2016 Taiwan-Japan Workshop on Dispersion, Navier Stokes, Kinetic, and Inverse Problems

(2016 台日分散、流體動力學、與反問題研討會)

Date: Dec. 24 2016 ~ Dec. 27 2016

Venue: Department of Mathematics, National Cheng Kung University

WebPage: http://www.ncts.ntu.edu.tw/events_2_detail.php?nid=121

Registration: https://goo.gl/forms/WMDKOKGawZ7KTUp43

Speakers from Taiwan:

National Center for Theoretical Sciences
National Taiwan University
National Tsing Hua University
National Cheng Kung University

- 1, Kazuo Aoki, NCTS, NTU, NCKU
- 2, Jin-Cheng Jiang, NTHU,
- 3, Hsi-Wei Shih, NCKU,
- 4, Hung-Wen Kuo, NCKU,
- 5, Kung-Chien Wu, NCTS, NCKU,
- 6, Ru-Lin Kuan, NCTS, NCKU,
- 7, Manas Kar, NTU,
- 8, Kuan-Hsiang Wang, NCKU,
- 9, David Yang, NCKU,
- 10, Pu Zhao Kow, NCKU,

Speakers from Japan:

Tohoku University Nagoya University Kyoto University Osaka University

- 1, Nakao Hayashi, Osaka Univ,
- 2, Jun-ichi Segata, Tohoku Univ,
- 3, Kotaro Tsugawa, Nagoya Univ,
- 4, Satoshi Masaki, Osaka Univ,
- 5, Nobu Kishimoto, Kyoto Univ,
- 6, I-Kun Chen, Kyoto Univ,
- 7, Masahiro Ikeda, Kyoto Univ,
- 8, Yohei Yamazaki, Kyoto Univ,

Organizers:

Yung-fu Fang (NCKU), Ching-Lung Lin (NCKU),

Nakao Hayashi (Osaka Univ) Kenji Nakanishi (Osaka Univ)

Sponsors:

National Center for Theoretical Sciences, National Cheng Kung University

2016 Taiwan-Japan Workshop on Dispersion, Navier Stokes, Kinetic, and Inverse Problems

2016/12/24 ~ 2016/42/27 at NCKU, Tainan, Taiwan

Program							
Saturday(12/24)		Sunday (12/25)		Monday (12/26)		Tuesday(12/27)	
		Chair:		Chair:			
		0900~0950	Nobu Kishimoto	0900~0950	Kazuo Aoki	0900~1200	
		0955~1040	Masahiro Ikeda	0955~1040	Kung-Chien Wu		
		1040~1100	Break	1040~1100	Break		Informal
		Chair:		Chair:	Willie Hsia		
		1100~1145	Kotaro Tsugawa	1100~1145	Hung-Wen Kuo		Discussion
		1150~1230	Yohei Yamazaki	1150~1230	I-Kun Chen		
		1230~1400	Lunch	1230~1400	Lunch	1200~1400	Lunch
		Chair:		Chair:	Wen-Ching Lien		
		1400~1445	Satoshi Masaki	1400~1445	Jin-Cheng Jiang		
1520 1620	Desistantian	1450~1535	Hsi-Wei Shih	1450~1535	Daisuke Kawagoe		Informal
.530~1620	Registration	1535~1555	Break	1535~1555	Break	1400~1700	
1620~1630 Chair:	Opening	Chair:	Jyh-Hao Lee	Chair:	Tien-Tsan Shieh		Discussion
	Ceremony	1555~1640	Ru-Lin Kuan	1555~1640	Jun-ichi Segata		
1630~1730	Nakao Hayashi	1650~1730	Manas Kar	1650~1730	Kuan-Hsiang Wang		
		1730~1740	Pu Zhao Kow	1730~1740 1800 ~	David Yang Banquet		

Ching-Lung Lin
Yu-Chu Lin
Chair List
Yu-Yu Liu
Jenn-Nan Wang
Chiun-Chuan Chen

Need more Chairs

2016 Taiwan-Japan Workshop on Dispersion, Navier Stokes, Kinetic, and Inverse Problems

(2016 台日分散、流體動力學、與反問題研討會)

Date: Dec. 24 2016 ~ Dec. 27 2016

Venue: Department of Mathematics, National Cheng Kung University WebPage: http://www.ncts.ntu.edu.tw/events_2_detail.php?nid=121 Registration: https://goo.gl/forms/WMDKOKGawZ7KTUp43

Titles and Abstracts

Dec. 25 2016
Nakao Hayashi
Title : On the inhomogeneous fourth-order nonlinear Schrodinger equation
Abstract: We consider the Cauchy problem for the inhomogeneous fourth-order Schrodinger equation with
a cubic power nonlinearity. We find the large time asymptotics of solutions to the Cauchy problem. We use
the factorization technique similar to that developed for the usual cubic Schrodinger equation.
Nobu Kishimoto
Title: Weak dispersion limit for nonlinear Schrödinger equations with higher order corrections
Abstract: We consider third- and fourth-order nonlinear Schrödinger-type equations. Our aim is to study
the limit problem from these equations to the standard nonlinear Schrödinger equation with cubic
nonlinearity as the coefficients of the higher-order dispersion and derivative nonlinear terms tend to zero.
The main part of the proof is to establish local well-posedness for the initial value problem associated with
these equations which is independent of the smallness of the higher-order dispersion.
Kotaro Tsugawa
Title: Parabolic smoothing effect and local well-posedness of semilinear fifth order dispersive equations on
the torus
Abstract: We consider the Cauchy problem of fifth order dispersive equations with polynomial type
nonlinearities depending on u, $\partial_x u$, $\partial_x^2 u$, $\partial_x^3 u$ under the periodic boundary condition. We show that they are grouped into two classes according to their nonlinear terms. When the nonlinear term is non-parabolic

resonance type, we have the local well-posedness on (-T, T). On the other hand, when the nonlinear term is parabolic resonance type, the local well-posedness holds with a smoothing effect only on $\partial \partial$ either [0, T)

or (-7,0] and nonexistence result holds on the other time interval.

Yohei Yamazaki
Title: Stability for line solitary waves of Zakharov-Kuznetsov equation
Abstract: We consider the two dimensional Zakharov-Kuznetsov equation on $\mathbb{R}x$ T_L which is one of a high
dimensional generalization of Korteweg-de Vries equation, where T_L is the torus with the $2\pi L$ period. The
orbital and asymptotic stability of the one soliton of Korteweg-de Vries equation on the energy space has
been proved by Benjamin, Pego and Weinstein and Martel and Merle. We regard the one soliton of
Korteweg-de Vries equation as a line solitary wave of Zakharov-Kuznetsov equation on $\mathbb{R}x$ T_L .
In this talk, we talk about the orbital stability and the asymptotic stability of the line solitary waves of
Zakharov-Kuznetsov equation.
Satoshi Masaki
Title: Two Minimization Problems Non-Scattering Solutions to Mass-Subcritical NLS
Abstract. In this paper, we introduce two minimization problems on non-scattering solutions to nonlinear
Schrödinger equation. One gives us a sharp scattering criterion, the other is concerned with minimal size of
blowup profiles. We first reformulate several previous results in terms of these two minimizations. Then,
the main result of the paper is existence of minimizers to the both minimization problems for
mass-subcritical nonlinear Schrödinger equations. To consider the latter minimization, we consider the
equation in a Fourier transform of generalized Morrey space. It turns out that the minimizer to the latter
problem possesses a compactness property, which is so-called almost periodicity modulo symmetry.
Hsi-Wei Shih
Title: Local Well-Posedness for thE Quantum Zakharov System in 1 D
Abstract: We consider the quantum Zakharov system in one spatial dimension. We prove the local
well-posedness for initial data of the electric field and the deviation of the ion density lie in Sobolev space
with certain regularities. As the quantum parameter approaches zero, we formally recover the result of
Ginibre-Tsutsumi-Velo. We also improve the result of Ginibre-Tsutsumi-Velo for Zakharov system and the
result of Jiang-Lin-Shao for quantum Zakharov system.
Ru-Lin Kuan
Title: Strong unique continuation for two-dimensional elliptic systems with Gevrey coefficients
Abstract: In this talk, we prove the strong unique continuation property (SUCP) for the general elliptic
systems of two variables. We assume all the coefficients belong to Gevrey class and the charac-
teristic roots of principal symbol are distinct. We reduce and transform the original systems to
a diagonal but larger second order elliptic systems and prove SUCP by establishing appropriate
Carleman estimates for this reduced system.
Manas Kar
Title: Superconductive and Insulating Inclusions for Linear and Non-linear Conductivity Equations
Abstract: We detect an inclusion with infinite conductivity from boundary measurements represented by
the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the
probe method. We use the enclosure method to also prove similar results when the underlying equation is
the quasilinear p-Laplace equation. Further, we rigorously treat the forward problem for the partial
differential equation div(σ ∇ u ^{p/2} ∇ u) = 0 where the measurable conductivity σ : $R^3 \rightarrow$ [0, ∞]
is zero or infinity in large sets and 1 \infty.
Pu Zhao Kow
Title:

Abstract:
Dec. 26, 2016
Kazuo Aoki
Title: On the slip boundary conditions for the compressible Navier-Stokes equations
Abstract: The slip boundary conditions for the compressible Navier-Stokes equations are one of the
classical matters in kinetic theory and have been discussed in the literature. However, it is not easy to find
the complete formulas that can be used immediately in practical applications. In the present talk, this topic
is revisited, and the slip boundary conditions are derived in a complete form, together with the explicit
values of the coefficients occurring in the formulas. Then, it is applied to the numerical computation of
unsteady motion of a slightly rarefied gas caused by a plate oscillating in its normal direction. This is a joint
work with M. Hattori, S. Kosuge, G. Martalo, and Luc Mieussens.
Kung-Chien Wu
Title: Wave structures of the linearized 1D Landau equation
Abstract: In this talk, I will show the pointwise behaviour of the linearized 1D Landau equation. The results
reveal the particle and fluid aspects of the equation. The fluid-like waves reveal the dissipative behaviour of
the type of the Navier-Stokes equation as usually seems by the Chapman-Enskog expansion, it represents
the long time behaviour of the solution. The kinetic-like waves dominate the short time behavior, the
smoothing effect of these waves come from the ellipticity in the velocity variable of the linearized collision
operator and the transport part of the equation. This is a joint work with Haitao Wang.
Hung-Wen Kuo
Title: Asymptotic Behavior for Rayleigh Problem Based on Kinetic Theory
Abstract: We investigate the dynamics of the gas bounded by an infinite flat plate which is initially in
equilibrium and set at some instant impulsively into uniform motion in its own plane. We show that the
asymptotic behavior of the gas represents a perturbation to the free molecular gas when the time is much
less than the mean free time. On the other hand, if the time is much greater than the mean free time, we
show that the gas dynamics is governed by the linearized Navier-Stokes equation with a slip flow on the
boundary and establish a boundary layer correction with thickness of the order of the mean free path.
Title: Regularity of stationary solutions to the linearized Boltzmann equations
Abstract: We consider the regularity of solutions to the stationary linearized Boltzmann equations in
bounded C^1 convex domains in R^3 for gases with cutoff hard potential and cutoff Maxwellian gases.
Suppose that a solution has a bounded weighted L ² norm in space and velocity with the weight of
collision frequency, which is a typical functional space for existence results for boundary value problems.
We prove that this solution is Hölder continuous with order $(\frac{1}{2})^-$ away from the boundary provided the
incoming data have the same regularity and uniformly bounded by a fixed function in velocity with finite

weighted $\,L^2\,$ norm with the weight of collision frequency. A smoothing effect due to the combination of

----- Jin-Cheng Jiang ------

Title: Estimates for the gain term of Boltzmann collision operator

collision and transport is used in the proof.

Abstract: We improve the regularity from 1- ε to the sharp exponent 1 for the smoothing estimates of the
gain term of the Boltzmann collision operator for the hard sphere model in ${ m R}^3$ with full kernel. The same
method can apply to the smoothing estimates of the gain terms for a large class of models.
Masahiro Ikeda
Title: Sharp Lifespan Estimates and Blow-up Rates for the Semilinear Wave Equation with Time-Dependent
Damping and Subcritical Nonlinearities
Abstract: We study blow-up behavior of solutions for the Cauchy problem of the semilinear wave equation
with time-dependent damping. When the damping is effective, and the nonlinearity is subcritical, we show
the blow-up rates and the sharp lifespan estimates of solutions. Upper estimates are proved by an ODE
argument, and lower estimates are given by a method of scaling variables.
Jun-ichi Segata
Title: Scattering problem for the generalized Korteweg-de Vries equation
Abstract: We consider the scattering problem for the generalized Korteweg-de Vries equation which is a
generalization of notable Korteweg-de Vries equation. We construct a minimal non-scattering solution to
the generalized Korteweg-de Vries equation in the mass sub-critical case.
Kuan-Hsiang Wang
Title: Low Regularity Global Well-Posedness for the Quantum Zakharov System in 1D
Abstract: In this paper, we consider the quantum Zakharov system in one spatial dimension. We prove the
global well-posedness problem of the system with L^2 -Schrödinger data in energy space. As the quantum
parameter tends to zero, we formally recover the result of Colliander-Holmer-Tzirakis.
David Yang
Title: Computer Simulation and Decision
Abstract: We discuss the war of two armies under some hypothesis. First we write down the simultaneous
differential equations, and then we solve it. Next we observe the behavior of the solutions, and find out the
discriminant of Victory or defeat.