Homework 13

The notations of the problems here refer to discussion of Lebesgue measure μ on \mathbb{R} , discussed in class. Throughout the homework, you may assume the following facts:

- If a set E is measurable, E^c is also measurable.
- If $\{E_i\}_{i=1}^{\infty}$ are measurable sets, so is $\bigcup_{i=1}^{\infty} E_i$.
- All intervals, open or closed, are measurable.
- \emptyset and \mathbb{R} are measurable.
- 1. Prove that for $\forall A, B \in \mathcal{M}, A \subset B \Rightarrow \mu(A) \leq \mu(B)$.
- 2. Finish the proof of the construction of the non-measurable set N:
 - (a) $N_r \cap N_s = \emptyset \ \forall r, s \in R$ with $r \neq s$.
 - (b) $[0,1) = \bigcup_{r \in \mathbb{R}} N_r.$
- 3. Prove that if a set $A \in \mathcal{M}$ has positive Lebesgue measure, it must be uncountable.
- 4. Prove that the Lebesgue measure μ , satisfying the three properties mentioned in class, takes any interval to its usual length. That is, $\forall a, b \in [-\infty, \infty]$ with $a \leq b$,

$$\mu((a,b)) = \mu(([a,b])) = \mu((a,b]) = \mu([a,b]) = b - a$$

- 5. $\forall E, F \in \mathcal{M}, \mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$
- 6. Define $\mu : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ by

 $\mu(A) = number of elements of A.$

- (a) Explain why μ is well defined on all domain.
- (b) Show that μ satisfies properties 1,2 of Lebesgue measure, but fails property 3.
- (c) What set(s) has measure 0?

 μ is called the *counting measure*.