國立成功大學九十四學年度碩士班招生考試試題

編號: 51 系所: 數學系應用數學

科目:高等微積分

Show all your work. Explanation is required for each problem.

- 1. [10%] Compute the surface integral $\iint_S x^2 dS$ where S is the unit sphere $x^2 + y^2 + z^2 = 1$.
- 2. A set $A \subset \mathbb{R}^n$ is said to be *dense* in a set $B \subset \mathbb{R}^n$ if $A \subset B$ and $B \subset cl(A)$ (the closure of A).
 - (i) [6%] If A is dense in \mathbb{R}^n and $U \subset \mathbb{R}^n$ is open, prove that $A \cap U$ is dense in U.
 - (ii) [6%] Give an example of a set $A \subset \mathbb{R}^n$ and a closed set $V \subset \mathbb{R}^n$ such that A is dense in \mathbb{R}^n but $A \cap V$ is not dense in V.
- 3. (i) [6%] Give an example of a bounded function $f: [0,1] \to \mathbb{R}$ such that |f| is Riemann-integrable on [0,1] but f is not Riemann-integrable on [0,1].
 - (ii) [6%] Give an example of a function which is bounded and continuous but not uniformly continuous.
- 4. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) := \begin{cases} 0, & \text{if } (x,y) = (0,0); \\ \frac{x^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0). \end{cases}$$

- (i) [6%] Prove that f is continuous.
- (ii) [6%] Prove that f is not differentiable at (0,0).
- 5. For $n = 1, 2, 3, \ldots$ and $x \in \mathbb{R}$, we define

$$f_n(x) := \frac{x}{1 + nx^2}.$$

- (i) [6%] Prove that the sequence $\{f_n\}$ converges uniformly on \mathbb{R} to a differentiable function f.
- (ii) [6%] Prove that $f' \neq \lim_{n \to \infty} f'_n$ at some point in \mathbb{R} .
- 6. Define $\ln(x) := \int_1^x \frac{1}{t} dt$ for x > 0.
 - (i) [6%] Prove (from above definition) that $\ln(ab) = \ln(a) + \ln(b)$ for any a, b > 0.
 - (ii) [6%] Prove that $\lim_{x\to 0} \ln(x) = -\infty$.
 - (iii) [6%] Prove that $\ln(x)$ has a differentiable inverse function (denoted by $\exp(x)$) and prove that $\frac{d}{dx} \exp(x) = \exp(x)$.
- 7. Let A be a subset of \mathbb{R} . We define $\lambda(A) \in \mathbb{R} \cup \{\infty\}$ as follows. First, if A is an open interval (a,b), then we define $\lambda(A) := b-a$. Second, if A is an open set, we know that A is a union of countable (including finite) disjoint open intervals: $\bigcup_{k=1}^{\infty} (a_k,b_k)$ (or $\bigcup_{k=1}^{n} (a_k,b_k)$). Then we define $\lambda(A) := \sum_{k=1}^{\infty} (b_k a_k)$ (or $\sum_{k=1}^{n} (b_k a_k)$). Finally, if A is any subset of \mathbb{R} , we define

$$\lambda(A) := \inf \{ \lambda(X) \mid A \subset X, \ X \subset \mathbb{R} \text{ and } X \text{ is open } \}.$$

- (i) [6%] Show that $\lambda([a, b]) = b a$.
- (ii) [6%] If $A \subset B \subset \mathbb{R}$, prove that $\lambda(A) \leq \lambda(B)$.
- (iii) [6%] Suppose we know that $\lambda(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} \lambda(A_k)$ for subsets A_1, A_2, A_3, \ldots of \mathbb{R} . Compute $\lambda(\mathbb{Q})$.
- (iv) [6%] Give an example of subsets A_1, A_2, A_3, \ldots of $\mathbb R$ such that $A_1 \supset A_2 \supset A_3 \supset \cdots$ and $\lambda(\lim_{k\to\infty} A_k) \neq \lim_{k\to\infty} \lambda(A_k)$.