1. SUPREMUM AND INFIMUM

Remark: In this sections, all the subsets of R are assumed to be nonempty.

Let E be a subset of R. We say that F is bounded above if there exists a real number U
such that x < U for all z € E. In this case, we say that U is an upper bound for E. We say
that £ is bounded below if there exists a real number L so that x > L for all x € E. In this
case, we say that L is a lower bound for E. A subset ¥ of R is said to be bounded if F is
both bounded above and bounded below.

Let E be a subset of R.

(1) Suppose E is bounded above. An upper bound U of set E is the least upper bounded
of E if for any upper bound U’ of E, U’ > U. If U is the least upper bound of E, we
denote U by sup E. The least upper bound for F is also called supremum of E.

(2) Suppose E is bounded below. A lower bounded L of E is said to be the greatest
lower bound of E if for any lower bound L' of E, L > L’. If L is the greatest lower
bound for E, we denote L by inf E. The greatest lower bound for F is also called
the infimum of F.

Example 1.1. Let a,b be real numbers. The set [a,b] = {x € R: a < z < b} is bounded
with sup[a, b] = b and inf|a, b] = a.

Example 1.2. Let a be a real numbers. We denote (—o00,a) = {z € R : z < a}. Then
(=00, a) is bounded above but not bounded below.

Example 1.3. Given a sequence (a,) of real numbers, let {a, € R : n > 1} be the image
of (ay), i.e. the set of all values of (a,). Then (a,) is bounded (bounded above, bounded
below) if and only if the set {a, € R :n > 1} is bounded (bounded above, bounded below).

Theorem 1.1. (Property of R) In R, the following hold:

(1) Least upper bound property: Let S be a nonempty set in R that has an upper
bound. Then S has a least upper bound.

(2) Greatest lower bound property: Let P be a nonempty subset in R that has a lower
bound. Then P has a greatest lower bound in R.

Example 1.4. Consider the set S = {z € R: 2% + 2 < 3}. Find sup S and inf S.
Example 1.5. Let S = {z € Q: 22 < 2}. Find sup S and inf S.
Example 1.6. Let S = {x € R: 2 < 1}. Find sup S. Is S bounded below?

Proposition 1.1. Let E be a bounded subset of R and U € R is an upper bound of F.
Then U is the least upper bound of F if and only if for any ¢ > 0, there exists x € E so
that ¢ > U — e.

Proof. Suppose U = sup E. Then for any ¢ > 0, U — ¢ < U. Hence U — ¢ is not an upper
bound of E. Claim: there exists x € E so that z > U —e. If there is no = so that x > U —,
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then z < U — € for all x € E. This implies that U — € is again an upper bound for E. By
the definition of the least upper bound, U < U — € which is absurd since € > 0.

Conversely, let U’ = sup E. Since U is an upper bound of E, U > U’. Claim U’ = U. For
any € > 0, choose z € FE so that x > U —e. Thus U’ > & > U — e. We know that for any
U' > U — € for all € > 0. Since € is arbitrary U’ > U. We conclude that U’ = U.

O
Lemma 1.1. Let E be a nonempty subset of R.
(1) If E is bounded above and a < sup E, then there exists z € E so that z > a.
(2) If E is bounded above and 8 > inf E, then there exists z € E so that z < .
Proof. The result follows from the definition. 0

Corollary 1.1. Let E be a bounded subset of R and L € R is a lower bound of E. Then
L is the greatest upper bound of F if and only if for any € > 0, there exists x € F so that
<L —e.

Proof. We leave it to the reader as an exercise. ([

Let E be a nonempty subset of R. We say that M is a maximum of E if M is an element
of E and z < M for all z € E. Using the definition, we immediately know that there is
only one maximum of E if the maximum elements of F exists. In this case, we denote M
by max E. It also follows from the definition that if the maximum of F exists, it must be
bounded above.

We say that m is the minimum of a nonempty subset E of R if m is an element of £ and
x > m for all z € m. We denote m by min E. It follows from the definition that if a set has
minimum, it must be bounded below.

Example 1.7. The following subsets of R are all bounded. Hence their greatest lower
bound and their least upper bound exist. Determine whether their maximum or minimum
exist.

(1) By =(0,1).
(2) By = (0,1].
(3) E3 = 1[0,1).
(4) By = [0,1].

Proposition 1.2. Suppose F is a nonempty subset of R. If F is bounded above, then the
maximum of E exists if and only if sup £ € E. Similarly, if E is bounded below, then the
minimum of E exists if and only if inf £ € E.

Proof. The proof follows from the definition. O



Proposition 1.3. Let £ be a nonempty subset of R. Suppose E is a bounded set. Then
inf £ <sup FE.

Proof. We leave it to the reader as an exercise.

Proposition 1.4. Let F and F' be nonempty subsets of R. Suppose that £ C F.

(1) If E and F are both bounded below, then inf F' <inf E.
(2) If E and F' are both bounded above, then sup E' < sup F.

Proof. Let us prove (a). (b) is left to the reader.
For any x € F, z > inf F. Since F is a subset of F, x > inf F" holds for all z € E. Therefore

inf F' is a lower bound for E. Since inf F is the greatest lower bound for E, inf £ > inf F.
O

Theorem 1.2. Every bounded monotone sequence is convergent.

Proof. Without loss of generality, we may assume that (a,) is a bounded nondecreasing
sequence of real numbers. Let a = sup{a, : n > 1}. Given € > 0, there exists ay so that
a > ay > a—e. Since (a,) is nondecreasing, a,, > ay for every n > N. Hence a,, > a — € for

every n > N. In this case, |a, —a| = a —a, < € for n > N. We prove that lim a, =a. O
n—0o0



2. LIMSUP AND LIMINF
Let (ay,) be a bounded sequence of real numbers. Define a new sequence (z,,) by
Ty =sup{am :m >n}, n>1,

Since (ay,) is bounded, x,, is a real number for each n > 1. We assume that |a,| < M for all

n > 1. Then |z,| < M for all n > 1. This shows that (x,) is also a bounded sequence. By

Proposition 1.4, (z,,) is nonincreasing. By monotone sequence property, x = lim 1z, exists.
n—oo

We denote x by limsup a,,. Similarly, define a sequence (y,,) by

n—0o0
yn = inf{am :m>n}, n>1

Then (yy,) is a nondecreasing sequence by Proposition 1.4. By monotone sequence property,
y = lim y, exists. We denote y by liminf a,,.
n—oo n—oo
From now on, we will simply denote by
a* = limsupa,, a, = liminfa,.
n—o0 n—00

Since (zp) is nonincreasing and bounded below, its limit equals to inf{x, : n > 1}.
Similarly, (y,) is nondecreasing and bounded above, its limit equals to sup{y, : n > 1}.

n

Example 2.1. Find limsup(—1)" and liminf(—1)".
n—00 n—00

Solution: Let us compute these two numbers via definition. Denote (—1)" by a,,. For

each k > 1, we know {a, : n > k} = {—1,1}. For k > 1, z;; = sup{a, : n > k} =

sup{—1,1} = 1. Similarly, for & > 1, yx, = sup{am, : m > k} = inf{—1,1} = —1. Therefore

limsupa, = lim zp = 1 while liminfa,, = lim y; = —1. Notice that the subsequence

(agn) of (ay) is convergent to 1 and the subsequence (ag,—1) of (a,) is convergent to —1.
Later, we will prove that in general, the limit supremum and the limit infimum of a bounded
sequence are always the limits of some subsequences of the given sequence.

Example 2.2. Let (a,) be the sequence defined by

1
an=1——, n>1
n

Evaluate limsup a,, and liminf a,,.
n—00 n—oo
Solution: The sequence (a,) is increasing and bounded above by 1. Let us prove that
sup{a, : n > 1} = 1. We have seen that 1 is an upper bound. Now, for each ¢ > 0, choose
N, =[1/¢] + 1. For n > N, we see

1
l—-e<1l——.
n

By Proposition 1.1, we find 1 is indeed the least upper bound for {a, : n > 1}. Therefore

1 = sup{ay : n > 1}. We also know that lim a, = 1. In other words, we prove
n—oo

1 1
lim (1—>:sup{1—:n21}.
n—00 n n

This gives us an example of Theorem 1.2. Similarly, for each k > 1, we can show that 1 is
the least upper bound of the set {1 —1/n:n >k} and —1 is the greatest lower bound for



{1—=1/n:n > k}. In other words, we find that

n n

1 1
wk=sup{1—:nzk}:1, ykzinf{l—:nZk}:—l.
This shows that lim zp =1 and lim y; = —1. In other words,
k—o00 k—00

limsup a,, = liminfa, = 1.
n—00 n—00
In this case, (ay) is convergent to 1 and at the same time, both limit supremum and limit
infimum of (a,) are also equal to 1. This is not an accident. Later, we will prove that a
bounded sequence is convergent if and only if its limit supremum equals to its limit infimum.

Lemma 2.1. Let (a,) be a bounded sequence and a € R.

(1) If a > a*, there exists k € N such that a,, < a for all n > k.

(2) If a < a*, then for all k € N, there exists n € N with n > k such that a,, > a
(3) If a < ay, there exists k € N such that a,, > a for all n > k.

(4) If a > ay, then for all k£ € N, there exists n € N such that a,, < a.

Proof. Let (x)) be the sequence defined as above, i.e. for each k > 1,
xp = sup{ay : n > k}.
By definition, a* = inf{xy : k£ > 1}.

(1) If a > a*, a is not a lower bound for {z} : kK > 1}. Then there exists an element
T, € {xr : k > 1} such that zx, < a. Since a > xy, and zy, is the least upper bound for
{an :n > ko}, then a is an upper bound for {a, : n > ko}. Hence a,, < a for all n > k.

(2) If a < a*, then a is a lower bound for {xy : K > 1}. Then for all k£ > 1, z > a. For
each k > 1, zy, is the least upper bound for {a, : n > k}. Since a < zy, a is not an upper
bound for {a, : n > k}. Hence we can choose an element a,, € {a, : n > k} so that a,, > a.
In other words, we can find n € N with n > k such that a, > a.

(3) and (4) are left to the reader.
O

Definition 2.1. We say that a real number x is a cluster point of a bounded sequence (a,)
if there exists a subsequence (ay, ) of (a,) whose limit is .

Corollary 2.1. Let (a,) be a bounded sequence. Then both limsup a,, and liminf a,, are
n—o00 n—00

cluster points.

Proof. Since a* + 1 > a*, there exists n; € N so that a, < a* + 1 for all n > n; by Lemma

2.1. Since a* — 1 < a*, for the given ny, we can find my; € N with m; > nj; such that

am, > a* —1. Since m1 > ny, ay, < a*+1. We find a* — 1 < a,,, < a* + 1. Inductively, we

obtain a subsequence (a,, ) of (a,) so that
*

1 1
a — 7 <am, <a +

- k>1.
k k? -



1 1
Since lim <a* — > = lim (a* + > = a”, by the Sandwich principle, lim a,,, = a”.
This shows that a* is a cluster point.

Similarly, we can show that a, is a cluster point. ]

Lemma 2.2. If (a,) is a convergent to a, the all the subsequences (ay, ) is also convergent
to a.

Proof. Suppose (a,,) is convergent to a. Then for any € > 0, there exists N, € N so that
|an, —al <€, whenever n > N,.

Let (apn,) be any subsequence of (ay). For any k > N, n > k > N.. Then |a,, —a|] < €
whenever £ > N.. This shows that klirn ap, = a. ]
— 00

Corollary 2.2. If (a,) is convergent to a, then a* = a, = a.

Proof. Since a* and a, are both cluster points, Lemma 2.2 implies that a* = a = a. O

In fact, the converse is also true:

Theorem 2.1. Let (a,) be a bounded sequence of real numbers. Then (a,) is convergent
to a real number a if and only if a* = a, = a.

Proof. We have proved one direction. Conversely, let us assume a, = a* = a.

For any € > 0, a + € > a*. By Lemma 2.1, there exists k. € N so that for any n > k.,
an < a* +e.

Since a — € < asx = a, Lemma 2.1 implies that there exists jo € N so that a, > a — ¢
whenever n > j.. Denote N, = max{k,, jc}. Then for all n > N, we have

a—e<ap<a-e.

Thus |a, — a|] < € whenever n > N,. This shows that lim a, = a.
n—oo

O

Let (a,,) be a bounded sequence. If E is the set of all cluster points of (ay, ), we know that it
is nonempty by Bolzano-Weierstrass theorem (since any bounded sequence has a convergent
subsequence). For x € E, choose a subsequence (ay,) of (a,) so that klim an, = . By

— 00
Theorem 2.1, we know

limsup a,, = liminfa,, = .
k—o0 k—o0

By definition, for any j > 1, the set {a,, : k > j} is a subset of {a,, : n > j}. This is because
for k > j, nxy > k > j. For each j > 1,

sup{a, : n > j} > sup{an, : k> j}.



7

Denote the left hand side by x; and the right hand side by «;. Then z; > «; for all j > 1.
Since both (z;) and (a;) are convergent, by Lemma ??, we find

a* = lim z; > lim a; = x.
Jj—00 Jj—00

This shows x < a*, i.e. F is bounded above by lim sup a,,. Using a similar argument, we can
n—oo

show that x > a,, i.e. E is bounded below by a.. We obtain that F is a nonempty bounded
subset of R. Since both a* and a, are cluster points, i.e. a*,as € E, we obtain that:

Theorem 2.2. Let (a,) be a bounded sequence and E be the set of all cluster points of
(an). Then

limsupa, = max F, liminfa, = min E.
n—00 (WmmdeS

Example 2.3. Construct a sequence with exact three different cluster points.
Solution: We leave it to the reader as an exercise.
Example 2.4. Find the limsup and liminf of the following sequence of real numbers.
n 1
(1) ap = (—1)"+ il > 1.

(2) an = cos(nm + %), n> 1.

1 if n = 3k
(B)an=41+% ifn=3k+1
—2+ 21 ifn=3k+2

Theorem 2.3. Let (s,) and (¢,) be bounded sequences of real numbers. Suppose that

there exists NV > 0 so that s, <t, for n > N. Then
(1) liminf s, < liminft,.
n—oo n—oo
(2) limsup s, < limsupt,.

n—0o0 n—oo

Proof. We leave it to the reader as an exercise. O

It follows immediately from this theorem that

Corollary 2.3. Let (a,) be a sequence of real numbers. Then

(1) If ap, < M for all n, then limsup,, ., a, < M.
(2) If a, > M for all n, then liminf,,_,~ a,, > M.



