1. Supremum and Infimum

Remark: In this sections, all the subsets of \mathbb{R} are assumed to be nonempty.

Let E be a subset of \mathbb{R} . We say that E is bounded above if there exists a real number U such that $x \leq U$ for all $x \in E$. In this case, we say that U is an upper bound for E. We say that E is bounded below if there exists a real number E so that E is a lower bound for E. A subset E of E is said to be bounded if E is both bounded above and bounded below.

Let E be a subset of \mathbb{R} .

- (1) Suppose E is bounded above. An upper bound U of set E is the least upper bounded of E if for any upper bound U' of E, $U' \geq U$. If U is the least upper bound of E, we denote U by sup E. The least upper bound for E is also called supremum of E.
- (2) Suppose E is bounded below. A lower bounded L of E is said to be the greatest lower bound of E if for any lower bound L' of E, $L \ge L'$. If L is the greatest lower bound for E, we denote L by $\inf E$. The greatest lower bound for E is also called the infimum of E.

Example 1.1. Let a, b be real numbers. The set $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ is bounded with $\sup[a, b] = b$ and $\inf[a, b] = a$.

Example 1.2. Let a be a real numbers. We denote $(-\infty, a) = \{x \in \mathbb{R} : x < a\}$. Then $(-\infty, a)$ is bounded above but not bounded below.

Example 1.3. Given a sequence (a_n) of real numbers, let $\{a_n \in \mathbb{R} : n \geq 1\}$ be the image of (a_n) , i.e. the set of all values of (a_n) . Then (a_n) is bounded (bounded above, bounded below) if and only if the set $\{a_n \in \mathbb{R} : n \geq 1\}$ is bounded (bounded above, bounded below).

Theorem 1.1. (Property of \mathbb{R}) In \mathbb{R} , the following hold:

- (1) Least upper bound property: Let S be a nonempty set in \mathbb{R} that has an upper bound. Then S has a least upper bound.
- (2) Greatest lower bound property: Let P be a nonempty subset in \mathbb{R} that has a lower bound. Then P has a greatest lower bound in \mathbb{R} .

Example 1.4. Consider the set $S = \{x \in \mathbb{R} : x^2 + x < 3\}$. Find sup S and inf S.

Example 1.5. Let $S = \{x \in \mathbb{Q} : x^2 < 2\}$. Find sup S and inf S.

Example 1.6. Let $S = \{x \in \mathbb{R} : x^3 < 1\}$. Find sup S. Is S bounded below?

Proposition 1.1. Let E be a bounded subset of \mathbb{R} and $U \in \mathbb{R}$ is an upper bound of E. Then U is the least upper bound of E if and only if for any $\epsilon > 0$, there exists $x \in E$ so that $x \geq U - \epsilon$.

Proof. Suppose $U = \sup E$. Then for any $\epsilon > 0$, $U - \epsilon < U$. Hence $U - \epsilon$ is not an upper bound of E. Claim: there exists $x \in E$ so that $x > U - \epsilon$. If there is no x so that $x > U - \epsilon$,

then $x \leq U - \epsilon$ for all $x \in E$. This implies that $U - \epsilon$ is again an upper bound for E. By the definition of the least upper bound, $U \leq U - \epsilon$ which is absurd since $\epsilon > 0$.

Conversely, let $U' = \sup E$. Since U is an upper bound of E, $U \ge U'$. Claim U' = U. For any $\epsilon > 0$, choose $x \in E$ so that $x > U - \epsilon$. Thus $U' \ge x > U - \epsilon$. We know that for any $U' > U - \epsilon$ for all $\epsilon > 0$. Since ϵ is arbitrary $U' \ge U$. We conclude that U' = U.

Lemma 1.1. Let E be a nonempty subset of \mathbb{R} .

- (1) If E is bounded above and $\alpha < \sup E$, then there exists $x \in E$ so that $x > \alpha$.
- (2) If E is bounded above and $\beta > \inf E$, then there exists $x \in E$ so that $x < \beta$.

Proof. The result follows from the definition.

Corollary 1.1. Let E be a bounded subset of \mathbb{R} and $L \in \mathbb{R}$ is a lower bound of E. Then L is the greatest upper bound of E if and only if for any $\epsilon > 0$, there exists $x \in E$ so that $x \leq L - \epsilon$.

Proof. We leave it to the reader as an exercise.

Let E be a nonempty subset of \mathbb{R} . We say that M is a maximum of E if M is an element of E and $x \leq M$ for all $x \in E$. Using the definition, we immediately know that there is only one maximum of E if the maximum elements of E exists. In this case, we denote M by $\max E$. It also follows from the definition that if the maximum of E exists, it must be bounded above.

We say that m is the minimum of a nonempty subset E of \mathbb{R} if m is an element of E and $x \geq m$ for all $x \in m$. We denote m by min E. It follows from the definition that if a set has minimum, it must be bounded below.

Example 1.7. The following subsets of \mathbb{R} are all bounded. Hence their greatest lower bound and their least upper bound exist. Determine whether their maximum or minimum exist.

- (1) $E_1 = (0,1)$.
- (2) $E_2 = (0, 1]$.
- (3) $E_3 = [0, 1)$.
- (4) $E_4 = [0, 1]$.

Proposition 1.2. Suppose E is a nonempty subset of \mathbb{R} . If E is bounded above, then the maximum of E exists if and only if $\sup E \in E$. Similarly, if E is bounded below, then the minimum of E exists if and only if $\inf E \in E$.

Proof. The proof follows from the definition.

Proposition 1.3. Let E be a nonempty subset of \mathbb{R} . Suppose E is a bounded set. Then inf $E \leq \sup E$.

Proof. We leave it to the reader as an exercise.

Proposition 1.4. Let E and F be nonempty subsets of \mathbb{R} . Suppose that $E \subset F$.

- (1) If E and F are both bounded below, then inf $F < \inf E$.
- (2) If E and F are both bounded above, then $\sup E \leq \sup F$.

Proof. Let us prove (a). (b) is left to the reader.

For any $x \in F$, $x \ge \inf F$. Since E is a subset of F, $x \ge \inf F$ holds for all $x \in E$. Therefore $\inf F$ is a lower bound for E. Since $\inf F$ is the greatest lower bound for E, $\inf E \ge \inf F$.

Theorem 1.2. Every bounded monotone sequence is convergent.

Proof. Without loss of generality, we may assume that (a_n) is a bounded nondecreasing sequence of real numbers. Let $a = \sup\{a_n : n \ge 1\}$. Given $\epsilon > 0$, there exists a_N so that $a \ge a_N > a - \epsilon$. Since (a_n) is nondecreasing, $a_n \ge a_N$ for every $n \ge N$. Hence $a_n > a - \epsilon$ for every $n \ge N$. In this case, $|a_n - a| = a - a_n < \epsilon$ for $n \ge N$. We prove that $\lim_{n \to \infty} a_n = a$. \square

2. LIMSUP AND LIMINF

Let (a_n) be a bounded sequence of real numbers. Define a new sequence (x_n) by

$$x_n = \sup\{a_m : m \ge n\}, \quad n \ge 1,$$

Since (a_n) is bounded, x_n is a real number for each $n \ge 1$. We assume that $|a_n| \le M$ for all $n \ge 1$. Then $|x_n| \le M$ for all $n \ge 1$. This shows that (x_n) is also a bounded sequence. By Proposition 1.4, (x_n) is nonincreasing. By monotone sequence property, $x = \lim_{n \to \infty} x_n$ exists. We denote x by $\lim \sup a_n$. Similarly, define a sequence (y_n) by

$$y_n = \inf\{a_m : m \ge n\}, \quad n \ge 1.$$

Then (y_n) is a nondecreasing sequence by Proposition 1.4. By monotone sequence property, $y = \lim_{n \to \infty} y_n$ exists. We denote y by $\lim_{n \to \infty} \inf_{n \to \infty} a_n$.

From now on, we will simply denote by

$$a^* = \limsup_{n \to \infty} a_n, \quad a_* = \liminf_{n \to \infty} a_n.$$

Since (x_n) is nonincreasing and bounded below, its limit equals to $\inf\{x_n : n \geq 1\}$. Similarly, (y_n) is nondecreasing and bounded above, its limit equals to $\sup\{y_n : n \geq 1\}$.

Example 2.1. Find
$$\limsup_{n\to\infty} (-1)^n$$
 and $\liminf_{n\to\infty} (-1)^n$.

Solution: Let us compute these two numbers via definition. Denote $(-1)^n$ by a_n . For each $k \geq 1$, we know $\{a_n : n \geq k\} = \{-1,1\}$. For $k \geq 1$, $x_k = \sup\{a_n : n \geq k\} = \sup\{-1,1\} = 1$. Similarly, for $k \geq 1$, $y_k = \sup\{a_m : m \geq k\} = \inf\{-1,1\} = -1$. Therefore $\limsup_{n \to \infty} a_n = \lim_{k \to \infty} x_k = 1$ while $\liminf_{n \to \infty} a_n = \lim_{k \to \infty} y_k = -1$. Notice that the subsequence (a_{2n}) of (a_n) is convergent to 1 and the subsequence (a_{2n-1}) of (a_n) is convergent to -1. Later, we will prove that in general, the limit supremum and the limit infimum of a bounded sequence are always the limits of some subsequences of the given sequence.

Example 2.2. Let (a_n) be the sequence defined by

$$a_n = 1 - \frac{1}{n}, \quad n \ge 1.$$

Evaluate $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$.

Solution: The sequence (a_n) is increasing and bounded above by 1. Let us prove that $\sup\{a_n:n\geq 1\}=1$. We have seen that 1 is an upper bound. Now, for each $\epsilon>0$, choose $N_{\epsilon}=[1/\epsilon]+1$. For $n\geq N_{\epsilon}$, we see

$$1 - \epsilon < 1 - \frac{1}{n}.$$

By Proposition 1.1, we find 1 is indeed the least upper bound for $\{a_n : n \ge 1\}$. Therefore $1 = \sup\{a_n : n \ge 1\}$. We also know that $\lim_{n \to \infty} a_n = 1$. In other words, we prove

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = \sup \left\{ 1 - \frac{1}{n} : n \ge 1 \right\}.$$

This gives us an example of Theorem 1.2. Similarly, for each $k \ge 1$, we can show that 1 is the least upper bound of the set $\{1 - 1/n : n \ge k\}$ and -1 is the greatest lower bound for

 $\{1-1/n: n \ge k\}$. In other words, we find that

$$x_k = \sup \left\{ 1 - \frac{1}{n} : n \ge k \right\} = 1, \quad y_k = \inf \left\{ 1 - \frac{1}{n} : n \ge k \right\} = -1.$$

This shows that $\lim_{k\to\infty} x_k = 1$ and $\lim_{k\to\infty} y_k = -1$. In other words,

$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = 1.$$

In this case, (a_n) is convergent to 1 and at the same time, both limit supremum and limit infimum of (a_n) are also equal to 1. This is not an accident. Later, we will prove that a bounded sequence is convergent if and only if its limit supremum equals to its limit infimum.

Lemma 2.1. Let (a_n) be a bounded sequence and $a \in \mathbb{R}$.

- (1) If $a > a^*$, there exists $k \in \mathbb{N}$ such that $a_n < a$ for all $n \ge k$.
- (2) If $a < a^*$, then for all $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ with $n \geq k$ such that $a_n > a$
- (3) If $a < a_*$, there exists $k \in \mathbb{N}$ such that $a_n > a$ for all $n \ge k$.
- (4) If $a > a_*$, then for all $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $a_n < a$.

Proof. Let (x_k) be the sequence defined as above, i.e. for each $k \geq 1$,

$$x_k = \sup\{a_n : n \ge k\}.$$

By definition, $a^* = \inf\{x_k : k \ge 1\}.$

- (1) If $a > a^*$, a is not a lower bound for $\{x_k : k \ge 1\}$. Then there exists an element $x_{k_0} \in \{x_k : k \ge 1\}$ such that $x_{k_0} < a$. Since $a > x_{k_0}$ and x_{k_0} is the least upper bound for $\{a_n : n \ge k_0\}$, then a is an upper bound for $\{a_n : n \ge k_0\}$. Hence $a_n < a$ for all $n \ge k_0$.
- (2) If $a < a^*$, then a is a lower bound for $\{x_k : k \ge 1\}$. Then for all $k \ge 1$, $x_k > a$. For each $k \ge 1$, x_k is the least upper bound for $\{a_n : n \ge k\}$. Since $a < x_k$, a is not an upper bound for $\{a_n : n \ge k\}$. Hence we can choose an element $a_n \in \{a_n : n \ge k\}$ so that $a_n > a$. In other words, we can find $n \in \mathbb{N}$ with $n \ge k$ such that $a_n > a$.
 - (3) and (4) are left to the reader.

Definition 2.1. We say that a real number x is a cluster point of a bounded sequence (a_n) if there exists a subsequence (a_{n_k}) of (a_n) whose limit is x.

Corollary 2.1. Let (a_n) be a bounded sequence. Then both $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$ are cluster points.

Proof. Since $a^*+1>a^*$, there exists $n_1\in\mathbb{N}$ so that $a_n< a^*+1$ for all $n\geq n_1$ by Lemma 2.1. Since $a^*-1< a^*$, for the given n_1 , we can find $m_1\in\mathbb{N}$ with $m_1\geq n_1$ such that $a_{m_1}>a^*-1$. Since $m_1\geq n_1$, $a_{m_1}< a^*+1$. We find $a^*-1< a_{m_1}< a^*+1$. Inductively, we obtain a subsequence (a_{m_k}) of (a_n) so that

$$a^* - \frac{1}{k} < a_{m_k} < a^* + \frac{1}{k}, \quad k \ge 1.$$

Since $\lim_{k\to\infty} \left(a^* - \frac{1}{k}\right) = \lim_{k\to\infty} \left(a^* + \frac{1}{k}\right) = a^*$, by the Sandwich principle, $\lim_{k\to\infty} a_{m_k} = a^*$. This shows that a^* is a cluster point.

Similarly, we can show that a_* is a cluster point.

Lemma 2.2. If (a_n) is a convergent to a, the all the subsequences (a_{n_k}) is also convergent to a.

Proof. Suppose (a_n) is convergent to a. Then for any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ so that

$$|a_n - a| < \epsilon$$
, whenever $n \ge N_{\epsilon}$.

Let (a_{n_k}) be any subsequence of (a_n) . For any $k \geq N_{\epsilon}$, $n_k \geq k \geq N_{\epsilon}$. Then $|a_{n_k} - a| < \epsilon$ whenever $k \geq N_{\epsilon}$. This shows that $\lim_{k \to \infty} a_{n_k} = a$.

Corollary 2.2. If (a_n) is convergent to a, then $a^* = a_* = a$.

Proof. Since a^* and a_* are both cluster points, Lemma 2.2 implies that $a^* = a = a_*$.

In fact, the converse is also true:

Theorem 2.1. Let (a_n) be a bounded sequence of real numbers. Then (a_n) is convergent to a real number a if and only if $a^* = a_* = a$.

Proof. We have proved one direction. Conversely, let us assume $a_* = a^* = a$.

For any $\epsilon > 0$, $a + \epsilon > a^*$. By Lemma 2.1, there exists $k_{\epsilon} \in \mathbb{N}$ so that for any $n \geq k_{\epsilon}$, $a_n < a^* + \epsilon$.

Since $a - \epsilon < a_* = a$, Lemma 2.1 implies that there exists $j_{\epsilon} \in \mathbb{N}$ so that $a_n > a - \epsilon$ whenever $n \geq j_{\epsilon}$. Denote $N_{\epsilon} = \max\{k_{\epsilon}, j_{\epsilon}\}$. Then for all $n \geq N_{\epsilon}$, we have

$$a - \epsilon < a_n < a + \epsilon$$
.

Thus $|a_n - a| < \epsilon$ whenever $n \ge N_{\epsilon}$. This shows that $\lim_{n \to \infty} a_n = a$.

Let (a_n) be a bounded sequence. If E is the set of all cluster points of (a_n) , we know that it is nonempty by Bolzano-Weierstrass theorem (since any bounded sequence has a convergent subsequence). For $x \in E$, choose a subsequence (a_{n_k}) of (a_n) so that $\lim_{k\to\infty} a_{n_k} = x$. By Theorem 2.1, we know

$$\limsup_{k \to \infty} a_{n_k} = \liminf_{k \to \infty} a_{n_k} = x.$$

By definition, for any $j \ge 1$, the set $\{a_{n_k} : k \ge j\}$ is a subset of $\{a_n : n \ge j\}$. This is because for $k \ge j$, $n_k \ge k \ge j$. For each $j \ge 1$,

$$\sup\{a_n : n \ge j\} \ge \sup\{a_{n_k} : k \ge j\}.$$

Denote the left hand side by x_j and the right hand side by α_j . Then $x_j \geq \alpha_j$ for all $j \geq 1$. Since both (x_i) and (α_i) are convergent, by Lemma ??, we find

$$a^* = \lim_{j \to \infty} x_j \ge \lim_{j \to \infty} \alpha_j = x.$$

This shows $x \leq a^*$, i.e. E is bounded above by $\limsup a_n$. Using a similar argument, we can show that $x \geq a_*$, i.e. E is bounded below by a_* . We obtain that E is a nonempty bounded subset of \mathbb{R} . Since both a^* and a_* are cluster points, i.e. $a^*, a_* \in E$, we obtain that:

Theorem 2.2. Let (a_n) be a bounded sequence and E be the set of all cluster points of (a_n) . Then

$$\lim \sup_{n \to \infty} a_n = \max E, \quad \liminf_{n \to \infty} a_n = \min E.$$

Example 2.3. Construct a sequence with exact three different cluster points.

Solution: We leave it to the reader as an exercise.

Example 2.4. Find the limsup and liminf of the following sequence of real numbers.

- (1) $a_n = (-1)^n + \frac{1}{n}, n \ge 1.$
- (2) $a_n = \cos(n\pi + \frac{\pi}{6}), n \ge 1.$

(3)
$$a_n = \begin{cases} \frac{1}{n} & \text{if } n = 3k\\ 1 + \frac{1}{n} & \text{if } n = 3k + 1\\ -2 + \frac{1}{n} & \text{if } n = 3k + 2. \end{cases}$$

Theorem 2.3. Let (s_n) and (t_n) be bounded sequences of real numbers. Suppose that there exists N > 0 so that $s_n \leq t_n$ for $n \geq N$. Then

- (1) $\liminf_{n \to \infty} s_n \le \liminf_{n \to \infty} t_n$. (2) $\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} t_n$.

Proof. We leave it to the reader as an exercise.

It follows immediately from this theorem that

Corollary 2.3. Let (a_n) be a sequence of real numbers. Then

- (1) If $a_n \leq M$ for all n, then $\limsup_{n \to \infty} a_n \leq M$.
- (2) If $a_n \geq M$ for all n, then $\liminf_{n\to\infty} a_n \geq M$.