國立成功大學九十七學年度 博士班 基礎數學試卷共2頁,第1頁

一、本試題分「分析通論」、「基礎代數」各佔 50 分,共 100 分。

二、作答時請務必在所屬答案卷上作答並標明題號。

分析通論

- 1. Assume that $\{x_{\gamma} : \gamma \in \mathbb{N}\}$ is a sequence of numbers of \mathbb{R} . A series $\sum_{\gamma=1}^{\infty} y_{\gamma}$ is called a *rearrangement* of $\sum_{\gamma=1}^{\infty} x_{\gamma}$ if and only if there exists a one-to-one surjective map $\mathbb{N} \xrightarrow{\phi} \mathbb{N}$ such that $y_{\gamma} = x_{\phi(\gamma)} \forall \gamma \in \mathbb{N}$.
- [6%] (a) Prove that the series $\sum_{\gamma=1}^{\infty} \frac{(-1)^{\gamma+1}}{\gamma}$ converges to $\ln 2$.
- (b) Prove that there exists a rearrangement $\sum_{\gamma=1}^{\infty} y_{\gamma}$ of $\sum_{\gamma=1}^{\infty} \frac{(-1)^{\gamma+1}}{\gamma}$ such that $\sum_{\gamma=1}^{\infty} y_{\gamma}$ converges to 2008. [Note that the (alternating) series $\sum_{\gamma=1}^{\infty} \frac{(-1)^{\gamma+1}}{\gamma}$ converges, though $\sum_{\gamma=1}^{\infty} \frac{1}{\gamma}$ diverges.]
- 2. Assume that $\{x_{\gamma} \in \mathbb{R} : \gamma \in \mathbb{N}\}$ is a bounded sequence of numbers of \mathbb{R} . Suppose that $\{y_{\gamma} \in \mathbb{R} : \gamma \in \mathbb{N}\}$ is a sequence bounded from below so that $\liminf_{\gamma \in \mathbb{N}} y_{\gamma}$ exists in \mathbb{R} . Prove that

$$\liminf_{\gamma \in \mathbb{N}} x_{\gamma} + \liminf_{\gamma \in \mathbb{N}} y_{\gamma} \leq \liminf_{\gamma \in \mathbb{N}} \left(x_{\gamma} + y_{\gamma} \right) \leq \limsup_{\gamma \in \mathbb{N}} x_{\gamma} + \liminf_{\gamma \in \mathbb{N}} y_{\gamma}.$$

- 3. Given a Lebesgue measurable subset A of \mathbb{R}^n , we denote by |A| the Lebesgue measure of A. Assume that $\{E_{\gamma} : \gamma \in \mathbb{N}\}$ is a decreasing sequence of measurable subsets of \mathbb{R}^n so that $E_{\mu} \supset E_{\nu}$ whenever $\mu \leq \nu$. We define $\mathcal{E} = \bigcap_{n \in \mathbb{N}} E_{\gamma}$.
- (a) Suppose that $|E_{\gamma}|$ is finite for some $\gamma \in \mathbb{N}$. Prove that $|\mathcal{E}| = \lim_{\gamma \to +\infty} |E_{\gamma}|$.
- (b) Show that the equality $|\mathcal{E}| = \lim_{\gamma \to +\infty} |E_{\gamma}|$ could be wrong when $|E_{\gamma}| = \infty \ \forall \gamma \in \mathbb{N}$.
 - 4. Given a Lebesgue measurable subset A of \mathbb{R}^n we denote by |A| the Lebesgue measure of A. Given a Lebesgue integrable function g on \mathbb{R}^n the Hardy-Littlewood maximal function M_g of g is defined on \mathbb{R}^n by

$$M_g(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |g|$$

where $B_r(x)$ is the open ball with radius r centered at $x \in \mathbb{R}^n$.

- (a) Prove that for each $t \in \mathbb{R}$ the set $\{x \in \mathbb{R}^n : M_g(x) > t\}$ is open.
- [8%] (b) It follows from (a) that M_g is a measurable function on \mathbb{R}^n . Prove that when $\int_{\mathbb{R}^n} |g| > 0$ we have $\int_{\mathbb{R}^n} |M_g| = +\infty$.
- 5. We say that a closed subset C of a metric space X is nowhere-dense if and only if C contains no nonempty open subset of X. Prove the Baire Category Theorem: When X is a complete metric space, there does not exist a countable collection $\{C_{\gamma} \subset X : \gamma \in \mathbb{N}\}$ of nowhere-dense closed subsets of X satisfying $X = \bigcup_{\gamma \in \mathbb{N}} C_{\gamma}$.

國立成功大學九十七學年度 博士班 基礎數學試卷共2頁,第2頁

一、本試題分「分析通論」、「基礎代數」各佔 50 分,共 100 分。

二、作答時請務必在所屬答案卷上作答並標明題號。

基礎代數

Answer all the problems and show all your works.

- 1. (10%) Let G be a group of order 12 such that G has no elements of order 6. Show that G is isomorphic to A_4 , the alternating group of degree 4.
- 2. (10%) Let R be a commutative ring with identity. Let A be an ideal of R such that A is contained in a finite union of prime ideals $P_1 \cup P_2 \cup \cdots \cup P_n$. Show that $A \subset P_j$ for some $j = 1, 2, \ldots, n$.
- 3. (10%) Let E be an extension field of K and L and M intermediate fields. Suppose that L is a finite Galois extension of K. Show that LM is a finite Galois extension of M. Moreover, $Gal(L/K) \cong Gal(LM/M)$, where Gal(X/Y) denotes the Galois group of X over Y.
- 4. (10%) Let E and F be fields. Suppose that E = F(x), the field generated by x over F, where x is transcendental over F
 - (a) Let $F \subset K \subset E$ be an intermediate field such that $K \neq F$. Show that x is algebraic over K.
 - (b) Let $y = \frac{f(x)}{g(x)} \in E$ with relatively prime $f(x), g(x) \in F[x]$. Find the degree [F(x): F(y)].
- 5. (10%) Let V be a complex finite dimensional vector space of dimension n. Let ϕ and ψ be endomorphisms of V such that $\phi \circ \psi = \psi \circ \phi$. Show that there exists vector subspaces

$$0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$$

such that dim $V_i = i$, $\phi(V_i) \subset V_i$, and $\psi(V_i) \subset V_i$.

THE END