1. Supremum and Infimum

Remark: In this sections, all the subsets of \mathbb{R} are assumed to be nonempty.
Let E be a subset of \mathbb{R}. We say that E is bounded above if there exists a real number U such that $x \leq U$ for all $x \in E$. In this case, we say that U is an upper bound for E. We say that E is bounded below if there exists a real number L so that $x \geq L$ for all $x \in E$. In this case, we say that L is a lower bound for E. A subset E of \mathbb{R} is said to be bounded if E is both bounded above and bounded below.

Let E be a subset of \mathbb{R}.
(1) Suppose E is bounded above. An upper bound U of set E is the least upper bounded of E if for any upper bound U^{\prime} of $E, U^{\prime} \geq U$. If U is the least upper bound of E, we denote U by $\sup E$. The least upper bound for E is also called supremum of E.
(2) Suppose E is bounded below. A lower bounded L of E is said to be the greatest lower bound of E if for any lower bound L^{\prime} of $E, L \geq L^{\prime}$. If L is the greatest lower bound for E, we denote L by $\inf E$. The greatest lower bound for E is also called the infimum of E.

Example 1.1. Let a, b be real numbers. The set $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ is bounded with $\sup [a, b]=b$ and $\inf [a, b]=a$.

Example 1.2. Let a be a real numbers. We denote $(-\infty, a)=\{x \in \mathbb{R}: x<a\}$. Then $(-\infty, a)$ is bounded above but not bounded below.

Example 1.3. Given a sequence $\left(a_{n}\right)$ of real numbers, let $\left\{a_{n} \in \mathbb{R}: n \geq 1\right\}$ be the image of $\left(a_{n}\right)$, i.e. the set of all values of $\left(a_{n}\right)$. Then $\left(a_{n}\right)$ is bounded (bounded above, bounded below) if and only if the set $\left\{a_{n} \in \mathbb{R}: n \geq 1\right\}$ is bounded (bounded above, bounded below).

Theorem 1.1. (Property of \mathbb{R}) In \mathbb{R}, the following hold:
(1) Least upper bound property: Let S be a nonempty set in \mathbb{R} that has an upper bound. Then S has a least upper bound.
(2) Greatest lower bound property: Let P be a nonempty subset in \mathbb{R} that has a lower bound. Then P has a greatest lower bound in \mathbb{R}.

Example 1.4. Consider the set $S=\left\{x \in \mathbb{R}: x^{2}+x<3\right\}$. Find $\sup S$ and $\inf S$.
Example 1.5. Let $S=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$. Find $\sup S$ and $\inf S$.
Example 1.6. Let $S=\left\{x \in \mathbb{R}: x^{3}<1\right\}$. Find $\sup S$. Is S bounded below?

Proposition 1.1. Let E be a bounded subset of \mathbb{R} and $U \in \mathbb{R}$ is an upper bound of E. Then U is the least upper bound of E if and only if for any $\epsilon>0$, there exists $x \in E$ so that $x \geq U-\epsilon$.

Proof. Suppose $U=\sup E$. Then for any $\epsilon>0, U-\epsilon<U$. Hence $U-\epsilon$ is not an upper bound of E. Claim: there exists $x \in E$ so that $x>U-\epsilon$. If there is no x so that $x>U-\epsilon$,
then $x \leq U-\epsilon$ for all $x \in E$. This implies that $U-\epsilon$ is again an upper bound for E. By the definition of the least upper bound, $U \leq U-\epsilon$ which is absurd since $\epsilon>0$.

Conversely, let $U^{\prime}=\sup E$. Since U is an upper bound of $E, U \geq U^{\prime}$. Claim $U^{\prime}=U$. For any $\epsilon>0$, choose $x \in E$ so that $x>U-\epsilon$. Thus $U^{\prime} \geq x>U-\epsilon$. We know that for any $U^{\prime}>U-\epsilon$ for all $\epsilon>0$. Since ϵ is arbitrary $U^{\prime} \geq U$. We conclude that $U^{\prime}=U$.

Lemma 1.1. Let E be a nonempty subset of \mathbb{R}.
(1) If E is bounded above and $\alpha<\sup E$, then there exists $x \in E$ so that $x>\alpha$.
(2) If E is bounded above and $\beta>\inf E$, then there exists $x \in E$ so that $x<\beta$.

Proof. The result follows from the definition.

Corollary 1.1. Let E be a bounded subset of \mathbb{R} and $L \in \mathbb{R}$ is a lower bound of E. Then L is the greatest upper bound of E if and only if for any $\epsilon>0$, there exists $x \in E$ so that $x \leq L-\epsilon$.

Proof. We leave it to the reader as an exercise.
Let E be a nonempty subset of \mathbb{R}. We say that M is a maximum of E if M is an element of E and $x \leq M$ for all $x \in E$. Using the definition, we immediately know that there is only one maximum of E if the maximum elements of E exists. In this case, we denote M by max E. It also follows from the definition that if the maximum of E exists, it must be bounded above.

We say that m is the minimum of a nonempty subset E of \mathbb{R} if m is an element of E and $x \geq m$ for all $x \in m$. We denote m by $\min E$. It follows from the definition that if a set has minimum, it must be bounded below.

Example 1.7. The following subsets of \mathbb{R} are all bounded. Hence their greatest lower bound and their least upper bound exist. Determine whether their maximum or minimum exist.
(1) $E_{1}=(0,1)$.
(2) $E_{2}=(0,1]$.
(3) $E_{3}=[0,1)$.
(4) $E_{4}=[0,1]$.

Proposition 1.2. Suppose E is a nonempty subset of \mathbb{R}. If E is bounded above, then the maximum of E exists if and only if $\sup E \in E$. Similarly, if E is bounded below, then the minimum of E exists if and only if $\inf E \in E$.

Proof. The proof follows from the definition.

Proposition 1.3. Let E be a nonempty subset of \mathbb{R}. Suppose E is a bounded set. Then $\inf E \leq \sup E$.

Proof. We leave it to the reader as an exercise.

Proposition 1.4. Let E and F be nonempty subsets of \mathbb{R}. Suppose that $E \subset F$.
(1) If E and F are both bounded below, then $\inf F \leq \inf E$.
(2) If E and F are both bounded above, then $\sup E \leq \sup F$.

Proof. Let us prove (a). (b) is left to the reader.
For any $x \in F, x \geq \inf F$. Since E is a subset of $F, x \geq \inf F$ holds for all $x \in E$. Therefore $\inf F$ is a lower bound for E. Since $\inf E$ is the greatest lower bound for E, $\inf E \geq \inf F$.

Theorem 1.2. Every bounded monotone sequence is convergent.

Proof. Without loss of generality, we may assume that $\left(a_{n}\right)$ is a bounded nondecreasing sequence of real numbers. Let $a=\sup \left\{a_{n}: n \geq 1\right\}$. Given $\epsilon>0$, there exists a_{N} so that $a \geq a_{N}>a-\epsilon$. Since $\left(a_{n}\right)$ is nondecreasing, $a_{n} \geq a_{N}$ for every $n \geq N$. Hence $a_{n}>a-\epsilon$ for every $n \geq N$. In this case, $\left|a_{n}-a\right|=a-a_{n}<\epsilon$ for $n \geq N$. We prove that $\lim _{n \rightarrow \infty} a_{n}=a$.

2. LIMSUP AND LIMINF

Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Define a new sequence $\left(x_{n}\right)$ by

$$
x_{n}=\sup \left\{a_{m}: m \geq n\right\}, \quad n \geq 1,
$$

Since $\left(a_{n}\right)$ is bounded, x_{n} is a real number for each $n \geq 1$. We assume that $\left|a_{n}\right| \leq M$ for all $n \geq 1$. Then $\left|x_{n}\right| \leq M$ for all $n \geq 1$. This shows that $\left(x_{n}\right)$ is also a bounded sequence. By Proposition 1.4, $\left(x_{n}\right)$ is nonincreasing. By monotone sequence property, $x=\lim _{n \rightarrow \infty} x_{n}$ exists. We denote x by $\limsup _{n \rightarrow \infty} a_{n}$. Similarly, define a sequence $\left(y_{n}\right)$ by

$$
y_{n}=\inf \left\{a_{m}: m \geq n\right\}, \quad n \geq 1
$$

Then $\left(y_{n}\right)$ is a nondecreasing sequence by Proposition 1.4. By monotone sequence property, $y=\lim _{n \rightarrow \infty} y_{n}$ exists. We denote y by $\liminf _{n \rightarrow \infty} a_{n}$.

From now on, we will simply denote by

$$
a^{*}=\limsup _{n \rightarrow \infty} a_{n}, \quad a_{*}=\liminf _{n \rightarrow \infty} a_{n} .
$$

Since $\left(x_{n}\right)$ is nonincreasing and bounded below, its limit equals to $\inf \left\{x_{n}: n \geq 1\right\}$. Similarly, $\left(y_{n}\right)$ is nondecreasing and bounded above, its limit equals to $\sup \left\{y_{n}: n \geq 1\right\}$.
Example 2.1. Find $\limsup _{n \rightarrow \infty}(-1)^{n}$ and $\liminf _{n \rightarrow \infty}(-1)^{n}$.
Solution: Let us compute these two numbers via definition. Denote $(-1)^{n}$ by a_{n}. For each $k \geq 1$, we know $\left\{a_{n}: n \geq k\right\}=\{-1,1\}$. For $k \geq 1, x_{k}=\sup \left\{a_{n}: n \geq k\right\}=$ $\sup \{-1,1\}=1$. Similarly, for $k \geq 1, y_{k}=\sup \left\{a_{m}: m \geq k\right\}=\inf \{-1,1\}=-1$. Therefore $\limsup _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} x_{k}=1$ while $\liminf _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} y_{k}=-1$. Notice that the subsequence $\left(a_{2 n}\right)$ of $\left(a_{n}\right)$ is convergent to 1 and the subsequence $\left(a_{2 n-1}\right)$ of $\left(a_{n}\right)$ is convergent to -1 . Later, we will prove that in general, the limit supremum and the limit infimum of a bounded sequence are always the limits of some subsequences of the given sequence.

Example 2.2. Let $\left(a_{n}\right)$ be the sequence defined by

$$
a_{n}=1-\frac{1}{n}, \quad n \geq 1 .
$$

Evaluate $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$.
Solution: The sequence $\left(a_{n}\right)$ is increasing and bounded above by 1 . Let us prove that $\sup \left\{a_{n}: n \geq 1\right\}=1$. We have seen that 1 is an upper bound. Now, for each $\epsilon>0$, choose $N_{\epsilon}=[1 / \epsilon]+1$. For $n \geq N_{\epsilon}$, we see

$$
1-\epsilon<1-\frac{1}{n} .
$$

By Proposition 1.1, we find 1 is indeed the least upper bound for $\left\{a_{n}: n \geq 1\right\}$. Therefore $1=\sup \left\{a_{n}: n \geq 1\right\}$. We also know that $\lim _{n \rightarrow \infty} a_{n}=1$. In other words, we prove

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\sup \left\{1-\frac{1}{n}: n \geq 1\right\}
$$

This gives us an example of Theorem 1.2. Similarly, for each $k \geq 1$, we can show that 1 is the least upper bound of the set $\{1-1 / n: n \geq k\}$ and -1 is the greatest lower bound for
$\{1-1 / n: n \geq k\}$. In other words, we find that

$$
x_{k}=\sup \left\{1-\frac{1}{n}: n \geq k\right\}=1, \quad y_{k}=\inf \left\{1-\frac{1}{n}: n \geq k\right\}=-1 .
$$

This shows that $\lim _{k \rightarrow \infty} x_{k}=1$ and $\lim _{k \rightarrow \infty} y_{k}=-1$. In other words,

$$
\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=1
$$

In this case, $\left(a_{n}\right)$ is convergent to 1 and at the same time, both limit supremum and limit infimum of $\left(a_{n}\right)$ are also equal to 1 . This is not an accident. Later, we will prove that a bounded sequence is convergent if and only if its limit supremum equals to its limit infimum.

Lemma 2.1. Let $\left(a_{n}\right)$ be a bounded sequence and $a \in \mathbb{R}$.
(1) If $a>a^{*}$, there exists $k \in \mathbb{N}$ such that $a_{n}<a$ for all $n \geq k$.
(2) If $a<a^{*}$, then for all $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ with $n \geq k$ such that $a_{n}>a$
(3) If $a<a_{*}$, there exists $k \in \mathbb{N}$ such that $a_{n}>a$ for all $n \geq k$.
(4) If $a>a_{*}$, then for all $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $a_{n}<a$.

Proof. Let $\left(x_{k}\right)$ be the sequence defined as above, i.e. for each $k \geq 1$,

$$
x_{k}=\sup \left\{a_{n}: n \geq k\right\} .
$$

By definition, $a^{*}=\inf \left\{x_{k}: k \geq 1\right\}$.
(1) If $a>a^{*}, a$ is not a lower bound for $\left\{x_{k}: k \geq 1\right\}$. Then there exists an element $x_{k_{0}} \in\left\{x_{k}: k \geq 1\right\}$ such that $x_{k_{0}}<a$. Since $a>x_{k_{0}}$ and $x_{k_{0}}$ is the least upper bound for $\left\{a_{n}: n \geq k_{0}\right\}$, then a is an upper bound for $\left\{a_{n}: n \geq k_{0}\right\}$. Hence $a_{n}<a$ for all $n \geq k_{0}$.
(2) If $a<a^{*}$, then a is a lower bound for $\left\{x_{k}: k \geq 1\right\}$. Then for all $k \geq 1, x_{k}>a$. For each $k \geq 1, x_{k}$ is the least upper bound for $\left\{a_{n}: n \geq k\right\}$. Since $a<x_{k}, a$ is not an upper bound for $\left\{a_{n}: n \geq k\right\}$. Hence we can choose an element $a_{n} \in\left\{a_{n}: n \geq k\right\}$ so that $a_{n}>a$. In other words, we can find $n \in \mathbb{N}$ with $n \geq k$ such that $a_{n}>a$.
(3) and (4) are left to the reader.

Definition 2.1. We say that a real number x is a cluster point of a bounded sequence $\left(a_{n}\right)$ if there exists a subsequence $\left(a_{n_{k}}\right)$ of (a_{n}) whose limit is x.

Corollary 2.1. Let $\left(a_{n}\right)$ be a bounded sequence. Then both $\limsup _{n \rightarrow \infty} a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$ are cluster points.

Proof. Since $a^{*}+1>a^{*}$, there exists $n_{1} \in \mathbb{N}$ so that $a_{n}<a^{*}+1$ for all $n \geq n_{1}$ by Lemma 2.1. Since $a^{*}-1<a^{*}$, for the given n_{1}, we can find $m_{1} \in \mathbb{N}$ with $m_{1} \geq n_{1}$ such that $a_{m_{1}}>a^{*}-1$. Since $m_{1} \geq n_{1}, a_{m_{1}}<a^{*}+1$. We find $a^{*}-1<a_{m_{1}}<a^{*}+1$. Inductively, we obtain a subsequence ($a_{m_{k}}$) of (a_{n}) so that

$$
a^{*}-\frac{1}{k}<a_{m_{k}}<a^{*}+\frac{1}{k}, \quad k \geq 1 .
$$

Since $\lim _{k \rightarrow \infty}\left(a^{*}-\frac{1}{k}\right)=\lim _{k \rightarrow \infty}\left(a^{*}+\frac{1}{k}\right)=a^{*}$, by the Sandwich principle, $\lim _{k \rightarrow \infty} a_{m_{k}}=a^{*}$. This shows that a^{*} is a cluster point.

Similarly, we can show that a_{*} is a cluster point.

Lemma 2.2. If $\left(a_{n}\right)$ is a convergent to a, the all the subsequences $\left(a_{n_{k}}\right)$ is also convergent to a.

Proof. Suppose $\left(a_{n}\right)$ is convergent to a. Then for any $\epsilon>0$, there exists $N_{\epsilon} \in \mathbb{N}$ so that

$$
\left|a_{n}-a\right|<\epsilon, \quad \text { whenever } n \geq N_{\epsilon}
$$

Let $\left(a_{n_{k}}\right)$ be any subsequence of $\left(a_{n}\right)$. For any $k \geq N_{\epsilon}, n_{k} \geq k \geq N_{\epsilon}$. Then $\left|a_{n_{k}}-a\right|<\epsilon$ whenever $k \geq N_{\epsilon}$. This shows that $\lim _{k \rightarrow \infty} a_{n_{k}}=a$.

Corollary 2.2. If $\left(a_{n}\right)$ is convergent to a, then $a^{*}=a_{*}=a$.

Proof. Since a^{*} and a_{*} are both cluster points, Lemma 2.2 implies that $a^{*}=a=a_{*}$.
In fact, the converse is also true:

Theorem 2.1. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Then $\left(a_{n}\right)$ is convergent to a real number a if and only if $a^{*}=a_{*}=a$.

Proof. We have proved one direction. Conversely, let us assume $a_{*}=a^{*}=a$.
For any $\epsilon>0, a+\epsilon>a^{*}$. By Lemma 2.1, there exists $k_{\epsilon} \in \mathbb{N}$ so that for any $n \geq k_{\epsilon}$, $a_{n}<a^{*}+\epsilon$.

Since $a-\epsilon<a_{*}=a$, Lemma 2.1 implies that there exists $j_{\epsilon} \in \mathbb{N}$ so that $a_{n}>a-\epsilon$ whenever $n \geq j_{\epsilon}$. Denote $N_{\epsilon}=\max \left\{k_{\epsilon}, j_{\epsilon}\right\}$. Then for all $n \geq N_{\epsilon}$, we have

$$
a-\epsilon<a_{n}<a+\epsilon
$$

Thus $\left|a_{n}-a\right|<\epsilon$ whenever $n \geq N_{\epsilon}$. This shows that $\lim _{n \rightarrow \infty} a_{n}=a$.

Let $\left(a_{n}\right)$ be a bounded sequence. If E is the set of all cluster points of $\left(a_{n}\right)$, we know that it is nonempty by Bolzano-Weierstrass theorem (since any bounded sequence has a convergent subsequence). For $x \in E$, choose a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ so that $\lim _{k \rightarrow \infty} a_{n_{k}}=x$. By Theorem 2.1, we know

$$
\limsup _{k \rightarrow \infty} a_{n_{k}}=\liminf _{k \rightarrow \infty} a_{n_{k}}=x
$$

By definition, for any $j \geq 1$, the set $\left\{a_{n_{k}}: k \geq j\right\}$ is a subset of $\left\{a_{n}: n \geq j\right\}$. This is because for $k \geq j, n_{k} \geq k \geq j$. For each $j \geq 1$,

$$
\sup \left\{a_{n}: n \geq j\right\} \geq \sup \left\{a_{n_{k}}: k \geq j\right\}
$$

Denote the left hand side by x_{j} and the right hand side by α_{j}. Then $x_{j} \geq \alpha_{j}$ for all $j \geq 1$. Since both $\left(x_{j}\right)$ and $\left(\alpha_{j}\right)$ are convergent, by Lemma ??, we find

$$
a^{*}=\lim _{j \rightarrow \infty} x_{j} \geq \lim _{j \rightarrow \infty} \alpha_{j}=x .
$$

This shows $x \leq a^{*}$, i.e. E is bounded above by $\lim \sup a_{n}$. Using a similar argument, we can show that $x \geq a_{*}$, i.e. E is bounded below by $a_{*} \stackrel{n \rightarrow \infty}{ }$ We obtain that E is a nonempty bounded subset of \mathbb{R}. Since both a^{*} and a_{*} are cluster points, i.e. $a^{*}, a_{*} \in E$, we obtain that:

Theorem 2.2. Let $\left(a_{n}\right)$ be a bounded sequence and E be the set of all cluster points of $\left(a_{n}\right)$. Then

$$
\limsup _{n \rightarrow \infty} a_{n}=\max E, \quad \liminf _{n \rightarrow \infty} a_{n}=\min E .
$$

Example 2.3. Construct a sequence with exact three different cluster points.
Solution: We leave it to the reader as an exercise.
Example 2.4. Find the limsup and liminf of the following sequence of real numbers.
(1) $a_{n}=(-1)^{n}+\frac{1}{n}, n \geq 1$.
(2) $a_{n}=\cos \left(n \pi+\frac{\pi}{6}\right), n \geq 1$.
(3) $a_{n}= \begin{cases}\frac{1}{n} & \text { if } n=3 k \\ 1+\frac{1}{n} & \text { if } n=3 k+1 \\ -2+\frac{1}{n} & \text { if } n=3 k+2 .\end{cases}$

Theorem 2.3. Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be bounded sequences of real numbers. Suppose that there exists $N>0$ so that $s_{n} \leq t_{n}$ for $n \geq N$. Then
(1) $\liminf _{n \rightarrow \infty} s_{n} \leq \liminf _{n \rightarrow \infty} t_{n}$.
(2) $\limsup _{n \rightarrow \infty} s_{n} \leq \limsup _{n \rightarrow \infty} t_{n}$.

Proof. We leave it to the reader as an exercise.
It follows immediately from this theorem that

Corollary 2.3. Let $\left(a_{n}\right)$ be a sequence of real numbers. Then
(1) If $a_{n} \leq M$ for all n, then $\limsup _{n \rightarrow \infty} a_{n} \leq M$.

