
1. Supremum and Infimum

Remark: In this sections, all the subsets of R are assumed to be nonempty.

Let E be a subset of R. We say that E is bounded above if there exists a real number U
such that x ≤ U for all x ∈ E. In this case, we say that U is an upper bound for E. We say
that E is bounded below if there exists a real number L so that x ≥ L for all x ∈ E. In this
case, we say that L is a lower bound for E. A subset E of R is said to be bounded if E is
both bounded above and bounded below.

Let E be a subset of R.
(1) Suppose E is bounded above. An upper bound U of set E is the least upper bounded

of E if for any upper bound U ′ of E, U ′ ≥ U. If U is the least upper bound of E, we
denote U by supE. The least upper bound for E is also called supremum of E.

(2) Suppose E is bounded below. A lower bounded L of E is said to be the greatest
lower bound of E if for any lower bound L′ of E, L ≥ L′. If L is the greatest lower
bound for E, we denote L by inf E. The greatest lower bound for E is also called
the infimum of E.

Example 1.1. Let a, b be real numbers. The set [a, b] = {x ∈ R : a ≤ x ≤ b} is bounded
with sup[a, b] = b and inf[a, b] = a.

Example 1.2. Let a be a real numbers. We denote (−∞, a) = {x ∈ R : x < a}. Then
(−∞, a) is bounded above but not bounded below.

Example 1.3. Given a sequence (an) of real numbers, let {an ∈ R : n ≥ 1} be the image
of (an), i.e. the set of all values of (an). Then (an) is bounded (bounded above, bounded
below) if and only if the set {an ∈ R : n ≥ 1} is bounded (bounded above, bounded below).

Theorem 1.1. (Property of R) In R, the following hold:

(1) Least upper bound property: Let S be a nonempty set in R that has an upper
bound. Then S has a least upper bound.

(2) Greatest lower bound property: Let P be a nonempty subset in R that has a lower
bound. Then P has a greatest lower bound in R.

Example 1.4. Consider the set S = {x ∈ R : x2 + x < 3}. Find supS and inf S.

Example 1.5. Let S = {x ∈ Q : x2 < 2}. Find supS and inf S.

Example 1.6. Let S = {x ∈ R : x3 < 1}. Find supS. Is S bounded below?

Proposition 1.1. Let E be a bounded subset of R and U ∈ R is an upper bound of E.
Then U is the least upper bound of E if and only if for any ε > 0, there exists x ∈ E so
that x ≥ U − ε.

Proof. Suppose U = supE. Then for any ε > 0, U − ε < U. Hence U − ε is not an upper
bound of E. Claim: there exists x ∈ E so that x > U − ε. If there is no x so that x > U − ε,
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then x ≤ U − ε for all x ∈ E. This implies that U − ε is again an upper bound for E. By
the definition of the least upper bound, U ≤ U − ε which is absurd since ε > 0.

Conversely, let U ′ = supE. Since U is an upper bound of E, U ≥ U ′. Claim U ′ = U. For
any ε > 0, choose x ∈ E so that x > U − ε. Thus U ′ ≥ x > U − ε. We know that for any
U ′ > U − ε for all ε > 0. Since ε is arbitrary U ′ ≥ U. We conclude that U ′ = U.

�

Lemma 1.1. Let E be a nonempty subset of R.
(1) If E is bounded above and α < supE, then there exists x ∈ E so that x > α.
(2) If E is bounded above and β > inf E, then there exists x ∈ E so that x < β.

Proof. The result follows from the definition. �

Corollary 1.1. Let E be a bounded subset of R and L ∈ R is a lower bound of E. Then
L is the greatest upper bound of E if and only if for any ε > 0, there exists x ∈ E so that
x ≤ L− ε.

Proof. We leave it to the reader as an exercise. �

Let E be a nonempty subset of R. We say that M is a maximum of E if M is an element
of E and x ≤ M for all x ∈ E. Using the definition, we immediately know that there is
only one maximum of E if the maximum elements of E exists. In this case, we denote M
by maxE. It also follows from the definition that if the maximum of E exists, it must be
bounded above.

We say that m is the minimum of a nonempty subset E of R if m is an element of E and
x ≥ m for all x ∈ m. We denote m by minE. It follows from the definition that if a set has
minimum, it must be bounded below.

Example 1.7. The following subsets of R are all bounded. Hence their greatest lower
bound and their least upper bound exist. Determine whether their maximum or minimum
exist.

(1) E1 = (0, 1).
(2) E2 = (0, 1].
(3) E3 = [0, 1).
(4) E4 = [0, 1].

Proposition 1.2. Suppose E is a nonempty subset of R. If E is bounded above, then the
maximum of E exists if and only if supE ∈ E. Similarly, if E is bounded below, then the
minimum of E exists if and only if inf E ∈ E.

Proof. The proof follows from the definition. �
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Proposition 1.3. Let E be a nonempty subset of R. Suppose E is a bounded set. Then
inf E ≤ supE.

Proof. We leave it to the reader as an exercise.
�

Proposition 1.4. Let E and F be nonempty subsets of R. Suppose that E ⊂ F.
(1) If E and F are both bounded below, then inf F ≤ inf E.
(2) If E and F are both bounded above, then supE ≤ supF.

Proof. Let us prove (a). (b) is left to the reader.
For any x ∈ F, x ≥ inf F. Since E is a subset of F, x ≥ inf F holds for all x ∈ E. Therefore

inf F is a lower bound for E. Since inf E is the greatest lower bound for E, inf E ≥ inf F.
�

Theorem 1.2. Every bounded monotone sequence is convergent.

Proof. Without loss of generality, we may assume that (an) is a bounded nondecreasing
sequence of real numbers. Let a = sup{an : n ≥ 1}. Given ε > 0, there exists aN so that
a ≥ aN > a− ε. Since (an) is nondecreasing, an ≥ aN for every n ≥ N. Hence an > a− ε for
every n ≥ N. In this case, |an − a| = a− an < ε for n ≥ N. We prove that lim

n→∞
an = a. �
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2. limsup and liminf

Let (an) be a bounded sequence of real numbers. Define a new sequence (xn) by

xn = sup{am : m ≥ n}, n ≥ 1,

Since (an) is bounded, xn is a real number for each n ≥ 1. We assume that |an| ≤M for all
n ≥ 1. Then |xn| ≤ M for all n ≥ 1. This shows that (xn) is also a bounded sequence. By
Proposition 1.4, (xn) is nonincreasing. By monotone sequence property, x = lim

n→∞
xn exists.

We denote x by lim sup
n→∞

an. Similarly, define a sequence (yn) by

yn = inf{am : m ≥ n}, n ≥ 1.

Then (yn) is a nondecreasing sequence by Proposition 1.4. By monotone sequence property,
y = lim

n→∞
yn exists. We denote y by lim inf

n→∞
an.

From now on, we will simply denote by

a∗ = lim sup
n→∞

an, a∗ = lim inf
n→∞

an.

Since (xn) is nonincreasing and bounded below, its limit equals to inf{xn : n ≥ 1}.
Similarly, (yn) is nondecreasing and bounded above, its limit equals to sup{yn : n ≥ 1}.

Example 2.1. Find lim sup
n→∞

(−1)n and lim inf
n→∞

(−1)n.

Solution: Let us compute these two numbers via definition. Denote (−1)n by an. For
each k ≥ 1, we know {an : n ≥ k} = {−1, 1}. For k ≥ 1, xk = sup{an : n ≥ k} =
sup{−1, 1} = 1. Similarly, for k ≥ 1, yk = sup{am : m ≥ k} = inf{−1, 1} = −1. Therefore
lim sup
n→∞

an = lim
k→∞

xk = 1 while lim inf
n→∞

an = lim
k→∞

yk = −1. Notice that the subsequence

(a2n) of (an) is convergent to 1 and the subsequence (a2n−1) of (an) is convergent to −1.
Later, we will prove that in general, the limit supremum and the limit infimum of a bounded
sequence are always the limits of some subsequences of the given sequence.

Example 2.2. Let (an) be the sequence defined by

an = 1− 1

n
, n ≥ 1.

Evaluate lim sup
n→∞

an and lim inf
n→∞

an.

Solution: The sequence (an) is increasing and bounded above by 1. Let us prove that
sup{an : n ≥ 1} = 1. We have seen that 1 is an upper bound. Now, for each ε > 0, choose
Nε = [1/ε] + 1. For n ≥ Nε, we see

1− ε < 1− 1

n
.

By Proposition 1.1, we find 1 is indeed the least upper bound for {an : n ≥ 1}. Therefore
1 = sup{an : n ≥ 1}. We also know that lim

n→∞
an = 1. In other words, we prove

lim
n→∞

(
1− 1

n

)
= sup

{
1− 1

n
: n ≥ 1

}
.

This gives us an example of Theorem 1.2. Similarly, for each k ≥ 1, we can show that 1 is
the least upper bound of the set {1− 1/n : n ≥ k} and −1 is the greatest lower bound for
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{1− 1/n : n ≥ k}. In other words, we find that

xk = sup

{
1− 1

n
: n ≥ k

}
= 1, yk = inf

{
1− 1

n
: n ≥ k

}
= −1.

This shows that lim
k→∞

xk = 1 and lim
k→∞

yk = −1. In other words,

lim sup
n→∞

an = lim inf
n→∞

an = 1.

In this case, (an) is convergent to 1 and at the same time, both limit supremum and limit
infimum of (an) are also equal to 1. This is not an accident. Later, we will prove that a
bounded sequence is convergent if and only if its limit supremum equals to its limit infimum.

Lemma 2.1. Let (an) be a bounded sequence and a ∈ R.
(1) If a > a∗, there exists k ∈ N such that an < a for all n ≥ k.
(2) If a < a∗, then for all k ∈ N, there exists n ∈ N with n ≥ k such that an > a
(3) If a < a∗, there exists k ∈ N such that an > a for all n ≥ k.
(4) If a > a∗, then for all k ∈ N, there exists n ∈ N such that an < a.

Proof. Let (xk) be the sequence defined as above, i.e. for each k ≥ 1,

xk = sup{an : n ≥ k}.

By definition, a∗ = inf{xk : k ≥ 1}.

(1) If a > a∗, a is not a lower bound for {xk : k ≥ 1}. Then there exists an element
xk0 ∈ {xk : k ≥ 1} such that xk0 < a. Since a > xk0 and xk0 is the least upper bound for
{an : n ≥ k0}, then a is an upper bound for {an : n ≥ k0}. Hence an < a for all n ≥ k0.

(2) If a < a∗, then a is a lower bound for {xk : k ≥ 1}. Then for all k ≥ 1, xk > a. For
each k ≥ 1, xk is the least upper bound for {an : n ≥ k}. Since a < xk, a is not an upper
bound for {an : n ≥ k}. Hence we can choose an element an ∈ {an : n ≥ k} so that an > a.
In other words, we can find n ∈ N with n ≥ k such that an > a.

(3) and (4) are left to the reader.
�

Definition 2.1. We say that a real number x is a cluster point of a bounded sequence (an)
if there exists a subsequence (ank

) of (an) whose limit is x.

Corollary 2.1. Let (an) be a bounded sequence. Then both lim sup
n→∞

an and lim inf
n→∞

an are

cluster points.

Proof. Since a∗ + 1 > a∗, there exists n1 ∈ N so that an < a∗ + 1 for all n ≥ n1 by Lemma
2.1. Since a∗ − 1 < a∗, for the given n1, we can find m1 ∈ N with m1 ≥ n1 such that
am1 > a∗ − 1. Since m1 ≥ n1, am1 < a∗ + 1. We find a∗ − 1 < am1 < a∗ + 1. Inductively, we
obtain a subsequence (amk

) of (an) so that

a∗ − 1

k
< amk

< a∗ +
1

k
, k ≥ 1.
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Since lim
k→∞

(
a∗ − 1

k

)
= lim

k→∞

(
a∗ +

1

k

)
= a∗, by the Sandwich principle, lim

k→∞
amk

= a∗.

This shows that a∗ is a cluster point.
Similarly, we can show that a∗ is a cluster point. �

Lemma 2.2. If (an) is a convergent to a, the all the subsequences (ank
) is also convergent

to a.

Proof. Suppose (an) is convergent to a. Then for any ε > 0, there exists Nε ∈ N so that

|an − a| < ε, whenever n ≥ Nε.

Let (ank
) be any subsequence of (an). For any k ≥ Nε, nk ≥ k ≥ Nε. Then |ank

− a| < ε
whenever k ≥ Nε. This shows that lim

k→∞
ank

= a. �

Corollary 2.2. If (an) is convergent to a, then a∗ = a∗ = a.

Proof. Since a∗ and a∗ are both cluster points, Lemma 2.2 implies that a∗ = a = a∗. �

In fact, the converse is also true:

Theorem 2.1. Let (an) be a bounded sequence of real numbers. Then (an) is convergent
to a real number a if and only if a∗ = a∗ = a.

Proof. We have proved one direction. Conversely, let us assume a∗ = a∗ = a.
For any ε > 0, a + ε > a∗. By Lemma 2.1, there exists kε ∈ N so that for any n ≥ kε,

an < a∗ + ε.
Since a − ε < a∗ = a, Lemma 2.1 implies that there exists jε ∈ N so that an > a − ε

whenever n ≥ jε. Denote Nε = max{kε, jε}. Then for all n ≥ Nε, we have

a− ε < an < a+ ε.

Thus |an − a| < ε whenever n ≥ Nε. This shows that lim
n→∞

an = a.

�

Let (an) be a bounded sequence. If E is the set of all cluster points of (an), we know that it
is nonempty by Bolzano-Weierstrass theorem (since any bounded sequence has a convergent
subsequence). For x ∈ E, choose a subsequence (ank

) of (an) so that lim
k→∞

ank
= x. By

Theorem 2.1, we know

lim sup
k→∞

ank
= lim inf

k→∞
ank

= x.

By definition, for any j ≥ 1, the set {ank
: k ≥ j} is a subset of {an : n ≥ j}. This is because

for k ≥ j, nk ≥ k ≥ j. For each j ≥ 1,

sup{an : n ≥ j} ≥ sup{ank
: k ≥ j}.
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Denote the left hand side by xj and the right hand side by αj . Then xj ≥ αj for all j ≥ 1.
Since both (xj) and (αj) are convergent, by Lemma ??, we find

a∗ = lim
j→∞

xj ≥ lim
j→∞

αj = x.

This shows x ≤ a∗, i.e. E is bounded above by lim sup
n→∞

an. Using a similar argument, we can

show that x ≥ a∗, i.e. E is bounded below by a∗. We obtain that E is a nonempty bounded
subset of R. Since both a∗ and a∗ are cluster points, i.e. a∗, a∗ ∈ E, we obtain that:

Theorem 2.2. Let (an) be a bounded sequence and E be the set of all cluster points of
(an). Then

lim sup
n→∞

an = maxE, lim inf
n→∞

an = minE.

Example 2.3. Construct a sequence with exact three different cluster points.

Solution: We leave it to the reader as an exercise.

Example 2.4. Find the limsup and liminf of the following sequence of real numbers.

(1) an = (−1)n +
1

n
, n ≥ 1.

(2) an = cos(nπ +
π

6
), n ≥ 1.

(3) an =


1
n if n = 3k

1 + 1
n if n = 3k + 1

−2 + 1
n if n = 3k + 2.

Theorem 2.3. Let (sn) and (tn) be bounded sequences of real numbers. Suppose that
there exists N > 0 so that sn ≤ tn for n ≥ N. Then

(1) lim inf
n→∞

sn ≤ lim inf
n→∞

tn.

(2) lim sup
n→∞

sn ≤ lim sup
n→∞

tn.

Proof. We leave it to the reader as an exercise. �

It follows immediately from this theorem that

Corollary 2.3. Let (an) be a sequence of real numbers. Then

(1) If an ≤M for all n, then lim supn→∞ an ≤M.
(2) If an ≥M for all n, then lim infn→∞ an ≥M.


