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Abstract. We establish local and global existence results for Dirac-
Klein-Gordon equations in one space dimension, employing a null form
estimate and a fixed point argument.

0. Introduction and Main Results.

In the present work, we like to study the Cauchy problem for the
Dirac-Klein-Gordon equations. The unknown quantities are a spinor field
¥ : R x R! — C* and a scalar field ¢ : R x R! — R. The evolution

equations for the fields are given below,

D = i (t,z) € R x R? (0.1, a)
Lo :Jib; (0.1,b)
@D(O,SE‘) = ’l,b()(.%), d)(oax) = gﬁo(l‘), (b,t(oax) = ¢1(x)7 (0'170)

where D is the Dirac operator, D := —ivy*0,, n = 0,1, and y* are the
Dirac matrices, the wave operator 0 = —0y + 9pe, and ¢ = ¢14°, and {
is the complex conjugate transpose.

The purpose of this work is to demonstrate the usefulness of a null form
estimate, by employing the solution representations in Fourier transform
of the DKG equations. We will take advantage of the null form structure
depicted in the nonlinear term 1%, which has been observed by [KM] and
[Bo]. We interpret the null form in a way that is different from that given

in Bournaveas’ paper [Bo|.
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For the DKG system, there are many conserved quantities which are
not positive definite, such as the energy. Therefore they are not applicable
to derive estimates. However the known positive conserved quantity is the

law of conservation of charge,

/|¢(t)\2da: = constant (0.2)

which leads to the global existence result, once the local existence result
is established, see [Bo] and [F2].

In ’73, Chadam showed that the Cauchy problem for the DKG equa-
tions has a global unique solution for vy € H', ¢g € H', ¢1 € L?, see
[C]. In ’93, Zheng proved that there exists a global weak solution to the
Cauchy problem of a modified DKG equations, based on the technique of
compensated compactness, with 1y € L?, ¢ € H', ¢1 € L?, see [Z]. In
'00, Bournaveas derived a new proof of a global existence for the DKG
equations, via a null form estimate, if ¢y € L?, ¢g € H', ¢ € L?, see
[B]. In 02, Fang gave a direct proof for (0.1), based on a variant null
form estimate, which is more straight forward, and the result is parallel
to Bournaveas’, see [F2]

The outline of this paper is as follows. First we derive some solu-
tions representations in Fourier transform, depending on various purposes.
Next we prove some a priori estimates of solutions for Dirac equation and
for wave equation. Then we show a local and global results for (0.1),
employing the null form estimate together with other estimates derived
previously, and a fixed point argument. Finally we show the key estimate,
namely the null form estimate.

The main result in this work is as follows.

1
Theorem 0.1. (Local Existence) Let 0 < € < 1 and 0 < § < 2e. If the
initial data of (0.1) 1 € H_iJre, o € H%+5, 1 € H_%Jr‘s, then there is

a unique local solution for (0.1).
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Theorem 0.2. (Global Ezistence) Let 6 > 0. If the initial data of (0.1)
Yo € L?, ¢ € H%M, ¢1 € H_%M, then there is a unique global solution
for (0.1).

Remarks.

1. The DKG equations follow from the Lagrangian

/Rm {|V¢|2 — |p¢)? — Dy — @w}dmt. (0.3)

2. The Dirac-Klein-Gordon system must be
(O 0

O¢ +m?¢ =4,

3. D? = ﬁ], where [ is the 4 x 4 identity matrix.

4. Py = 1% = |i]* + [vhal?® — [1h3]® — |[a]?, where 1; are the
component functions of the vector function ¢, which take values in C.

The case § = 0 is critical in the following sense. Assuming that the ini-
tial data (¢, ¢1) are in H2 x H™ = does not imply that ¢(¢, ) is bounded.
In fact, it is a BMO function. One of the motivations for proving the
existence of global solution with low regularity, is based on an observa-
tion made by Grillakis, which is that the initial data of (0.1): g € L?,
po € H %, o1 € H _%, is a right space for the existence of an invariant

measure, see [B] and [Ku], resulted from the DKG equations.
1. Solution Representation.

In what follows, we denote by (¢,z) the time-space variables and by
(1,&) the dual variables with respect to the Fourier transform. We will
use o = 1~ e throughout the paper. We will also often skip the constant

in the inequalities. For convenience, we also denote the multipliers by

E(r,&) = |7| + || + 1 (1.1a)
8(r,€) = |Irl = lgl] + 1 (1.1b)
W(r,€) =12 — ¢ (1.1c)
ﬁ(T, €) =~ +~L¢ (1.1d)

M(g) = l¢] +1 (1.1e)
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W and D are the symbols of the wave and Dirac operators respectively.

Consider the Dirac equation,

{ DY =G, (t,r) € R' xR!, (1.2)

¥(0) = ¢o.

First by taking the Fourier transform on (1.2) over the space variable

and solving the resulting ODE, we can formally write down the solution

as follows.
Ztlﬁl 0 —ﬂfl | OA
et(t=s)I&l lG( )d5+/ e—i(t—s)I&] (]ﬂ )i ( £ ds
/o o DU o (1)

Rewriting the inhomogeneous terms in (1.3) gives

- sitlel o—itlel ~
9(6,6) = | G D€L &) + 5 DUEL =€) |2 o) +
et _ ¢ it|€| T _e—it|§|/\ ~
/[m (1€1,6) + mDﬂﬂ,—f)]G(ﬂf)dT- (1.4)

Now we split the function G into several parts in the following manner.

. : : 1 :
Consider a(7) a cut-off function equals 1 if |7] < 3 and equals 0 if |7| > 1,

ag(T) = a(%), and denote by h(7) the Heaviside function. For simplicity,

let us write

Gi(1,€) = h(£r)a(r £ |&))G(, ), (1.5a)
Gy(r,€) = G(1,€) — (G4(1,€) + G_(1,€)), (1.5b)
Dy = D(J¢|, £¢). (1.5¢)

Notice that G are supported in the regions {(1,&) : £7 > 0, |7 F[¢|| < 1}
respectively. Using the decomposition of the forcing term G=0G Ft+ @+ +

G_, the inhomogeneous term in (1.4) can be written as
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T _ pitlel ot o—itlE] R
L/[EERFTWZlemﬁg)+”jg@;;I§;Dﬂﬂ,—@]thg@dT

o D(1,6) 1) Dt Gy
= [ eit7 S G dr — ettlél dr—
/ e 20el ) T I¢]
D G
—it[¢] far
2] ) T+1¢

e (1.6a)

/ eztr . eit|£\ ﬁ (é é )d
_— +Gl)dr
20el(r — e

z‘t|§|ﬁ+
2l ] T =[]
i (1 — 6(7))ﬁ+(/}\7 it)e| ﬁ+ (1-— EL\(T))@,
d _
/ o —re) T 2 —

gttr—le) _ 1
(G4 +a(r)G-)dr+

=€

dr, (1.6Db)

/ ettt _ p—itlg] ﬁ (é @ )d
—— + G_)dr
21¢| (1 + [€]) -

) ﬁ_ elt(7+|§|) — 1 ~ —~
—ut|¢] a(r)GL + G_)dr+
e ) g NG TE)

wr(L=@(M)D_Gy D [ (1—a(r))Gy
/ A€l(r+ 1N O 2] T I

Combining (1.4)-(1.7), we can give a formula for ¥, namely

=€

(1.6¢)

O

56 = (070440 + 0P (1O A_4(©) + K(r,6), (18)

k=0
where §4(7,&) are the delta functions supported on {7 = %[¢|} respec-

tively, 6¥) mean derivatives of the delta function, and

D9 4 (l-as(r)DiG  (1-a5)D_G.

I/(\'T, == G , (1.

=G oS A —te) 2 e

~ _ Dig o~ Gr+ (1 —as(\)G

Aol = it [0 - / . (1.9b)
Di(—1)*

Ay p(6) = /()\ = 1E)F Gy +as(NGe]dh. (1.9¢)

2|¢| k!
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Now we split ¢ in a different manner. Consider the cut-off function
5(7') equals 1 if |7| < R, and equals 0 if |7| > 2R. Let /b\(T) +c(r) =1.
Applying (1.4), we can give the following formula for 12

518 =Y (3 (101 k() + 00 (1, U (9) + (), (1.12)

k=0
where
N D ~ A
Us 0(€) ::T;[’YO%DO—/ a 3F||§||)GCM} (1.12a)
. Dy (—1)k ~ .
Uz k(§) = :27(5\1{1!) /(A$|£|)k_1b()\$|£|)Gd)\, (1.12b)

~ Dy g | D_a(r +¢))
U, &) = [2|g|(7—|§\) T 20elir + lel)

Consider the wave equation,

]G(T, £).  (1.12¢)

_ 1 1
{ O¢=F, (tz)eR! xR, 113

¢(0) = do, ¢:(0) = ¢1.
Taking Fourier transform on (1.13) and solving the resulting ODE gives

. . . R t . o .
¢>(t,g):cost|§|¢o(§)+Sm“g‘m(fw/ sin(t = 9)IEl 75 e)ds. (1.14a)
I3 0 I3

it|€] —it|e] _ itlg] _ o—itl€] .
€ *‘26 Bo(€) + £ 61(€)+

2]
-1 eit’T . eit\£| . zt|§|

F d F ) 1.14b
) - T*ma/j i Fmodr (1.14b)

For convenience, we denote the following notations by

o(t,€) =

U1 0(8):= ¢0(5)

cCAFIED
2|£|/ F(X€)d), (1.17a)

2|£| AF ¢
k
Ut k(§) :=:F(2|§1|])€' /(A:L|£|)k_1b()\q:|§|)F()\,§)d)\, (1.17b)
—lre(r =) er+1E)14
=gy~ g PO @)
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Combine (1.14b) and (1.17), and invoke the cut-off function, we have

7—5 :Z(V+k7-§ +V (T,g))+‘7(T7§)+Zﬁk(77£)+ﬁ(77£)7

k=0 k=0
(1.18)
where
Vig(r,6) = (1—a(¢ )) (1,8)v+ 1(£), (1.19a)
V(r,€) = (1-a(g))d(r,9), (1.19b)
N(r.€) =a(e) [, 06+ 69 . )], (1156
N(r,€) = a(&)(r,€). (1.19d)

Remark. We need to localize the solutions for Dirac equation and wave

equation due to the presence of the delta function.
2. Estimates.

To localize the solution in time, let ¢(t) be a cut-off function such that
©(t) equals 1 if [t| < %, and equals 0if [¢| > 1, and @7 (t) = ¢(¢/T). Notice

that, for an arbitrary function f(¢,x), we have

167 * fllzz = ller fllz < ezl flz-- (2.1)

For the Dirac equation (1.2), using (1.12), we denote U by

Tr(r,€) =@r+ Y (000, 4+ 600 r o +U(re), (22

k=0

Lemma 2.1. Let e >0 and TR ~ 1. If g € H™, then we have

A~

~

H§M7Wﬂ

C (oo +T°

Lz). (2.3)

-1

A4a55—6

L%M—Rm

We will only outline the proof. For more details, please see [FG].



8 Y.F. FANG

Proof. Applying formulae (1.12)s, we can derive the following bounds:

/\

|5 a75r+ (62020 |, <C(IWoll-ot T H = ) 2aa)
AL o~ (k) H (4RT) € G
= M T —— 2.4
HS T*((S:I: U:I:,k) ¢ k! MO‘S%_E I ( b)
PN G
HSzM “U’ <ore| —2 (2.4c)
L2(R1 xR1) MaSs—
Combine (2.4a, b, c), we have (2.3). O
Consider two Dirac equations,
Dy, =G, j=1,2
{ s =G5 (2.6)
¥ (0) = oy

For the solutions of (2.6), we have the following key estimate whose proof

will be presented in the last section.

Lemma 2.2. (Null Form Estimate) Let € > 0, and 11, 12 be the solutions
for (2.6). If ¢o; € H™“, we have

(pri19)2) H G
T ~_ < T o — ~ .
H Mag2a L2 — o )(meHH * Mo Si )
(WOQHH o+ H]T/[\ iz ) (2.7)
For the wave equation (1.13), we denote O by
Or(7,€) = GrY_ (Ve st Vo i) (1, )4V (1, ) +@r+ Y Ni(r,€)+N(r,¢).
k=0 k=0
(2.9)

Thus we have the following estimate.

Lemma 2.3. Lete >0, >0, TR ~ 1, and ¢ be the solution of (1.13).
If o € H2TO and ¢y € H 219, then
L2)'

(2.10)

~
F
~1

M3—953—¢

1

/\l 1 ~ €
|SEA74 38| 10 < C (ol g0 + 1011y ys + T
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Proof. Applying the formula (1.18), we can derive the following bounds:

H‘?%J\/Z%M@T * ‘7i,0|‘L2

~

. F
C (100l s+ Mol oo + T =g [ ) @110)
GLfLt
520" QOT*NOHB
ﬁ
<O(I90llyg0s 101030 + T =] ). 2210)
115 o (4RT) F
1S2 M2 5 « Vi k|, <C o e P (2.11c)
s ART)* F
|52 M2 « Ny, < cYUrT) 1 —_— (2.11d)
L k! Mz—6G5—«cllr2

|52 M2V ||, < CT || =—= , (2.11¢)

3—0G5—ellL2
|S2M=TN||, , < CT|| =——= . (2.11f)

L 5—655—5 L2
Combine (2.11a-f), we conclude the proof. O

We will also need some technical lemmas.

1 1
Lemma 2.4. (Hardy-Littlewood-Polya) Let r = 2—— ——. Then we have

p q

f(s
[ 28 s < s lgloe (2.13)
rixgt |5 — |

Lemma 2.5. Let f(t,z) and g(t,x) be any functions such that f €
~ 1

LYL*(R™)) and SPG € L*(L*(R™)). Assume that € > 0, — = 1 — ¢,
q

1 1
—:5—5, and 2 < r < co. Then we have
r

S’*e
||g”L7’(L2(Rn)) < CHSB/Q\HLQ(LQ(R"))~ (2.14b)

< Ol fllLa(zz®ny), (2.14a)

L2(L2(R™))
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Proof. The proofs for (2.14a) and (2.14b) are analogous. Therefore we
will only prove the case of (2.14b).

Taking the inverse Fourier transform in the time variable over the iden-

tity
1
g= gsﬁA (2.18)
gives
- eFilt=s)lel
g(t,¢) = me (579)(s,€) ds. (2.19)

Then we use duality and Hardy-Littlewood-Polya inequality to compute

(ooa)l @) = | [] [ e g st
/nf TG

[t —s|' =7

<CIF; (89) 2 1@) L 2y = CIS Gz el (z2y-

(2.20)

This completes the proof of (2.14b). O
3. Local and Global Existence.

Now we are ready to prove the local existence for the (DKG) equations.

Proof of Theorem 0.1. Consider the DKG equations

D = ,
{ Y =prov (3.1)
O = orypp,
and the map 7 defined by
T, 9) = (Y7, P7). (3.2a)
We want to show that 7 is a contraction under the norm
N(,¢) = |S2M 9| ., +[|S2 Mg . (3.2b)

For convenience, we call

J(0) = lldoll 5 + ldnll 545 + Itboll7—o + 1. (3.3)
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First we apply (2.10) and (2.7) to compute

|82375 498, < C(7(0) + T % )
€ @qu’lﬁ
gC(J(0)+T ==, ) (3.4)

To bound the term above, we first compute

|P772600)|| , ~ 1Ga * (60)(®) ]2
< 1eOl=l1Ga * $(O)ls < 16O g esllO® 1, (35)

where G, () is an L!-function with the following property:

Gal€) ~ (1 + €)™, (3.6)

see [S], then we invoke (2.14a,b) and obtain

‘ oTPYP < C" oYY
Mgl = 7l ppa llLae?)
S ||¢||L2q(H%+5)||¢||L2‘1(H*0‘) S HS§ § HLQH § wHLQ
Thus we get
‘ fosfb < ON?(,9). (3.8)
MaSz—¢

Next we want to bound the term involved with Uz. The estimate (2.3)

implies that

Gl i-ad e @T@ﬁ
HS M \IIT’ L2(R1xR1) = (HwOHH S MoGi ) (3.9)
Hence, using (3.3), (3.8), and (3.5), we have
N(T (¢, ¢)) < C(J(0) + T*N*(¢, 9)). (3.10)

Choosing sufficiently large L, for suitable T', we have

N(,¢) < L= N(T(¢,¢)) <L, (3.11)
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provided that
C(J(0)+T°L*) < L. (3.12)

Now we consider the difference 7 (¢, ¢) — 7 (¢, ¢'). Base on the obser-

vations
Gy =T = ST+ )+ SET NG ¥, (3.13)
B = 99 = S (6= )+ + 50+ )W - ), (313b)
Employing (2.10), (2.7), (3.13) and (3.8), we first calculate

H§%M% CF(@r = o)

Mz79°532"¢ M2 Sga2—¢
 F(6— &)W+ 1)) e+ =¥ \
<CT (H =gl [PENEA =3 HLz)
F( + ¢'y")
(VO + === )
<CT*(|S2M3+0§ — §|| 2 + ||ST M~ — ¢/ 12) L(J(0) + L?)
<CT L3 (|3 MEH0 ¢ — @/|| 2 + |2 M9 — /| 2) (3.15)

Analogously, we get

|55 80 (wr =)

< CTL(||SEM 0 = /|12 + |SEMETPG = F||12 ). (3.16)
Combining (3.15)and (3.16), we have
N(T(¥ =4, —¢') <CTL’N(p—4',¢6 - ). (3.17)
Therefore for suitable T, we obtain

NW-v,0-¢), (3.18)

N | —

N(T(¢ - ¢/7 ¢ - ¢/)) <
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provided that
1
CTL? < 3 (3.19)

We can conclude that the map 7 is indeed a contraction with respect to

the norm NN, thus it has a unique fixed point. O
We now prove the global existence.

Proof of Theorem 0.2. From the law of conservation of charge, we

have

sup [[9(t)|[ 2 = [[Yol L2 (3.20)
[0,T]

To bound ¢ we apply the formula (1.14a),

20(t, ) =

r+t— s
(¢o(z +1t) + go(z — 1)) / o1(y dy+/ / " Sydy(ds |
rtws 3.21

First we write ¢ = ¢, + ¢, the homogeneous and inhomogeneous parts

of the solution, then we obtain

oL @)l <[l@L® 145
<ol , 145 + lo1ll 145 < J(0), (3.22)

and
T+t—s
vl < [ [ [t |vis < ol 629
r—t+s
Combine (3.22) and (3.23), we get
lp(t)|l e < C(T',J(0)). (3.24)

Take Fourier transform of the solution ¢(¢), we have

~ o~ t 1 — _
3t ) = costlélgo(e) + ST (o) / sin (¢ = 9)IEl 2 s, €)ds.
B ST o
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Then we invoke (2.7), (2.14a), (for e = 1), and (3.23) to compute

t
16O, 35 <lgoll, 35 + 61l 05 + / lerdw (), y.sds

¢T¢¢

L-o

<J(0) + T3 H

<J(0) + T* lor ] .z

Prd| 2
Si e
<J(0) + T*|lor 9|l 2

T
<J(0) + 7" / 1)1 ()20l
<C(T, J(0)), (3.26)

<J(0)+ T4

where p is some positive number. The calculation for ||g(¢)]| 145 Is
analogous. Thus the above bounds ensure us to proceed the construction

of solution beyond T'. O
4. Null Form Estimate.
In this section, we demonstrate the key estimate.

Lemma 2.2. ( Null Form Estimate) Let € > 0 and 11, 19 be the solutions
for the Dirac equations (2.6). If the initial data 1o; € H_%“, j=1,2,
then we have
H P12
Ma5'2oz

<o) (ol |

) .

(Ios s + HM =,

MS4

). (4.1)

The proof for the estimate is based on the duality argument and it will
be given in a number of steps. Without loss of generality, we assume that

11 = 19, and prove: if 9 is a solution of the Dirac equation (1.2), then

/\

| pTY

2
P ) . (4.2)
MaSZa L L2

<O (lWollo + =

l
S1
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Recall that the notations:

By =Ir+ll+1  8r&:=|r-le|+1  (43)

W(r,&) =1 —|¢]? D(r,€) =1 +~4'¢ (4.3b)
Dy == D(f¢], +€) D_ = D(l¢], —¢€) (4.3¢)

The formula for 9, as in (1.8), for the Dirac equation (1.2) is given by

O

58 =Y (W OA k() + 80 (1 OA_k(©) + R(r6), (44)

k=0
where §4(7,&) are the delta functions supported on {7 = %[¢|} respec-

tively, 6®) mean derivatives of the delta function, and

. D(r,€) ~ (1—dg(r)DsG_  (1—dg)D_G4
K y == 5 45
=G A —e) 2 vy
n Diros _ [Gr+ (1 —a6<A>>G¢
A - E d\|, 5b
N Di(—1)k N N
Ay k() = % /(A F €N G +as(NGx]dN. (4.5
Moreover we write
- Di -
A = 4.
and split K= I?l + [?2, where
K, = D(r.9) & DS G Ky = 01D+ G- + baD- G+ (4.7)
W(r,¢) ES

and by, by are bounded functions. The Fourier transform of the quadratic

expression, Y = 1 * 12, can be written as the sum of the following terms.

> (5$)ji,k) « (0D AL), (4.8a)
k.l

S (AL k) (00 Az ), (4.8b)
k,l

> (0P Ay )% (B + Ko)+ (K + K> )+ 3" (0P ALk), (4.8¢)
k k

%1*_[?1 +%1*]?2+%2*K1+K2*K2. (48d)
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Notice that

AL () = AL (~o): L) = 7L (-0, (4.92)
Z/Qo:f;k(—@%v% K(r.¢) = Ri(—r,—€)0°,  (4.9b)
and
08 = (W OA kO + o (nOA_4(©) + K(r,8), (410)
k=0

1
Lemma 4.1. Let a < 1 The following estimate holds

) b »
HSDT*(‘S fik|§j|[ 7°) * (5$)E|{f¢,l)‘

MaSZa L2
< C(k+1+1)Tk =3 (4.11)
Proof. Let us call
~ D
Ziw=6PEF =6V AL, (4.12)

= 3¢
Using duality, we demonstrate the case (—,+), while the case (+,—) is
being similar. We first compute the fractional term
D(|¢],—€)4°D 0, if &n > 0,
(1€, =€)y"Dnl,n) _ { &n (4.13)

€] In] 2790 £ 291, ifén <O,
Throughout elementary analysis we have the bound:

(L + 1D + |

<C, (4.14)
(14 [& + ) et +1)
for ¢én < 0. Thus
’ {p1Z_1Z11,9) )
— 0 —————
| [ 7t PO DU )T + € + )
<C|f- M52 5 g e, (4.15a)

and through some computations, we have
IStk prgll e < C(k + 1+ 1)THH=3||M°S*G| 2. (4.15b)

This completes the proof. O
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1
Lemma 4.2. Let o < 1 The following estimate holds

HSOT*(5 fikiT'VO) (i |§|fil)‘

MozS2o¢
< C(k+ 1+ D)TH2 | fo il

L2
(4.16)

Proof. Using duality, we demonstrate the case (4, +), while the case

(—,—) is being similar. We first compute the fractional term
D((el,17°D(lnl.n) _ ( ten<o.
[€1I] 29" F 291, if > 0.
Throughout elementary analysis we have the bound:
1 [e% [e%
(1+ JE)™ (L + Jn) <o @

(1+ 1€ +nl)(

€l 4+l — le +l] +1) "

for &y > 0. Thus

‘ <80T7+,kZ+l g) ‘
_‘/ e D(|¢],£)7°D(|nl;n)

e (M org(—[¢] + |nl, € + ) dédn

€] 1]
M §2atk+lg0Tg||L2. (4.19)
This together with (4.15b) complete the proof. O

Lemma 4.3. With the notation above, the following estimates hold

~

(HwOHH*a + H]\//‘TL?

/\

LQ), (4.20)

| fellro < k,nA ol (4.21)

The proof for the Lemma 4.3 is straight forward so that we skip it.
Notice that, in the (4.21), S ~ 1 on the support of G..
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Lemma 4.4. With the notation above, the following estimate holds

2

Gy
MaSE

H SBT *Fl * I/(\'l )
]/\Za:S'\Qa

< CH
L2

iR (4.22)

Proof. For simplicity, we write G:=0G ¢ and K=K 1- We use dyadic

decomposition to handle this case. Assume that
oo
G = Z G 4.k (4.23)
k=1

where @i7i,k(7', €) is supported in one of the following four types of re-

gions:

Y= {(r,8) 7> 0,42 <7 —|¢] < +2FT), (4.24a)
Yo o= {(r,€&) 7 >0, -2 <1 —|¢] < 2" (4.24D)
Yo ={(r6) T <0, 42" < g < +2FT1), (4.24¢)
Yo = {(r,&) 7 <0, -2M < )¢ < 21 (4.244d)

The decomposition of G induces a decomposition for K , namely

_ B
Kitr==Gxt 1k (4.25a)
w

To compute the convolution in (4.22),

Kyyp*Kyq (—7,-8)

:/Ki,i,k(_T — 0, —n)K+ 1 (0,n) dodn

= / [/(\j:,i,k(’r +0,§+ U)Vof?i,i,l(a, 77) dadna
(4.25b)
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we have 16 cases resulted from (4.24a-d) and (4.25b) as follows.

{(75075777): T+0>070>037—+0_ |€+77|Nj:2k70-_ ’77|Ni25}

(4.26a)
{(r,0,§,n): 7T+0<0,0<0, 7+ 0+ |§—|—?7|Nﬂ:2k,0+ |T]|~ﬂ:2l}

(4.26b)
{(1,0,&,m): 7+ 0<0,0>0,7 4+ 0+ [{ + n|~£2", 0 — |n| ~£2'}

(4.26¢)
{(r,0,6,m): T+ 0>0,0<0,7 +0 — |{ +n|~+2" 0 + || ~+2'}

(4.26d)

We label them as

and denote by ¥ ; without specifying which one precisely. We also use
I?k for abbreviation of I?:I:,:I:,k and ék for é:l:,:l:Jc .

Let g be an arbitrary function. We first compute

[V +0) =2 €+ [ + 4]

=[(r+0)o — (E+n)n] +~' [(T +0)n—a(&+n)].
(4.28)

Thus, we have
‘ <Kk * f?l,§> ‘

_| [& V(T +o) =" E+n) oot
_‘/Gk(T+07£+n) (7‘—|—O’)2—(£—|—77)2 ’70 0_2_,’72 Gl(0777)

5(—, —£)dadnd7d£‘

1
~ 2 3
£C||—]\7a||pllﬁa||m( / Ina (1, ) |g(—7, =€) deg) : (4.29a)
where I}, ;(7,§) is given by

e e [ eI @R ED g

Dr,y WQ(T+0-7£+77)W2(0-7 77)




20 Y.F. FANG

and (@ is given by the expression
Qr.0.&m) = [(r +0)o = (E+n)n]” + [(r+ o) — o6 +m)]", (4.200)
and Dy, ;(7,€) is a slice of Xy ; for fixed (7,&), i.e.
Dy y(7,8) :=={(o,n) : (1,0,&,1m) € Tg1} (4.29d)
We need to sort the cases into two sets,
Eral(£,); ()] and - Xga((%); (7)), (4.30)

due to the fact that the computation for the 8 cases in each set is similar.

For simplicity, we will assume k£ > [, while the other case is similar.

Cases H. We have the following estimate

Ko s K., c 1 0. G..

H ok * 2 ”) < H ok ol (4.31a)
Mag2e 2 = 93 2=k Il pra llz2ll pra liz2

K_ . «K_. c 1 G_. G

H k% ”l‘ < = — H ok =l (4.31b)
Ma5’2a L2 23 2(5_0‘)1‘7 Mo L2 Me L2

In these cases, we have (7 + 0)oc > 0. Throughout some algebraic

manipulation, the expression () can be written as

2Q =(t+o— ¢+ )0+ n)* + (T + o+ [+ n])*(o — Inl)*+
8(1 + o)a[|€+nlln|l — (€ +n)n]. (4.32)

Take the case of
KippxKy o, (4.33)

as an example and in which Dy = {(n,0) : 7+ 0 — [£+n| ~ 2%, 0 — |n| ~
2 (1,0,6,1) € Zpa[(+, +); (+,+)]}. In this case 7+ 0 > 0 and o > 0. In
the no-plane, this is the region of the intersection of two forward cones.
One has the thickness of 2¥ and the translation of (=&, —7), while the

other has thickness of 2!. It is bounded mostly, except for the extreme
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case which is when one cone moves along the other cone such that the
intersection region is unbounded.
For the first part, we distinguish three cases: [€+n| < |n|, |[£+n] > |n],

and the extreme case. For the first two cases, we have

M2 (¢ + ) M2 () (T + o — |€ + n))2(0 + |n])?
I3 (7.€) ;:/ (& +m) M2 () ( gl i G U
D W2(1 + 0,6 +n)W?(o,n)
]/\4'\204 ]/\4'\204
:/ E+mdlot) o,
Dy, (TH0o+[€+n])*(o = [nl)
L[ M4 )M ()
2 Je,  (F+I[E+nD)?
1 / 1 —,
<57 dnM=“
~2 /g, (28 + ¢+ nl)22e N (€)
§2(1—2o¢)k+l M2a(£)§4a(77£)- (4.34a)
For the extreme case, we obtain
1 ]/\Z204 §+77 ]/\2204 n
Il%,l(TaS) N—l/ ,E ) 2( )d
2 Jp., (24 1E+0)
1 / 1
<5 d
=2 o, @ Hlg )i
C o) Do
§2(172o¢)k+lM2 (£)5*(7,€). (4.34Db)

For the second part, again we distinguish three cases: |£ 4+ n| < ||,

|€ + 1| > |n|, and the extreme case. For the first two cases, we get

M2 (€ + ) M>*(n) (7 + 0 + € +1])%(0 — |n])?

Iia(7,€) :=/ = — dodn
" Du W2(r + 0,6 + m)W2(,1)
[ ),
- _ 2 g doan
Dy (T+0 |§+77|) (U + |77|)
1 M22(€ + ) M (n)
226 Je (2 +[n))?
1 / 1 —,
<5 dnM=*(§)
251 o, , @+ e TN
C o an
§2k+(1—2a)lM2 (£)S*(7,€). (4.35a)
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For the extreme case, we have

1 M22(& + 1) M2 ()
L 8) NW/“ E2l +n|77|)2 ;

<o dnM=*(§)
22](;,[ Ek,l (2l + ‘n‘)274o¢

C o Dider
§2k+(1—2a)lM2 (£)S*(7,8). (4.35Db)

dn

For the third part, we get

B r6) /D Mo (6 + mzvﬁ?(mfa Z?Z >[|/v£v ;ZZ,' |:)| —(Ermnl,
<o, T
<goem [, P&+ A ()dody
< graaE MO8 (7.6). (4.362)

The extreme case will not cause trouble since & + 7 and n are of the same
sign except on a bounded region, i.e. [|€+n|n| — (£ +mn)n] = 0 except on

a bounded region. Let us denote the small region by R.

C_ [ MP(& +m)M(0)(r + 0)alé + nlln
I3 (r,6) < / dod
W) S | o e e
C Aoz /\OL
<grrm [ A€+ )P )dody
<L/ dodn22*F M2 ()
—22k+21
R
C /\Oé A(X
SWM2 (5)54 (7,6). (4.36b)
Cases E. We have the following estimate
Ko.p+K_. 1 |Gy G_.
H rok Koy O HGL”“ Gctll (437a)
M S2a L2 3 2(z=a)kll pro ezl pre N2
K_.u+K,. c 1 G_. G, .
e o et PN B | I CE 1)
Mo S2e L2~ 93 2=kl pro N2l pfo lliL2
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In these cases, we have (7 + 0)o < 0. Throughout some algebraic

manipulation, the expression () can be written as

2Q =(t+o+E+n)*(c+n)>+ (t+0o—|E+n) (o —|n)*—
8(r + o) (| +nlln| + (£ +n)n]. (4.38)

Take the case of

?—,+,k * f(+,+,la (4.39)

as an example and in which Dy; = {(n,0) : 7+ 0o+ [ +n| ~ 2%, 0 —|n| ~
o (1,0,6,m) € Yril(—,+); (+,4)]}, In this case 7+ 0 < 0 and o > 0. In
no-plane, this is the region of the intersection of a forward cone with a
truncated backward cone. One has the thickness of 2¥ and the translation
of (=&, —7), while the other has thickness of 2!. It is bounded for all cases.
We still have the extreme case which is when one cone moves along the
other cone, though the region of intersection can be as large as possible,

nevertheless it is bounded.

Again for the first part, we can estimate

M2 (€ + ) M>*(n) (7 + 0 + € + 1)) (0 + |n])?

ILy(r.6) = = T dodn
kol Des W2(r + 0, +n)W2(0,n)
1720 A2
:/ M (f + 77)]\24 (77) 2d0’d77
D, (TH0 =€+ n)2(0 = In|)
2 2ax
1 (1€ +nl+1D)**(nl+1) dodn. (4.40a)

2% Jp,,  (THo—lE+n)?
To estimate the above integral, we separate the cases for | + n| > |7|,
|€ +n| < |n|, and the extreme case. Throughout some calculations, in

each case, we have

1 1 I 72a Sda
T i(76) < g M7 5" (4.40D)
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For the second part, we derive

M2 (€ + )M () (1 + 0 — |€ + 1)) (0 — |n])?

IZ (1,6) := tan — dodn
o Dy1 W2(T+0,£+77)W2(0',77)
]/\Z2o¢ MZ&
:/ (E+n) : (n) dody
Dy (THo+[§+n)2(0+ [n])
1 2c 1 2«
SO [ eralsngaenee,
2%% b, (o + [nl)
Cmi/ (1€ +nl+1)*
<— (4.41a)
22k . (2l + |T]D2—|—2o¢

To estimate the above integral, we separate the cases for | + n| > |n|,
|€ +n] < |n|, and the extreme case. Throughout some calculations, in

each case, we have

1 1 T aA (6%
113,1(7,5) < ?mMz Sie (4.41b)

For the third part, we have

_ / M2 (& + ) M2 ()| + oo [|€ +nlln| + (& +n)n]

I3 (1,€) — — dodn
k,l( ) . W2(’7'+0',€‘|‘77)W2(0; n)
C ]/\ZQOé ]/\ZQOé
Sm/ (€+n) (n)|T2+ 0|0|£tnl|n|d0dn
2 Dr.y (740 —[€+nl)*(o +nl)
C . .
S akral /DM(|£+77|+1)2 (In] + 1)** dodn. (4.42a)

To estimate the above integral, we separate the cases for | + n| > |n|,
|€ + 1| < |n|, and the extreme case. Notice that for the extreme case, we
have [£ +n||n| + (£ +71)n = 0 except on a small part of the region of the

intersection. Throughout some calculations, in each case, we have

1 1 I 72a Sda
478 < G gasmp M7 5" (4.42D)
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Now we return to the proof of (4.22). Combine the above, we get

— en Gy R 2 3
(&g | <c|| 2| L 2] ([ Bt olat-r.—o) Parae)
c 1 ék G o
< — agea 2
TRy vt P e PRETRC P
C 1 @k Gl T raa2a
<y o LT P
23t 20 Mg ez g g WL (4.43)
Finally, we have
M\QS\Z& MaS2a L2
2
<> \ S e e
26k+ { MO‘S4 P MeSa MaSa (4.44)
This completes the proof. (]

The estimates for the remaining cases are given in the following Lemma.

Lemma 4.5. For j = 1,2 and k = 0,1,2,---. The following estimates
hold
o+ (0 1L 0"  (K))
ST
MaSQoz L2
G
< C(k+ 1) oot (4.45a)
MaSz

MaSZa L2
< C(k+1)T" 2| fikllg-o AGAI . (4.45b)
) MQSZ L2
Gr o« Ky % K G2
H@T*A L7 2) < CH &P (4.45¢)
Mas'Qa L2 MoSz L2
Gp o Ky K G 2
’ ngi /2\* 4 CHA—AI , (4.45d)
MaSQa MO‘S4 L2

The proof of Lemma 4.5 is a repetition of the arguments presented in

Lemmas 4.1, 4.2, and 4.4, so that we omit it.
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