Name and Student ID:

Homework 10 Supplementary Problems

1. Consider the unit sphere

$$
\mathbb{S}^{2}:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3} .
$$

and the "north pole" $N=(0,0,1) \in \mathbb{S}^{2}$. Consider the mapping

$$
\Phi: \mathbb{S}^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}
$$

defined by

$$
\Phi(x, y, z)=\frac{(x, y)}{1-z} .
$$

(a) Is Φ well defined on its domain?
(b) Prove the Φ is bijective.
(c) Find Φ^{-1}.

The map Φ can be understood in the following ways.
(d) Place the center of \mathbb{S}^{2} at the origin $(0,0,0)$. For every $(x, y, z) \in \mathbb{S}^{2} \backslash N$, write down the parametric equation of the line l going through N and (x, y, z).
(e) What is the point of intersection between l and $x y$ plane (ie. $z=0$)? Any relation to $\Phi(x, y, z)$?
This map Φ is known as the "stereographic projection" of \mathbb{S}^{2} onto \mathbb{R}^{2}. The map can be easily generalized to any dimension. Given n-sphere

$$
\mathbb{S}^{n}:=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid \sum_{i} x_{i}^{2}=1\right\} \subset \mathbb{R}^{n+1}
$$

and the north pole $N=(0, \ldots, 0,1)$, write down the stereographic projection between $\mathbb{S}^{n} \backslash\{N\}$ and \mathbb{R}^{n}.
2. Let $A=\mathbb{S}^{n}$ and $B=\mathbb{R}^{n+1} \backslash\{(0, \ldots, 0)\}$. Define relations on each set by

$$
\forall \mathbf{x}:=\left(x_{0}, \ldots, x_{n}\right), \mathbf{y}:=\left(y_{0}, \ldots, y_{n}\right) \in A, \mathbf{x} \sim_{A} \mathbf{y} \Longleftrightarrow(\mathbf{x}=\mathbf{y} \vee \mathbf{x}=-\mathbf{y})
$$

and

$$
\forall \mathbf{z}:=\left(z_{0}, \ldots, z_{n}\right), \mathbf{w}:=\left(w_{0}, \ldots, w_{n}\right) \in B, \quad \mathbf{z} \sim_{B} \mathbf{w} \Longleftrightarrow \exists \lambda \neq 0, \mathbf{z}=\lambda \mathbf{w}
$$

(a) Prove that \sim_{A} and \sim_{B} are both equivalence relations.
(b) Prove that A / \sim_{A} is in one-to-one correspondence with B / \sim_{B}. Recall that B / \sim_{B} is also known as the real projective space of dimension n, or \mathbb{R}^{n}.

