國立成功大學84學年度碩士班考試(高等微樣分試題)第/頁

Answer all Questions

- (1) (a) Given the area of the circular disk $\{(x,y): x^2+y^2 \le 1\}$ is equal to π , find the area of the elliptical disk given by $\{(x,y): 2x^2+2xy+5y^2 \le 1\}$. (10%)
 - (b) Let $B = \{(x,y) : 0 \le x + y \le 2, 0 \le y x \le 2\}$. Evaluate the integral

$$\int_{B} \int (y^{2} - x^{2})e^{\frac{x^{2} + y^{2}}{2}} d(x, y). \tag{10\%}$$

- 2. (a) Show that $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. (10%)
 - (b) Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, where $\Gamma(\alpha) = \int_0^{+\infty} e^{-x} x^{\alpha-1} dx$ is the Gamma function. (10%)
- 3. (a) Show that $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ is convergent for all $x \in \mathbb{R}$. (10%)
 - (b) Show that $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ is uniformly convergent on $[a, b] \subseteq (0, 2\pi)$. (10%)
- (a) Let f be defined on D ⊆ R^p to R^q, p, q ≥ 1, and suppose f is uniformly continuous on D. If {x_n} is a Cauchy sequence in D, show that {f(x_n)} is a Cauchy sequence in R^q.
 - (b) Suppose that $f:(0,1)\to\mathbb{R}$ is uniformly continuous on (0,1). Show that f can be defined at x=0 and x=1 in such a way that it becomes continuous on [0,1]. (10%)
- 5. A set \mathcal{F} of functions on $K \subseteq \mathbb{R}^p$ to \mathbb{R}^q is said to be uniformly equicontinuous on K if, for each $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that if $x, y \in K$ and $||x-y|| < \delta(\varepsilon)$, $f \in \mathcal{F}$, then $||f(x)-f(y)|| < \varepsilon$. Now, let $\{f_n\}$ be a sequence of continuous functions on \mathbb{R} to \mathbb{R}^q which converges at each point of the set Q of rationals. If $\{f_n\}$ is uniformly equicontinuous on \mathbb{R} ,
 - (a) show that $\{f_n\}$ converges at every point of \mathbb{R} . (10%)
 - (b) show that $\{f_n\}$ is uniformly convergent on every compact set of \mathbb{R} . (10%)