DATE2020-09-17 16:10-17:00



TITLEAn Immersed Boundary Projection Method for Simulating the Inextensible Vesicle Dynamics

ABSTRACT this talk, we introduce an immersed boundary projection method (IBPM) based on an unconditionally energy stable scheme to simulate the vesicle dynamics in a viscous fluid. Utilizing the block LU decomposition of the algebraic system, a novel fractional step algorithm is introduced by decoupling all solution variables, including the fluid velocity, fluid pressure, and the elastic tension. In contrast to previous works, the present method preserves both the fluid incompressibility and the interface inextensibility at a discrete level simultaneously. In conjunction with an implicit discretization of the bending force, the present method alleviates the time-step restriction, so the numerical stability is assured by non-increasing total discrete energy during the simulation. The numerical algorithm takes a linearithmic complexity by using preconditioned GMRES and FFT-based solvers. The grid convergence studies con firm that the solution variables exhibit first-order convergence rate in L2-norm. We demonstrate the numerical results of the vesicle dynamics in a quiescent flow, Poiseuille flow, and shear flow, which are congruent with the results in the literature.