ · ∥1)
if and only if U is open in (V, ∥ · ∥2).

Example 3.4.8. Let V = Rn and ∥ · ∥2 be the usual norm on Rn. That is, ∥x∥2 =

Ã
n∑

i=1

x2
i where

x = (x1, x2, · · · , xn). Then every norm ∥ · ∥ on V is equivalent to ∥ · ∥2. This implies that every
two norms on Rn are equivalent.

Let ∥ · ∥ be a norm of Rn. To prove that ∥ · ∥ ∼ ∥ · ∥2. Let ei = (0, 0, · · · , 0, 1, 0, · · · , 0). Then

x = (x1, · · · , xn) =
n∑

i=1

xiei. Then

∥x∥2 =

Ã
n∑

i=1

x2
i ≥ max(|x1|, · · · , |xn|).

Let β =

Ã
n∑

i=1

∥ei∥2. Then β ≥ max(∥e1∥, · · · , ∥en∥). We have

∥x∥ =
n∑

i=1

xiei∥ ≤
n∑

i=1

|xi|∥ei∥ ≤
Ä n∑

i=1

|xi|2
ä1/2Ä n∑

i=1

∥ei∥2
ä2
≤ β∥x∥2.

On the other hand, since ∥ · ∥ is a norm, f (x) := ∥x∥ is continuous on (Rn, ∥ · ∥2). Let Sn−1 =
{

x ∈
Rn

∣∣ ∥x∥2 = 1
}

. Then Sn−1 is compact in (Rn, ∥ · ∥2). Therefore, there exists a ∈ Sn−1 such that
0 < f (a) = min

x∈Sn−1
f (x). For x ∈ Sn−1, f (x) ≥ f (a).

Consider 0 , y ∈ Rn,
y
∥y∥2

∈ Sn−1 and

f (a) ≤ f
( y
∥y∥2

)
=
∥∥∥∥ y
∥y∥2

∥∥∥∥ = 1
∥y∥2
∥y∥.

Hence, f (a)︸︷︷︸
=α

∥y∥2 ≤ ∥y∥.
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Remark. Let ∥ · ∥1 and ∥ · ∥2 be two norms on a vector space V , N be a metric space and
f : V → N be a map. Suppose that ∥ · ∥1 ∼ ∥ · ∥2. Then f is continuous on (V, ∥ · ∥1) if and only
if f is continuous on (V, ∥ · ∥2).

o Review of Continuous Maps

Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : M → N be a map.

(1)

f is continuous on M.
⇐⇒ f −1(F) is closed for every closed subset F ⊆ N.
⇐⇒ f −1(U) is open for every open subset U ⊆ N.

(2) Suppose that f is continuous on M. Then f (K) is compact for every compact subset K ⊆ N.

Observation: Let f : A→ f (A) ⊆ N.

• The inverse function of f may not exist. If f is 1-1, then the inverse fucntion of f exists and
denoted by f −1 : f (A)→ A.

• If f : A→ f (A) is 1-1 and continuous, is the inverse function f −1 : f (A)→ A continuous?
Idea: let M be compact and E ⊆ M be closed. Then E is compact in M. The set f (E) is
compact in N since f is continuous. This implies that f (E) is closed in N. We have f send
every closed set E in M to a closed set f (E) in N. Therefore, f −1 is continuous.

Theorem 3.4.9. Let (M, d) and (N, ρ) be two metric spaces, K ⊆ M be compact and f : K → N
be a 1-1 and continuous function. Then the inverse function f −1 : f (K)→ K is continuous.

Proof. It suffices to prove that for every closed set E in M, the preimage,
(

f −1
)−1(E) of E under

f −1 is relatively closed in f (K).
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Since E is closed in M and K is compact in M, the intersection E ∩ K is compact in M. Also,
since f is continuouos, f (E ∩ K) is compact in N and hence it is closed in N. Moreover, since
f is 1-1, we have f (E ∩ K) =

(
f −1

)−1(E) is closed in f (K). Therefore, f −1 is continuous on
f (K). □

Remark. Theorem 3.4.9 is false if K is not compact. For example, f : R → R2 by f (t) =
(cos t, sin t) on K = [0, 2π). Then f is 1-1 and continuous on [0, 2π) and f

(
[0, 2π)

)
= S1. But

f −1 is not continuous at (1, 0) = f (0).

3.5 Continuous Maps on Connected Sets and Path Connected
Sets

o Path Connected Sets

Definition 3.5.1. Let (M, d) be a metric space, x, y ∈ M. We say that a path in M from x to y is
a continuous map ϕ : [0, 1]→ M such that ϕ(0) = x and ϕ(1) = y.

Remark. We can replace [0, 1] by [a, b]. If ϕ : [a, b] → M such that ϕ(a) = x and ϕ(b) = y,
define ϕ(t) = ϕ

(
a + (b − a)t

)
. Then ϕ : [0, 1]→ M such that ϕ(0) = a and ϕ(1) = b.

Definition 3.5.2. Let (M, d) be a metric space. A subset A ⊆ M is said to be “path connected”
if every pair of points x, y ∈ A can be joined by a path in M. That is, there is a continuous map
ϕ : [0, 1]→ A such that ϕ(0) = x and ϕ(1) = y.

Definition 3.5.3. A set A in a vector space V is called “convex” if for all x, y ∈ A, the line
segment joining x and y, denoted by xy, lies in A.
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Example 3.5.4. An open (closed) ball in a vector space is convex. If M = N the open ball
B(3, 2) = {2, 3, 4} is not convex.

Remark.

A convex set in a normed
space is path connected by
taking ϕ(t) = (1 − t)x + ty.

Example 3.5.5. A set S in a vector space V is called “star-shaped”, if there exists p ∈ S such
that for every q ∈ S , the line segment joining p and q lies in S . Note that A star-shaped set is

path connected by taking ϕ(t) =
ß

(1 − 2t)x + 2tp t ∈ [0, 1
2 ]

(2 − 2t)p + (2t − 1)y t ∈ [ 1
2 , 1].

Remark. Let A, B ⊆ M be path-connected. If there exists a ∈ A and b ∈ B and a path in A ∪ B
joining a and b, then A ∪ B is path connected.

Theorem 3.5.6. Let (M, d) be a metric space and A ⊆ M. If A is path-connected, then A is
connected.

Proof. Assume that A is disconnected. Then there exist open setsU andV in M such that

(i) A ⊆ U ∪V (ii) A ∩U , ∅ (iii) A ∩V , ∅ (iv) A ∩U ∩V = ∅
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By (ii) and (iii), choose x ∈ A ∩ U and y ∈ A ∩ V. Since A is path connected, there exists a
continuous map ϕ : [0, 1] → A such that ϕ(0) = x and ϕ(1) = y. then ϕ−1(U) and ϕ−1(V) are
open relative to [0, 1]. Hence, there existW1 andW2 open in [0, 1] such that ϕ−1(U) = W1

and ϕ−1(V) =W2.

By (i), [0, 1] ⊆ W1 ∪ W2. Also,by (ii) and (iii), 0 ∈ W1 and 1 ∈ W1. We have
[0, 1] ∩W1 , ∅ and [0, 1] ∩W2 , ∅.

By (iv), [0, 1] ∩W1 ∩W2 = ϕ
−1(U) ∩ ϕ−1(V) = ∅. (Otherwise, there exists t0 ∈ [0, 1] ∩

W1 ∩W2. Then ϕ(t0) ∈ A ∩U ∩V). It contradicts the fact that [0, 1] is connected.

□

Remark. From the above theorem, a path-connected set is connected. But the converse is

false. For example, A =
{

(x, sin
1
x

)
∣∣ x ∈ (0, 1)

}
∪
Ä
{0} × [−1, 1]

ä
is connected but not path

connected. Let x = (1, sin 1) and y = (0, 1). There exists no path in A joining x and y.

Theorem 3.5.7. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and f : A → N be a
continuous map.

(1) If A is connected, then f (A) is connected.

(2) If A is path connected, then f (A) is path connected.

Proof. (1) Assume that f (A) is disconnected. Then there existsU andV open in N such that

(i) f (A) ⊆ U ∪V (ii) f (A) ∩U , ∅ (iii) f (A) ∩V , ∅ (iv) f (A) ∩U ∩V = ∅
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Since f is continuous and U and V are open in N, f −1(U) and f −1(V) are open relative
to A. Therefore, there exists W1 and W2 open in M such that f −1(U) = A ∩ W1 and
f −1(V) = A ∩W2.

By (i), A ⊆ W1 ∪ W2. From (ii) and (iii), A ∩ W1 , ∅ and A ∩ W2 , ∅. By (iv),
A ∩W1 ∩W2 = ∅. Hence, A is disconnected and we obtain a contradiction.

(2) Let y1, y2 ∈ f (A). Then there exists x1, x2 ∈ A such that y1 = f (x1) and y2 = f (x2). Since
A is path connected, there exists a continuous map ϕ : [0, 1] → A such that ϕ(0) = x1 and
ϕ(1) = x2.

Define ψ(t) := f (ϕ(t)). Clearly, ψ(t) maps from [0, 1] to f (A). Since f and ϕ are continuous,
ψ is continuous on [0, 1]. ψ(0) = f

(
ϕ(0)

)
= f (x1) = y1 and ψ(1) = f

(
ϕ(1)

)
= f (x1) = y1.

Hence, ψ is a path in f (A) joining y1 and y2. Since y1 and y2 are arbitrary pair of points in
f (A) , f (A) is path connected.

□

Corollary 3.5.8. Let f : [a, b]→ R be continuous. If f (a) , f (b), then for any value L between
f (a) and f (b), there exists c ∈ (a, b) such that f (c) = L.

Proof. Since [a, b] is connected and f is continuous, f
(
[a, b]

)
is connected in R. Hence, for

f (a), f (b) ∈ f
(
[a, b]

)
and L between f (a) and f (b) then L ∈ f

(
[a, b]

)
. Therefore, there exists

c ∈ [a, b] such that f (c) = L. Since L , f (a) and L , f (b), we obtain c ∈ (a, b).
□

Definition 3.5.9. Let V be a vector space and ϕ : [0, 1]→ V be a continuous map. We say that
ϕ is “piecewise linear” if there exists t0, t1, · · · , tn ∈ [0, 1] with a = t0 < t1 < · · · < tn = 1 such
that ϕ is a linear map on each [ti−1, ti] for i = 1, 2, · · · , n.
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Remark. Let A be a convex or star-shaped subset in a vector space V . Then for any pair of
points x, y ∈ A, there exists a piecewise linear mapping in A joining x and y.

Lemma 3.5.10. Let x, y, z ∈ V. If there are piecewise linear mappings ϕ1, ϕ2 : [0, 1] → V
such that ϕ1 joins x and y and ϕ2 joins y and z, then there exists a piecewise linear mapping
ϕ : [0, 1]→ V such that ϕ joins x and z.

Theorem 3.5.11. Let G be a connected and open set in a vector space V. Then for any x, y ∈ G,
there exists a piecewise linear mapping ϕ : [0, 1]→ G such that ϕ(0) = x and ϕ(1) = y.

Proof. Let x ∈ G. Define

G1 =
{

z ∈ G
∣∣ there exists a piecewise linear mapping ϕz(t) : [0, 1]→ G such that ϕz(0) = x and ϕz(1) = z.

}
Clearly, x ∈ G1. It sufficies to show that G1 = G.

Claim 1: G1 is open.
Proof of Claim 1: Let z ∈ G. Since G is open, there exists δ > 0 such that B(z, δ) ⊆ G. Since
B(z, δ) is convex, for any point z ∈ B(z, δ), there exists a piecewise linear mapping joining z and
z1. Hence, by Lemma3.5.10 there is a piecewise linear mapping joining x and z1. Then z1 ∈ G1

and hence B(z, δ) ⊆ G1. Thus, G1 is open.

Claim2: G\G1 is open.
Proof of Claim 2: If w ∈ G\G1, then there exists no piecewise linear mapping joining x and w.
Since G is open, there exists r > 0 such that B(w, r) ⊆ G. For any point w1 ∈ B(w, r), there is a
piecewise linear mapping joining w and w1.

Assume that w1 ∈ G1. Then, by Lemma3.5.10, there exists a piecewise linear mapping join-
ing x and w. Thus, w ∈ G1 and we obtain a contradiction. Hence, B(z, r) ⊆ G\G1. Then G\G1

is open.

By Claim 2, G1 is closed in G. Then G1 is both open and closed relative to G. Since G is
connected, either G1 = ∅ or G1 = G. But G1 , ∅ and hence G1 = G.

□
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4.1 Pointwise and Uniform Convergence

Definition 4.1.1. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk, f : A→ N be maps
for k = 1, 2, · · · . The sequence { fk}∞k=1 is said to converge (pointwise) to f on A if

lim
k→∞

ρ
(

fk(a), f (a)
)

for every a ∈ A. We denote fk → f pointwise (p.w.)

101
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Remark. (precise definition) Suppose fk → f pointwise if for every ε > 0 and every a ∈ A,
there exists N = N(ε, a) ∈ N such that if k ≥ N,

ρ
(

fk(a), f (a)
)
< ε.

Note that N depends on ε and a.

Definition 4.1.2. Let (M, d) and (N, ρ) be two metrics, B ⊆ A ⊆ M and fk, f : A → N be maps
for k = 1, 2, · · · . We say that the sequence { fk}∞k=1 “uniformly converges” to f on B if for every
ε > 0, there exists N = N(ε) > 0 such that for every x ∈ B, if k ≥ N

ρ
(

fk(x), f (x)
)
< ε.

We write fk → f uniformly on B.

Note that this “N” only depends on ε but is indenpendent of x.

Remark. Let (M, d) and (N, ρ) be two metrics, B ⊆ A ⊆ M and fk, f : A → N be maps for
k = 1, 2, · · · . We say that the sequence { fk}∞k=1 “uniformly converges” to f on B if

lim
k→∞

Ä
sup
x∈B

ρ
(

fk(x), f (x)
)ä
= 0.

Example 4.1.3. Let fk, f : [0, 1]→ R by

fk(x) =
ß

0, x ∈ [ 1
k , 1]

−kx + 1, x ∈ [0, 1
k ) and f (x) =

ß
0, x ∈ (0, 1]
1, x = 0

Then fk converges to f pointwise but does not converges to f uniformly.

Example 4.1.4. Let fk : [0, 1]→ R by fk(x) = xk and f (x) =
ß

0 x ∈ [0, 1)
1 x = 1
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(1) Fix x ∈ [0, 1),

xk → 0 as k → ∞.

Clearly, 1k = 1 for every k. Hence, fk(x) →
f (x) pointwise on [0, 1].

(2) Let ε = 1
2 . For every N ∈ N, choose

xN =
N

…
2
3
∈ [0, 1). Then

∣∣ fN(xN) − f (xN)
∣∣ = ∣∣2

3
− 0

∣∣ > ε.
Hence, { fk}∞k=1 does not converges to f on [0, 1]
uniformly.

(3) Fix 0 < a < 1. Given ε > 0, choose N ∈ N with N >
ln ε
ln a

. For every x ∈ [0, a] and k ≥ N,∣∣ fk(x) − f (x)
∣∣ = |xk − 0| ≤ ak < ε.

Hence, { fk}∞k=1 converges to f uniformly on [0, a] for every 0 ≤ a < 1.

Example 4.1.5. Let fk : R→ R by f(x) =
sin x

k
and f (x) = 0. Then fk → f uniformly on R.

Proposition 4.1.6. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk, f : A → N be
maps for k = 1, 2, · · · . If { fk}∞k=1 converges to f uniformly, then { fk}∞k=1 converges to f pointwise.

Proof. (Exercise) □

Remark.

Uniform Convergence ⇒ Pointwise Convergence
��HH⇐

Proposition 4.1.7. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk : A → N be a
sequence of maps. Suppose that (N, d) is complete. Then { fk}∞k=1 converges uniformly on A if
and only if for every ε > 0, there exists L ∈ N such that for every x ∈ A and m, n ≥ L,

ρ
(

fm(x), fn(x)
)
< ε.

Proof. (=⇒) Let f : A → N be a map where fk → f uniformly on A. Given ε > 0, there exists
L ∈ N such that for every x ∈ A and k ≥ L,

ρ
(

fn, (x), f (x)
)
<
ε

2
.

For every m, n ≥ L,

ρ
(

fm(x), fn(x)
)
≤ ρ

(
f(x), f (x)

)
+ ρ

(
f (x), fm(x)

)
<
ε

2
+
ε

2
= ε.
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(⇐=) Let { fk}∞k=1 be a sequence of maps on A with the Cauchy criterion. Fix a ∈ A, the sequence
{ fk(a)}∞k=1 is a Cauchy sequence in N. Since (N, ρ) is complete, there exists ya ∈ N such that
fk(a)→ ya in (N, ρ).
By the same argument, for every x ∈ A, there exists yx ∈ A such that fk(x) → yx. Define a map
f : A→ N by f (x) = yx. Then fk → f pointwise on A.

Given ε > 0, by the Cauchy creiterion, there exists L ∈ N such that for every x ∈ A and
m, n ≥ L,

ρ
(

fm(x), fn(x)
)
<
ε

2
.

Since fk → f pointwise on A, for every x ∈ A, there exists Lx ≥ L such that if m > Lx,

ρ
(

fm(x), f (x)
)
<
ε

2
.

Hence, for every x ∈ A and k ≥ L, we choose mx ≥ Lx ≥ L. Then

ρ
(

fk(x), f (x)
)
≤ ρ

(
fk(x), fmx(x)

)︸               ︷︷               ︸
Cauchy criterion

+ ρ
(

fmx(x), f (x)
)︸               ︷︷               ︸

pointwise convergence

<
ε

2
+
ε

2
= ε.

Therefore, fk → f uniformly on A. □

Remark. The completeness of (N, ρ) is NOT necessay in the direction (=⇒).

Theorem 4.1.8. Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk : A → N be a
sequence of continuous maps converging to f : A → N uniformly on A. Then f is continuouos
on A.

Proof. Since fk → f uniformly on A, for given ε > 0, there exists L ∈ N such that for every
x ∈ A and k ≥ L,

ρ
(

fk(x), f (x)
)
<
ε

3
.
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Since fL is continuous on A, for a ∈ A, there exists δa > 0 such that if x ∈ A with d(x, a) < δa,

ρ
(

fL(a), fL(x)
)
<
ε

3
.

Hence,

ρ
(

f (x), f (a)
)
≤ ρ

(
f (x), fL(x)

)
+ ρ

(
fL(x), fL(a)

)
+ ρ

(
fL(a), f (a)

)
<

ε

3
+
ε

3
+
ε

3
= ε

for every x ∈ A with d(x, a) < δa. Thus, f is continuous at a. Since a is an arbitrary point in A,
f is continuous on A. □

Remark. (1) The uniform convergence of { fk}∞k=1 suggests a switch of the limit of points and
the limit of sequence. That is, fk → f uniformly on A and a ∈ A, then

lim
x→a

Ä
lim
k→∞

fk(x)
ä
= lim

k→∞

Ä
lim
x→a

fk(x)
ä
.

(2) The uniform limit of a sequence of continuous
functions might not be uniformly continuous.
Question: How about the uniform limit of a
sequence of uniformly continuous functions?
Is it uniformly continuous?
Answer: Yes.

Suppose fk : I → R uniformly converges to f .
Question: If each fk is differentiable, is f
differentiable? If yes, does f ′k → f ?
Answer: No.

Question: If each fk is integrable, is f inte-

grable? If yes, does
∫

I
fk dx→

∫
I

f dx?

Answer:Yes.

Recall: Let f : [a, b] → R and P = {a = t0 < t1 < · · · < tn = b} be a partition of [a, b].

The upper and lower sums of P for f are

U(P, f ) =
n∑

i=1

Mi(ti−ti−1) and L(P, f ) =
n∑

i=1

mi(ti−ti−1)

where Mi = sup
t∈[ti−1,ti]

f (t) and mi = inf
t∈[ti−1,ti]

f (t). We

have
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(i) L(P, f ) ≤ U(P, f ).

(ii) If P1 is a refinement of P (that is, P ⊆ P1), then

L(P, f ) ≤ L(P1, f ) ≤ U(P1, f ) ≤ U(P, f ).

(iii) For any two partitions P1 and P2 of [a, b], we have

L(P1, f ) ≤ U(P2, f ).

(iv)
∫ b

a

f (x) dx := sup
P

L(P, f ) and
∫ b

a
f (x) dx := inf

P
U(P, f ). Clearly,

∫ b

a

f (x) dx ≤
∫ b

a
f (x) dx.

If
∫ b

a
f (x) dx =

∫ b

a
f (x) dx, we say f is (Riemannian) integrable on [a, b] and denoted by∫ b

a
f (x) dx.

(v) A function f is integrable on [a, b] if and only if for every ε > 0, there exists a partition P
of [a, b] such that

U(P, f ) − L(P, f ) < ε.

Theorem 4.1.9. (Uniform convergence and integration) Let fk : [a, b] → R be a sequence of
integrable functions which converge uniformly to f on [a, b]. Then f is integrable and

lim
k→∞

∫ b

a
fk(x) dx =

∫ b

a
f (x) dx

Proof. Since { fk}∞k=1 converges uniformly to f on [a, b], for given ε > 0, there exists N ∈ N such
that if k ≥ N and x ∈ [a, b],

| fk(x) − f (x)| < ε.
Since fN is integrable on [a, b], there exists a partition P of [a, b] such that U(P, fN)−L(P, fN) <
ε. Let

Mi = sup
t∈[ti−1,ti]

f (t), mi = inf
t∈[ti−1,ti]

f (t), M(N)
i = sup

t∈[ti−1,ti]
fN(t), m(N)

i = inf
t∈[ti−1,ti]

fN(t).

Then∣∣Mi − M(N)
i

∣∣ ≤ sup
t∈[ti−1,ti]

| f (t) − fN(t)| < ε and
∣∣mi − m(N)

i

∣∣ ≤ sup
t∈[ti−1,ti]

| f (t) − fN(t)| < ε.

We have

U(P, f ) − L(P, f ) ≤
∣∣U(P, f ) − U(P, fN)

∣∣ + ∣∣U(P, fN) − L(P, fN)
∣∣ + ∣∣L(P, fN) − L(P, f )

∣∣
<

n∑
i=1

∣∣Mi − M(N)
i

∣∣(ti − ti−1) + ε +
n∑

i=1

∣∣mi − m(N)
i

∣∣(ti − ti−1)

< 2ε
n∑

i=1

(ti − ti−1) + ε

= [2(b − a) + 1]ε.
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Hence, f is integrable on [a, b]. Moreover, for k ≥ N,∣∣∣∫ b

a
f (x) dx −

∫ b

a
fk(x) dx

∣∣∣ = ∣∣∣∫ b

a
f (x) − fk(x) dx

∣∣∣ ≤ ∫ b

a
| f (x) − fk(x)| dx < ε(b − a).

Therefore, ∫ b

a
f (x) dx = lim

k→∞

∫ b

a
fk(x) dx.

□

Example 4.1.10. (Using the integrabtion to determine the convergence is not uniform)
The set Q ∩ [0, 1] is countable. Write Q ∩ [0, 1] =

{
qk

∣∣ k ∈ N
}

Define fk(x) : [0, 1]→ R by

fk(x) =
ß

1 x ∈ {q1, q2, · · · , qk}
0 otherwise and f (x) =

ß
1 x ∈ Q ∩ [0, 1]
0 otherwise.

Then fk → f pointwise on [0, 1]. On the other hand, every fk(x) is integrable on [0, 1], but f is
not integrable on [0, 1]. Hence, { fk(x)}∞k=1 does not converge to f uniformly.

Note that we can check this result directly.

Remark. Suppose that fk → f pointwise and
∫

fk dx →
∫

f dx. It cannot imply that fk → f
uniformly.

Theorem 4.1.11. (Uniform convergence and differentiation) Let I ⊆ R be a finite interval.
Suppose that { fk}∞k=1 is a sequence of functions which are differentiable on I and such that
{ fk(a)}∞k=1 converges for some a ∈ I. If { f ′k }∞k=1 converges uniformly to g on I, then { fk}∞k=1
converges uniformly on I to a function f , and

f ′(x) =
d
dx

Ä
lim
k→∞

fk(x)
ä
= lim

k→∞

Ä d
dx

fk(x)
ä
= lim

k→∞
f ′k (x).

Proof. Since { fk(a)}∞k=1 converges, given ε > 0, there exists N ∈ N such that for m, n ≥ N,∣∣ fn(a) − fm(a)
∣∣ < ε

2
.

Since { f ′k }∞k=1 converges uniformly on I, there exists
N1 ∈ N such that for every x ∈ I and for m, n ≥ N1,∣∣ f ′n(x) − f ′m(x)

∣∣ < ε

2|I| .

For x ∈ I and m, n ≥ max(N,N1), by M.V.T, there
exists cx ∈ (x0, x) [or cx ∈ (x, x0)], such that∣∣∣( fn(x) − fm(x)

)
−
(

fn(x0) − fm(x0)
)∣∣∣ = ∣∣ f ′n(cx) − f ′m(cx)

∣∣|x − x0| <
ε

2|I| · |I| =
ε

2
. (4.1)

Then ∣∣ fn(x) − fm(x)
∣∣ ≤ ∣∣ fn(x0) − fm(x0)

∣∣ + ε
2
<
ε

2
+
ε

2
= ε.
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Therefore, { fk}∞k=1 converges uniformly on I. That is, there exists f : I → R such that fk → f
uniformly on I.

(To prove f ′(x) = lim
k→∞

f ′k (x).) Fix x ∈ I.
Define

ϕk(t) =

{ fk(t) − fk(x)
t − x

t ∈ I, t , x

f ′k (x) t = x
and ϕ(t) =

{ f (t) − f (x)
t − x

t ∈ I, t , x

g(x) t = x

Then lim
k→∞

ϕk(t) = ϕ(t) and lim
t→x

ϕk(t) = f ′k (x) for k = 1, 2, 3, · · · .

Given ε > 0, for m, n ≥ N1 and for every t ∈ I\{x},∣∣∣ϕn(t) − ϕm(t)
∣∣∣ = 1

|t − x|

∣∣∣[ fn(t) − fn(x)
]
−
[

fm(t) − fm(x)
]∣∣∣

≤ 1
|t − x|

∣∣∣ f ′n(ct,x) − f ′m(ct,x)
∣∣∣|t − x| for some ct,x ∈ (t, x)

≤ ε

2|I| .

Hence {ϕk(x)}∞k=1 satisfies the Cauchy criterion on I\{x}. Then {ϕk(x)}∞k=1 converges uniformly
on I\{x}. Moreover,

lim
k→∞

f ′(x) = lim
k→∞

Ä
lim
t→x

ϕk(t)
ä
= lim

t→x

Ä
lim
k→∞

ϕk(t)
ä
= lim

t→x
ϕ(t) = lim

t→x

f (t) − f (x)
t − x

= f ′(x).

□

Remark. Under the same hypothesis of the theorem, assume that { f ′k }∞k=1 is a sequence of con-
tinuous function. We can use the F.T.C to prove it.

Theorem 4.1.12. (Uniform convergence and differentiation) Let I ⊂ R be a finite interval,
fk : I → R be a sequence of differentiable functions. Suppose that { fk(a)}∞k=1 converges for some
a ∈ I and { f ′k }∞k=1 converges uniformly to a function g on I. Then

(1) { fk}∞k=1 converges uniformly to some function f on I.

(2) the limit function f is differentiable on I and f ′(x) = g(x) for all x ∈ I. That is,

g(x) = lim
k→∞

Ä d
dx

fk(x)
ä
= lim

k→∞
f ′k (x) = f ′(x) =

d
dx

Ä
lim
k→∞

fk(x)
ä
.

Proof. For x ∈ I, by the F.T.C,

fk(x) = fk(a) +
∫ x

a
f ′k (t) dt.

Since { fk(a)}∞k=1 converges and by Theorem 4.1.9, {
∫ x

a
f ′k (t) dt}∞k=1 converges for every x ∈ I.

Since { fk(x)}∞k=1 converges for every x ∈ I, we can define

f (x) = lim
k→∞

Ä
fk(a) +

∫ x

a
f ′k (t) dt

ä
.
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Hence,

f (a) = lim
k→∞

fk(a) and f (x) − f (a) = lim
k→∞

∫ x

a
f ′k (t) dt =

∫ x

a
g(t) dt.

We have f ′(x) = g(x).

(To check that fk → f (x) uniformly on I.)
Since lim

k→∞
fk(a) = f (a), given ε > 0, there exists N1 ∈ N such that if k ≥ N1, | fk(a) − f (a)| < ε

2
.

Since f ′k (x)→ g(x) uniformly on I, there exists N2 ∈ N such that for every x ∈ I and k ≥ N2,

| f ′k (x) − g(x)| < ε

2|I| .

Therefore,

| f (x) − fk(x)| =
∣∣∣[ f (a) +

∫ x

a
g(t) dt

]
−
[

fk(a) +
∫ x

a
f ′k (t) dt

]∣∣∣
≤ | f (a) − fk(a)| +

∫ x

a
|g(t) − f ′k (t)| dt

≤ ε

2
+
ε

2
= ε.

Thus, fk → f uniformly on I.
□

Remark. In the theorem,

(1) the conditioin “ fk(a)→ f (a)” is necessary. For example, fk(x) = k, then f ′k ≡ 0. But { fk}∞k=1
does not converge.

(2) the finiteness of the interval is necessary. For
example fk(0) = 0 and f ′k (x) = 1

k . Then
f ′k (x) → g(x) ≡ 0. But { fk}∞k=1 does not con-
verge uniformly.

Remark. Suppose that { fk}∞k=1 is a sequence of differentiable functions and fk → f uniformly.
It cannot imply that f is differentiable. For example

fk(x) =
ß k

2 x2 if |x| ≤ 1
k

|x| − 1
2k if 1

k ≤ |x| ≤ 1 and f (x) = |x|.

Then fk → f uniformly and fk is differentiable.
But f is not differentiable at 0.
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o Pointwise Convergence v.s. Uniform Convergence

A sequence of functions { fk}∞k=1 which converges uniformly to f automatically converges
to f pointwise. But the converse is false. For example, fk(x) = k2x2(1 − x2)k on [0, 1]. Then
fk(x)→ 0 pointwise but does not converge uniformly.

Question: Is the converse true under certain conditions? By observing the convergence of a

monotonic sequence and monotone sequence property, we know that a monotonic sequence will
be closer and closer to its limit. We hope this situation will occur on a sequence of functions.
We hope that {

x
∣∣∣ ∣∣ fn(x) − f (x)

∣∣ < ε} ⊆ {
x
∣∣∣ ∣∣ fn+1(x) − f (x)

∣∣ < ε}.
However, there may have some possible troubles.

1. For some a ∈ A, it is possible that a ∈
{∣∣ fN − f

∣∣ < ε
}

but a <
{∣∣ fN+1 − f

∣∣ < ε
}

. We
expect an additional condition that

f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ · · · .

2. The rate of the convergence of the sequence at some point is too slow. If the domain
contains finitely many points, it will not be a trouble. But when the domain contains
inifitely many points, this situation will be happend. A compact domain may be overcome
this trouble.

Theorem 4.1.13. (Dini’s Theorem) Suppose that K is compact and

(a) fn : K → R is continuous on K for n = 1, 2, 3, · · · ;

(b) { fn}∞n=1 converges pointwise to a continuous function f on K;

(c) fn ≤ fn+1 for all n ∈ N.

Then { fn}∞n=1 converges uniformly to f on K.

Proof. Define gn = f − fn for all n ∈ N. Since fn → f pointwise, fn ≤ fn+1 and f , fn are
continuous on K for every n ∈ N, we have gn → 0 pointwise, gn ≥ gn+1, gn ≥ 0 for every n ∈ N
and gn are continuous on K. It sufficies to show that gn → 0 uniformly on K.



4.1. POINTWISE AND UNIFORM CONVERGENCE 111

Given ε > 0, we define Kn =
{

x ∈ K
∣∣ gn(x) ≥ ε

}
. Since gn(x) is continuous on K,

Kn = g−1
n

(
[ε,∞)

)
is closed in K. Then Kn is compact since K is compact. Moreover, since

gn ≥ gn+1 for every n ∈ N, we obatin Kn+1 ⊆ Kn for every n ∈ N. Fix x ∈ K. Since gn(x) → 0

as n → ∞, x < Kn as n is sufficiently large. We have x <
∞⋂

n=1

Kn for every x ∈ K. That is,

∞⋂
n=1

Kn = ∅. By the finite intersection property, there exists N ∈ N such that

N⋂
n=1

Kn = ∅.

That is, if n ≥ N, gn(x) < ε for every x ∈ K. Hence, fn → f uniformly on K.
□

Remark. (1) The result of Theorem 4.1.13 is true if the condition (c) is replaced by fn ≥ fn+1.

(2) The compactness is necessary. For example, fn(x) =
1

nx + 1
on (0, 1). Then fn → 0 point-

wise but not uniformly.

(3) The monotonicity is necessary. For exampe, fn =


0 x ∈ [0,

1
n + 1

]

2n(n + 1)(x − 1
n+1 ) x ∈ [ 1

n+1 ,
2n+1

2n(n+1) ]
−2n(n + 1)(x − 1

n ) x ∈ [ 2n+1
2n(n+1) ,

1
n ]

0 x ∈ [1
n , 1]
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4.2 Series of Functions
Definition 4.2.1. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed space, A ⊆ M and gk, g :
A→ V be functions.

(1) We say that the series
∞∑

k=1

gk converges pointwise to g if the sequence of partial sum
{

sn
}∞

n=1

given by

sn(x) =
n∑

k=1

gk(x)

converges pointwise to g.

(2) We say that
∞∑

k=1

gk converge to g uniformly on A if
{

sn}∞n=1 converges to g uniformly on A.

Example 4.2.2. For the geometric series
∞∑

k=0

xk, sn(x) =
n∑

k=0

xk =

 1 − xn+1

1 − x
if x , 1

n + 1 if x = 1

(1) For x ∈ (−1, 1), sn →
1

1 − x
. Hence,

∞∑
k=0

xk =
1

1 − x
converges pointwise on (−1, 1).

(2) For x ∈ (−∞,−1] ∪ [1,∞), {sn}∞n=1 diverges. Hence
∞∑

k=0

xk diverges on (−∞,−1] ∪ [1,∞)

(3) Let 0 < a < 1 and g(x) =
1

1 − x
. For x ∈ [−a, a],

∣∣sn(x) − g(x)
∣∣ = ∣∣∣1 − xn+1

1 − x
− 1

1 − x

∣∣∣ = ∣∣∣ xn+1

1 − x

∣∣∣ ≤ |a|n+1

1 − a
→ 0.

Given ε > 0, choose N ∈ N such that if n ≥ N, then
|a|n+1

1 − a
< ε and thus

∣∣sn(x) − g(x)
∣∣ < ε

for every x ∈ [−a, a] whenever n ≥ N. Hence,
∞∑

k=0

xk converges uniformly on [−a, a].

(4)
∞∑

k=0

xk does not converge uniformly on (−1, 1) since sup
x∈(−1,1)

∣∣sn(x) − g(x)
∣∣ = ∞.

Theorem 4.2.3. (Cauchy Criterion) Let (M, d) be a metric space, (V, ∥ · ∥) be a normed space,

A ⊆ M and gk : A → V be functions. If
∞∑

k=1

gk converges uniformly on A, then for every ε > 0,

there exists N ∈ N such that for n > m ≥ N,∥∥∥∥ n∑
m+1

gk(x)
∥∥∥∥ < ε

for every x ∈ A. In addition, if (V, ∥ · ∥) is a Banach space, then the converse holds.
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Proof. (=⇒)

Let
∞∑

k=1

gk(x) converges uniformly to g(x) on A. For ε > 0, there exists N ∈ N such that for

n ≥ N, ∥∥∥∥sn(x) − g(x)
∥∥∥∥ < ε

2
for every x ∈ A.

Hence, for n > m ≥ N,

∥∥∥ n∑
k=m+1

gk(x)
∥∥∥ = ∥∥∥sn(x) − sm(x)

∥∥∥ ≤ ∥∥∥sn(x) − g(x)
∥∥∥ + ∥∥∥sm(x) − g(x)

∥∥∥ < ε

2
+
ε

2
= ε

for every x ∈ A.

(⇐=)
Suppose that (V, ∥ · ∥) is a Banach space. Fix x ∈ A, for ε > 0, there exists N ∈ N such that for
n > m ≥ N, ∥∥∥sn(x) − sm(x)

∥∥∥ = ∥∥∥ n∑
k=m+1

gk(x)
∥∥∥ < ε.

Hence,
{

sn(x)
}∞

n=1 is a Cauchy sequence in V . Since (V, ∥ · ∥) is complete,
{

sn(x)
}∞

n=1 converges
in V , say lim

n→∞
sn(x) = g(x). Hence,

{
sn(x)

}∞
n=1 converges to g(x) pointwise on A.

Now, we check that sn(x)→ g(x) uniformly on A. Given ε > 0, there exists N ∈ N such that
n > m ≥ N, ∥∥∥sn(x) − sm(x)

∥∥∥ < ε

2
for every x ∈ A.

Since sn(x) → g(x) pointwise on A, for every x ∈ A, there exists mx ≥ N such that
∥∥∥smx(x) −

g(x)
∥∥∥ < ε

2 . Then, for every x ∈ A and n ≥ N,∥∥∥sn(x) − g(x)
∥∥∥ ≤ ∥∥∥sn(x) − smx(x)

∥∥∥ + ∥∥∥smx(x) − g(x)
∥∥∥ < ε

2
+
ε

2
= ε.

Therefore, sn(x)→ g(x) uniformly on A. □

Corollary 4.2.4. If
∞∑

k=1

gk(x) converges uniformly on A, then gk converges to 0 (0-function)

uniformly on A.

Theorem 4.2.5. Let (M, d) be a metric space and (V, ∥ · ∥) be a normed space, A ⊆ M and

gk, g : A → V be functions. If gk : A → V are continuous and
∞∑

k=1

gk(x) converges to g

uniformly on A, then g is continuous.

Proof. Since gk are continuous on A for every k ∈ N, sn(x) =
n∑

k=1

gk(x) are continuous on A for

every n ∈ N. Since {sn(x)}∞n=1 converges to g(x) uniformly on A, g(x) is continuous on A. □
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Corollary 4.2.6. If gk : [a, b] → R is integrable on [a, b] and g(x) =
∞∑

k=1

gk(x) converges uni-

formly on [a, b], then ∫ b

a
g(x) dx =

∞∑
k=1

∫ b

a
gk(x) dx.

Proof. (Exercise) □

o Weierstrass M-Test

Theorem 4.2.7. (Weierstrass M-Test) Let (M, d) be a metric space, (V, ∥ · ∥) be a Banach space,
A ⊆ M and gk : A → V be a sequence of functions. Suppose that there exists Mk > 0 such that

sup
x∈A
∥gk(x)∥ ≤ Mk for every k ∈ N and

∞∑
k=1

Mk converges. Then
∞∑

k=1

gk(x) converges uniformly

and absolutely (that is,
∞∑

k=1

∥gk(x)∥ converges uniformly ) on A.

Proof. To show that {sn}∞n=1 satisfies the Cauchy criterion. Since
∞∑

k=1

Mk converges, given ε > 0,

there exists N ∈ N such that if n > m ≥ N, then

n∑
k=m+1

Mk < ε.

Thus,

sup
x∈A

∥∥∥sn(x) − sm(x)
∥∥∥ = sup

x∈A

∥∥∥ n∑
k=m+1

gk(x)
∥∥∥ ≤ n∑

k=m+1

sup
x∈A
∥gk(x)∥ ≤

n∑
k=m+1

Mk < ε.

Hence,
{

sn(x)
}∞

n=1 converges uniformly on A. Similarly, let tn(x) =
n∑

k=1

∥gk(x)∥. for n > m ≥ N,

sup
x∈A

∣∣tn(x) − tm(x)
∣∣ = sup

x∈A

n∑
k=m+1

∥gk(x)∥ ≤
n∑

k=m+1

sup
x∈A
∥gk(x)∥ ≤

n∑
k=m+1

Mk < ε.

Therefore,
∞∑

k=1

∥gk(x)∥ converges uniformly on A. □

■ Application

(I) (Continuous and nowhere differentiable function) (Reference from [Rudin])

Theorem 4.2.8. There exists a real continuous function on R which is nowhere differen-
tiable.
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Proof. Define ϕ(x) = |x| on [−1, 1] and extend ϕ(x) to a 2-period function on R (still call
ϕ(x)). Then, ϕ(x + 2) = ϕ(x) for every x ∈ R.

Thus, for s, t ∈ R, ∣∣ϕ(s) − ϕ(t)
∣∣ ≤ |s − t| (4.2)

and ϕ is continuous on R.

Define f (x) =
∞∑

n=0

(3
4
)n
ϕ(4nx)︸   ︷︷   ︸
≤1

. Since 0 ≤ ϕ(x) ≤ 1, by M-Test, the series converges uni-

formly on R. Hence, f (x) is continuous on R.

Now, we want to prove that f is nowhere differentiable. Fix x ∈ R. (We will show that

lim
h→0

f (x + h) − f (x)
h

does not exist). Fix m ∈ N and let δm = ±1
2 · 4−m where the sign is

chosen such that Z ∩
(
4mx, 4m(x + δm)

)
= ∅ or Z ∩

(
4m(x + δm), 4mx

)
= ∅.

Define rn =
ϕ
(
4n(x + δm)

)
− ϕ(4nx)

δm
.

• When n > m, then 4nδm = ±1
2 · 4n−m is

an even integer. Since ϕ(x + 2) = ϕ(x),
ϕ
(
4n(x + δm)

)
− ϕ(4nx) = 0 and hence rn = 0.

• When 0 ≤ n ≤ m, by (4.2),
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|rn| =
|4n(x + δm) − 4nx|

δm
= 4n and ϕ

(
4m(x + δm)

)
− ϕ(4mx) = ±4mδm

and hence, |rm| = 4m. We obtain

∣∣∣ f (x + δm) − f (x)
δm

∣∣∣ = ∣∣∣ m∑
n=0

(3
4
)nrn

∣∣∣ ≥ (3
4
)m|rm| −

∣∣ m−1∑
n=0

(3
4
)nrn

∣∣
≥ 3m −

m−1∑
n=0

3n =
1
2

(3m + 1)→ ∞ as m→ ∞.

As m → ∞, δm → 0, we have lim
m→∞

f (x + δm) − f (x)
δm

does not exist and f is not differen-

tiable at x. □

(II) (Approximate a smooth function by polynomials)
Let f have n-th derivatives at a. We want to use a n-the degree polynomial Pn(x) =
a0 + a1(x− a)+ a2(x− a)2 + · · ·+ an(x− a)n to approximate f near a. We have ak =

f (k)(a)
k!

for k = 0, 1, · · · , n and the polynomail is called the Taylor polynomail of n-th degree for
f at a. We have known that

f (x) − Pn(x)
(x − a)n → 0 as x→ a.

Question: If f has infinite derivatives at a, what can we say about
∞∑

n=0

f (n)(a)
n!

(x − a)n?

(i) Does the series converge at x?

(ii) How much is the Taylor series close to f (x)? Consider Rn(x) = f (x) − Pn(x) and
use the mean value theorem to estimate the errors.

Moreover, by the same ideas, for a continuous function, we want to use a power series
∞∑

n=0

cn(x − a)n to approximate it. Hence, we nned to consider the issues of the convergence

of the series.

4.3 Taylor Series and Power Series

o Power Series

Definition 4.3.1. We call a series of the form

∞∑
k=0

ck(x − a)k
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a “power series about a” (or “centered at a”) for some sequence {ck}∞k=0 ⊆ R and a ∈ R. In
particular, if a = 0, we call the series

∞∑
k=0

ckxk

a “Maclaurin series”.

Remark. We can also define a power series in complex number.

Definition 4.3.2. For z ∈ C, we call a series of the form

∞∑
k=0

ck(z − z0)k

a power series about z0 (or centered at z0) for some {ck}∞k=0 ⊆ C and z0 ∈ C.

Theorem 4.3.3. Let
∞∑

k=0

ck(x − a)k be a power series in R. Suppose that the series converges at

some point b , a and define h := |b − a|. Then the series converges on (a − h, a + h). Moreover,
the series converges uniformly on [α, β] if [α, β] ⊆ (a − h, a + h).

Proof. W.L.O.G, we may assume that a = 0 and the series
∞∑

k=0

ckxk converges at some b , 0. Then h = |b|.

Since
∞∑

k=0

ckbk converges, |ck|hk = |ckbk| → 0 as k → ∞. Then there exists N ∈ N such that

for every k ≥ N, |ck|hk < 1. Thus

|ck| <
1
hk for every k ≥ N.

For x0 ∈ (−h, h),

∞∑
k=N

|ckxk
0| =

∞∑
k=N

|ck||x0|k ≤
∞∑

k=N

1
hk |x0|k =

∞∑
k=N

Ä |x0|
h

äk
< ∞.
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Then
∞∑

k=0

ckxk
0 converges absolutely and hence

∞∑
k=0

ckxk
0 converges. Since x0 is an arbitrary num-

ber in (−h, h),
∞∑

k=0

ckxk converges on (−h, h).

For [α, β] ⊆ (−h, h), choose 0 < δ < h such that [α, β] ⊆
(−h + δ, h − δ).

Then for x0 ∈ [α, β],
|x0|
h

< 1 − δ
h

. Hence, for ε > 0 and m > n ≥ N,

∣∣∣ n∑
k=m+1

ckxk
0

∣∣∣ ≤ n∑
k=m+1

|ck|hk ·
(
1 − δ

h
)k
< ε

as m, n sufficiently large. Therefore,
∞∑

k=0

ckxk converges uniformly on [α, β]. □

Remark. Every series is convergent at the center.

Remark. Let
∞∑

n=0

cn(z − z0)n be a complex power series. Suppose that the series converges at

some w0 , z0 and define h := |w0 − z0|. Then the series converges on the set B(z0, h). The series
converges uniformly on any set A where A ⊆ B(z0, h).

Corollary 4.3.4. (1) Let
∞∑

k=0

ck(x − a)k be a real power series and diverges at some d , a.

Define h := |d − a|. Then the series diverges on (−∞, a − h) ∪ (a + h,∞).
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(2) Let
∞∑

k=0

ck(z − z0)k be a complex power series and diverge at some w0 ∈ C. Define h :=

|w0 − z0|. Then the series diverges outside B(z0, h).

Definition 4.3.5. (1) A number R is called the radius of convergence of the real power series
∞∑

k=0

ck(x − a)k if the series converges for all x ∈ (a − R, a + R) but diverges if x ∈ (−∞, a −

R) ∪ (a + R,∞).

(2) A number R is called the radius of convergence of the complex power series
∞∑

k=0

ck(z − z0)k

if the series converges for all z ∈
{

z ∈ C
∣∣ |z − z0| < R

}
but diverges for all z ∈

{
z ∈

C
∣∣ |z − z0| > R

}
.

Remark. (1) R = sup
{

r ≥ 0
∣∣ ∞∑

k=0

ck(x − a)k converges in [a − r, a + r]
}

.

(2) R = sup
{

r ≥ 0
∣∣ ∞∑

k=0

ck(z − z0)k converges in B(z0, r)
}

.

Question: How to find the radius of convergence of
∞∑

k=0

ck(x − a)k?

By Raito Test (or Root Test), consider the series
∞∑

k=0

bk.

If lim sup
k→∞

∣∣∣bk+1

bk

∣∣∣ < 1 ⇒ the series converges.

If lim inf
k→∞

∣∣∣bk+1

bk

∣∣∣ > 1 ⇒ the series diverges.

For x , a, let ck(x − a)k = bk then
∣∣∣bk+1

bk

∣∣∣ = ∣∣∣ck+1(x − a)k+1

ck(x − a)k

∣∣∣ = ∣∣∣ck+1

ck

∣∣∣|x − a|. Consider

lim sup
k→∞

∣∣∣ck+1

ck

∣∣∣|x − a| < 1 ⇐⇒ |x − a| < 1
lim supk→∞

∣∣ ck+1
ck

∣∣ = lim inf
k→∞

∣∣∣ ck

ck+1

∣∣∣
lim inf

k→∞

∣∣∣ck+1

ck

∣∣∣|x − a| > 1 ⇐⇒ |x − a| > 1
lim infk→∞

∣∣ ck+1
ck

∣∣ = lim sup
k→∞

∣∣∣ ck

ck+1

∣∣∣
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If lim
k→∞

∣∣∣ ck

ck+1

∣∣∣ converges, then lim
k→∞

∣∣∣ ck

ck+1

∣∣∣ = lim inf
k→∞

∣∣∣ ck

ck+1

∣∣∣ = lim sup
k→∞

∣∣∣ ck

ck+1

∣∣∣ = R. Hence, the num-

ber R is the radius of converges and the series
∞∑

k=0

ck(x − a)k converges on (a − R, a + R) and

diverges on (−∞, a − R) ∪ (a + R,∞).

Question: How to find the interval of convergence?

(1) Find the radius of convergence

(2) Check whether the series converges at the endpoints a − R and a + R.

Theorem 4.3.6. Let
∞∑

k=0

ck(x − a)k be a power series with the radius of convergence R, and

[α, β] ⊆ (a − R, a + R). Then

(a) the power series
∞∑

k=0

ck(x − a)k converges uniformly on [α, β].

(b) the power series
∞∑

k=0

(k + 1)ck+1(x − a)k converges pointwise on (a−R, a+R) and converges

uniformly on [α, β].

Proof. It suffices to prove (2). For x ∈ [α, β] ⊆ (a − R, a + R), choose 0 < h < R such that
[α, β] ⊆ (a − h, a + h) ⊆ (a − R, a + R).

Then r =
|x − a|

h
< 1. Since a+h ∈ (a−R, a+R),

∞∑
k=0

ck
(
(a + h) − a

)k
=

∞∑
k=0

ckhk converges.

Thus |ckhk| → 0 as k → ∞. Then there exists N ∈ N such that if k ≥ N, then |ckhk| < 1.
Therefore,

∞∑
k=N

∣∣∣(k + 1)ck(x − a)k
∣∣∣ = ∞∑

k=N

(k + 1)
∣∣ckhk

∣∣︸  ︷︷  ︸
<1

·
Ä |x − a|

h

äk

︸        ︷︷        ︸
= rk

<

∞∑
k=N

(k + 1)rk︸      ︷︷      ︸
Mk

< ∞ since r < 1

By Weierstrass M-test,
∞∑

k=0

(k + 1)ck+1(x − a)k converges uniformly on [α, β].
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For x ∈ (a − R, a + R), choose 0 < δ < R such that
x ∈ [a − R + δ, a + R − δ].

Since
∞∑

k=0

(k + 1)ck+1(x − a)k converges uniformly on [a−R+δ, a+R−δ], the series converges

at x and hence the series converges pointwise on (a − R, a + R). □

Corollary 4.3.7. Let
∞∑

k=0

ck(x − a)k be a power series with the radius of convergence R. Then

the power series
∞∑

k=0

ck(x − a)k is differentiable on (a − R, a + R). Moreover,

d
dx

î ∞∑
k=0

ck(x − a)k
ó
=

∞∑
k=0

d
dx

î
ck(x − a)k

ó
=

∞∑
k=1

kck(x − a)k−1.

Remark. Check that

(1)
∞∑

k=1

kck(x − a)k−1 converges uniformly on [α, β] for every [α, β] ⊆ (a − R, a + R).

(2)
∞∑

k=1

kck(x − a)k−1 converges pointwise on (a − R, a + R).

Corollary 4.3.8. Let
∞∑

k=0

ck(x − a)k be a power series with the radius of convergence R and

[α, β] ⊆ (a − R, a + R). Then the power sereis
∞∑

k=0

ck(x − a)k is integrable on [α, β]. Moreover,

∫ β

α

∞∑
k=0

ck(x − a)k dx =
∞∑

k=0

∫ β

α

ck(x − a)k dx.

Example 4.3.9. The function ex =

∞∑
k=0

xk

k!
converges on R.

∫ t

0
ex dx =

∫ t

0

∞∑
k=0

xk

k!
dx =

∞∑
k=0

∫ t

0

xk

k!
dx =

∞∑
k=0

xk+1

(k + 1)!

∣∣∣t
0
=

∞∑
k=1

tk

k!
=

∞∑
k=0

tk

k!︸   ︷︷   ︸
et

−1 = et − 1.

Remark. If f (x) =
∞∑

k=0

ck(x − a)k converges on (a − R, a + R), then f ′, f ′′, · · · , f (k) converge on

(a − R, a + R) and we can take the derivatives term by term.

Example 4.3.10. The series
∞∑

k=1

xk

k
converges on (−1, 1). Hence

d
dx

Ä ∞∑
k=1

xk

k

ä
=

∞∑
k=1

d
dx

xk

k
=

∞∑
k=0

xk−1 =

∞∑
k=0

xk =
1

1 − x
for every x ∈ (−1, 1).
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On the other hand, for t ∈ (−1, 1),

∞∑
k=1

tk

k
F.T.C
=

∫ t

0

d
dx

Ä ∞∑
k=1

xk

k

ä
dx =

∫ t

0

1
1 − x

dx = − ln(1 − t).

Question: How about when t = −1?

Observe that
∞∑

k=1

(−1)k

k
converges by alternating series test.

Question: −1 +
1
2
− 1

3
+ · · · =

∞∑
k=1

(−1)k

k
??
= − ln 2 ?

Check whether lim
n→∞

n∑
k=1

(−1)k

k
= − ln 2. Consider

d
dx

Ä n∑
k=1

xk

k

ä
=

n−1∑
k=0

xk =
1 − xn

1 − x
=

1
1 − x

− xn

1 − x
.

Then
n∑

k=1

(−1)k

k
=

∫ 0

−1

d
dx

Ä n∑
k=1

xk

k

ä
dx =

∫ 0

−1

1
1 − x

dx −
∫ 0

−1

xn

1 − x
dx.

We have∣∣∣ n∑
k=1

(−1)k

k
−(− ln 2)

∣∣∣ = ∣∣∣∫ 0

−1

1
1 − x

dx − (− ln 2)
∣∣∣︸                             ︷︷                             ︸

= 0

+

∣∣∣∫ 0

−1

xn

1 − x
dx

∣∣∣ < ∣∣∣∫ 0

−1
xn dx

∣∣∣ = 1
n + 1

→ 0 as n→ ∞.

Therefore,
∞∑

k=1

(−1)k

k
= − ln 2.

Example 4.3.11. Find a function y(x) such that

y′′(x) + y(x) = 0.

Suppose that a solution in the form of a power series about a = 0,

y(x) =
∞∑

k=0

ckxk.

and assume that the series converges on (−δ, δ). Then

y′(x) =
∞∑

k=1

kckxk−1 and y′′(x) =
∞∑

k=2

k(k − 1)ckxk−2.

Plugging into the equation, we obtain

0 = y′′ + y =
∞∑

k=2

k(k − 1)ckxk−2 +

∞∑
k=0

ckxk =

∞∑
k=0

[
(k + 2)(k + 1)ck+2 + ck

]
xk.
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The coefficients satisfy (k + 2)(k + 1)ck+2 + ck = 0 for k = 0, 1, 2 · · · and thus the recurrence
relation is ck+2 = −

ck

(k + 1)(k + 2)
. We have

ck =

® (−1)n

(2n)! c0 if k = 2n
(−1)n

(2n+1)!c1 if k = 2n + 1

Therefore,

y = c0
[
1 − x2

2!
+

x4

4!
+ · · · + (−1)n

(2n)!
x2n + · · ·

]
+ c1

[
x − x3

3!
+

x5

5!
+ · · · + (−1)n

(2n + 1)!
x2n+1 + · · ·

]
= c0

∞∑
n=0

(−1)n

(2n)!
x2n + c1

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1

= c0 cos x + c1 sin x.

o Taylor Series

Let I ⊆ R be an interval, a ∈ I and f : I → R where f ′, f ′′, · · · , f (n) exist at a. We want to
use polynomials to approximate f when x is near a. In Elementary Calculus, we have knwon
that the n-th Taylor polynomials for f at a would be the best approximation among all n-degree
polynomials near a.

Definition 4.3.12. Suppose that f is a function such that f ′(a), f ′′(a), · · · , f (n)(a) exist. Define

Pn,a, f (x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n =

n∑
k=1

f (k)(a)
k!

(x − a)k

where ck =
f (k)(a)

k!
for k = 0, 1, · · · , n. The polynomial Pn,a, f (x) is called the “Taylor polynomial

of degree n for f at a”.

Theorem 4.3.13. Suppose that f is a function such that f ′(a), f ′′(a), · · · , f (n)(a) exist. Then

lim
x→a

f (x) − Pn,a(x)
(x − a)n = 0

Proof. Consider

f (x) − Pn,a(x)
(x − a)n =

f (x) −∑n−1
k=0

f (k)(a)
k! (x − a)k

(x − a)n − f (n)(a)
n!

.

Let Q(x) = f (x) −
n−1∑
k=0

f (k)(a)
k!

(x − a)k and g(x) = (x − a)n. Then, for 1 ≤ i ≤ n − 1,

Q(i)(x) = f (i)(x) − f (i)(a) − f (i+1)(a)(x − a) − · · · − f (n−1)(a)(x − a)n−i−1

1 · 2 · · · (n − i − 1)
.

Hence, lim
x→a

Q(i)(x) = 0 for i = 0, 1, 2, · · · , n − 1. On the other hand,

g(i)(x) = n(n − 1) · · · (n − i + 1)(x − a)n−i
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and hence lim
x→a

g(i)(x) = 0 for i = 0, 1, 2, · · · , n − 1. By applying L’Hôpital’s Rule n − 1 times,

lim
x→a

f (x) − Pn,a(x)
(x − a)n = lim

x→a

Q(x)
g(x)

− f (n)(a)
n!

L.H.
= lim

x→a

Q′(x)
g′(x)

− f (n)(a)
n!

L.H.
=

...

L.H.
= lim

x→a

Q(n−1)(x)
g(n−1)(x)

− f (n)(a)
n!

= lim
x→a

f (n−1)(x) − f (n−1)(a)
n!(x − a)

− f (n)(a)
n!

= 0.

□

Theorem 4.3.14. Let P and Q be two polynomials in (x − a), of degree less than or equal to n.
Suppose that P and Q are equal up to order n at a. Then P = Q.

Proof. We claim that if R(x) is a polynomial of degree less than or equal to n and lim
x→a

R(x)
(x − a)n = 0,

then R(x) ≡ 0.

Proof of claim: Expressing R(x) as a polynomial in (x − a)

R(x) = b0 + b1(x − a) + b2(x − a)2 + · · · + bn(x − a)n,

we want to show that bi = 0 for i = 0, 1, 2, · · · , n by induction.

Since lim
x→a

R(x)
(x − a)n = 0, we have

0 ≤ lim
x→a
|R(x)| ≤ lim

x→a
|(x − a)|n = 0.

Then R(a) = lim
x→a

R(x) = 0. Thus, for i = 0, b0 = 0 and R(x) = b1(x − a) + · · · + bn(x − a)n.

If b0 = b1 = · · · = bi = 0 for 1 ≤ i < n, then R(x) = bi+1(x − a)i+1 + · · · + bn(x − a)n. By

using the similar argument as above, since lim
x→a

R(x)
(x − a)n = 0, we have

lim
x→a

∣∣∣ R(x)
(x − a)i+1

∣∣∣ ≤ lim
x→a
|x − a|n−(i+1) = 0.

Hence,

0 = lim
x→a

R(x)
(x − a)i+1 = lim

x→a
bi+1 + bi+2(x − a) + · · · + bn(x − a)n−(i+1) = bi+1.

By the induction, we have b0 = b1 = · · · = bn = 0 and the claim is proved.
Now, define R(x) = P(x) − Q(x). Since P and Q are equal up to order n at a, R(x) is a

polynomial of degree less than or equal to n and

lim
x→a

R(x)
(x − a)n = lim

x→a

P(x) − Q(x)
(x − a)n = 0.

By the claim, R(x) ≡ 0 and hence P(x) ≡ Q(x). □
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Corollary 4.3.15. Suppose that f has nth derivative at a and P is a polynomial in (x − a) of
degree less than or equal to n which equals f up to order n at a. Then P(x) = Pn,a, f (x).

Proof. Since

lim
x→a

P(x) − Pn,a, f (x)
(x − a)n = lim

x→a

P(x) − f (x)
(x − a)n + lim

x→a

f (x) − Pn,a, f (x)
(x − a)n = 0,

P(x) and Pn,a, f (x) are equal up to order n at a. Also, P and Pn,a, f (x) are polynomials of degree
less than or equal to n. By Theorem 4.3.14, P(x) = Pn,a, f (x). □

Question: Can we estimate the difference between f (x) and Pn,a(x) when x is in some interval
of a?

Definition 4.3.16. We define the remainder term Rn,a(x) by

Rn,a(x) = f (x) − Pn,a(x)

By the definition of the remainder,

f (x) = Pn,a(x) + Rn,a(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n + Rn,a(x).

Observe that

f (x) F.T.C
= f (a) +

∫ x

a
f ′(t) dt︸          ︷︷          ︸

R0,a(x)

I.B.P
= f (a) + f ′(t)t

∣∣∣x

a
−
∫ x

a
f ′′(t)t dt

= f (a) + f ′(x)x − f ′(a)a −
∫ x

a
f ′′(t)t dt

= f (a) + f ′(a)(x − a) − f ′(a)x + f ′(x)x −
∫ x

a
f ′′(t)t dt

= f (a) + f ′(a)(x − a) +
(

f ′(x) − f ′(a)
)

x −
∫ x

a
f ′′(t)t dt

I.B.P
= f (a) + f ′(a)(x − a) +

Ä∫ x

a
f ′′(t) dt

ä
x −
∫ x

a
f ′′(t)t dt

= f (a) + f ′(a)(x − a) +
∫ x

a
f ′′(t)(x − t) dt︸                   ︷︷                   ︸

R1,a(x)

I.B.P
= f (a) + f ′(a)(x − a) − f ′′(t) · (x − t)2

2

∣∣∣x

a
+

∫ x

a

f ′′′(t)
2

(x − t)2 dt

= f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

∫ x

a

f ′′′(t)
2

(x − t)2 dt︸                      ︷︷                      ︸
R2,a(x)
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By induction, if f (n+1) is continuous on [a, x], then

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x − t)n dt (integral form)

o Taylor Theorem

Theorem 4.3.17. (Taylor Theorem) Let f (t) be a n + 1 times differentiable function on [a, x]
and Rn,a(x) be defined by

f (x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n + Rn,a(x).

Then

(a) (Cauchy form)

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n(x − a) for some ξ ∈ (a, x).

(b) (Lagrange form)

Rn,a(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1 for some ξ ∈ (a, x).

(c) (Integral form)

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x − t)n dt

Proof.

Recall the Cauchy Mean Value Theorem: If F and G are continous on [a, x] and differen-
tiable on (a, x), there exists ξ ∈ (a, x) such that

F(x) − F(a)
G(x) −G(a)

=
F′(ξ)
G′(ξ)

.

Define F on [a, x] by

F(t) = f (t) + f ′(t)(x − t) + · · · + f (n)(t)
n!

(x − t)n.

Let G be a differentiable function on [a, x] such that G′(t) , 0 on (a, x). By the Cauchy Mean
Value Theorem, there exists a number ξ ∈ (a, x) such that

F(x) − F(a)
G(x) −G(a)

=
F′(ξ)
G′(ξ)

. (4.3)
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Also,

F(x) − F(a) = f (x) −
î

f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n
ó
= Rn,a(x)

and

F′(ξ) =���f ′(ξ) −���f ′(ξ) +(((((((f ′′(ξ)(x − ξ) −(((((((f ′′(ξ)(x − ξ) +��· · · +
f (n+1)(ξ)

n!
(x − ξ)n =

f (n+1)(ξ)
n!

(x − ξ)n.

By (4.3),

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n · G(x) −G(a)

G′(ξ)
.

(a) Let G(t) = t − a. Then G(x) −G(a) = x − a and G′(ξ) = 1. Hence,

Rn,a(x) =
f (n+1)(ξ)

n!
(x − ξ)n(x − a).

(b) Let G(t) = (x − t)n+1. Then G(x)−G(a) = −(x − a)n+1 and G′(ξ) = −(n+ 1)(x − ξ)n. Hence,

Rn,a(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1.

The part(c) is proved by using integration by parts. □

Remark. In Theorem 4.3.17,

(i) the ξ in part(a) and part(b) are usually different.

(ii) the ξ in part(a) and part(b) depend on a and x.

(iii) by part(b), if
∣∣ f (n+1)(t)

∣∣ < M for all t ∈ [a, x], then

∣∣Rn,a(x)
∣∣ < M · |x − a|n+1

(n + 1)!
.

(iv) by part(c), if
∣∣ f (n+1)(t)

∣∣ < M, then

∣∣Rn,a(x)
∣∣ ≤ M

n!

∣∣∣∫ x

a
(x − t)n dt

∣∣∣ = M
(n + 1)!

∣∣∣ − (x − t)n+1
∣∣x

a

∣∣∣ = M
(n + 1)!

|x − a|n+1.

Theorem 4.3.18. Let f : (α, β)→ R be an infinitely differentiable function and a ∈ (α, β).

(1) For every n ∈ N and x ∈ (α, β),

f (x) =
n∑

k=0

f (k)(a)
k!

(x − a)k +

∫ x

a

f (n+1)(t)
n!

(x − t)n dt.
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(2) Moreover, for some 0 < h < ∞ such that (a − h, a + h) ⊆ (α, β), suppose that there exists
M > 0 such that

∣∣ f (k)(x)
∣∣ ≤ M for all x ∈ (a − h, a + h) and k ∈ N. Then

f (x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k for all x ∈ (a − h, a + h).

Proof. It suffices to prove (2). Let sn(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k. For x ∈ (a − h, a + h),

|sn(x) − f (x)| ≤
∣∣∣∫ x

a

f (n+1)(t)
n!

(x − t)n dt
∣∣∣

≤ M
n!

hn · |x − a|

≤ M · hn+1

n!
(independent of x)

Given ε > 0, there exists N ∈ N such that if n ≥ N,

|sn(x) − f (x)| ≤ M
hn+1

n!
< ε.

Hence, {sn(x)}∞n=1 converges to f (x) uniformly on (a−h, a+h). We obtain f (x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k

uniformly on (a − h, a + h).
□

4.4 The Space of Continuous Functions
■ Some common spaces of functions

Let X,Y be two sets (metric spaces, normed spaces). We introduce some specific spaces of
functions which are often used.

• C
(
X; Y

)
, C

(
X
)
= C

(
X; X

)
, C

(
X
)
= C

(
X;R

)
. For example, C

(
[a, b]

)
.

• Cb
(
X; Y

)
• L

(
X; Y

)
, L

(
X; X

)
.

• B
(
X; Y

)
.

Remark. The above notations are usually used for the field of mathematical analysis but not
for all fields in mathematic. Also, those notations are not universal for all authors. Different
books may have different definitions for every notation.
Definition 4.4.1. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space and A ⊆ M.
We define

C
(
A; V

)
:=

{
f : A→ V

∣∣ f is continuous on A.
}
.

and
Cb

(
A; V

)
:=

{
f : A→ V

∣∣ f is continuous and bounded on A.
}
.
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Remark.

(1) Cb
(
A; V

)
⊆ C

(
A; V

)
.

(2) Both C
(
A; V

)
and Cb

(
A; V

)
are vector spaces.

(3) If K ⊆ M is compact, then C
(
K; V

)
= Cb

(
K; V

)
.

Definition 4.4.2. We can define a norm on Cb
(
A; V

)
by

∥ f ∥∞ := sup
x∈A
∥ f (x)∥ for every f ∈ Cb

(
A; V

)
We call “∥ · ∥∞” the “sup-norm” of f .

Note: We should be careful that ∥ · ∥ is the norm on V and ∥ · ∥∞ is the norm on Cb
(
A; V

)
.

Remark. ∥ · ∥∞ is not a norm on C
(
A; V

)
since it is possible that there esists a function f ∈

C
(
A; V

)
such that ∥ f ∥∞ = ∞.

Proposition 4.4.3. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed space and A ⊂ M. ThenÄ
Cb

(
A : V

)
, ∥ · ∥∞

ä
is a nomed vector space.

Proposition 4.4.4. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed spaces, A ⊆ M and
fk, f ∈ Cb

(
A; V

)
for every k ∈ N. Then { fk}∞k=1 converges uniformly to f on A if and only if

{ fk}∞k=1 converges to f in
Ä
Cb

(
A; V

)
, ∥ · ∥∞

ä
.

Proof. (Exercise) □

Theorem 4.4.5. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space and A ⊆ M. If
(V, ∥ · ∥) is complete, then

Ä
Cb

(
A; V

)
, ∥ · ∥∞

ä
is complete.

Proof. Let { fk}∞k=1 be a Cauchy seuqnece in
Ä
Cb

(
A; V

)
, ∥ · ∥∞

ä
.

To prove that there is f ∈ Cb
(
A; V

)
such that { fk}∞k=1 converges to f in

Ä
Cb

(
A; V

)
, ∥·∥∞

ä
.

That is, lim
k→∞
∥ fk − f ∥∞ = 0.
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For ε > 0, there exists N ∈ N such that if m, n ≥ N then

∥ fm − fn∥∞ = sup
x∈A
∥ fm(x) − fn(x)∥ < ε.

Hence, for every x ∈ A and m, n ≥ N,

∥ fm(x) − fn(x)∥ < ε.

Since (V, ∥ · ∥) is complete, by the Cauchy criterion, there exists a function f : A→ V such that
{ fk}∞k=1 converges uniformly to f on A.

Since { fk}∞k=1 is a sequence of continuouos functions, f is continuous on A. That is, f ∈Ä
C
(
A; V

)
, ∥ · ∥∞

ä
.

Now, we need to show that f is bounded on A. Since fk → f uniformly on A, there exists
N1 ∈ N such that if k ≥ N1,

∥ fk(x) − f (x)∥ < 1

for every x ∈ A.

Since fN1 ∈ Cb
(
A; V

)
, there exists M > 0 such that ∥ fN1(x)∥ < M for every x ∈ A. Then

∥ f (x)∥ ≤ ∥ f (x) − fN1(x)∥ + ∥ fN1(x)∥ ≤ 1 + M for every x ∈ A.

Hence, f ∈ Cb
(
A; V

)
and this implies that { fk}∞k=1 converges to f in

Ä
Cb

(
A; V

)
, ∥ · ∥∞

ä
. □

Example 4.4.6. The set U =
{

f ∈ C
(
[0, 1];R

) ∣∣ f (x) > 0 for every x ∈ [0, 1]
}

is open inÄ
Cb

(
[0, 1];R

)
, ∥ · ∥∞

ä
.

Proof. Let f ∈ U. to prove that there exists δ > 0 such that the ball

B( f , δ) =
{

g ∈ C
(
[0, 1];R

) ∣∣ ∥ f − g∥∞ < δ
}
⊆ U.

Since f is continuous on [0, 1], there exists x0 ∈ [0, 1]
such that f (x0) = min

x∈[0,1]
f (x) > 0. Choose δ = 1

2 f (x0). For

g ∈ B( f , δ) and for every x ∈ [0, 1],

g(x) = f (x) −
(

f (x) − g(x)
)

≥ f (x) − | f (x) − g(x)|
≥ f (x0) − sup

x∈[0,1]
| f (x) − g(x)|

= f (x0) − ∥ f − g∥∞
≥ 1

2
f (x0)

> 0.
Hence g ∈ U and this implies B( f , δ) ⊆ U. Since f is an arbitrary element in U, U is open

in
Ä
Cb

(
A; V

)
, ∥ · ∥∞

ä
.

□
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4.5 Arzelà-Ascoli Theorem
Review: Let {an}∞n=1 be a sequence of bounded real numbers. By the Bolzano-Weierstrass theo-
rem, there exists a subsequence {ank}∞k=1 and a ∈ R such that ank → a as k → ∞.

Let (M, d) be a metric space, A ⊆ M and fk : A → R be a sequence of functions such that
for every x ∈ A, { fn(x)}∞n=1 is a bounded sequence of real numbers. [That is, for every x ∈ A,
there exists Mx > 0 such that | fn(x)| < Mx for every n ∈ N. But it may not have a universal
number M > 0 such that | fn(x)| < M for every n ∈ N.]
Question: Is there a subsequence { fnk}∞k=1 and f : A → R such that fnk → f on A (pointwise or
uniformly).

Definition 4.5.1. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space, A ⊆ M and
F be a family of function from A into V . (That is, F ⊆

{
f
∣∣ f : A→ V

}
).

(1) We say that F is pointwise bounded (precompact, compact) on A if for every x ∈ A, the set
Fx :=

{
f (x)

∣∣ f ∈ F
}

is bounded (precompact, compact) in (V, ∥ · ∥).

(2) We say that F is uniformly bounded on A if the set F :=
⋃
x∈A

Fx =
{

f (x)
∣∣ f ∈ F , x ∈ A

}
is bounded in (V, ∥ · ∥).

(3) In particular, if F is pointwise bounded, then there exists a function ϕ : A → R such that
for every x ∈ A and every f ∈ F

∥ f (x)∥ ≤ ϕ(x).

Moreover, if F is uniformly bounded, there exists M > 0 such that for every f ∈ F ,

∥ f (x)∥ ≤ M.

Example 4.5.2. (1) fn(x) =
1
nx

on (0, 1). Then { fn}∞n=1 is a pointwise bounded sequence of
functions on (0, 1), but is not uniformly bounded on (0, 1).

(2) fn(x) = sin(nx) on R. Then { fn}∞n=1 is uniformly bounded on R.

Rewritten Question: Suppose { fn}∞n=1 is pointwise (uniformly) bounded sequence of real-
valued functions on A. Is there a subsequence { fnk}∞k=1 which converges on A?

Answer: No! Even if { fn}∞n=1 is uniformly bounded sequence of continuous function on a
compact set A, there need not exist a subsequence which converges (pointwise) on A.

Example 4.5.3. Let fn(x) = sin(nx) on [0, 2π]. Assume that there exists a subsequence { fnk}∞k=1
which converges (pointwise) on [0, 2π]. Then

lim
k→∞

î
sin(nkx) − sin(nk+1x)

ó2
= 0

for every x ∈ [0, 2π]. Thus,

lim
k→∞

∫ 2π

0

î
sin(nkx) − sin(nk+1x)

ó2
dx = 0. (Skip the proof)
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But ∫ 2π

0

î
sin(nkx) − sin(nk+1x)

ó2
dx = 2π

for every k ∈ N.

Remark. If A is countable, it is doable.

Theorem 4.5.4. Let { fn}∞n=1 be a pointwise bounded sequence of real-valued functions on a
countable set A, then { fn}∞n=1 has a subsequence { fnk}∞k=1 such that { fnk(x)}∞k=1 converges for every
x ∈ A.

Proof. Since A is countable, we can write A = {xi | i = 1, 2, 3, · · · }. Since { fn(x1)}∞n=1 is a
bounded sequence in R, { fn}∞n=1 contains a subsequence { f1,k}∞k=1 such that { f1,k(x1)}∞k=1 converges.
Denote this subsequence S 1.

Take x2 into { f1,k}∞k=1. Since { f1,k(x2)}∞k=1 is a bounded sequence in R, { f1,k}∞k=1 contains a
subsequence { f2,k}∞k=1 such that { f2,k(x2)}∞k=1 converges. Denote this subsequence S 2.

Continue this procedure, there exists S 1, S 2, S 3, · · · which we represent by the array

S 1 : f1,1 , f1,2, f1,3, f1,4, f1,5, · · ·
S 2 : f2,1, f2,2 , f2,3, f2,4, f2,5, · · ·
S 3 : f3,1, f3,2, f3,3 , f3,4, f3,5, · · ·
S 4 : f4,1, f4,2, f4,3, f4,4 , f4,5, · · ·

...
. . .

S n : fn,1, fn,2, fn,3, fn,4, fn,5, · · · , fn,n , · · ·
...

and which have the following properties.

(a) S n+1 is a subsequence of S n for n = 1, 2, 3, · · ·

(b) { fn,k(xn)}∞k=1 converges as k → ∞.

(c) The order where the functions appears is the same in each seuqence.

Now, we choose the sequence S = { fk,k}∞k=1. By (c), S (except possible its first n − 1 terms) is a
subsequence of S n for n = 1, 2, · · · . Hence, by (b), { fk,k(xi)}∞k=1 converges for every xi ∈ A. □

Review: Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk, f : A → N be maps. If
fk → f uniformly on A, then fk → f pointwise on A. But the converse is false.

Question: Under what additional conditions, the pointwise convergence implies the uniform
convergence?

By Dini’s theorem, suppose that

(1) K ⊆ M is compact,
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(2) fn, f : K → R are continuous, and

(3) fn+1 ≥ fn for every n ∈ N.

Then if fn → f pointwise on K, we have fn → f uniformly on K.

Remark. Conditions (1), (2) are reasonable hypotheses, but the monotonic condition (3) is
unusual. Is there any substitute condition?

Review: Let (M, d) and (N, ρ) be two metric spaces, A ⊆ M and fk, f : A → N be maps. If
fk → f uniformly on A, then fk → f pointwise on A. But the converse is false.

Question: Under what additional conditions, the pointwise convergence implies the uniform
convergence?

By Dini’s theorem, suppose that

(1) K ⊆ M is compact,

(2) fn, f : K → R are continuous, and

(3) fn+1 ≥ fn for every n ∈ N.

Then if fn → f pointwise on K, we have fn → f uniformly on K.

Remark. Conditions (1), (2) are reasonable hypotheses, but the monotonic condition (3) is
unusual. Is there any substitute condition?

o Equicontinuous Family of Functions

Let (M, d) be a metric space and (V, ∥ · ∥) be a normed vector space and A ⊆ M. Recall that
if a function f : A → V is uniformly continuous on A, then for every ε > 0, there exists δ > 0
such that for x, y ∈ A with d(x, y) < δ,

∥ f (x) − f (y)∥ < ε.

Consider f1, f2 : A → V are both uniformly continuous on A. Then for ε > 0, there exist
δ1, δ2 > 0 such that for x, y ∈ A with d(x, y) < δ1,

∥ f1(x) − f1(y)∥ < ε

and for x, y ∈ A with d(x, y) < δ2,

∥ f2(x) − f2(y)∥ < ε.

Let δ = min(δ1, δ2). Then if x, y ∈ A with d(x, y) < δ,

∥ f1(x) − f1(y)∥ < ε and ∥ f2(x) − f2(y)∥ < ε.

Question: How about F is a family of infinitely many uniformly continuous function on A?

In general, if F consists of infinitely many uniformly continuous function on A, for given
ε > 0, it is impossible to find δ > 0 such that ∥ f (x) − f (y)∥ < ε whenever x, y ∈ A with
d(x, y) < δ for every f ∈ F .
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Example 4.5.5. Let { fn}∞n=1 be a sequence of function defined by fn(x) =
x2

x2 + (1 − nx)2 on

[0, 1]. Then | fn(x)| ≤ 1 and hence { fn}∞n=1 is uniformly bounded on [0, 1]. Also, for every
x ∈ [0, 1], lim

n→∞
fn(x) = 0 but fn( 1

n ) = 1 for every n ∈ N. Therefore, there exists no subsequence
which can converge uniformly on [0, 1].

Definition 4.5.6. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space and A ⊆ M. A
family F of continuous function in C

(
M; V

)
is said to be “equicontinuous” if for every ε > 0,

there exists δ > 0 such that
∥ f (x) − f (y)∥ < ε

whenever x, y ∈ A with d(x, y) < δ and f ∈ F .

Remark.

(1) A subfamily of an equicontinuous family of functions is equicontinuous. (That is, if F is
equicontinuous and G ⊆ F then G is equicontinuous.)

(2) Let F be an equicontinuous family of functions. For every f ∈ F , f is uniformly continu-
ous.

(3) Every family consists of finitely many uniformly continuous functions is equicontinuous.

Example 4.5.7. (1) Let f (x) =
x2

x2 + (1 − nx)2 on [0, 1]. Then F =
{

fn
∣∣ n ∈ N

}
is not

equicontinuous.

(2) Let F =
{

f : R→ R
∣∣ | f ′(x)| ≤ M for every x ∈ R

}
. Then F is equicontinuous.

Lemma 4.5.8. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space and K ⊆ M be
a compact subset. If B is precompact in

Ä
C
(
K; V

)
, ∥ · ∥∞

ä
, then B is equicontinuous

Proof.

Assume that B is not equicontinuous. There exists
ε > 0, a sequence of functions { fk}∞k=1 in B and
xk, yk ∈ K with d(xk, yk) < 1

k , but

∥ fk(xk) − fk(yk)∥ ≥ ε.

Compactness implies (1) infinity
→ finiteness; (2) convergent sub-
sequence
Precompactness implies conver-
gent subsequence

Since B is precompact in
Ä
C
(
K; V

)
, ∥ · ∥∞

ä
and K is compact in M, there exists subsequences

{ fk j}∞j=1 and {xk j}∞j=1 such that { fk j}∞j=1 uniformly converges in B ⊆
(
K; V

)
, say fk j →j→∞ f uni-

formly, and {xk j}∞j=1 converges to x0 ∈ K.

Since d(xk, yk) <
1
k

, the corresponding subsequence {yk j}∞j=1 converges to x0. Since f is
continuous at x0, for ε > 0, there exists δ > 0 such that if x ∈ K with d(x, x0) < δ,

∥ f (x) − f (x0)∥ < ε

4
.
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Since fk j → f uniformly on K, xk j → x0 and yk j → x0 as j → ∞, there exists N ∈ N such that
for every j ≥ N and every x ∈ K,

∥ fk j(x) − f (x)∥ < ε

4
, d(xk j , x0) < δ and d(yk j , x0) < δ.

We have

ε ≤ ∥ fkN (xkN ) − fkN (ykN )∥
≤ ∥ fkN (xkN ) − f (xkN )∥︸                    ︷︷                    ︸

unif. conv.

+ ∥ f (xkN ) − f (x0)∥︸                ︷︷                ︸
continuous

+ ∥ f (x0) − f (ykn)∥︸                ︷︷                ︸
continuous

+ ∥ f (ykN ) − fkN (ykN )∥︸                    ︷︷                    ︸
unif. conv.

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Therefore, we obtain a contradition.

□

Corollary 4.5.9. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space and K ⊆ M
be a compact subset. If { fk}∞k=1 ⊆ C

(
K; V

)
converges uniformly on K, then

{
fk
∣∣ k ∈ N

}
is

equicontinuous.

Proof. Since { fk}∞k=1 converges uniformly on K, the set
{

fk
∣∣ k ∈ N

}
is precompact in C

(
K; V

)
.

By Lemma 4.5.8,
{

fk
∣∣ k ∈ N

}
is equicontinuous. □

Remark.

(1) The compactness of K is necessary. For example, fk(x) =
1
x

on (0, 1) for every k ∈ N. Then

{ fk}∞k=1 converges uniformly on (0, 1). But the function
1
x

is not uniformly continuous on
(0, 1).

(2)

{ fk}∞k=1 ⊆ C
(
K; V

)
converges uniformly on K =⇒

{
fk
∣∣ k ∈ N

}
is equicontinuouos.

��XX⇐=

For example, fk(x) = k for k ∈ N. Then
{

fk
∣∣ k ∈ N

}
is equicontinuous. But { fk}∞k=1 does

not converges on K.
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Question: Under what additional conditions does the converse hold?

Guess: There are two possibilities:

(1) “pointwise convergence on K” + “equicontinuous”, or

(2) “pointwise convergence on a dense subset E of K” + “
(
V, ∥ · ∥

)
is a Banach space” +

“equicontinuous”.

Lemma 4.5.10. Let (M, d) be a metric space, (V, ∥ · ∥) be a Banach space, K ⊆ M be a compact
set and

{
fk
∣∣ k ∈ N

}
⊆ C

(
K; V

)
be equicontinuous. If { fk}∞k=1 converges pointwise on a dense

subset E of K, then { fk}∞k=1 converges uniformly on K.

Proof. It suffices to show that { fk}∞k=1 satisfies the Cauchy criterion. That is, for given ε > 0,
there exists N ∈ N, such that for k, ℓ ≥ N,

∥ fk − fℓ∥∞ < ε.

Let ε > 0 be given. Since
{

fk
∣∣ k ∈ N

}
⊆ C

(
K; V

)
is equicontinuous, there exists δ > 0

such that if x, y ∈ K with d(x, y) < δ,

∥ fk(x) − fk(y)∥ < ε

3
for every k ∈ N.

Since K is compact, K is totally bounded. Also, E is dense in K. We can choose x1, · · · , xL ∈ E
such that

K ⊆
L⋃

i=1

B
(

xi,
δ

2
)
.

Since { fk}∞k=1 converges pointwise on E, there exists N ∈ N such that for every k, ℓ ≥ N,∥∥∥ fk(xi) − fℓ(xi)
∥∥∥ < ε

3
for every i = 1, · · · ,N. (4.4)
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Fix x ∈ K. Since K ⊆
L⋃

i=1

B
(

xi,
δ

2
)
, there exists 1 ≤ j ≤ L such that x ∈ B

(
x j,

δ
2

)
. For k, ℓ ≥ N,

∥ fk(x) − fℓ(x)∥ ≤ ∥ fk(x) − fk(x j)∥︸               ︷︷               ︸
equicontinuouos

+ | fk(x j) − fℓ(x j)∥︸               ︷︷               ︸
(4.4)

+ ∥ fℓ(x j) − fℓ(x)∥︸               ︷︷               ︸
equicontinuous

<
ε

3
+
ε

3
+
ε

3
= ε.

Since x is an arbitrary point in K and (V, ∥ · ∥) is complete, by Cauchy criterion, there exists
f ∈ C

(
K; V

)
such that { fk}∞k=1 converges uniformly to f on K. □

Remark. Let (M, d) be a metric space, (V, ∥ · ∥) be a Banach space and K ⊆ M be compact.
Then { fn}∞n=1 ⊆ C

(
K; V

)
converges uniformly on K if and only if { fn}∞n=1 is equicontinuous and

pointwise converges on K.

For the direction “=⇒”, the compactness is necessary.
For the direction “⇐=”, it only needs totally boundedness.

Heuristically review that for fn, f ∈ C
(
K; V

)
,

(1) Observe that fn → f pointwise on K but not uniformly. It is possible that the functions
fn rapidly increase somewhere (for example, fn(x) = xn on (0, 1)). In order to exclude
this situation, we add the hypothesis of equicontinuity.

(2) Lemma 4.5.8 =⇒ Corollary 4.5.9 =⇒ if fn → f uniformly on K, then { fn} is equicon-
tinuous. =⇒ the rapid oscillation cannot happen.

(3) Uniform convergence on K =⇒ equicontinuity. But the converse is false. Under what
additional conditions the direction “⇐=” holds?

Guess:

(i) pointwise convergence on K + equicontinuous

(ii) pointwise convergence on E which is dense in K + (V, ∥ ·∥) is complete + equicon-
tinuous.

Recall our questions: let (M, d) be a metric space and A ⊆ M.

1. Let { fn}∞n=1 : A → R be pointwise bounded. Is there a subsequence { fnk}∞k=1 which con-
verges on A?

2. Let { fn}∞n=1 ⊆ C
(
A;R

)
, fn → f pointwise on A. Under what additional conditions, the

convergence is uniform?

Known facts:
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(1) If A is countable and { fk}∞k=1 is pointwise bounded, there exists a subsequence { fnk}∞k=1
which converges on A.

(2) If A ⊆ M is compact, { fn}∞n=1 is equicontinuous and fn → f pointwise on a dense subset
of A, then fn → f uniformly on A.

(3) Every compact set in a metric space contains a countable dense subset.

Organize the above conditions:

A ⊆ M : compact subset︸               ︷︷               ︸
(a)

{ fn}∞n=1 : A→ R { fn} ⊆ C
(
A;R

)
(3)

www� +

+

there exists a countable pointwise bounded on A︸                            ︷︷                            ︸
(b)dense subset E of A

equicontinuous︸               ︷︷               ︸
(c)

(1)
www�

there exists a subsequence { fnk}∞k=1 which convergs on E

(2)
www�

Result1: { fnk}∞k=1 converges uniformly on A.
Result2: { fnk}∞k=1 is uniformly bounded on A.

o Arzelà-Ascoli Theorem

In this section, we start with two questions:

Question 1: If fn : A → R is pointwise bounded, is there a subsequence { fnk}∞k=1 converges on
A (pointwise or uniformly)?

Question 2: If fn → f pointwise on A, under what additional conditions, we obtain uniform
convergence?

Answer 1: Yes, if A is countable; but no if A is uncountable.

Answer 2: Suppose that
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(i) K is compact (totally bounded)

(ii) { fn} is equicontinuous

(iii) Either

(a) fn → f pointwise on K or
(b) fn → f pointwise on a dense subset E of K and (V, ∥ · ∥) is complete.

Then fn → f uniformly on K.

Theorem 4.5.11. (Arzelà-Ascoli Theorem) Let (M, d) be a metric space, K ⊆ M be a compact
subset and fn : K → R be a sequence of functions. Suppose that { fn}∞n=1 is pointwise bounded
and equicontinuous on K. Then

(1) { fn}∞n=1 is uniformly bounded on K.

(2) { fn}∞n=1 contains a uniformly convergent subsequence.

Proof. Let ε > 0 be given. Since { fn}∞n=1 is equicontinuous on K, there exists δ > 0 such that if
x, y ∈ K with d(x, y) < δ,

| fn(x) − fn(y)| < ε for every n ∈ N.

Since K is compact, there are finitely many points x1, · · · , xN ∈ K such that K ⊆
N⋃

i=1

B(xi, δ).

(1) Since { fn}∞n=1 is pointwise bounded on K, for i = 1, · · · ,N, there exists Mi > 0 such that

| fn(xi)| < Mi for every n ∈ N.

Let M = max(M1, · · · ,MN). Since K ⊆
N⋃

i=1

B(xi, δ), for x ∈ K, there exists 1 ≤ j ≤ N such

that x ∈ B(x j, δ). Hence,

| fn(x)| ≤ | fn(x) − fn(x j)|︸              ︷︷              ︸
<ε

+ | fn(x j)|︸   ︷︷   ︸
<M

< M + ε for every n ∈ N.

Therefore, { fn}∞n=1 is uniformly bounded on K.

(2) Since K is compact, K contains a countable dense subset, say E. Moreover, we can choose

finitely many point y1, · · · , yr ∈ E such that K ⊆
r⋃

i=1

B(yi, δ).

Since { fn}∞n=1 is pointwise bounded on E, there exists a subseqeuence { fnk}∞k=1 converges
pointwise on E. Then there exists N1 ∈ N such that if k, ℓ ≥ N1,

| fnk(yi) − fnℓ(yi)| < ε for every i = 1, 2, · · · , r.
If x ∈ K, there exists 1 ≤ s ≤ r such that x ∈ B(ys, δ). Thus for k, ℓ ≥ N1,

| fnk(x) − fnℓ(x)| ≤ | fnk(x) − fnk(ys)|︸                ︷︷                ︸
equi. conti.

+ | fnk(ys) − fnℓ(ys)|︸                 ︷︷                 ︸
pointwise conv.

+ | fnℓ(ys) − fnℓ(x)|︸                ︷︷                ︸
equi.conti.

≤ ε + ε + ε = 3ε.

By the Cauchy criterion, { fnk}∞k=1 converges uniformly on K.



140CHAPTER 4. UNIFORM CONVERGENCE AND THE SPACE OF CONTINUOUS FUNCTIONS

□

Review: Let (M, d) be a metric space and K ⊆ M be compact.

(1) { fn}n=1 ⊆ C
(
K;R

)
is equicontinuous and pointwise bounded on K if and only if { fn}∞n=1 has

a uniformly convergent subsequence.

(2) B ⊆ C
(
K;R

)
is equicontinuous and pointwise bounded on K if and only if every sequence

in B has a uniformly convergent subsequence in
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
.

Note that, so far, we do not prove that the set B is compact in
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
yet since we

only prove that there exists a subsequence converges in
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
rather than in B.

o Compact Sets in C
(
K; V

)
Theorem 4.5.12. Let (M, d) be a metric space, (V, ∥ · ∥) be a Banach space, K ⊆ M be com-
pact. If B ⊆ C

(
K; V

)
is equicontinuous and pointwise precompact, then B is precompact inÄ

C
(
K; V

)
, ∥ · ∥∞

ä
.

Proof. To prove that every sequence in B has a convergent subseqence in
Ä
C
(
K; V

)
, ∥ · ∥∞

ä
.

[That is, if { fn}∞n=1 ⊆ B, then there exists a subsequence { fnk}∞k=1 which converges uniformly.]

Let { fn}∞n=1 ⊆ B be a sequence in B. Then { fn}∞n=1 is pointwise precompact on K. Since K
is compact, K contains a countable dense subset E ⊆ K. By using the diagonal method, there
exists a subsequence { fnk}∞k=1 which converges pointwise on E. (Note that we can do this since
{ fn}∞n=1 is pointwise precompact.)

Since E is dense in K and { fnk}∞k=1 is equicontinuous on K, { fnk}∞k=1 converges uniformly on
K. □

Remark.
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(1) A set B ⊆ C
(
K; V

)
is precompact if and only if B is equicontinuous and pointwise precom-

pact.

(2) A set B ⊆ C
(
K; V

)
is compact if and only if B is closed in

Ä
C
(
K; V

)
, ∥ · ∥∞

ä
, equicontinu-

ouos and pointwise compact on K.

Proof. (“=⇒”)
Since B is compact in

Ä
C
(
K; V

)
, ∥ · ∥∞

ä
, B is closed in

Ä
C
(
K; V

)
, ∥ · ∥∞

ä
. By Lemma 4.5.8,

B is equicontinuous on K.

It suffices to show that B is pointwise compact on K. For a fixed x ∈ K, let Bx =
{

f (x)
∣∣ f ∈

B
}
⊆ (V, ∥ · ∥). To prove that Bx is compact in (V, ∥ · ∥).

Let { fn(x)}∞n=1 be a sequence in Bx. Since { fn}∞n=1 ⊆ B and B is compact in
Ä
C
(
K; V

)
, ∥ · ∥∞

ä
,

there exists a subsequence { fnk}∞k=1 which converges to a function f ∈ B. Then { fnk}∞k=1 con-
verges uniformly to f on K. Hence, { fnk(x)}∞k=1 converges to f (x) ∈ Bx. We have Bx is
compact in (V, ∥ · ∥).

(“⇐=”)
By Theorem 4.5.12, B is precompact and B is closed in

Ä
C
(
K; V

)
, ∥ · ∥∞

ä
. Thus, B is

compact in
Ä
C
(
K; V

)
, ∥ · ∥∞

ä
. □

4.6 Stone-Weierstrass Theorem

o Introduction

Let A ⊆ R (or Rn) and {pn}∞n=1 : A→ R be a sequence of polynomials. Suppose that pn → f
uniformly (that is, ∥pn − f ∥∞ → 0 as n→ ∞), then f is continuous.

Question: How about the converse? If f ∈ C
(
A;R

)
, is there a sequence of polynomials {pn}∞n=1 :

A→ R such that ∥pn − f ∥∞ → 0 as n→ ∞?

Theorem 4.6.1. Let f : [0, 1] → R be a continuous function and ε > 0 be given. Then there
exists a polynomial p : [0, 1]→ R such that ∥ f − p∥∞ < ε.

Proof. (Probabilistic viewpoint)(Law of large numbers)
Consider the binomial expansion

(x + y)n =

n∑
k=0

Cn
k xkyn−k where Cn

k =
n!

k!(n − k)!
(4.5)

Then taking differentiation,

n(x + y)n−1 =
d
dx

[(x + y)n] =
n∑

k=0

kCn
k xk−1yn−k
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and multiplying by x,

nx(x + y)n−1 =

n∑
k=0

kCn
k xkyn−k. (4.6)

Again,

n(n − 1)x2(x − y)n−2 =
d2

dx2 [(x + y)n] =
n∑

k=0

k(k − 1)Cn
k xk−2yn−k

and

n(n − 1)x2(x + y)n−2 =

n∑
k=0

k(k − 1)Cn
k xkyn−k (4.7)

For 0 ≤ x ≤ 1, taking y = 1 − x, then

(4.5) ⇒ 1n =

n∑
k=0

Cn
k xk(1 − x)n−k︸              ︷︷              ︸

rk(x)

1 =
n∑

k=0

rk(x) (4.8)

(4.6) ⇒ nx =
n∑

k=0

krk(x) Expected value (4.9)

(4.7) ⇒ n(n − 1)x2 =

n∑
k=0

k(k − 1)rk(x) (4.10)

Then

n∑
k=0

(k − nx)2rk(x) =
n∑

k=0

[
k(k − 1) + (1 − 2nx)k + n2x2]rk(x) = nx(1 − x)

Variance

. (4.11)

Since f is continuous on [0, 1], f is uniformly continuous on [0, 1]. Then, for ε > 0, there exists
δ > 0 such that if x, y ∈ [0, 1] with |x − y| < δ,

| f (x) − f (y)| < ε

2
.
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Define Pn(x) =
n∑

k=0

f (
k
n

)rk(x)

Berstein′s polynomial

. Then for every x ∈ [0, 1],

| f (x) − Pn(x)| (4.8)
=

∣∣∣ n∑
k=0

î
f (

k
n

) − f (x)
ó
rk(x)

∣∣∣ ≤ n∑
k=0

∣∣∣ f (
k
n

) − f (x)
∣∣∣rk(x)

=
∑
| kn−x|<δ

∣∣∣ f (
k
n

) − f (x)
∣∣∣︸             ︷︷             ︸

< ε
2

rk(x) +
∑
| kn−x|≥δ

∣∣∣ f (
k
n

) − f (x)
∣∣∣rk(x)

≤ ε

2
+ 2∥ f ∥∞

∑
|k−nx|≥nδ

(k − nx)2

(k − nx)2 rk(x)

≤ ε

2
+

2∥ f ∥∞
n2δ2

∑
|k−nx|≥nδ

(k − nx)2rk(x)

(4.11)
≤ ε

2
+

2∥ f ∥∞
nδ2 x(1 − x)

≤ ε

2
+

2∥ f ∥∞
nδ2 .

Then we can choose N sufficiently large such that
2∥ f ∥∞
Nδ2 <

ε

2
. Hence,

| f (x) − PN(x)| < ε for every x ∈ [0, 1].

□

Remark. The statement of the above theorem is equivalent to each of the following statement

(1) Let f : [0, 1] → R be a continuous function. Then there exists a sequence of polynomials
{pn}∞n=1which converges uniformly to f on [0, 1].

(2) The collection of all polynomials is dense in
Ä
C
(
[0, 1];R

)
, ∥ · ∥∞

ä
.

Corollary 4.6.2. The collection of polynomials on [a, b] is dense in
Ä
C
(
[a, b];R

)
, ∥ · ∥∞

ä
.

Review of the proof (binomial distribution)

Consider an asymmetric coin with probabilities of head and tail are x and 1 − x respec-
tively. After n-times tosses,

1n = [x + (1 − x)]n =

n∑
k=0

Cn
k xk(1 − x)k

= Cn
0(1 − x)n +Cn

1 x(1 − x)n−1 + · · · +Cn
k xk(1 − x)n−k︸              ︷︷              ︸

rk(x)

+ · · · +Cn
n xn
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where rk(x) means the probability of exactly k-times head within n-times tosses. Then
n∑

k=0

rk(x) = 1. (4.12)

The expected valued of head with n tosses is
n∑

k=0

krk(x) = nx. (4.13)

Then
n∑

k=0

k
n

rk(x) = x (投擲 n次正好為 k次頭的比例期望值) (4.14)

The variance is X = X1 + · · · + Xn where Xi 代表投第 i 次時的 independent Bernoulli
distributed random variable. We have

Var(Xi) = (1 − x)2 · x + (0 − x)2(1 − x) = x(1 − x)

and
Var(X) = Var(X1) + · · · + Var(Xn) = nx(1 − x).

From (4.14),我們可以想像想投擲 n次後，出現頭的次數與總擲次數的比值應趨近於
出現頭的機率 x,由大數法則

P
(
|k
n
− x| > ε

)
→ 0 as n→ ∞

今假設一賭場公布一賠率計算方式如一函數 f (x),即
k
n
=

k times heads
n times tosses

,因此當 n足

夠大時，我們自然會認為賠率應靠近 f (x)，則

P
(
| f (

k
n

) − f (x)| > ε
)
→ 0 as n→ ∞

於此過程中，我們不希望賠率函數 f (x)是 discontinuous. This suggests that

f (x) ≈
n∑

k=0

f (
k
n

)rk(x)︸            ︷︷            ︸
expected value of the gambling

= pn(x)

Bernstein polynomial:
n∑

k=0

akrk(x).

| f (x) − pn(x)| ≤
∣∣∣ n∑

k=0

[
f (x − f (

k
n

)
]
rk(x)

∣∣∣ ≤ · · ·
P
(
| f (x) − f (

k
n

)| > δ
)
≤

Var
(

f ( k
n )
)

n2δ2 ≤ 2∥ f ∥∞
n2δ2 nx(1 − x)

↑
Chebyshev inequality
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Question: If K ⊆ R (or Rn) is compact, is the collection of all polynomials on K dense inÄ
C
(
K;R

)
, ∥ · ∥∞

ä
?

We will start with discussing some abstract theorems and the answer of the above question
will be the application of those theorems.

Let (M, d) be a metric space and K ⊆ M be compact. Consider X :=
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
. If

f , g ∈ X and α ∈ R then

(1) f ± g ∈ X (2) f · g ∈ X (3) α f ∈ X

Note that f /g may not belong to X.

Question: Is there any set of functions S =
(ancestor){
f1, · · · , fn} such that every function in X can be

generated by S under the operators (1), (2) and (3) with finite steps? In other words, is the
family (posterity) of S equal to X?

Answer: It seems to be impossible.

Question: If S = { f1, · · · , fn} ⊆ X, what is the distribution of the family generated by S ?

Definition 4.6.3. Let (M, d) be a metric space and E ⊆ M be a subset. A family A of real-
valued functions defined on E is said to be an “algebra” if

(i) f + g ∈ A for every f , g ∈ A

(ii) f · g ∈ A for every f , g ∈ A

(iii) α f ∈ A for every f ∈ A and α ∈ R
Remark. An algebra A is closed under addition, multiplication and scalar multiplication.
Example 4.6.4. A function g : [a, b] → R is called a “simple function” if there exists finitely
many subintervals of [a, b], say A1, · · · , An such that

Ai ∩ A j = ∅ and [a, b] =
n⋃

i=1

Ai

and real number a1, a2, · · · , an such that

g(x) = ai for x ∈ Ai, i = 1, 2, · · · , n.
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Then the collection of all simple function is an algebra. (Exercise)

Example 4.6.5. Let E ⊆ Rn . The collection of all polynomials on E is an algebra.

Example 4.6.6. Let E ⊆ R3 and the set

Peven(E) =
¶

p(x, y, z) =
n∑

k=0

ak1k2k3 xk1yk2zk3 where k1, k2, k3 ∈ N∪{0}, k1+k2+k3 = 2k and ak1k2k3 ∈ R
©

is an algebra.

Example 4.6.7. Let Pn(T) be the collection of all trigonometric polynomials of degree n.

Pn(T) =
¶c0

2
+

n∑
k=1

ck cos kx + dk sin kx
∣∣∣ {ck}nk=0, {dk}nk=1 ⊂ R

©
.

then P(T) =
∞⋃

n=0

Pn(T) is an algebra.

Example 4.6.8. Let E ⊆ Rn. Then C
(
E;R

)
is an algebra.

Proposition 4.6.9. Let (M, d) be a metric space and E ⊆ M be a subset. If A ⊆
Ä
Cb

(
E;R

)
, ∥ · ∥∞

ä
is an algebra, then A is also an algebra.

Proof. Let f , g ∈ A . Then there are sequences { fn}∞n=1, {gn}∞n=1 ⊆ A such that fn → f and
gn → g uniformly on E.

since A is an algebra, fn + gn ∈ A , fn · gn ∈ A and α fn ∈ A . Also,

fn + gn → f + g uniformly on E
fn · gn → f · g uniformly on E
α fn → α f uniformly on E

(Note that ∥ fn∥∞ and ∥gn∥∞ are bounded is necessary.) Then f + g ∈ A , f · g ∈ A and α f ∈ A .
Hence, A is also an algebra. □

Remark.
Ä
Cb

(
E;R

)
, ∥ · ∥∞

ä
is closed in

{
f : E → R

∣∣ ∥ f ∥∞ < ∞}
Question: Is it possible to find a set of functions S = { f1, · · · , fn} ⊆ X such that the family
generated by S dense in X?
Question: If yes, what the sufficient and necessary conditions does the family need to have?

We will rule out some “bad” members of this family.

(1) There exists x , y such that f (x) = f (y) for every f ∈ S

(2) There exists x ∈ K such taht f (x) = 0 for every f ∈ S .

Guess: If F ⊆ X is dense, then F must satisfy
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1. “Separate points on K”: if for every x, y ∈ K and x , y, there exists f ∈ F such that
f (x) , f (y)

2. “Vanish at no point of K”: if for each x ∈ K, there exists f ∈ F such that f (x) , 0.

Definition 4.6.10. Let (M, d) be a metric space and E ⊆ M be a subset. A family F of functions
defined on E is said to

(1) “separate points on E” if for every x, y ∈ E and x , y, there exists f ∈ F such that
f (x) , f (y)

(2) “vanish at no point of E” if for each x ∈ E, there exists f ∈ F such that f (x) , 0.

Example 4.6.11. P
(
[a, b]

)
is the collection of all polynomials on [a, b]. Then P

(
[a, b]

)
sepa-

rates points on [a, b]. (e.g. f (x) = x) and vanishes at no point of [a, b] (e.g. f (x) = 1).

Example 4.6.12. Peven
(
[a, b]

)
is the collection of all polynomials of the form p(x) =

n∑
k=0

akx2k.

Then
Peven

(
[−1, 1]

)
vanishes at no point of [−1, 1], but does not separate points on [−1, 1].

Peven
(
[0, 1]

)
vanishes at no point of [0, 1] and separates points on [0, 1].

Lemma 4.6.13. Let (M, d) be a metric space and E ⊆ M be a subset. Suppose that A is an
algebra of funcrtion on E, A separates points on E, and A vanishes at no point of E. Suppose
x1, x2 are distinct points of E, and c1, c2 are constants. Then A contains a function f such that
f (x1) = c1 and f (x2) = c2.

Proof. Since A separates points on E, there exists g ∈ A such that g(x1) , g(x2). Since A
vanishes at no point on E, there exist h, k ∈ A such that h(x1) , 0 and k(x2) , 0. Let

f (x) = c1
[g(x) − g(x2)]h(x)

[g(x1) − g(x2)]h(x1)
+ c2

[g(x) − g(x1)]k(x)
[g(x2) − g(x1)]k(x2)

.

Then f (x1) = c1 and f (x2) = c2. □

Idea:

We want a function f satisfying f (a) = c and f (b) = d.

Naturally, we set f (x) = c
x − b
a − b

+ d
x − a
b − a

. But x− a or
x − b may not be in A . Hence, we figure out the role
of g(x) [separates points on E].

Why do we need “vanish at no point of E”? How about

f (x) = c
g(x) − g(b)
g(a) − g(b)

+ d
g(x) − g(a)
g(b) − g(a)

(4.15)
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It is possible that

f (x) =
c

g(a) − g(b)
g(x)︸                ︷︷                ︸

∈ A

− cg(b)
g(a) − g(b)︸          ︷︷          ︸

< A

− d
g(b) − g(a)

g(x)︸                ︷︷                ︸
∈ A

− d
g(b) − g(a)︸          ︷︷          ︸

< A

Remark. (1) If A contains a nonzero constant function, then (4.15) works. But this im-
plies A vanishes at no point of E. Hence, the lemma is more general.

(2) If A separates point on E (or vanishes at no point of E), then so does A .

Idea of the proof of Stone-Weierstrass Theorem

Given f ∈ C
(
K;R

)
and ε > 0.

Is there a function g ∈ A such
that ∥ f − g∥∞ < ε?

Hope: For a ∈ K, there exists ga ∈ A such
that

(1) ga(x) ≥ f (x) − ε and

(2) |ga(x) − f (x)| < ε near a

In fact, we could hope g(x) ≥ f (x) − ε for
every x ∈ K. Then we can keep part of g, say
ga.

Then we can choose a1, a2, · · · , an ∈ K
and set h = min(ga1 , · · · , gan).
Question: Is max f , g ∈ A or
min( f , g) ∈ A ?
Consider max( f , g) = f+g

2 −
| f−g|

2 . If we
can show f ∈ A ⇒ | f | ∈ A , then we
obtain max( f , g),min( f , g) ∈ A .
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Theorem 4.6.14. (Stone) Let (M, d) be a metric space, K ⊆ M be a compact set. Let A ⊆Ä
C
(
K;R

)
, ∥ · ∥∞

ä
be an algebra, separates point on K, and vanishes at no point of K. Then A

is dense in C
(
K;R

)
.

Proof. It suffices to show that for ε > 0, there exists g ∈ A such that
∥∥∥ g − f

∥∥∥∞ < ε.

Step 1: If f ∈ A , then | f | ∈ A .
Proof of Step 1:
Let a = sup

x∈K
| f (x)| < ∞ and let ε > 0 be given. Since ϕ(y) = |y| is continuous on [−a, a], there

exists a polynomial p(y) =
n∑

k=0

akyk on [−a, a] such that
∣∣∣p(y) − |y|

∣∣∣ < ε for every y ∈ [−a, a].

Then ∣∣∣p( f (x)
)
− | f (x)|

∣∣∣ < ε for every x ∈ K.

Since A is an algebra and f ∈ A , p
(

f
)
=

n∑
k=0

ak f k ∈ A . Hence, | f | ∈ A .

Step 2: If f , g ∈ A , then max( f , g) ∈ A and min( f , g) ∈ A where

max( f , g) =
ß

f (x) if f (x) ≥ g(x)
g(x) if f (x) ≤ g(x) and min( f , g) =

ß
g(x) if f (x) ≥ g(x)
f (x) if f (x) ≤ g(x)

Proof of Step 2:

By Step 1 and A is an algebra, max( f , g) =
f + g

2
+
| f + g|

2
∈ A and min( f , g) =

f + g
2
− | f + g|

2
∈ A .

Moreover, by iteration, if f1, · · · , fn ∈ A , then max( f1, · · · , fn) ∈ A and min( f1, · · · , fn) ∈ A .

Step 3: For given f ∈ C
(
K;R

)
and a ∈ K, there exists ga ∈ A such that ga(a) = f (a) and

ga(x) > f (x) − ε for every x ∈ K.

Proof of Step 3:
Since A separates points on K and vanishes at no point of K, so does A . Then for every y ∈ K
and y , a, there exists hy ∈ A such that

hy(a) = f (a) and hy(y) = f (y).
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Since hy is continuouos on K, there exists an open set Vy containing y such that for every x ∈ Vy,

hy(x) > f (x) − ε.

Since K is compact and K ⊆
⋃
y∈K

Vy, there exist y1, · · · , yn ∈ K such that K ⊆
n⋃

i=1

Vyi .

Let ga = max(hy1 , · · · , hyn) ∈ A . Then ga(a) = f (a) and ga(x) > f (x) − ε for every x ∈ K.

Step 4: Given f ∈ C
(
K;R

)
and ε > 0, there exists h ∈ A such that∣∣h(x) − f (x)

∣∣ < ε for every x ∈ K.

Proof of Step 4:
For every a ∈ K, by Step 3, there exists ga ∈ A such that

ga(a) = f (a) and ga(x) > f (x) − ε.
Since ga is continuous on K, there exists an open set Ua containing a such that for every x ∈ Ua,

ga(x) < f (x) + ε.

Since K is compact and K ⊆
⋃
a∈K

Ua, there exist a1, · · · , am ∈ K such that K ⊆
m⋃

i=1

Uai .

Let h(x) = min(ga1 , · · · , gam). Then h ∈ A and

h(x) > f (x) − ε and h(x) < f (x) + ε

for every x ∈ K.
□
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Corollary 4.6.15. Let (M, d) be a metric space, K ⊆ M be compact and A ⊆ C
(
K;R

)
be an

algebra. Then A is dense in
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
if and only if A separates points on K and

vanishes at no point of K.

Corollary 4.6.16. The set of all polynomials defined on K is dense in
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
.

Corollary 4.6.17. Let K ⊆ Rn be compact and P(K) be the collection of all polynomials on K.
Then P(K) is dense in

Ä
C
(
K;R

)
, ∥ · ∥∞

ä
Example 4.6.18. Peven

(
[0, 1]

)
is dense in

Ä
C
(
[0, 1];R

)
, ∥ · ∥∞

ä
. But Peven

(
[−1, 1]

)
is not dense

in
Ä
C
(
[−1, 1];R

)
, ∥ · ∥∞

ä
.

Question: Why cannot Taylor series tell us the dense of
Ä
C
(
K;R

)
, ∥ · ∥∞

ä
?

There may have some reasons.

(1) The Taylor polynomial for f of degree n is

Pn,c(x) =
n∑

k=0

f (k)(c)

k!
(x − c)k.

But a continuous function f needs sufficiently many times derivatives f (k)(c).

(2) Even the Taylor series exists, we cannot say that Pn(x)→ f (x) as n→ ∞

(3) Even if Pn(x) → f (x) as n → ∞ on (c − R, c + R), the interval of convergence may not
contain the domain of f .

(4) Even if the Taylor series converges on R, it may not converges to f uniformly on the

domain of f . For example, f (x) =
ß

cos x x ∈ [−π2 ,
π
2 ]

0 x ∈ [−10, 10]\[−π2 ,
π
2 ] Then the Taylor

polynomial Pn,0(x) conveges to cos x which will not converge to f on [−10, 10].

Remark. The Stone-Weierstrass Theorem says that for every continuous function defined on a
compact set can be approximated (uniformly) by polynomials. Unfortunately, the converging
rate of this approximation is too slow.

4.7 Contraction Mappings
Definition 4.7.1. Let (M, d) be a metric space and ϕ maps M into M. We say the map ϕ a
“contraction mapping” if there is a constant 0 ≤ c < 1 such that for every x, y ∈ M

d
(
ϕ(x), ϕ(y)

)
≤ cd(x, y).

Remark. (1) A contraction mapping is uniformly continuous.
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(2) Let f : R → R be differentiable such that | f ′(x)| < c < 1. Then f is a contraction mapping
on R.

Example 4.7.2. Let f (x) = x2 on [0, r]. For 0 ≤ x < y ≤ r, there exists c ∈ (x, y) such that
f (y) − f (x) = f ′(c)(y − x) = 2c(y − x). Hence, if r < 1

2 then 2c < 2r < 1 and this implies that f
is a contraction mapping on [0, r].

Question: Is f (x) = x2 a contraction mapping on [0, 1
2 ]?

Assume that f is a contraction mapping on [0, 1
2 ]. There exists 0 ≤ c < 1 such that∣∣ f (x) − f (y)

∣∣ ≤ c|x − y| for every x, y ∈ [0,
1
2

].

Let xn =
1
2 −

1
n . Then∣∣ f (

1
2

) − f (xn)
∣∣ = 1

4
− (

1
2
− 1

n
)2 = (1 − 1

n
)|1

2
− xn| > c|1

2
− xn| as n as sufficiently large.

Hence, f is not a contraction mapping on [0, 1
2 ].

■ Fixed point

Definition 4.7.3. Let (M, d) be a metric space and ϕ : M → M be a mapping. We call a point
x0 ∈ M a fixed point for ϕ if ϕ(x0) = x0.

Theorem 4.7.4. (Contraction Mapping Theorem)(Banach Fixed Point Theorem)
Let (M, d) be a complete metric space and ϕ : M → M be a contraction mapping. Then there
exists a unique fixed point for ϕ.

Proof. Since ϕ is a contraction mapping on M, there exists a constant 0 ≤ c < 1 such that for
every x, y ∈ M,

d
(
ϕ(x), ϕ(y)

)
≤ cd(x, y).

(Existence) Taking arbitrarily a point x0 ∈ M and define xn+1 = ϕ(xn) for x = 0, 1, 2, · · · . Then

d(xn+1, xn) = d
(
ϕ(xn), ϕ(xn−1)

≤ cd(xn, xn−1) = cd
(
ϕ(xn−1), ϕ(xn−2)

)
≤ c2d(xn−1, xn−2)
≤ · · ·
≤ cnd(x1, x0).

If n > m,

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−) + · · · + d(xm+1, xm)
≤ (cn−1 + cn−2 + · · · + cm)d(x1, x0)
= cm(1 + c + · · · + cn−m−1)d(x1, x0)
≤ cm(1 + c + c2 + · · · )d(x1, x0)

Since 0 ≤ c < 1,

d(xn, xm) ≤ cm · 1
1 − c

d(x1, x0).
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Hence, for given ε > 0, there exists N ∈ N such that if n > m ≥ N, d(xn, xm) < ε. That is, {xn}∞n=1
is a Cauchy sequence in M. Since M is complete, there exists x ∈ M such that lim

n→∞
xn = x.

Check that x is a fixed point for ϕ. Since lim
n→∞

xn = x and ϕ is continuous,

x = lim
n→∞

xn = lim
n→∞

ϕ(xn−1) = ϕ( lim
n→∞

xn−1) = ϕ(x).

(Uniqueness) Assume y ∈ M is also a fixed point for ϕ. Then

d(x, y) = d
(
ϕ(x), ϕ(y)

)
≤ cd(x, y).

Thus, d(x, y) = 0 and this implies x = y. □

Remark. (1) Let x be the fixed point for ϕ in the above theorem. For any starting point x0 ∈ M,
x = lim

n→∞
ϕn(x0).

(2) The condition c < 1 is necessary. For example, M = R and ϕ(x) = x + 1 (c = 1). Then

d
(
ϕ(x), ϕ(y)

)
= d(x + 1, y + 1) = d(x, y)

But there exists no fixed point for ϕ.

(3) Even if ϕ satisfies d
(
ϕ(x), ϕ(y)

)
< d(x, y), there may not exist a fixed point for ϕ. Fox

example M = [1,∞) and ϕ(x) = x + 1
x . For x > y,

∣∣ϕ(x) − ϕ(y)
∣∣ = x − y + (

1
x
− 1

y
)︸     ︷︷     ︸

<0

< |x − y|.

But there exists no fixed point for ϕ.

(4) If M is compact and ϕ satisfies d
(
ϕ(x), ϕ(y)

)
< d(x, y), then there exists a fixed point for ϕ.

Consider g(x) = d
(
ϕ(x), x

)
. Then g has minimum x0 which is a fixed point for ϕ.

Example 4.7.5. Let f (x, y) =
(

1
4 x+ 1

3y− 2, 1
5 x− 1

3y+ 3
)
. Determine whether there exists a fixed

point for f . Consider

f (x1, y1) − f (x2, y2) =
(1

4
(x1 − x2) +

1
3

(y1 − y2),
1
5

(x1 − x2) − 1
3

(y1 − y2)
)
.

Then∥∥∥ f (x1, y1) − f (x2, y2)
∥∥∥2 = (

1
16
+

1
25

)(x1 − x2)2 +
1

30
(x1 − x2)(y1 − y2) +

2
9

(y1 − y2)2

≤ 1
2

[(x1 − x2)2 + (y1 − y2)2].

Hence, f is a contraction mapping on R2 and there exists a fixed point.

Exercise. Determine whther the functon f (x, y) =
(

1
3 sin x − 1

3 cos y + 2, 1
6 cos x + 1

2 sin y − 1
)

has a fixed point.
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o Application

■ The Secant Method

Let f be a continuously differentiable on [a, b], f ′(x) > 0 on (a, b) and f (a) f (b) < 0. Then
f is strictly increasing. By I.V.T, there exists a unique zero of f .
Question: How to find the zero of f ?

Let y0 be the zero of f . For x ∈ [a, b], we want to define ϕ : [a, b]→ [a, b] such that ϕ(x) is
between x and the zero of f (located on the same side of zero as x). By M.V.T,

f (x) − 0
x − ϕ(x)

x stays on
the same side

>
f (x)

x − y0

M.V.T
= f ′(ξ)

Then f (x) > f ′(ξ)
(

x−ϕ(x)
)

and hence ϕ(x) > x − f (x)
f ′(ξ)

. Assume sup
x∈[a,b]

f ′(x) < ∞. Let M = sup
x∈[a,b]

f ′(x) + 1.

Define ϕ(x) = x − f (x)
M

. Hence, ϕ(x) = x⇐⇒ f (x) = 0. Consider

ϕ′(x) = 1 − f ′(x)
M

> 0.

By M.V.T, ∣∣ϕ(x) − ϕ(y)
∣∣ = |ϕ′(ξ)||x − y| ≤

(
1 − min

ξ∈[a,b]

f ′(ξ)
M

)
︸                  ︷︷                  ︸

c

|x − y|

for every x, y ∈ [a, b]. Since ϕ′(x) > 0, ϕ is strictly increasing on [a, b]. For x ∈ [a, b],
a < ϕ(a) ≤ ϕ(x) ≤ ϕ(b) < b. Then ϕ maps from [a, b] to [a, b] and thus ϕ is a contraction
mapping on [a, b]. There exists y0 ∈ [a, b] such that ϕ(y0) = y0. Choose an arbitrary point
x1 ∈ [a, b] and define xn+1 = ϕ(xn) and we obtain lim

n→∞
xn = y0.

■ The Newton’s Method (Newton-Raphson Iteration)
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Let f be a continuously differentiable on [a, b], f (a) < 0
and f (b) > 0. By I.V.T, there exists y0 ∈ [a, b] such that
f (y0) = 0.

Choose ϕ(x) = x − c(x) f (x) where c(x) is a nonvanishing
function. Then f (x) = 0 if and only if ϕ(x) = x. Hence,
ϕ(y0) = y0.

Observation:
Suppose that there exists an interval I of y0 such that

|ϕ′(x)| ≤ c < 1 for every x ∈ I.

Choose x0 ∈ I and xn+1 = ϕ(xn). Then

|x1 − y0| =
∣∣ϕ(x0) − ϕ(y0)

∣∣ M.V.T
= |ϕ′(t0)||x0 − y0| < c|x0 − y0|

|x2 − y0| < c|x1 − y0| < c2|x0 − y0|
...

|xn − y0| < cn|x0 − y0| → 0 as n→ ∞.
Hence, we will choose a suitable c(x) such that ϕ(x) is continuously differentiable and there

exists an interval I of y0 such that |ϕ′(x)| ≤ c < 1 on I. Then we can choose an initial point
x0 ∈ I such that y0 = lim

n→∞
ϕ(x0).

Now, let’s choose a nonvanishing function c(x). Observe that

ϕ(x) = x − c(x) f (x)
⇒ ϕ′(x) = 1 − c′(x) f (x) − c(x) f ′(x)
⇒ ϕ′(y0) = 1 − c(y0) f ′(y0)

Choose c(x) = 1
f ′(x)

Ä
|ϕ′(y0)| = 0 < 1

ä
. Since ϕ is continuously differentiable, there exists an

interval I of y0 such that |ϕ′(x)| ≤ c < 1 on I.

Then

ϕ(x) = x − c(x) f (x) = x − f (x)
f ′(x)

.

Choose x1 ∈ I and xn+1 = ϕ(xn) = xn −
f (xn)
f ′(xn)

.

This method is called “Newton’s iteration”.

Example 4.7.6. Find a positive root of the equation

2x4 + 2x3 − 3x2 − 5x − 5 = 0

with an accuracy of three decimal places.
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Proof. Let f (x) = 2x4 + 2x3 − 3x2 − 5x − 5. Then f ′(x) = 8x3 + 6x2 − 6x − 5, f (1) = −9 and
f (2) = 21. Choose x1 = 1.6.

x2 = x1 −
f (x1)
f ′(x1)

= 1.6 − 0.6193
33.528

= 1.5815

x3 = x2 −
f (x2)
f ′(x2)

= 1.5815 − 0.114
32.1623

= 1.5780

x4 = x3 −
f (x3)
f ′(x3)

= 1.5780 + 0.0031 = 1.5811

□

(Sufficient condition:) Let f be a twice continuously differentiable function on [a, b] with
f (a) f (b) < 0. (By I.V.T, there exists y0 ∈ [a, b] such that f (y0) = 0.). Suppose that f ′(x) , 0

for every x ∈ [a, b]. Then ϕ′(x) =
f (x) f ′′(x)(

f ′(x)
)2 . We have

|ϕ′(x)| ≤ c < 1 as x is sufficiently close to y0.

Also, we want to find an interval I of y0 such that ϕ maps from I into I.

Exercise. Problem 5.29

Exercise. Suppose that f is continuously differentiable, f ′ > 0 on [a, b] and f (a) f (b) < 0.
Then there exists y0 ∈ [a, b] such that f (y0) = 0. If f ′(y0) > 0 then there exists an interval I of

y0 such that ϕ(x) = x − f (x)
f ′(x)

is a contraction mapping on I.

■ Error of Newton’s Method (Newton-Raphson Iteration)

Assume | f ′(x)| ≥ 1
M︸          ︷︷          ︸

(1)

and | f ′′(x)| ≤ 2M︸            ︷︷            ︸
(2)

for every x ∈ I.

From xn+1 = xn −
f (xn)
f ′(xn)

,

|xn+1 − xn| =
∣∣∣ f (xn)

f ′(xn)

∣∣∣ (1)
≤ M| f (xn)|.

By Taylor’s theorem,

f (xn+1) = f (xn) + f ′(xn)(xn+1 − xn)︸                            ︷︷                            ︸
=0

+
1
2

f ′′(ξ)(xn+1 − xn)2. (4.16)

Then
| f (xn+1)| = 1

2
| f ′′(ξ)|(xn+1 − xn)2 (2)

≤ M|xn+1 − xn|2. (4.17)

By (4.16), (4.17),
|xn+1 − xn| ≤ M| f (xn)| ≤ M2|xn − xn−1|2.

Hence, if | f (x1)| < 1 and M < 1 then f (xn)→ 0 by (4.17) and |xn+1 − xn| ≤ |xn − xn−1|2.
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Remark. Let f be a twice continuously differentiable function. Suppose that there exists y0

such that f (y0) = 0 and f ′(y0) > 0 (or < 0). Then there exists a neighborhood I of y0 such that

ϕ(x) = x − f (x)
f ′(x)

is a contraction mapping on I.

Proof. Since f is twice continuously differentiable and f ′(y0) > 0, there exists δ1 > 0 such that
f ′(x) > 0 for x ∈ (y0 − δ1, y0 + δ1) and

ϕ′(x) =
f (x) f ′′(x)(

f ′(x)
)2

is continuous on (y0 − δ1, y0 + δ1).

Since f (y0) = 0 and f ′(x) > 0, ϕ′(y0) = 0 and f (x) is increasing on (y0 − δ1, y0 + δ1) and
ϕ(y0) = y0. Then there exists 0 < δ < δ1 such that for x ∈ (y0 − δ, y0 + δ),

|ϕ′(x)| < 1 (4.18)

and f (x)
ß
< 0 x ∈ [y0 − δ, y0)
> 0 x ∈ (y0, y0 + δ]

for every x ∈ [y0 − δ, y0 + δ]. Thus,

|ϕ(x) − y0| = |ϕ(x) − ϕ(y0)| = |ϕ′(ξ)||x − y0|
(4.18)
< |x − y0| ≤ δ.

This implies that
ϕ(x) ∈ [y0 − δ, y0 + δ]. (4.19)

By (4.18) and (4.19), ϕ is a contraction mapping on [y0 − δ, y0 + δ]. □

Remark. Under the above assumption, if x1 ∈ [y0 − δ, y0 + δ] and xn+1 = ϕ(xn), then {xn}∞n=1
converges to y0 which is the fixed point for ϕ(x). Also, x0 is the zero of f (x).

Remark. The Newton’s method might fail.

ϕ(x) = x − f (x)
f ′(x)

and xn+1 = xn −
f (xn)
f ′(xn)

.

Case 1: |xn| → ∞ as n→ ∞. For example f (x) = x1/3 and x1 = 1.
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Case 2: x1 = x3 = x5 = · · · = x2n+1 = · · · and x2 = x4 = x6 = · · · = x2n = · · · .

For example f (x) = x3 − x + 1
2 and

x1 = x4 = x7 = · · · = 1,

x2 = x5 = x8 = · · · =
3
4
,

x3 = x6 = x9 = · · · =
1
2
.

For example, f (x) = x2 − 2x + 2 and

x1 = x3 = x5 = · · · = 0,
x2 = x4 = x6 = · · · = 1.

Case 3: f ′(xn) = 0.

Case 4: |xn − y0| ≫ 1

Example 4.7.7. Consider x3 − 3x − 1 = 0. Let f (x) = x3 − 3x − 1 and the three zero of f (x) be
z1 < z2 < z3.

We can check that z3 ∈ [1, 2]. Find an interval I of z3

such that the Newton’s iteration {xn}∞n=1 converges to z3 if
we choose any initial point x1 ∈ I.

Strategy: Let ϕ(x) = x − f (x)
f ′(x)

. To find an interval I of z3 such that ϕ(x) is a contraction map-

ping on I. To prove (i) ϕ : I → I and (ii) |ϕ(x) − ϕ(y)| < c|x − y| for some 0 ≤ c < 1 and for
every x, y ∈ I.
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Consider f ′(x) = 3x2 − 3 = 3(x2 − 1) and f ′′(x) = 6x. Then f ′(x) > 0 and f ′′(x) > 0

for every x ∈ [1, 2]. Hence, f is increasing on [1, 2] and f (x)
ß
< 0 x ∈ [1, z3)
> 0 x ∈ (z3, 2] . Consider

ϕ′(x) =
f (x) f ′′(x)(

f ′(x)
)2 . For x ∈ [

3
2
, 2],

15
4
≤ f ′(x) ≤ 9 and f ′′(x) < 12. If |x − z3| < δ,

| f (x) − 0| = | f (x) − f (z3)| < | f ′(ξ)||x − z3| ≤ 9|x − z3| < 9δ.

Therefore,

|ϕ′(x)| < 12 · 9δ
(15/4)2 =

192
25

δ.

Then we can choose δ sufficiently small such that (i) and (ii) hold.

■ Compare the secant method and the Newton’s method

• The Secant Method

ϕ(x) = x − f (x)
M

where M = sup
x∈[a,b]

| f ′(x)| + 1.

The slope is never zero. But the rate of convergence
is slow and this method needs to detect the sign of
f ′(x) in advance.

• The Newton’s Method

ϕ(x) = x − f (x)
f ′(x)

where M = sup
x∈[a,b]

| f ′(x)| + 1.

The slope f ′(x) may be zero. But the rate of conver-
gence is faster and ∗

f ′(x) will automatically detect the
sign of f ′(x).
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4.8 The existence and uniqueness of the solutions to ODE’s

■ Ordinary Differential Equations (ODE)

Let’s consider the initial value problem (I.V. P) for the ODE.ß
x′(t) = f

(
x(t), t

)
for t ∈ [t0, t0 + △t] (4.20)

x(t0) = x0 (4.21)
Definition 4.8.1. Let I be an interval and t0 ∈ I. A function x(t) : I → Rn is called “a solution
of the ODE (4.20) with initial condition (4.21) on I” if x′(t) exists on I, and x(t), x′(t) satisfy
(4.20) and (4.21).
Question: For given f(x, t) : Rn × I → Rn and x0 ∈ Rn, is there a solution to (4.20) and (4.21)?

Question: For what sufficient condition of f , there exists a solution to (4.20) and (4.21)?

Question: If the solution exists, is it unique? That is, if x(t) and y(t) are solutions to (4.20) and
(4.21), are they equal for every t ∈ I?

Heuristic Idea: Suppose g(t) : I → Rn, g(t) =
(
g1(t), · · · , gn(t)

)
, gi(t) : I → R, x(t) =(

x1(t), · · · , xn(t)
)

and x0 = (x1
0, · · · , xn

0) ∈ Rn such thatß
x′(t) = g(t)
x0(t0) = x0

⇐⇒
ß (

x′1(t), · · · , x′n(t)
)
=

(
g1(t), · · · , gn(t)

)(
x1(t0), · · · , xn(t0)

)
= (x1

0, · · · , xn
0)
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By the Fundamental Theorem of Calculus,

x1(t) = x1
0 +

∫ t

t0
g1(s) ds, · · · , xn(t) = xn

0 +

∫ t

t0
gn(s) ds.

Denote

x(t) = x0 +

∫ t

t0
g(s) ds.

In our case, f(x, t) : B(x0, r) × [t0,T ]→ Rn, x(t) satisfiesß
x′(t) = f

(
x(t), t

)
x(t0) = x0

Then x(t) = x0 +

∫ t

t0
f
(
x(s), s

)
ds.

Theorem 4.8.2. (Fundamental Theorem of ODE) Suppose that for some r > 0, T > t0, f :
B(x0, r)
⊆ Rn

×[t0,T ] → Rn is continuous in (x, t) and is Lipschitz in x; that is, there exists K > 0

such that for every x, y ∈ B(x0, r) and t ∈ [t0,T ],∥∥∥ f (x, t) − f (y, t)
∥∥∥ ≤ K∥x − y∥.

Then there exists 0 < △ < R such that there exists a unique solution to (4.20) and (4.21).

Observe that our goal is to find an element x = x(t) ∈ C
(
[t0, t0 + △],Rn

)
such that

x(t) = x0 +

∫ t

t0
f
(
x(s), s

)
ds for t ∈ [t0, t0 + △].

Hence, if M ⊆ C
(
[t0, t0 + △];Rn

)
is certian subset and Φ : M → M is defined by

Φ
(
x(t)

)
= x0 +

∫ t

t0
f
(
x(s), s

)
ds.

Then our targent function (the solution) is a fixed point for Φ. That is x(t) satisfies

x(t) = Φ
(
x(t)

)
= x0 +

∫ t

t0
f
(
x(s), s

)
ds.

Proof. Note that we will use the notationi ∥ · ∥ = ∥ · ∥Rn and abuse x0 ∈ Rn or x0 = x0(t) as
a constant function in the proof. Also, we use ∥x − x∥∞ = sup

t∈[t0,t0+△]
∥x(t) − x0(t)∥ and f(x0, ·) =

f
(
x0(·), ·

)
.

Let
M =

¶
x(t) ∈ C

(
[t0, t0 + △t];Rn

∣∣∣ sup
t∈[t0,t0+△]

∥∥∥x(t) − x0

∥∥∥
x0 is a

constant f unction

≤ r
2

©
.
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Define a mapping Φ on M by

Φ
(
x(t)

)
= x0 +

∫ t

t0
f
(
x(s), s

)
dx for every t ∈ [t0, t0△t].

The number △ is to be determined later. That is, we will choose △t such that Φ has a
fixed point in

(
M, ∥ · ∥∞

)
by the following steps: (1) Φ : M → M, (2) Φ is a contraction on

M, and (3) M is complete.

(1) (i) To check that Φ ∈ C
(
[t0, t0 + △t];Rn

)
for every x ∈ M

For x ∈ M, given ε > 0, to find δ > 0 such that if t1, t2 ∈ [t0, t0 + △t] and |t1 − t2| < δ∥∥∥Φ(x)(t1) − Φ(x(t1))
∥∥∥ = ∥∥∥ ∫ t2

t0
f
(
x(s), s

)
ds −

∫ t1

t0
f
(
x(s), s

)
ds
∥∥∥

=
∥∥∥ ∫ t2

t1
f
(
x(s), s

)
ds
∥∥∥ ≤ ∫ t2

t1

∥∥∥f(x(s), s
)∥∥∥ ds

≤ A|t1 − t2| < Kδ

for some large number A > 0 satisfying
∥∥∥f(x(s), s

)∥∥∥ < A for every s ∈ [t0, t0 + △t].

We can choose δ =
ε

A
and hence Φ is continuous in t. That is, Φ ∈ C

(
[t0, t0+△t];Rn

)
.

(ii) To show that Φ : M → M.
For t ∈ [t0, t0 + △] and x ∈ M,∥∥∥∥Φ(x)(t) − x0(t)

∥∥∥∥ = ∥∥∥∥ ∫ t

t0
f
(
x(s), s

)
dx
∥∥∥∥

≤
∥∥∥∥ ∫ t

t0

[
f
(
x(s), s

)
− f

(
x0(s), s

)]
ds +

∫ t

t0
f
(
x0(s), s

)
ds
∥∥∥∥

≤
∥∥∥∥ ∫ t

t0

[
f
(
x(s), s

)
− f

(
x0(s), s

)]
ds
∥∥∥∥ + ∥∥∥∥ ∫ t

t0
f
(
x0(s), s

)
ds
∥∥∥∥

(Lipschitz in x) ≤
∫ t0+△t

t0
K
∥∥∥x(s) − x0(t)

∥∥∥ds +
∫ t0+△t

t0

∥∥∥f(x0(s), s
)∣∣ ds

≤ K
∫ t0+△t

t0
K
∥∥∥x(s) − x0(s)

∥∥∥ ds +
∫ t0+△t

t0

∥∥∥f(x0(s), s
)∥∥∥ ds

≤ K
∫ t0+△t

t0
sup

s∈t,t0+△t
∥x(s) − x0(s)∥

= ∥x−x0∥∞

ds +
∫ t0+△t

t0
sup

t∈[t0,t0+△t]

∥∥∥f(x0(s), s
)∥∥∥

= ∥f(x0(·),·)∥∞

ds

≤ △t
î
K ∥x − x0∥∞

≤ r
2

+
∥∥∥f(x0(·), ·

)∥∥∥
f ixed number

ó
Hence,∥∥∥Φ(x) − x0

∥∥∥∞ = sup
t∈[t0,t0+△t]

∥∥∥Φ(x
)
(t) − x0(t)

∥∥∥ ≤ △t
î
K
∥∥∥x − x0

∥∥∥∞
≤ r

2

+
∥∥∥f(x0(·), ·

)∥∥∥∞
f ixed number

ó
.

Choose 0 <≤ r
Kr + 2∥f

(
x0(·), ·

)
∥∞

. Then
∥∥∥Φ(x) − x0

∥∥∥ ≤ r
2

and hence Φ(x) ∈ M.
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(2) For x, y ∈ M, to prove that when △t is sufficiently small (TBD),∣∣Φ(x) − Φ(y)∥∞ = sup
t∈[t0,t0+△]

∥∥∥Φ(x
)
(t) − Φ

(
y
)
(t)
∥∥∥ ≤ c

∥∥∥x − y
∥∥∥∞.

for some 0 ≤ c < 1.

For t ∈ [t0, t0 + △t],∥∥∥∥Φ(x
)
(t) − Φ

(
y
)
(t)
∥∥∥∥ = ∥∥∥∥ ∫ t

t0
f
(
x(s), s

)
ds −

∫ t

t0
f
(
y(s), s

)
ds
∥∥∥∥

=
∥∥∥∥ ∫ t

t0

[
f
(
x(s), s

)
− f

(
y(s), s

)]
ds
∥∥∥∥

≤
∫ t

t0

∥∥∥f(x(s), s
)
− f

(
y(s), s

)∥∥∥ ds

≤
∫ t0+△t

t0
K
∥∥∥x(s) − y(s)

∥∥∥ ds

≤
∫ t0+△t

t0
K
∥∥∥x − y

∥∥∥∞ ds

= △tK
∥∥∥x − y

∥∥∥∞.
Then ∥∥∥∥Φ(x

)
− Φ

(
y
)∥∥∥∥∞ = sup

t∈[t0,t0+△t]

∥∥∥∥Φ(x
)
(t) − Φ

(
y
)
(t)
∥∥∥∥ ≤ △tK

c

∥∥∥x − y
∥∥∥∞

Choose 0 < △ such that △tK < 1, say △ ≤ 1
2K

. Then Φ : M → M is a contraction mapping.

(3) To prove that M is complete in the norm ∥ · ∥∞
Since

Ä
C
(
[t0, t0 + △t];Rn

)
, ∥ · ∥∞

ä
is complete, if suffices to show that M is closed inÄ

C
(
[t0, t0 + △t];Rn

)
, ∥ · ∥∞

ä
.

Let {xn}∞n=1 ⊆ M and x ∈
Ä
C
(
[t0, t0 + △t];Rn

)
, ∥ · ∥∞

ä
such that

xn → x as n→ ∞.

That is,
∥∥∥xn − x∥∞ → 0 as n→ ∞. We will prove that x ∈ M.

For ε > 0, choose N ∈ N such that if n ≥ N,
∥∥∥xn − x

∥∥∥∞ < ε.

Since xn ∈ M for every n ∈ N,
∥∥∥xN − x0

∥∥∥∞ ≤ r
2

. Then

∥∥∥x − x0

∥∥∥∞ ≤ ∥∥∥x − xN

∥∥∥∞ + ∥∥∥xN − x0

∥∥∥∞ ≤ ε + r
2
.

Since ε is arbitrary, taking ε↘ 0, we have
∥∥∥x − x0

∥∥∥∞ ≤ r
2

. Thus, x ∈ M.
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By (1), (2) and (3), for 0 < △t ≤ min
Ä

T − t0,
r

Kr + 2
∥∥∥f(x0, ·

)∥∥∥∞,
1

2K

ä
, there exists a unique

fixed point x = x(t) ∈ M. That is ,

x(t) = x0 +

∫ t

t0
f
(
x(s), s

)
ds for every t ∈ [t0, t0 + △t].

(Uniqueness) Let x, y be two solution of (4.20) and (4.21) on [t0, t0 + △t]. Then

x(t) = x0 +

∫ t

t0
f
(
x(s), s

)
ds and y(t) = x0 +

∫ t

t0
f
(
y(s), s

)
ds.

Then ∥∥∥x − y
∥∥∥∞ = sup

t∈[t0,t0+△t]

∥∥∥∥ ∫ t

t0
f
(
x(s), s

)
ds −

∫ t

t0
f
(
y(s), s

)
ds
∥∥∥∥

≤
∫ t

t0
sup

t∈[t0,t0+△t]

∥∥∥(x(s), s
)
− f

(
y(s), s

)∥∥∥ ds

≤ △tK
∥∥∥x − y

∥∥∥∞
≤ 1

2

∥∥∥x − y
∥∥∥∞.

Hence,
∥∥∥x − y∥∞ = 0 and we have x(t) = y(t) for every t ∈ [t0, t0 + △t].

In fact, it is not necessary to prove this part since fixed point theorem already gives the
uniqueness.

□

Example 4.8.3. Find a function x(t) : [0,T ]→ R such thatß
x′(t) = x(t)
x(0) = 1. (4.22)

Proof. Define

Φ
(
x
)
(t) = 1 +

∫ t

0
x(s) ds, , x0(t) = 1

and xn+1(t) = Φ
(

xn
)
(t). Then

x1(t) = 1 +
∫ t

0
1 ds = 1 + t

x2(t) = 1 +
∫ t

0
1 + s ds = 1 + t +

t2

2

x3(t) = 1 +
∫ t

0
1 + s +

s2

2
ds = 1 + t +

t2

2
+

t3

3!
...

xk(t) = = 1 + t +
t2

2!
+

t3

3!
+ · · · + tk

k!
.
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Then {xk}∞k=0 converges to x(t) =
∞∑

k=0

tk

k!
= et which is the solution of I.V. P for (4.22). □

Example 4.8.4. Find a function x(t) such thatß
x′(t) = tx(t)
x(0) = 3 (4.23)

Proof. Define

Φ
(

x
)
(t) = 3 +

∫ t

0
sx(s) dx, x0(t) = 3

and xn+1(t) = Φ
(

xn
)
(t). Then

x1(t) = 3 +
∫ t

0
sx0(s) ds = 3 +

∫ t

0
3s ds = 3 +

3t2

2

x2(t) = 3 +
∫ t

0
sx1(s) ds + 3 +

∫ t

0
3 +

3
2

s2 = 3 +
3t2

2
+

3t4

2 · 4
...

xk(t) = 3 +
3t2

2
+

3t4

2 · 4 + · · · +
3t2k

2 · 4 · · · (2k)

We have xk(t)→ x(t) = 3 + 3
∞∑

k=1

t2k

2 · 4 · (2k)
= 3e

t2
2 which is the solution of the I.V. P for (4.23).

□

Remark. This process is called the “Picard iteration”.

Example 4.8.5. Let xc(t) =

{
0 if 0 ≤ t < c
1
4

(t − c)2 if t ≥ c
. Then®

x′c(t) =
(

x(t)
)1/2

xc(0) = 0
for all c > 0.

Hence, this initial value problem has infinitely many solution. Why?
f (x0, t) =

√
x is not Lipschitz near 0. That is, no matter what K > 0 is, there exists x, y ∈ (−δ, δ)

such that ∣∣ f (x, t) − f (y, t)
∣∣ > K|x − y|.
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5.1 Bounded Linear Maps

Definition 5.1.1. (1) Let X and Y be vector spaces. A mapping L : X → Y is said to be “linear”
if

L(cx1 + x2) = cL(x1) + L(x2) for every c ∈ R and x1, x2 ∈ X.

We usually write “Lx” instead of L(x). Denote the collection of all linear maps from X to Y
by L

(
X; Y

)
. Note that L

(
X; Y

)
is a vector space.

(2) Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces. A linear map L : X → Y is said to be
“bounded” if

sup
x∈X
∥x∥X=1

∥Lx∥Y < ∞.

(3) The collection of all bounded linear maps from X to Y is denoted by B
(
X; Y

)
and the

number sup
x∈X
∥x∥X=1

∥Lx∥Y is denoted by ∥L∥B(X;Y).

Example 5.1.2. Let A ∈ Mm×n(R) be a m × n matrix. For x ∈ Rn, define

Lx = Ax.

167
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That is,

A =

a11 · · · a1n
...

...
am1 · · · amn

 and x =

x1
...

xn


Then

Lx = Ax =

a11 · · · a1n
...

...
am1 · · · amn


x1
...

xn

 ∈ Rm

Consider
∥Ax∥2Rm

∥x∥2Rn

=
⟨Ax, Ax⟩Rm

⟨x, x⟩Rn
.

Since

⟨Ax, Ax⟩Rm = (Ax)T Ax = xT AT Ax = ⟨x, AT Ax⟩Rn = ⟨AT Ax, x⟩Rn ≤ ∥AT A∥B(Rn;Rn)∥x∥Rn ,

we have
∥Ax∥2Rm

∥x∥2Rn

≤ ∥AT A∥2B(Rn;Rn)

Therefore, L ∈ B
(
Rn;Rm

)
and ∥L∥B(Rn;Rm) is equal to the square root of the largest eigenvalue of

AT A.

Proposition 5.1.3. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces and L ∈ B
(
X; Y

)
. Then

∥L∥B(X;Y) = sup
x∈X
x,0

∥Lx∥Y
∥x∥X

= inf
{

M > 0
∣∣ ∥Lx∥Y ≤ M∥x∥X

}
.

Proof. (Exercise) □

Remark. ∥Lx∥Y ≤ ∥L∥B(X;Y)∥x∥X.

Proposition 5.1.4. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces and L ∈ L
(
X; Y

)
. Then L is

continuous on X if and only if L ∈ B
(
X; Y

)
.

Proof. (=⇒)
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Since L is linear, L0X = 0Y . Since L is continuous at 0X, for 0 < ε = 1, there exists δ > 0
such that if ∥x − 0X∥X < δ, then ∥Lx∥Y = ∥Lx − L0X∥ < 1. Thus, for x ∈ X with ∥x∥X = δ

2 ,
∥Lx∥Y < 1.

Since L is linear, for x ∈ X with ∥x∥X = 1, ∥Lx∥Y < 2
δ
. Then we have

sup
x∈X
∥x∥X=1

∥Lx∥Y ≤
2
δ

and hence L ∈ B
(
X; Y

)
.

(⇐=)
If L ∈ B

(
X; Y

)
, then M = ∥L∥B(X;Y) < ∞. Then

∥Lx1 − Lx2∥Y = ∥L(x1 − x2)∥Y ≤ M∥x1 − x2∥X for every x1, x2 ∈ X.

Hence, L is (uniformly) continuous on X. □

Remark. A linear map L is continuouos on X if and only if L is continuous at 0X.

Proposition 5.1.5. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces. Then

(1)
Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
is a normed space.

(2) Moreover, if (Y, ∥ · ∥Y) is a Banach space, then
Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
is a Banach space.

Proof. (1) (Exercise)

(2) Let {Lk}∞k=1 ⊆ B
(
X; Y

)
be a Cauchy sequence. Then ∥Lm − Ln∥B(X;Y) → 0 as m, n → ∞ and

there exists M > 0 such that ∥Lk∥B(X;Y) < M for every k ∈ N.

To prove that there exists L ∈ B(X; Y) such that Lk → L in
Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
.

For x ∈ X,

∥Lkx − Lnx∥Y = ∥(Lk − Ln)x∥Y ≤ ∥Lk − Ln∥Y︸         ︷︷         ︸
→ 0 as k,n→0

∥x∥X → 0 as k, n→ ∞.

Since (Y, ∥ · ∥Y) is a Banach space, there exists y = y(x) ∈ Y such that Lkx → y in (Y, ∥ · ∥Y)
as k → ∞.

Note that for every x ∈ X, there exists a correspoiding y ∈ Y such that Lkx→ y.

Define a map L : X → Y by Lx := lim
k→∞

Lkx. To check that

Lk → L in
Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
.

That is, to check
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(i) L ∈ B
(
X; Y

)
(ii) ∥Lk − L∥B(X;Y) → 0 as k → ∞.

(i) For x1, x2 ∈ X and 0 , c ∈ R, since Lk ∈ B
(
X; Y

)
for every k ∈ N, Lx1 = lim

k→∞
Lkx1

and Lx2 = lim
k→∞

Lkx2, we have

L(cx1 + x2) = lim
k→∞

Lk(cx1 + x2) = c lim
k→∞

Lk(x1) + lim
k→∞

Lk(x2) = cLx1 + Lx2.

Thus, L ∈ L(X; Y). Moreover, for ∥x∥X = 1, there exists Nx ∈ N such that if k ≥ Nx,
∥Lx − Lkx∥Y < 1. Then

∥Lx∥Y ≤ ∥Lx − Lkx∥Y + ∥Lkx∥Y ≤ ∥Lx − Lkx∥Y︸           ︷︷           ︸
<1

+ ∥Lk∥B(X;Y)︸       ︷︷       ︸
<M

∥x∥X︸︷︷︸
=1

< M + 1.

Since x is an arbitrary element in X with ∥x∥X = 1, we have

∥L∥B(X;Y) = sup
x∈X
∥x∥X=1

∥Lx∥Y
∥x∥X

< M + 1

and hence L ∈ B
(
X; Y

)
.

(ii) Since {Lk}∞k=1 is Cauchy in
Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
, for ε > 0, there exists N ∈ N such

that if k, n ≥ N,
∥Lk − Ln∥B(X;Y) <

ε

2
.

For x ∈ X, ∥x∥X = 1, since lim
n→∞

Lnx = Lx, there exists N1 = N1(x) ∈ N such that if
n ≥ N1,

∥Lnx − Lx∥Y <
ε

2
.

Hence, for k ≥ N, we choose n ≥ max(N,N1) and then

∥Lkx − Lx∥Y ≤ ∥Lkx − Lnx∥Y + ∥Lnx − Lx∥Y <
ε

2
+
ε

2
= ε.

Since x is arbitrary, ∥Lk − L∥B(X;Y) = sup
∥x∥X=1

∥(Lk − L)x∥Y < ε whenever k ≥ N. There-

fore, Lk → L in
Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
.

□

Proposition 5.1.6. Let (X, ∥ · ∥X), (Y, ∥ · ∥Y) and (Z, ∥ · ∥Z) be normed spaces, L ∈ B
(
X; Y

)
and

K ∈ B
(
Y; Z

)
. Then K ◦ L ∈ B

(
X; Z

)
and

∥K ◦ L∥B(X;Z) ≤ ∥K∥B(Y;Z)∥L∥B(X;Y)

Note that we often write K ◦ L as KL if K and L are linear.

Proof. Check K ◦ L is linear (exercise).
Check K ◦ L is bounded.

∥(K ◦ L)x∥Z = ∥K (Lx)︸︷︷︸
∈Y

∥Z ≤ ∥K∥B(Y;Z)∥Lx∥Y ≤ ∥K∥B(Y;Z)∥L∥B(X;Y)∥x∥X.

□
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Example 5.1.7. If A ∈ Mm×n(R) and B ∈ Mn×k(R), then

A ∈ B
(
Rn,Rm) and B ∈ B

(
Rk,Rn)

and
AB ∈ Mm×k(R) and AB ∈ B

(
Rk;Rm).

Lemma 5.1.8. Let X be a finite dimensional vector space. Then every norm on X is equivalent.
That is, if ∥ · ∥1 and ∥ · ∥2 are two norms on X, then there exists α, β > 0 such that for every x ∈ X,

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥2.

Proof. (Exercise) □

Theorem 5.1.9. Let (X, ∥ · ∥)X and (Y, ∥ · ∥Y) be normed spaces and X be finite dimensional. Then
every linear map from X to Y is bounded. That is, L(X; Y) = B(X; Y).

Proof. Let T ∈ L(X; Y). Since X is finite dimensional, say dim X = n, all norms on X are
equivalent.

Let {e1, · · · , en} be a basis of X. For x ∈ X, there exist c1, · · · , cn ∈ R such that x =
c1e1 + · · · + cnen. Define a norm

9x9 := max
1≤i≤n
|ci| (Check that 9 · 9 is a norm on X)

Then there exists M1 > 0 such that 9x9 ≤ M1∥x∥X for every x ∈ X. Let M2 =

n∑
i=1

∥Tei∥Y . Then

for every x = c1e1 + · · · + cnen ∈ X,

∥T x∥Y = ∥T (
n∑

i=1

ciei)∥Y = ∥
n∑

i=1

ciTei∥Y ≤
n∑

i=1

|ci| ∥Tei∥Y

≤ max
1≤i≤n
|ci|

n∑
i=1

∥Tei∥Y ≤ M2 9 x 9 ≤ M1M2∥x∥X.

Hence, T ∈ B
(
X; Y

)
. □

Theorem 5.1.10. Let GL(n) be the set of all invertible linear maps on Rn. That is,

GL(n) =
{

L ∈ L(Rn;Rn)
∣∣ L is one-to one (and hence onto).

}
(1) If L ∈ GL(n) and K ∈ B

(
Rn;Rn

)
satisfying ∥K−L∥B(Rn,Rn)∥L−1∥B(Rn,Rn) < 1, then K ∈ GL(n).

(2) GL(n) is an open set of B
(
Rn;Rn

)
.

(3) The mapping L→ L−1 is continuous on GL(n).
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■ Heuristical Ideas:

(1) First of all, consider a function f : R → R and f (a) = b. Imagine that L is the
derivative of f at a. That is, L = f ′(a). Then

L is invertible. ⇐⇒ f ′(a) , 0 (say f ′(a) > 0)
=⇒ f is increasing near a.
=⇒ f is one-to-one near a.
=⇒ f −1 exists near a.

=⇒
(

f −1)′(b) =
1

f ′(a)
= L−1.

Suppose K is the derivative of g at a. That is, K = g′(a). If |K − L| = | f ′(a) − g′(a)| ≥
| f ′(a)|, then g′(a) could be 0 and hence it is possible that g is not invertible near a.

In order to hope g is invertible near a, we hope

| f ′(a) − g′(a)| < | f ′(a)| ⇐⇒ | f ′(a) − g′(a)|
| f ′(a)| = |L − K| · 1

|L| < 1

Moreover, consider L ∈ GL(n). Then L ∈ L
(
Rn;Rn

)
is invertible. Recall that L is

linear and invertible. Then Lx = 0 if and only if x = 0. Also, the linearity implies
that L is continuous at 0 and the graph of L is symmetric about the origin. Imagine the
Graph(L)

Hence, L is linear and invertible if and only if the graph of L
Ä
∂B(0, 1)

ä
is a distorted

sphere with center at the origin.

Let K ∈ B
(
Rn;Rn

)
. If we hope that K is invertible, we want the graph of K

Ä
∂B(0, 1)

ä
is a certain “distored sphere” with center 0. (That is, the graph K

Ä
∂B(0, 1)

ä
does not

touch the origin.)
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Question: If L ∈ GL(n), how to achieve that K ∈ GL(n)?

Heuristically, we may achieve this goal as long as the distance of the farthest point on
(K − L)

Ä
∂B(0, 1)

ä
is less than the distance of the nearest point on L

Ä
∂B(0, 1)

ä
.

Let α = min
∥x∥=1
∥Lx∥. Suppose that for x ∈ ∂B(0, 1), ∥Kx − Lx∥ ≤ ∥K − L∥B(Rn,Rn) < α.

Then K
Ä
∂B(0, 1)

ä
will not attain the origin. Moreover, it works if

∥K − L∥B(Rn,Rn) < α⇐⇒ ∥K − L∥B(Rn,Rn) ·
1
α
< 1

Question: How large is
1
α

? Is ∥L−1∥B(Rn,Rn) =
1
α

?

Let α = min
∥x∥=1
∥Lx∥. Choose δ = 1

2α and ask that for every x ∈ Rn, ∥Kx − Lx∥Rn <
α

2
(hence ∥K − L∥B(Rn;Rn) <

α

2
). Then K

(
∂B(0, 1)

)
will not atain 0.

Moverover, it works if ∥K − L∥B(Rn;Rn) < α⇐⇒ ∥K − L∥B(Rn;Rn) ·
1
α
< 1. Heuristically,

∥L−1∥B(Rn;Rn)
??
=

1
α
.
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∥L∥B(Rn,Rn) = sup
∥x∥=1
∥Lx∥ = sup

∥x∥=1

∥Lx∥
∥x∥

∥L−1∥B(Rn,Rn) = sup
∥y∥=1

∥L−1y∥
∥y∥ = 1

¡
inf
∥x∥=1

∥Lx∥
∥x∥ =

1
α

Remark. L ∈ L
(
Rn;Rn

)
. Then L is invertible if and only if the graph of L(S n−1) must

be a distorted sphere, centered at 0 and symmetric about 0 as well as every line through
0 intersect L(S n−1) exact two times, say y and −y.
(=⇒) By linearity and invertibility.
(⇐=) Let {e1, · · · , en} be a basis. Check that {Le1, · · · , Len} are linearly independent.
Suppose not, there exists y , 0 but y < Span{Le1, · · · , Len}. Choose a line ℓ passing
0 and y. By the hypothesis, there exists z ∈ ℓ and z ∈ L(S n−1). Then z = cy for some
c , 0 and z ∈ Span{Le1, · · · , Len}. Hence, y ∈ Span{Le1, · · · , Len} and we obtain a
contradiction.

■ Heuristical Ideas:

(2) We imagine that L ∈ L
(
Rn,Rn

)
. Then L

corresp.←→ A ∈ Mn×n(R).

L ∈ GL(n) A is invertible~ww� ←→
~ww�

L is invertible det A , 0

If perturbing L a little bit, the determinant of the corresponding matrix is still nonzero.
Hence, L is an interior point of GL(n).
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Proof. (1) Let ∥L−1∥B(Rn,Rn) =
1
α

and ∥K − L∥B(Rn,Rn) = β. Then β < α. Hence, for every x ∈ Rn,

α∥x∥ = α∥L−1Lx∥ ≤ α∥L−1∥B(Rn,Rn)︸             ︷︷             ︸
=1

∥Lx∥

≤ ∥(K − L)x∥ + ∥Kx∥ ≤ ∥K − L∥B(Rn,Rn)∥x∥ + ∥Kx∥.

Then (α − β)∥x∥ ≤ ∥Kx∥. We have Kx = 0 if and only if x = 0. Therefore, K is invertible.

(2) Let L ∈ GL(n). Then L−1 ∈ GL(n) and L−1 ∈ B
(
Rn;Rn

)
. Choose δ =

1
∥L−1∥B(Rn,Rn)

. By (1),

B(L, δ) =
¶

K ∈ B(Rn,Rn)
∣∣∣ ∥K − L∥B(Rn,Rn) <

1
∥L−1∥B(Rn,Rn)

©
⊆ GL(n)

Hence, GL(n) is open.

(3) Given ε > 0, choose δ = min
Ä 1

2∥L−1∥B(Rn,Rn)
,

ε

2∥L−1∥2B(Rn,Rn)

ä
. For ∥K − L∥B(Rn,Rn) < δ,

∥L−1 − K−1∥B(Rn,Rn) = ∥K−1(K − L)L−1∥B(Rn,Rn)

≤ ∥K−1∥B(Rn,Rn)∥K − L∥B(Rn,Rn)∥L−1∥B(Rn,Rn)

≤
Ä
∥K−1 − L−1∥B(Rn,Rn) + ∥L−1∥B(Rn,Rn)

ä
∥K − L∥B(Rn,Rn)∥L−1∥B(Rn,Rn)

≤ ∥K−1 − L−1∥B(Rn,Rn) ∥K − L∥B(Rn,Rn)∥L−1∥B(Rn,Rn)︸                               ︷︷                               ︸
< 1

2

+ ∥K − L∥B(Rn,Rn)∥L−1∥2B(Rn,Rn)︸                               ︷︷                               ︸
< ε

2

≤ 1
2
∥K−1 − L−1∥B(Rn,Rn) +

ε

2
.

Hence, ∥K−1 − L−1∥B(Rn,Rn) < ε.
□

o Matrix Representation

Let (X, ∥·∥X) and (Y, ∥·∥Y) be finite dimensional vector spaces with dim X = n and dim Y = m.
Let B = {e1, · · · , en} and B̃ = {ẽ1, · · · , ẽm} be basis of X and Y respectively.

For x ∈ X, there exists unique n-tuple (c1, · · · , cn), ci ∈ R such that

x = c1e1 + · · · + cnen.

Similarly, for y ∈ Y , there exists unique m-tuple (d1, · · · , dm), di ∈ R such that

y = d1ẽ1 + · · · + dmẽm.

We denote

[x]B =

c1
...

cn

 and [y]B̃ =

d1
...

dm
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Let A =

a11 · · · a1n
...

...
am1 · · · amn

 ∈ Mm×n(R) and x =

c1
...

cn

. Define

Ax =

a11 · · · a1n
...

...
am1 · · · amn


c1
...

cn

 =


n∑
k=1

a1kck

...
n∑

k=1

amkck

 .

Then Ax = y where y =
n∑

k=1

a1kckẽ1 + · · · +
n∑

k=1

amkckẽm =

m∑
ℓ=1

Ä n∑
k=1

aℓkck

ä
ẽℓ. Therefore,

A ∈ B
(
X; Y

)
is a bounded linear map from X to Y . (Check)!

Question: A m × n matrix A ∈ L
(
X; Y

)
, how about the converse?

Let L ∈ L
(
X; Y

)
. Consider Le1, Le2, · · · , Len ∈ Y . Then there exist di j ∈ R, 1 ≤ i ≤ m and

1 ≤ j ≤ n such that

Le1 = d11ẽ1 + d21ẽ2 + · · · + dm1ẽm ⇝

d11
...

dm1


B̃

Le2 = d12ẽ1 + d22ẽ2 + · · · + dm2ẽm ⇝

d12
...

dm2


B̃

...

Len = d1nẽ1 + d2nẽ2 + · · · + dmnẽm ⇝

d1n
...

dmn


B̃

Then

[
L
]
BB̃
=
[
Le1 Le2 · · · Len

]
=


d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
...

dm1 dm2 · · · dmn

 .
For x = c1e1 + · · · + cnen,

[
Lx

]
B̃
=
[
L
]
BB̃

[
x
]
B
=

d11 · · · d1m
...

...
dm1 · · · dmn


c1
...

cn

 .
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Remark. For given basis B and B̃ of X and Y respectively, the space of linear maps from X to
Y is one-to-one corresponding to the space of m × n matrics.That is,

L
(
X; Y

) 1−1 corresp.←→ Mm×n(R)

Note. In our class, we use the stardard basis {e1, · · · , en} on Rn where ei =
[
0 · · · 1 · · · 0

]T
.

5.2 Definition of Derivatives and the Matrix Representation
of Derivatives

Goal: LetU ⊆ Rn be an open set, f : U → Rm and a ∈ U. To define the derivative of f at a.

Recall: Let I ⊆ R be an open interval, f : I → R and a ∈ I. We say that f is differentiable at a

if the limit lim
h→0

f (a + h) − f (a)
h

exists and denote the limit f ′(a).

Question: How about the derivative of a function on higher dimensions?

Guess: We try to find the derivative by similar way. For f : U ⊆ Rn → Rm and a ∈ U, consider

lim
h→0

f(a + h) − f(a)
h

It does not make sense since the denominator is a “vector” rather than a number . Thus, we
need a new definition of derivative.

Reconsider the meaning of f ′(a)
△y
△x
=

f (a + h) − f (a)
h

dy
dx
= lim
△x→0

△y
△x
= lim

h→0

f (a + h) − f (a)
h

= f ′(a)

means the slope of the tangent line of f at a. Then

dy = f ′(a) dx.
where

dx is the instantaneous displacement in the x-direction
dy is the instantaneous displacement in the y-direction

f ′(a) maps the vector
−→
dx to the vector

−→
dy

(= f ′(x)
−→
dx)
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Remark. f ′(a) is not only a number, but also a “map” from the vector space R to the vector
space R. This map, f ′(a), sends a vector

−→
dx to a vector

−→
dy(= f ′(a)

−→
dx). For −→v ∈ R,

f ′(a) : −→v −→ f ′(a)−→v

Check that for −→v ,−→w ∈ R and c ∈ R,

lim
h→0

f
(
a + h(cv + w)

)
− f (a)

h
= (cv + w) lim

h→0

f
(
a + h(cv + w)

)
− f (a)

h(cv + w)
= f ′(a)(cv + w).

Hence,
f ′(a)(c−→v + −→w) = c f ′(x)−→v + f ′(a)−→w

and the map f ′(a) is linear. That is, f ′(a) ∈ B
(
R;R

)
.

Example 5.2.1.
Let f (x) = x2 + 2. Then f ′(1) = 2. We can regard “2” as a map which sends every vector −→v
to 2−→v .

■ Rewrite the definition of the derivative of f at a

If the limit lim
h→0

f (a + h) − f (a)
h

exists, then

lim
h→0

f (a + h) − f (a)
h

= f ′(a)

⇐⇒ lim
h→0

f (a + h) − f (a) − f ′(a)h
h

= 0

⇐⇒ lim
|h|→0

| f (a + h) − f (a) − f ′(a)h|
|h| = 0.

The derivative f ′(a) reflects the instantaneous change of f (a + h) − f (a) satisfying

f (a + h) − f (a) ≈ f ′(a)h + error

where
|error|
|h| → 0 as h→ 0.
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Therefore, we can rephrase the definition of derivative. If there exists a map (number)
L ∈ B

(
R;R

)
(or ∈ R) which sends h to Lh such that

lim
h→0

| f (a + h) − f (a) − Lh|
|h| = 0

then we say that f is differentiable at a and denote the number L by f ′(a).

■ f : I ⊆ R −→ Rn

Look at the case f : I ⊆ R → Rn, f(t) =
(

f1(t), · · · , fn(t)
)

and a ∈ I. As we know,
f′(a) =

(
f ′1(a), · · · , f ′n(a)

)
.

Consider the case n = 2.

lim
h→0

Ä f1(a + h) − f1(a)
h

,
f2(a + h) − f2(a)

h

ä
=
(

f ′1(a), f ′2(a)
)
.

f′(a) maps the vector
−→
dt to the vector

〈
f ′1(a)dt, f ′2(a)dt

〉
.

Remark. f′(a) =
(

f ′1(a), f ′2(a)
)

is not only a vector, but also a map from the vector space R
to the vector space R2. The map

f′(a) : −→v︸︷︷︸
∈ R

−→ ⟨ f ′1(a)v, f ′2(a)v⟩︸               ︷︷               ︸
∈ R2

Check that f′(a) is linear. Hence f′(a) ∈ L
(
R,R2

)
.

■ f : U ⊆ Rn −→ R: f (x1, · · · , xn)

Consider the case n = 2. Let a = (a1, a2), e1 = ⟨1, 0⟩, e2 = ⟨0, 1⟩, h = ⟨h1, h2⟩ = h1e1 + h2e2.
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We hope to find some quantity which can reflect the rate of change of the value with
respect to the variables in every direction

(i) h = h1e1,

lim
h1→0

f (a + h1e1) − f (a)
h1

=
∂ f
∂x1

(a)⇒ f (a1 + h1, a2) − f (a1, a2) ≈ ∂ f
∂x1

(a)h1.

(ii) h = h2e2,

lim
h2→0

f (a + h2e2) − f (a)
h2

=
∂ f
∂x2

(a)⇒ f (a1, a2 + h2) − f (a1, a2) ≈ ∂ f
∂x2

(a)h2.

(iii) h = h1e1 + h2e2,

d f = f (a + h) − f (a) = f (a1 + h1, a2 + h2)
= f (a1 + h1, a2 + h2) − f (a1, a2 + h2) + f (a1, a2 + h2) − f (a1, a2)

≈ ∂ f
∂x1

(a)h1 +
∂ f
∂x2

(a)h2

= ⟨ ∂ f
∂x1

(a),
∂ f
∂x2

(a)⟩︸                 ︷︷                 ︸
=∇ f (a)

· ⟨h1, h2⟩︸    ︷︷    ︸
=h

∇ f (a) maps the vector h︸︷︷︸
∈R2

to the vector ∇ f (a) · h︸       ︷︷       ︸
∈R

Remark. ∇ f (a) = ⟨ ∂ f
∂x1

(a),
∂ f
∂x2

(a)⟩ is not only a vector, but also a map from the vector

space R2 into the vector space R. The map

∇ f (a) : v︸︷︷︸
∈ R2

−→ ∇ f (a) · v︸      ︷︷      ︸
∈ R
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We hope to find some “object” which can reflect the rate of change of the value with respect
to the variable in every direction (like the gradient of multi-variable real-valued function ∇ f ).

Definition 5.2.2. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be two normed spaces,U ⊆ X be open.

(1) A map f : U → Y is said to be differentiable at a ∈ U if there exists a bounded linear map
L ∈ B

(
X; Y

)
such that the limit

lim
x→a
x∈U

∥ f (x) − f (a) − L(x − a)∥Y
∥x − a∥X

= 0

We denote this bounded linear map D f (a) and call it the “derivative of f at a”.

(2) If f : U → Y is differentiable at every point inU, we say that f is differentiable onU.
Hence, D f : U → B

(
X; Y) is a map fromU into

Ä
B
(
X; Y

)
, ∥ · ∥B(X;Y)

ä
.

Remark. If f : U → Y is differentiable at a ∈ U, then

(1)

lim
x→a
x∈U

∥ f (x) − f (a) − D f (a)(x − a)∥Y
∥x − a∥X

= 0

or taking h = x − a,

lim
h→0

a+h∈U

∥ f (a + h) − f (a) − D f (a)h∥Y
∥h∥X

= 0

Note that “D f (a)(x − a)” or “D f (a)h” is a linear operator D f (a) applying on the vector
x − a or h, but not the product of D f (a) and x − a (or h).

(2) D f (a) ∈ B
(
X; Y) maps a vector h ∈ X to D f (a)h ∈ Y .

(3) For given ε > 0, there exists δ > 0 such that if x ∈ B(a, δ) ∩U, then

∥ f (x) − f (a) − D f (a)(x − a)∥Y < ε∥x − a∥X.

Definition 5.2.3. For a ∈ U, if there exists a bounded linear map T ∈ B
(
X;B(X; Y)

)
such that

lim
x→a
x∈U

∥D f (x) − D f (a) − T (x − a)∥B(X;Y)

∥x − a∥X

exists, we denote the linear map T by D2 f (a)

Remark.
D2 f (a) ∈ B

(
X;B(X; Y)

)
D2 f (a)(x) ∈ B

(
X; Y

)
for every x ∈ X

D2 f (a)(x)(z) ∈ Y for every z ∈ X.

o Geometric Meaning



182 CHAPTER 5. DIFFERENTIATION OF MAPS

Let f (x, y) = (x, y2, x2 + y4) : R2 → R3.

[
D f (1, 1)

]
=


∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

∂ f3
∂x

∂ f3
∂y


(x,y)=(1,1)

=

 1 0
0 2y
2x 4y3


(x,y)=(1,1)

=

1 0
0 2
2 4

 = A.

Ae1 =

1
0
2

 = 1ẽ1 + 0ẽ2 + 2ẽ3 and Ae2 =

0
2
4

.
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Example 5.2.4. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces. Then every L ∈ B
(
X; Y

)
is

differentiable on X and DL(a) = L for every x ∈ X since

lim
x→a

∥Lx − La − L(x − a)∥Y
∥x − a∥X

= 0

Example 5.2.5. Define L ∈ B
(
R;R

)
by Lx = 2x︸     ︷︷     ︸

x→2x

. Find T ∈ B
(
R;R

)
such that

lim
x→a

|2x − 2a − T (x − a)|
|x − a| = 0

For T ∈ B
(
R;R

)
, let T (1) = c. Then T x = cx for every x ∈ R. Suppose that

lim
x→a

|2x − 2a − c(x − a)|
|x − a| = 0

then c = 2 and we have T x = 2x. Hence, for f (x) = 2x, f ′(x) = 2 ∈ B
(
R;R

)
.

Example 5.2.6. Let f (x) = x3.

lim
x→a

|x3 − a3 − 3a2(x − a)|
|x − a| = 0

Then D f (a) ∈ B
(
R;R

)
defined by

D f (a)x = 3ax.

Example 5.2.7. Let f (t) = (t, t2). Find L ∈ B
(
R;R2

)
such that

lim
t→t0

∥(t, t2) − (t0, t2
0) − L(t − t0)∥R2

|t − t0|
= 0

Define [L(t0)](s) = (s, 2t0s). Then

lim
t→t0

∥(t, t2) − (t0, t2
0) − L(t − t0)∥R2

|t − t0|
= lim

t→t0

∥(t − t0, t2 − t2
0) − (t − t0, 2t0(t − t0))∥R2

|t − t0|
= 0

Theorem 5.2.8. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed space,U ⊆ X be open and f : U → Y
be differentiable at a ∈ U. Then

(
D f

)
(a) is uniquely determined by f .

Proof. Let L1, L2 ∈ B
(
X; Y

)
such that

lim
x→a
x∈U

∥ f (x) − f (a) − L1(x − a)∥Y
∥x − a∥X

= 0 = lim
x→a
x∈U

∥ f (x) − f (a) − L2(x − a)∥Y
∥x − a∥X

(5.1)

It sufficies to show that for every z ∈ X and ∥z∥X = 1, L1z = L2z.

By (5.1), given ε > 0 choose δ > 0 such that B(a, δ) ⊆ U and if x ∈ B(a, δ) then

∥ f (x) − f (a) − L1(x − a)∥Y <
ε

2
∥x − a∥X
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and
∥ f (x) − f (a) − L2(x − a)∥Y <

ε

2
∥x − a∥X.

Fix z ∈ X and ∥z∥X = 1, choose 0 < r < δ. Let x = a + rz. Then

r∥L1z − L2z∥Y = ∥L1(rz) − L2(rz)∥Y
≤ ∥ f (a + rz) − f (a) − L1(rz)∥Y + ∥ f (a + rz) − f (a) − L2(rz)∥Y
<

ε

2
∥rz∥X +

ε

2
∥rz∥X

= εr∥z∥X
= εr.

Hence, ∥L1z − L2z∥Y < ε. Since ε is arbitrary, L1z = L2z. □

From now on, we will consider the function f : U ⊆ Rn → Rm and we assume Rn ( or Rm)
is a vector space with the standard basis {e1, · · · , en} (or {ẽ1, · · · , ẽm}).
Remark. (1) f : U ⊆ Rn → Rm, a ∈ U. Rewrite f (a + h) − f (a) = D f (a)h + r(h). Then

lim
∥h∥Rn→0

∥r(h)∥Rm

∥h∥Rn
= 0

This represents that f (a + h) − f (a) ≈ D f (a)h (or f (a + h) ≈ f (a) + D(a)h) as ∥h∥Rn is
sufficiently small. This suggests that if f is differentiable at a, then f is continuous at a.

(2) The derivative of f at a, D f (a), is also called “the total derivative of f at a”, to distinguish
it from the partial derivative.

(3) For every x ∈ U, D f (x) ∈ B
(
Rn,Rm

)
and D f : U → B

(
Rn,Rm

)
is a map from U to

B
(
Rn;Rm

)
.

Definition 5.2.9. (1) LetU ⊆ Rn, f : U → R and a ∈ U. If the limit

lim
h→0

f (a + he j) − f (a)
h

exists, we call the limit “ the partial derivative of f at a in the direction e j and denote the

limit
∂ f
∂x j

(a).
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(2) Let f : U → Rm and a ∈ U. Then f = ( f1, f2, · · · , fm) =
m∑

i=1

fi(x)ẽi where {ẽ1, · · · , ẽm} is the

standard basis of Rm. We obatin fi(x) = f · ẽi. Then

∂ fi

∂x j
(a) = lim

h→0

fi(a + he j) − fi(a)
h

for 1 ≤ i ≤ m and 1 ≤ j ≤ n provided the limit exists.

Remark. We want to determine whether a function f is differentiable at a point. For a single
variable function, the existence of derivative is sufficient. But for several variables functions,
the continuity or at least boundedness of the partial derivatives is needed.

Let f : U ⊆ Rn → Rm be differentiable at a ∈ U, f = ( f1, · · · , fm).

To guess what the form of Df(a).

Since Df(a) ∈ B
(
Rn;Rm

)
, there exists A ∈ Mm×n(R) such that

Df(a)x = Ax for every x ∈ Rn.

We can wrtie
A =

[
Df(a)e1 Df(a)e2 · · · Df(a)en

]
Find Df(a)e j = v =

v1
...

vm

 ∈ Rm. By the definition of Df(a),

0 = lim
h→0

∥f(a + he j) − f(a) − Df(a)(he j)∥Rm

∥he j∥Rn
= lim

h→0

∥∥∥∥∥∥∥∥∥∥
 f1(a + he j)

...
fm(a + he j)

 −
 f1(a)

...
fm(a)

 − h

v1
...

vm


∥∥∥∥∥∥∥∥∥∥
Rm

|h| .

Hence,

lim
h→0

| fi(a + he j) − fi(a) − hvi|
|h| = 0.

We have

vi =
∂ fi

∂x j
(a) and then Df(a)e j =


∂ f1
∂x j

(a)
...

∂ fm
∂x j

(a)


Therefore,

A =


∂ f1
∂x1

(a) · · · ∂ f1
∂xn

(a)
...

...
∂ fm
∂x1

(a) · · · ∂ fm
∂xn

(a)

 = [
Df(a)

]
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or (
Df(a)

)
i j =

∂ fi

∂x j
(a) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Hence, for x =

x1
...

xn

 ∈ Rn,

Ä
Df(a)

ä
x =

[Ä
Df(a)

ä
i j

]x1
...

xn



Theorem 5.2.10. Suppose f : U ⊆ Rn → Rm is differentiable at a ∈ U. Then the partial
derivative ∂ fi

∂x j
(a) exist for i = 1, · · · ,m, j = 1, · · · , n and

Df(a)e j =

m∑
i=1

( ∂ fi

∂x j

)
(a)ẽi for 1 ≤ j ≤ n.

Proof. Fix j, since f is differentiable at a,

0 = lim
h→0

∥f(a + he j) − f(a) − Df(a)(he j)∥Rm

∥he j∥Rn
= lim

h→0

∥f(a + he j) − f(a) − hDf(a)(e j)∥Rm

|h|
= lim

h→0

∥∥∥∥∥∥∥∥∥∥
 f1(a + he j)

...
fm(a + he j)

 −
 f1(a)

...
fm(a)

 − h

v1
...

vm


∥∥∥∥∥∥∥∥∥∥
Rm

|h|


For each component of f,

lim
h→0

| fi(a + he j) − fi(a) − hD fi(a)e j|
|h| = 0.

By the definition of partial derivative,

D fi(a)e j =
∂ fi

∂x j
(a).

That is,

Df(a)e j =

D f1(a)e j
...

D fm(a)e j

 = D f1(a)e j

1
...
0

 + · · · + D fm(a)e j

0
...
1


=

m∑
i=1

∂ fi

∂x j
(a)ẽi

□
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Definition 5.2.11. LetU ⊆ Rn be open and f : U → Rm. The matrix

Jf(x) :=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

· · · ∂ fm
∂xn

 (x) =


∂ f1
∂x1

(x) · · · ∂ f1
∂xn

(x)
...

...
∂ fm
∂x1

(x) · · · ∂ fm
∂xn

(x)


is called the “Jacobian matrix of f at x”.

Remark. The Jacobian matrix of a function f might exist even if f is not differentiable.

If f is differentiable at x, then the Jacobian matrix must exist and[
Df(a)

]
= Jf(a)

Df(x) exists =⇒ Jf(x) exists and
[
Df(x)

]
= Jf(x)

��XX⇐=

Importance: In the future, we will prove some functions are differentiable at a. For
example, product rule, quotient rule, chain rule. We have to guess a linear map first. The
first and the only guess must be [Jf(a)].

For example, f (x, y) =

{ xy
x2 + y2 (x, y) , (0, 0)

0 (x, y) = (0, 0)
. Then

∂ f
∂x

(0, 0) = 0 =
∂ f
∂y

(0, 0). But f is

not continuous at (0, 0) and hence f is not differentiable at (0, 0).

Assume that f is differentiable at (0, 0). Then D f (0, 0) =
[
0 0

]
. But∣∣∣∣ f (x, y) − f (0, 0) −

[
0 0

] ïx
y

ò∣∣∣∣∣∣∣∣ïxyò∣∣∣∣ =
|xy|

(x2 + y2)1/2 9 0 along the direction x = y.

o Compute Jf(x) and Df(a)

Example 5.2.12. Let f : R2 → R3 by f (x, y) = ( x2︸︷︷︸
f1

, y2︸︷︷︸
f2

, x4y2︸︷︷︸
f3

).

J f (x, y) =


∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

∂ f3
∂x

∂ f3
∂y

 =
 2x 0

0 2y
4x3y2 2x4y

 .
Suppose that f is differentiable at (x, y), then

[
D f (x, y)

]
= J f (x, y) =

 2x 0
0 2y

4x3y2 2x4y

 .
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Check that for h =
ï
h1

h2

ò
∈ R2.

∥ f (x + h1, y + h2) − f (x, y) −
[
J f (x, y)

]
h∥R3

∥h∥R2

=

∥∥∥∥∥∥∥∥
Ä

(x + h1)2, (y + h2)2, (x + h1)4(y + h2)2
ä
− (x2, y2, x4y2) −

 2x 0
0 2y

4x3y2 2x4y

 ïh1

h2

ò∥∥∥∥∥∥∥∥
R3

∥(h1, h2)∥R2

→ 0 as (h1, h2)→ (0, 0).

Hence, f is differentiable at (x, y).
Definition 5.2.13. LetU ⊆ Rn be open and f : U → R and a ∈ U.[

Df(a)
]
=
î
∂ f
∂x1

(a) ∂ f
∂x2

(a) · · · ∂ f
∂xn

(a)
ó
=: ∇f(a)

The derivative of f at a is called the “gradient of f at a”.

5.3 Continuity of Differentiable Maps
Theorem 5.3.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces,U ⊆ X be open, and f : U → Y
be differentiable at a ∈ U. Then f is continuous at a.

Proof. Since f is differentiable at a, there exists L ∈ B
(
X; Y

)
such that

∥ f (x) − f (a) − L(x − a)∥Y
∥x − a∥X

→ 0 as ∥x − a∥X → 0.

Then for 0 < ε < 1, there exists δ1 > 0,

∥ f (x) − f (a) − L(x − a)∥Y < ε∥x − a∥X
whenever ∥x − a∥X < δ1. Choose 0 < δ < min(δ1,

ε

∥L∥B(X;Y) + 1
). If ∥x − a∥X < δ,

∥ f (x) − f (a)∥Y ≤ ∥L∥B(X;Y)∥x − a∥X + ε∥x − a∥X =
Ä
∥L∥B(X;Y) + ε

ä
∥x − a∥X < ε.

Hence, f is continuous at a. □

Remark.

f is differentiable at a =⇒ f is continuous at a.
��XX⇐=

Example 5.3.2. Let f (x, y) =

®
x3

x2+y2 if (x, y) , (0, 0)
0 if (x, y) = (0, 0)

. Then f is continuous at (0, 0) (Check).

fx(0, 0) = ∂ f
∂x (0, 0) = 1 and fy(0, 0) = ∂ f

∂y (0, 0) = 0 . Assume that f is differentiable at (0, 0),
then

[
D f (0, 0)

]
=
[
1 0

]
. But∣∣∣∣ f (x, y) − f (0, 0) −
[
1 0

] ïx
y

ò∣∣∣∣
∥(x, y)∥R2

=
|x|y2

(x2 + y2)3/2 9 0 as (x, y)→ (0, 0) along x = y.

Hence, f is not differentiable at (0, 0).
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5.4 Conditions for Differentiability
Proposition 5.4.1. Let U ⊆ Rn be open, a ∈ U and f = ( f1, · · · , fm) : U → Rm. Then f is
differentiable at a if and only if fi is differentiable at a for i = 1, · · · ,m.

Proof. (=⇒)
Since f is differentiable at a,

[
Df(a)

]
= Jf(a) and for ε > 0, there exists δ > 0 such that if

∥x − a∥Rn < δ,
∥f(a) − f(a) −

(
D(a)

)
(x − a)∥Rm < ε∥x − a∥Rn .

Let {ei}mi=1 be the standard basis of Rm. Define Li ∈ L
(
Rn;R

)
such that for h ∈ Rn,

Li(h) = eT
i

[
Df(a)

]
h.

Then Li ∈ B
(
Rn;R

)
and for ∥x − a∥Rn < δ,∣∣ fi(x) − fi(a) − Li(x − a)

∣∣ ≤ ∥f(x) − f(a) − Df(a)(x − a)∥Rm < ε∥x − a∥Rn .

Thus, fi is differentiable at a and D fi(a) = Li.

(⇐=)

Since fi is differentiable at a for i = 1, · · · , n, there exist L1, · · · , Lm ∈ B
(
Rm;R

)
and for

ε > 0, there exists δ > 0 such that if ∥x − a∥Rn < δ,∣∣ fi(x) − fi(a) − Li(x − a)
∣∣ < ε

m
∥x − a∥Rn for i = 1, · · · ,m.

Define L ∈ L
(
Rn;Rm

)
by Lx = (L1x, · · · , Lmx) for x ∈ Rn. Then L ∈ B

(
Rn;Rm

)
and if

∥x − a∥Rn < δ,

∥f(x) − f(a) − L(x − a)∥Rm ≤
m∑

i=1

∣∣ fi(x) − fi(a) − Li(x − a)
∣∣ < ε∥x − a∥Rn .

Hence, f is differentiable at a and Df(a) = L. □
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Remark. (1) For a vector-valued function defined on an open subset of Rn.

Componentwise differentiable⇐⇒ Differentiable

(2)

Jf(a) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

· · · ∂ fm
∂xn

 =
D f1(a)

...
D fm(a)

 (if f is differentiable, then D fi exists)

=
[
Le1 · · · Len

]
(if f if differentiable, then L exists.)

The proposition does not mean that if
∂ fi

∂x j
exists at a for every i, j, then f is differentiable at

a since
∂ fi

∂x j
exists for all 1 ≤ j ≤ m does not imply fi is differentiable at a.

The proposition means that f1, · · · , fm are differentiable at a if and only if f is differentiable
at a. Hence D f1, · · · ,D fm exist at a if and only if f is differentiable at a and

[
Df(a)

]
=

D f1(a)
...

D fm(a)

 ⇒ ∂ fi

∂x j
(a) exists for every 1 ≤ i ≤ m, 1 ≤ j ≤ n

��XX⇐=

Question: In what conditions on
∂ fi

∂x j
(a) (or Jf(a)), we can say f is differentiable at a?

Theorem 5.4.2. LetU ⊆ Rn be open, a ∈ U and f : U → R. If

(1) ∂ f
∂x1
, · · · , ∂ f

∂xn
exist in a neighborhood of a, and

(2) ∂ f
∂x1
, · · · , ∂ f

∂xn
are continuous at a (except possibly one of them). That is, at most one of

∂ f
∂x1
, · · · , ∂ f

∂xn
is discontinuous at a.

then f is differentiable at a.

Proof. W.L.O.G, we may assume n = 2,
∂ f
∂x1

is continuous at a (and
∂ f
∂x2

may or may not be

continuous at a).

Since
∂ f
∂x1

is continuous at a, given ε > 0, there exists δ > 0 such that if ∥x − a∥R2 < δ,

∣∣∣ ∂ f
∂x1

(x) − ∂ f
∂x1

(a)
∣∣∣ < ε

2
(5.2)

Since
∂ f
∂x1

(a) and
∂ f
∂x2

(a) exist, there are δ1, δ2 > 0 such that if |h| < δ1,

∣∣∣ f (a + he1) − f (a) − ∂ f
∂x1

(a)h
∣∣∣ < ε

2
|h|
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and if |h| < δ2, ∣∣∣ f (a + he2) − f (a) − ∂ f
∂x2

(a)h
∣∣∣ < ε

2
|h|. (5.3)

Let x = (x1, x2), a = (a1, a2) and k = x − a = (x1 − a1, x2 − a2) = (k1, k2). Consider∣∣∣ f (x) − f (a) −
î ∂ f
∂x1

(a) (x1 − a1)︸      ︷︷      ︸
k1

+
∂ f
∂x2

(a) (x2 − a2)︸      ︷︷      ︸
k2

ó∣∣∣
=

∣∣∣î f (a1 + k1, a2 + k2) − f (a1, a2 + k2) − ∂ f
∂x1

(a)k1

ó
+
î

f (a1, a2 + k2) − f (a1, a2) − ∂ f
∂x2

(a)k2

ó∣∣∣
M.V.T
=

∣∣∣î ∂ f
∂x1

(a1 + θ1, a2 + k2)k1 −
∂ f
∂x1

(a)k1

ó
+
î

f (a1, a2 + k2) − f (a1, a2) − ∂ f
∂x2

(a)k2

ó∣∣∣ (5.4)

for some θ1 ∈ (0, k1).

Choose ∥k∥R2 < min(δ, δ1, δ2). Then

(5.4) ≤
(5.2),(5.3)

ε

2
|k1| +

ε

2
|k2| < ε∥k∥R2 = ε∥x − a∥R2 .

Hence f is differentiable at a. □

Remark. If two or more of
∂ f
∂x1

, · · · , ∂ f
∂xn

are discontinuous at a, then f could be not differen-

tiable. For example, f (x, y) =

®
xy

x2+y2 (x, y) , (0, 0)
0 (x, y) = (0, 0)

. The function f is not differentiable at

(0, 0). The partial derivatives are

∂ f
∂x
=

y(y2 − x2)
(x2 + y2)2 and

∂ f
∂y
=

x(x2 − y2)
(x2 + y2)2 .

Definition 5.4.3. (1) LetU ⊆ Rn be open and f : U → Rm be differentiable onU. We say that
f is continuously differentiable onU if Df : U → B

(
Rn;Rm

)
is continuous onU.

(2) The collection of all continuously differentiable functions fromU to Rm is denoted by

C1(U;Rm) = {
f : U → Rm is differentiable

∣∣ Df : U → B
(
Rn;Rm) is continuous.

}
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(3) The collection of all bounded differentiable functions fromU to Rm is denoted by

C1
b

(
U;Rm) = {

f : U → Rm is differentiable.
∣∣ sup

x∈U
∥f(x)∥Rm + sup

x∈U
∥Df(x)∥B(Rn;Rm) < ∞

}
.

Example 5.4.4. Let f : I ⊆ R→ R. Then

Cb
(
I;R

)
=
{

f : I → R is differentiable.
∣∣ sup

x∈I
| f (x)| + sup

x∈I
| f ′(x)| < ∞

}
.

Corollary 5.4.5. LetU ⊆ Rn be open and f : U → Rm. Then f ∈ C1
(
U;Rm

)
if and only if all

∂ fi

∂x j
exist and are continuous for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. For a matrix A =
[
ai j

]
∈ Mm×n and x ∈ Rn,

∥A∥B(Rn;Rm)∥x∥Rn ≤
Ä m∑

i=1

n∑
j=1

|ai j|
ä
∥x∥Rn ≤ mn∥A∥B(Rn;Rm)∥x∥Rn

(=⇒)

Since f is differentiable on U,
∂ fi

∂x j
exist for i = 1, · · · ,m and j = 1, · · · , n (by Proposition

5.4.1). Since Df is continuous onU, for a ∈ U and for given ε > 0, there exists δ > 0 such that
if ∥x − a∥Rn < δ,

∥Df(x) − Df(a)∥B(Rn;Rm) < ε.

Then, for i = 1, · · · , n and j = 1, · · · ,m,∣∣∣ ∂ fi

∂x j
(x) − ∂ fi

∂x j
(a)

∣∣∣ ≤ ∥Df(x) − Df(a)∥B(Rn;Rm) < ε.

Therefore,
∂ fi

∂x j
is continuous at a. Since a is arbitrary inU,

∂ fi

∂x j
is continuous onU.

(⇐=)

Since all partial derivatives
∂ fi

∂x j
exist and are continuous on U, by Theorem 5.4.2, f is

differentiable on U. Since
∂ fi

∂x j
is continuous at a ∈ U, for ε > 0, there exists δ1 > 0 such that if

∥x − a∥Rn < δ1, ∣∣∣ ∂ fi

∂x j
(x) − ∂ fi

∂x j
(a)

∣∣∣ < ε

mn

for i = 1, · · · , n and j = 1, · · · ,m. Hence,

∥Df(x) − Df(a)∥B(Rn;Rm) ≤
n∑

i=1

m∑
j=1

∣∣∣ ∂ fi

∂x j
(x) − ∂ fi

∂x j
(a)

∣∣∣ < ε.
and we have Df is continuous at a.

Since a is arbitrary inU, Df is continuous onU. □
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Example 5.4.6. Let f (x) =

{
x2 sin

1
x

if x , 0

0 if x = 0
then f ′(x) =

{
2x sin

1
x
− cos

1
x

if x , 0

0 if x = 0
.

Therefore, f is differentiable, but f ′ is not continuous at 0.

Definition 5.4.7. LetU ⊆ Rn be open. We define a norm on C1
b

(
U;R

)
by

∥f∥C1
b(U;Rm) := sup

x∈U

î
∥f(x)∥Rm +

m∑
i=1

n∑
j=1

∣∣ ∂ fi

∂x j
(x)

∣∣ó.
Proposition 5.4.8.

Ä
C1

b

(
U;Rm

)
; ∥ · ∥C1

b(U;Rm)

ä
is a Banach space.

Definition 5.4.9. Let U ⊆ Rn be open, a ∈ U and f : U → R. The derivative of f is called
“the gradient of f ” and denoted by “grad f ” or “∇ f ”. That is, D f = ∇ f and D f (a) = ∇ f (a).

Definition 5.4.10. LetU ⊆ Rn be open , a ∈ U, f : U → R. Let v ∈ Rn be a unit vector. Then(
Dv f

)
(a) :=

d
dt

∣∣∣
t=0

f (a + tv) = lim
t→0

f (a + tv) − f (a)
t

is called “the directional derivative of f at a in the direction v”.

Remark. Let e j = ⟨0, · · · , 1
ith
, · · · , 0⟩. Then

∂ f
∂x j

(a) = Dej f (a) is the directional derivative of f

at a in the direction e j.

5.5 The Product Rules and Chain Rule

o Proerties of Differentiation

Theorem 5.5.1. Let U ⊆ Rn be an open set, a ∈ U, f, g : U → Rn be differentiable at a,
h : U → R be differentiable at a, α ∈ R and v ∈ Rn be a vector. Then

(1) f ± g is differentiable at a and

D(f ± g)(a) = Df(a) ± Dg(a).

(2) αf is differentiable at a and
D(αf)(a) = αDf(a).

(3) hf : U → Rm is differentiable at a and

∈ B(Rn;Rm)

D(hf)(a) v︸        ︷︷        ︸
∈Rm

= h(a)︸︷︷︸
∈R

∈ B(Rn;Rm)

Df(a) v︸        ︷︷        ︸
∈Rm

+

∈ B(Rn;R)

(Dh)(a) v︸       ︷︷       ︸
∈R

f(a)︸︷︷︸
∈Rm

.

(4) If h(a) , 0, then
f
h

: U → Rm is differentiable at a and

D
Ä f

h

ä
(a)v =

h(a)
(
Df(a)v

)
−
(
Dh

)
(a)vf(a)

h2(a)
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Proof. We only prove (3) here. Let f = ( f1, · · · , fn). Consider the Jacobian matrix of A =[
J(hf)

]
(a),

Ai j =
∂[(hf)i]
∂x j

(a) =
∂(h fi)
∂x j

(a) = h(a)
∂ fi

∂x j
(a) +

∂h
∂x j

(a) fi(a).

For v ∈ Rn, Av = h(a)Df(a)v + Dh(a)vf(a). Consider

(hf)(x) − (hf)(a) − A(x − a) = h(a)
î
f(x) − f(a) − Df(a)(x − a)

ó
(I)

+
î
h(x) − h(a) − Dh(a)(x − a)

ó
f(x)

(II)

+
î
Dh(a)(x − a)

óî
f(x) − f(a)

ó
(III)

(i) Since f is differentiable at a,

0 ≤ lim
x→a

∥(I)∥Rm

∥x − a∥Rn
≤ |h(a)| lim

x→a

∥f(x) − f(a) − Df(a)(x − a)∥Rm

∥x − a∥Rn
= 0

(ii) Since f is differentiable at a, f is continuous at a. Then there exists K > 0 such that
∥f(x)∥Rm ≤ K as x is near a.

Since h is differentiable at a,

lim
x→a

∥(II)∥Rm

∥x − a∥Rn
≤ K lim

x→a

∥h(x) − h(a) − Dh(a)(x − a)∥Rm

∥x − a∥Rn
= 0

(iii) Since Dh(a) ∈ B
(
Rn;R

)
and f is continuous at a, ∥Dh(a)∥B(Rn;R) < ∞ and lim

x→a
∥f(x) − f(a)∥Rm = 0.

Then

lim
x→a

∥(III)∥Rm

∥x − a∥Rn
≤ lim

x→a

∥Dh(a)∥B(Rn;R)∥x − a∥Rn∥f(x) − f(a)∥Rm

∥x − a∥Rn
= 0

Hence, hf is differentiable at a and D(hf)(a) = A. □

■Matrix Representation

Let f, g : U → Rm, h : U → R are differentiable on U. The matrix representation of the
derivatives of f and g are

[
Df

]
(x) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

· · · ∂ fm
∂xn

 (x),
[
Dg

]
(x) =


∂g1
∂x1

· · · ∂g1
∂xn

...
...

∂gm
∂x1

· · · ∂gm
∂xn

 (x) and
[
Dh

]
(x) =

[
∂h
∂x1
· · · ∂h

∂xn

]
(x).

Then [
D(f ± g)

]
(x) =


∂ f1
∂x1
± ∂g1

∂x1
· · · ∂ f1

∂xn
± ∂g1

∂xn
...

...
∂ fm
∂x1
± ∂gm

∂x1
· · · ∂ fm

∂xn
± ∂gm

∂xn

 (x)
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[
D(hf)

]
(x) =


∂(h f1)
∂x1

· · · ∂(h f1)
∂xn

...
...

∂(h fm)
∂x1

· · · ∂(h fm)
∂xn

 (x)

=

h∂( f1)
∂x1
+ ∂h

∂x1
f1 · · · h∂( f1)

∂xn
+ ∂h

∂xn
f1

...
...

h∂( fm)
∂x1
+ ∂h

∂x1
fm · · · h∂( fm)

∂xn
+ ∂h

∂xn
fm

 (x)

= h(x)


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

· · · ∂ fm
∂xn

 (x) +


∂h
∂x1

f1 · · · ∂h
∂xn

f1
...

...
∂h
∂x1

fm · · · ∂h
∂xn

fm

 (x)

o Chain Rule

Theorem 5.5.2. Let U ⊆ Rn be open, f : U → Rm be differentiable at a ∈ U, g : f(U) → Rℓ
be differentiable f(a). Then F = g ◦ f : U → Rℓ is differentiable at a and for a vector h ∈ Rn,[

DF(a)
]
(h)︸          ︷︷          ︸

∈ B(Rn;Rℓ)

=
[
Dg

](
f(a)

)︸          ︷︷          ︸
∈ B(Rm;Rℓ)

[
(Df)(a)h

]︸         ︷︷         ︸
∈ B(Rn;Rm)

Moreover, let f = f(x1, · · · , xn) and g = g(y1, · · · ym) thenÄ
DF(a)

ä
i j
=

m∑
k=1

∂gi

∂yk

(
f(a)

)∂ fk

∂x j
(a)

and [
(DF(a))

]
ℓ×n =

[
Dg

(
f(a)

)]
ℓ×m

[
Df(a)

]
m×n

D f (a) : Rn → Rm Dg(b) : Rm → Rℓ
v→ D f (a)v u→ Dg(b)u

DF(a) : Rn −→ Rℓ
DF(a)v = Dg(b)

(
D f (a)v

)[
DF(a)

]
=
[
Dg(b)

] [
D f (a)

]
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Proof. Let b = f(a), A = Df(a) ∈ B
(
Rn;Rm

)
and B = Dg(b) ∈ B

(
Rm;Rℓ

)
. To prove[

DF(a)
]
= BA.

Let ε > 0 be given. Since f is differentiable at a and g is differentiable at b = f(a), there
exists δ1, δ2 > 0 such that if ∥x − a∥Rn < δ1,

∥f(x) − f(a) − A(x − a)∥Rm < min
Ä

1,
ε

2∥B∥B(Rm;Rℓ) + 1

ä
∥x − a∥Rn (5.5)

and if ∥y − b∥Rm < δ2,

∥g(y) − g(b) − B(y − b)∥Rℓ < min
Ä

1 +
ε

2
[
∥A∥B(Rn;Rm) + 1

]ä∥y − b∥Rm . (5.6)

Since f is continuous at a, there exists δ3 > 0 such that if ∥x − a∥Rn < δ3, then

∥f(x) − f(a)∥Rm < δ2. (5.7)

Let h ∈ Rn such that ∥h∥Rn < min(δ1, δ3). Then

∥f(a + h) − f(a) − Ah∥Rm

(5.5)
≤ ε

2∥B∥B(Rm,Rℓ)
∥h∥Rn (5.8)

and

∥g
(
f(a + h)

)
− g

(
f(a)

)
− B

(
f(a + h) − f(a)

)
∥Rℓ

(5.6)(5.7)
≤ ε

2∥A∥B(Rn;Rm)
∥f(a + h) − f(a)∥Rm . (5.9)

Hence,

∥F(a + h) − F(a) − BAh∥Rℓ
≤ ∥F(a + h) − F(a) − B

[
f(a + h) − f(a)

]
∥Rℓ + ∥B

[
f(a + h) − f(a)

]
− BAh∥Rℓ

(5.9)
≤ ε

2
[
∥A∥B(Rn;Rm) + 1

]∥f(a + h) − f(a)∥Rm + ∥B∥B(Rm;Rℓ)∥f(a + h) − f(a) − Ah∥Rn

(5.5)
≤ ε

2
[
∥A∥B(Rn;Rm) + 1

]î∥f(a + h) − f(a) − Ah∥Rm + ∥Ah∥Rm

ó
+

ε∥B∥B(Rm;Rℓ)

2∥B∥B(Rm;Rℓ) + 1
∥h∥Rn

(5.5)
≤ ε

2
[
∥A∥B(Rn;Rm) + 1

]î∥h∥Rn + ∥A∥B(Rn;Rm)∥h∥Rn

ó
+

1
2
∥h∥Rn

≤ ε∥h∥Rn .

Therefore, F is differentiable at a and DF(a) = BA. □

Example 5.5.3. Let x = r cos θ, y = r sin θ, f (x, y) : R2 → R. Let

F(r, θ) = f (r cos θ, r sin θ) : [0,∞) × [0, 2π]→ R.

[
DF

]
(r, θ) =

ï
∂F
∂r

∂F
∂θ

ò
=

ï
∂ f
∂x

∂ f
∂y

ò∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 = ï∂ f
∂x

∂ f
∂y

ò ï
cos θ −r sin θ
sin θ r cos θ

ò
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Example 5.5.4. r : (0, 1)→ Rn, f : Rn → R. Let

F(t) = f
(
r(t)

)
: (0, 1)→ R.

Then

F′(t)
B(R;R)

= D f
(
r(t)

)
B(Rn;R)

r′(t)
B(R;Rn)

=

n∑
i=1

∂ f
∂xi

(
r(t)

)
r′i (t)

where r(t) =
(
r1(t), · · · , rn(t)

)
.

Example 5.5.5. Let f (u, v,w) = u2v + wv2, g(x, y) = (xy
u
, sin x

v
, ex

w
). Let h(x, y) = f

(
g(x, y)

)
:

R2 → R.

∂h
∂x
=

∂ f
∂u

∂u
∂x
+
∂ f
∂v

∂v
∂x
+
∂ f
∂w

∂w
∂x

= 2uv · y + (u2wv) · cos x + v2 · ex

= 2xy2 sin x + (x2y2 + 2xy sin x) cos x + ex sin2 x
∂h
∂y
= · · ·

Review:

Df(a) : Rn → Rm Dg(b) : Rm → Rℓ

v → Df(a)v u → Dg(b)u

DF(a) : Rn −→ Rℓ
DF(a)v = Dg

(
f(a)

)(
Df(a)v

)
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F = g ◦ f
F(x1, · · · , xn) = g

(
f(x1, · · · , xn)

)
.

For f = ( f1, · · · , fm), g = (g1, · · · , gℓ) and F = (F1, · · · , Fℓ), then Fi = gi ◦ f for i = 1, · · · , ℓ.

Let gi = gi(y1, · · · , ym) and yk = fk(x1, · · · , xn). We have

∂Fi

∂x j
=

m∑
k=1

∂gi

∂yk

∂yk

∂x j
=

m∑
k=1

∂gi

∂yk

∂ fk

∂x j

setting yi = fi(x1, · · · , xn).[
(DF(a))

]
ℓ×n =

[
Dg

(
f(a)

)]
ℓ×m

[
Df(a)

]
m×n


...

· · · ∂Fi(a)
∂x j

· · ·
...

 =


· · · · · ·

∂gi(b)
∂y1

· · · · · · ∂gi(b)
∂ym

· · · · · ·





∂ f1(a)
∂x j

...
...

...
...

...
...

∂ fm(a)
∂x j



5.6 Directional Derivative, Gradients, Tangent Plane and Lin-
ear Approximation

In this section, we will discuss multi-variable real-ralued function f : U ⊆ Rn → R.
Definition 5.6.1. LetU ⊆ Rn be open a ∈ U, f : U → R. Let v ∈ Rn be a unit vector. We say
that “ f has directional derivtive at a in the direction v” if the limilt

lim
t→0

f (a + tv) − f (a)
t

Ä d
dt

∣∣∣
t=0

f (a + tv)
ä

exists. Denote by Dv f (a).

Remark. Let e j = ⟨0, · · · , 1, · · · , 0⟩. De j f (a) =
∂ f
∂x j

(a) is the directional derivative of f at a in

the direction e j.

Theorem 5.6.2. Let U ⊆ Rn be open and f : U → R be differentiable at a. The directional
derivative of f at a in the direction v is

(
D f

)
(a)v. That is, Dv f (a) = D f (a)v.

Proof. Since f is differentiable at a,

lim
x→a

| f (x) − f (a) − D f (a)(x − a)|
∥x − a∥Rn

= 0.
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Let x = a + tv, ∥v∥Rn = 1. Then

lim
t→0

| f (a + tv) − f (a) − D f (a)(tv)|
∥tv∥Rn

= lim
t→0

∣∣∣ f (a + tv) − f (a)
t

− D f (a)v
∣∣∣ = 0.

Hence,

lim
t→0

f (a + tv) − f (a)
t

= D f (a)v.

□

Remark. To compute the directional derivative Dv f (a), we have to check that v is a unit vector
in advance.

Question: How about u ∈ Rn with ∥u∥Rn , 1?

Let v =
u
∥u∥Rn

, then compute D f (a)v = Dv f (a) = lim
t→0

f (a + tv) − f (a)
t

.(
D f

)
(a)u =

(
D f

)
(a)

(
∥u∥Rnv

)
= ∥u∥Rn D f (a)v

= ∥u∥Rn lim
t→0

f (a + tv) − f (a)
t

= lim
t→0

f (a + tu
∥u∥Rn

) − f (a)
t

∥u∥RnÄ
s =

t
∥u∥Rn

ä
= lim

s→0

f (a + su) − f (a)
s

Remark. LetU ⊆ Rn, f : U → R and a ∈ U.

f is differentiable at a =⇒ the directional derivatives of f at a in all directions exist.
Dv f (a) = D f (a)v

��XX⇐=

Example 5.6.3. f (x, y) =


x3

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
Let v = ⟨v1, v2⟩. Then

Dv f (0, 0) = lim
t→0

f (tv1, tv2) − f (0, 0)
t

=
v3

1

v2
1 + v2

2

.

But f is not differentiable at (0, 0). Moreover,

v3
1

v2
1 + v2

2

=
(
Dv f

)
(0, 0) , J f (0, 0)v = v1 where J f (0, 0) =

[
1 0

]
.

Remark. The existence of the directional derivative of f at a in all directions does NOT imply

that f is continuous at a. For example, f (x, y) =

{ xy
x2 + y2 if x + y2 , 0

0 if x + y2 = 0(
Dv f

)
(0, 0) = lim

t→0

f (tv1, tv2) − f (0, 0)
t

= lim
t→0

t2v1v2

t(tv1 + t2v2
2)
=

ß
v2 if v1 , 0
0 if v1 = 0

But f is not continuous at (0, 0) along x = y2.
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■ The Gradients of Functions

Definition 5.6.4. Let U ⊆ Rn be open, a ∈ U and f : U → R be differentiable at a. The row

vector of J f (a) =
ï
∂ f
∂x1

, · · · , ∂ f
∂xn

ò
is also called “the gradient of f at a” and denoted by ∇ f (a).

Therefore, if f is differentiable at a, then
[
D f (a)

]
= J f (a) =

ï
∂ f
∂x1

, · · · , ∂ f
∂xn

ò
.

Remark. Let U ⊆ Rn be open, a ∈ U and f : U → R be differentiable at a. For v ∈ Rn, the
directional derivative of f at a in the direction v is

D f (a)v = ∇ f (a) · v.
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Proposition 5.6.5. Let U ⊆ Rn be open, a ∈ U and f ∈ C1
(
U,R

)
. Then if ∇ f (a) , 0, the

vector ∇ f (a) is normal to the level set
{

x ∈ U
∣∣ f (x) = f (a)

}
.

Proof. Let r : (−δ, δ) → Rn be the curve such that r(t) ∈
{

x ∈ U
∣∣ f (x) = f (a)

}
, r(0) = a and

r′(t) , 0. Then f
(
r(t)

)
≡ f (a) for every t ∈ (−δ, δ). By the chain rule,

d
dt

Ä
f
(
r(t)

)ä
= ∇ f

(
r(t)

)
· r′(t) = 0 for every t ∈ (−δ, δ).

Then ∇ f
(
r(0)

)
· r′(0) = 0 and hence ∇ f (a) ⊥ r′(0). Since r is an arbitrary curve on the level

set passing a, ∇ f (a) is normal to the level set at a.

□

Proposition 5.6.6. Let f : U ⊆ Rn → R be differentiable at a ∈ U. Then
∇ f
∥∇ f ∥Rn

Ä
− ∇ f
∥∇ f ∥Rn

ä
is the direction in which the function increases (decreases) most rapidly.

Proof. Let v ∈ Rn be a unit vector. The directional derivative of f at a in the direction v is∣∣∣D f (a)(v)
∣∣∣ = ∣∣∣∇ f (a) · v

∣∣∣ ≤ ∥∇ f (a)∥Rn∥v∥Rn = ∥∇ f (a)∥Rn .

The equality holds if ∇ f (a) is parallel to v. (i.e. ∇ f (a) = cv for some c ∈ R). Hence, if

v =
∇ f (a)
∥∇ f (a)∥Rn

, then D f (a)v has maximum and if v = − ∇ f (a)
∥∇ f (a)∥Rn

, then D f (a)v has minimum.
□

■ Tangent Planes (Spaces) to the Graph

The directional derivative of f at a in the direction (unit vector) v is the rate of change of
f in the direction v. Choose a (continuously) differentiable curve r(t) : (−δ, δ) → U such that
r(0) = a and r′(0) = v. Then f

(
r(t)

)
is a cruve on the graph of f and

d
dt

∣∣∣
t=0

f
(
r(t)

)
= D f

(
r(0)

)
r′(0) = D f (a)v = Dv f (a) = ∇ f (a) · v

which is the slope of the tangent line to the graph of f passing (a, f (a)). For a = (a1, · · · , an)
and v = ⟨v1, · · · , vn⟩, the equation of the tangent line is

x1 = a1 + tv1
...

xn = an + tvn

xn+1 = f (a) + tD f (a)v
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Let f : U ⊆ Rn → R be (continuously) differentiable at a. The tangent plane P to the graph
of f passing

(
a, f (a)

)
is defined as the plane consisting of all tangent lines to the graph of f

passing
(
a, f (a)

)
. Hence, the equation of P is

xn+1 = f (a) + D f (a)(x − a)

or

xn+1 = f (a) + ∇ f (a) · (x − a).

Note: For n = 2, let f : U ⊆ R2 → R be differentiable at (x0, y0) ∈ U. Then the tangent
plane to the graph of f at (x0, y0, z0) is

z = z0 + ∇ f (x0, y0) · ⟨x − x0, y − y0⟩ = z0 +
∂ f (x0, y0)

∂x
(x − x0) +

∂ f (x0, y0)
∂y

(y − y0)

■ Linear Approximation

Let f : U ⊆ Rn → R be differentiable at a ∈ U. Then

lim
x→a

| f (x) − f (a) − D f (a)(x − a)|
∥x − a∥Rn

= 0.

This implies that

f (x) = f (a) + D f (a)(x − a) + o(∥x − a∥Rn) as x→ a

Define

L(x) = f (a) + D f (a)(x − a)
= f (a) + ∇ f (a) · (x − a).

Then f (x) ≈ L(x) as x is near a.

Remark. Let f : U ⊆ Rn → Rm be differentiable at a ∈ U. Then

lim
x→a

∥f(x) − f(a) − Df(a)(x − a)∥Rm

∥x − a∥Rn
= 0.

Let

L(x) = f (a) + Df(a)(x − a).

We still have

f(x) = L(x) + o(∥x − a∥Rn) as x→ a.

Heuristically, if f is differentiable at a, the behavior of f(x) − f(a) is like the one of the linear
map Df(a)(x − a) when x is near a.
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5.7 The Mean Value Theorem
Recall: If f : [a, b] → R is continuous on [a, b] and is differentiable on (a, b), then there exists
c ∈ (a, b) such that

f (b) − f (a) = f ′(c)(b − a).

Question: Is there similar result for f : U ⊆ Rn → Rm? That is, for a,b ∈ U, is there c ∈ U
such that f (b) − f (a) = D f (c)(b − a)?

Answer: No! For example, f : [0, 1]→ R2 by f (t) = (t2, t3). Then f (1) − f (0) = (1, 1).
For any s ∈ [0, 1], D f (s)v = (2sv, 3s2v) for every v ∈ R. But there exists no s ∈ [0, 1] such

that (1, 1) = D f (x)(1 − 0) = (2s, 3s2).

But we still have similar result for each component functions fi.

Theorem 5.7.1. Let U ⊆ Rn be open, f : U → Rm with f = ( f1, · · · , fm). Suppose that f is
differentiable onU and the line segment joining x and y lies inU. Then there exists c1, · · · , cn

on the segment such that

fi(y) − fi(x) =
(
D fi

)
(ci)(y − x) for i = 1, · · · ,m.

Proof. Let r : [0, 1]→ Rn such that r(t) = (1− t)x+ ty. Then fi ◦ r : [0, 1]→ R is differentiable
on [0, 1] and fi(x) = fi(r(0)) and fi(y) = fi(r(1)).

By the Mean value Theorem, there exists t0 ∈ [0, 1] such that

fi(y) − fi(x) =
d
dt
[

fi
(
r(t)

)]∣∣∣
t=t0

(1 − 0) = D fi
(
r(t0)

)
r′(t0) = D fi(ci)(y − x).

□
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Corollary 5.7.2. Let U ⊆ Rn be open and convex and f : U → Rm be differentiable on U.
Then for every x, y ∈ U, there exists c1, · · · , cm on xy such that

fi(y) − fi(x) = (D fi)(ci)(y − x).

Remark. The line segment joining x and y lies inU is necessary.

For example, let

C =
{

(x, y) ∈ R2
∣∣ x2+y2 = 1, x ≤ 0

}
∪
{

(x,±1)
∣∣ 0 ≤ x ≤ 1

}
and U be a small neighborhood of C.

For a = (1, 1) and b = (1,−1), b − a = (0,−2). Define

f (x, y) =


cos−1 x√

x2 + y2
if y > 0

π if y = 0
2π − cos−1 x√

x2 + y2
if y < 0

Thus f (1,−1) − f (1, 1) =
3π
2

. But

(
D f (x, y)

)
(0,−2)

(b−a)

=

ï −y
x2 + y2

x
x2 + y2

ò ï
0
−2

ò
= − 2x

x2 + y2 ,
3π
2

for any (x, y) ∈ U since
∣∣∣ 2x
x2 + y2

∣∣∣ ≤ 3.

Example 5.7.3. (1) Suppose that U ⊆ Rn is an open and convex set, f : U → Rm is differen-
tiable on U and Df(x) = 0 [∈ B(Rn;Rm)] for all x ∈ U. Then f is a constant function on
U.

(2) Moreover, ifU is open and connected, f :
U → Rm is differentiable and Df(x) = 0
for all x ∈ U, then f is constant onU.

Proof. (Exercise) □



5.7. THE MEAN VALUE THEOREM 205

Theorem 5.7.4. LetU ⊆ Rn be open, K ⊆ U be compact and f : U → R be of class C1. Then
for every ε > 0, there exists δ > 0 such that∣∣ f (y) − f (x) − (D f )(x)(y − x)

∣∣ ≤ ε∥y − x∥Rn

if ∥y − x∥Rn < δ and x, y ∈ K.

Proof. Define g : U ×U → R by

g(x, y) =


∣∣ f (y) − f (x) − (D f )(x)(y − x)

∣∣
∥x − y∥Rn

if y , x

0 if y = x

To check that g is continuous onU ×U.

Let x , y and (x, y) ∈ U ×U. Since f is of class C1,

lim
(z,w)→(x,y)

g(z,w) = lim
(z,w)→(x,y)

∣∣ f (w) − f (z) − (D f )(z)(w − z)
∣∣

∥w − z∥Rn
=

∣∣ f (y) − f (x) − (D f )(x)(y − x)
∣∣

∥x − y∥Rn
= g(x, y).

For x ∈ U and B(x, r) ⊆ U, consider w, z ∈ B(x, r). Then the segment wz ⊆ B(x, r). By Mean
Value Theorem, there exists ξ ∈ wz such that

f (w) − f (z) = (D f )(ξ)(w − z).

Then

lim
(w,z)→(x,x)

z,w

| f (w) − f (z) − D f (z)(w − z)|
∥w − z∥Rn

= lim
(w,z)→(x,x)

z,w

∣∣ÄD f (ξ) − D f (z)
ä

(w − z)
∣∣

∥w − z∥Rn

≤ lim
(w,z)→(x,x)

z,w

∥D f (ξ) − D f (z)∥B(Rn;R) = 0

Hence, lim
(w,z)→(x,x)

g(z,w) = 0 = g(x, x) and g is continuous at (x, x). Thus, g is continuous on

U ×U.

Since K × K ⊆ U × U is compact, g is uniformly continuous on K × K. Then for ε > 0,
there exists δ > 0 such that for every (x, x) ∈ K × K and ∥(z,w) − (x, x)∥Rn×Rn < δ,∣∣g(z,w) − g(x, y)

∣∣ < ε.
Hence, if ∥x − y∥Rn < δ, then ∥(x, y) − (x, x)∥Rn×Rn < δ. We have∣∣g(x, y) − g(x, x)︸   ︷︷   ︸

=0

∣∣ = ∣∣g(x, y)
∣∣ < ε.

□

Corollary 5.7.5. Let U ⊆ Rn be open, K ⊆ U be compact and f : U → Rm be of class C1.
Then for every ε > 0, there exists δ > 0 such that if x, y ∈ K and ∥x − y∥Rn < δ,

∥ f (y) − f (x) − (Df)(x)(y − x)∥Rn ≤ ε∥y − x∥Rn .
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5.8 The Inverse Function Theorem

Recall: Let f : (a, b) → R. The function f is invertible from (a, b) to f
(
(a, b)

)
if and only if f

is one-to-one.

Question: What is the sufficient condition such that f is one-to-one?

Observe that f ′(x) > 0 ( f ′ < 0) =⇒ f is in-
creasing (decreasing) and then f is one-to-one.

Question: In general, we cannot ask a function has this property everywhere (for exampe,
f (x) = sin x). Is there a sufficient condition for f such that f is invertible near a point?

Guess: f ′(a) , 0.

Question: Is it enough? Consider f (x) =

{
x2 sin

1
x
+

1
2

x if x , 0

0 if x = 0
Then f ′(0) =

1
2
> 0 but

f ′(x) is not continuous at 0.

Hence f is oscillatory near 0 and f is not one-
to-one in any neighborhood of 0. We may guess
f ∈ C1 is necessary. Moreover, if f : I → R is
continuously differentiable near a ∈ I, f ′(a) , 0

and f (a) = b, then
(

f −1)′(b) =
1

f ′(a)
.

Consider f : D ⊆ Rn → Rn and a ∈ D.

Question: What is the sufficient condition of f at a such that f is invertible near a?

Guess: (i) Df(a) is invertible (full rank) and (ii) f is of class C1 near a.

Heuristically, f(x) = f(a)+Df(a)(x− a)+ o
(
∥x− a∥Rn

)
as x→ a. If Df(a) is invertible, then

f(a) + Df(a)(x − a) is one-to-one. Moreover, if f is of class C1, then f is one-to-one near a.

Theorem 5.8.1. (Inverse Function Theorem) Let D ⊆ Rn be open, a ∈ D, f : D → Rn be of
class C1 and Df(a) be invertible. Then there exists an open neighborhood U of a and an open
neighborhoodV of f(a) such that

(1) f : U → V is one-to-one and onto.
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(2) The inverse function f−1 : V → U is of class C1

(3) For y ∈ V and x = f−1(y),

Df−1(y) =
Ä

Df(x)
ä−1

(4) If f is of class Cr for some r > 1, so is f−1

Proof.

Recall:

(i) (Contraction Mapping Theorem) Let (M, d) be complete and ϕ : M → M be a con-
traction mapping. That is,

d
(

f (x), f (y)
)
≤ cd(x, y) for some 0 < c < 1 and for every x, y ∈ M

Then there exists a unique fixed point x0 ∈ M. That is, x0 = f (x0).

(ii) (Secant Method)

Let ϕ(x) = x − f (x) − y
M

where M = sup | f ′(x)| + 1.
Then

• f (x0) = y if and only if x0 is a fixed point of
ϕ.

• ϕ is a contraction mapping near x0.

(iii) By Theorem 5.1.10, if A ∈ GL(n) and K ∈ B(Rn;Rn) such that

∥A − K∥B(Rn;Rn)∥A−1∥B(Rn;Rn) < 1,

then K ∈ GL(n).
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Let A = Df(a) ∈ GL(n). Then A−1 exists and A−1 ∈ GL(n) ⊆ B
(
Rn;Rn

)
. Choose λ > 0 such

that
2λ∥A−1∥B(Rn;Rn) = 1.

Since f is of class C1 and D is open, there exists δ > 0 such that B(a, δ) ⊆ D and if ∥x − a∥Rn < δ,
then

∥Df(x) − A∥B(Rn;Rn) = ∥Df(x) − Df(a)∥B(Rn;Rn) < λ.

Hence,

∥Df(x) − A∥B(Rn;Rn)∥A−1∥B(Rn;Rn) <
1
2

(5.10)

for every x ∈ B(a, δ).

Step 1: LetU = B(a, δ). Then f : U → Rn is one-to-one. (Hence, f : U → f(U) is bijective.)
Proof of Step1: To prove that for every y ∈ Rn, at most one x ∈ U such that f(x) = y. Fix
y ∈ Rn, define ϕy(x) = x − A−1

(
f(x) − y

)
. f(x) = y⇔ ϕy(x) = x Then

Dϕy(x) = Id + A−1(Df
)
(x) = A−1(A − Df(x)

)
where Id is the identity map. By (5.10),

∥Dϕy(x)∥B(Rn;Rn) ≤ ∥A−1∥B(Rn;Rn)∥A − Df(x)∥B(Rn;Rn) <
1
2
. (5.11)

Thus, if x1, x2 ∈ B(a, δ), by the mean value theorem,

∥ϕy(x1) − ϕy(x2)∥Rn ≤
î

sup
ξ∈B(a,δ)

∥Dϕy(ξ)∥B(Rn;Rn)

ó
∥x1 − x2∥Rn <

1
2
∥x1 − x2∥Rn (5.12)

Hence, ϕy has at most one fixed point in U. That is, at most one x ∈ U such that f(x) = y.
Since y is arbitrary in Rn, f is one-to-one in Rn.

Step 2: LetV = f(U). ThenV is open.

Proof of Step2: Let y0 ∈ V. There exists x0 ∈ U such that f(x0) = y0. Since U is open, there
exists r > 0 such that B(x0, r) ⊆ U.

To prove that for every z ∈ B(y0, λr), there exists w ∈ B(x0, r) such that f(w) = z. Then
B(y0, λr) ⊆ V.
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Let z ∈ B(y0, λr). To prove ϕz(x) = x − A−1
(
f(x) − z

)
is a contraction mapping on B(x0, r).

f(w) = z⇐⇒ ϕz(w) = w

(i) To prove ϕz maps from B(x0, r) into B(x0, r).
For x ∈ B(x0, r),

∥ϕz(x) − x0∥Rn ≤ ∥ϕz(x) − ϕz(x0)∥Rn + ∥ϕz(x0) − x0∥Rn

≤ sup
ξ∈U
∥Dϕz(ξ)∥B(Rn;Rn)︸                     ︷︷                     ︸

< 1
2

∥x − x0∥Rn︸        ︷︷        ︸
<r

+∥A−1(f(x0) − z
)
∥Rn

<
r
2
+ ∥A−1∥B(Rn;Rn) ∥f(x0) − z∥Rn︸           ︷︷           ︸

<λr

<
r
2
+ λ∥A−1∥B(Rn;Rn)︸             ︷︷             ︸

= 1
2

r

= r.

Thus, ϕz(x) ∈ B(x0, r) for every x ∈ B(x0, r).

(ii) By (5.12),

∥ϕz(x1) − ϕz(x2)∥Rn <
1
2
∥x1 − x2∥Rn for every x1, x2 ∈ B(x0, r)

Hence, ϕz is a contraction mapping on B(x0, r).

By the contraction mapping theorem, there exists w ∈ B(x0, r) such that ϕz(w) = w. Thus
f(w) = z. We have B(y0, λr) ⊆ V and thereforeV is open. The statement (1) is proved.

Step 3: f−1 : V → U is differentiable.
Proof of Step3: For y ∈ V, there exists x ∈ U such that f(x) = y. Since

∥Df(x) − Df(a)∥B(Rn;Rn)∥A−1∥B(Rn;Rn) < λ∥A−1∥B(Rn;Rn) =
1
2
< 1.

Then Df(x) is invertible and thus
[
Df(x)

]−1
exists.
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To prove that there exists a bounded linear map L ∈ B(Rn;Rn) such that

lim
k→0

∥f−1(y + k) − f−1(y) − Lk∥Rn

∥k∥Rn
= 0.

We geuss that L =
[
D f (x)

]−1
.

For every k ∈ Rn such that y + k ∈ V, there exists h = h(k) such that f(x + h) = y + k. Then
f(x + h) − f(x) = k. By Mean Value Theorem, for y ∈ U,

∥h − A−1k∥Rn = ∥(x + h) − x − A−1(f(x + h) − f(x)
)
∥Rn

= ∥
[
(x + h) − A−1(f(x + h) − y

)]
−
[
x − A−1(f(x) − y

)]
∥Rn

= ∥ϕy(x + h) − ϕy(x)∥Rn

(M.V.T ) ≤ 1
2
∥h∥Rn .

Then
∥h∥Rn ≤ ∥A−1k∥Rn + ∥h − A−1k∥Rn ≤ ∥A−1k∥Rn +

1
2
∥h∥Rn .

We have
∥h∥Rn ≤ 2∥A−1∥B(Rn;Rn)∥k∥Rn ≤ 1

λ
∥k∥Rn . (5.13)

Hence,

∥f−1(y + k) − f−1(y) −
(
Df(x)

)−1k∥Rn

∥k∥Rn
=
∥(x + h) − x −

(
Df(x)

)−1k∥Rn

∥k∥Rn
=
∥
(
Df(x)

)−1[Df(x)h − k
]
∥Rn

∥k∥Rn

≤ ∥
(
Df(x)

)−1∥B(Rn;Rn)
∥k − Df(x)h∥Rn

∥k∥Rn

≤ ∥
(
Df(x)

)−1∥B(Rn;Rn)︸                    ︷︷                    ︸
bounded

∥f(x + h) − f(x) − Df(x)h∥Rn

∥h∥Rn︸                                  ︷︷                                  ︸
(△)

∥h∥Rn

∥k∥Rn︸  ︷︷  ︸
bounded

.

Since h→ 0 as k→ 0, by (5.13) and f is differentiable at x, (△)→ 0 as k→ 0. Then

lim
k→0

∥f−1(y + k) − f−1(y) −
(
Df(x)

)−1k∥Rn

∥k∥Rn
= 0.

Therefore, f−1 is differentiable at y and
(
Df−1

)
(y) =

Ä
Df(x)

ä−1
. The statement (3) is proved.

Step 4: To prove the statements (2) and (4).
Proof of Step 4: Since the map g : GL(n) → GL(n) by g(L) = L−1 is infinitely many times
differentiable,(

Df−1)(y) =
(
Df(x)

)−1
= g

(
Df(x)

)
= g
Ä

Df
(
f−1(y)

)ä
=
Ä

g ◦
(
Df

)
◦ f−1
ä

(y). (5.14)

By Chain rule, let f ∈ Cr, then Df ∈ Cr−1. For k = 0, 1, · · · , r − 1 and by (5.14), if f−1 ∈ Ck then
Df−1 ∈ Ck. This implies f ∈ Ck+1. Continue this process until f−1 ∈ Cr−1. We have Df−1 ∈ Cr−1

and hence f−1 ∈ Cr. The statements (2) and (4) are proved.
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□

Remark. If f ∈ C(U;Rn) and Df(x) is invertible for every x ∈ U, then each x ∈ U has a
neighborhood in which f is one-to-one. Hence, f is locally one-to-one in U, but f need not be
globally one-to-one inU.

Example 5.8.2. Let f : R2 → R2 given by f (x, y) = (ex cos y, ex sin y). Then

[
D f (x, y)

]
=

ï
ex cos y −ex sin y
ex sin y ex cos y

ò
det

[
D f (x, y)

]
= J f (x, y) = e2x , 0. But f is not globally one-to-one.

Remark. Let f : U ⊆ Rn → Rn and Df(a) is invertible and f is of class Cr near a. By the
Inverse Function Theorem, there exists open neighborhoodsU of a andV of f(a) such that

f : U → V is one-to-one and onto and f−1 is of class Cr.

Hence, for every y ∈ V, there exists a unique x ∈ U such that f(x) = y. That is, we can solve y
in terms of x. Similarly, we can also solve x in terms of y.

Remark. Let f : U ⊆ Rn → Rn, Df(x0) ∈ B
(
Rn;Rn

)
is invertible if and only if det

[
Df(x0)

]
, 0.

For f = ( f1, · · · , fn) and x = (x1, · · · , xn), the determinant of the Jacobian matrix of f at x0 is

called “the Jacobian of f at x0” and denoted by “Jf(x0)” or “
∂( f1, · · · , fn)
∂(x1, · · · , xn)

(x0)”. The value

|Jf(x0)| is the volume of the parallel hexahedrom generated by the column vector of the Jaco-
bian matrix.

Example 5.8.3. Let

 u(x, y) =
x4 + y4

x
v(x, y) = sin x + cos y

The equation says that u and v are expressed in

terms of x and y. Find the points (x, y) where we can solve for x, y in terms of u, v.

Proof. Let f (x, y) = (u, v) =
Ä x4 + y4

x
, sin x + cos y

ä
: R2 → R2. Then

∂(u, v)
∂(x, y)

=

∣∣∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

3x4 − y4

x2

4y3

x
cos x − sin y

∣∣∣∣∣∣ = sin y
x2 (y4 − 3x4) − 4y3

x
cos x.

Hence for those (x, y) such that x , 0 and
sin y

x2 (y4 − 3x4) − 4y3

x
cos x , 0, x, y can be solved in

terms of u, v.
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For example (x0, y0) = (
π

2
,
π

2
),
∂(u, v)
∂(x, y)

∣∣∣
(x0,y0)=( π2 ,

π
2 )
, 0. We can solve x, y in terms of u, v. That

is, near (
π

2
,
π

2
), x = x(u, v), y = y(u, v) and (x, y) = f −1(u, v). Moreover, we can find

∂x
∂u

,
∂x
∂v

,
∂y
∂u

and
∂y
∂v

at f (
π

2
,
π

2
). Consider

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 = [
D f −1(u, v)

]
(u,v)= f ( π2 ,

π
2 ) =

[
D f (x, y)

]−1
(x,y)=( π2 ,

π
2 ) .

[
D f (x, y)

]
=


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 =
3x4 − y4

x2

4y3

x
cos x − sin y



[
D f (x, y)

]−1
=

1
|J f |

 ∂v
∂y

−∂u
∂y

−∂v
∂x

∂u
∂x

 = 1
sin y
x2 (y4 − 3x4) − 4y3

x cos x

− sin y −4y3

x
− cos x 3x4−y

x


Taking (x, y) = (

π

2
,
π

2
), then

∂x
∂u
=

2
π2 , · · · . □

o Applications for Inverse Function Theorem

(I) (Change of Variables)

For example, let g(s, t) : D → R Find the maximum of g on D. We define h(x, y) =
g
(

f (x, y)
)

: K → R. Hence, we consider the extreme problem for h on K.

(II) (Geometric Application)
A surface S ⊆ R3 is locally a graph of a function define on an open subsetV ⊆ R2.

S =
{

(x, y, z)
∣∣ x = x(u, v), y = y(u, v), z = z(u, v)

}
.
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S is parametrized by two variables. It is reasonable to think z as a function of x, y (or

y as a function of x, z; or x as a function of y, z) locally. If that
∂(x, y)
∂(u, v)

, 0, by Inverse

Function Theorem, there exists a one-to-one correspondence between the variables (u, v)
and (x, y) locally. Hence, u = u(x, y) and v = v(x, y). We have

S =
{Ä

x, y, z
(
u(x, y), v(x, y)

)ä}
.

(III) (PDE Applications)
Consider the wave equation u(t, x1, x2, x3) where x = (x1, x2, x3) satisfies

∂2u
∂t2 (x) +

3∑
i j=1

ai j(x)
∂2u
∂xi∂x j

(x) = 0 (5.15)

which is defined on S 2 ⊆ R3.

Define v(t, x1, x2, x3) = u(t, ϕ1(x), ϕ2(x), ϕ3(x)). Then we can convert the wave equation
(5.15) into

∂2v
∂t2 (x) =

3∑
i j=1

bi j(x)
∂2v

∂xi∂x j
(x) = 0

(IV) (Others) Lagrange Multipliers, etc

o Open Mappings

Definition 5.8.4. Let X and Y be two metric spaces and f : X → Y , x0 ∈ X.

(1) We say that f is an “open mapping” if for every open setU ⊆ X, f (U) is open in Y .

(2) We say that f is a “local open mapping at x0” if there exists an open neighborhoodU of x0

such that f (U) is open in Y .

Remark. If f −1 is continuous, then f is an open mapping.

Corollary 5.8.5. (1) If f ∈ C1
(
U;Rn

)
and Df(x) is invertible for every x ∈ U, then f(W) is an

open subset of Rn for every open setW ⊆ U. That is, f is an open mapping ofU into Rn.

(2) If f ∈ C1
(
U;Rn

)
and Df(x0) is invertible, then f is a local open mapping at x0.
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5.9 The Implicit Function Theorem
Recall: (Implicit Differentiation) Consider

x2y + xy5 = 2

Find
dy
dx

at (1, 1). Differentiating the both sides with respect to x,

2xy + x2 dy
dx
+ y5 + 5xy4 dy

dx
= 0

Then
dy
dx

∣∣∣
(x,y)=(1,1)

=
−(2xy + y5)
x2 + 5xy4

∣∣∣
(x,y)=(1,1)

− 1
2
.

Similarly, we can compute
dx
dy

∣∣∣
(x,y)=(1,1)

= −2.

As x and y satisfy the equation x2y + xy5 = 2, we can regard y as a function of x, or x as a
function of y.

Question: For a function f : Rn × Rm → Rℓ, suppose that (x, y) ∈ Rn × Rm satisfies f(x, y) = 0.
Can we express y as a function in x? That is, y = y(x) such that

F
(
x, y(x)

)
= 0.

Let f : Rn × Rm → Rm. Denote
∈ Rn+m

z = (
∈ Rn

x ,
∈ Rm

y ).

There must be some w ∈ Range(f) such that the level set
{

(x, y) ∈ Rn+m
∣∣ f(x, y) = w

}
(the preimage of w under f) contains infinitely many points. Heuristically, it is a n-dimensional
(geometric) object.

Question: (Geometry) Is the level set a geometric surface? How smooth is it?
(Analysis) Can we express y as a function of x such that preimage of w under f is the graph of
y(x)?
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Example 5.9.1. Consider the equation

x2y + xy5 = 2.

Let f (x, y) = x2y + xy5. Then f maps from R × R to R and the point (1, 1) is on the level set
with f (x, y) = 2. We may think whether the level set is locally a graph of function y = y(x) or
x = x(y).
Heuristically, the level set is a 1 dimension curve. It is supposed to be expressed by a single
variable.

Example 5.9.2. For example, let f (x, y) = xy : R1+1 → R. Then f (1, 1) = 1 and the preimagle

f −1(1) =
{

(x, y) ∈ R2
∣∣ xy = 1

}
=
{(

x, y(x)
)
∈ R2

∣∣ y(x) =
1
x
}
.

Hence, the preimage of 1 under f containing (1, 1) is the

graph of y(x) =
1
x

and f
(

x, y(x)
)
= 1.

Example 5.9.3. Let f (u, v
R2

,w
R

) = u2 + v2 + w2 with f (1, 0, 0) = 1. Then

the preimage (level set) of 1 under f is the sphere

S =
{

(u, v,w) ∈ R3
∣∣ u2 + v2 + w2 = 1

}
=

{
(u, v,w) ∈ R3

∣∣ f (u, v,w) = 1
}

Question: Is there a function w = w(u, v) (locally) such that
(
u, v,w(u, v)

)
⊆ S ?

Answer: No!, Clearly, by vertical line test, the surface is not a graph of a single function
w = w(u, v) near (1, 0, 0).
Question: What’s happen at (1, 0, 0)?

Let g(w) = f (1, 0,w) = 1 + w2 : R → R.
g′(0) = 0 and g has a local extreme value at
1. Hence, the graph of g will go forward and
backward. Also, g′(0) = fw(1, 0, 0) = 0.

In general, f(x, y) : Rn × Rm → Rm. For (x0, y0) ∈ Rn × Rm. Consider the level set S ={
(x, y) ∈ Rn × Rm

∣∣ f(x, y) = f(x0, y0)
}

.
Suppose that there exists no function y = y(x) such that S = the graph of y(x) near (x0, y0).

What’s happen?
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Let g(y) = f(x0, y) : Rm → Rm. If m = 1, there
exists a local minimum of g at y0. If m > 1, the
space

{
(x0, y)

}
will be tangent to the level set S

at (x0, y0). Since any curve r(t) on S
g is not invertible near y = y0, then
Dyf(x0, y0) = Dg(y0) is not invertible.

■ Linear Maps

Let L ∈ B
(
Rn+m;Rm

)
. We can split L into two linear maps Lx ∈ B

(
Rn;Rm

)
and Ly ∈

B
(
Rm;Rm

)
by

Lxh = L( h
∈Rn
, 0m
∈Rm

) and Lyk = L(0n
∈Rn
, k
∈Rm

)

where h ∈ Rn, k ∈ Rm and (h,k) ∈ Rn+m. Hence,

L(h,k) = L(h, 0m) + L(0n,k) = Lxh + Lyk

Write [
L
]

m×(n+m) =
[
Lx
∣∣Ly

]
m×n m×m

=

 a11 · · · a1n
...

...
am1 · · · amn

b11 · · · b1m
...

...
bm1 · · · bmm


Lx Ly

If rank(L) = m, then the dimensions of Ker(L) = n. That is, the level set of 0m under L has
dimension n. Also, Ker(L) is the graph of a function of variable x. In other words, there exists
a function k : Rn → Rm such that Ker(L) =

{(
h,k(h)

) ∣∣ h ∈ Rn
}

.

Theorem 5.9.4. If L ∈ B
(
Rn+m;Rm

)
and Ly is invertible, then there corresponds to every h ∈ Rn

a unique k ∈ Rm such that L(h,k) = 0m. (That is, k = k(h) is a function of h). Moreover, k can
be computed from h by

k = −
(
Ly
)−1Lxh.
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Proof. Since L(h,k) = Lxh + Lyk, we have

L(h,k) = 0m if and only if Lxh + Lyk = 0m.

Thus, if L(h,k) = 0m and Ly is invertible, then k = −L−1
y Lxh. □

Moreover, if L(x0, y0) = w0, then the preimage of w0 is L−1(w0) = (x0, y0) + Ker(L) is also
the graph of a function of variable x. In other words, there exists a function g : Rn → Rm such
that the preimage of w0 under L is L−1(w0) =

{(
x, g(x)

) ∣∣ x ∈ Rn
}

.
On the other hands, if rank(L) < m, then L−1(w0) has dimension greater than n and it must

not be a graph of a function of variable x. That is, for L(x0, y0) = w0, there exists y1 ∈ Rm and
y0 , y1 such that L(x0, y0) = L(x0, y1). Thus,

Lxx0 + Lyy0 = L(x0, y0) = L(x0, y1) = Lxx0 + Lyy1.

Therefore,
Lyy0 = Lyy1.

We have Ly : Rm → Rm is not invertible. This implies the m × m matrixb11 · · · b1m
...

...
bm1 · · · bmm


is not invertible.

Notation: Let F : Rn+m → Rm where F = (F1, · · · , Fm), x = (x1, · · · , xn) and y = (y1, · · · , , ym).
Denote

[
DF

]
=


∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fm

∂x1
· · · ∂Fm

∂xn

∂F1

∂y1
· · · ∂F1

∂ym
...

...
∂Fm

∂y1
· · · ∂Fm

∂ym


DxF DyF
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Theorem 5.9.5. (Implicit Function Theorem) Let D ⊆ Rn × Rm be open and F : D → Rm be a
function of class Cr, r ∈ N. Suppose that F(x0, y0) = 0m for some (x0, y0) ∈ D and

[
DyF(x0, y0)

]
=


∂F1

∂y1
· · · ∂F1

∂ym
...

...
∂Fm

∂y1
· · · ∂Fm

∂ym

 (x0, y0)

is invertible. Then there exists an open neighborhood U ⊆ Rn of x0, an open neighborhood
V ⊆ Rm of y0 and f : U → V such that

(1) F
(
x, f(x)

)
= 0m for every x ∈ U.

(2) y0 = f(x0).

(3) Df(x) = −
[
DyF

(
x, f(x)

)]−1[DxF
(
x, f(x)

)]
for every x ∈ U where

[(
DxF

)
(x, y)

]
=


∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fm

∂x1
· · · ∂Fm

∂xn

 (x, y)

(4) f is of class Cr

Proof. Denote z = (x, y) and w = (u, v) where x,u ∈ Rn and y, v ∈ Rm. Define G(x, y) =(
x,F(x, y)

)
. Then G : Rn+m → Rn+m and[

DG(x, y)
]
=

ï
In 0n×m

DxF(x, y) DyF(x, y)

ò
where In is the n× n identity matrix. Since the matrix

[
DyF(x0, y0)

]
is invertible and F ∈ Cr, the

matrix
[
DG(x0, y0)

]
is invertible, G ∈ Cr.

By the Inverse Function Theorem, there are an open neighborhood O of (x0, y0) and an open
neighborhoodW of

(
x0,F(x0, y0)

)
= (x0, 0m) such that
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(i) G : O →W is one-to-one and onto.

(ii) the inverse function G−1 :W→ O is of class Cr.

(iii) DG−1
(
x,F(x, y)

)
=
(
DG(x, y)

)−1 for every (x, y) ∈ O.

Choose an open neighborhoodU of x0 and an open neighborhoodV of y0 such that

(a) (x, 0m) ∈ W for every x ∈ U;

(b) U ×V ⊆ O;

(c) G−1(x, 0m) ∈ U ×V for every x ∈ U.
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Hence, if x ∈ U, then (x, 0m) = G(x, y) =
(
x,F(x, y)

)
for some y ∈ V since O G→ W is

bijective. Then F(x, y) = 0m for this y.

So far, we have shown that for every x ∈ U, there exists y ∈ V such that F(x, y) = 0m.
Now, we will show that y is the unique point inV such that F(x, y) = 0m and hence x → y
is a function.

With the same x, suppose that there exists y′ ∈ V such that F(x, y′) = 0m. Then

G(x, y′) =
(
x,F(x, y′)

)
= (x, 0m) =

(
x,F(x, y)

)
= G(x, y)

Since G is one-to-one, y = y′ and hence we can define f : U → V such that F
(
x, f(x)

)
= 0m.

Moreover, due to G is one-to-one, G(x0, y0) = (x0, 0m) = G
(
x0, f(x0)

)
. Then f(x0) = y0.

Thanks to
(
x, f(x)

)
= G−1(x, 0m)

(∗)

and G−1 is of class Cr, f is of class Cr. The statement (4)

is proved.

For (u, v) = G(x, y), since DG−1(u, v) =
Ä

DG(x, y)
ä−1

,

[
DG(x, y)

]−1
=

ï
In 0n×m

DxF(x, y) DyF(x, y)

ò−1

=

 In 0n×m

−
Ä

DyF(x, y)
ä−1(

DxF(x, y)
) (

DyF(x, y)
)−1


By (∗),

Let H(x) =
(
x, f(x)

)
: Rn → Rn+m. Then

[
DH(x)

]
=

ï
In

Df(x)

ò
=
[
DxG−1(x, 0m)

]

Note that G−1(x, 0m) = (x, f(x)). Thus,

Df(x) =
î
DyF

(
x, f(x)

)ó−1[
DxF

(
x, f(x)

)]
. (5.16)

Check (5.16).

Consider F : D ⊆ Rn+m → Rm, DF(x, y) ∈ B
(
Rn+m;Rn

)
. Let (h,k) ∈ Rn+m be a vector.(

DF(x, y)
)
(h,k) = DxF(x, y)h + DyF(x, y)k (5.17)

Define Φ(x) =
(
x, f(x)

)
: U ⊆ Rn → Rn+m. Then

DΦ(x) =
(
Id,Df(x)

)
∈ B

(
Rn;Rn+m).
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For h ∈ Rn,
DΦ(x)h = (h,Df(x)h) ∈ Rn+m. (5.18)

Since F
(
Φ(x)

)
≡ 0m (U ⊆ Rn → Rm), by the chain rule,

B
(
Rn;Rm) ∋ 0 = D

Ä
F
(
Φ(x)

)ä
= DF

(
Φ(x)

)
B(Rn+m;Rm)

DΦ(x)
B(Rn;Rn+m)

For every h ∈ Rn,

0m = D
Ä

F
(
Φ(x)

)ä
h = DF

(
Φ(x)

)
DΦ(x)h

(5.18)
= DF

(
Φ(x)

)(
h,Df(x)h

)
(5.17)
= DxF

(
Φ(x)

)
h + DyF

(
Φ(x)

)
Df(x)h

Then
−DxF

(
Φ(x)

)
h = DyF

(
Φ(x)

)
Df(x)h.

Thus,
Df(x)h = −

Ä
DyF

(
Φ(x)

)ä−1
DxF

(
Φ(x)

)
h.

We have
Df(x) = −

Ä
DyF

(
Φ(x)

)ä−1
DxF

(
Φ(x)

)
.

Moreover, consider Φ(x) =
(
x, f(x)

)
and F : D ⊆ Rn+m → Rm. Then

[
DΦ(x)

]
=

ï
In

Df(x)

ò
(n+m)×n

and
[
DF(x)

]
=
î

DxF
m×n

DyF
m×m

ó
m×(n+m)î

D
Ä

F
(
Φ(x)

)äó
=

[
DF

(
Φ(x)

)] [
DΦ(x)

]
=
[
DxF

(
Φ(x)

)
DyF

(
Φ(x)

)] ï In

Df(x)

ò
=

[
DxF

(
Φ(x)

)
+ DyF

(
Φ(x)

)
Df(x)

]
m×n =

[
0
]

m×n

Therefore,
DxF

(
Φ(x)

)
+ DyF

(
Φ(x)

)
Df(x) = 0m

□

Remark. (1) In the Implicit Function Theorem, we can generally write the value 0m as F(x0, y0).
Then the statement (1) is changed by F

(
x, f(x)

)
= F(x0, y0) for every x ∈ U.

(2) In the Implicit Function Theorem, F : D ⊆ Rn+m → Rm. The variables x ∈ Rn and y ∈ Rm

are only notations. We only concern the hypothesis DyF(x0, y0) is invertible.
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For example, if F(x1, x2, x3, x4, x5) : R5 → R2 is a C1 mapping where F = (F1, F2). Suppose
that ∂F1

∂x2

∂F1

∂x5
∂F2

∂x2

∂F2

∂x5

 (x0
1, x

0
2, x

0
3, x

0
4, x

0
5)

is invertible. Then x = (x1, x3, x4) and y = (x2, x5) as well as x0 = (x0
1, x

0
3, x

0
4) and

y0 = (x0
2, x

0
5).

By the Implicit Function Theorem, there exist an open neighborhood U of x0, an open
neighborhoodV of y0 and a C1 mapping f : U → V such that F

(
x, f(x)

)
= F(x0, y0).

For example, f (u, v,w) = u2 + v2 + w2 and
[
D f

]
=

ï
∂ f
∂u

∂ f
∂v

∂ f
∂w

ò
=
[
2u 2v 2w

]
.

At (0, 1, 0),
∂ f
∂v
= 2 , 0. Then y = v and x = (u,w) as well as x0 = (0, 0) and y0 = 1. By

the Implicit Function Theorem, there exist an open neighborhood U of x0, an open neigh-
borhoodV of y0 and a function g : U → V such that f

(
u, g(u,w),w

)
= 1.

Geometrically, the sphere

S =
{

(u, v,w)
∣∣ u2 + v2 + w2 = 1

}
can be expressed as the graph of the function
g(u,w) near the point (0, 1, 0).

Example 5.9.6. Let F(x, y) = x2 + y2 − 1.

(i) At (1, 0), DxF(1, 0) = 2 , 0. By the implicit function theorem, near (1, 0), x = x(y) such
that F

(
x(y), y

)
= 0.

(ii) At (0,−1), DyF(0,−1) = −2 , 0. By the implicit function theorem, near (0,−1), y = y(x)
such that F

(
x, y(x)

)
= 0.

(iii) At (−1
2
,

√
3

2
), DxF(−1

2 ,
√

3
2 ) = −1 , 0 and DyF(−1

2 ,
√

3
2 ) =

√
3 , 0. By the implicit func-

tion theorem, x can be expressed as a function of y, say x = x(y) such that F
(

x(y), y
)
= 0.

Similary, y can be expressed as a function of x, say y = y(x) such that F
(

x, y(x)
)
= 0.
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To find
dy
dx

,
dy
dx
= −

(
DyF(x, y)

)−1(DxF(x, y)
)
= −2y

2x

∣∣∣
(x,y)=(x0,y0)

(i) (differentiation of single variable function) F(x, y) = 0 ⇔ x2 + y2 = 1. Then

d
dx

(x2 + y2) = 2x + 2y
dy
dx
= 0.

We have
dy
dx
= −2y

2x
.

(ii) (partial derivative of two variables function) F
(

x, y(x)
)
= 0. Then

d
dx

Ä
F
(

x, y(x)
)ä
= Fx + Fy ·

dy
dx
= 0.

Then
dy
dx
= −

Fy

Fx
= −2y

2x
.

Example 5.9.7. Consider the equationß
xu + yv2 = 0
xv3 + y2u6 = 0 near (x0, y0, u0, v0) = (1,−1, 1,−1). (5.19)

Let F(x, y, u, v) = (xu + yv2

F1

, xv3 + y2u6

F2

). Then

[
Dx,yF

]
(1,−1,1,−1) =


∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y


(1,−1,1,−1)

=

ï
u v2

v3 2yu6

ò
(1,−1,1,−1)

=

ï
1 1
−1 2

ò
is invertible.

By the implicit function theorem, to satisfy the equation (5.19), (x, y) can be expressed as a
function of (u, v), say x = g1(u, v), y = g2(u, v) near (1,−1) such that

F
(

x(u, v), y(u, v), u, v
)
= F(1,−1, 1,−1) = (0, 0)

Let (x, y) = g(u, v) =
(
g1(u, v), g2(u, v)

)
. Then

Dg(u, v) = −
[
Dx,yF(x, y, u, v)

]−1 [Du,vF(x, y, u, v)
]
.
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Example 5.9.8. Consider the equation f(x, y, z) = (xey + yez

f1(x,y,z)

, xez + zey

f2(x,y,z)

) : R3 → R2 near (−1, 1, 1).

[
Dy,zf

]
(−1,1,1) =


∂ f1

∂y
∂ f1

∂z

∂ f2

∂y
∂ f2

∂z


(−1,1,1)

=

ï
xey + ez yez

zey xez + ey

ò
(−1,1,1)

=

ï
0 e
e 0

ò
is invertible.

By the implicit function theorem, to satisfy f (x, y, z) = f (−1, 1, 1), y, z can be expressed as a
function of x, say y = g1(x), z = g2(x) such that f

(
x, y(x), z(x)

)
= f (−1, 1, 1) near −1.

Let g(x) = (y, z) =
(
g1(x), g2(x)

)
. Then

[
Dg(x)

]
= −

[
Dy,zf(x, y, z)

]−1 [Dxf(x, y, z)
]
= −
ï

xey + ez yez

zey xez + ey

ò−1 ïey

ez

ò
Example 5.9.9. Let f : R2+3 → R2 where f = ( f1, f2) is given by

f1(x1, x2, y1, y2, y3) = 2ex1 + x2y1 − 4y2 + 3
f2(x1, x2, y1, y2, y3) = x2 cos x1 − 6x1 + 2y1 − y3

Let x0 = (0, 1) and y0 = (3, 2, 7). Then f(x0, y0) = 0. Consider

[
Df(x0, y0)

]
=

ï
2 3 1 −4 0
−6 1 2 0 −1

ò
We have [

Dxf(x0, y0)
]
=

ï
2 3
−6 1

ò
and

[
Dyf(x0, y0)

]
=

ï
1 −4 0
2 0 −1

ò
.

Then,
[
Dxf(x0, y0)

]
is invertible. By the Implicit Function Theorem, there exist an open neigh-

borhoodV of (0, 1), an open neighborhoodU of (3, 2, 7) and a C1-mapping g = (g1, g2) : U →
V such that

f
(
g(y), y

)
= 0.

Moreover,

[
Dg(3, 2, 7)

]
=


∂g1

∂y1

∂g1

∂y2

∂g1

∂y3

∂g2

∂y1

∂g2

∂y2

∂g2

∂y3

 (3, 2, 7) =
[
Dxf(x0, y0)

]−1 [Dyf(x0, y0)
]

=
1
20

ï
1 −3
6 2

ò ï
1 −4 0
2 0 −1

ò
=

1
20

ï
−5 −4 3
10 −24 −2

ò
o Prove the Inverse Function Theorem by using the Implicit Function Theorem
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■ Implicit Function Theorem

Let F : D →⊆ Rn+m → Rm is of class C1. Denote z = ( x
∈Rn
, y
∈Rm

). If DyF(x0, y0)

is invertible and F(x0, y0) = 0m, then there exist open neighborhoods U ⊆ Rn of x0 and
V ⊆ Rm of y0 and f : U → V such that

(1) F
(
x, f(x)

)
= 0m for every x ∈ U.

(2) f(x0) = y0

(3) Df(x) =
Ä

DyF
(
x, f(x)

)ä−1Ä
DxF

(
x, f(x)

)ä
(4) if F is of class Cr, then so is f.

■ Inverse Function Theorem

Let f : D →⊆ Rn → Rm is of class C1, f(a) = b, Df(a) is invertible, then there exist
open neighborhoodsU ⊆ D of a andV ⊆ f(D) of b such that

(a) f : U → V is ono-to-one and onto.

(b) f−1 : V → U is of class C1.

(c) Df−1(y) =
Ä

Df(x)
ä−1

for every y ∈ V and y = f(x)

(d) if f is of class Cr, so is f−1.

■ Sketch the proof of the Inverse Function Theorem by using Implicit Function Theorem

(1) Let F(x, y) : D × Rn → Rn be given by F(x, y) = f(x) − y. Then F ∈ C1, F(a,b) = 0n and
DyF(a,b) is invertible.

(2) By the Implicit Function Theorem, ther exist open nbighborhoods O1 ⊆ D of a andW1 ∈
Rn of b and g : U →W such that g : U → V such that (1)-(4) hold. [Note thatU andV
is not given. Also, f : U → V is not one-to-one and onto.]
Hence

F
(
x, g(x)

)
= 0n for every x ∈ O1

⇐⇒ f(x) − g(x) = 0n for every x ∈ O1

⇐⇒ f = g on O1.
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(3) Since Df(a) is invertible, DxF(a,b) is invertible. By the Implicit Function Theorem, there
exists open neighborhoodsW2 of b and O2 of a and h :W2 → O2 such that (1)-(4) hold.

F
(
h(y), y

)
= 0n for every y ∈ W2 ⇐⇒ f

(
h(y)

)
= y for every y ∈ W2.

(i) There exists O1 of a,W1 of b , g : O1 →W1

such that F
(
x, g(x)

)
= 0n for every x ∈ O1.

Thus, f = g.

(ii) There existsW2 of b, O2 of a, h :W2 → O2

such that F
(
h(y), y

)
= 0n for every y ∈ W2.

Thus, f
(
h(y)

)
= y for every y ∈ W2.

LetU = O1 ∩ O2 andV =W1 ∩W2. To prove

(i) f : U → V is well-defined, one-to-one and onto.

(ii) h = f−1 onV.

(iii) Dh(y) =
Ä

Df(x)
ä−1

for every y ∈ V and y = f(x).

(iv) if f ∈ Cr, then h is Cr.

Proof of (i): For x ∈ U, there exists y ∈ W2 such that x = h(y). Then

y = f
(
h(y)

)
= f(x) ∈ W1.

Hence,
f(x) = y ∈ W1 ∩W2 = V.

We have f : U → V is well-defined.

If x1, x2 ∈ U such that f(x1) = f(x2), then there exists y1, y2 ∈ W2 such that y(y1) = x1 and
h(y2) = x2. Then

y1 = f
(
h(y1)

)
= f(x1) = f(x2) = f

(
h(y2)

)
= y2.

Hence,
x1 = h(y1) = h(y2) = x2.
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We have f is ono-to-one.

If y ∈ V =W1 ∩W2, then h(y) ∈ O2 and f
(
h(y)

)
= y.

5.10 Higher Derivatives
LetU ⊆ Rn and f : U → Rm be differentiable onU. Suppose that Df(x) exists for every x ∈ U.
Then Df is a map fromU into B

(
Rn;Rm

)
. We may ask whether this map is differentiable.

Definition 5.10.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed space,U ⊆ X be open and a ∈ U. A
function f : U → Y is said to be “twice differentiable at a” if

(1) f is differentiable in a neighborhood at a.

(2) there exists L2 ∈ B
(
X;B(X; Y)

)
such that

lim
x→a

∥D f (x) − D f (a) − L2(x − a)∥B(X;Y)

∥x − a∥X
= 0

or
lim
h→0

∥D f (a + h) − D f (a) − L2h∥B(X;Y)

∥h∥X
= 0.

The linear map, L2, is denoted by “D2 f (a)” and is called “the second derivative of f at a”.

Remark. For every u, v ∈ X,
(
D2 f (a)

)
∈B(X;B(X;Y))

(v) ∈ B(X; Y) and
[(

D2 f (a)
)
(v)

]
∈B(X;Y)

(u) ∈ Y .

D2 f (a)(v)(u) is usually denoted by D2 f (a)(u, v).
Definition 5.10.2. In general, a function is said to be “k-times differentiable at a ∈ U” if

(1) f is (k − 1) times differentiable in a neighborhood of a.

(2) there exists Lk ∈ B(X;B(X;B(X, · · · B(X; Y))) · · ·
k times

) such that

lim
x→a

∥Dk−1 f (x) − Dk−1 f (a) − Lk(x − a)∥B(X;B(X;B(X,···B(X;Y)))··· )

∥x − a∥X
= 0

or

lim
h→0

∥Dk−1 f (a + h) − Dk−1 f (a) − Lkh∥B(X;B(X;B(X,···B(X;Y)))··· )

∥h∥X
= 0.

The linear map Lk is denoted by Dk f (a) and is called “the k-th derivative of f at a”.

Remark. For any k vectors u(1), · · · ,u(k) ∈ X,

Dk f (a)(u(k)) ∈ B(
k−1

X;B(X;B(X; · · · B(X;B(X; Y)) · · · )) )

Dk f (a)(u(k))(u(k−1)) ∈ B(
k−2

X;B(X;B(X; · · · B(X;B(X; Y)) · · · ) )
...

Dk f (a)(u(k))(u(k−1)) · · · (u(1)) ∈ Y



228 CHAPTER 5. DIFFERENTIATION OF MAPS

Dk f (a)(u(k))(u(k−1)) · · · (u(1)) is usually denoted by Dk f (a)(u(1), · · · ,u(k)).

Example 5.10.3. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces and L ∈ B(X; Y). Then for any
a ∈ X, DL(a) = L. Hence,

lim
h→0
h∈X

∥DL(a + h) − DL(a) − 0h∥B(X;Y)

∥h∥X
= lim

h→0
h∈X

∥L − L∥B(X;Y)

∥h∥X
= 0

Hence, D2L(a) = 0.

Note. In order to find a representation of D2 f (a), let us look at the following two observations

Remark. Let f : U ⊆ X → Y be twice differentiable at a ∈ U. Consider the “directional
derivative” of D f at a in the direction v ∈ X. Let x = a + tv with ∥v∥X = 1.

lim
t→0

∥D f (a + tv) − D f (a) − tD2 f (a)(v)∥B(X;Y)

∥tv∥X
= 0.

Hence, for u ∈ X with ∥u∥X = 1,

lim
t→0

∥D f (a + tv)(u) − D f (a)(u) − tD2 f (a)(v)(u)∥Y
∥tv∥X

= lim
t→0

∥
Ä

D f (a + tv) − D f (a) − tD2 f (a)(v)
ä

(u)∥Y
|t|

≤ lim
t→0

∥D f (a + tv) − D f (a) − tD2 f (a)(v)∥B(X;Y)

|t|
= 0

Since

D f (a + tv)(u) − D f (a)(u) = lim
s→0

î f (a + tv + su) − f (a + tv)
s

− f (a + su) − f (a)
s

ó
,

we have

D2 f (a)(v)(u) = lim
t→0

lim
s→0

f (a + tv + su) − f (a + tv) − f (a + su) + f (a)
st

= lim
t→0

lim
s→0

f (a+tv+su)− f (a+tv)
s − f (a+su)− f (a)

s

t

= lim
t→0

1
t

Ä
lim
s→0

f (a + tv + su) − f (a + tv)
s

− f (a + su) − f (a)
s

ä
= lim

t→0

Du f (a + tv) − Du f (a)
t

= Dv
(
Du f

)
(a).

Proposition 5.10.4. Let U ⊆ Rn be open, a ∈ U and f = ( f1, · · · , fm) : U → Rm. Then f is
k-times differentiable at a if and only if fi is k-times differentiable at a for all i = 1, · · · ,m.

Proof. (Exercise) by induction. □
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Note. The proposition suggests that, in order to study the differentiation of f = ( f1, · · · , fm) :
U ⊆ Rn → Rm, it sufficies to study the differentiation of fi : U ⊆ Rn → R since

Dkf(a)(u1, · · · ,uk) =
Ä

Dk f1(a)(u1, · · · ,uk), · · · ,Dk fm(a)(u1, · · · ,uk)
ä

Another viewpoint: By Theorem 5.6.2, let u and v be vectors in X with ∥u∥X = ∥v|X = 1.

D2f(a)(v) = Dv(Df)(a)
D2f(a)(v)(u) =

Ä
D2f(a)(v)

ä
(u) =

Ä
Dv

(
Df

)
(a)
ä

(u)

For f : X → Y , Df(a)反映 f 各方向的瞬間改變率，Duf(a) = Df(a)u反映 f 在 a點沿 u
方向的瞬間改變率 (量)(since ∥u∥X = 1). Dv

(
Df

)
(a)反映 Df 在 a點沿 v方向上的瞬間

改變率，亦在考量 f 在 a點沿各方向上改變量的比率。因此考慮 Df(a)u為 f 在 a點
沿 u方向上 f 的改變量。此改變量隨 a點變化而改變。
Dv

(
Duf

)
(a)為上述改變中 v方向上的改變量

Therefore, D2f(a)(v)(u) is obtained by first differentiating f in the u-direction and then
differentiating Duf at a in the v-direction.
Similarly,

(
Dkf

)
(a)(uk) · · · (u1) is obtained by first differentiating f at a in the u1-direction.

Then continuing similar procedure, Duk−1(Duk−2(Duk−3(· · ·Du1f)))(a) in the uk-direction.

Remark. (1) The second derivative D2f(a) ∈ B(X;B(X; Y)) is a linear map. Then, for v1, v2 ∈
X and c ∈ R,

D2f(cv1 + v2) = cD2f(a)(v1) + D2f(a)(v2) ∈ B(X; Y).

For u ∈ X,
D2f(a)

(
cv1 + v2

)
(u) = cD2f(a)

(
v1
)
(u) + D2f

(
v2
)
(u) ∈ Y.

Also, for every v ∈ X, since D2f(a)(v) ∈ B(X; Y) is a linear map, for u1,u2 ∈ X,

D2f(a)(v)(cu1 + u2) = cD2f(a)(v)(u1) + D2f(a)(v)(u2).

Hence, D2f(a)(u, v) = D2f(a)(v)(u) is linear in both u and v. We call a map with this
property a “bilinear map”.

(2) Similarly, Dkf(a)(u1, · · · ,uk) is linear in u1, · · · ,uk. A map with this property is called
“k-linear map”.
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■Matrix Representatioin of D2f(a)

This remark suggests that, in order to define D2f(a) clearly, it suffices to define D2f(a) on
the basis pair (ei, e j) where 1 ≤ i, j ≤ n.

Let X be a finite dimension with dim X = n and {e1, · · · , en} be a basis of X and Y = R. Then
D2 f (a) : X × X → Y is a bilinear form.

Let u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen. Then

D2 f (a)(u, v) = D2 f (a)
Ä n∑

i=1

uiei,

n∑
j=1

v je j

ä
=

n∑
i=1

n∑
j=1

uiv jD2 f (a)(ei, e j)

=
[
u1 · · · · · · un

]


D2 f (a)(e1, e1) · · · · · · D2 f (a)(e1, en)
...

...
...

...
D2 f (a)(en, e1) · · · · · · D2 f (a)(en, en)




v1
...
...

vn



=
[
v1 · · · · · · vn

]


D2 f (a)(e1, e1) · · · · · · D2 f (a)(en, e1)
...

...
...

...
D2 f (a)(e1, en) · · · · · · D2 f (a)(en, en)




u1
...
...

un



=
[
v1 · · · · · · vn

]


∂2 f
∂x2

1

· · · · · · ∂2 f
∂x1∂xn

...
...

...
...

∂2 f
∂xn∂x1

· · · · · · ∂2 f
∂x2

n




u1
...
...

un



Example 5.10.5. Let f : R2 → R be twice differentiable at (a, b).

[
D f (x, y)

]
=

ï
∂ f
∂x

(x, y)
∂ f
∂y

(x, y)
ò
=
[

fx(x, y) fy(x, y)
]

Denote L2 = D2 f (a, b) ∈ B(R2;B(R2;R)). Then

0 = lim
(x,y)→(a,b)

∥∥∥D f (x, y) − D f (a, b) − L2
(

x − a, y − b
)∥∥∥B(R2;R)

∥(x − a, y − b)∥R2

= lim
(x,y)→(a,b)

∥∥∥ [ fx(x, y) fy(x, y)
]
−
[

fx(a, b) fy(a, b)
]
− L2

(
x − a, y − b

)∥∥∥B(R2;R)√
(x − a)2 + (y − b)2

= lim
(x,y)→(a,b)

∥∥∥ [ fx(x, y) − fx(a, b) fy(x, y) − fy(a, b)
]
− L2

(
x − a, y − b

)∥∥∥B(R2;R)√
(x − a)2 + (y − b)2

.
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Let (x, b)→ (a, b) and
[
L2e1

]
=
[
a11 a12

]
∈ B(R2;R). Then

0 = lim
x→a

∥∥∥ [ fx(x, b) − fx(a, b) fy(x, b) − fy(a, b)
]
− (x − a)

[
L2e1

] ∥∥∥B(R2;R)

|x − a|

⇐⇒ 0 = lim
x→a

| fx(x, b) − fx(a, b) − (x − a)a11|
|x − a| and 0 = lim

x→a

| fy(x, b) − fy(a, b) − (x − a)a12|
|x − a|

⇐⇒ a11 = fxx(a, b) and a12 = fyx(a, b)
⇐⇒

[
L2e1

]
=
[

fxx(a, b) fyx(a, b)
]
.

Similarly, let (a, y)→ (a, b), then[
L2e2

]
=
[

fxy(a, b) fyy(a, b)
]
.

Hence, for v = v1e1 + v2e2,[
L2v

]
= v1

[
L2e1

]
+ v2

[
L2e2

]
= v1

[
fxx(a, b) fyx(a, b)

]
+ v2

[
fxy(a, b) fyy(a, b)

]
(symbolically) =

[ fxx(a, b) fyx(a, b)
] [

fxy(a, b) fyy(a, b)
] ïv1

v2

ò
=

[
L2
] ïv1

v2

ò
.

Let u = u1e1 + u2e2. Then

L2(u, v) = L2(v)(u) =
[
L2v

] ïu1

u2

ò
= v1

[
L2e1

] ïu1

u2

ò
+ v2

[
L2e2

] ïu1

u2

ò
= v1

[
fxx(a, b) fyx(a, b)

] ïu1

u2

ò
+ v2

[
fxy(a, b) fyy(a, b)

] ïu1

u2

ò
=

Å[
v1 v2

] ï fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

òã ï
u1

u2

ò
=

Åï
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

ò ï
v1

v2

òãT ïu1

u2

ò
Hence, ï

D2 f (a, b)(e1, e1) D2 f (a, b)(e1, e2)
D2 f (a, b)(e2, e1) D2 f (a, b)(e2, e2)

ò
=

ï
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

ò
Note: The above matrix is an informal expression asï

D2 f (a, b)(e1, e1) D2 f (a, b)(e1, e2)
D2 f (a, b)(e2, e1) D2 f (a, b)(e2, e2)

ò
=
[
D2 f (a, b)e1 D2 f (a, b)e2

]
.
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It applies v =
ï
v1

v2

ò
by

[
D2 f (a, b)e1 D2 f (a, b)e2

] ïv1

v2

ò
∈ B(R2;R).

However, we usually express it as

[
v1 v2

] ïD2 f (a, b)e1

D2 f (a, b)e2

ò
=
[
v1 v2

] ïD2 f (a, b)(e1, e1) D2 f (a, b)(e2, e1)
D2 f (a, b)(e1, e2) D2 f (a, b)(e2, e2)

ò
Viewpoint of Identification :

We identify B(R2;R) as R2 (That is, B(R2;R) ⋍ R2). Then

D f : U ⊆ R2 → B(R2;R)
⋍ U ⊆ R2 → R2

Define

g(x, y) =
ï

fx(x, y)
fy(x, y)

ò
=
[
D f

]T
: U ⊆ R2 → R.

Dg(x, y) =
ï

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

ò
Hence,

D2 f (a, b) ∈ B(R2;B(R2;R))

xy 1-1 correspondenceï
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

ò
such that for u =

ï
u1

u2

ò
, v =

ï
v1

v2

ò
,

D2 f (a, b)(u, v) = D2 f (a, b)(v)(u)

=
[
v1 v2

] ï fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

ò ï
u1

u2

ò
=

[
v1 v2

] 
∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂y∂x

∂2 f
∂y2

 ïu1

u2

ò
=

∂2 f
∂x2 v1u1 +

∂2 f
∂y∂x

v2u1 +
∂2 f
∂x∂y

v1u2 +
∂2 f
∂y2 v2u2

=

2∑
i, j=1

∂2 f
∂xi∂x j

viu j
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Note. 在這裡
[
Dg(x, y)

]
為 Hessian matrix or

[
D f (x, y)

]
的轉置矩陣，原因是上述的分

析是以右乘的方式
[
D2 f (x, y)

] ïv1

v2

ò
作用上 v向量。而未來實際操作上，我們以左乘

方式
[
v1 v2

] [
D2 f (x, y)

]T
表達作用上 v之後的 linear map。

Question: How about k-times derivative on Rn?

Proposition 5.10.6. Let U ⊆ Rn be open and f : U → R. Suppose that f is k-times differen-
tiable at a ∈ U. Then for k vector u(1), · · · ,u(k) ∈ Rn,

Dk f (a)
(
u(1), · · · ,u(k)) = n∑

j1,··· jk=1

∂k f (a)
∂x jk∂x jk−1 , · · · , ∂x j1

u(1)
j1
· · · u(k)

jk

=

n∑
j1,··· jk=1

∂

∂x jk

Ä ∂

∂x jk−1

(
· · · ∂

∂x j2
(
∂ f
∂x j1

)
)ä

(a)u(1)
j1
· · · u(k)

jk

where u(i) = (u(i)
1 , · · · , u

(i)
n ) for all i = 1, · · · , k.

Proof. Let {e1, · · · , en} be the standard basis of Rn. Since Dk f (a) is a k-linear map, it suffices to
show that

Dk f (a)(e jk)(e jk−1) · · · (e j2)(e j1) = Dk f (a)(e j1 · · · , e jk) =
∂k f

∂x jk · · · ∂x j1
(a). (5.20)

If so,

Dk f (a)
(
u(1), · · · u(k)) = Dk f (a)

Ä n∑
j1=1

u(1)
j1

e j1 , · · · ,
n∑

jk=1

u(k)
jk

e jk

ä
=

n∑
j1=1

n∑
j2=1

· · ·
n∑

jk=1

Dk f (a)
(
e j1 , · · · , e jk

)
u(1)

j1
· · · u(k)

jk

When k = 1,

D f (a)e j =

ï
∂ f
∂x1

(a) · · · ∂ f
∂xn

(a)
ò

0
...
1
...
0

 =
∂ f
∂x j

(a) for j = 1, · · · , n.

Therefore, the proposition holds when k = 1. Assume that (5.20) holds when k = ℓ. That is, f
is (ℓ − 1)-times differentiable in a neighborhood of a and f is ℓ-times differentiable at a.

Suppose that f is (ℓ + 1)-times differentiable at a and f is ℓ-times differentiable in a neigh-
borhood of a. We will prove that (5.20) holds when k = ℓ + 1. Then

lim
x→a

∥Dℓ f (x) − Dℓ f (a) − Dℓ+1 f (a)(x − a)∥B(Rn;···B(Rn;R)··· )

∥x − a∥Rn
= 0 (5.21)
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and

Dℓ f (x)
(
e j1 , · · · , e jℓ

)
=

∂ℓ f
∂x jℓ · · · ∂x j1

(x) (5.22)

for every x in a neighborhood of a. Hence,

lim
x→a

∣∣∣ ∂ℓ f
∂x j1 · · · ∂x jℓ

(x) − ∂ℓ f
∂x j1 · · · ∂x jℓ

(a) − Dℓ+1 f (a)
(
e j1 , · · · , e jℓ , x − a

)∣∣∣
∥x − a∥Rn

(5.22)
= lim

x→a

∣∣∣Dℓ f (x)
(
e j1 , · · · , e jℓ

)
− Dℓ f (a)

(
e j1 , · · · , e jℓ

)
− Dℓ+1 f (a)(x − a)

(
e j1 , · · · , e jℓ

)∣∣∣
∥x − a∥Rn

= lim
x→a

∣∣∣îDℓ f (x) − Dℓ f (a) − Dℓ+1 f (a)(x − a)
ó(

e j1 , · · · , e jℓ

)∣∣∣
∥x − a∥R

≤ lim
x→a

∥∥∥Dℓ f (x) − Dℓ f (a) − Dℓ+1 f (a)(x − a)
∥∥∥B(Rn;···B(Rn;R)··· )∥e j1∥Rn · · · ∥e jℓ∥Rn

∥x − a∥Rn

= 0.

Let x = a + te jℓ+1 . Then

lim
t→0

∣∣∣ ∂ℓ f
∂x jℓ · · · ∂x j1

(a + te jℓ+1) −
∂ℓ f

∂x jℓ · · · ∂x j1
(a) − tDℓ+1 f (a)(e j1 , · · · , e jℓ+1)

∣∣∣
|t| = 0.

Thus,

lim
t→0

∣∣∣∣∣∣∣∣∣
∂ℓ f

∂x jℓ · · · ∂x j1
(a + te jℓ+1) −

∂ℓ f
∂x jℓ · · · ∂x j1

(a)

t
− Dℓ+1 f (a)(e j1 , · · · , e jℓ+1)

∣∣∣∣∣∣∣∣∣ = 0.

We have

Dℓ+1 f (a)(e j1 , · · · , e jℓ+1) =
∂ℓ+1 f

∂x jℓ+1 · · · ∂x j1
(a).

□

Example 5.10.7. Let f (x, y) : R2 → R, then D3 f (a) ∈ B
Ä
R2;B

(
R2;B(R2;R)

)ä
. Let u =

(u1, u2), v = (v1, v2) and w = (w1,w2) be vectors in R2. Then

D3 f (a)(u, v,w) =
∂3 f (a)
∂x∂x∂x

u1v1w1 +
∂3 f (a)
∂y∂x∂x

u1v1w2 +
∂3 f (a)
∂x∂y∂x

u1v2w1

+
∂3 f (a)
∂y∂y∂x

u2v2w1 +
∂3 f (a)
∂x∂x∂y

u1v1w2 +
∂3 f (a)
∂y∂x∂y

u2v1w2

+
∂3 f (a)
∂x∂y∂y

u1v2w2 +
∂3 f (a)
∂y∂y∂y

u2v2w2.
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Example 5.10.8. Let f (x, y, z) : R3 → R. Then D2 f (a) ∈ B
(
R3;B(R3;R)

)
. Let u = (u1, u2, u3)

and v = (v1, v2, v3) be two vectors in R2. Then

D2 f (a)(u, v) = D2 f (a)(v)(u)

=
∂2 f (a)
∂x∂x

u1v1 +
∂2 f (a)
∂x∂y

u1v2 +
∂2 f (a)
∂x∂z

u1v3

+
∂2 f (a)
∂y∂x

u2v1 +
∂2 f (a)
∂y∂y

u2v2 +
∂2 f (a)
∂y∂z

u2v3

+
∂2 f (a)
∂z∂x

u3v1 +
∂2 f (a)
∂z∂y

u3v2 +
∂2 f (a)
∂z∂z

u3v3.

Example 5.10.9. Let f : R2 → R be given by f (x1, x2) = x1 cos x2 and u(1) = ⟨2, 0⟩, u(2) =

⟨1, 1⟩, u(3) = ⟨0,−1⟩..

D3 f (0, 0)
(
u(1),u(2),u(3)) = ∂3 f (0, 0)

∂x1∂x1∂x1
������:0
u(1)

1 u(2)
1 u(3)

1 +
∂3 f (0, 0)
∂x1∂x1∂x2

u(1)
1 u(2)

1 u(3)
2

+
∂3 f (0, 0)
∂x1∂x2∂x1

������:0
u(1)

1 u(2)
2 u(3)

1 +
∂3 f (0, 0)
∂x1∂x2∂x2

u(1)
1 u(2)

2 u(3)
2

+
∂3 f (0, 0)
∂x2∂x1∂x1

������:0
u(1)

2 u(2)
1 u(3)

1 +
∂3 f (0, 0)
∂x2∂x1∂x2

������:0
u(1)

2 u(2)
1 u(3)

2

+
∂3 f (0, 0)
∂x2∂x2∂x1

������:0
u(1)

2 u(2)
2 u(3)

1 +
∂3 f (0, 0)
∂x2∂x2∂x2

������:0
u(1)

2 u(2)
2 u(3)

2

= [−2 sin x2](0,0) · 2 · 1 · (−1) − [2x1 cos x2](0,0) · 1 · 1 · (−1)
= 0

Corollary 5.10.10. Let U ⊆ Rn be open and f : U → R be (k + 1)-times differentiable at
a ∈ U. Then for u(1), · · · ,u(k),u(k+1) ∈ Rn,(

Dk+1 f
)
(a)

(
u(1), · · · ,u(k+1)) = n∑

j=1

u(k+1)
j

∂

∂x j

∣∣∣
x=a

(
Dk f

)
(x)

(
u(1), · · · ,u(k)).

That is,
(
Dk+1 f

)
(a)

(
u(1), · · · ,uk+1

)
is the directional derivative of Dk f (·)

(
u(1), · · · ,uk+1

)
at

a in the direction u(k+1) by multiplying ∥u(k+1)∥Rn .

Proof.(
Dk+1 f

)
(a)

(
u(1), · · · ,uk+1) = n∑

j1,··· , jk+1=1

∂k+1 f
∂x jk+1 · · · ∂x j1

(a)u(1)
j1
· · · u(k+1)

jk+1

=

n∑
jk+1=1

u(k+1)
jk+1

Ä n∑
j1,··· , jk=1

∂k+1 f
∂x jk+1 · · · ∂x j1

(a)u(1)
j1
· · · u(k)

jk

ä
=

n∑
jk+1=1

u(k+1)
jk+1

∂

∂x jk+1

∣∣∣∣
x=a

Ä n∑
j1,··· , jk=1

∂k f
∂x jk · · · ∂x j1

(a)u(1)
j1
· · · u(k)

jk

ä
Dk f (a)

(
u(1),··· ,u(k)

)
.

□



236 CHAPTER 5. DIFFERENTIATION OF MAPS

Example 5.10.11. Let f : R2 → R be twice differentiable at a = (a1, a2) ∈ R2. Then for
u = (u1, u2), v = (v1, v2) ∈ R2,

D2 f (a)(v)(u) = D2 f (a)(u, v) =
∂2 f
∂x2

1

(a)u1v1 +
∂2 f

∂x2∂x1
(a)u1v2 +

∂2 f
∂x1∂x2

(a)u2v1 +
∂2 f
∂x2

2

(a)u2v2

=
[
v1 v2

] 
∂2 f
∂x2

1

(a)
∂2 f

∂x1∂x2
(a)

∂2 f
∂x2∂x1

(a)
∂2 f
∂x2

2

(a)


u1

u2


Definition 5.10.12. In general, if f : Rn → R be twice differentiable at a and v = ⟨v1, · · · , vn⟩,
u = ⟨u1, · · · , un⟩ be vectors in Rn, then

D2 f (a)(v)(u) = D2 f (a)(u, v) =
[
v1 · · · vn

]


∂2 f
∂x2

1

(a) · · · ∂2 f
∂x1∂xn

(a)

...
...

∂2 f
∂xn∂x1

(a) · · · ∂2 f
∂x2

n
(a)




u1
...
...

un



We call this n × n matrix


∂2 f
∂x2

1

(a) · · · ∂2 f
∂x1∂xn

(a)

...
...

∂2 f
∂xn∂x1

(a) · · · ∂2 f
∂x2

n
(a)

 “Hessian matrix of f ” and denote

H( f )(a) or H f (a).

The bilinear form B : Rn × Rn → R given by

B(u, v) =
(
D2 f

)
(a)(v)(u) for every u, v ∈ Rn

is called the “Hessian of f ”.

Remark. (1) If all second partial derivatives of f at a exist, then the Hessian matrix of f is
defined even if f is not twice differentiable at a.

(2) The Hessian matrix may not be symmetric
(
D2 f (u, v) , D2 f (v,u)

)
.

(3) If all second partial derivatives of f are continuous at a, then f is twice differentiable at a
and the Hessian matrix is symmetric.

(4)

D2 f (a) exists =⇒ ∂2 f
∂xi∂x j

(a) exists for every i, j = 1, · · · , n =⇒ H f (a) exists

��XX⇐=

∂2 f
∂xi∂x j

are continuous ⇐⇒ D2 f (a) exists and are continuous

=⇒ H f (a) is symmetric.
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For example, f (x, y) =


xy(x2 − y2)

x2 + y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
then fxy(0, 0) = −1 and fyx(0, 0) = 1.

Definition 5.10.13. (1) A function is said to be “of class Cr if the first r derivatives exist and
are continuous.

(2) A function is said to be “smooth” or “of class C∞” if it is of class Cr for all positive integer
r.

Theorem 5.10.14. Let U ⊆ Rn be open and f : U → R. Suppose that all k-times partial

derivatives
∂k f

∂x jk · · · ∂x j1
exist in a neighborhood of a ∈ U and are continuous at a. Then f is

k-times differentiable at a. Moreover, if
∂k f

∂x jk · · · ∂x j1
is continuous onU, then f is of class Ck.

Theorem 5.10.15. Let U ⊆ Rn be open and f : U → R. Suppose that the mixed partial

derivatives
∂ f
∂xi

,
∂ f
∂x j

,
∂2 f
∂xi∂x j

,
∂2 f
∂x j∂xi

exist in a neighborhood of a and are continuous at a. Then

∂2 f
∂xi∂x j

(a) =
∂2 f
∂x j∂xi

(a).

Proof. W.L.O.G, it suffices to show the case n = 2 and

∂2 f
∂x1∂x2

(a) =
∂2 f

∂x2∂x1
(a).

Let S (a, h, k) = f (a + he1 + ke2) − f (a + he1) − f (a + ke2) + f (a).

Define ϕ(x) = f (x + he1) − f (x) and ψ(x) = f (x + ke2) −
f (x). Then

S (a, h, k) = ϕ(a + ke2) − ϕ(a) = ψ(a + he1) − ψ(a).

By the Mean Value Theorem, there exist c = a + θ2ke2

and d = a + θ1he1 such that

S (a, h, k) = ϕ(a + ke2) − ϕ(a) = k
∂ϕ

∂x2
(c) = k

( ∂ f
∂x2

(c + he1) − ∂ f
∂x2

(c)
)

= ψ(a + he1) − ψ(a) = h
∂ψ

∂x1
(d) = h

( ∂ f
∂x1

(d + ke2) − ∂ f
∂x1

(d)
)
.

Hence, if h, k , 0,

1
k

Ä ∂ f
∂x1

(d + ke2) − ∂ f
∂x1

(d)
ä
=

S (a, h, k)
hk

=
1
h

Ä ∂ f
∂x2

(c + he1) − ∂ f
∂x1

(c)
ä

By the Mean Value Theorem, there exists c1 ∈ c(c + he1) and d1 ∈ d(d + ke2) such that

∂2 f
∂x2∂x1

(d1) =
∂2 f

∂x1∂x2
(c1)
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Since
∂2 f

∂x2∂x1
(x) and

∂2 f
∂x1∂x2

(x) are continuous at a, then d1 → a and c1 → a as h, k → 0 and

thus
∂2 f

∂x1∂x2
(a) =

∂2 f
∂x2∂x1

(a).

□

Corollary 5.10.16. LetU ⊆ R be open and f is of class C2. Then

D2 f (a)(u, v) = D2 f (a)(v,u)

for a ∈ U and u, v ∈ Rn.

Remark. If f : U → R is of class C2 and a ∈ U, the Hessian of f at a is the bilinear form
H f (a) : Rn × Rn → R given by

H f (a)(u, v) = D2 f (a)(u, v) for every u, v ∈ R

Since f ∈ C2, H f (a)(u, v) = D2 f (a)(u, v) = D2 f (a)(v,u) = H f (a)(v,u). The Hessian matrix

[
H f (a)

]
=


∂2 f
∂x2

1

· · · ∂2 f
∂x1∂xn

...
...

∂2 f
∂xn∂x1

· · · ∂2 f
∂x2

n

 (a) is a symmetric matrix

and [
u
]T [H f (a)

] [
v
]
= H f (a)(v,u) = H f (a)(u, v) =

[
v
]T [H f (a)

] [
u
]

5.11 Taylor Theorem

Review: Let f : (a, b)→ R, ∈ Ck+1 and c ∈ (a, b). For x ∈ (a, b), there exists ξ ∈ (a, b) and ξ is
between c and x such that

f (x) =
k∑

j=0

f ( j)(c)
j!

(x − c) j +
f (k+1)(ξ)
(k + 1)!

(x − c)k+1.

Question: Is there a similar result for higher dimensional cases?

Question: For f : U ⊆ Rn → R, f ∈ Ck+1, can we apply 1-dimensional result to higher dimen-
sional cases?

Theorem 5.11.1. Let U ⊆ Rn be open and f : U → R be of class Ck+1. Let x, a ∈ U and the
line segment xa ⊆ U. Then there exists a point c on xa such that

f (x) = f (a) +
k∑

j=1

1
j!

D j f (a)
(

x − a, · · · , x − a
j−copies

)
+

1
(k + 1)!

Dk+1 f (c)
(

x − a, · · · , x − a
(k+1)−copies

)
.
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Proof. Let r(t) : [0, 1]→ U be given by r(t) = (1 − t)a + tx. Hence, r(0) = a and r(1) = x and
r ∈ C∞. Define g(t) = f

(
r(t)

)
. Then g : [0, 1]→ R be of class Ck+1. By the Taylor theorem (for

single variable fucnions), there exists t0 ∈ (0, 1) such that

g(1) = g(0) +
k∑

j=1

g( j)(0)
j!

(1 − 0) j +
g(k+1)(t0)
(k + 1)!

(1 − 0)k+1. (5.23)

By the chain rule,

g′(t) = D f
(
r(t)

)
r′(t) =

[
D f

(
r(t)

)]
(x − a) =

n∑
i=1

∂ f
(
r(t)

)
∂xi

(xi − ai)

g′′(t) =
n∑

i j=1

∂2 f
(
r(t)

)
∂x j∂xi

(xi − ai)(x j − a j) = D2 f
(
r(t)

)(
x − a, x − a

)
.

By the induction,
g(i)(t) = D(i) f

(
r(t)

)(
x − a, · · · , x − a

)
.

By (5.23), let c = r(t0),

f (x) = f (a) +
k∑

j=1

1
j!

D j f (a)
(

x − a, · · · , x − a
j−copies

)
+

1
(k + 1)!

Dk+1 f (c)
(

x − a, · · · , x − a
(k+1)−copies

)
.

□

Definition 5.11.2. LetU ⊆ R be open and f : U → R be of class Ck+1. We call
k∑

j=0

1
j!

D j f (a)
(
x − a, · · · , x − a

)
“the kth degree Taylor polynomial for f centered at a.

Corollary 5.11.3. LetU ⊆ Rn be open and f : U → R be of class Ck+1, and define

Rk,a(x) = f (x) −
k∑

j=0

1
j!

D j f (a)
(
x − a, · · · , x − a

)
.

Then lim
x→a

Rk,a(x)
∥x − a∥kRn

= 0. We usually write Rk,a(x) = o
(
∥x − a∥kRn

)
as x→ a.

Example 5.11.4. Let f (x, y) = sin(x + y2). Find the third degree Taylor polynomial for f
centered at (0, 0).

Proof.

f (x, y) = f (0, 0) +
3∑

j=1

1
j!

D j f (0, 0)
Ä
⟨(x, y) − (0, 0)⟩, ⟨(x, y) − (0, 0)⟩

ä
= f (0, 0) +

Ä
fx(0, 0)x + fy(0, 0)y

ä
+

1
2!

î
fxx(0, 0)x2 + fxy(0, 0)xy + fyx(0, 0)yx + fyy(0, 0)y2

ó
+

1
3!

î
fxxx(0, 0)x3 + fxxy(0, 0)x2y + fxyx(0, 0)x2y + fxyy(0, 0)xy2

+ fyxx(0, 0)x2y + fyxy(0, 0)xy2 + fyyx(0, 0)xy2 + fyyy(0, 0)y3
ó
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Then

f (x, y) = 0 +
(

cos 0 · x + 0 · cos 0 · y
)

+
1
2!

î
− sin 0 · x2 − 2 · 0 · sin 0 · xy − 2 · 0 · sin 0 · yx + (2 cos 0 − 4 · sin 0)y2

ó
+

1
3!

î
− cos 0 · x3 + 2 · 0 cos 0 · x2y − 2 · 0 · cos 0 · x2y + (−2 sin 0 − 4 · 0 cos 0)xy2

−2 · 0 · cos 0 · x2y + (−2 sin 0 − 4 · 0 · cos 0)xy2 + (−2 sin 0 − 4 · 0 · cos 0)xy2

+(−4 · 0 · sin 0 − 8 · 0 · sin 0 − 8 · 0 · cos 0)y3
ó

= x + y2 − 1
6

x3.

Note. We can check whether the above Taylor polynomial is reasonable. Let t = x + y2.
The third degree Taylor polynomial for f (t) = sin t at t = 0 is

3∑
j=0

f ( j)(0)
j!

t j = t − t3

3!
= (x + y2) − (x + y2)3

3!

= x + y2 − 1
6

(x3 + 3x2y2 + 3xy4 + y6)

= x + y2 − 1
6

x3

third degree
Taylor polynomial

−1
2

x2y2 − 1
2

xy4 − 1
6

y6.

□

Remark. The second degree Taylor polynonial for f centered at a is

Pa, f (x) = f (a) + D f (a)(x − a) +
1
2
[
x − a

]T [H f (a)
]

Hessian
matrix

[
x − a

]
Remark. Let f : U ⊆ Rn → R and f ∈ C3. If a ∈ U is a critical point of f and H f (a) is
positive definite, then f has a minimum value at a.

Proof. By the Taylor theorem,

f (x) = f (a) + D f (a)(x − a) +
1
2
[
x − a

]T [H f (a)
] [

x − a
]
+ R2,a(x).

where lim
x→a

R2,a(x)
∥x − a∥2Rn

= 0.

Since a is a critical point of f , D f (a) = 0. Since H f (a) is positive definite, there exists c > 0
such that for every 0 , v ∈ Rn,

vT [H f (a)
]

v ≥ c∥v∥2Rn .
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Then

f (x) − f (a) =
1
2
[
x − a

]T [H f (a)
] [

x − a
]
+ R2,a(x)

≥ 1
2

c∥x − a∥2Rn + R2,a(x)

≥ 1
4

c∥x − a∥2Rn (as ∥x − a∥Rn is sufficiently small.)

≥ 0.

Hence, f (a) is a local minimum. Note that the number c is the smallest eigenvalue of H f (a). □

5.12 Maximum and Minimum
Review: Let f : (a, b)→ R be twice differentiable. Find the maxima (or minima) of f on (a, b).

(i) find all critical points ( f ′(x) = 0 or f ′(x) DNE)

(ii) Using the first derivative test or the second derivative test

Question: How about the two or more variables functions? Is there similar results for higher
dimensional cases?

Definition 5.12.1. LetU ⊆ Rn be open and f : U → R. We say that

(1) a point x0 is a “global (absolute) minimum (maximum) point of f ” if

f (x0) ≤ f (x) for every x ∈ U.
(≥)

(2) a point x0 ∈ U is a “local minimum (maximum) point of f ” if there exists a neighborhood
V ⊆ U of x0 such that

f (x0) ≤ f (x) for every x ∈ V.
(≥)

(3) a point x0 ∈ U is a “local (global) extreme point of f ” if x0 is either a lcoal (global)
minimum point or a local (global) maximum point of f .

(4) a point x0 ∈ U is a “critical point of f ” if either

∂ f
∂x1

(x0) = · · · = ∂ f
∂xn

(x0) = 0

or at least one of
∂ f
∂xi

(x0) does not exist.

Note that if f is differenitable at x0 and x0 is a critical point of f , then D f (x0) = 0 (or
∇ f (x0) = 0).
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(5) a point x0 is a “saddle point of f ” if f is differentiable at x0 and x0 is a critical point, but not
an extreme point of f .

Theorem 5.12.2. LetU → Rn be open, f : U → R be differentiable and x0 ∈ U be an extreme
point of f . Then x0 is a critical point of f .

Proof. W.L.O.G, let x0 be a local minimum point of f . Suppose that D f (x0) , 0. Then there
exists a unit vector 0 , u ∈ Rn such that D f (x0)u = c , 0. We may assume that c < 0 (other-
wise replacing u by −u).

Since f is differentiable at x0, there exists δ > 0 such that if ∥h∥Rn < δ,∣∣ f (x0 + h) − f (x0) − D f (x0)h
∣∣ < |c|

2
∥h∥Rn .

Taking 0 < λ < δ, then

λ|c| < f (x0 + λu) − f (x0)
>0

−D f (x0)(λu)
=λc<0

>λ|c|

<
|c|
2
∥λu∥Rn =

|λc|
2
.

Then we obtain a contradiction and hence D f (x0) = 0. □

Definition 5.12.3. Let B : Rn × Rn → R be a bilinear form. B is called

(1) “positive definite” (“negative definite”) if B(u,u) > 0 (< 0) for every 0 , u ∈ Rn.

(2) “positive semi-definite” (”negative semi-definite”) if B(u,u) ≥ 0 (≤ 0”) for every u ∈ Rn.

Remark. From the second degree Taylor polynomial for f centered at x0

f (x) ≈ f (x0) + D f (x0)(x − x0) +
1
2
[
x − x0

]T [H f (x0)
] [

x − x0
]
.

Let x0 be an extreme point of f . Then

f (x) ≈ f (x0) +
1
2
[
x − x0

]T [H f (x0)
] [

x − x0
]
.

Hence,

(i) if
[
H f (x0)

]
is positive definite, then x0 is a local minimum.

(ii) if
[
H f (x0)

]
is negative definite, then x0 is a local maximum.

Theorem 5.12.4. LetU ⊆ Rn be open and f : U → R be a function of class C2.

(1) If x0 is a critical point of f such that the Hessian H f (x0) is negative (positive) definite, then
f has a local maximum (minimum) point at x0. (sufficient condition)

(2) If f has a local maximum (minimum) point at x0, then H f (x0) is negative (positive) semi-
definite. (necessary condition)
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Idea: Since H f (x0) is negative definite and f ∈ C2, H f (x) is negative definite as x ≈ x0. By
the Taylor theorem,

f (x) = f (x0) + D f (x0)(x − x0)
=0

+
1
2

D2 f (c)(x − x0, x − x0)

≈ 1
2

[
x − x0

]T [
H f (x0)

][
x − x0

]
<0

.

Proof. (1) Let S =
{

u ∈ Rn
∣∣ ∥u∥Rn = 1

}
be a compact subset in Rn. Define g : S → R by

g(u) = H f (x0)(u,u)
(
= uT

[
H f (x0)

]
u
)
. Then g is continuous on S and hence g attains its

maximum. That is, there exists u0 ∈ S such that

0 >
negative
de f inite

H f (x0)(u0,u0) = g(u0)
=λ

= max
u∈S

g(u) = max
∥u∥Rn=1

H f (x0)(u,u).

Hence, for u ∈ Rn, u , 0,

H f (x0)(u,u) =
bilinear

∥u∥2Rn H f (x0)
Ä u
∥u∥Rn

,
u
∥u∥Rn

ä
< λ∥u∥2Rn < 0 (5.24)

Since f is of class C2, there exists δ > 0 such that if ∥x − x0∥Rn < δ,

∥∥∥H f (x) − H f (x0)
∥∥∥B(Rn;B(Rn;R))

<
|λ|
2
.

Thus,∣∣∣H f (x)(u,u) − H f (x0)(u,u)
∣∣∣ ≤ ∥∥∥H f (x) − H f (x0)

∥∥∥B(Rn;B(Rn;R))
∥u∥2Rn <

|λ|
2
∥u∥2Rn (5.25)

for every ∥x − x0∥Rn < δ and every u , 0.

By Taylor Theorem, for ∥x − x0∥Rn < δ,

f (x) = f (x0) + D f (x0)(x − x0)
=0 critical point

+
1
2

D2 f (c)(x − x0, x − x0) for some c ∈ xx0

= f (x0) +
1
2

D2 f (x0)(x − x0, x − x0) +
1
2

Ä
D2 f (x) − D2 f (x0)

ä
(x − x0, x − x0)

= f (x0) +
1
2
[
x − x0

]T [H f (x0)
] [

x − x0
]
+

1
2
[
x − x0

]T [H f (c) − H f (x0)
] [

x − x0
]

(5.24)(5.25)
< f (x0) +

1
2
λ∥x − x0∥2Rn −

λ

2
∥x − x0∥2Rn

≤ f (x0)

Hence, x0 is a local maximum point of f .
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(2) Assume that H f (x0) is not negative semi-definite. Then there exists u ∈ Rn, ∥u∥Rn = 1 such
that H f (x0)(u,u) > 0. To prove that f is not local maximum along the direction u.

Since x0 is a local maximum point of f , D f (x0) = 0 and there exists δ > 0 such that if
∥x − x0∥Rn < δ, f (x) ≤ f (x0). By the Taylor theorem,

f (x) = f (x0) + D f (x0)(x − x0)
=0

+
1
2
[
x − x0

]T [H f (cx)
] [

x − x0
]

for some cx ∈ xx0. Hence,[
x − x0

]T [H f (cx)
] [

x − x0
]
= 2

(
f (x) − f (x0)

)
≤ 0. (5.26)

Let x = x0 + tu. Then x → x0 as t → 0. Therefore, cx → x0 as t → 0. By (5.26),
H f (cx)(u,u) ≤ 0 for t ∈ (0, δ). Since f ∈ C2 and cx → x0 as t → 0,

H f (x0)(u,u) = lim
t→0

H f (cx)(u,u) ≤ 0

We obtain a contradition and hence H f (x0) is negative semi-definite.
□

Remark.
Question: How to determine whether a matrix A ∈ Mn×n(R) is positive (negative) (semi)-
definite?

Method 1: If A is symmetric, diagonalizing A.

A −→

λ1 0
. . .

0 λn

 where λi : eigenvalue.

(i) If λ1, · · · , λn > 0, then A is positive definite.

(ii) If λ1, · · · , λn ≥ 0, then A is positive semi-definite.

(iii) If λ1, · · · , λn < 0, then A is negative definite.

(iv) If λ1, · · · , λn ≤ 0, then A is positive semi-definite.

Method 2: (Sylvester’s criterion) For the matrix A =


a11 · · · a1k · · · a1n
...

...
...

a1k · · · akk · · · akn
...

...
...

an1 · · · ank · · · ann

, we define

△k =

a11 · · · a1k
...

...
ak1 · · · akk

 for k = 1, · · · , n.
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(i) if det(△k) > 0 for every k = 1, · · · , n, then A is positive definite

(ii) if det(△k) < 0 for k = 1, 3, 5 · · · and det(△k) > 0 for k = 2, 4, 6, · · · (or write (−1)k det(△k) >
0), then A is negative definite.

(iii) if det(△k) > 0 for k = 1, 2, · · · , n − 1, det A = 0, then A is positive semi-definite.

(iv) if (−1)k det(△k) > 0 for k = 1, 2, · · · , n − 1 and det A = 0, then A is negative semi-definite.

In particular, let A =
ï
a b
b c

ò
.

(i) if a > 0 and det A > 0, then A is positive definite.

(ii) if a < 0 and det A > 0, then A is negative definite.

(iii) if det A ≤ 0, then A is indefinite.

Theorem 5.12.5. Let f ∈ C2(R2;R), ∇ f (x0, y0) = 0, D = fxx fyy − ( fxy)2.

(1) If fxx > 0 and D > 0, then f has a local minimum at (x0, y0).

(2) If fxx < 0 and D > 0, then f has a local maximum at (x0, y0).

(3) If D < 0, then f has a saddle point at (x0, y0).

(4) If D = 0, no conclusion can be drawn.

Example 5.12.6. Let f (x, y, z) = ex−y + ey−x + ex2
+ z2. Then

∇ f (x, y, z) = ⟨ex−y − ey−x + 2xex2
,−ex−y + ey−x, 2z⟩.

The point (0, 0, 0) is the only critical point. The Hessian of f is

H f (x, y, z) =

ex−y + ey−x + 4x2ex2
+ 2ex2 −ex−y − ey−x 0

−ex−y − ey−x ex−y + ey−x 0
0 0 2



At (0, 0, 0), H f (0, 0, 0) =

 3 −2 0
−2 2 0
0 0 2

. We compute that det(△1) = 3, det(△2) = 2 and

det(△3) = 4. Hence, H f (0, 0, 0) is positive definite. We have (0, 0, 0) is a local (global) minimum
point of f .

o Lagrange Multipliers

In this section, we will study the “Lagrange multipliers” which gives a method to find the
maximum or minimum of a function h(x) subject to a constraint (or side condition) f(x) = C.

In the course of Elementary Calculus, we have learned some special cases. For example, to
find the maximum (or minimum) of f (x, y) subject to the constraint g(x, y) = k.

■ One Constraint
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We want to find a point(s) (x0, y0) on the level curve C =
{

(x, y)
∣∣ g(x, y) = k

}
such that

f (x0, y0) ≥ f (x, y) for all (x, y) ∈ C. (5.27)

Suppose that (x0, y0) ∈ C satisfying (5.27) and
f (x0, y0) = M. Then (x0, y0) is also on the level
curve C1 =

{
(x, y) | f (x, y) = M

}
. Moreover, since

(x0, y0) is the maximum point, the two level curve C
and C1 must be tangent each other at (x0, y0).

Since C and C1 are level curves of g and f respec-
tively, the gradient vectors ∇g ⊥ C and ∇ f ⊥ C1.
Then ∇g(x0, y0) is parallel to ∇ f (x0, y0). Therefore,
there exists a number λ (“Lagrange multiplier”) such
that

∇ f (x0, y0) = λ∇g(x0, y0).
■ Two Constraints

Furthermore, we also discuss the Lagrange multipliers with two constraints.

Find the maximum and minimum values of f (x, y, z) subject to two constraints g(x, y, z) = k
and h(x, y, z) = c.

Let C be the intersection of the two level surfaces
g(x, y, z) = k and h(x, y, z) = c. Find P(x0, y0, z0) ∈ C
such that f (x0, y0, z0) ahs extreme value along C.

To find the level surface S = {(x, y, z) | f (x, y, z) = M}
which tangnet to C. Then , at the intersection of C and
S , ∇ f ⊥ C. We have

∇ f (x0, y0, z0) = λ∇g(x0, y0, z0) + µ∇h(x0, y0, z0).

■ General Cases

Theorem 5.12.7. Let m < n, V be open in Rn, and f , g j : V → R be C1 function on V for
j = 1, 2, · · · ,m. Suppose that there is an a ∈ V such that

∂(g1, · · · , gm)
∂(x1, · · · , xm)

(a) , 0.

If f (a) is a local extremum of f subject to the constraints gk(a) = 0 for k = 1, · · ·m, then there
exist scalars λ1, λ2, · · · , λm such that

∇ f (a) =
m∑

k=1

λk∇gk(a) = 0m. (5.28)
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(I) 限制條件 g1, · · · gm 彼此間不能互相矛盾，例: g1(x, y) = 2x + 3y 和 g2(x, y) =
4x + 6y − 1,則無法找到 a ∈ Rn 使得 g1(a) = g2(a) = 0. 當兩函數的 level sets相
交可避免此狀況，即在滿足此兩限制條件下的點 a, ∇g1(a)與 ∇g2(a)不會平行。
因此，當設定

∂(g1, · · · , gm)
∂(x1, · · · , xm)

(a) , 0.

條件下，可避免任兩 level sets相切或平行狀況。亦可保證在 a點附近的滿足

所有限制條件的集合，即 level sets的交集
m⋂

j=1

{
x ∈ V

∣∣ g j(x) = 0
}
是一個 n − m

維度的曲面。

(II) 幾何上來說，我們是在兩函數的 level sets 的交集上找滿足 f 的極值點，若
constraints太多 (m ≥ n)，則可能發生

(1) 無法找到能滿足所有 constraints的可行點集;

(2) 限制條件 (constraints)之間可能彼此相關 (即可移去部份條件);

(3) 每多一個條件，則 level sets的交集少一個維度，當 m = n時，可能僅剩有
限可行點。

(III) 在 S :=
m⋂

j=1

{
x ∈ V

∣∣ g j(x) = 0
}
這個 n − m 維度曲面上找 f 的極值點 a，則 S

在 a 點的切空間 TaS 的 orthonormal space
Ä

TaS
ä⊥
是一個 m 維的向量空間，

由 S pan
{
∇g1(a), · · · ,∇gm(a)

}
所構成。因 f 在 a有極值， f 在 a這一層的 level

set
{

x ∈ V
∣∣ f (x) = f (a)

}
應在 a 點與 S 相切，則 ∇ f (a) 會屬於

Ä
TaS
ä⊥
=

S pan
{
∇g1(a), · · · ,∇gm(a)

}
. 因此

∇ f (a) =
m∑

k=1

λk∇gk(a) = 0m.

Note. Let M and N be two smooth manifolds with dimensions m and n, say m ≤ n. Suppose
M and N are tangent to each other at a. Then TaM ⊆ TaN. This implies

Ä
TaN
ä⊥
⊆
Ä

TaM
ä⊥

.

Hence, if u ⊥ N at a, then u ∈
Ä

TaN
ä⊥
⊆
Ä

TaM
ä⊥

.
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Proof. Equation (5.28) can be written as

∂ f
∂x1

(a) + λ1
∂g1

∂x1
(a) + · · · + λm

∂gm

∂x1
(a) = 0

∂ f
∂x2

(a) + λ1
∂g1

∂x2
(a) + · · · + λm

∂gm

∂x2
(a) = 0

...
∂ f
∂xm

(a) + λ1
∂g1

∂xm
(a) + · · · + λm

∂gm

∂xm
(a) = 0

...
∂ f
∂xn

(a) + λ1
∂g1

∂xn
(a) + · · · + λm

∂gm

∂xn
(a) = 0

which is a system of n linear equations with m unknown variables λ1, · · · , λm. Since
∂(g1, · · · , gm)
∂(x1, · · · , xm)

(a) , 0,

the first m equations in the system determines uniquely the λk’s. Hence, it suffices to show that
for those λ1, · · · , λm, the remaining system with n − m equations

∂ f
∂xm+1

(a) + λ1
∂g1

∂xm+1
(a) + · · · + λm

∂gm

∂xm+1
(a) = 0

...
∂ f
∂xn

(a) + λ1
∂g1

∂xn
(a) + · · · + λm

∂gm

∂xn
(a) = 0

holds.

Let p = n − m. As in the proof of the Implicit Function Theorem, write vector in Rm+p int
the form x = (y, t) = (y1, · · · , ym, t1, · · · , tp). We have to show that

∂ f
∂tℓ

(a) +
m∑

k=1

λk
∂gk

∂tℓ
(a) = 0

for ℓ = 1, · · · , p.

Let g = (g1, · · · , gm) : Rn → Rm. For x ∈ Rn, write x = (y, t) where y ∈ Rm and t ∈ Rp.
Choose a = (y0.t0) for some y0 ∈ Rm and t0 ∈ Rp. Then g(y0, t0) = 0m and Dyg(y0, t0) is
invertible.

By the Implicit Function Theorem, there exists an open set W ⊆ Rp which contains t0 and a
function h : W → Rm such that h is continuously differentiable on W, h(t0) = y0, and

g
(
h(t), t

)
= 0m for every t ∈ W.

For every t ∈ W and k = 1, · · · ,m, define

Gk(t) = gk
(
h(t), t

)
and F(t) = f

(
h(t), t

)
.
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Since g
(
h(t), t

)
= 0m on W, Gk(t) is identically zero on W for k = 1, · · · , k and hence DtGk(t) ≡

01×p ( the zero matrix
[
0
]

1×p).

Since t0 ∈ W and
(
h(t0), t0) = (y0, t0) = a, by the Chain Rule,

01×p = DtGk(t0) =
ï
∂gk

∂x1
(a) · · · ∂gk

∂xn
(a)
ò

1×n



∂h1

∂t1
(t0) · · · ∂h1

∂tp
(t0)

...
. . .

...
∂hm

∂t1
(t0) · · · ∂hm

∂tp
(t0)

1 · · · 0
...

. . .
...

0 · · · 1


n×p

Hence, the ℓth component of DGk(t0) is
m∑

j=1

∂gk

∂x j
(a)

∂h j

∂tℓ
(t0) +

∂gk

∂tℓ
(a) (5.29)

for k = 1, 2, · · · ,m. Multiplying (5.29) by λk and adding, we have

0 =

m∑
k=1

m∑
j=1

λk
∂gk

∂x j
(a)

∂h j

∂tℓ
(t0) +

m∑
k=1

λk
∂gk

∂tℓ
(a)

=

m∑
j=1

î m∑
k=1

λk
∂gk

∂x j
(a)
ó∂h j

∂tℓ
(t0) +

m∑
k=1

λk
∂gk

∂tℓ
(a).

Therefore,

0 = −
m∑

j=1

∂ f
∂x j

(a)
∂h j

∂tℓ
(t0) +

m∑
k=1

λk
∂gk

∂tℓ
(a). (5.30)

Suppose that f (a) is a local maximum subject to the constraints g(a) = 0m. Let E0 =
{

x ∈
V
∣∣ g(x) = 0

}
, and choose an n-dimensional open ball Bn(a, r) such that

f (x) ≤ f (a) for every x ∈ Bn(a, r) ∩ E0.

Since h is continuous, choose a p-dimensional open ball Bp(t0, ε) scuh that
(
h(t), t

)
∈ Bn(a, r)

for every t ∈ Bp(t0, ε). Since F(t0) is a local maximum of F on Bp(t0), ∇F(t0) = 0p. Applying
the Chain Rule as above, we obtain

0 =
m∑

j=1

∂ f
∂x j

(a)
∂h j

∂tℓ
(t0) +

∂ f
∂tℓ

(a) (5.31)

Adding (5.30) and (5.31), we conclude that

0 =
∂ f
∂tℓ

(a) +
m∑

k=1

λk
∂gk

∂tℓ
(a).

[Note that the proof is refered to the book “Introduction to Analysis 4th Ed.”, William R. Wade,
page 443-445.] □
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Example 5.12.8. Find all extrema of x2 + y2 + z2 subject to the constraints x − y = 1 and
y2 − z2 = 1.

Proof. Let f (x, y, z) = x2 + y2 + z2, g(x, y, z) = x − y − 1 and h(x, y, z) = y2 − z2 − 1. Then

∇ f (x, y, z) = ⟨2x, 2y, 2z⟩, ∇g(x, y, z) = ⟨1,−1, 0⟩ and ∇h(x, y, z) = ⟨0, 2y − 2z⟩.
Consider ∇ f + λ∇g + µ∇h = 0. That is,

⟨2x + λ, 2y − λ + 2µy, 2z − 2µz⟩ = ⟨0, 0, 0⟩.
To solve 

2x + λ = 0 (5.32)
2y − λ + 2µy = 0 (5.33)
2z − 2µz = 0 (5.34)

By (5.34), either z = 0 or µ = 1

(1) If µ = 1, by (5.32) and (5.33), λ = −2x = 4y. Thus, x = −2y. From g(x, y) = x − y − 1 = 0,

we have (x, y) = (
2
3
,−1

3
). But it cannot make h(x, y, z) = y2 − z2 − 1 = 0.

(2) If z = 0, by h(x, y, z) = y2 − z2 − 1 = 0 and g(x, y, z) = x − y − 1 = 0, we have
(x, y) = (2, 1) or (0,−1). Therefore, the only possible extreme points are (2, 1, 0) and
(0,−1, 0). The only candidates for extrema of f subject to the constraints g = 0 = h
are f (2, 1, 0) = 5 and f (0,−1, 0) = 1.

Geometrically, this problem is to find the points on the intersection of the plane x − y = 1
and the hyperbolic cylinder y2 − z2 = 1 which lie closest to the origin. both of these
points correspond to local minima, and there is no maxima. In particular, the minimum of
x2 + y2 + z2 subject to the given constraints is 1, attained at the point (0,−1, 0).

□
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6.1 Integrable Functions
Review: Let f : [a, b]→ R be a bounded function.

Let P = {x0 < x1 < · · · < xn} be a partition of
[a, b]. The upper and lower sums of P for f are

U(P, f ) =
n∑

i=1

sup
x∈[xi−1,xi]

f (x)(xi − xi−1)

L(P, f ) =
n∑

i=1

inf
x∈[xi−1,xi]

f (x)(xi − xi−1)

If P1 and P2 are two partitions of [a, b] and P1 ⊆ P2, then

L(P1, f ) ≤ L(P2, f ) ≤ U(P2, f ) ≤ U(P1, f ).

The lower and upper integrals are∫ b

a

f (x) dx = sup
P

L(P, f ) and
∫ b

a
f (x) dx = inf

P
(P, f )

and

L(P, f ) ≤
∫ b

a

f (x) dx ≤
∫ b

a
f (x) dx ≤ U(P, f ).

251
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If
∫ b

a

f (x) dx =
∫ b

a
f (x) dx, we call f is “(Darboux) integrable” on [a, b] and denote the num-

ber
∫ b

a
f (x) dx.

Remark. A function f is integrable on [a, b] if and only if for every ε > 0, there exists a
partition P of [a, b] such that U(P, f ) − L(P, f ) < ε.

Definition 6.1.1. Let P be a partition of [a, b] and x∗i ∈ [xi−1, xi] for i = 1, 2, · · · , n.

(1) We call the form
n∑

i=1

f (x∗i )(xi − xi−1) the “Riemann sum for f over [a, b]”.

(2) If lim
∥P∥→0

n∑
i=1

f (x∗i )(xi − xi−1) exists where ∥P∥ = max
1≤i≤n

(xi − xi−1), we say f is “(Riemann) inte-

grable on [a, b]” and hence
∫ b

a
f (x) dx exists.

■Multi-variable Functions

Question: Let U ⊆ R2 be a bounded set and f : U → R. How to compute the volume below
the graph of f ?

Let D = [a1, b1] × [a2, b2] ⊆ R2, f : D→ R be a bounded function. Denote

Px = {a1 = x0 < x1 < · · · < xn = b1},
Py = {a2 = y0 < y1 < · · · < ym = b2} and
P =

{
△i j = [xi−1, xi] × [y j−1, y j]

∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
.

The lower and upper sums of P for f are

U(P, f ) =
∑

1≤i≤n
1≤ j≤m

sup
x∈△i j

f (x)A(△i j)

L(P, f ) =
∑

1≤i≤n
1≤ j≤m

inf
x∈△i j

f (x)A(△i j)

where A(△i j) = (xi − xi−1)(y j − y j−1) is the area of △i j.
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Suppose that P′ be a refinement of P (P′ ⊆ P). Then

L(P, f ) ≤ L( f , P′) ≤ U( f , P′) ≤ U( f , P).

We want to ask whether sup
P

L(P, f ) ?
= inf

P
U(P, f ).

Question: How about if D is not a rectangle?

Let D ⊆ R2 be a bounded set and f : D→ R be a bounded function.

In order to consider the integral, we may deal
with two things

(i) Compute the area of domain which is not
rectange.

(ii) Set a new function from f which is de-
fined on a rectangle covering D and has
the same integral as f .

Definition 6.1.2. Let D ⊆ R2 be a bounded set.

Define

a1 = inf
{

x ∈ R
∣∣ (x, y) ∈ D for some y ∈ R

}
b1 = sup

{
x ∈ R

∣∣ (x, y) ∈ D for some y ∈ R
}

a2 = inf
{

y ∈ R
∣∣ (x, y) ∈ D for some x ∈ R

}
b2 = sup

{
y ∈ R

∣∣ (x, y) ∈ D for some x ∈ R
}

Let

Px =
{

a1 = x0 < x1 < · · · < xn = b1
}

be a partition of [a1, b1],
Py =

{
a2 = x0 < y1 < · · · < ym = b2

}
be a partition of [a2, b2] and

P =
{
△i j = [xi−1, xi] × [y j−1, y j]

∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
.

The mesh size of the partition P, denoted by ∥P∥, is defined by

∥P∥ = max
1≤i≤n
1≤ j≤m

»
(xi − xi−1)2 + (y j − y j−1)2.

Remark.
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Note. The number
√

(xi − xi−1)2 + (y j − y j−1)2

is called “the diameter of △i j” and is denoted by
diam(△i j).

We try to define the upper sums and the lower sums corresponding to partitions.

Problem: f may not be defined on some subrectangles.

To extend f from A to [a1, b1] × [a2, b2] by

f (x, y) =
ß

f (x, y) (x, y) ∈ D
0 (x, y) < D.

Then we can compute the volume of the re-
gion below f on [a1, b1] × [a2, b2].

Definition 6.1.3. Let D ⊆ R2 be a bounded set and f : D → R be a bounded function. Let
P =

{
△i j = [xi−1, xi] × [y j−1, y j]

∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

.

(1) The upper sum and the lower sum of f with respect to P are defined by

U(P, f ) =
∑

1≤i≤n
1≤ j≤m

sup
(x,y)∈△i j

f (x, y)A(△i j)

and
L(P, f ) =

∑
1≤i≤n
1≤ j≤m

inf
(x,y)∈△i j

f (x, y)A(△i j)

where A(△i j) = (xi − xi−1)(y j − y j−1) is the area of △i j and

f (x, y) =
ß

f (x, y) (x, y) ∈ D
0 (x, y) < D.

The upper integral and lower integral of f over D are defined by∫
D

f (x, y) dA = inf
P: partition

U(P, f )

and ∫
D

f (x, y) dA = sup
P: partition

U(P, f ).
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We say that a function f is Riemann (Darboux) integrable (over D) if∫
D

f (x, y) dA =
∫

D

f (x, y) dA.

The number is denoted by
∫

D
f (x, y) dA and is called “the integral of f over D”.

Question: How about higher dimensional cases?

Definition 6.1.4. Let D ⊆ Rn be a bounded subset. Define a1, · · · , an and b1, · · · , bn by

ak = inf
{

xk ∈ R
∣∣ (x1, · · · , xn) ∈ D for some x1, · · · , xk−1, xk+1, · · · xn ∈ R

}
bk = sup

{
xk ∈ R

∣∣ (x1, · · · , xn) ∈ D for some x1, · · · , xk−1, xk+1, · · · xn ∈ R
}

Let P(k) =
{

ak = x(k)
0 < x(k)

1 < · · · < x(k)
Nk
= bk

}
for k = 1, · · · , n and

P =
¶
△i1···in = [x(1)

i1−1, x(1)
i1

] × · · · × [x(n)
in−1, x(n)

in
]
∣∣∣ 1 ≤ ik ≤ Nk for k = 1, · · · , n

©
.

The mesh size of the partition P, denoted by ∥P∥, is defined by

∥P∥ = max
1≤i≤Nk
k=1,··· ,n

√
(x(1)

i1
− x(1)

i1−1)2 + · · · + (x(n)
in
− x(n)

in−1)2.

The number max
1≤i≤Nk
k=1,··· ,n

√
(x(1)

i1
− x(1)

i1−1)2 + · · · + (x(n)
in
− x(n)

in−1)2 is called “the diameter of △i1···in” and is

denoted by diam(△i1···in).

Definition 6.1.5. Let D ⊆ Rn be a bounded set and f : D → R be a bounded function. Let
P =
¶
△i1···in

∣∣∣ 1 ≤ ik ≤ Nk, k = 1, · · · , n
©

be a partition of [a1, b1] × · · · × [an, bn].

(1) The (Darboux) upper sum and the (Darboux) lower sum of f with respect to P are defined
by

U(P, f ) =
∑
△i1 ···in∈P

sup
x∈△i1 ···in

f (x)V(△i1···in)

L(P, f ) =
∑
△i1 ···in∈P

inf
x∈△i1 ···in

f (x)V(△i1···in)

where f (x) =
ß

f (x) if x ∈ D
0 if x < D and V(△i1···in) = (x(1)

i1
− x(1)

i1−1) × · · · × (x(n)
in
− x(n)

in−1) is the

volume of the rectangle △i1···in .

(2) The (Darboux) upper integral and the (Darboux) lower integral of f over D are defined byÄ∫
D

f (x) dV(x) =
ä ∫

D
f (x) dx = inf

P:partition
U(P, f )Ä∫

D

f (x) dV(x) =
ä ∫

D

f (x) dx = sup
P:partition

L(P, f )
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(3) We say that a function is Riemann (Darboux) integrable over D if∫
D

f (x) dx =
∫

D

f (x) dx

and the number is denoted by
∫

D
f (x) dx.

Remark. (1) U(P, f ) and L(P, f ) are Darboux upper sum and lower sum. Let P = {△1, · · · ,△N}

be a partition of D. We called the sum
N∑

k=1

f (ξk)V(△k) for some ξk ∈ △k “the Riemann sum

of f over D”.

(2) f is Riemann integrable over D if

lim
∥P∥→0

∑
△k∈P

f̄ (ξk)V(△k)

converges to a number I.

(3) f is Riemann integrable over D if and only if f is Darboux integrable over D.

Remark. Let K ⊆ Rn be compact and f is continuous on K. Then f is integrable over K. (How
to prove? Is it true?)

Definition 6.1.6. Let D ⊆ Rn be a bounded set P, P′, P1, · · · , Pk be partitions of D.

(1) We say that P′ is a refinement of P if for any △′ ⊆ P′, there exists △ ∈ P such that △′ ⊆ △.

(2) We say that P is a common refinement of P1, · · · , Pk if P is a refinement of P j for j =
1, · · · , k.

Proposition 6.1.7. Let D ⊆ Rn be a bounded set, P1 and P2 be partitions of D, and f : D→ R
be a bounded function.

(1) Suppose that P is a common refinement of P1 and P2. Then

L(P1, f ) ≤ L(P, f ) ≤ U(P, f ) ≤ U(P2, f )

(2) By (1), any upper sum U(P, f ) is an upper bound of all lower sums and any lower sum
L(P, f ) is an lower bound of all upper sums. Hence, for any partition P,

sup
P′:partiition

L(P′, f ) ≤ U(P, f )

and
inf

P′:partiition
U(P′, f ) ≥ L(P, f )
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(3) If inf
P:partition

U(P, f ) = sup
P:partition

L(P, f ) = c, then c is the unique number which is less than any

upper sum and greater than any lower sum.

(4) It is possible that
sup

P:partition
L(P, f ) < inf

P:partition
U(P, f ).

For example, D = [0, 1] × [0, 1] and f (x, y) =
ß

1 x ∈ Q, y ∈ Q
0 otherwise

Proposition 6.1.8. Let D ⊆ Rn be a bounded set and f : D→ R be a bounded function. Then f
is Darboux integrable over D if and only if for every ε > 0, there exists a partition P of D such
that

U(P, f ) − L(P, f ) < ε.

Proof. (Exercise) □

Proposition 6.1.9. Let D ⊆ Rn be a bounded set and f : D → R be a bounded function with
extension f̄ . Then f is Riemann integrable if and only if there exists a number I ∈ R such that
for every ε > 0, there exists δ > 0 such that if P =

{
△1, · · · ,△N

}
be a partition of D with

∥P∥ < δ, then ∣∣∣ N∑
k=1

f̄ (ξk)V(△k) − I
∣∣∣ < ε.

Proof. (Exercise) □

Theorem 6.1.10. Let D ⊆ Rn be a bounded set and f : D → R be a bounded function. Then f
is Darboux integrable over D if and only if for given ε > 0, there exists δ > 0 such that for any
partition P of D with ∥P∥ < δ, then

U(P, f ) − L(P, f ) < ε.

Proof. (Exercise)
□

Theorem 6.1.11. Let D ⊆ Rn be a bounded set and f : D → R be a bounded function. Then f
is Darboux integrable over D if and only if f is Riemann integrable over D.

Proof. (=⇒) Since f is bounded, there exists M > 0 such that | f (x)| < M for every x ∈ D.
W.L.O.G, we may assume that f (x) ≥ 0 for every x ∈ D. Otherwise, we can replacing f by
f + M.

Since D is bounded, D ⊆ [a1, b1] × · · · × [an, bn] ⊆ Rn. Set L = max
1≤i≤n

(bi − ai). Also, since f

is Darboux integrable over D, there exist I ∈ R and partitions

P1 = {a1 = x(1)
0 < · · · < x(1)

N1
= b1}

...

Pn = {an = x(n)
0 < · · · < x(n)

Nn
= bn}
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and
P =

{
△i j = [x(1)

i1−1, x
(1)
i1

] × · · · × [x(n)
in−1, x

(n)
in

]
∣∣ 1 ≤ ik ≤ Nk, k = 1, · · · , n

}
such that U(P, f ) − L(P, f ) <

ε

2
and L(P, f ) ≤ I ≤ U(P, f ).

Let ♯(P) = N (=
n∏

k=1

Nk) and set δ =
ε

8M(L + 1)nNn . For

Q = {□1, · · · ,□K} be a partition of D such that ∥Q∥ < δ.

Separate Q into two classes, say Q1 and Q2. Let Q1 be
the subset of Q such that if □ ∈ Q1 then □ is contained in
a single △i j ∈ P and Q2 = Q\Q1.

We obtain ∑
□i∈Q1

Ä
sup
x∈□i

f̄ (x) − inf
x∈□i

f̄ (x)
ä

V(□i) ≤ U(P, f ) − L(P, f ) <
ε

2
. (6.1)

For □ = [c1, d1] × · · · × [cn, dn] ∈ Q2, there exist
k ∈ {1, · · · , n} and ik ∈ {1, · · · ,Nk} such that for
x(k)

ik
∈ [ck, dk], □ ⊆ [a1, b1] × · · · × [ak−1, bk−1] ×

[x(k)
ik
− δ, x(k)

ik
+ δ] × [ak+1, bk+1] × · · · × [an, bn].

Then ∑
□ j∈Q2

V(□ j) ≤ 2δLn−1Nn <
ε

4M
.

Hence,∣∣∣ ∑
□ j∈Q2

sup
x∈□ j

f̄ (x)V(□ j)
∣∣∣ ≤ M

∑
□ j∈Q2

V(□ j) <
ε

4
and

∣∣∣ ∑
□ j∈Q2

inf
x∈□ j

f̄ (x)V(□ j)
∣∣∣ ≤ M

∑
□ j∈Q2

V(□ j) <
ε

4
.

We have

U(Q, f ) − L(Q, f ) =
∑
□i∈Q1

Ä
sup
x∈□i

f̄ (x) − inf
x∈□i

f̄ (x)
ä

V(□i) +
∑
□ j∈Q2

Ä
sup
x∈□ j

f̄ (x) − inf
x∈□ j

f̄ (x)
ä

V(□ j)

≤ U(P, f ) − L(P, f ) +
∣∣∣ ∑
□ j∈Q2

sup
x∈□ j

f̄ (x)V(□ j)
∣∣∣ + ∣∣∣ ∑

□ j∈Q2

inf
x∈□ j

f̄ (x)V(□ j)
∣∣∣

< ε.

Also
U(Q, f ) =

∑
□i∈Q1

sup
x∈□i

f̄ (x)V(□i) +
∑
□ j∈Q2

sup
x∈□ j

f̄ (x)V(□ j) ≤ U(P, f ) +
ε

4
.
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Let ξi ∈ □i for i = 1, · · · ,K, we have∑
□i∈Q

f̄ (ξi)V(□i) − I ≤ U(Q, f ) − I ≤ U(P, f ) +
ε

4
− I ≤ U(P, f ) − L(P, f ) +

ε

4
< ε.

and ∑
□i∈Q

f̄ (ξi)V(□i) − I ≥ L(Q, f ) − I ≥ U(Q, f ) − ε − I ≤ L(P, f ) − I − ε ≥ −2ε.

Therefore, ∣∣∣∑
□i∈Q

f̄ (ξi)V(□i) − I
∣∣∣ < 2ε

and f is Riemann integrable over D.

(⇐=) Since f is bounded and Riemann integrable, there exists I ∈ R and for given ε > 0
there exists δ > 0 such that if a partition P = {△1, · · · ,△N} of D with ∥P∥ < δ,

∣∣∣ N∑
k=1

f̄ (ξk)V(△k) − I
∣∣∣ < ε

4
for any ξk ∈ △k, k = 1, · · · ,N.

Define Mi = sup
x∈△i

f̄ (x) and mi = inf
x∈△i

f̄ (x). There are Ti, ti ∈ △i such that

Mi < f̄ (Ti) +
ε

4V(D)
and mi ≥ f̄ (ti) −

ε

4V(D)
.

Then

U(P, f ) =
N∑

k=1

MkV(△k) <
N∑

k=1

Ä
f̄ (Tk) +

ε

4V(D)

ä
V(△k)

< I +
ε

4
+

ε

4V(D)

N∑
k=1

V(△k)

= I +
ε

2
.

and

L(P, f ) =
N∑

k=1

mkV(△k) >
N∑

k=1

Ä
f̄ (tk) −

ε

4V(D)

ä
V(△k)

> I − ε
4
− ε

4V(D)

N∑
k=1

V(△k)

= I − ε
2
.

Hence, U(P, f ) − L(P, f ) < ε and f is Darboux integrable over D. □

Remark. From now on, we will also call the above integrals
∫

D
f (x) dx “Riemann-Darboux

integral”.
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Recall: Let { fn}∞n=1 be a sequence of integrable functions on [a, b] and fn → f uniformly on
[a, b], then ∫ b

a
fn(x) dx→

∫ b

a
f (x) dx.

Theorem 6.1.12. Let D ⊆ Rn be a bounded set and fk : D → R be a sequence of Riemann
integrable functions over D such that { fk}∞k=1 converges uniformly to f on D. Then f is Riemann
integrable over D and

lim
k→∞

∫
D

fk(x) dx =
∫

D
f (x) dx.

Proof. (Exercise) □

Remark. There are other definition of Darboux integral. We can divide D into serveral pieces
of subregions such that

(i) D =
n⋃

i=1

Di

(ii) Int(Di) ∩ Int(D j) = ∅

(iii) each Di has nonnegative volume V(Di)

Define

U(△, f ) =
n∑

i=1

sup
x∈Di

f (x)V(Di) and L(△, f ) =
n∑

i=1

inf
x∈Di

f (x)V(Di)

Then ∫
D

f (x) dx = sup L(△, f ) and
∫

D
f (x) dx = inf U(△, f )

By using this method, we need to compute the volume of Di in advance. But we don’t need to
extend f to f̄ and Di need not be a rectangle.

o Volume of Sets

Definition 6.1.13. Let E ⊆ Rn be a bounded set.

(1) The “characteristic function 1E (or χE)” is defined by

1E(x) =
ß

1 x ∈ E
0 x ∈ R\E.

(2) E is said to have volume if 1E is Riemann integrable (over E), and the volume of E is
denoted by V(E) where

V(E) =
∫

E
1E(x) dx.

(3) E is said to have volume zero if V(E) =
∫

E
1(x) dx = 0.
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Remark. That “a set does not have volume” (“a set has no volume”) is different from that “a
set has volume zero”. Not all bounded sets have volume. For example, E := Q ∩ [0, 1] has no
volume. It does NOT mean that E has volume V(E) = 0 since 1E is not Riemann integrable.

Remark. (1) A rectangle S = [a1, b1]× · · · × [an, bn] ⊆ Rn
[
or (a1, b1)× · · · × (an, bn) ⊆ Rn

]
has

volume
V(S ) = (b1 − a1)(b2 − a2) · · · (bn − an).

(2) An open rectangle(set) has nonzero volume.

(3) If E1 and E2 have volumes and E1 ⊆ E2, then V(E1) ≤ V(E2).

Proposition 6.1.14. Let E ⊆ Rn be bounded. The E has volume zero if and only if for every
ε > 0, there exists finite (open) rectangles S 1, · · · , S N such that

E ⊆
N⋃

k=1

S k and
N∑

k=1

V(S k) < ε.

Proof. (=⇒) Since 0 = V(E) =
∫

E
1E(x) dx =

∫
E
1E(x) dx, for given ε > 0, there exists a

partition P = {△1, · · · ,△N} of E such that

N∑
k=1

sup
x∈△k

1E(x) dx = U(1E, P) <
∫

E
1E(x) dx +

ε

2
=
ε

2
.

Since sup
x∈△k

1E(x) =
ß

1 x ∈ △k ∩ E
0 otherwise ,

∑
△k∈P
△k∩E,∅

V(△k) = U(P,1E) <
ε

2
.

Moreover, for every △k ∈ P with △k ∩ E , ∅, we can find an open rectangle □k such that
△k ⊆ □k and V(□k) ≤ 2V(△k).

Then

E ⊆
N⋃

k=1

△k ⊆
N⋃

k=1

□k

and
N∑

k=1

V(□k) ≤ 2
N∑

k=1

V(△k) < ε.

(⇐=) Let S 1, · · · , S N be rectangles such that

E ⊆
N⋃

k=1

S k and
N∑

k=1

V(S k) < ε.

W.L.O.G, we may assume that for each k,

max length of side of S k

min length of side of S k
≤ 2.
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Otherwise, we can divide S k such that it satisfies the above preperty.

For each S k, we can choose a (cubic) rectangle □k side
length of 3 times multple of max side length of S k such
that S k ⊆ □k. Then V(□k) ≤ 2n−1 · 3nV(S k).

Let P be a partition of E such that for each △ ∈ P with △ ∩ E , ∅, then △ ⊆ □k for some
k = 1, · · · ,N. Hence,

U(P,1E) =
∑
△∈P
△∩E,∅

V(△) ≤
N∑

k=1

V(□k) ≤ 2n−1 · 3n ·
N∑

k=1

V(S k) < 2n−1 · 3nε.

Since ε is an arbitrary positive number,
∫

E
1E(x) dx = 0 and therefore V(E) = 0. □

Example 6.1.15. (1) A set consisting of finite points is volume zero. (finite set)

(2) The set
{1

n

∣∣ n ∈ N
}
⊆ [0, 1] is volume zero. (infinitely countable set)

(3) The Cantor set is volume zero. (uncountable set)

(4) If f : [a, b] → Rn for n > 1 is of class C1, then f
(
[a, b]

)
has volume zero. (at most

1-dimensional set in Rn)

Proof. Let Pk = {a = x0 < x1 < · · · < xN = b} be a partition of [a, b] with xi−xi−1 =
b−a
N = δ.

Since f is of class C1, there exists M > 0 such that ∥∇ f (x)∥Rn < M for every x ∈ [a, b].

By the Mean Value Theorem, for f = ( f1, · · · , fn) and let t ∈ [xi−1, xi],

f j(xi) − f j(t) = f ′j
(
ci j(t)

)
(xi − t) for some ci j(t) ∈ [t, xi].

Then

∥f(xi) − f(t)∥Rn <

n∑
j=1

∣∣ f j(xi) − f j(t)
∣∣ ≤ n∑

j=1

∣∣ f ′j
(
ci j(t)

)∣∣|xi − xi−1| ≤ nMδ.

Since t is an arbitrary point in [xi−1, xi], we have f
(
[xi−1, xi]

)
⊆ B

(
f(xi), nMδ

)
and moreover

f
(
[a, b]

)
⊆

N⋃
i=1

B
(
f(xi), nMδ

)
.

Also, since

V
Ä N⋃

i=1

B
(
f(xi), nMδ

)ä
≤

N∑
i=1

V
Ä

B
(
f(xi), nMδ

)ä
≤ C

some constant
depending on n

NnnMn(b − a
N

)n

= C[nM(b − a)]n

constant
N1−n → 0 as N → 0.

We have V
Ä

f
(
[a.b]

)ä
= 0. □
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Remark. We can extend the proposition to countable cover of E and obtain “meazero zero”.
We will skip this argument.

Remark. Let D = [a, b]× [c, d] ⊆ R2 and f : D→ R be a bounded function. If f is continuous
on D except on a volume zero subset E ⊆ D, then f is integrable over D.

6.2 Properties of the Integrals

Proposition 6.2.1. Let A ⊆ Rn be bounded and f , g : A→ R be bounded. Then

(1) If B ⊆ A, then∫
A

(
f1B

)
(x) dx =

∫
B

f (x) dx and
∫

A

(
f1B

)
(x) dx =

∫
B

f (x) dx.

(2) ∫
A

f (x) dx +
∫

A

g(x) dx ≤
∫

A

(
f + g

)
(x) dx

and ∫
A

f (x) dx +
∫

A
g(x) dx ≥

∫
A

(
f + g

)
(x) dx

(3) If c ≥ 0, then∫
A

(
c f

)
(x) dx = c

∫
A

f (x) dx and
∫

A

(
c f

)
(x) dx = c

∫
A

f (x) dx.

If c < 0, then∫
A

(
c f

)
(x) dx = c

∫
A

f (x) dx and
∫

A

(
c f

)
(x) dx = c

∫
A

f (x) dx.

(4) If f ≤ g on A, then∫
A

f (x) dx ≤
∫

A

g(x) dx and
∫

A
f (x) dx ≤

∫
A
g(x) dx

(5) If A has volume zero, then f is Riemann integrable over A and
∫

A
f (x) dx = 0.

Proof. (5) Since f is bounded, there exist m,M ∈ R such that m ≤ f (x) ≤ M for every x ∈ A.
Then

m1A(x) ≤ f (x) ≤ M1A(x) for every x ∈ A.
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We have

0 = mV(A) = m
∫

A
1A(x) dx =

∫
A

m1A(x) dx

≤
∫

A

f (x) dx ≤
∫

A
f (x) dx

we don′t know whether or not f is integrable yet.

≤
∫

A
M1(x) dx = M

∫
A
1(x) dx = MV(A) = 0.

Hence, f is integrable over A and
∫

A
f (x) dx = 0.

□

Remark. Let A ⊆ Rn be a bounded set and f , g : A→ R be bounded functions. Then∫
A

(
f − g

)
(x) dx ≤

∫
A

f (x) dx −
∫

A

g(x) dx

and ∫
A

f (x) dx −
∫

A
g(x) dx ≤

∫
A

(
f − g

)
(x) dx.

Proof. (Exercise) □

Corollary 6.2.2. Let A, B ⊆ Rn be bounded such that A∩B has volume zero, and f : A∪B→ R
be bounded. Then

(1) ∫
A

f (x) dx +
∫

B

f (x) dx ≤
∫

A∪B

f (x) dx

and

(2) ∫
A∪B

f (x) dx ≤
∫

A
f (x) dx +

∫
B

f (x) dx.

Proof. (1)∫
A

f (x) dx +
∫

B

f (x) dx =

∫
A∪B

(
f1A

)
(x) dx +

∫
A∪B

(
f1B

)
(x) dx

≤
∫

A∪B

(
f1A + f1B

)
(x) dx

=

∫
A∪B

Ä
f1A∪B −

(
− f1A∩B

)ä
(x) dx

≤
∫

A∪B

(
f1A∪B

)
(x) dx −

∫
A∪B
−
(

f1A∩B
)
(x) dx

=0 since V(A∩B)=0

=

∫
A∪B

f (x) dx



6.2. PROPERTIES OF THE INTEGRALS 265

(2) (Exercise)
□

Theorem 6.2.3. Let A ⊆ Rn be bounded, c ∈ R and f , g : A→ R be Riemann integrable. Then

(1) f ± g is Riemann integrable and
∫

A

(
f ± g

)
(x) dx =

∫
A

f (x) dx ±
∫

A
g(x) dx.

(2) c f is Riemann integrable and
∫

A

(
c f

)
(x) dx = c

∫
A

f (x) dx.

(3) | f | is Riemann integrable and
∣∣∣∫

A
f (x) dx

∣∣∣ ≤ ∫
A

∣∣ f (x)
∣∣ dx.

(4) If f ≤ g, then
∫

A
f (x) dx ≤

∫
A

g(x) dx.

(5) If A has volume and | f | ≤ M, then∣∣∣∫
A

f (x) dx
∣∣∣ ≤ MV(A).

Proof. (Exercise) □

Theorem 6.2.4. (Mean value Theorem for Integrals) Let A ⊆ Rn be connected and compact,
and have volume. Suppose that f : A→ R is continuous, then there exists x0 ∈ A such that∫

A
f (x) dx = f (x0)V(A)

If V(A) , 0, we call the number
1

V(A)

∫
A

f (x) dx “the average of f over A”.

Proof. It suffices to show the case V(A) , 0. Since A is compact and f is continuous on A,
there exists m,M ∈ R such that m = min

x∈A
f (x) and M = max

x∈A
f (x). Then

m1A(x) ≤ f (x) ≤ M1A(x) for every x ∈ A.

Hence,

mV(A) =
∫

A
m1A(x) dx ≤

∫
A

f (x) dx ≤
∫

A
M1A(x) dx.

and we obtain m ≤ 1
V(A)

∫
A

f (x) dx ≤ M.

Since A is connected and f is continuous on A, f (A) is a connected subset in R and hence
f (A) is an interval. Since m = min

x∈A
f (x) and M = max

x∈A
f (x), f (A) = [m,M]. There exists x0 such

that
f (x0) =

1
V(A)

∫
A

f (x) dx.

□
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Definition 6.2.5. Let B ⊆ A ⊆ Rn and f : A → R be a function. The restriction of f to B,
denoted by f

∣∣
B, is defined by

f
∣∣

B(x) = f (x) for every x ∈ B ( f
∣∣

B : B→ R).

Lemma 6.2.6. Let B ⊆ A ⊆ Rn be bounded and f : A → R be a bounded function. Suppose
that f1B is Riemann integrable over A. Then f is integrable over B and∫

A

(
f
∣∣

B

)
(x) dx =

∫
B

f (x) dx.

Remark. There exist B ⊆ A ⊆ Rn and f : A → R such that f is integrable over A but not
integrable over B. For example f ≡ 1 on A = [0, 1] and B = Q ∩ [0, 1]. (Consider the exmaple
again!)

6.3 The Fubini Theorem
Let A ⊆ Rn and f : A→ R be continuous (Riemann integrable) over A.

Question: How to compute
∫

A
f (x) dx?

Recall that f : [a, b]→ R is continuous. By the Fundamental Theorem of Calculus, if F(x)
satisfies F′(x) = f (x), then ∫ b

a
f (x) dx = F(b) − F(a).

But there is no F.T.C for multi-variables functions. Can we rewrite a Riemann integral for a
multi-variable function into several one dimensional Riemann integrals by iterating?

For example, let D = [0, 1] × [0, 1] ⊆ R2 and consider the three integrals∫
D

f (x, y) dA,
∫ 1

0

Ä∫ 1

0
f (x, y) dx

ä
dy,

∫ 1

0

Ä∫ 1

0
f (x, y) dy

ä
dx.

Are those integrals equal?

Example 6.3.1. Let D = [0, 1] × [0, 1] and f (x, y) =

{
1 if x =

1
2
, y ∈ Q

0 otherwise.
Then

∫
D

f (x, y) dA = 0 (Check it!)

For any y ∈ [0, 1], the function f y(x) := f (x, y) = 0 (except perhaps at a single point x =
1
2

).

Hence,
∫ 1

0
f y(x, y) dx = 0 for any y ∈ [0, 1]. Then

∫ 1

0

Ä∫ 1

0
f (x, y) dx

ä
=

∫ 1

0
0 dy = 0.
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For any x ∈ [0, 1], consider the function fx(y) := f (x, y). If x =
1
2

, f1/2(y) = f (
1
2
, y) =

ß
1 y ∈ Q
0 y ∈ [0, 1]\Q.

Hence f1/2(y) is not (Riemann) integrable and
∫ 1

0
f (x, y) dy is not defined when x =

1
2

. Thus,

we cannot compute
∫ 1

0

Ä∫ 1

0
f (x, y) dy

ä
dx.

Note that for a function, the lower and upper integrals are always defined. We will solve
the problem of undefined integrals by using upper and lower integrals. Let’s start with the case
n = 2 and D = [a, b] × [c, d].

Definition 6.3.2. Let D = [a, b] × [c, d] and f : D → R be bounded. For a fixed x ∈ [a, b],
f (x, ·) is a function from [c, d] into R.∫ d

c

f (x, y) dy := the lower integral of f (x, ·).

and ∫ d

c
f (x, y) dy := the upper integral of f (x, ·).

If
∫ d

c
f (x, y) dy =

∫ d

c
f (x, y) dy, we write

∫ d

c
f (x, y) dy = the integral of f (x, ·) over [c, d].

Similarly, we can also define∫ b

a

f (x, y) dx,
∫ b

a
f (x, y) dx and

∫ b

a
f (x, y) dx.

Lemma 6.3.3. Let D = [a, b] × [c, d] be a rectangle in R2 and f : D→ R be bounded. Then∫
D

f (x, y) dA
(∗)
≤
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx ≤
∫ b

a

Ä∫ d

c
f (x, y) dy

ä
dx ≤

∫
D

f (x, y) dA

and ∫
D

f (x, y) dA ≤
∫ d

c

Ä∫ b

a

f (x, y) dx
ä

dy ≤
∫ d

c

Ä∫ b

a
f (x, y) dx

ä
dy ≤

∫
D

f (x, y) dA

Proof. It suffices to prove (∗). By the definition of the lower integral
∫

D

f (x, y) dA = sup
P

L(P, f ).

For given ε > 0, there exist partitions Px =
{

a = x0 < · · · < xn = b
}

of [a, b], Py =
{

c = y0 <
· · · < ym = d

}
of [c, d] and P =

{
△i j = [xi−1, xi] × [y j−1, y j]

∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

of D such
that ∫

D

f (x, y) dA − ε < L(P, f ).
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Then ∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx =
∫ b

a

Ä m∑
j=1

∫ y j

y j−1

f (x, y) dy
ä

dx (Check!)

=

n∑
i=1

∫ xi

xi−1

Ä m∑
j=1

∫ y j

y j−1

f (x, y) dy
ä

dx

≥
n∑

i=1

m∑
j=1

∫ xi

xi−1

Ä∫ y j

y j−1

f (x, y) dy
ä

dx

≥
n∑

i=1

m∑
j=1

∫ xi

xi−1

Ä∫ y j

y j−1

inf
(x,y)∈△i j

f (x, y)

constant

dy
ä

dx

=

n∑
i=1

m∑
j=1

inf
(x,y)∈△i j

f (x, y) (xi − xi−1)(y j − y j−1)
=V(△i j)

= L(P, f )

>

∫
D

f (x, y) dA − ε.

Since ε is arbitrary, ∫
D

f (x, y) dA ≤
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx.

□

Theorem 6.3.4. Let D = [a, b] × [c, d] be a rectangle in R2 and f : D → R be Riemann
integrable. Then

(1) the functions ϕ(x) =
∫ d

c
f (x, y) dy and ψ(x) =

∫ d

c
f (x, y) dy are Riemann integrable over

[a, b];

(2) the functions ρ(y) =
∫ b

a
f (x, y)dx and σ(y) =

∫ b

a
f (x, y) dx are Riemann integrable over

[c, d], and

(3) The integral of f over D∫
D

f (x, y) dA =

∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx =
∫ b

a

Ä∫ d

c
f (x, y) dy

ä
dx

=

∫ d

c

Ä∫ b

a

f (x, y) dx
ä

dy =
∫ d

c

Ä∫ b

a
f (x, y) dx

ä
dy

Proof. (1) To prove ϕ(x) =
∫ d

c
f (x, y) dy is integrable over [a, b]. That is, to prove

∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx =
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx.
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By Lemma6.3.3,∫
D

f (x, y) dA
6.3.3
≤
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx ≤
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx (6.2)

≤
∫ b

a

Ä∫ d

c
f (x, y) dy

ä
dx

6.3.3
≤
∫

D
f (x, y) dA.

Since f is Riemann integrable over D,∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx =
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx.

(2) By the similar results for
∫ d

c
f (·, y) dy,

∫ b

a

f (x, ·) dx,
∫ b

a
f (x, ·) dx, the statement (2) is

proved.

(3) The proof of (3) is direct from (6.2).
□

Theorem 6.3.5. (Fubini’s Theorem) Let D = [a, b] × [c, d] ⊆ R2 and f be Riemann integrable
over D. Suppose that for each x ∈ [a, b], the function f (x, ·) is integrable on [c, d] and ϕ(x) =∫ d

c
f (x, y) dy is integrable on [a, b]. ThenÄ "

D
f (x, y) dA

double integrals

ä
=

∫
D

f (x, y) dA =
∫ b

a

Ä∫ d

c
f (x, y) dy

ä
dx

iterated integrals

.

Likewise, if f (·, y) is integrable on [a, b] and the function ψ(y) =
∫ b

a
f (x, y) dx is integrable on

[c, d], then "
D

f (x, y) dA =
∫ d

c

Ä∫ b

a
f (x, y) dx

ä
dy.

Remark. (1) We usually use∫ b

a

∫ d

c
f (x, y) dydx

∫ b

a

Ä∫ d

c
f (x, y) dy

ä
dx∫ b

a

∫ d

c
f (x, y) dydx to denote

∫ b

a

Ä∫ d

c
f (x, y) dy

ä
dx∫ b

a

∫ d

c

f (x, y) dydx
∫ b

a

Ä∫ d

c

f (x, y) dy
ä

dx

...
and so on

(2) In the viewpoint of the concept of integral"
D

f (x, y) dA =
∫

D
f (x) dA =

∫
D

f (x, y) d(x, y)
dA

,
∫ b

a

∫ d

c
f (x, y) dydx
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Remark.

f (x, y) is integrable over D =⇒
∫ d

c

f (x, y) dy and
∫ d

c
f (x, y) dy are integrable over [a, b] and

��AA⇓
∫ b

a

f (x, y) dy and
∫ b

a
f (x, y) dy are integrable over [c, d].

But f (x, ·) is integrable over [c, d]
or f (·, y) is integrable over [a, b].

Example 6.3.6. Let f : [0, 1]×[0, 1]→ R by f (x, y) =

{
1/p if x, y ∈ Q, 0 , x =

q
p

with (p, q) = 1

0 otherwise
.

Then f (x, y) is integrable over D (Skip, not easy to prove) and
"

D
f (x, y) dA = 0.

(1) For y ∈ Qc, f y(x) = f (x, y) ≡ 0 for every x ∈ [0, 1]. Then f (·, y) is integrable.

For y ∈ Q, f y(x) = f (x, y) =

{
1/p if x =

q
p

0 if y ∈ Qc
. Then f (·, y) is integrable over [0, 1].

For x ∈ Qc ∪ {0}, fx(y) = f (x, y) = 0 for every y ∈ [0, 1]. Then f (x, ·) is integrable.

(2) For x =
q
p

with (p, q) = 1, f (x, y) = f (
q
p
, y) =

ß
1/p if y ∈ Q

0 if y ∈ Qc . Then f (x, ·) is not

integrable.

Remark. Suppose that f (x, ·) and f (·, y) are Riemann integrable over [c, d] and [a, b] respec-
tively. It cannot imply that f is Riemann integrable over D. For example

f (x, y) =

{
1 if (x, y) = (

k
2n ,

ℓ

2n ), 0 < k, ℓ < 2n are odd numbers and n ∈ N
0 otherwise

on D = [0, 1] × [0, 1]. For x ∈ [0, 1],

if x ,
k
2n for some n ∈ N and 0 < k < 2n is odd, then f (x, ·) ≡ 0.

if x =
k
2n for some n ∈ N and 0 < k < 2n is odd, then

f (x, y) =

{
1 if (x, y) = (

k
2n ,

1
2n ), (

k
2n ,

3
2n ), · · · , ( k

2n ,
2n − 1

2n )

0 otherwise
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Then f (x, ·) is integrable over [0, 1]. Similarly, f (·, y) is integrable over [0, 1].

Also,
∫ 1

0
f (x, y) dy = 0 =

∫ 1

0
f (x, y) dx. But f is not Riemann integrable over [0, 1]×[0, 1].

Corollary 6.3.7. (1) Let ϕ1, ϕ2 : [a, b] → R be of class C1 such that ϕ1(x) ≤ ϕ2(x) for every
x ∈ [a, b], E =

{
(x, y)

∣∣ a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)
}

and f : E → R be continuous. Then
f is Riemann integrable over E and∫

E
f (x, y) dA =

∫ b

a

Ä∫ ϕ2(x)

ϕ1(x)
f (x, y) dy

ä
dx.

(2) Let ψ1, ψ2 : [c, d] → R be of class C1 such that ψ1(y) ≤ ψ2(y) for every y ∈ [c, d], E ={
(x, y)

∣∣ c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)
}

and f : E → R be continuous. Then f is Riemann
integrable over E and ∫

E
f (x, y) dA =

∫ d

c

Ä∫ ψ2(y)

ψ1(y)
f (x, y) dx

ä
dy.

Proof. (1) Since ϕ1 and ϕ2 are of class C1, then graphs of ϕ1 and ϕ2,
{(

x, ϕ1(x)
) ∣∣ a ≤ x ≤ b

}
and

{(
x, ϕ2(x)

) ∣∣ a ≤ x ≤ b
}

have volume zero.

Also, the left and right sides of E, {a} × [ϕ1(a), ϕ2(a)] and {b} × [ϕ1(b), ϕ2(b)], have volume
zero. Then boundary of E has volume zero.
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Let M = max
a≤x≤b

ϕ2(x) and m = min
a≤x≤b

ϕ1(x). Hence, f̄ E is continuous on [a, b]× [m,M]\∂E and

then f̄ E is integrable over [a, b] × [m,M].

On the other hand, for every x ∈ [a, b],
f̄ E(x, ·) is continuous on [m,M] except two
points ϕ1(x) and ϕ2(x). Hence, f̄ E(x, ·) is in-
tegrable over [m,M] and∫ M

m
f̄ E(x, y) dy =

∫ ϕ2(x)

ϕ1(x)
f (x, y) dy.

By the Fubini Theorem,∫
E

f (x, y) dxdy =
∫

[a,b]×[m,M]
f̄ E(x, y) dxdy =

∫ b

a

Ä∫ M

m
f̄ E(x, y) dy

ä
dx =

∫ b

a

Ä∫ ϕ2(x)

ϕ1(x)
f (x, y) dy

ä
dx.

(2) Similar as proof of (1)
□

Remark. The corollary is also true if ϕ1, ϕ2, ψ1, ψ2 are of class C instead of C1. (Skip the proof)
Example 6.3.8.

Let E =
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 1, x ≤ y ≤ 1

}
and

f (x, y) = xy. Since f is continuous on E, for every
x ∈ [0, 1], f (x, ·) is continuous on [x, 1]. By Fubini’s
Theorem,

∫
E

f (x, y) dA =
∫ 1

0

Ä∫ 1

x
xy dy

ä
dx =

∫ 1

0
x
(∫ 1

x
y dy

)
dx =

∫ 1

0
x
(1

2
− 1

2
x2) dx =

1
8
.

On the other hand, E
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ y, 0 ≤ y ≤ 1

}
.∫

E
f (x, y) dA =

∫ 1

0

Ä∫ y

0
xy dy

ä
dy =

∫ 1

0
y
(∫ y

0
x dx

)
dy =

1
8
.

Example 6.3.9.

Let E =
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 1,

√
x ≤ y ≤ 1

}
and f (x, y) = ey3

. Since f is continuous on E,
by Fubini’s Theorem,∫

E
ey3

dA =
∫ 1

0

∫ 1

√
x

ey3
dydx =??
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We don’t know how to integrate ey3
. On the other hands, E =

{
(x, y) ∈ R2

∣∣ 0 ≤ x ≤ y2, 0 ≤ y ≤ 1
}

,∫
E

ey3
dA =

∫ 1

0

Ä∫ y2

0
ey3

dx
ä

dy =
∫ 1

0
y2ey3

dy =
e − 1

3
.

Theorem 6.3.10. (Fubini’s Theorem) Let A ⊆ Rn and B ⊆ Rm be rectangles, and f : A×B→ R
be bounded. For x ∈ Rn and y ∈ Rm, write z = (x, y). Then∫

A×B

f (z) dz ≤
∫

A

Ä∫
B

f (x, y) dy
ä

dx ≤
∫

A

Ä∫
B

f (x, y) dy
ä

dx ≤
∫

A×B
f (z) dz

and ∫
A×B

f (z) dz ≤
∫

B

Ä∫
A

f (x, y) dx
ä

dy ≤
∫

A

Ä∫
B

f (x, y) dx
ä

dy ≤
∫

A×B
f (z) dz.

In particular, if f is Riemann integrable over A × B, then∫
A×B

f (z) dz =
∫

A

Ä∫
B

f (x, y) dy
ä

dx =
∫

A

Ä∫
B

f (x, y) dy
ä

dx

=

∫
B

Ä∫
A

f (x, y) dx
ä

dy =
∫

B

Ä∫
A

f (x, y) dx
ä

dy

Proof. (Ignore)(see 2-dimensional case) □

Corollary 6.3.11. Let S ⊆ Rn be a bounded set with volume, ϕ1, ϕ2 : S → R be continuous
such that ϕ1(x) ≤ ϕ2(x) for every x ∈ S . Let E =

{
(x, y) ∈ Rn × R

∣∣ x ∈ S ϕ1(x) ≤ y ≤ ϕ2(x)
}

and f : E → R be continuous. Then f is Riemann integrable over E and∫
E

f (x, y) d(x, y) =
∫

S

Ä∫ ϕ2(x)

ϕ1(x)
f (x, y) dy

ä
dx

Proof. (Ignore) □
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Example 6.3.12. Let E =
{

(x, y, z) ∈ R3
∣∣ x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1

}
and

f (x, y, z) = (x + y + z)2. Then E =
{

(x, y, z)
∣∣ 0 ≤ z ≤ 1 − x − y, 0 ≤ y ≤ 1 − x, 0 ≤ x ≤ 1

}
.

Let S =
{

(x, y) ∈ R2
∣∣ 0 ≤ y ≤ 1− x, 0 ≤ x ≤ 1

}
and define ϕ1(x, y) = 0 and ϕ2(x, y) = 1− x−y.

We have ∫
E

f (x, y, z) d(x, y, z) =
∫

S

Ä∫ 1−x−y

0
(x + y + z)2 dz

ä
d(x, y)

=

∫
S

1
3
[
1 − (x + y)3] d(x, y)

=

∫ 1

0

Ä∫ 1−x

0

1
3
[
1 − (x + y)3] dy

ä
dx

=

∫ 1

0

1
4
− x

3
+

x4

12
dx =

1
10
.

Example 6.3.13. Let ωn be the volume of the n-dimensional unit ball. Find the formula of ωn.

For n = 1, ω1 = 2

For n = 2, ω2 = π

For n = 3, let D =
{

(x, y) ∈ R2
∣∣ x2 + y2 ≤ 1

}
.

Let

E =
{

(x, y, z) ∈ R3
∣∣ 0 ≤ x2 + y2 + z2 ≤ 1

}
=
¶

(x, y, z) ∈ R3
∣∣ − √

1 − x2 − y2 ≤ z ≤
√

1 − x2 − y2, −
√

1 − x2 ≤ y ≤
√

1 − x2,−1 ≤ x ≤ 1
©



6.3. THE FUBINI THEOREM 275

ω3 =

∫
E
1E(x, y, z) d(x, y, z) =

∫
D

∫ √1−x2−y2

−
√

1−x2−y2
1 dzd(x, y)

=

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √1−x2−y2

−
√

1−x2−y2
1 dzdy

the volume(area) o f the 2−dimensional
disk with radius

√
1−x2 = ω2(

√
1−x2)2

dx =
∫ 1

−1
ω2(1 − x2 dx)

= ω2(x − 1
3

x3)
∣∣∣1
−1
=

4
3
ω2 =

4
3
π.

How about ωn?

Consdier

En =
¶

(x1, · · · , xn) ∈ Rn
∣∣∣ 0 ≤ x2

1 + x2
2 + · · · + x2

n ≤ 1
©

=
¶

(x1, · · · , xn) ∈ Rn
∣∣∣ − »1 − x2

1 − · · · − x2
n−1 ≤ xn ≤

»
1 − x2

1 − · · · − x2
n−1,

−
»

1 − x2
1 − · · · − x2

n−2 ≤ xn−1 ≤
»

1 − x2
1 − · · · − x2

n−2, · · · ,

−
»

1 − x2
1 ≤ x2 ≤

»
1 − x2

1, −1 ≤ x1 ≤ 1
©

ωn =

∫
En

1En(x1, · · · , xn) d(x1, · · · , xn)

=

∫ 1

−1

∫ √1−x2
1

−
√

1−x2
1

∫ √1−x2
1−x2

2

−
√

1−x2
1−x2

2

∫
· · ·
∫ √1−x2

1−···−x2
n−1

−
√

1−x2
1−···−x2

n−1

1 dxndxn−1 · · · dx2

the volume o f (n−1)−dimensional ball with radius
√

1−x2
1

= ωn−1(
√

1−x2
1)n−1 = ωn−1(1−x2

1)
n−1

2

dx1

Then

ωn = ωn−1

∫ 1

−1
(1 − x2)

n−1
2 dx

= ωn−1

∫ π
2

− π2
cosn θ dθ

= 2ωn−1

∫ π
2

0
cosn θ dθ = 2ωn−1

n − 1
n

∫ π
2

0
cosn−2 θ dθ

= 2 ·
(
2ωn−2

∫ π
2

0
cosn−1 θ dθ

)
= ωn−1

∫ π
2

0
cosn θ dθ

Since

∫ π
2

0
cosn θ dθ =


(n − 1)(n − 3) · · · 2

n(n − 2)
· · · 3
∫ π

2

0
cos θ dθ if n is odd

(n − 1)(n − 3) · · · 1
n(n − 2)

· · · 2
∫ π

2

0
1 dθ if n is even

,
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we have ωn =
2ωn−2

n
π. Therefore,

ωn =


(2π)

n−1
2

n(n − 2) · · · 3ω1 if n is odd

(2π)
n−2

2

n(n − 2) · · · 4ω2 if n is even

Example 6.3.14. Find the mass of the tetrahedron T formed by the three coordinate planes and
the plane x + y + 2z = 2 if the mass density is ρ(x, y, z) = e−z.

M =
∫

T
e−z dV.

∫ 2

0

∫ 2−x

0

∫ 1−(x+y)/2

0
e−z dzdydx (6.3)

or
∫ 1

0

∫ 2−2z

0

∫ 2−y−2z

0
e−z dxdydz

or
∫ 2

0

∫ 1−(y/2)

0

∫ 2−y−2z

0
e−z dxdzdy

(6.3) =
∫ 2

0

∫ 2−x

0
1 − e

x+y
2 −1 dydx =

∫ 2

0
2e

x
2−1 − x dx = 2 − 4e−1.

Example 6.3.15. Evaluate∫ 2

0

∫ 1

y/2
ye−x3

dxdy =
∫

D
ye−x3

dA

=

∫ 1

0

∫ 2x

0
ye−x3

dydx =
∫ 1

0
2x2e−x3

dx

=
2
3

(1 − e−1)

wher D is the region bounded by x = 1, y = 2x
and x-axis.

Remark. In general,
∫ b

a

∫ d

c
f (x, y) dydx ,

∫ d

c

∫ b

a
f (x, y) dxdy (See exercise13 in “Folland”,

page 176 or lecture note Problem 7.8)

■ Some Applicaitons

(1) If f (x, y) ≥ 0,
!

S
f dA can be interpreted as the volume of the region in R3 between the

graph of f and the xy-plane that lies over the base region S .
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(2) Evaluate a quantity of some substance (ex: mass, electric charge, chemical compound)

M =
∫

S
ρ(x, y, z) d(x, y, z), S ⊆ R3

(3) centroid of the region S . For a region (or an object) S ⊆ R3 and the density function
ρ(x, y, z), the mass of the object is

M =
∫

S
ρ(x, y, z) d(x, y, z)

and the centroid (x̄, ȳ, z̄) of S is

x̄ =
1
M

∫
S

xρ(x, y, z) d(x, y, z),

ȳ =
1
M

∫
S

yρ(x, y, z) d(x, y, z),

z̄ =
1
M

∫
S

zρ(x, y, z) d(x, y, z),

(4) moment of inertia(轉動慣量)

Let r(x, y, z) = distance from (x, y, z) to L.

I =
∫

S
r2(x, y, z)ρ(x, y, z) d(x, y, z)

For example, L is z-axis, then r(x, y, z) =
√

x2 + y2.

6.4 Change of Variables
Recall:

Differentiation Integration

Product Rule ←→ Integration by parts

Chain Rule
F.T.C←→ Change of variables
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For h(x) = f
(
g(x)

)
, let u = g(x), then du = g′(x) dx. By the change of variables and F.T.C,

∫ g(b)

g(a)
f (u) du =

∫ b

a
f
(
g(x)

)
g′(x) dx =

∫ b

a
h(x)g′(x) dx.

For example,

∫ 2

1
x2ex3

dx u=x3

=

∫ 8

1
eu 1

3
du =

1
3

∫ u(2)

u(1)
f (u) duÄ

f (x) = ex, u(x) = x3, h(x) = f
(
u(x)

)
= ex3

ä
Note. If g : [a, b]→ R is differentiable and increasing, then g′(x) ≥ 0 and g(a) < g(b).∫ b

a
f
(
g(x)

)
|g′(x)| dx =

∫ b

a
f
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
f (u) du.

If g : [a, b]→ R is differentiable and decreasing, then g′(x) ≤ 0 and g(a) > g(b).∫ b

a
f
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
f (u) du.

We have ∫ b

a
f
(
g(x)

)
|g′(x)| dx =

∫ g(a)

g(b)
f (u) du.

Hence, in each case, ∫
[a,b]

f
(
g(x)

)
|g′(x)| dx =

∫
g
(

[a,b]
) f (u) du.

Geometrically, in 1-dimension,
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∫ g(b)

g(a)
f (u) du ≈

n∑
i=1

f (u∗i ) (ui − ui−1)

where u∗i = g(x∗i ) =

n∑
i=1

f
(
g(x∗i )

)
g′(ti)(xi − xi−1)
ui−ui−1=g(xi)−g(xi−1)

(M.V.T ) =g′(ti)(xi−xi−1)

∫ b

a
h(x) dx ≈

n∑
i=1

h(xi)(xi − xi−1)

=

n∑
i=1

f
(
g(x∗i )

)
(xi − xi−1)

△ui

△xi
≈ g′(ti)

In 2-dimensions,

∫
D

h(x, y) d(x, y) ≈
∑
△∈P

h(x∗, y∗) A(△) where (x∗, y∗) ∈ △∫
g(D)

f (u, v) d(u, v) ≈
∑
□∈Q

f (u∗, v∗) A(□) where (u∗, v∗) = g(x∗, y∗) ∈ □

=
∑
△∈P

f
(
g(x∗, y∗)

)A(□)
A(△)

A(△).
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A(u, v)
A(x, y)

=
A(□)
A(△)

=
^
□

⇓

lim
∥P∥→0

A(u, v)
A(x, y)

=

∣∣∣∂(g1, g2)
∂(x, y)

∣∣∣

As ∥P∥ → 0, ∥Q∥ → 0.

Heurestically, ∫
g(D)

f (u, v) d(u, v) =
∫

D
f
(
g(x, y)

)∣∣Jg(x, y)
∣∣ d(x, y).

Note: Some situations need to be avoided. For example, g cannot be degenerated.

In general, for E ⊆ Rn, g : E → g(E) (one-to-one) and f : g(E)→ R. We may guess∫
g(E)

f (u) du =
∫

E
f
(
g(x)

)
?? dx.

The term ?? is supposed to represent ”the
rate of change of volumes between □ and g(□)
under the transform g”.

Example 6.4.1. Let g(r, θ) = (r cos θ, r sin θ).
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Then ∫
g(E)

f (x, y) dxdy =
∫

E
f (r cos θ, r sin θ) r drdθ

or ∫
R

f (x, y) dxdy =
∫

g−1(R)
f (r cos θ, r sin θ) r drdθ.

Theorem 6.4.2. (Change of Variables Formula) Let U ⊆ Rn be an open bounded set, and
g : U → Rn be an one-to-one C1 mapping with C1 inverse; that is, g−1 : g(U) → U is also
continuously differentiable. Assume that the Jacobian of g , Jg = det

( [
Dg

] )
, does not vanish

inU, and E ⊂⊂ U has volume. Then g(E) has volume. Moreover, if f : g(E) → R is bounded
and integrable, then ( f ◦ g)|Jg| is integrable over E and∫

g(E)
f (y) dy =

∫
E

(
f ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx =

∫
E

(
f ◦ g

)
(x)

∣∣∣∂(g1, · · · , gn)
∂(x1, · · · , xn)

∣∣∣ dx

Proof. (Skip the proof) we will only show the special case g = A ∈ Mn(R). □
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Sketch the proof (Consider the case that f is a continuous function)

• If the mesh size is sufficiently small, f is (almost) a constant function on each △ (e.g. let
f ≡ ave( f ) on △). Hence, we may assume f is a constant function and prove that

V
(
g(E)

)
=

∫
g(E)

1g(E)(y) dy =
∫

E
1g(E)

(
g(x)

)
|Jg(x)| dx =

∫
E
|Jg(x)| dx

• If the mesh size is sufficiently small, since g ∈ C1, for x, x0 ∈ △,

g(x) ≈ g(x0) + Dg(x0)(x − x0)
⇒ g(△) ≈ g(x0) + L(△′)

L=Dg(x0)

where △′ = △ − x0

⇒ V
(
g(△)

)
≈ V

(
L(△′)

)
= V

(
L(△)

)
L is linear

Since g ∈ C1,
Jg(x) ≈ Jg(x0) = det

[
Dg(x0)

]
.

Hence, we may assume that g is a linear map. That is, g(x) = Lx for some L ∈ B
(
Rn;Rn

)
and thus Dg(x) = L for every x ∈ Rn. To prove

V
(
g(□)

)
= V

(
L(□)

)
=

∫
□
| det L| dx.
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Let g(x) = Lx for some L ∈ B
(
Rn;Rn

)
. Then Dg(x) = L for every x ∈ R.

Question: What’s the intuition of the rate of change of volumes under the transformation?
Question: Why is the rate equal to |Jg(x)| =

∣∣ det
[
Dg(x)

] ∣∣?
det A =

∑
σ∈S n

sgn(σ)
n∏

i=1

aiσ(i).

■ Gaussian Eliminationï
a b e
c d f

ò
−→
ï ò

−→ · · · −→
ï

1 0 g
0 1 h

ò
■ Gaussian Eliminationï

a b 1 0
c d 0 1

ò
−→
ï ò

−→ · · · −→
ï

1 0 e f
0 1 g h

ò
Note. By the observation of Gaussian elimination, we find that every linear map can be
expressed as the composition of several “elementary transformations” as follows.

■ Three elementary transformations:

(1) g(x1, · · · , xi, · · · , x j, · · · , xn) = (x1, · · · , x j, · · · , xi, · · · , xn)

(2) g(x1, · · · , xi, · · · xn) = (x1, · · · , cxi, · · · , xn)

(3) g(x1, · · · , xi, · · · , x j, · · · , xn) = (x1, · · · , xi + cx j, · · · , x j, · · · , xn)
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For example, g ∈ B(R2;R2),ï
a b
c d

ò
⇆¬

⇒
ï
0 1
1 0

ò ï
a b
c d

ò
=

ï
c d
a b

òï
a b
c d

ò
×α

⇒
ï
1 0
0 α

ò ï
a b
c d

ò
=

ï
a b
αc αd

òï
a b
c d

ò
×α+¬

⇒
ï
1 α
0 1

ò ï
a b
c d

ò
=

ï
a + αc b + αd

c d

ò
Lemma 6.4.3. Let g ∈ B

(
Rn;R

)
and A ⊆ Rn be a set which has volume. Then g(A) has volume

and

V
(
g(A)

)
=

∫
g(A)

1g(A)(y) dy =
∫

A
|Jg(x)| dx.

Proof. For every g ∈ B
(
Rn;Rn

)
, there exists L ∈ Mn(R) such that g(x) = Lx for every x ∈ A.

(I) A = [a1, b1] × · · · × [an, bn] is a rectangle.
Case (I-1):

L =



1 0 · · · · · · · · · · · · · · · · · · 0

0 1
...

...
. . .

...
... 0 · · · 1

...
...

...
. . .

...
...

... 1 · · · 0
...

...
. . .

...
...

. . .
...

0 · · · · · · · · · · · · · · · · · · · · · 1



← ith row

← jth row

↑ ↑
ith column jth column

That is, g(x1, · · · , xi, · · · , x j, · · · , xn) = (x1, · · · , x j, · · · , xi, · · · , xn). Then det(L) = −1.
Thus,

L(A) = [a1, b1]×· · ·×[ai−1, bi−1]×[a j, b j]×[ai+1, bi+1]×· · ·×[a j−1, b j−1]×[ai, bi]×[a j+1, b j+1]×· · ·×[an, bn]

Hence, V
(
L(A)

)
= V(A) =

∣∣ det(L)
∣∣V(A).
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Case (I-2):

L =



1
. . . 0

1
c

1

0 . . .

1


← ith row

↑
ith column

That is, g(x1, · · · , xn) = (x1, · · · , cxi, · · · , xn). Then, det(L) = c. Thus,

L(A) = [a1, b1] × · · · × [ai−1, bi−1] × [cai, cbi] × [ai+1, bi+1] × · · · × [an, bn].

Hence, V
(
L(A)

)
= |c|V(A) =

∣∣ det(L)
∣∣V(A).

Case (I-3):

L =



1
. . .

1 c
. . .

1

0 . . .

1


← ith row

↑
jth column

That is, g(x1, · · · , xn) = (x1, · · · , xi + cx j, · · · , xn). Then, det(L) = 1. Thus,

L(A) =
⋃

x j∈[a j,b j]

[a1, b1] × · · · × [ai−1, bi−1] × [ai + cx j, bi + cx j] × [ai+1, bi+1]

× · · · × [a j−1, b j−1] × {x j} × [a j+1, b j+1] × · · · × [an, bn].
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Let D = [a1, b1]×· · ·×[ai−1, bi−1]×[ai+1, bi+1]×· · ·×[an, bn] and x̂i = (x1, · · · , xi−1, xi+1 · · · , xn),
by the Fubini’s Theorem,

V
(
L(A)

)
=

∫
D

Ä∫ bi+cx j

ai+cx j

1 dxi

ä
dx̂i = V(A) =

∣∣ det(L)
∣∣V(A).

Let g ∈ B
(
Rn;Rn

)
, then g = g1 ◦ · · · ◦ gk is a composition of several elementary trans-

formations g1, · · · , gk where eahc gi is one of the transformation in Case (I-1) - Case (I-3).

Let L, L1, · · · , Lk ∈ Mn(R) be the matrics corresponding g, g1, · · · , gk. Then det(Li) = Jgi(x)
for every x ∈ A.

V
(
g(A)

)
= V

(
g1 ◦ · · · ◦ gk(A)

)
=
∣∣ det(L1)

∣∣V(
g2 ◦ · · · ◦ gk(A)

)
=

∣∣ det(L1)
∣∣∣∣ det(L2)

∣∣V(
g3 ◦ · · · ◦ gk(A)

)
...

=
∣∣ det(L1)

∣∣ · · · ∣∣ det(Lk)
∣∣V(A)

=
∣∣ det(L1 ◦ L2 ◦ · · · ◦ Lk)

∣∣V(A)
=

∣∣ det(L)
∣∣V(A)

=
∣∣Jg(x)

∣∣V(A)

=

∫
A

∣∣Jg(x)
∣∣ dx.

(II) A is an arbitrary set with volume.

Case (II-1): det(L) = 0.

Let R be a rectangle in Rn such that A ⊆ R. Then L(A) ⊆ L(R). Thus

V
(
L(A)

)
≤ V

(
L(R)

)
=
∣∣ det(L)

∣∣V(R) = 0.

We have
V
(
L(A)

)
= 0 =

∣∣ det(L)
∣∣V(A).

Case (II-2): det(L) , 0.

Since A has volume, 1A is integrable and
∫

A
1A(x) dx = V(A). Then for given ε > 0,

there exists a partition P of A such that

U(P,1A) − L(P,1A) <
ε∣∣ det(L)

∣∣ .
We have ∣∣∣U(P,1A) − V(A)

∣∣∣ < ε∣∣ det(L)
∣∣ and

∣∣∣L(P,1A) − V(A)
∣∣∣ < ε∣∣ det(L)

∣∣ .
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Let

C1 =
{
△ ∈ P

∣∣ △ ∩ A , ∅
}

and
C2 =

{
△ ∈ P

∣∣ △ ⊆ A
}
.

Define R1 =
⋃
△∈C1

△ and R2 =
⋃
△∈C2

△. Then R2 ⊆ A ⊆ R1.

Since det(L) , 0, L is one-to-one. Thus L(△i) and L(△ j)
are not overlapping if △i , △ j for every △i,△ j ∈ P.

We have

V
(
L(R1)

)
= V

(
L(
⋃
△∈C1

△)
)
= V

(⋃
△∈C1

L(△)
)
=
∑
△∈C1

V
(
L(△)

)
=

∣∣ det(L)
∣∣∑
△∈C1

V(△) =
∣∣ det(L)

∣∣U(P,1A)

<
∣∣ det(L)

∣∣V(A) + ε.

Also,

V
(
L(R2)

)
=
∑
△∈C2

V
(
L(△)

)
=

∣∣ det(L)
∣∣∑
△∈C2

V(△) =
∣∣ det(L)

∣∣L(P,1A)

≥
∣∣ det(L)

∣∣V(A) − ε.

Since L(R2) ⊆ L(A) ⊆ L(R1),∫
L(A)

1 dx −
∫

L(A)

1 dx ≤ V
(
L(R1)

)
− V

(
L(R2)

)
< 2ε.

Since ε > 0,
∫

L(A)
1 dx =

∫
L(A)

1 dx and hence 1L(A) is integrable over L(A). Therefore,

L(A) has volume and V
(
L(A)

)
=
∫

L(A)
1L(A) dx =

∣∣ det(L)
∣∣V(A).

□

Example 6.4.4. Let A ⊆ R2 be the region which is bounded by x = 4, y = 1
2 x and x-axis.

f : A→ R be defined by f (x, y) = y
√

x − 2y. Find
∫

A
f (x, y) d(x, y).

Method 1: Let (u, v) = (x, x − 2y) and define g(u, v) = (u,
u − v

2
) = (x, y). Then g is defined

on E ⊆ R2 which is bounded by u = 4, u = v and u-axis. Thus, g : E → A is bijective. The
Jacobian of g is

Jg(u, v) =
∣∣∣∣ 1 0

1
2 −1

2

∣∣∣∣ = −1
2
.
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We have ∫
A

f (x, y) d(x, y) =
∫

g(E)
f (x, y) d(x, y) =

∫
E

f
(
g(u, v)

)∣∣Jg(u, v)
∣∣ d(u, v)

=
1
4

∫
E
(u − v)

√
v du, v =

1
4

∫ 4

0

∫ u

0
(u − v)

√
v dvdu

=
1
4

∫ 4

0

1
15

u
5
2 du =

256
105

Method 2: Let u = y and v = x−2y. Then x = v+2u. Define g(u, v) = (v+2u, u). The Jacobian

is Jg(u, v) =
∣∣∣∣ 2 1

1 0

∣∣∣∣ = −1.

Consider 0 ≤ v + 2u ≤ 4 and 0 ≤ u ≤ 1
2v + u. This implies u ≥ 0, v ≥ 0 and 0 ≤ v + 2u ≤ 4.

The set E is the region in uv-plane which is bounded by u-axis, v-axis and v = −2u + 4. Then
g : E → A is bijective.

We have ∫
A

f (x, y) d(x, y) =
∫

E
u
√

v | − 1| d(u, v) =
∫ 4

0

∫ 2− 1
2 v

0
u
√

v dudv

=

∫ 4

0

√
v
Ä∫ 2− 1

2 v

0
u du
ä

dv

=

∫ 4

0

√
v
(
2 − v +

1
8

v2) dv =
256
105

.
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Example 6.4.5. (Polar Coordinate)

Let x = x0 + r cos θ and y = y0 + r sin θ.

Consider the function

ϕ : (0,R) × (0, 2π)
E

→
{

(x, y)
∣∣ 0 < (x − x0)2 + (y − y0)2 < R2}\{(x, y0)

∣∣ x0 < x < x0 + R
}

D

where ϕ(r, θ) = (x0 + r cos θ, y0 + r sin θ) is bijective from E to D.

The Jacobian is Jϕ(r, θ) =
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r. For f : D→ R, we have

∫
D

f (x, y) d(x, y) =
∫
ϕ(E)

f (x, y) d(x, y)

=

∫
E

f
(
ϕ(r, θ)

)∣∣Jϕ(r, θ)∣∣ d(r, θ)

=

∫ R

0

∫ 2π

0
f
(
ϕ(r, θ)

)
r dθdr

=

∫ R

0

∫ 2π

0
f (x0 + r cos θ, y0 + r sin θ)r dθdr.

Example 6.4.6. (Spherical Coordinate) Define ψ(r, θ, ϕ) = (x0+r cos θ sin ϕ, y0+r sin θ sin ϕ, z0+

r cos ϕ). Let D = (0,R) × (0, 2π) × (0, π) be a rectangle in (r, θ, ϕ)-space. Then ψ is a bijective
from D to B

(
(x0, y0, z0),R

)
a ball in R3. The Jacobian is

Jψ(r, θ, ϕ) =

∣∣∣∣∣∣
cos θ sin ϕ −r sin θ sin ϕ r cos θ cos ϕ
sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ

cos θ 0 −r sin ϕ

∣∣∣∣∣∣ = −r2 sin ϕ.
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Let f : B→ R be Riemann integrable. Then∫
B

f (x, y, z) d(x, y, z) =
∫

D
f
(
ψ(r, θ, ϕ)

)∣∣Jψ(r, θ, ϕ)
∣∣ d(r, θ, ϕ)

=

∫ R

0

∫ 2π

0

∫ π

0
f
(

x0r cos θ sin θ, y0 + r sin θ sin ϕ, z0 + r cos ϕ
)
r2 sin ϕ dϕdθdr

Example 6.4.7. Let P be the region bounded by x− y = 0, x+ 2y = 0, x− y = 1 and x+ 2y = 6.

Find
∫

P
xy dA.

Proof. Let u = x − y and v = x + 2y. Then x = 1
3 (2u + v) and y = 1

3 (v − u). Define ϕ(u, v) =(
1
3 (2u + v), 1

3 (v − u)
)

and R = [0, 1] × [0, 6]. Then ϕ : R → P is one-to-one and onto and the
Jacobian is

Jϕ(u, v) =

∣∣∣∣∣∣∣∣∣
2
3

1
3

−1
3

1
3

∣∣∣∣∣∣∣∣∣ =
1
3
.

We have ∫
P

xy d(x, y) =
∫

R

1
3

(2u + v) · 1
3

(v − u) · 1
3

d(u, v)

=
1

27

∫ 1

0

∫ 6

0
2 − u2 + uv + v2 dvdu

=
77
27
.
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□

Example 6.4.8. Let S be the region bounded by x-axis, x = 1− 1
4y2, x = 1

4y2−1 and x = 4− 1
16y2.

Find
∫

S
xy d(x, y).

Proof. Let ϕ(u, v) = (u2 − v2, 2uv) = (x, y) and R =
{

(u, v)
∣∣ 1 ≤ u ≤ 2, 0 ≤ v ≤ 1

}
. The

Jacobian is

Jϕ(u, v) =
∣∣∣∣ 2u −2v

2v 2u

∣∣∣∣ = 4(u2 + v2).

We have ∫
S

xy dA(x, y) =
∫

[1,2]×[0,1]
(u2 − v2) · 2uv · 4(u2 + v2) dA(u, v)

= 8
∫ 2

1

∫ 1

0
uv(u2 − v2) dvdu

= 40.

□
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6.5 Improper Integrals

Recall: Let f : [a, b]→ R be bounded. We can define
∫ b

a
f (x) dx.

Question: How about the domain is unbounded or f is unbounded?

(1) Let f : R→ R (or f : (a,∞)→ R or f : (−∞, b)→ R). Then we define∫
R

f (x) dx = lim
s→−∞
t→∞

∫ t

s
f (x) dx.

(or
∫ ∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx or

∫ b

−∞
f (x) dx = lim

s→−∞

∫ b

s
f (x) dx).

(2) Let f (a, b)→ R and lim
x→a+

f (x) = ∞. We define∫ b

a
f (x) dx = lim

t→a+

∫ b

t
f (x) dx.

How about the improper multiple integrals?

For example, f : R2 → R is bounded (and continuous). What is
∫
R2

f (x, y) dA?∫
R2

f (x, y) dA ??
=

∫ ∞

−∞

∫ ∞

−∞
f (x, y) dxdy = lim

s1,s1→−∞
t1,t2→∞

∫ t1

s1

∫ t2

s2

f (x, y) dxdy.

The values could be equal, but it is not the definition of
∫
R2 f (x, y) dA.

Idea:
∫
R2

f (x) dA = lim
r→∞

∫
Dr

f (x) dA where Dr are a family of sets with volumes that fill

out R2 as r → ∞.

Difficulty: For different families Dr, the limit lim
r→∞

∫
Dr

f (x) dA may not be equal.

In order to discuss the existence of the above limits and the integrals, we start with the
assumption that all functions are nonnegative and all sets have volumes.

(1) Let D ⊆ Rn be bounded and f : D→ R be unbounded. Define fk : D→ R by

fk(x) =
ß

f (x) if f (x) ≤ k
k otherwise = min

(
f (x), k

)
( fk is usually denoted by f ∧ k)
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Then fk is bounded on D for each k and fk+1(x) ≥ fk(x) for each k ∈ N and for every
x ∈ D. Suppose that each fk is integrable over D. Then the sequence

{ ∫
D

fk(x) dx
}∞

k=1
is increasing and hence we can consider its limit and define the improper integral∫

D
f (x) dx = lim

k→∞

∫
D

fk(x) dx.

(2) Let D ⊆ Rn be unbounded, f : D → R. Let D be the union of an increasing sequence
of sets U1,U2, · · · such that

D =
∞⋃

k=1

Uk (U1 ⊆ U2 · · · )

where each Uk has volume and f is integrable on each Uk. Then the sequence{ ∫
Uk

f (x) dx
}∞

k=1 is increasing. Hence the limit lim
k→∞

∫
Uk

f (x) dx exists, provided that

we allow∞ as a value.

Remark. Suppose that
{

Ũk
}∞

k=1 is another sequence of sets satisfying the above conditions.
Then

lim
k→∞

∫
Uk

f (x) dx = lim
k→∞

∫
Ũk

f (x) dx.

Definition 6.5.1. Let A ⊆ Rn be a set with volume and f : A → R be nonnegative. Let
{Bk}∞k=1 ⊆ Rn be any sequence of bounded sets with volumes satisfying

(i) Bk ⊆ Bk+1 for every k ∈ N

(ii) for every R > 0, B(0,R) ⊆ Bk when k is sufficiently large.

We define the integral of f over A by∫
A

f (x) dx = lim
k→∞

∫
A∩Bk

(
f ∧ k

)
(x) dx

provided the limit exists (we allow∞ as a limit) and where the limit is independint of the choice
of the sequence {Bk}∞k=1. We say that “ f is integrable over A” if the integral converges. That is,∫

A
f (x) dx < ∞.
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Note that we can use the same indices Bk, f ∧ k since f is nonnegative. It may not be
true if f is a general function.

Remark. Let A ⊆ Rn be a set with volume* and f : A→ R be nonnegative.

(1) If f is continuous on A or (at most) discontinuous on a volume zero subset B of A, then
f is integrable over A

??wrong??

.

(2) Suppose that f is integrable over A. To evaluate the improper integral
∫

A
f (x) dx, one can

choose Bk = [−k, k] × · · · × [−k, k] for convenience.

Example 6.5.2. Compute
∫ ∞

−∞
e−x2

dx. Consider

∫
R2

e−(x2+y2) dA = lim
k→∞

∫
[−k,k]×[−k,k]

e−(x2+y2) dA
(Fubini)
= lim

k→∞

∫ k

−k

∫ k

−k
e−(x2+y2) dxdy

= lim
k→∞

∫ k

−k

∫ k

−k
e−x2 · e−y2

dxdy = lim
k→∞

î(∫ k

−k
e−x2

dx
)(∫ k

−k
e−y2

dy
)ó

=
Ä∫ ∞

−∞
e−x2

dx
äÄ∫ ∞

−∞
e−y2

dy
ä
=
Ä∫ ∞

−∞
e−x2

dx
ä2
.

Since ∫
R2

e−(x2+y2) dA =
∫ ∞

0

∫ 2π

0
e−r2 · r dθdr = π (x = r cos θ, y = r sin θ),∫ ∞

−∞
e−x2

dx =
√
π.

Example 6.5.3. Let E1 =
{

x ∈ Rn
∣∣ 0 ≤ ∥x∥Rn ≤ 1

}
and E2 =

{
x ∈ Rn

∣∣ ∥x∥Rn ≥ 1
}

. For p ∈ R,
find the range of p such that

(1)
∫

E1

∥x∥−p
Rn dx converges

(2)
∫

E2

∥x∥−p
Rn dx converges.

(Exercise)

■ Nonnegative functions

Question: What about the improper integral of functions that are not nonnegative? Let A ⊆ Rn

*If A is unbounded or A has volume∞, then A is suppose to be replaced by A ∩ B(0,R) which has volume.
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be a set with volume and f : A→ R. For L ≤ K and define

fK,L(x) =

 K if f (x) ≥ k
f (x) if L ≤ f (x) ≤ K
L if f (x) ≤ L

Let A be the union of an increasing sequence of sets U1,U2, · · · . That is,

A =
⋃
i=1

Ui (U1 ⊆ U2 ⊆ · · · )

where each Ui has volume and fK,L is integrable over Ui for every L ≤ K and i ∈ N. Consider∫
Ui

fK,L(x) dx. If f is integrable over A, then

∣∣∣∫
Ui

fK,L(x) dx −
∫

A
f (x) dx

∣∣∣→ 0 as K, i→ ∞ and L→ −∞

Definition 6.5.4. Let A ⊆ Rn be a set with volume and f : A→ R be a function. We say that “ f
is integrable over A” if for each sequence {Bi}∞i=1 ⊆ Rnof bounded sets with volume satisfying

(1) Bi ⊆ Bi+1 for every i ∈ N

(2) for every R > 0 , B(0,R) ⊆ Bi when i is sufficiently large then the limit

lim
i→∞
K→∞
L→−∞

∫
A∩Bi

fK,L(x) dx

exists.

(Another viewpoint for nonnegative functions) Let f : A→ R. Define f +, f − : A→ R by

f +(x) =
ß

f (x) if f (x) ≥ 0
0 if f (x) ≤ 0 and f −(x) =

ß
0 if f (x) ≥ 0
− f (x) if f (x) ≤ 0
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Remark. (1) f +, f − are nonnegative.

(2) f +(x) = max{ f (x), 0} and f −(x) = max{− f (x), 0
}

.

(3) | f | = f + + f − and f = f + − f −.

(4) If f is continuous, then so are f + and f −.

Definition 6.5.5. Let A ⊆ Rn be a set with volume and f : A → R be integrable over A. The

improper integral
∫

A
f (x) dx is said to be “absolutely convergent” if

∫
A
| f (x)| dx converges.

Lemma 6.5.6.
∫

A
f (x) dx absolutely converges if and only if f + and f − are integrable over A.

(That is,
∫

A
f +(x) dx < ∞ and

∫
a

f −(x) dx < ∞ .)

Theorem 6.5.7. (Comparison Test) Let A ⊆ Rn be a set with volume and f , g : A → R be
continuous (except possibly on a volume zero set). If | f | ≤ g on A and g is integrable over A,
then f is integrable over A.

Proof. Since | f | = f + + f − ≤ g on A and f + and f − are nonnegative, 0 ≤ f +(x), f −(x) ≤ g(x)
for every x ∈ A.

For every k ∈ N and Dk = [−k, k] × · · · × [−k, k],∫
A∩Dk

(
f + ∧ k

)
(x) dx ≤

∫
A∩Dk

g(x) dx ≤
∫

A
g(x) dx < ∞

g is integrable over A

.

Since
∫

A∩Dk

(
f + ∧ k

)
(x) dx is increasing in k and bounded above, lim

k→∞

∫
A∩Dk

(
f + ∧ k

)
(x) dx

converges. Hence, f + is integrable over A.

Similarly, f − is integrable over A and then f is integrable over A. □

Example 6.5.8. Let f : [0,∞) → R be given by f (x) =
sin x

x2 + 1
. Then | f (x)| ≤ 1

x2 + 1
. Since∫ ∞

0

1
x2 + 1

dx converges, by the comparison test, f is integrable over [0,∞).

Question: Are “Fubini’s Theorem” and “change of variables” still true for improper integrals?

6.6 Fubini’s Theorem and Tonelli’s Theorem
In order to prove the Fubini’s Theorem for improper integral, we will introduce the “Monotone
Convergence Theorem”.
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Theorem 6.6.1. (Monotone Convergence Theorem) Let A ⊆ Rn be a set with volume, f :
A → R be a continuous function (except possibly on a volume zero set) and fn : A → R be
integrable functions such that

(i) fn ≥ fn+1 (or fn ≤ fn+1) for every n ∈ N.

(ii) fn converges pointwise to f

Then ∫
A

f (x) dx = lim
n→∞

∫
A

fn(x) dx.

Theorem 6.6.2. (Fubini) Let A ⊆ Rn and B ⊆ Rm be sets with volumes inRn andRm respectively
and f : A×B→ R be a function such that f (x, ·) is integrable over B for every x ∈ A and f (·, y)
is integrable over A for every y ∈ B. If f is absolutely integrable over A × B, then∫

A×B
f (x, y) d(x, y) =

∫
A

Ä∫
B

f (x, y) dy
ä

dx =
∫

B

Ä∫
A

f (x, y) dx
ä

dy

Proof. (Sketch) Since f (x, ·) is integrable over B for every x ∈ A, f +(x, ·) and f −(x, ·) are inte-
grable over B for every x ∈ A.

By the Fubini’s Theorem, for f + ∧ k and f − ∧ k on Dk = [−k, k] × · · · × [−k, k] = [−k, k]n+m,

∫
A∩[−k,k]n

Ä∫
B∩[−k,k]m

(
f + ∧ k

)
(x, y) dy

ä
dx =

∫
A×B∩[−k,k]n+m

(
f + ∧ k

)
(x, y) d(x, y). (6.4)

Since f +(x, ·) is integrable over B for every x ∈ A and f + is integrable over A × B,∫
B

f +(x, y) dy = lim
k→∞

∫
B∩[−k,k]m

(
f + ∧ k

)
(x, y) dy for every x ∈ A

and ∫
A×B

f +(x, y) d(x, y) = lim
k→∞

∫
A×B∩[−k,k]n+m

(
f + ∧ k

)
(x, y) d(x, y)

Moreover, ∫
A

Ä∫
B

f (x, y) dy
ä

dx = lim
k→∞

∫
A∩[−k,k]n

Ä∫
B∩[−k,k]m

(
f + ∧ k

)
(x, y) dy

ä
dx

since f + is nonnegative. (Check!) Then the theorem is proved. □

(Proof of the Fubini’s Theorem (Improper Integral))

Since f (x, ·) is integrable over B for every x ∈ A, f +(x, ·) and f −(x, ·) are integrable over B
for every x ∈ A. Then(

f + ∧ k
)
(x, ·)↗ f +(x, ·) and

(
f − ∧ k

)
(x, ·)↗ f −(x, ·)
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for every x ∈ A and as k → ∞. Therefore,∫
B∩[−k,k]m

(
f + ∧ k

)
(x, y) dy =

∫
B

(
f + ∧ k

)
(x, y)1[−k,k]m(y) dy

(M.C.T )
↗
∫

B
f +(x, y) dy.

Also, ∫
B∩[−k,k]m

(
f − ∧ k

)
(x, y) dy↗

∫
B

f −(x, y) dy as k → ∞.

Define f +k (x, y) :=
Ä(

f + ∧ k
)
1[−k,k]n×[−k,k]m

ä
(x, y). Then f +k ↗ f +. Hence,∫

A×B
f +(x, y) d(x, y) M.C.T

= lim
k→∞

∫
A×B

f +k (x, y) d(x, y)

= lim
k→∞

∫
(A×B)∩([−k,k]n×[−k,k]m)

(
f + ∧ k

)
(x, y) d(x, y)

(Fubini)
= lim

k→∞

∫
A∩[−k,k]n

Ä∫
B∩[−k,k]m

(
f + ∧ k

)
(x, y) dy

ä
dx

= lim
k→∞

∫
A

Ä∫
B

(
f + ∧ k

)
(x, y) dy

ä
1[−k,k]n(x)

increasing to
∫

B f +(x,y) dy

dx

M.C.T
=

∫
A

Ä∫
B

f +(x, y) dy
ä

dx.

Similarly,
∫

A×B
f −(x, y) d(x, y) =

∫
A

Ä∫
B

f −(x, y) dy
ä

dx. Therefore,

∫
A×B

f (x, y) d(x, y) =
∫

A×B
f +(x, y) d(x, y) −

∫
A×B

f −(x, y) d(x, y)

=

∫
A

Ä∫
B

f +(x, y) dy
ä

dx −
∫

A

Ä∫
B

f −(x, y) dy
ä

dx

=

∫
A

Ä∫
B

f (x, y) dy
ä

dx.

Remark. To apply Fubini’s Theorem, the integrability of f is a necessary condition. That is,∫
A×B

∣∣ f (x, y)
∣∣ d(x, y) < ∞.

Counterexample Let R = [0, 1] × [0, 1] and define

f (x, y) =


xy(x2 − y2)
(x2 + y2)3 if (x, y) ∈ R\(0, 0)

0 if (x, y) = (0, 0)

Let A(x) =
∫ 1

0
f (x, y) dy. For x , 0, set u = x2 + y2,

A(x) =
∫ x2+1

x2

x(2x2 − u)
2u2 du =

x
2(x2 + 1)2 .
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Note that this formula is true for x = 0. Then∫ 1

0

∫ 1

0
f (x, y) dydx =

∫ 2

0
A(x) dx =

1
8
.

On the other hand, let B(y) =
∫ 1

0
f (x, y) dx. For y , 0, set u = x2+y2, we have B(y) =

−y
2(y2 + 1)2 .

This formula remains valid for y = 0.∫ 1

0

∫ 1

0
f (x, y) dxdy =

∫ 1

0
B(y) dy = −1

8
.

Therefore,
∫ 1

0

∫ 1

0
f (x, y) dxdy ,

∫ 1

0

∫ 1

0
f (x, y) dydx.

Question: What happened here?
Answer: The function f is not (absolutely) integrable over R. In fact, f has a bad discontinunity
at (0, 0). ∫

R

∣∣ f (x, y)
∣∣ d(x, y) = 2

∫ 1

0

∫ x

0

xy(x2 − y2)
(x2 + y2)3 =

∫ 1

0

1
8x

dx = ∞.

Theorem 6.6.3. (Change of Variables) LetU ⊆ Rn be an open set with volume, and g : U → Rn

be an one-to-one C1 mapping with C1 inverse (that is, g−1 : g(U) → U is also continuously
differentiable). Suppose that the Jacobian of g, Jg(x), does not vanish inU and f is absolutely
integrable over g(U). Then ( f ◦ g)Jg is absolutely integrable overU and∫

g(U)
f (y) dy =

∫
U

(
f ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx =

∫
U

(
f ◦ g

)∣∣∣ ∂(g1, · · · gn)
∂(x1, · · · , xn)

∣∣∣ dx.

Proof. Let
{
Uk

}∞
k=1 be a sequence of bounded open sets with volumes such that

(i)U =
∞⋃

k=1

Uk (ii)Uk ⊂⊂ U (iii)Uk ⊆ Uk+1 for every k ∈ N.

Define f +k = f + ∧ k and f −k = f − ∧ k. By the change of variables formula for bounded sets and
bounded fucntions, ∫

Uk

(
f ±k ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx =

∫
g(Uk)

f ±k (y) dy.

Since f ±k
(
g(x)

)
1Uk(x)↗ f ±

(
g(x)

)
1U(x) and f ±k (y)1g(U)(y)↗ f ±(y)1g(U)(y) as well as∫

Uk

(
f ±k ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx =

∫
g(Uk)

f ±k (y) ≤
∫

g(U)
f ±(y) dy < ∞.

(Hence,
(

f ±k ◦ g
)
(x)1Uk(x) is integrable overU. ) By the monotone convergence theorem,∫

g(U)
f ±(y) dy M.C.T

= lim
k→∞

∫
g(U)

f ±k (y)1g(U)(y) dy

C.O.V
=

∫
U

(
f ±k ◦ g

)
(x)1Uk(x)

∣∣Jg(x)
∣∣ dx

M.C.T
=

∫
U

(
f ± ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx.
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Hence, ∫
g(U)

f (y) dy =

∫
g(U)

f +(y) dy −
∫

g(U)
f −(y) dy

=

∫
U

(
f + ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx −

∫
U

(
f − ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx

=

∫
U

(
f ◦ g

)
(x)

∣∣Jg(x)
∣∣ dx.

□

Example 6.6.4. Let A be the region in the first quadrant and bounded by xy − x + y = 0 and

x − y = 1 and f (x, y) = x2y2(x + y)e−(x−y)2
. Find

∫
A

f (x, y) d(x, y).

Proof. Let g(x, y) = (u, v) = (xy − x + y, x − y) and E =
{

(u, v) ∈ R2
∣∣ 0 < v < 1, −v < u < 0

}
.

Then the map g : A→ E is one-to-one and onto (hence g−1 : E → A is one-to-one and onto).

∂(u, v)
∂(x, y)

=

∣∣∣∣ y − 1 x + 1
1 −1

∣∣∣∣ = −(x + y).

For (x, y) ∈ Int(A),
∂(u, v)
∂(x, y)

, 0 and Jg−1(x, y) =
∂(x, y)
∂(u, v)

= − 1
x + y

. We have∫
A

f (x, y) d(x, y) =
∫

E
(u + v)2

����(x + y)e−v2

�
�
��

∣∣∣ 1
x + y

∣∣∣ d(u, v)

=

∫ 1

0

∫ 0

−v
(u + v)2e−v2

dudv = −1
6

(
2
e
− 1)

□

Remark. Jg(x, y) → ∞ as (x, y) → (0, 0). Hence, there exists no open set U ⊆ R2 such that
A ⊂⊂ U and g is of class C1 inU.

Remark. The lecture note also introduces another theorem, called “Tornelli’s Theorem”, which
involves the identity of multiple integrals and iterated integrals. In our course, we skip the Tor-
nelli’s theorem and students can take advacecd course to learn it.

The main difference between Fubini’s Thereom and Tornelli’s Theorem is:
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• The Fubini’s Theorem needs that f (x) is absolutely integrable. Hence, the integral
∫

D
f (x) dx

must be a real value.

• The Tornelli’s Theorem needs that f (x) is nonnegative (nonpositive). Hence, the integral∫
D

f (x) dx could be ±∞.
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7.1 Physical Examples

o Simple Harmonic Motion

Simple harmonic motion describes the behavior of the most basic oscillatory system and
is a natural place to start the study of vibrations. For example, simple pendulum, horizaontal
spring.

*The content of this chapter is referred to Fourier Analysis; E. Stein, R. Shakarchi.

303
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Consider the horizontal spring and let y(t) denote the displacement of the mass at time t.
Applying Newton’s law, we have

−ky(t) = my′′(t),

where k > 0 is a given physical quantity called the spring constant and m is the mass. Let
c =
√

k/m. Then the equation becomes

y′′(t) + c2y(t) = 0.

The equation can be solved by

y(t) = y(0) cos ct +
y′(0)

c
sin ct.

Consider
a cos ct + b sin ct = A cos(ct − ϕ)

where A =
√

a2 + b2 is called “amplitude” of the motion, c is its “natural frequency”, ϕ is its
“phase”, and 2π/c is the “period” of the motion.

o Standing and Traveling Waves

■Wave Equation

utt − c2uxx = 0

where c =
√
τ/ρ > 0 is the velocity of the spring, τ is the

tension of the spring, and ρ is the density of the spring.

By changing of “units” in space, x → ax, the spatial scale becomes 0 ≤ x ≤ L → 0 ≤ x ≤ L
a .

Let v(t, x) = u(t, ax), then

vtt −
c2

a2 vxx = 0.

Similarly, we also change the unit in time, t → bt, the temporal scale becomes 0 ≤ t ≤ T →
0 ≤ t ≤ T

b . Let v(t, x) = u(bt, x).
vtt − b2c2vxx = 0.
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Hence, by choosing appropriate constants a, b > 0 such that x → ax and t → bt, we may
assume that the wave equation is

utt − uxx = 0 on 0 ≤ x ≤ π, t ≥ 0.

• Traveling Wave

Observe that if F is any twice differentiable function, then u(x, t) = F(x+t) and u(x, t) = F(x−t)
solve the wave equation. The speed of u(x, t) = F(x − t) is 1 and more forward to the right.

Since utt − uxx = 0 is linear, for every F,G ∈ C2(R),

u(t, x) = F(x + t) +G(x − t)

is a solution. For given initial data, u(0, x) = f (x), ut(0, x) = g(x), the d’Alembert’s formula
gives

u(t, x) =
1
2
[

f (x + t) + f (x − t)
]
+

1
2

∫ x+t

x−t
g(y) dy.

• Superposition of standing waves

First of all, we try to look for special solutions to the wave equation which are of the form
u(x, t) = ϕ(x)ψ(t). In mathematics, this procedure is also called “separation of variables” and
constructs solutions that are called “pure tones”(純音).
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Then by the linearity of the wave equation, we can expect to combine these pure tones into
a more complex combination of sound.

Note that the method of separation of variables gives rise to reduce the PDE problem to an
ODE problem. Plugging ϕ(x)ψ(t) into the wave equation, we have

ϕ(x)ψ′′(t) = ϕ′′(x)ψ(t)

Thus,
ψ′′(t)
ψ(t)

=
ϕ′′(x)
ϕ(x)

= λ

Note that λ is a constant. The wave equation redueces toß
ψ′′(t) − λψ(t) = 0
ϕ′′(x) − λϕ(x) = 0

If the constant λ ≥ 0, the solution ϕ will not oscillate as time varies. Hence, we assume
λ = −m2 < 0. Then we can solve

ψ(t) = A cos mt + B sin mt

and
ϕ(x) = Ã cos mx + B̃ sin mx.

We take into account that the string is attached at x = 0 and x = π. The boundary condition
gives ϕ(0) = ϕ(π) = 0. Hence, Ã = 0, and if B̃ , 0 then m ∈ Z. Moreover, we can absorb the
cases m ≤ 0 into the cases m ≥ 0 and reduce the solution to

um(t, x) =
(
Am cos mt + Bm sin mt

)
sin mx

which is of the form of standing wave.†

†The readers could browse some websites listed below to figure out the overtone.
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch?v=0iJmDhNocaQ

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html
https://www.youtube.com/watch?v=0iJmDhNocaQ
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Since the wave equation is linear, we can construct more solutions by taking linear combinations
of the standing waves um. This technique is called “superposition” and gives the solution of the
wave equation

u(t, x) =
∞∑

m=1

(
Am cos mt + Bm sin mt

)
sin mx.

Suppose that the initial data is given. That is, u(x, 0) = f (x) for f (0) = f (π) = 0. Then
∞∑

m=1

Am sin mx = f (x).

Question: Given f (x) on [0, π] with f (0) = f (π) = 0, can we find coefficients Am such that

f (x) =
∞∑

m=1

Am sin mx ?

Question: If yes, how to find Am?

Observe that ∫ π

0
sin mx sin nx dx =

{
0 if m , n
π

2
if m = n

Then, formally, ∫ π

0
f (x) sin nx dx =

∫ π

0

Ä ∞∑
m=1

Am sin mx
ä

sin nx dx

=

∞∑
m=1

Am

∫ π

0
sin mx sin nx dx = An ·

π

2
.

Hence,

An =
2
π

∫ π

0
f (x) sin nx dx.

Question: How about the given initial data F(x) is defined on [−π, π]?

We can express F(x) = f (x)+ g(x) where f is odd and g is even. Then f (x) and g(x) can be
expressed as a sine series and a cosine series respectively. That is,

g(x) =
∞∑

m=0

A′m cos mx.

Thus,

F(x) =
∞∑

m=1

Am sin mx +
∞∑

m=1

A′m cos mx +
A′0
2

(7.1)

Remark. (1) The constant
1
2

in the last term is for making the formula consistant where

A′0 =
1
π

∫ π

−π
F(x) dx.
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(2) When F(x) is defined on [−π, π] and is of the form (7.1), the formulas of the coefficients Am

and A′m are similar but a slightly different.

Am =
1
π

∫ π

−π
F(x) sin mx dx =

1
2πi

∫ π

−π
F(x)

(
eimx − e−imx) dx

A′m =
1
π

∫ π

−π
F(x) cos mx dx =

1
2π

∫ π

−π
F(x)

(
eimx + e−imx) dx.

Remark. Let f (x) be a function defined on [a, b] with b − a = 2π. Then we can extend F(x)
[still called F(x)] defined on R with period 2π. That is, F(x) = F(x + 2π). Suppose that

F(x) =
∞∑

m=1

Am sin mx +
∞∑

m=1

A′m cos mx +
A′0
2

Then we can find the formulas of the coefficients by similar method.

Am =
1
π

∫ π

−π
F(x) sin mx dx =

1
π

∫ b

a
F(x) sin mx dx

A′m =
1
π

∫ π

−π
F(x) cos mx dx =

1
π

∫ b

a
F(x) cos mx dx

o Euler Identity

We recall the Euler identity eit = cos t + i sin t. Suppose that we can express F(x) as the
form

F(x) =
∞∑

m=−∞
ameimx where am ∈ C.

Similarly, since ∫ π

−π
eimxe−inx dx =

ß
0 if n , m
2π if n = m

we have
an =

1
2π

∫ π

−π
F(x)e−inx dx.

The quantity an is called the nth Fourier coefficient of F.

■ Heuristic Viewpoint‡

Consider the complex exponential function

em(x) = e2πimx = cos(2πmx) + i sin(2πmx)

as a function of x. While x lies in R, the function em(x) are complex numbers that lie on the unit
circle S 1 in C. If m > 0, then as x increases through an interval of length 1/m, the values em(x)
moves once around S 1 in the counter-clockwise direction.

‡The reference of this part is from Section1.1.2 of Introduction to Harmonic Analysis, Christopher Heil
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The function em is periodic with period 1/m and we therefore say that it has “frequency m”.
In some sense, the function em is a “pure tone”. We can imagine that an ideal vibrating string
creates a pressure wave in the air. In general, a real string (wave) is much more complicated than
a pure tone with frequency m. The sound created from a musical instrument usually consists of
pure tones, overtones and other complications. But let’s start with a single pure tone em here.

For a fixed m the function ame2πimx is a pure tone whose “amplitude” is the scalar am. The
larger am is, the larger the vibrations of the string and the louder the perceived sound. With
several different frequencies m ∈ Z, the function

F(x) =
N∑

m=−N

ame2πimx

is a superposition of several pure tones.

Suppose that any function F can be represented as a series of pure tones ame2πimx over all
possible frequencies m ∈ Z. By superimposing all the pure tones with the correct amplitudes,
we create any sound that we like. Once we have a representation of F in terms of the pure tones,
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we can act on it. In this sense, we can regard the convolution as a kind of “filter”.

Question: Given any reasonable function F on [−π, π], with Fourier coefficients define above,
is it true that

F(x) =
∞∑

m=−∞
ameimx?

■ Fourier Series on General Intervals

Let F(x) be defined on [−L, L] with F(−L) = F(L). Suppose that F has the form of Fourier
series

F(x) =
∞∑

m=1

Am sin
(mπx

L
)
+

∞∑
m=1

A′m cos
(mπx

L
)
+

A′0
2

=

∞∑
m=−∞

ameimπx/L

Then the formulas of the coefficients are

Am =
1
L

∫ L

−L
F(x) sin

(mπx
L

)
dx

A′m =
1
L

∫ L

−L
F(x) cos

(mπx
L

)
dx

am =
1

2L

∫ L

−L
F(x)e−imπx/L dx

Let F(x) be a function on [a, b] with F(a) = F(b) and b − a = L. Extend F(x) to a new
function [still called F(x)] defined on R and is with period L. Suppose that

F(x) =
∞∑

m=1

Am sin
(2πmx

L
)
+

∞∑
m=1

A′m cos
(2πmx

L
)
+

A′0
2

=

∞∑
m=−∞

ame2πimx/L.

Then the formulas of the coefficients are

Am =
2
L

∫ b

a
F(x) sin

(2πmx
L

)
dx

A′m =
2
L

∫ b

a
F(x) cos

(2πmx
L

)
dx

am =
1
L

∫ b

a
F(x)e−2πimx/L dx

Remind that the above discussions are based on some ideal situations of F. For example,
the integrability of F, the convergence of Fourier series, etc. We need to discuss them carefully.
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7.2 Basic Properties of Fourier Series
In this section, we will rigorously study the convergence of Fourier series. Observe that, for

a complex-valued function f (x) defined on [0, L], the Fourier coefficients of f are defined by

an =
1
L

∫ L

0
f (x)e−2πinx/L dx, for n ∈ Z.

In order to make sure that all those coefficients an exist, f needs some suitable integrability
conditions. Therefore, for the remainder of this chapter, we assume that all functions are at least
Riemann integrable.

■ Periodicity and Functions on the Circle

Definition 7.2.1. A function f is said to be periodic with period p if

f (x + p) = f (x)

for every x in the domain.

Example 7.2.2. sin(x + 2π) = sin x.

Note. 2π is a period of sin nx, cos nx and einx for all n ∈ Z.

First of all, we consider a 2π-periodic function f defined on R. We can identify f as a
function F defined on a circle T (or S 1) in the complex number plane by

f (θ) = F(eiθ)

The integrability, continuity and other smoothness properties of F are determined by those
of f . If f is continuous on R, then F is continuous on T.

Moreover, if f is a function defined on [0, 2π] for which f (0) = f (2π), it can be extended to
a 2π-periodic function on R by and then it can be identified as a function on the circle.

We conclude that two kinds of functions can be regard as functions on the circle. They are
“functions on R with period 2π”, and “functions on an interval of length 2π that take one the
same value at its endpoints”.

o Definitions and Some Examples

Definition 7.2.3. Let f be an integrable function defined on [a, b] with b − a = L.

(1) The nth “Fourier coefficient” of f is defined by

f̂ (n) = an =
1
L

∫ b

a
f (x)e−2πinx/L dx, n ∈ Z. (7.2)

(2) The “Fourier series” of f is given by

∞∑
n=−∞

f̂ (n)e2πinx/L
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and we use the notation

f (x) ∼
∞∑

n=−∞
f̂ (n)e2πinx/L.

Definition 7.2.4. If f is an integrable function on [−π, π], then the nth Fourier coefficient of f
is

f̂ (n) = an =
1

2π

∫ π

−π
f (x)e−inx dx, n ∈ Z

and the Fourier series of f is

f (x) ∼
∞∑

n=−∞
aneinx.

Note. If f is a function with period L, the resulting integrals (7.2) are independent of the chosen
interval. Thus the Fourier coefficients of a function on the circle are well-defined.

Remark. Let f be integrable on [0, 2π] and

f (x) ∼
∞∑

n=−∞
f̂ (n)einx.

Define g(x) = f (2πx). Then g is integrable on [0, 1] and

g(x) ∼
∞∑

n=−∞
ĝ(n)e2πinx

Check that ĝ(n) = f̂ (n).

Example 7.2.5.

(a) f (x) = x on [−π, π]. Then f̂ (n) =

 (−1)n+1

in
if n , 0

0 if n = 0

f (x) ∼
∑
n,0

(−1)n+1

in
einx = 2

∞∑
n=1

(−1)n+1 sin nx
n

(b) f (x) =
π

sin πα
ei(π−x)α on [0, 2π].

f (x) ∼
∞∑

n=−∞

einx

n + α
whenever α < Z.

The “trigonometric series” is a series of the form
∞∑

n=−∞
cne2πinx/L where cn ∈ C. Similarly,

the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N∑

n=−M

cne2πinx/L for some M,N > 0.
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Example 7.2.6. If f is a trigonometric polynomial function, that is,

f (x) =
N∑

n=1

sn sin nx +
M∑

n=0

cn cos nx,

then

f (x) ∼
N∑

n=1

sn sin nx +
M∑

n=0

cn cos nx.

In other words, the Fourier series of f is itself.

Example 7.2.7. (Dirichlet kernel) For N ∈ N, let cn = 1 for every n = −N,−N+1, · · · ,−1, 0, 1, · · · ,N−
1,N and cn = 0 otherwise. The trigonometric polynomial defined on [−π, π] by

DN(x) =
N∑

n=−N

einx

is called the Nth “Dirichlet kernel ”. Denote ω = eix. For x , 0,

N∑
n=0

ωn =
1 − ωN+1

1 − ω and
−1∑

n=−N

ω−N − 1
1 − ω .

Hence,

DN(x) =
N∑

n=−N

ωn =
ω−N − ωN+1

1 − ω =
ω−N−1/2 − ωN+1/2

ω−1/2 − ω1/2 =
sin

(
(N + 1

2 )x
)

sin(x/2)
(7.3)

For x = 0, it is easy to check that DN(0) = 2N + 1. The equation (7.3) is also true by taking
limit.

Note that we will see below that S N( f )(x) can be expressed as the convolution of f and
DN(x) by defining f ∗ g(x) = 1

2π

∫ π
−π f (y)g(x − y) dy.

Example 7.2.8. (Poisson kernel) Let 0 ≤ r < 1, the function defined on [−π, π] by

Pr(θ) =
∞∑

n=−∞
r|n|einθ

is called the “Poisson kernel ”.
For fixed 0 ≤ r < 1, since the series is absolutely and uniformly convergent in θ, to calculate

the Fourier coefficients, we can interchange the order of integration and summation. Moreover,
the nth Fourier coefficient equals r|n|. Set ω = reiθ. Then

Pr(θ) =
∞∑

n=0

ωn +

∞∑
n=1

ω̄n (where both series converge absolutely)

=
1

1 − ω +
ω̄

1 − ω̄ =
1 − ω̄ + (1 − ω)ω̄

(1 − ω)(1 − ω̄)

=
1 − |ω|2
|1 − ω|2 =

1 − r2

1 − 2r cos θ + r2
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■ Some Questions

The “trigonometric series” is a series of the form
∞∑

n=−∞
cne2πinx/L where cn ∈ C. Similarly,

the “trigonometric polynomial” is a finite sum of a trigonometric series, that is, it is of the form
N∑

n=−M

cne2πinx/L for some M,N > 0. In order to study the convergence of Fourier series, it is natual

to consider the limit of its partial sum. But the convergence of the trigonometric polynomials

here “
N∑

n=−N

f̂ (n)e2πinx/L” is slightly different the typical forms “
N∑

n=−M

f̂ (n)e2πinx/L”.

Definition 7.2.9. Let N ∈ N, then the Nth “partial sum” of the Fourier series of f is

S N( f )(x) =
N∑

n=−N

f̂ (n)e2πinx/L.

Note that the above sum is symmetric since n ranges from −N to N because of the resulting
decomposition of the Fourier series as sine and cosine.

S N( f )(x) =
N∑

n=−N

f̂ (n)e2πinx/L

=

N∑
n=1

An sin
Ä2πnx

L

ä
+

N∑
n=1

A′n cos
Ä2πnx

L

ä
+

A′0
2
.

For the convenience, we consider the functions defined on intervals with length 2π. ([0, 2π],
[−π, π] or etc).

Question: Does the limit
∞∑

n=−∞
f̂ (n)einx = lim

N→∞

N∑
n=−N

f̂ (n)einx = lim
N→∞

S N( f )(x) converges and for

what values of x the limit converge?

Question: If S N( f ) converges to f , in what sense does S n( f ) converge to f as N → ∞ (point-
wise, uniformly, or under a certain norms for instance ∥ · ∥Lp)?

Observe that the Fourier coefficients come from an integral
∫

f (x)e−inx dx. When f and g

have different values only at finitely many points, they will have the same Fourier coefficients.
Hence, without any additional assumption for f , it is unreasonable to obtain the convergent
result that

lim
N→∞

S N( f )(x) = f (x) for every x.

Question: Under what conditions of a function is uniquely determined by its Fourier coeffi-
cients?
■ Uniqueness of Fourier Series

The question of uniqueness is equivalent to the statement that if a function f has Fourier
coefficient f̂ (n) = 0 for all n ∈ Z, then f = 0.
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Theorem 7.2.10. Suppose that f is an integrable function on the circle with f̂ (n) = 0 for all
n ∈ Z. Then f (x0) = 0 whenever f is continuous at the point x0.

Proof. Firstly, we consider f is real-valued. W.L.O.G, we say that f is defined on [−π, π] and
continuous at x0 = 0. (We will prove, by a contradiction, that f (0) = 0 whenever f̂ (n) = 0 for
all n ∈ Z).

The idea is that if f (0) , 0, we can construct a family of trigonometric polynomials {pk}
that “peak” at 0 such that

∫ π

−π
pk(x) f (x) dx→ ∞. It is impossible since f̂ (n) = 0 for all n ∈ Z.

Assume that f (0) > 0. Since f is continuous at 0, there exists 0 < δ <
π

2
such that f (x) >

f (0)
2

for every x ∈ [−δ, δ]. Choose a sufficiently small number ε > 0 such that
∣∣ε + cos x

∣∣ < 1 − ε
2

whenever δ < |x| ≤ π. Denote p(x) = ε + cos x and define

pk(x) = [p(x)]k.

Since f̂ (n) = 0 for every n ∈ Z,
∫ π

−π
f (x)pk(x) dx = 0 for every k ∈ N ∪ {0}. Moreover, f is

integrable over [−π, π]. It implies that f is bounded on [−π, π], say
∣∣ f (x)

∣∣ ≤ B. Also, we choose

0 < η < δ such that p(x) > 1 +
ε

2
for every 0 ≤ |x| < η.
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We have∫ π

−π
f (x)pk(x) dx =

∫
0≤|x|<η

+

∫
η≤|x|<δ

+

∫
δ≤|x|≤π

f (x)pk(x) dx = I + II + III.

For 0 ≤ |x| < η, f (x) >
f (0)
2

and pk(x) ≥ (1 +
ε

2
)k, then

I ≥ 2η · f (0)
2
· (1 + ε

2
)k → ∞ as k → ∞

For η ≤ |x| < δ < π

2
, p(x) ≥ 0 and f (x) >

f (0)
2

> 0, then

II ≥ 0.

For δ ≤ |x| ≤ π,
∣∣pk(x)

∣∣ ≤ (1 − ε
2

)k, then

III ≤ 2π · B · (1 − ε
2

)k → 0 as k → ∞.

Hence, we can choose k sufficiently large such that∫ π

−π
f (x)pk(x) dx > 0 (Contradiction!).

Thus, f (0) = 0.

Generally, suppose that f is complex-valued, say f (x) = u(x) + iv(x). Define f̄ (x) = f (x).

Then u(x) =
f (x) + f̄ (x)

2
and v(x) =

f (x) − f̄ (x)
2

. Hence u and v are integrable over [−π, π] and

continuous at 0. Since ̂̄f (n) = f̂ (−n), we have û(n) = v̂(n) = 0 for all n ∈ Z. Therefore,
u(0) = v(0) = 0. □

Corollary 7.2.11. If f is continuous on the circle and f̂ (n) = 0 for all n ∈ Z, then f (x) ≡ 0 on
the circle.

Corollary 7.2.12. Suppose that f is a continuous function on the circle and that the Fourier

series of f is absolutely convergent, that is
∞∑

n=−∞
| f̂ (n)| < ∞. Then

lim
N→∞

S N( f )(x) = f (x) uniformly.

Proof. Since
∞∑

n=−∞
| f̂ (n)| < ∞, then series

g(x) :=
∞∑

n=−∞
f̂ (n)einx = lim

N→∞

N∑
n=−N

f̂ (n)einx
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converges uniformly. Hence, g is continuous on the circle and the Fourier coefficients ĝ(n) =
f̂ (n) for all n ∈ Z.

On the other hand, since f − g is continuous on the circle and ̂( f − g
)
(n) = 0 for all n ∈ Z.

Thus, f ≡ g on the circle. Then

f (x) =
∞∑

n=−∞
f̂ (n)einx = lim

N→∞
S N( f )(x).

□

Question: In what conditions of f , the Fourier series of f converges absolutely?

Corollary 7.2.13. Suppose that f is a twice continuously differentiable function on the circle.
Then

f̂ (n) = O
Ä 1
|n|2
ä

as |n| → ∞

Hence, the Fourier series of f converges absolutely and uniformly to f .

Proof. By the integration by parts twice, for n , 0,

2π f̂ (n) =
∫ 2π

0
f (x)e−inx dx

=
î

f (x) · e−inx

−in

ó2π
0︸               ︷︷               ︸

=0

+
1
in

∫ 2π

0
f ′(x)e−inx dx

=
1
in

î
f ′(x) · e−inx

−in

ó2π
0︸                   ︷︷                   ︸

=0

+
1

(in)2

∫ 2π

0
f ′′(x)e−inx dx

Since f is twice continuously differentiable on the circle, f ′′(x) is bounded, say | f ′′(x)| ≤ B
for all x ∈ T. Then

2π|n|2| f̂ (n)| ≤
∫ 2π

0
| f ′′(x)| dx ≤ 2πB.

Thus, | f̂ (n)| ≤ B
|n|2 . Moreover, since

∑ 1
n2 converges, the proof is complete. □

Remark.

(1) Heuristically, the index “n” represents the frequency and f̂ (n) reflects the amplitude of nth
harmonic with frequency n when regarding f as a superposition of infinite standing waves
with different frequencies. Hence, the larger frequencey will be corresponding to the size
(weight) of derivatives of f .

(2) More rigorously, we can compute that

f̂ ′(n) = in f̂ (n), for all n ∈ Z.

Thus if f is differentiable and f ∼ ∑ aneinx, then f ′ ∼ ∑ anineinx. Also, if f is twice contin-
uously differentiable, then f ′′ ∼ ∑ an(in)2einx, and so on. Further smoothness conditions on
f imply better decay of the Fourier coefficients.
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(3) Similar as the corollary, to make the Fourier series of f converges absolutely and uniformly
to f , we only need

f̂ (n) = O
Ä 1
|n|α
ä

as |n| → ∞ (7.4)

for α > 1/2. If f satisfies a “Hölder condition” of order α, with α > 1/2, that is

sup
x
| f (x + t) − f (x)| ≤ A|t|α for all t,

we can obtain (7.4).

7.3 Convolutions of periodic functions and good kernels
Recall that, for given two 2π-periodic integrable functions f and g on R, the convolution of f
and g on [−π, π] is defined by

( f ∗ g)(x) =
1

2π

∫ π

−π
f (y)g(x − y) dy.

■ Properties of Convolution

Proposition 7.3.1. Suppose that f , g and h are 2π- periodic integrable functions. Then

(1) f ∗ (g + h) = f ∗ g + f ∗ h.

(2) (c f ) ∗ g = c( f ∗ g) = f ∗ (cg) for every c ∈ C.

(3) f ∗ g = g ∗ f .

(4) ( f ∗ g) ∗ h = ( f ∗ g) ∗ h.

(5) f ∗ g is continuous.

(6) f̂ ∗ g(n) = f̂ (n)̂g(n).

Proof. The proofs of (1)-(5) are left to the readers. We will prove part(6) here.

f̂ ∗ g(n) =
1

2π

∫ π

−π
( f ∗ g)(x)e−inx dx

=
1

2π

∫ π

−π

1
2π

Ä∫ π

−π
f (y)g(x − y) dy

ä
e−inx dx

=
1

2π

∫ π

−π
f (y)e−iny

Ä 1
2π

∫ π

−π
g(x − y)e−in(x−y) dx

ä
dy

=
1

2π

∫ π

−π
f (y)e−iny

Ä 1
2π

∫ π

−π
g(x)e−inx dx

ä
dy

= f̂ (n)̂g(n).

□
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Remark. Property (5) exhibits that the convolution of f ∗ g is “more regular” than f or g.

Note. One of our goal is to understand whether a function f can be expressed as its Fourier
series. That is, lim

N→∞
S N( f )(x) = f (x) for every x? Consider the partial sum of the Fourier series

of f

S N( f )(x) =
N∑

n=−N

f̂ (n)einx

=

N∑
n=−N

Ä 1
2π

∫ π

−π
f (y)e−iny dy

ä
einx

=
1

2π

∫ π

−π
f (y)
Ä N∑

n=−N

ein(x−y)
ä

dy

= ( f ∗ DN)(x)

where DN is the Nth Dirichlet kernel given by

DN(x) =
N∑

n=−N

einx.

Hence the problem of understanding S N( f ) reduces to the understanding of the convolution
f ∗ DN .

o Good kernels
In Section3.10 we can regard the convolution f ∗ g as a “weighted average” of f when∫

g(x) dx = 1. Moreover, if g is a highly peaked functoin and is concentrated at 0, the value
of ( f ∗ g)(x) is close to f (x) if f is continuous there. The same phenomenon also occurs in
the proof of Theorem7.2.10. It motivates us to study the “kernels” of operators and discuss the
characteristic properties of such functions.

Definition 7.3.2. Let {Kn(x)}∞n=1 be a family of functions defined on the circle. This family is
called a family of “good kernels” if it satisfies the following properties:

(a) For all n ≥ 1,
1

2π

∫ π

−π
Kn(x) dx = 1.

(b) There exists M > 0 such that for all n ≥ 1,∫ π

−π
|Kn(x)| dx ≤ M.

(c) For every δ > 0, ∫
δ≤|x|≤π

|Kn(x)| dx→ 0, as n→ ∞.
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Note.

Property (a) says that Kn assigns unit mass to
the whole circle [−π, π] and Kn is interpreted as
weight distributions on the circle. Property (c)
exhibits that the mass concentrates near the ori-
gin as n becomes large.

Theorem 7.3.3. Let {Kn}∞n=1 be a family of good kernels and f be an integrable function on the
circle. Then

lim
n→∞

( f ∗ Kn)(x) = f (x)

whenever f is continuous at x. If f is continuous everywhere, then above limit is uniform.

Proof. Since f is continuous at x, for given ε > 0 there exists δ > 0 such that

| f (x − y) − f (x)| < ε (7.5)

as |y| < δ. Consider

∣∣∣( f ∗ Kn)(x) − f (x)
∣∣∣ = 1

2π

∫ π

−π
Kn(y)

[
f (x − y) − f (x)

]
dy (by condition (a))

≤ 1
2π

∫
|y|<δ
|Kn(y)|

∣∣ f (x − y) − f (x)
∣∣ dy

+
1

2π

∫
δ≤|y|≤π

|Kn(y)|| f (x − y) − f (x)| dy

= I + II.

By the condition (b) and (7.5), I ≤ Mε

2π
.

Since f is integrable on the circle, it is bounded, say | f (x)| ≤ B on the circle. From condition
(c),

II ≤ 2B
2π

∫
δ≤|y|≤π

|Kn(y)| dy→ 0 as n→ ∞.

Hence, as n sufficiently large,

|( f ∗ Kn)(x) − f (x)| ≤ Cε.

We have

lim
n→∞

( f ∗ Kn)(x) = f (x).
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Moreover, if f is continuous everywhere, then f is uniformly continuous on the circle. For
the given ε > 0, there exists δ > 0 (which is independent of x) such that

| f (x − y) − f (x)| < ε

for every x on the circle. Hence, f ∗ Kn(x) converges to f (x) everywhere and this convergence
is independent of x. That is, f ∗ Kn → f uniformly. □

Remark.

(i) Heuristically, the weighted distribution Kn concentrates its mass at y = 0 as n becomes
large. Therefore, the value f (x) is assigned the full mass as n→ ∞. The convolution

( f ∗ Kn)(x) =
1

2π

∫ π

−π
f (x − y)Kn(y) dy

is the average of f (x − y), where the weights are given by Kn(y).

(ii) The family {Kn} is refered to as an approximation to the identity.

■ Dirichlet Kernel

Question: Is the family of Dirichlet kernels
{

DN(x) =
N∑

n=−N

einx}∞
N=1 a family of good kernels?

It is easy to check that
1

2π

∫ π

−π
DN(x) dx = 1 for all N ≥ 1. Thus, condition (a) holds. Unfortu-

nately, the absolute integral ∫ π

−π
|DN(x)| dx ≥ c log N, as N → ∞.

Then the condition (b) does not hold. This observation suggests that the pointwise convergence
of Fourier series may fail at points of continuity. In fact, the function DN(x) oscillates very
rapidly as N gets large.
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7.4 Fejér kernel and Poisson kernel

o Fejér kernel

Definition 7.4.1. Let {an}∞n=0 be a sequence of numbers and sn =

n−1∑
k=0

ak be the nth parital sum of

{an}.

(1) The average of the first N partial sums

σN =
s0 + s1 + · · · + sN−1

N
=

1
N

N−1∑
n=0

sn

is called the Nth “Cesàro mean” of the sequence {sn} or the Nth “Cesàro sum of the series
∞∑

n=1

an.

(2) IfσN converges toσ as N tends to infinity, we say that the series
∑

an is “Cesàro summable”
to σ.

Exercise.

(1) Let an = (−1)n. Then σN =
1
2
+

1 + (−1)N−1

4N
and σN converges to

1
2

.

(2) If {an} is summable to L (that is sn converges to L), then σN converges to L.

(3) If sn diverges to ±∞, then σN diverges to ±∞.

Note. The Dirichlet kernels fail to belong to the family of good kernels. But their averages are
very well behaved functons, in the sense that they indeed form a family of good kernels.
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Definition 7.4.2. Let Dn(x) be the family of Dirichlet kernel. We call the function

FN(x) =
D0(x) + · · · + DN−1(x)

N

the Nth “Fejér kernel ”.

Consider the Cesàro mean of the Fourier series

σN( f )(x) =
S 0( f ) + · · · + S N−1( f )(x)

N

=
( f ∗ D0)(x) + · · · ( f ∗ DN−1)(x)

N

=
Ä

f ∗ D0 + · · · + DN−1

N

ä
(x)

= ( f ∗ FN)(x).

Lemma 7.4.3. The Fejér kernel

FN(x) =
1
N

sin2(Nx/2)
sin2(x/2)

(7.6)

and it is a good kernel.

Proof. Since DN(x) =
ω−N − ωN+1

1 − ω with ω = eix, the equality (7.6) is obtained by direct com-
putation.

Moreover, since FN ≥ 0 from (7.6) and
1

2π

∫ π

−π
Dn(x) dx = 1 for every n ∈ N, the average

of partial sum of {Dn}∞n=0 is also equal to 1. That is,

1
2π

∫ π

−π
Fn(x) dx = 1.

The conditions (a) and (b) of good kernels hold. For every δ > 0, there exists Cδ > 0 such that
sin2(x/2) ≥ cδ for every |x| > δ. Hence, FN(x) ≤ 1/(Ncδ) and∫

δ≤|x|≤π
|FN(x)| dx→ 0 as N → ∞.

This implies that the condition (c) of good kernel holds. □

Theorem 7.4.4. If f is integrable on the circle, then the Fourier series of f is Cesàro summable
to f at every point of continuity of f . That is,

σN( f )(x)→ f (x) as N → ∞

for every x where f is continuous.
Moreover, if f is continuous on the circle, then the Fourier series of f is uniformly Cesàro
summable to f .

Corollary 7.4.5. If f is integrable on the circle and f̂ (n) = 0 for all n, then f = 0 at all points
of continuity of f .
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Proof. Since S N( f ) =
N∑

n=−N

f̂ (n)einx = 0 for every N ∈ N, the Casàro mean of {S n} is equal to 0

and hence the Nth Fejér kernel FN(x) ≡ 0 for every N. Then

0 = f ∗ FN(x)→ f (x)

at every continuity of f . □

Corollary 7.4.6. Continuous functions on the circle can be uniformly approximated by trigono-
metric polynomials. That is, if f is continuous on [−π, π] with f (−π) = f (π) and ε > 0, then
there exists a trigonometric polynomial P such that

| f (x) − P(x)| < ε for all − π ≤ x ≤ π.

Proof. The corollary is followed by the theorem since the Cesàro means are trigonometric poly-
nomials.

□

o Poisson kernel

Definition 7.4.7. A series of complex number
∑∞

k=0 ck is said to be “Abel summable” to s if for
every 0 ≤ r < 1, there series

A(r) =
∞∑

k=0

ckrk

converges, and
lim
r→1

A(r) = s.

The quantities A(r) are called the “Abel means” of the series.

Remark. If
∑∞

k=0 ck is Cesàro summable to s, then it is also Abel summable to s. But the
converse is not true. For example, ck = (−1)k(k + 1). Then

A(r) =
∞∑

k=0

(−1)k(k + 1)rk =
1

(1 + r)2 .

The series is Abel summable to lim
r→1

A(r) = 1/4 but it is not Cesàro summable.

Definition 7.4.8. Let f (x) ∼ ∑∞n=−∞ aneinθ. Define

Ar( f )(x) =
∞∑

n=−∞
r|n|aneinx.

Remark. Since f is integrable (that is,
∫ π

−π
| f (x)| dx < ∞),

|an| =
∣∣∣ 1
2π

∫ π

−π
f (x)e−inx dx

∣∣∣ ≤ 1
2π

∫ π

−π
| f (x)| dx < ∞.

The uniform boundedness of |an| implies that Ar( f ) converges absolutely and uniformly for each
0 ≤ r < 1.
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Definition 7.4.9. We define the “Poisson kernel” by

Pr(x) =
∞∑

n=−∞
r|r|einx.

Note. The Abel mean of f is equal to the convolution ( f ∗ Pr)(x). In fact,

Ar( f )(x) =
∞∑

n=−∞
r|n|aneinx

=

∞∑
n=−∞

r|n|
Ä 1

2π

∫ π

−π
f (y)e−iny dy

ä
einx

=
1

2π

∫ π

−π
f (y)
Ä ∞∑

n=−∞
r|n|e−in(y−x)

ä
dy

= ( f ∗ Pr)(x).

where the interchange of the integral and infinite sum is justified by the uniorm convergence of
the series.

Lemma 7.4.10. If 0 ≤ r < 1, then

Pr(x) =
1 − r2

1 − 2r cos θ + r2 . (7.7)

The poisson kernel is a good kernel, as r tends to 1 from below.

Proof. The identity is obtained by direct computation by setting ω = eix. Since Pr(x) is positive
and evaluating the integral term by term, we have

1
2π

∫ π

−π
Pr(x) dx = 1.

The condtions (a) and (b) of good kernel hold. Moreover, for 1/2 ≤ r ≤ 1 and δ ≤ |x| ≤ π,

1 − 2r cos x + r2 = (1 − r)2 + 2r(1 − cos x) ≥ cδ > 0

where cδ could be given by 1 − cos δ. Then Pr(x) ≤ (1 − r2)
cδ

when δ ≤ |x| ≤ π. Then

∫
δ≤|x|≤π

|Pr(x)| dx ≤ π(1 − r2)
cδ

→ 0 as r → 1−.

The condition (c) of good kernel holds.
□

Theorem 7.4.11. The Fourier series of an integrable function on the circle is Abel summable to
f at every point of continuity. Moreover, if f is continuous on the circle, then the Fourier series
of f is uniformly Abel summable to f .
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7.5 Convergence of Fourier Series
In the present section, we will discuss the convergence of Fourier series in three different senses,
mean-square, pointwise and uniform convergence. The mean-square convergence reflects the
global bahaviors of the partial sum S N( f ). The pointwise and uniforn convergence reveal the
local behaviors of S N( f ). We want to find the sufficient conditions of these convergence.

Recall that a Hilbert space is a complete inner product space.

Example 7.5.1.

(1) Let ℓ2(Z,C) =
{

(· · · , a−1, a0, a1, · · · )
∣∣ an ∈ C with

∑
n∈Z
|an|2 < ∞

}
. Define

⟨a,b⟩ =
∑
n∈Z

anbn

for a = (· · · , a−1, a0, a1, · · · ) and b = (· · · , b−1, b0, b1, · · · ). Then ℓ2(Z,C) is a Hilbert space.

(2) R =
{

f : [0, 2π]→ C
∣∣ f is a Riemann integrable function on [0, 2π]

}
with

⟨ f , g⟩ = 1
2π

∫ 2π

0
f (x)g(x) dx.

R is not a Hilbert space.

Let

fn(x) =
ß

x−1/4 if x ∈ [1
n , π]

0 otherwise

Then fn is a Cauchy sequenc of R. For any bounded function f ∈ R,

lim
n→∞
∥ fn − g∥ , 0.

Hence, R is not complete.

Before discussing the convegence of Fourier series, we review some properties of inner
product spaces and Hilbert spaces.

o Orthonormal Sequence
Definition 7.5.2. Let X be a vector space with an inner product ⟨·, ·⟩ and ∥ · ∥ be the incuced
norm on X which is defined by

∥x∥2 = ⟨x, x⟩ for every x ∈ X.

We say that the two vectors x, y ∈ X are “orthogonal” if ⟨x, y⟩ = 0.

■ Some Properties
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(1) (Pythagorean theorem) If x and y are orthogonal, then

∥x + y∥2 = ∥x∥2 + ∥y∥2.

(2) (Cauchy-Schwarz inequality) For x, y ∈ X,∣∣⟨x, y⟩∣∣ ≤ ∥x∥∥y∥.
(3) (Triangle inequaltiy) For x, y ∈ X,

∥x + y∥ ≤ ∥x∥ + ∥y∥.

Definition 7.5.3. Let (X, ⟨·, ·⟩) be an inner product space over C. We say that {en}n∈N is a se-
quence of orthonormal vectors if

⟨ei, e j⟩ =
ß

0, if i , j
1, if i = j

Remark. Let {en}n∈N be a sequence of orthonormal vectors in a Hilbert space X. The closed
span

M = span{en}
is a closed subspace of X.

Theorem 7.5.4. Let X be a Hilbert space and {en}n∈N be an orthonormal sequence in X. Then
the following statements hold.

(a) Bessel’s Inequality:
∞∑

n=1

|⟨x, en⟩|2 ≤ ∥x∥2

for every x ∈ X.

(b) If the series x =
∞∑

n=1

cnen converges, then cn = ⟨x, en⟩ for each n ∈ N.

(c) The following equivalence holds:
∞∑

n=1

cnen converges ⇐⇒
∞∑

n=1

|cn|2 < ∞.

Furthermore, in this case the series
∞∑

n=1

cnen converges unconditionally, i.e., it converges

regardless of the ordering of the index set.

(d) If x ∈ X, then

p =
∞∑

n=1

⟨x, en⟩en

is the orthogonal projection of x onto M := span{en}, and ∥p∥2 =
∞∑

n=1

|⟨x, en⟩|2.
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(e) If x ∈ X, then the following three statements are equivalent

(i) x ∈ M := span{en}.

(ii) x =
∞∑

n=1

⟨x, en⟩en.

(iii) ∥x∥2 =
∞∑

n=1

|⟨x, en⟩|2.

Proof. (a) Choose x ∈ X. For each N ∈ N define

pN =

N∑
n=1

⟨x, en⟩en and qN = x − pN .

Since the en are orthonormal, the Pythagorean Theorem implies that

∥pN∥2 =
N∑

n=1

∥⟨x, en⟩en∥2 =
N∑

n=1

|⟨x, en⟩|2.

Also,

⟨pN ,qN⟩ = ⟨pN , x⟩ − ⟨pN ,pN⟩ =
N∑

n=1

⟨x, en⟩⟨en, x⟩ − ∥pN∥2 = 0.

Then the vectors pN and qN are orthogonal. By the Pythagorean Theorem again,

N∑
n=1

|⟨x, en⟩|2 = ∥pN∥2 ≤ ∥pN∥2 + ∥qN∥2 = ∥pN + qN∥2 = ∥x∥2.

Let N → ∞, we obtain Bessel’s Inequality.

(b) If x =
∞∑

n=1

cnen converges, for each fixed m, we have

⟨x, em⟩ =
¨ ∞∑

n=1

cnen, em

∂
=

∞∑
n=1

cn⟨en, em⟩ = cm.

(Notice that the second equality is valid since the sequence is convergent.)

(c) (=⇒) By part(b), cn = ⟨x, en⟩ since x =
∞∑

n=1

cnen. Thus, by Bessel’s inequality,

∞∑
n=1

|cn|2 =
∞∑

n=1

|⟨x, en⟩|2 ≤ ∥x∥2.

(⇐=) Suppose that
∞∑

n=1

|cn|2 < ∞. Set

sn =

N∑
n=1

cnen and tN =

N∑
n=1

|cn|2.



7.5. CONVERGENCE OF FOURIER SERIES 329

To prove that
{

sn
}

n∈N is a convergent sequence in X. If M < N, then

∥sN − sM∥2 =
∥∥∥∥ N∑

n=M+1

cnen

∥∥∥∥2
=

N∑
n=M+1

∥cnen∥2 (Pythagorean Theorem)

=

N∑
n=M+1

|cn|2 = |tN − tM.|

Since
∞∑

n=1

|cn|2 < ∞, the sequence
{

tn
}

n∈N is a Cauchy sequence. Hence,
{

sn
}

n∈N is a

Cauchy sequence in X. Since X is a Hilbert space, the sequence
{

sn
}

n∈N converges and

so does
∞∑

n=1

cnen.

Furthermore, since
∞∑

n=1

|cn|2 < ∞, the sequence
{
|cn|2

}
n∈N is absolutely summable and the

summation does not change if reordering of the series. Thus,
∞∑

n=1

cnen converges uncondi-

tionally.

(d) By Bessel’s inequality and part(c), the series p =
∞∑

n=1

⟨x, en⟩en converges. For fixed k,

⟨x − p, ek⟩ = ⟨x, ek⟩ −
¨ ∞∑

n=1

⟨x, en⟩en, ek

∂
(Convergence) −→ = ⟨x, ek⟩ −

∞∑
n=1

⟨x, en⟩⟨en, ek⟩

= ⟨x, ek⟩ − ⟨x, ek⟩ = 0

The vector x − p is orthogonal to each vector ek and thus it is orthogonal to every vector in
M. We have that p ∈ M and x− p ∈ M⊥. This implies that p is the orthogonal projection of
x onto M.

(e) By part(d), p =
∞∑

n=1

⟨x, e⟩en is the orthogonal projection of x onto M and

∥p∥2 = ⟨p,p⟩ =
∞∑

n=1

∣∣⟨x, en⟩
∣∣2.

“(i)⇒ (ii)” If x ∈ M, the orthogonal projection of x onto M is x itself. Thus, x = p =
∞∑

n=1

⟨x, en⟩en.

“(ii)⇒ (iii)” If x = p, then ∥x∥2 = ∥p∥2 =
∞∑

n=1

|⟨x, en⟩|2.



330 CHAPTER 7. FOURIER SERIES

“(iii)⇒ (i)” Suppose ∥x∥2 =
∞∑

n=1

|⟨x, en⟩|2. Then since x − p ⊥ p,

∥x∥2 = ∥(x − p) + p∥2 = ∥x − p∥2 + ∥p∥2

= ∥x − p∥2 +
∞∑

n=1

|⟨x, en⟩|2 = ∥x − p∥2 + ∥x∥2.

Hence ∥x − p∥ = 0 and x = p ∈ M.
□

Remark. We say that the sequence {en}n∈N is “complete” in X if

span{en} = X.

7.5.1 Mean-Square Convergence
Consider the space R of integrable functions on the circle with inner product

⟨ f , g⟩ = 1
2π

∫ 2π

0
f (x)g(x) dx

and the induced norm

∥ f ∥2 = ⟨ f , f ⟩ = 1
2π

∫ 2π

0
| f (x)|2 dx.

Note. The norm ∥ · ∥ is equivalent to ∥ · ∥L2 . In fact,

2π∥ · ∥2 = ∥ · ∥2L2([0,2π]).

We will prove that ∥S N( f ) − f ∥ → 0 as N tends to infinity. It also implies S N( f ) converges to f
in L2 norm.

Set en(x) = einx. Then {en}n∈Z is an orthonormal sequence. Let

an = ⟨ f , en⟩ =
1

2π

∫ 2π

0
f (x)e−inx dx = f̂ (n)

be the Fourier coefficient of f . Then

S N( f )(x) =
∑
|n|≤N

anen.

Lemma 7.5.5. For every N ∈ N, Ä
f −
∑
|n|≤N

anen

ä
⊥
∑
|n|≤N

bnen

for any bn ∈ C.
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Proof. For every |n| ≤ N,

⟨ f −
∑
|m|≤N

amem, en⟩ = ⟨ f , en⟩ −
∑
|m|≤N

am⟨em, en⟩

= an − an = 0.

By the linear combination, we have
Ä

f −
∑
|n|≤N

anen

ä
⊥
∑
|n|≤N

bnen. □

■ Bessel’s Inequality

By Lemma7.5.5, we write f = ( f −
∑
|n|≤N

anen) +
∑
|n|≤N

anen and

∥ f ∥2 = ∥ f −
∑
|n|≤N

anen∥2 + ∥
∑
|n|≤N

anen∥2 (Pythagorean Theorem)

= ∥ f −
∑
|n|≤N

anen∥2 +
∑
|n|≤N

|an|2∥en∥2

= ∥ f −
∑
|n|≤N

anen∥2 +
∑
|n|≤N

|an|2

= ∥ f − S N( f )∥2 +
∑
|n|≤N

|an|2.

Hence, for every N ∈ N,
∑
|n|≤N

|an|2 ≤ ∥ f ∥2. Letting N → ∞, we have the Bessel’s inequality

∞∑
n=−∞
|an|2 ≤ ∥ f ∥2.

Remark. Suppose that {un} is any orthonormal sequence and bn = ⟨ f ,un⟩ for every n. We still
have a corresponding Bessel’s inequality,∑

|bn|2 ≤ ∥ f ∥2.

Lemma 7.5.6. (Best approximation) If f is integrable on the circle with Fourier coefficients an,
then

∥ f − S N( f )∥ ≤ ∥ f −
∑
|n|≤N

cnen∥ (7.8)

for any cn ∈ C. Moreover, the equality holds precisely when cn = an for all |n| ≤ N.
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Proof. Let bn = an − cn. Then

f −
∑
|n|≤N

cnen = f − S N( f ) +
∑
|n|≤N

bnen.

By Pythagorean theorem, since
Ä

f − S N( f )
ä
⊥
∑
|n|≤N

bnen,

∥ f −
∑
|n|≤N

cnen∥2 = ∥ f − S N( f )∥2 +
∑
|n|≤N

|bn|2.

Thus, the inequality (7.8) is proved. □

Theorem 7.5.7. If f is Riemann integrable on the circle, then

∥S N( f ) − f ∥ → 0 as N → ∞.
Proof.

Step1: To show that the theorem is ture if f is (2π-periodic) continuous on the circle. For given
ε > 0, by Corollary7.4.6, there exists a trigonometric polynomial P with degree M such that

∥ f − P∥
L∞
(

[0,2π]
) < ε.

Therefore,
1

2π

∫ 2π

0
| f − P|2 dx ≤ 1

2π
· 2πε2 = ε2.

Then ∥ f − P∥ < ε. By the best approximation,

∥ f − S M( f )∥ ≤ ∥ f − P∥ < ε.
Step2: If f is a continuous function (but possibly f (0) , f (2π)), we define

k(x) =


0, x = 0
linear, 0 < x < δ
f (x), δ < x < 2π − δ
linear, 2π − δ ≤ x < 2π
0, x = 2π
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Then k is continuous on [0, 2π] with k(0) = k(2π) and

∥ f − k∥ < ε

if δ is sufficiently small. Also, f − k is integrable on the circle. By the Bessel’s inequality,

∥S N( f ) − S N(k)∥ = ∥S N( f − k)∥ ≤ ∥ f − k∥ < ε

for every N ∈ N.
Step3: If f is integrable on the circle, by using the method of mollifiers, we can choose a
continuous function g on [0, 2π] such that

∥ f − g∥ < ε

and hence ∥S N( f ) − S N(g)∥ = ∥S N( f − g)∥ ≤ ∥ f − g∥ < ε. Then

∥ f − S N( f )∥ ≤ ∥ f − g∥ + ∥g − S N(g)∥ + ∥S N(g) − S N( f )∥
< ε + ε + ε = 3ε

as N is sufficiently large. □

Corollary 7.5.8. (Parseval’s Identity) Let f be an integrable function on the circle. If an is the
nth Fourier coefficients of f , then

∞∑
n=−∞
|an|2 = ∥ f ∥2.

Proof. The identity is clear since

∥ f ∥2 = ∥ f − S N( f )∥2 + ∥S N( f )∥2 (Pythagorean Theorem)

= ∥ f − S N( f )∥2 +
N∑

n=−N

|an|2.

Let N → ∞ and we obtain
∞∑

n=−∞
|an|2 = ∥ f ∥2. □

Theorem 7.5.9. (Riemann-Lebesgue lemma) If f is integrable on the circle, then f̂ (n) → 0
as |n| → 0.

Proof. Since f is integrable on the circle, f is bounded and this implies that ∥ f ∥2 < ∞. By
Bessel’s identity,

∞∑
n=−∞
| f̂ (n)2| = ∥ f ∥2 < ∞.

Then f̂ (n)→ 0 as |n| → ∞.
□
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Note. An equivalent result of this theorem is that if f is integrable on [0, 2π], then∫ 2π

0
f (x) sin(Nx) dx→ 0 as N → ∞

and ∫ 2π

0
f (x) cos(Nx) dx→ 0 as N → ∞

Lemma 7.5.10. Suppose F and G are integrable on the circle with

F ∼
∑

aneinx and G ∼
∑

bneinx.

Then
1

2π

∫ 2π

0
F(x)G(x) dx =

∞∑
n=−∞

anbn.

Proof. Since

⟨F,G⟩ = 1
4
[
∥F +G∥2 − ∥F −G∥2 + i

(
∥F + iG∥2 − ∥F − iG∥2

)]
by Parseval’s identity

1
2π

∫ 2π

0
F(x)G(x) dx = ⟨F,G⟩

=
1
4
[
∥F +G∥2 − ∥F −G∥2 + i

(
∥F + iG∥2 − ∥F − iG∥2

)]
=

1
4

∞∑
n=−∞

î
|an + bn|2 − |an − bn|2 + i

(
|an + ibn|2 − |an − ibn|2

)ó
=

∞∑
n=−∞

anbn.

□

7.5.2 Pointwise Convergence
The mean-square convergence theorem does not guarantee that the Fourier series converges for
any x. In order to obtain the pointwise convergence of Fourier series, the function may have
good local behaviors near x0.

Observe that

S N( f )(x0) − f (x0) =
1

2π

∫ π

−π
f (x0 − y)DN(y) dy − f (x0)

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]
DN(y) dy

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]sin
(
(N + 1

2 )y
)

sin( y
2 )

dy
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We expect the integral decays to 0 as N tends to infinity. However, the denominator sin( y
2 )

become small as |y| tends to 0. Hence, we hope to obtain a better control of
f (x0 − y) − f (x0)

sin( y
2 )

that will give the pointwise convergence.

Theorem 7.5.11. Let f be an integrable function on the circle which is differentiable at a point
x0. Then S N( f )(x0)→ f (x0) as N → ∞.

Proof. Define

F(y) =


f (x0 − y) − f (x0)

y
if y , 0 and |y| < π

− f ′(x0) if y = 0

Since f is differentiable at x0, there exists δ > 0 such that F is bounded for |y| ≤ δ. Moreover,
F is integrable on [−π,−δ]∪ [δ, π] because f is integrable on the circle. Then F is integrable on
the circle.

On the other hand, since
y

sin(y/2)
is continuous on [−π, π]\{0}, the functions

F(y) · y
sin(y/2)

cos(y/2) and F(y)y

are Riemann integrable on [−π, π]. Also,

sin
(
(N + 1/2)y

)
= sin(Ny) cos(y/2) + cos(Ny) sin(y/2).

Then

S N( f )(x0) − f (x0) =
1

2π

∫ π

−π
f (x0 − y)DN(y) dy − f (x0)

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]
DN(y) dy

=
1

2π

∫ π

−π

[
f (x0 − y) − f (x0)

]sin
(
(N + 1

2 )y
)

sin( y
2 )

dy

=
1

2π

∫ π

−π

Ä
F(y) · y

sin(y/2)
cos(y/2)

ä
sin(Ny) dy

+
1

2π

∫ π

−π
F(y)y cos(Ny) dy.

By Riemann-Lebesgue lemma, the above two integrals converge to 0 as N → 0 and the theorem
is proved. □

Remark. According to the above analysis, we need to control the term
f (x0 − y) − f (x0)

sin(y/2)
as

|y| is small. In fact, the conclusion of the theorem still holds if we assume that f satisfies a
“Lipschitz condition” at x0; that is,

| f (x) − f (x0)| ≤ M|x − x0|

for some M ≥ 0 and all x.
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Theorem 7.5.12. Suppose f and g are two integrable functions defined on the circle, and for
some x0 there exists an open interval I containing x0 such that

f (x) = g(x) for all x ∈ I.

Then S N( f )(x0) − S N(g)(x0)→ 0 as N → ∞.

Proof. Since the function f − g is 0 in I, it is differentiable at x0. Therefore, by Theorem7.5.11,

S N( f )(x0) − S N(g)(x0) = S N( f − g)(x0)→ ( f − g)(x0) = 0.

□

■ Piecewise Continuous Functions

If f is a piecewise continuous function on the circle, then it is bounded and integrable on the
circle. Denote

f (x−) = lim
h→0+

f (x − h) and f (x+) = lim
h→0+

f (x + h).

Let f (x) be the average value

f (x) =
1
2

[ f (x+) + f (x−)].

Note that if f is continuous at x, then f (x) = f (x+) = f (x−) = f (x).

Definition 7.5.13. A piecewise continuous function f is said to be “one-sided differentiable” at
x if the two limits

lim
h→0+

f (x−) − f (x − h)
h

and lim
h→0+

f (x + h) − f (x+)
h

both exist.

Example 7.5.14. The function f (x) = |x| is one-sided differentiable at x = 0 since

lim
h→0+

|0| − | − h|
h

= −1 and lim
h→0+

|h| − |0|
h

= 1.

Theorem 7.5.15. Let f be a piecewise continuous function on [−π, π] such that its 2π-periodic
extension is one-sided differentiable for all x ∈ R. Then S N( f ) converges pointwise to f (x) for
all x ∈ R.

Proof. Since DN(y) is an even function, then

1
2π

∫ 0

−π
DN(y) dy =

1
2π

∫ π

0
DN(y) dy =

1
2
.

We have

f (x) =
1

2π

î∫ 0

−π
DN(y) f (x+) dy +

∫ π

0
DN(y) f (x−) dy

ó
.
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S N( f )(x) − f (x) =
1

2π

î∫ 0

−π
DN(y)

Ä
f (x − y) − f (x+)

ä
dy

+

∫ π

0
DN(y)

Ä
f (x − y) − f (x−)

ä
dy
ó

=
1

2π

î∫ 0

π

DN(−y)
Ä

f (x + y) − f (x+)
ä

(−dy)

+

∫ −π

0
DN(−y)

Ä
f (x + y) − f (x−)

ä
(−dy)

ó
(let y→ −y)

=
1

2π

î∫ π

0
DN(y)

Ä
f (x + y) − f (x+)

ä
dy

+

∫ 0

−π
DN(y)

Ä
f (x + y) − f (x−)

ä
dy
ó

(DN is even .)

=
1

2π

î∫ π

0

f (x + y) − f (x+)
sin(y/2)

· sin
(
(N + 1/2)y

)
dy

+

∫ 0

−π

f (x + y) − f (x−)
sin(y/2)

· sin
(
(N + 1/2)y

)
dy
ó

=
1
π

î∫ 2π

0

f (x + 2z) − f (x+)
sin z

· sin
(
(2N + 1)z

)
dz

+

∫ 0

−2π

f (x + 2z) − f (x−)
sin z

· sin
(
(2N + 1)z

)
dz
ó

(let y = 2z)

= I + II

By the similar argument as the one of Theorem7.5.11, since f is one-sided differentiable, the
functions

f (x + 2z) − f (x+)
sin z

and
f (x + 2z) − f (x−)

sin z
are integrable on [0, 2π] and [−2π, 0] respectively. From Riemann-Lebesgue lemm, both I and
II converge to 0 as N tends to infinity. The theorem is proved.

□

Example 7.5.16. Let f (x) = |x| be defined on [−π, π]. Then the Fourier coefficients of f are

f̂ (n) =


π

2
if n = 0

−1 + (−1)n

πn2 if n , 0

Then the Fourier series

|x| ∼ π

2
+

∞∑
|n|=1

−1 + (−1)n

πn2 einx =
π

2
− 4
π

∞∑
n=1, odd

cos(nx)
n2 .

Since f is continuous on [−π, π] and one-sided differentiable, f can be expressed as its Fourier
series. That is

|x| = π
2
− 4
π

∞∑
n=1,odd

cos(nx)
n2 .



338 CHAPTER 7. FOURIER SERIES

Taking x = 0, we have
∞∑

n=1, odd

1
n2 =

π2

8
.

7.5.3 Uniform Convergence
In the present subsection, we want to find the sufficient condition for the uniform convergence
of Fourier series. Corollary7.2.13 says that the twice continuous differentiability of f will give
rise to the uniform convergence. Besides, since uniform convergence automatically implies
pointwise convergence, we naturally expect the sufficient conditions for uniform convergence
are strong than the hypotheses in Theorem7.5.11.

The following theorem will apply Corollary7.2.11 and give a better hypothesis than the ones
of Corollary7.2.13.

Theorem 7.5.17. Let f be a function defined on [−π, π] such that its periodic extension is con-
tinuous (i.e f (−π) = f (π)) and let f ′ be piecewise continuous. Then S N( f ) converges uniformly
to f on [−π, π].

Proof. By Corollary7.2.11, it suffices to show that
∞∑

n=−∞
| f̂ (n)| < ∞. Since f ′ is piecewise con-

tinuous, it is integrable on [−π, π] and hence its Fourier coefficients are well-defined and

f̂ ′(n) =
1

2π

∫ π

−π
f ′(x)e−inx dx.

Moreover, from Bessel’s inequality,
∞∑

n=−∞
| f̂ ′(n)|2 ≤ ∥ f ′∥2 < ∞.

On the other hand, for every n ∈ Z,

f̂ ′(n) =
1

2π

∫ π

−π
f ′(x)e−inx dx

=
1

2π

î
f (x)e−inx

∣∣∣π
−π
+ in
∫ π

−π
f (x)e−inx dx

ó
= 0 +

in
2π

∫ π

π

f (x)e−inx dx (since f (−π) = f (π))

= (in) f̂ (n).

By Cauchy-Schwarz inequality,
∞∑

n=−∞
| f̂ (n)| = | f̂ (0)| +

∞∑
|n|=1

| f̂ ′(n)|
|n|

≤ | f̂ (0)| +
Ä ∞∑
|n|=1

1
n2

ä1/2Ä ∞∑
|n|=1

| f̂ ′(n)|2
ä1/2

< ∞.



7.5. CONVERGENCE OF FOURIER SERIES 339

By Corollary7.2.11, S N( f ) converges to f uniformly. □

Example 7.5.18. Let f (x) = |x| be defined on [−π, π] and the 2π periodic extension of f and
f ′(x) = sign(x) is piecewise continuous. Therefore, S N( f ) converges to f uniformly.

Example 7.5.19. Let f (x) = sign(x). Since f is not continuous, we cannot conclude that S N( f )
converges to f uniformly on [−π, π]. If fact, it is impossible that S N( f ) convergs to f uniformly
since the limit function of uniform convergence of continuous functions should be continuous.
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7.6 Smoothness and Decay of Fourier Coefficients
From the proofs of Corollary7.2.13 and Theorem7.5.17, we have an insight that the smoother
f is the faster the Fourier coefficients will converge to zero. The rate at which the Fourier
coefficients tend to zero will be measured by checking if

∞∑
n=−∞

n2m| f̂ (n)|2 < ∞

for positive integers m.

Let Cm
p denote the set of functions on R such that f , f ′, · · · , f (m) are all continuous and 2π

periodic. Hence, if f ∈ Cm
p , then

f ( j)(−π) = f ( j)(π) for j = 0, 1, · · · ,m.
Theorem 7.6.1. Let m ≥ 1 be an integer. Assume that f ∈ Cm−1

p and f (m) is piecewise continu-
ous. Then

∞∑
n=−∞

n2m| f̂ (n)|2 = ∥ f (m)∥2.

Proof. Assume that m = 1. Then f is continuous on the circle and f ′ is piecewise continuous
on [−π, π]. Hence, f ′ is integrable on [−π, π] and

f̂ ′(n) = in f̂ (n) for all n ∈ Z.
By Parseval’s inequality,

∞∑
n=−∞

n2| f̂ (n)|2 = ∥ f ′∥2.

Assume that the theorem holds for m. Let f ∈ Cm
p with f (m+1) piecewise continuous, then

f ′ ∈ Cm−1
p with dm

dxm f ′ = f (m+1) piecewise continuous. Then
∞∑

n=−∞
n2(m+1)| f̂ (n)|2 =

∞∑
n=−∞

n2m
∣∣(in) f̂ (n)

∣∣2 = ∞∑
n=−∞

n2m
∣∣ f̂ ′(n)

∣∣2 = ∥ f (m+1)∥2.

The theorem is proved by induction on m. □

Example 7.6.2. In Example7.5.16, we consider the function f (x) = |x| on [−π, π]. The Fourier
coefficients are

f̂ (n) =


π

2
if n = 0

−1 + (−1)n

πn2 if n , 0

Hence,
∞∑

n=−∞
n2| f̂ (n)|2 = 2

∞∑
n=1, odd

n2 4
π2n4 =

8
π2

∞∑
n=1, odd

1
n2 .

It is easy to check that f ∈ C0
p and f ′(x) = sign(x) is piecewise continuous. Also, we can

compute that ∥ f ′∥2 = 1. This also implies that∑
n=1, odd

1
n2 =

π2

8
.
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7.7 Applications

In the present section, we will use the Fourier series to solve an PDE problem.

■ Heat Equation

We consider the heat equation on the domain (0, 1) satisfying

ut(t, x) − uxx(t, x) = 0 x ∈ [0, 1], t ≥ 0 (7.9)
u(t, 0) = u(t, 1) = 0 t ≥ 0 (7.10)

u(0, x) = f (x) ∈ C2([0, 1]) 0 ≤ x ≤ 1 (7.11)

We want to look for special solutions of the form

u(t, x) = A(t)B(x).

The heat equation implies that

A′(t)B(x) − A(t)B′′(x) = 0.

Hence,
A′(t)
A(t)

=
B′′(x)
B(x)

= λ.

The number λ is a constant since it is independent of both x and t. Then we have

A(t) = eλt and B(x) = b1e
√
λx + b2e−

√
λx.

From the boundary condition(7.10), we have B(0) = B(1) = 0. Then B(x) is a 1-periodic
function and hence λ < 0 and

√
|λ| is an integer multiple of 2π. Set λ = −4π2n2 for n ∈ N. Let

An(t) = e−4π2n2t and Bn(x) = b1ne2πinx + b2ne−2πinx.

The for every n ∈ N, the function

un(t, x) = An(t)Bn(x) = e−4π2n2t
Ä

b1ne2πinx + b2ne−2πinx
ä
, b1n, b2n ∈ C

satisfies (7.9) and (7.10). Since the heat equation is linear, the linear combination

u(t, x) =
∞∑

n=−∞
An(t)Bn(x) =

∞∑
n=−∞

ane−4π2n2te2πinx

also solves (7.9) and (7.10). To determine whether u(t, x) satisfies (7.11), setting t = 0 and

f (x) = u(0, x) =
∞∑

n=−∞
ane2πinx
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where an = f̂ (n) =
∫ 1

0
f (x)e−2πinx dx are the Fourier coefficients of f .

Since f is a twice continuously differentiable function, the Fourier coefficients a′ns are bounded.
Also, for every t > 0, e−4π2n2t decays repidly as n tends to infinity. Hence the series

u(t, x) =
∞∑

n=−∞
ane−4π2n2te2πinx

converges for every t > 0. Thus, the above series solves (7.9), (7.10) and (7.11). In fact, u ∈ C2.

Question: Does u(t, x) converge to f (x) as t tends to 0?
That is,

lim
t→0

u(t, x) = lim
t→0

lim
N→∞

N∑
n=−N

ane−4π2n2te2πinx

??
= lim

N→∞
lim
t→0

N∑
n=−N

ane−4π2n2te2πinx

= lim
N→∞

N∑
n=−N

ane2πinx

= f (x).

Since f is twice continuously differentiable,
∑
n∈Z
| f̂ (n)| =

∑
n∈Z
|an| < ∞. For given ε > 0, there

exists N0 ∈ N such that
∑
|n|≥N0

|an| <
ε

3
. We have

∣∣∣ f (x) −
∑
|n|<N0

ane2πinx
∣∣∣ < ε

3

for every x ∈ [0, 1]. Choose δ > 0 such that 0 < t < δ, then∣∣∣ ∑
|n|<N0

ane−4π2n2te2πinx −
∑
|n|<N0

ane2πinx
∣∣∣ < ε

3

for every x ∈ [0, 1]. Then for 0 < t < δ,

| f (x) − u(t, x)| ≤
∣∣∣ f (x) −

∑
|n|<N0

ane2πinx
∣∣∣ + ∣∣∣ ∑

|n|<N0

ane−4π2n2te2πinx −
∑
|n|<N0

ane2πinx
∣∣∣

+

∣∣∣ ∑
|n|≥N0

ane−4π2n2te2πinx
∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore, u(t, x) converges to f (x) uniformly on [0, 1] as t tends to 0.

Question: Is the solution of (7.10) and (7.11) unique?
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Suppose that u1 and u2 are solutions of (7.10) and (7.11). Let v = u1 − u2. Then v satisfies

vt(t, x) − vxx(t, x) = 0 x ∈ [0, 1], t ≥ 0
v(t, 0) = v(t, 1) = 0 t ≥ 0

v(0, x) = 0 0 ≤ x ≤ 1

Define w(t, x) = e−tv(t, x). Then

wt(t, x) − wxx(t, x) + w(t, x) = 0 x ∈ [0, 1], t ≥ 0
w(t, 0) = w(t, 1) = 0 t ≥ 0

w(0, x) = 0 0 ≤ x ≤ 1

Claim: w(t, x) ≤ 0 for t ≥ 0 and 0 ≤ x ≤ 1.

Suppose the contrary, there exists t0 > 0 and 0 < x0 < 1 such that w(t0, x0) > 0. Since
w(t0, x) is continuous on {t0} × [0, 1], we may assume that x0 such that w(t0, x0) = max

0≤x≤1
w(t0, x).

Then
wxx(t0, x0) ≤ 0.

Therefore, wt(t0, x0) ≤ −w(t0, x0) < 0. We have

max
0≤x≤1

w(t, x) > 0 for all 0 ≤ t ≤ t0.

We can repeat the above argument on [0, t0]× [0, 1] until the process goes back to the initial
time t = 0. It will implies that max0≤x≤1 w(0, x) > 0 and obtain a contradiction.

The claim w(t, x) ≤ 0 shows that v(t, x) ≤ 0. On the other hand, the same argument also
holds with v replaced by −v. We will obtain that v(t, x) ≥ 0 and hence v(t, x) ≡ 0. This proves
that the solution of (7.10) and (7.11) is unique.





Homework
Homework 1

1. Let (M, d) be a metric space, (V, ∥ · ∥) be a normed vector space and A ⊆ M. Check that(
Cb(A; V), ∥ · ∥∞

)
is a normed vector space.

2. Let (M, d) be a metric space and A ⊆ M. Define RA :=
{

f : A → R
}
= the set of all

real-valued functions defined on R. Prove that
Ä
Cb

(
A;R

)
, ∥ · ∥∞

ä
is closed in RA.

3. Let U =
{

f ∈ C
(
(0, 1);R

) ∣∣ f (x) > 0 for every x ∈ (0, 1)
}

. Determine whether U is
relatively open in

(
Cb((0, 1);R), ∥ · ∥∞

)
.

4. Let fn(x) =
n∑

k=0

(−1)k x2k+1

(2k + 1)!
for n = 1, 2, · · · and f (x) = sin x.

(a) Determine whether { fn}∞n=1 converges to f in
Ä
Cb

(
[0, 1];R

)
, ∥ · ∥∞

ä
.

(b) Determine whether { fn}∞n=1 converges to f in
Ä
Cb(R;R), ∥ · ∥∞

ä
.

(c) Prove that the set
{

f , f1, f2, f3, · · ·
}

is compact in
Ä
Cb([0, 1];R), ∥ · ∥∞

ä
.

5. Let fn(x) =


0, x ∈ (−∞, n − 1)
x − (n − 1), x ∈ [n − 1, n]
(n + 1) − x, x ∈ [n, n + 1]
0, x ∈ (n + 1,∞)

for n = 1, 2, · · · and let 0 be the zero

element in
Ä
Cb

(
R;R

)
, ∥ · ∥∞

ä
.

(a) Prove that every fn is in the unit ball B(0, 1) ⊂
Ä
Cb

(
R;R

)
, ∥ · ∥∞

ä
.

(b) Prove that the sequence { fn}∞n=1 does not contain a convergent subsequence in
Ä
Cb

(
R;R

)
, ∥ · ∥∞

ä
.

(c) Prove that the set { f1, f2, f3, · · · } is closed in
Ä
Cb

(
R;R

)
, ∥ · ∥∞

ä
.

(d) Prove that B(0, 1) is closed and bounded in
Ä
Cb

(
R;R

)
, ∥ · ∥∞

ä
, but is not compact inÄ

Cb
(
R;R

)
, ∥ · ∥∞

ä
.

6. Let f ∈ C(Rn;R). Prove that
(

f ◦ ϕ
)
(x) = f

(
ϕ
)
(x) ∈ Cb

(
[a, b];R

)
for every ϕ ∈

Cb
(
[a, b];Rn

)
.

7. Let fn(x) =
x2

x2 + (1 − nx)2 on [0, 1]. Show that F = { fn |n ∈ N} is not equicontinuous.
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Lecture Note :(Page 200)

8. Problem 5.13

9. Problem 5.14(1)(3)
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Homework 2
Part I:

1. Let (M, d) be a metric space, (V, ∥ ·∥) be a Banach space and A ⊆ M be a countable subset.
Suppose that { fk}∞k=1 be pointwise compact on A. Prove that { fk}∞k=1 contains a subsequence
which converges (pointwise) on A.

2. Let (M, d) be a metric space and A ⊆ M, (V, ∥ · ∥) be a normed space and K ⊆ M be a
compact subset. Prove “directly” (without using the “contradiction argument’’反証法)
that if B is precompact in

(
C(K; V), ∥ · ∥∞

)
, then B is equicontinuous.

3. Fix N ∈ N. Let F =
{

P(x)
∣∣ P(x) =

N∑
k=0

akxk, where − 1 ≤ a0, a1, · · · , aN ≤ 1
}

be the

collection of all polynomials of degree ≤ N with coefficients in [−1, 1]. Prove that F is
equicontinuous on any bounded set in R.

4. Suppose that { fn}∞n=1 be a sequence of twice differentiable functions on [0, 1] such that
fn(0) = 0, | f ′n(0)| < 1 and | f ′′n (x)| ≤ M for all x ∈ [0, 1] and every n ∈ N.

(a) Suppose that { fn}∞n=1 converges pointwise on [0, 1], then it also converges uniformly
on [0, 1].

(b) Prove that even { fn}∞n=1 itself does not converge pointwise on [0,1], it still contains a
uniformly convergent subsequence on [0, 1].

Lecture Note :(Page 200)

5. Problem 5.15 (1)(3)

6. Problem 5.16

7. Problem 5.20 (in this problem A = K)

Part II:
1. Suppose f is a real continuous function on R, fn(t) = f (nt) for n = 1, 2, 3, · · · , and { fn} is

equicontinuous on [0, 1]. What conclusion can you draw about f ?

2. Let a < b < c and B ⊆ C
(
[a, c];R

)
. Suppose that B is equicontinuous on [a, b] and on

(b, c] respectively. Determine whether B is equicontinuous on [a, c].

3. Let B ⊆ C1
(
[a, b];R

)
.

(a) If there exists M > 0 such that | f ′(x)| < M for every f ∈ B and x ∈ (a, b), prove that
B is equicontinuous on [a, b].

(b) Determine whether the converse of (a) still holds.

Lecture Note:(Page 201)
4. Problem 5.18(2)
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Homework 3

Part I:
1. Let { fn} be a uniformly bounded sequence of functions which are integrable on [a, b], and

put

Fn(x) =
∫ x

a
fn(t) dt

for x ∈ [a, b]. Prove that there exists a subsequence {Fnk} which converges uniformly on
[a, b].

2. Define fn : R→ R by fn(x) =
1

(x − n)2 + 1
.

(a) Prove that the sequence of functions { fn}∞n=1 is uniformly bounded and converges to
0 pointwise.

(b) Prove that there exists no subsequence of { fn}∞n=1 that converges uniformly.

(c) Which hypothesis of Arzelà-Ascoli theorem is not satisfied and show your assertion.

3. Check that each of the following families of real-valued functions defined on the given
set is an algebra.

(a) The collection of simple functions defined on [a, b].

(b) P
(
K
)

denote the collection of polynomials defined on K ⊆ Rn.

(c) Peven
(
[a, b]

)
in Example 5.84

4. Prove that
Ä
Cb

(
[0, 1];R

)
, ∥ · ∥∞

ä
is separable. (That is, Cb

(
[0, 1];R

)
contains a countable

dense subset.)

5. Let a > 0. Prove that there exists a sequence of polynomials {Pn}∞n=1 such that Pn(0) = 0
and Pn(x)→ |x| uniformly on [−a, a].

Lecture Note :(Page 202)

6. Problem 5.23 (Hint: (1) Use the Weierstrass Theorem to show that
∫ 1

0
f 2(t) dt = 0.)

7. Problem 5.26

Part II:

1. For every n ∈ N, define Qn(x) = cn(1 − x2)n where cn is chosen so that
∫ 1

−1
Qn(x)dx = 1.

(a) Show that cn <
√

n by proving that∫ 1

−1
(1 − x2)n dx >

1
√

n
for every n = 1, 2 · · · .
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(b) Prove that for every 0 < δ < 1 and δ ≤ |x| ≤ 1,

Qn(x) ≤
√

n(1 − δ2)n (Hint: show that (1 − x2)n ≥ 1 − nx2)

and prove that for any given 0 < δ < 1, Qn(x)→ 0 uniformly on
{

x
∣∣ δ ≤ |x| ≤ 1

}
.

(c) Let f be a continuous function on [0, 1] with f (0) = f (1) = 0. We extend f outside

[0, 1] such that f (x) = 0 for x < [0, 1] and still called f . Define Pn(x) =
∫ 1

−1
f (x + t)Qn(t) dt.

Prove that Pn(x) is a polynomial in x on [0, 1].

(d) Prove that Pn → f uniformly on [0, 1].
î

Hint: Consider

Pn(x) − f (x) =
∫ 1

−1

[
f (x + t) − f (x)

]
Qn(t) dt =

∫ −δ

−1
+

∫ δ

−δ
+

∫ 1

δ

· · · dt ≤ · · ·

and choosing suitably small δ and sufficiently large n to estimate |Pn(x) − f (x)| ≤ ε.ó
.

2. Let I j = [a j, b j] be disjoint intervals in R for j = 1, · · · k and I =
k⋃

j=1

I j. Let f be a

continuous function defined on I. Prove that there exists a sequnce of polynomials {Pn}∞n=1
such that Pn → f uniformly on I.
(Note: until now, we only know the Weierstruass theorem holds on any single interval
[a, b]. )

3. Suppose that f is an integrable function on [a, b]. Given ε > 0.

(a) Prove that there exists a simple function g on [a, b] such that∫ b

a

∣∣ f (x) − g(x)
∣∣ dx < ε.

(b) Prove that there exists a continuous function h on [a, b] such that∫ b

a

∣∣ f (x) − h(x)
∣∣ dx < ε.

4. Let f be an integrable function on [a, b]. Prove that there exists a sequence of polynomials
{Pn}∞n=1 such that ∫ b

a
| f (x) − Pn(x)| dx→ 0 as n→ ∞.

(Be careful, f may not be continuous.) (Hint: use Problem 2)
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Homework 4

Part I:
1. For a given set A ⊆ R, let P

(
A
)

be the collection of all polynomials defined on A and let
X be a given collection of functions defined on A. Determine whether P

(
A
)

is dense in(
X, ∥ · ∥∞

)
.

(a) A = R and X = Cb(R;R).

(b) A = R and X =
¶

f ∈ C(R;R)
∣∣∣ lim
|x|→∞

f (x) = 0
©

.

(c) A = (0, 1) and X = C
(
(0, 1);R

)
.

(d) A = (0, 1) and X = Cb
(
(0, 1);R

)
.

2. Let I = [a, b] and A be the subset of C(I;R) consisting of all piecewise linear (continu-
ous) functions. Determine whetherA is dense in C(I;R).

3. Let f = ( f1, · · · , fn) : [a, b] → Rn. We say that f is integrable on [a, b] if each fi is
integrable on [a, b] and define∫ x

a
f(t) dt :=

Ä∫ x

a
f1(t) dt, · · · ,

∫ x

a
fn(t) dt

ä
= F(x)

for x ∈ [a, b]. Let X :=
¶

f : [a, b]→ Rn
∣∣ f is integrable on [a, b]

©
. Define a map Φ on X

by
Φ(f) = F.

Prove that Φ maps from
(
C([a, b];Rn), ∥ · ∥∞

)
to itself.

4. Let f (x) = 1 + x1/3.

(a) Show that f is a contraction mapping on [1, 8].

(b) By the Contraction Mapping Theorem, there exists a fixed point a ∈ [1, 8] for f . Set
x1 = 1 and xn+1 = f (xn). Find a number N ∈ N such that for every n ≥ N,

|xn − a| ≤ 1
10000

.

Lecture Note :(Page 202)

5. Problem 5.28

6. Problem 5.29

7. Problem 5.30

Part II:
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1. Show that the Stone-Weierstrass Theorem fails to hold if the set K (domain of continuous
functions) is not compact.

2. Let A =
ï
a b
b c

ò
be a 2 × 2 matrix. Define Φ : R2 → R2 by

Φ(x, y) = A
ï

x
y

ò
=

ï
a b
b c

ò ï
x
y

ò
Prove thatΦ is a contraction mapping on R2 if and only if all eigenvalues of A are between
−1 and 1 (that is,−1 < λ1, λ2 < 1).

Lecture Note:(Page 203)

3. Problem 5.24

4. Problem 5.25
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Homework 5

Part I:
1. Let f (x) = x5−5x−2. Then there exists a zero, say x0, of f (x) in (1, 2). Find a subinterval

I of x0 contained in (1, 2) such that the map ϕ(x) = x − f (x)
f ′(x)

is a contraction mapping on

I.

2. Let (Rn, ∥ · ∥Rn), (Rm, ∥ · ∥Rm) and (Rk, ∥ · ∥Rk) be normed spaces.

(a) Let L ∈ L(Rm;Rk). Write the condition (definition) if L is bounded.

(b) Let T ∈ L
Ä
Rn;B(Rm;Rk)

ä
. Write the condition (definition), if T is bounded.

(c) Let A =
ï

a 0
0 b

ò
∈ M2×2(R) be a 2 × 2 matrix with real-valued entries and

x =
ï

x1

x2

ò
∈ R2.

Define

Ax :=
ï

a 0
0 b

ò ï
x1

x2

ò
=

ï
ax1

bx2

ò
.

Prove that A ∈ B(R2;R2) and ∥A∥B(R2;R2) = max(|a|, |b|).
(d) Let A be defined as above and define a map T on R3 by

T (r, s, t) = (r + s + t)A.

Prove that T ∈ B
Ä
R3;B(R2;R2)

ä
and find ∥T∥

B
(
R3;B(R2;R2)

).

3. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces, and L ∈ B(X; Y). Prove that

∥L∥B(X;Y) = sup
∥x∥X=1

∥Lx∥Y = sup
∥x∥X≤1

∥Lx∥Y = sup
x,0

∥Lx∥Y
∥x∥X

= inf
¶

M > 0
∣∣∣ ∥Lx∥Y ≤ M∥x∥X

©
.

4. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces. Prove that
(
B(X; Y), ∥ · ∥B(X;Y)

)
is a normed

space.

Lecture Note :(Page 205, 261)

5. Problem 5.33

6. Problem 5.35

7. Problem 6.2

Part II:
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1. Let X be a finite dimensional vector space. Let ∥ · ∥1 and ∥ · ∥2 be two norms on X. Prove
that the identity map idX : (X, ∥ · ∥1)→ (X, ∥ · ∥2) is a bounded linear map.

2. Let K(x, y) : [0, 1]×[0, 1]→ R be a continuous function. Denote X =
(
C([0, 1];R), ∥·∥∞

)
.

Define a map Φ on X by

[Φ( f )](x) =
∫ 1

0
K(x, y) f (y) dy

for every f ∈ X.

(a) Prove that Φ ∈ B(X; X)

(b) Assume that K(x, y) ≥ 0. Find ∥Φ∥B(X;X).

Lecture Note:(Page 205, 261)

3. Problem 5.32

4. Problem 6.3
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Homework 6

Part I:
1. Let (X, ∥ · ∥X), (Y, ∥ · ∥Y) and (Z, ∥ · ∥Z) be normed spaces, and L ∈ B(X,Y), K ∈ B(Y,Z).

Prove that K ◦ L ∈ B(X,Z) and

∥K ◦ L∥B(X,Z) ≤ ∥K∥B(Y,Z)∥L∥B(X,Y).

2. Let n,m ∈ N and A ∈ Mm×n(R).

(a) If n ≥ m and rank(A) = m, prove that A is a surjective mapping.

(b) If n ≤ m and rank(A) = n, prove that A is a injective mapping.

(c) Let A ∈ Mn×n(R). Prove that A is invertible if and only if det A , 0.

(d) Let A =
ï

1 2
3 4

ò
. Find δ > 0 such that B =

ï
a b
c d

ò
is invertible whenever

|a − 1| < δ, |b − 2| < δ, |c − 3| < δ and |d − 4| < δ

3. Prove that to every A ∈ L(Rn,R) corresponds a unique y ∈ Rn such that Ax = x · y. Prove
also that ∥A∥B(Rn,R) = ∥y∥Rn .

4. Let f : I ⊆ R→ R be continuously differentiable on I. For every a ∈ I, define Ta : R→ R
by

Ta(λ) := lim
h→0

f (a + λh) − f (a)
h

for every λ ∈ R.

(a) Prove that for every a ∈ I, Ta ∈ B(R,R) and find ∥Ta∥B(R,R).

(b) Prove that for given ϵ > 0 there exists δ > 0 such that if |a − b| < δ, then
∥Ta − Tb∥B(R,R) < ϵ.

(c) Define Φ : I → B(R,R) by Φ(a) = Ta. Prove that Φ is continuous on I.

5. (a) Find the matrix representative of T if T (x1, x2, · · · , xn) = (x1 − xn, xn − x1).

(b) Find the matrix representative of T if T (1, 1) = (3, π, 0) and T (0, 1) = (4, 0, 1).

6. Let f (x) = (x2, sin x). Find the matrix representative of a linear map T ∈ B(R;R2) such
that

lim
h→0

∥ f (1 + h) − f (1) − Th∥R2

|h| = 0.

7. Let (S , ρ) be a metric space and a, b, c, d, e, f : S → R be continuous functions. Define
A : S → M2×3(R) by

A(p) =
ï

a(p) b(p) c(p)
d(p) e(p) f (p)

ò
.

for every p ∈ S . Prove that A : S → B
(
R3;R2

)
is continuous on S .

Part II:
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1. Give an example of normed spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y) such that

L(X,Y) % B(X,Y).

2. Let L ∈ GL(n). Prove that ∥L−1∥B(Rn,Rn) =
1

inf∥x∥Rn=1 ∥Lx∥Rn
.

3. Let (X, ∥·∥X) and (Y, ∥·∥Y) be two finite dimensional normed vector spaces, say dim X = m
and dim Y = n. In Homework 6, we have knows that B

(
X; Y

)
is a vector space. Prove

that the dimension of B
(
X; Y

)
is finite and find its dimensions.

4. Let A =
ï
1 2
3 4

ò
∈ M2×2(R). For x =

ï
x1

x2

ò
∈ R2,

Ax =
ï
1 2
3 4

ò ï
x1

x2

ò
=

ï
x1 + 2x2

3x1 + 4x2

ò
∈ M2×1(R)

For a given x ∈ R2, we want to regard Ax as a linear map from R2 to R by definingÄ
Ax
ä

︸  ︷︷  ︸
∈ B(R2;R)

(y) =
[
y1 y2

]
[Ax] =

[
y1 y2

] ï x1 + 2x2

3x1 + 4x2

ò
= y1(x1 + 2x2) + y2(3x1 + 4x2)

for every y =
ï
y1

y2

ò
. Find ∥Ax∥B(R2;R).

(Note: 此題是指給定一個 x，則 “Ax”為一個 R2中的向量，此向量可視為 B(R2;R)
中的一個 linear map定義如上。因此一個 x,將對應 B(R2;R)中的一個 linaer map。

此題在問如果 x =
ï

x1

x2

ò
給定,則對應的 linear map “Ax”的 operator norm應該為何?

理當會以 x1, x2 表達出來。)
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Homework 7

Part I:
1. Let f : R3 → R2, f (x, y, z) = (x4y, xez).

(a) Find the Jacobian matrix of f at (a, b, c).

(b) Use the definition of differentiation to show that f is differentiable at (a, b, c) and
find the matrix representation of D f (a, b, c).

2. Let

f (x, y) =


x2y2√
x2 + y2

, (x, y) , (0, 0)

0 , (x, y) = (0, 0)

Determine whether f is differentiable at (0, 0).

3. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be two normed spaces and f , g : X → Y be differentiable at
a ∈ X. Prove that

D( f + g)(a) = D f (a) + Dg(a).

4. Let f : R3 → R2, f (x, y, z) = (x4y, xez) and a = (1, 1, 1). A point moves along a curve C
with equation r(t) = (t, t2, t3) and hence r(1) = a.

(a) Find the tangent vector when the point passes a.

(b) Consider another point moves along the curve s(t) = f
(
r(t)

)
. Find the tangent

vector when the point passes f (a).

(c) Find the matrix representation of D f (a) and check that[
s′(1)

]
=

d
dt
[

f (r(t))
]∣∣∣

t=1
=
[
D f (a)

]
[r′(1)].

5. Let S be a surface in R3 with equation z = x2 + y2 and a = (1, 1, 2) ∈ S .

(a) Find a function f : R2 → R3 such that S is the range of f and f (1, 1) = a.

(b) Find a linear map L ∈ B(R2;R3) such that the corresponding affine plane

Va := f (1, 1)︸   ︷︷   ︸
vector

+Range(L)︸       ︷︷       ︸
vector space

=
{

a + v
∣∣ v ∈ Range(L)

}
is the tangent plane of S at a.

(c) Show that the value of f (x, y) can be approximated by the value of f (1, 1)+L(x − 1, y − 1)︸              ︷︷              ︸
L maps the vector

(x−1,y−1)
as (x, y) near (1, 1). That is,

f (x, y) = f (1, 1) + L(x − 1, y − 1) + R(x, y)

where lim
(x,y)→(1,1)

∥R(x, y)∥R3

∥(x − 1, y − 1)∥R2
= 0.
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Lecture Note :(Page 262)

6. Problem 6.4

7. Problem 6.10

Part II:
1. Let X and Y be two vector spaces and f : X → Y be a mapping. Suppose that ∥ · ∥X is a

norm on X, and ∥ · ∥1 and ∥ · ∥2 are two equivalent norms on Y . Prove that f : (X, ∥ · ∥X)→
(Y, ∥ · ∥1) is differentiable at a if and only if f : (X, ∥ · ∥X)→ (Y, ∥ · ∥2) is differentiable at a.

2. Let f : U ⊆ Rn → R, a ∈ U and u be a unit vector in Rn. Define the directional derivative
of f at a in the direction u by

Du f (a) = lim
h→0

f (a + hu) − f (a)
h

.

Use the definition of derivative of f to prove that Du f (a) = ∇ f (a) · u.

Lecture Note:(Page 262)

3. Problem 6.5

4. Problem 6.9
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Homework 8

Part I:
1. Suppose that f, g : R → Rm are differentiable at a and there exists a δ > 0 such that

g(x) , 0 for all 0 < |x − a| < δ. If f(a) = g(a) = 0 and Dg(a) , 0, prove that

lim
x→a

∥f(x)∥Rm

∥g(x)∥Rm
=
∥Df(a)∥B(R;Rm)

∥Dg(a)∥B(R;Rm)

2. Prove that

f (x, y) =


x2 + y2

sin
√

x2 + y2
0 < ∥(x, y)∥R2 < π

0 (x, y) = (0, 0)

is not differentiable at (0, 0).

3. Prove that

f (x, y) =


x3 − xy2

x2 + y2 (x, y) , (0, 0)

0 (x, y) = (0, 0)

is continuous on R2 and has first-order partial derivatives everywhere on R2, but f is not
differentiable at (0, 0).

4. LetU ⊆ Rn. Prove that the following two norms on C1(U,Rm) are equivalent.

∥ f ∥1 := sup
x∈U
∥ f (x)∥Rm + sup

x∈U
∥D f (x)∥B(Rn,Rm)

and

∥ f ∥2 := sup
x∈U

î
∥ f (x)∥Rm +

m∑
i=1

n∑
j=1

∣∣ ∂ fi

∂x j
(x)

∣∣ ó.
Lecture Note :(Page 263)

5. Problem 6.11

6. Problem 6.12

7. Problem 6.13

Part II:
1. Let r > 0, f : B(0, r) ⊆ Rn → R, and suppose that there exists an α > 1 such that
| f (x)| ≤ ∥x∥αRn for all x ∈ B(0, r). Prove that f is differentiable at 0. What happens to this
result when α = 1?
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2. Let f : R2 → R be defined by

f (x, y) =
ß

1 if 0 < y < x2

0 otherwise

Prove that all directional derivatives of f at (0, 0) exists but f is not differentiable at (0, 0).

3. Let L be a linear map of Rn → Rm, let g : Rn → Rm be such that ∥g(x)∥Rm ≤ M∥x∥2Rn , and
f (x) = L(x) + g(x). Prove that D f (0) = L.

4. Let f (x, y) = (xy, y/x) and h ∈ R2 be a vector.

(a) Compute
[
D f

]
B (with respect to the standard basis B = {e1, e2})

(b) Compute the matrix of
[
D f (x, y)

]
B1

with respect to the basis B1 =
¶ï1

0

ò
,

ï
1
1

ò©
.

(c) Write the two expressions of h with respect to the two basis B and B1 respectively.

(d) In Problem(c), we have two expressions of h, say
[
h1, h2

]
B and

[
u1, u2

]
B1

. Show

that
[
D f (1, 1)

]
B

ï
h1

h2

ò
B

and
[
D f (1, 1)

]
B1

ï
u1

u2

ò
B1

represent the same vector in R2.
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Homework 9

Part I:
1. Let f (x, y) = x2y and g(s, t) = (t − s2, ts2). Define h(s, t) = ( f ◦ g)(s, t).

(a) Find [D f (x, y)], [Dg(s, t)] and [Dh(s, t)].

(b) Check that
[Dh(s, t)] = [D f (g(s, t))][Dg(s, t)]

.

2. Let f (x, y) = xey.

(a) Find the equation of the tangent plane to the graph of z = f (x, y) at (1, 0, 1).

(b) Define F(x, y) = (x, y, f (x, y)). It is easy to see that the range of F is equal to the
graph of f . Let e1 =< 1, 0 > and e2 =< 0, 1 >. Find (DF)(1, 0)e1 and (DF)(1, 0)e2.

(c) Suppose that n ∈ R3 is the normal vector to the tangent plane in problem(a). Prove
that for any vector v ∈ R2, (DF)(1, 0)v ⊥ n.

3. For every z ∈ Rn+m, we express z = (x, y) = (x1, · · · , xn, y1, · · · , ym) where x ∈ Rn and
y ∈ Rm. Suppose that f : Rn+m → Rm is differentiable everywhere and denote

[Dx f (x, y)] =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 (x, y) and [Dy f (x, y)] =


∂ f1
∂y1
· · · ∂ f1

∂ym
...

. . .
...

∂ fm
∂y1
· · · ∂ fm

∂ym

 (x, y).

(a) Define F(x, y) =
(
x, f (x, y)

)
: Rn+m → Rn+m. Prove that F is differentiable every-

where and

[DF(x, y)] =
ï

In 0n×m

Dx f (x, y) Dy f (x, y)

ò
where In is the n × n identity matrix and 0n×m is the n × m zero matrix.

(b) If [Dy f (x, y)] is invertible, prove that [DF(x, y)] is invertible.

4. If f , g : Rn → R are differentiable real functions, prove that ∇( f g) = f∇g + g∇ f and

∇(1/ f ) = −∇ f
f 2 .

5. Let f : U ⊆ R2 → R be differentiable at (x0, y0) ∈ U and z0 = f (x0, y0). Define
F : U × R → R by F(x, y, z) = z − f (x, y). Use the gradient of F at (x0, y0, z0) to prove
the equation of the tangent plane to the graph of f at (x0, y0, z0) is

z = z0 +
∂ f (x0, y0)

∂x
(x − x0) +

∂ f (x0, y0)
∂y

(y − y0).

6. Let f (x, y, z,w) = ex sin(πy) +
z
w

. Use the linear approximation of f at (0, 1, 2, 3) to esti-
mate f (0.1, 0.9, 1.8, 2.7).
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Lecture Note :(Page 264)

7. Problem 6.14

Part II:
1. Suppose that f is a real-valued function defined in an open set U ⊆ Rn, and that the

partial derivatives
∂ f
∂x1

, · · · , ∂ f
∂xn

are bounded inU. Prove that f is continuous onU.

2. Suppose that I is a nonempty, open interval and that f : I → Rm is differentiable on I. If
f (I) ⊆ ∂B(0, r) for some fixed r > 0, prove that f (t) is orthogonal to f ′(t) for all t ∈ I.

3. Let L : R2 → R2 be a linear map defined by L(x, y) =
ï
1 2
3 4

ò ï
x
y

ò
= (x + 2y, 3x + 4y). Let f : R2 → R2

be a function satisfying

(((((((((((((((((((((((((((((

f (x, y) = L(x, y) + o
(
∥(x, y) − (0, 0)∥R2

)
as (x, y)→ (0, 0).

Prove that there exists r > 0 such that f is one-to-one in B
(
(0, 0), r

)
.

Lecture Note:(Page 264)

4. Problem 6.15
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Homework 10

Part I:
1. Let f : A ⊆ Rn → R be differentiable with A convex, and suppose ∥∇ f (x)∥Rn ≤ M for

x ∈ A.

(a) Prove that | f (x) − f (y)| ≤ M∥x − y∥Rn .

(b) Is the result still true if A is not convex?

2. Let U ⊆ Rn be a connected and open set. Suppose that f : U → Rm is differentiable on
U and D f (x) = 0 for every x ∈ U. Prove that f is a constant function.

3. Suppose that V is convex and open in Rn and that f : V → Rn is differentiable on V . If
there exists an a ∈ V such that Df(x) = Df(a) for all x ∈ V , prove that there exist a linear
function S ∈ B(Rn;Rn) and a vector c ∈ Rn such that f(x) = S (x) + c for all x ∈ V .

4. If f (x, y) is differentiable on a connected open set S ⊆ R2 and
∂ f (x, y)
∂x

= 0 for all (x, y) ∈
S .

(a) Show that if S is convex, then f is independent of x on S .

(b) Show that the result of Part (a) is false if S is not convex.

5. For a point (r, θ, ϕ) in R3, define

F(r, θ, ϕ) = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ).

At what point (r0, θ0, ϕ0) in R3 does the Inverse Function Theorem apply to the mapping
F?

6. Let u(x, y) = x2 − y2, v(x, y) = 2xy. Show that the map (x, y)→ (u, v) is locally invertible
at all point (x, y) , (0, 0).

7. Let F(x, y, z) = (x + y + z, x2y, xyz). Determine whether F has an inverse near the point
(1, 1, 0). If the inverse function F−1 exists and is defined on an open neighborhood of
F(1, 1, 0), find its derivative at F(1, 1, 0).

Part II:
1. If f : Rn → R is a real-valued function and if the directional derivative Du f (x) = 0 for

every x ∈ Rn and every direction u. Prove that f is a constant function.

2. Let f : Rn → R. Suppose that for each unit vector u ∈ Rn, the directional derivative
Du f (a + tu) exists for t ∈ [0, 1]. Prove that

f (a + u) − f (a) = Du f (a + tu)

for some t ∈ (0, 1).
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3. Let F(x, y) = (x3y, x5 − y5, x2 + y). Prove that there exists an open neighborhood U of
(1, 1), an open neighborhood V of (1, 0) and a function f : V → R such that the set F(U)
is equal to the graph of f on V . (DO NOT try to find the exact expression of f )
(Hint: (i) define u(x, y) = x3y and v(x, y) = x5 − y5, then the map (x, y) → (u, v) satis-
fies the Inverse Function Theorem; (ii) use the inverse map to solve x, y in terms of u, v
theoretically (iii) define f (u, v) = x2(u, v) + y(u, v).)

Lecture Note:(Page 267)

4. Problem 6.28 (6)(7)
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Homework 11

Part I:
1. Investigate whether the system

u(x, y, z) = x + xyz
v(x, y, z) = y + xy
w(x, y, z) = z + 2x + 3z2

can be solved for x, y, z interms of u, v,w near (0, 0, 0).

2. Give an example of a continuously differentiable mapping F : Rn → Rn with the property
that there is no open subset U of Rn for which F(U) is open in Rn.
(Hint: Do Problem 6.16 first).

3. Suppose that the function ϕ : R3 → R and ψ : R3 → R are continuously differentiable.
Define, for (x, y, z) ∈ R3

F(x, y, z) =
(
ϕ(x, y, z), ψ(x, y, z), ϕ2(x, y, z) + ψ2(x, y, z)

)
.

(a) Explain analytically why there is no point (x0, y0, z0) ∈ R3 at which the assumptions
of Inverse Function Theorem hold for the mapping F.

(b) Explain geometrically why there is no point (x0, y0, z0) ∈ R3 at which the conclusion
of the Inverse Function Theorem holds for the mapping F.

4. Let f(x, y) = (ex cos y, ex sin y) be a mapping fromR2 → R2. Let a = (0, π/3) and b = f(a).
Let g be the continuous inverse of f, defined in a neighborhood of b such that g(b) = a.

(a) Use the Inverse Function Theorem to find Dg(b).

(b) Find an explicit formula for g and compute Dg(b) directly and check whether it
equals the answer of Problem(a).

5. Let L = (L1, L2) : R5 → R2 be defined by

L(x1, x2, x3, x4, x5) = (x1 + 2x2 + 3x3 + 4x4 + 4x5, 2x1 + 3x2 + 4x3 + 5x4 + 5x5).

(a) Show that 
∂L1

∂x2

∂L1

∂x5

∂L2

∂x2

∂L2

∂x5


is invertible.

(b) Find two maps f2, f5 : R3 → R such that for every (x1, x3, x4) ∈ R3

L
(

x1, f2(x1, x3, x4), x3, x4, f5(x1, x3, x4)
)
= (1, 2)

(That is, if the differentiation matrix with respect to x2 and x5 is invertible, then the
preimage L−1

(
(1, 2)

)
can be expressed as the graph of a function f = ( f2, f5) of the

variables x1, x3 and x4.)
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6. Let U be an open set in R2 and f : U → R3 be a continuous differentiable function on U
defined by f (u, v) =

(
x(u, v), y(u, v), z(u, v)

)
where

x(u, v) = u2v
y(u, v) = u + v
z(u, v) = uv3

Let S ⊆ R3 be the range of f , then f (1, 1) = (1, 2, 1) ∈ S . Use the Inverse Function
Theorem to show that, near (1, 2, 1), S can be expressed as the graph of a function.
That is, there exists an open set V of (1, 2) and a function ϕ : V → R such that ϕ(1, 2) = 1
and near (1, 2, 1), S =

{(
x, y, ϕ(x, y)

)
| (x, y) ∈ V

}
.

Lecture Note :(Page 267)

7. Problem 6.16

Part II:
1. Construct a function f : R2 → R2 which satisfies that f is differentiable everywhere,

D f (x, y) is not continuous at (0, 0) and the Inverse Function Theorem fails near (0, 0).

2. Construct a function f : R2 → R2 such that f is continuous, the inverse function f −1 exists, but
f is not an open mapping.

3. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces and let T : X → Y be a linear map. Prove
that the following statements are equivalent.

(1) The linear map T is an open mapping.

(2) There exists a constant K > 0 such that, for all y ∈ Y , there exists x ∈ X with
∥x∥X ≤ K∥y∥Y such that T (x) = y.

4. Let (r, ϕ1, ϕ2, · · · , ϕn−1) ∈ Rn and let f = ( f1, · · · , fn) : Rn → Rn defined by

f1(r, ϕ1, ϕ2, · · · , ϕn−1) = r cos(ϕ1)
f2(r, ϕ1, ϕ2, · · · , ϕn−1) = r sin(ϕ1) cos(ϕ2)
f3(r, ϕ1, ϕ2, · · · , ϕn−1) = r sin(ϕ1) sin(ϕ2) cos(ϕ3)

...

fn−1(r, ϕ1, ϕ2, · · · , ϕn−1) = r sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1)
fn(r, ϕ1, ϕ2, · · · , ϕn−1) = r sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1)

Find the Jacobian of f,
∂( f1, · · · , fn)

∂(r, ϕ1, · · · , ϕn−1)
.
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Homework 12

Part I:
1. Construct a C1 mapping u(x, y) : R2 → R2, say u = (u1, u2), such that

[
Du(0, 0)

]
is NOT

invertible. But there exist an open neighborhood U of (0, 0) and an open neighborhood
V of u(0, 0) such that u : U → V is one-to-one and onto.
(Thus, we can still solve (x, y) in terms of (u1, u2) near (0, 0) even if

[
Du(0, 0)

]
is not

invertible.)

2. Consider the transformation for spherical coordinates:

x(r, ϕ, θ) = r sin ϕ cos θ
y(r, ϕ, θ) = r sin ϕ sin θ
z(r, ϕ, θ) = r cos ϕ

(a) Show that
∂(x, y, z)
∂(r, ϕ, θ)

= r2 sin ϕ.

(b) When can we solve for (r, ϕ, θ) in terms of (x, y, z)?

(c) What happened for those point (r, ϕ, θ) which cannot be solved in terms of (x, y, z)?
(Explain more details than just saying r2 sin ϕ = 0.)

3. For the system of equations

3x + y − z + u2 = 0
x − y + 2z + u = 0

2x + 2y − 3z + 2u = 0,

use the “Implicit Function Theorem” to determine whether any three of the four variables
x, y, z, u can be solved in terms of the remaining one.

4. Define f : R3 → R by
f (x, y, z) = x2y + ex + z.

(a) Show that there exists a differentiable function g(y, z) in some neighborhood of
(1,−1) in R2 such that g(1,−1) = 0 and

f
(
g(y, z), y, z

)
= 0

(b) Find
∂g
∂y

(1,−1) and
∂g
∂z

(1,−1).

5. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces and f : X → Y . Suppose that f is twice
differentiable at a ∈ X. Let u, v1, v2 ∈ X and c ∈ R. Prove that

(a)
D2 f (a)(cv1 + v2)(u) = cD2 f (a)(v1)(u) + D2 f (a)(v2)(u)
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(b)
D2 f (a)(u)(cv1 + v2) = cD2 f (a)(u)(v1) + D2 f (a)(u)(v2)

6.

Definition: Let X be a vector space. A map B : X × X → R is said to be a “bilinear
form" if B satisfies

(i) B(cu1 + u2, v) = cB(u1, v) + B(u2, v) for every u, v1, v2 ∈ X and c ∈ R; and

(ii) B(u, cv1 + v2) = cB(u, v1) + B(u, v2) for every u1, u2, v ∈ X and c ∈ R.

Suppose that dim X = n, {e1, · · · , en} is a basis of X and B : X × X → R is a bilinear form.

Prove that there exists a n × n matrix A such that for every u =
n∑

i=1

uiei and v =
n∑

j=1

v je j

B(u, v) =
[

u1 · · · un
]

A

 v1
...

vn


Lecture Note :(Page 264)

7. Problem 6.18

Part II:
1. As Problem 1 of Part I, for the system of equations

3x + y − z + u2 = 0
x − y + 2z + u = 0

2x + 2y − 3z + 2u = 0,

in order to satisfy the equation, use the “Inverse Function Theorem” to determine whether
x, y, z can be solved in term of u.

2. Let f = ( f1, f2) : R2 → R2 be smooth and satisfy the Cauchy-Riemann equations
∂ f1

∂x
=
∂ f2

∂y
and

∂ f1

∂y
= −∂ f2

∂x
.

(a) Show that, at (x0, y0),
∂( f1, f2)
∂(x, y)

= 0 if and only if D f (x0, y0) = 0 and hence that f is

locally invertible if and only if D f (x, y) , 0.
(b) Prove that the inverse function also satisfies the Cauchy-Riemann equations.

Lecture Note:(Page 264)
3. Problem 6.19

4. Problem 6.20
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Homework 13

Part I:
1. Let f : U ⊆ R3 → R, a ∈ U and u =< u1, u2, u3 >∈ R3.

(a) If f is of class C3, prove that

D3 f (a)(u,u,u) =
∑

0≤k,m,n≤3
k+m+n=3

3!
k!m!n!

· ∂3 f (a)
∂xk

1∂xm
2 ∂xn

3

uk
1um

2 un
3

(b) If f is of class Cr, prove that

Dr f (a)(u, · · · ,u︸      ︷︷      ︸
r copies

) =
∑

0≤k,m,n≤r
k+m+n=r

r!
k!m!n!

· ∂r f (a)
∂xk

1∂xm
2 ∂xn

3

uk
1um

2 un
3

2. Let f : Rn → R be twice differentiable at a. Prove that all second partial derivatives
∂2 f
∂xi∂x j

(a) exist for i, j = 1, · · · , n.

3. Let f (x, y) = ex sin y.

(a) Use the Taylor formula for the multi-variable functions to compute the second-order
Taylor polynomial for f centered at (0, 0).

(b) Use the Taylor formula for the single variable functions to compute the Taylor poly-
nomials for ex and sin y centered at x = 0 and y = 0 respectively. Use them to
compute the second Taylor formula for f centered at (0, 0).

4.

Definition: Let A be a n × n matrix. We say that A is “positive definite” if

uT Au > 0

for every 0 , u ∈ Rn and A is “negative definite” if

uT Au < 0

for every 0 , u ∈ Rn.

Let A be a n × n matrix be positive definite. Prove that there exists c > 0 such that for
every 0 , u ∈ Rn,

uT Au ≥ c∥u∥2Rn .

Moreover, prove that the smallest eigenvalue of A satisfies this number c provided A is
symmetric.

368



HOMEWORK

Lecture Note :(Page 265)

5. Problem 6.21(1)(2)

6. Problem 6.22(1)

7. Problem 6.25

Part II:
1. Let f (x, y) = x2 + 2xy2. Determine the point (x, y) such that the Hessian matrix H f (x, y)

is positive definite, negative definite or neither.

2. Let f : R2 → R be given by

f (x) =

®
exp(− 1

∥x∥2
R2

) if x , 0

0 if x = 0

where x = (x1, x2). Find the kth degree Taylor polynomial for f centered at 0.

Lecture Note:(Page 265)

3. Problem 6.21(3)

4. Problem 6.28(5)
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Homework 14
Part I:

1. Let f (x, y, z) = x2 + y2 + z2 − xy + yz − xz. Find all extreme value(s) of f .

2. Let D = [0, 2] × [0, 2] and f (x, y) =
ß

1 if (x, y) = (1, 1)
0 if (x, y) ∈ D\(1, 1). Determine whether f is

integrable over D.

3. Let D = [0, 1] × [0, 1] and A =
{

(x, x)
∣∣ 0 ≤ x ≤ 1

}
be the diagonal in D. Suppose that

f (x, y) be an arbitrary bounded and integrable function on D. Define

g(x, y) =
ß

0 (x, y) ∈ A
f (x, y) (x, y) ∈ D\A.

Prove that g(x, y) is also integrable over D and
∫

D
f (x, y) dA =

∫
D

g(x, y) dA.

4. Let D ⊆ Rn be a compact box, that is, D = [a1, b1]×· · ·×[an, bn]. Suppose that f : D→ R
is a continuous function on D. Prove that f is integrable over D.

5. Prove Theorem 7.9 (Page 272)

6. Let D ⊂ Rn be a bounded set and f : D → R be a bounded function. If f is Riemann
integrable over D, prove that | f | is Riemann integrable over D.

Lecture Note :(Page 266)

7. Problem 6.26

Part II:
1. Let f (x, y, z) = ex−y + ey−x + ex2

+ z2.

(a) Find the second degree Taylor polynomial for f centered at (0, 0, 0).
(b) Use the Taylor theorem to explain that f has a local minimum point at (0, 0, 0).

2. Let D = [0, 1] × [0, 1] ⊂ R2. Give an example of a function f defined on D such that∫
D

f (x) dA <
∫

D
f (x) dA.

3. Let D = [0, 1] × [0, 1] and A =
⋃
n∈N

{1
n
}
× [0, 1] ⊆ D.

f (x, y) =
ß

1 if (x, y) ∈ A
0 if (x, y) ∈ D\A.

Determine whether f is integrable over D.

Lecture Note:(Page 266)

4. Problem 6.27
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HOMEWORK

Homework 15

Part I:
1. Let A1, · · · , Ak ⊆ Rn have volumes. Prove that

V
( k⋃

i=1

Ai
)
≤

k∑
i=1

V(Ai).

2. Prove that the set
¶1

n

∣∣ n ∈ N
©
⊂ [0, 1] has volume zero.

3. Let f : D → R be integrable over D such that
∫

D
| f (x)|dx = 0. Suppose that the sets

E =
{

x ∈ D | f (x) , 0
}

and En :=
{

x ∈ D
∣∣ | f (x)| > 1

n
}

have volume for every n ∈ N.
Prove that V(E) = 0.

4. Let D = [a, b] × [c, d] ⊂ R2, E ⊂ D have volume zero and f : D → R be a bounded
function. Suppose that f is continuous on D\E. Prove that f is integrable over D.

5. Let n < m and D ⊆ Rn be a rectangle in Rn. Suppose that f : D → Rm is of class C1.
Prove that the set f (D) ⊂ Rm has volume zero.

6. Let P =
{

a = x0 < x1 < · · · < xn = b
}

be a partition of [a, b] and f : [a, b] → R be a
bounded function. Prove that∫ b

a

f (x) dx =
n∑

i=1

∫ xi

xi−1

f (x) dx.

7. Let D = [a, b] × [c, d] and fk : D → R be continuous for all k ∈ N such that { fk}∞k=1
converges pointwise to a continuous function f : D → R. Suppose that fk ≥ fk+1 for all
k ∈ N. Prove that

lim
k→∞

∫
D

fk(x, y) dA =
∫

D
f (x, y) dA.

(Ref: Theorem 5.19)

Part II:
1. Let D ⊆ Rn be an open set with volume V(D) > 0 and suppose that f : D → R is

continuous on D. Suppose that for every continuous function g : D → R, we have∫
D

( f g)(x)dx = 0. Prove that f ≡ 0 on D.

2. Prove that a Cantor set has volume zero.

3. Let A, A1, A2, · · · ⊆ Rn be bounded sets with volume.

(a) Prove that ∂A has volume zero.
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(b) Suppose that A1 ⊆ A2 ⊆ · · · ⊆ A, A =
∞⋃

k=1

Ak. Prove that lim
k→∞

V(Ak) = V(A).

Lecture Note:(Page 340)

4. Problem 7.4(2)
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Homework 16

Part I:
1. Evaluate

(a)
!

S
(x+ 3y3) dA, where S is the upper half (y ≥ 0) of the unit disc x2 + y2 ≤ 1. (Ans:

4
5 )

(b)
!

S
(x2 − √y) dA, where S is the region between the parabola x = y2 and the line

x = 2y. (Ans: 32
35 (5 −

√
2))

(c) Find the volume of the region above the triangle in the xy-plane with vertices (0, 0),
(1, 0), and (0, 1) and below the surface z = 6xy(1 − x − y). (Ans: 1

20 )

(d) Let S ⊂ R3 be the region between the paraboloid z = x2 + y2 and the plane z =
1. Express the triple integral

#
S

f dV as an iterated integral with the order of
integration (i) z, y, x; (ii) y, z, x; (iii) x, y, z.

2. Find the volume of the region inside both the sphere x2 + y2 + z2 = 4 and the cylinder
x2 + y2 = 1. (Ans: 4π(8

3 −
√

3))

3. Calculate
∫

S
(x + y)4(x − y)−5 dA where S is the square −1 ≤ x + y ≤ 1, 1 ≤ x − y ≤ 3.

(Ans: 4
81 )

4. Let S be the region in the first quadrant bounded by the curves xy = 1, xy = 3, x2−y2 = 1,
and x2 − y2 = 4. Compute

∫
S
(x2 + y2) dA. (Ans: 3)

5. Use cylindrical coordinates to evaluate the triple integral$
E

x dV

where E is the solid bounded by the planes z = 0 and z = x + y + 5 and the cylindrical
shells x2 + y2 = 4 and x2 + y2 = 9. (Ans: 65π

4 )

6. Use spherical coordinates to evaluate the triple integral$
H

(x2 + y2) dV

where H is the solid that is bounded below by the xy-plane, and bounded above by the
sphere x2 + y2 + z2 = 1. (Ans: 4π

15 )

Lecture Note :(Page 342)

7. Problem 7.14 (1) (2)

Part II:
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1. Find the centroid of the portion of the ball x2 + y2 + z2 ≤ 1 lying in the first octant
(x, y, z ≥ 0). Note that the centroid (x̄, ȳ, z̄) on D is defined by x̄ =

∫
D

x dV and similar for
ȳ and z̄. (Ans: ( 3

8 ,
3
8 ,

3
8 ) )

2. Let 0 < a < b < ∞ and p ∈ R. Define D :=
{

x ∈ Rn
∣∣ a ≤ ∥x∥Rn ≤ b

}
. Compute∫

D

1
∥x∥p
Rn

dx.

Lecture Note:(Page 341)

3. Problem 7.9

4. Problem 7.14 (3)
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Homework 17

Part I:
1. Compute

∫ ∞

−∞
e−

x2

2σ2 dx =
√

2π|σ| for every σ , 0.

2. Let f : Rn → R be a nonnegative function and {Bk}∞k=1 be any bounded sequence of open
sets with volume which satisfies

(i) Bk ⊆ Bk+1 for every k ∈ N
(ii) For any R > 0, the ball B(0,R) ⊆ Bk when k is sufficiently large.

Prove that lim
k→∞

∫
[−k,k]n

f (x) dx converges if and only if lim
k→∞

∫
Bk

f (x) dx converges. More-

over, the above limits are equal if they exist.

3. Let p ∈ R and D =
{

x ∈ Rn
∣∣ ∥x∥Rn ≥ 1

}
. Find the range of p such that the integral∫

D

1
∥x∥p
Rn

dx

converges.

4. Let f : Rn → R be a continuous function such that f (x) = O(e−∥x∥Rn ) as ∥x∥ → ∞. Prove
that f is integrable over Rn.

5. Determine whether the following improper integrals converge, and evaluate them if they
do.

(a)
"

x,y>0

1
(1 + x2 + y2)2 dA. (Ans: 1

4π )

(b)
"

x>0
xe−(x2+y2) dA. (Ans:

√
π/2 )

(c)
"

x2+y2<1

x2

(x2 + y2)2 dA. (Ans: Diverges )

Lecture Note :(Page 342)

6. Problem 7.12

7. Problem 7.15
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高等微積分 (二) 第一次期中考
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April 7, 2022

Affiliation: Name: Student ID:
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3. 每道題都需寫出完整的過程，並請保持試卷乾淨及答案清楚。



Advanced Calculus Midterm 1- 2022 Spring Page 1 of 3

1. (25 points) Let A = [0, 1]× [0, 1] be a closed square in R2, and K : A → R be continuous
on A. Define

T
(
f
)
(x) =

∫ 1

0

K(x, y)f(y) dy,

where f is a real-valued function defined on [0, 1] such that the integral makes sense.
(a) (10 points) For a family of functions F consisting of f such that T (f) is well-

defined and |f(y)| ≤ M for all y ∈ [0, 1], let G = T (F). Show that each sequence
of G contains a uniformly convergent subsequence.

(b) (8 points) Let X =
(
C([0, 1];R), ∥ · ∥∞

)
. Prove that T ∈ B(X;X).

(c) (7 points) Assume that K(x, y) ≥ 0. Find ∥T∥B(X;X).

2. (10 points) Let C > 0 be a number and

F =
{
f ∈ C

(
[−1, 1]; [0,∞)

) ∣∣∣ f(−1) = 1 = f(1) and
∣∣f(x)−f(y)

∣∣ ≤ C
∣∣x−y

∣∣ ∀x, y ∈ [−1, 1]
}
.

Define the area function A on C
(
[−1, 1];R

)
by

A(f) =

∫ 1

−1

f(x) dx.

Determine whether A attains its minimum on F . That is, determine whether there exists
f0 ∈ F such that A(f0) = inf

f∈F
A(f).

3. (15 points)

(a) (10 points) Prove that
(
Cb
(
[a, b];R

)
, ∥ · ∥∞

)
is separable. (That is, Cb

(
[a, b];R

)
contains a countable dense subset.)

(b) (5 points) Determine whether Cb(R;R) contains a countable dense subset.

4. (10 points) Let f : [0, 1] → R be continuous. Show that

lim
n→∞

∫ 1

0

f(x) sin(nx) dx = 0.

5. (10 points) Determine whether every continuous function in C
(
[0, 1];R

)
can be uni-

formly approximated by a sequence of even polynomials. (Even polynomial means all
its terms are of even degree.)

6. (15 points) Let the equation x3 − x = 0 be given.
(a) (6 points) Use Newton’s method with x1 = 1

3
to find x3, the third approximation

to the root of the equation.
(b) (9 points) Find an interval I containing 0 such that if we choose an arbitrary point

x1 ∈ I as the initial point, then the Newton iterations {xn}∞n=1 will converge to the
root 0. Explain your reason.
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7. (10 points) Consider the mapping T : C
(
[1, r];R

)
→ C

(
[1, r];R

)
defined by

T
(
f
)
(x) = 1 + 3

∫ x

1

t2f(t) dt.

(a) (5 points) Find a number r > 1 such that T is a contraction mapping on C
(
[1, r];R

)
.

(b) (5 points) What is its fixed point?

8. (15 points)

(a) (6 points) Let A =

a 0
0 b
0 0

 ∈ M3×2(R) be a 3 × 2 matrix with real-valued en-

tries and x =

(
x1

x2

)
∈ R2. Define Ax :=

a 0
0 b
0 0

(
x1

x2

)
=

ax1

bx2

0

. Prove that

∥A∥B(R2;R3) = max(|a|, |b|).
(b) (9 points) Let (S, d) be a metric space and a1, a2, · · · , a6 : S → R be continuous

functions. Define A : S → M2×3(R) by

A(p) =

[
a1(p) a2(p) a3(p)
a4(p) a5(p) a6(p)

]
.

for every p ∈ S. Prove that A : S → B
(
R3;R2

)
is continuous on S.

9. (10 points) Prove that to every A ∈ L(Rn;R) corresponds a unique y ∈ Rn such that
Ax = x · y. Prove also that ∥A∥B(Rn;R) = ∥y∥Rn .
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Bonus Problem A: (10 points) Let

f(x, y) = (ey−2 − 3,
1

4
sinx− 1).

(a) (4 points) Prove that f is a contraction mapping on E := (−∞, 0]× (−∞, 0].
(b) (6 points) Let x0 = (0, 0), xn+1 = f(xn) and a ∈ E be the fixed point for f . Find

N ∈ N such that for n ≥ N ,

∥xn − a∥R2 <
1

100
.

(Hint: To show ∥xn−a∥R2 ≤ cn

1−c
∥x0−f(x0)∥R2 where c is the contraction constant.)

Bonus Problem B: (10 points) Let K ⊂ R be a compact subset and let C1
(
K;R

)
be the

collection of all continuously differentiable functions on K with the norm ∥ · ∥C1 defined
by

∥f∥C1 := ∥f∥∞ + ∥f ′∥∞
Determine whether P(K), the collection of all polynomials on K, is dense in(
C1
(
K;R

)
, ∥ · ∥C1

)
.

I will do Problem .
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1. (15 points) Let U ⊆ Rn be open and f : U → Rm be a function where f = (f1, · · · , fm).
(a) (5 points) State the Mean Value Theorem for f .
(b) (10 points) State the Inverse Function Theorem and the Implicit Function Theorem

2. (10 points) Let f : R2 → R2 be given by

f(x, y) =

{ ( xy

x2 + y2
, x+ y

)
if (x, y) ̸= (0, 0)

(0, 0) if (x, y) = (0, 0)

(a) (5 points) Use the definition of differentiation to prove that f is differentiable at
(1, 0).

(b) (5 points) Determine whether f is differentiable at (0, 0) and explain it.

3. (10 points) Let f(x, y) = (xy3, x2 + y2, 3x + 2y) and the range of f , S = Range(f), be
a surface in R3. Then f(1, 1) = (1, 2, 5) ∈ S. Find the equation of the tangent plane of
S at (1, 2, 5).

4. (10 points) Let f(x, y, z) = xy2z3.
(a) (5 points) Use the linear approximation for f at (3, 2, 1) to estimate f(3.1, 1.8, 0.9).
(b) (5 points) Let S be the level surface of f for the value 12. Prove that the gradient

∇f(3, 2, 1) is perpendicular to the surface S at (3, 2, 1).

5. (15 points) Let U ⊆ R2 be a connected and open set.
(a) (10 points) Suppose that f : U → Rm is differentiable on U and Df(x) = 0 ∈

B(R2;Rm) for every x ∈ U . Prove that f is a constant function.

(b) (5 points) If g(x, y) is differentiable on U and ∂g(x, y)

∂x
= 0 for all (x, y) ∈ U . De-

termine whether g is independent of x on U .

6. (15 points) Let f : R2 → R2 be given by f(x, y) = (ex sin y, ex cos y) and g : R2 → R2 be

of class C1 such that [Dg(0, 1)] =

[
2 5
1 2

]
. Define h(x, y) :=

(
g ◦ f

)
(x, y).

(a) (5 points) Prove that there exist an open neighborhood U of (0, 0) and an open
neighborhood V of h(0, 0) such that h is a bijection from U onto V .

(b) (5 points) Let U and V be the open neighborhoods in Problem(a). Prove that
h : U → V is an open mapping on U .

(c) (5 points) Find the matrix representation of (Dh−1)(y0) at y0 = h(0, 0).

7. (10 points) Define f(x, y, z) =
(
x+ yz + ez, x2 − y2 + xz

)
on R3.

(a) (5 points) Determine whether the zero set Z = {(x, y, z) ∈ R3 | f(x, y, z) = (0, 0)}
near (−1, 1, 0) can be written as the graph of some function g in the variables x.
Explain the reason.
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(b) (5 points) If the function g in Problem(a) exists, find the matrix representation of
Dg(−1).

8. (10 points) Let (r, ϕ, θ) be the spherical coordinate of R3 so that

x = r cos θ sinϕ, y = r sin θ sinϕ, z = r cosϕ

(a) (5 points) Find the Jacobian of the map (r, θ, ϕ) → (x, y, z). That is, find ∂(x, y, z)

∂(r, θ, ϕ)
.

(b) (5 points) Suppose that f : R3 → R is a differentiable function which only depends
on r. Prove that ∇f(x, y, z) is parallel to ⟨x, y, z⟩ for every (x, y, z) ̸= (0, 0, 0).

9. (10 points) Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces and let T : X → Y be a linear
map. Suppose that there exists a constant K > 0 such that, for all y ∈ Y , there exists
x ∈ X with ∥x∥X ≤ K∥y∥Y such that T (x) = y. Prove that T is an open mapping.

Bonus Problem: (10 points) Let X := Mn(R) be the set of all n × n matrics and
f : Mn(R) → Mn(R) be given by f(A) = A2 for A ∈ Mn(R). Prove that f is differentiable
on Mn(R).
(Hint: For A ∈ Mn(R), we want to prove that f is differentiable at A and find a linear

map Df(A) ∈ B(X,X). Observe f(A+H)− f(A) and think how to define Df(A)(H). )
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• In this exam, you may assume that every set has volume.

• n-dimensional spherical coordinate

x1 = r cos θ1
x2 = r sin θ1 cos θ2
x3 = r sin θ1 sin θ2 cos θ3

...
xn−1 = r sin θ1 · · · sin θn−2 cos θn−1

xn = r sin θ1 · · · sin θn−2 sin θn−1

where 0 ≤ r < ∞, 0 ≤ θ1, · · · , θn−2 < π and 0 ≤ θn−1 < 2π.

∂(x1, x2, · · · , xn)

∂(r, θ1, θ2, · · · , θn−1)
= rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin2 θn−3 sin θn−2
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1. (15 points) Let f : R2 → R be given by f(x, y) = ex cos y, a = (0, 0), u =< 1, 2 > and
v =< 3, 4 >.
(a) (8 points) Find the third degree Taylor polynomial for f centered at a.
(b) (7 points) For the linear map D3f(a)(u, v) ∈ B(R2,R), find its matrix representa-

tion.

2. (10 points) Let f(x, y) = e(y−x)/(y+x) and A be the region as the below graph. Find the
average of f over A.

3. (10 points) Let
f(x, y, z) = ex−y + ey−x + ex

2

+ z2.

Find all extreme point(s) and value(s) of f .

4. (20 points) Let A ⊂ Rn be a set with volume zero.

(a) (5 points) Suppose f : A → R be a bounded function. Prove that
∫
A

f(x) dx = 0.

(b) (7 points) Determine whether the result of Problem(a) is still true if f is an un-
bounded and integrable function over A.

(c) (8 points) Let L ∈ B(Rn,Rn), E := L(A) be a set in Rn and g : E → R be an
integrable function over E. Determine whether

∫
E

g(x) dx = 0.

5. (15 points) Let A ⊂ Rn be a bounded set with volume and fk : A → R be a sequence of
integrable functions which uniformly converges to f on A.

(a) (10 points) Prove that f is integrable over A and
∫
A

f(x) dx = lim
k→∞

∫
A

fk(x) dx.

(b) (5 points) Determine whether the result of Problem(a) is still true if A = R2.

6. (15 points) Let f : R2 → R be a bounded function.
(a) (8 points) Suppose that f is integrable over R2. Prove that f 2 is also integrable

over R2.
(b) (7 points) Suppose that

∫
R2 f

2(x) dx = 0. Prove that the set
{
x ∈ R2

∣∣ f(x) ̸= 0
}

has volume zero. (Note: You may assume that every set has volume.)
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7. (10 points) Let p ∈ R and D =
{

x ∈ Rn
∣∣ ∥x∥Rn > 1

}
. Define f : D → R by

f(x) = 1

∥x∥pRn

.

Determine the range of p such that f is Riemann integrable over D. (Note: If necessary,
you may assume that

∫ π

0
sink t dt = ck is a positive constant for k ∈ N.)

8. (10 points) Find the volume of the solid that is enclosed by the cone z =
√
x2 + y2 and

the sphere x2 + y2 + z2 = 2. (Hint: use cylindrical coordinates)

9. (10 points) Let Q =
{
(x, y) ∈ R2

∣∣x ≥ 0, y ≥ 0
}

be the first quadrant in R2.

Let

R =
{
(x, y) ∈ Q

∣∣ x− 1 < y < x
}

and
S =

{
(x, y) ∈ Q

∣∣ x− 2 < y < x− 1
}

Define f(x, y) : Q → R by

f(x, y) := 1S(x, y)− 1R(x, y).

(a) (5 points) Check that
∫ ∞

0

∫ ∞

0

f(x, y) dydx ̸=
∫ ∞

0

∫ ∞

0

f(x, y) dxdy.

(b) (5 points) Explain why the Fubini’s Theorem does not apply on f(x, y) over Q.

Bonus Problem A:(10 points) Prove that the double series
∞∑

m,n=1

1

(m+ n)3

converges. (That is, there exists L ∈ R such that for every ϵ > 0, there are M,N ∈ N

such that if k ≥ M and l ≥ N , then
∣∣ k∑
m=1

l∑
n=1

1

(m+ n)3
− L

∣∣ < ϵ.)

Bonus Problem B:(10 points) Prove that
∞∑

m,n=1

1

(m+ n)3
=

∞∑
m=1

( ∞∑
n=1

1

(m+ n)3

)
.

I will do Problem .
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Appendix
1. 泛音列: https://www.youtube.com/watch?v=0iJmDhNocaQ

2. Makewave: https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_zh_TW.html

3. 傅立葉變換: https://www.youtube.com/watch?v=spUNpyF58BY

4. 傅立葉變換: https://www.youtube.com/watch?v=r18Gi8lSkfM

5. Convolution: https://www.youtube.com/watch?v=acAw5WGtzuk
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