On the Dirac-Klein-Gordon Equations in one Space Dimension

YUNG-FU FANG

Abstract. We establish local and global existence results for Dirac-
Klein-Gordon equations in one space dimension, employing a null form
estimate and a fixed point argument.

0. Introduction and Main Results.

In the present work, we like to study the Cauchy problem for the
Dirac-Klein-Gordon equations. The unknown quantities are a spinor field

¥ : R x R! — C* and a scalar field ¢ : R x R! — R. The evolution

equations for the fields are given below,

D = P (t,z) € R x R? (0.1a)
O¢ = ¥y; (0.1b)
¢(va) = wo(@"), ¢(0,33) = QSO(':U)? ¢t(oax) = d)l(w)a (0.10)

where D is the Dirac operator, D := —iy*9,, p = 0,1, and v* are the
Dirac matrices, the wave operator [ = —8y; + 0y, and ¥ = 4%, and t
is the complex conjugate transpose.

The purpose of this work is to demonstrate the usefulness of a null form
estimate, by employing the solution representations in Fourier transform
of the DKG equations. We will take full advantage of the null form
structure depicted in the nonlinear term v, which has been observed for

possessing such structure, see [KM] and [Bo].
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For the DKG system, there are many conserved quantities which are
not positive definite, such as the energy. Therefore they are not applica-
ble to derive a priori estimates. However the known positive conserved

quantity is the law of conservation of charge,

/\w(t)\de = constant (0.2)

which leads to the global existence result, once the local existence result
is established, see [Bo] and [F2].

In '73, Chadam showed that the Cauchy problem for the DKG equa-
tions has a global unique solution for vy € H', ¢ € H', ¢1 € L?, see
[C]. In ’93, Zheng proved that there exists a global weak solution to the
Cauchy problem of a modified DKG equations, based on the technique of
compensated compactness, with 1y € L?, ¢g € H', ¢1 € L?, see [Z]. In
00, Bournaveas derived a new proof of a global existence for the DKG
equations, based on a null form estimate, if ¥y € L%, ¢o € H', ¢ € L?,
see [B]. In ’02, Fang gave a direct proof for (0.1), based on a variant null
form estimate, which is more straight forward, and the result is parallel
to Bournaveas’, see [F2]

The outline of this paper is as follows. First we derive some solutions
representations in Fourier transform. Next we prove some a priori esti-
mates of solutions for Dirac equation and for wave equation. Then we
show a local result for (0.1), employing the null form estimate together
with other estimates derived previously, and a fixed point argument. Fi-
nally we show the key estimate, namely the null form estimate.

The main result in this work is as follows.
1
Theorem 0.1. (Local Existence) Let 0 < € < 1 and 0 < 6 < 2¢. If the
initial data of (0.1) g € H_i“, o € H%‘L‘S, P1 € H_%J”S, then there is

a unique local solution for (0.1).

Theorem 0.2. (Global Ezistence) Let 6 > 0. If the initial data of (0.1)
Yo € L?, ¢g € H%+57 @1 € H_%J”s, then there is a unique global solution

for (0.1).
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Remarks.

1. The DK G equations follow from the Lagrangian

/Rm {|V¢|2 — |pe|* — YDy — ¢W}da¢dt. (0.3)

2. The Dirac-Klein-Gordon system must be
{ o m?b’ " (0.4)

¢ +m?¢ =,

and the proof works for this system too.

3. D? = ﬁ], where [ is the 4 x 4 identity matrix.

4 P = 10 = [l + [af? — [iaf* — [¢hal?, where ¢; are the
component functions of the vector function ¢, which take values in C.

The case § = 0 is critical in the following sense. Assuming that the ini-
tial data (¢g, ¢1) are in Hz x H™ = does not imply that ¢(¢, ) is bounded.
In fact, it is a BMO function. One of the motivations for proving the
existence of global solution with low regularity, is based on an observa-
tion made by Grillakis, which is that the initial data of (0.1): g € L?,
po € H %, o1 € H _%, is a right space for the existence of an invariant

measure, see [B] and [Ku], resulted from the DKG equations.
1. Solution Representation.

In what follows, we denote by (t,x) the time-space variables and by
(1,&) the dual variables with respect to the Fourier transform of a given
function. We will use a = i — € throughout the paper. We will also
often skip the constant in the inequalities. For convenience, we denote

the multipliers by

E(r,&) = |7| + |¢] + 1 (1.1a)
8(r,€) = |Irl = lgl] + 1 (1.1)
W(r,€) =12 — ¢ (1.1c)
ﬁ(T, €) =~ +~L¢ (1.1d)

M(g) = l¢] +1 (1.1e)
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Notice that W and D are the symbols of the wave and Dirac operators
respectively.

Consider the Dirac equation,
{ Dy =G, (t,z)€ R xR,

lb(o) = vo.

First by taking the Fourier transform on (1.2) over the space variable

(1.2)

and solving the resulting ODE, we can formally write down the solution

as follows.
zt|§| —itlg| —~
/ et(t—=s)I&]l & 6d / e~ Ht=s)lE] \d
| S DU iCle )+ | D) —0iGe )
Rewriting the inhomogeneous terms in (1.3) gives
~ it|] __ e—itlE] R
96,6) = | 5 DUEl€) + g DUEL =€) |2 o) +
QT _ pitlé] ettt _ o—itl€] ~
_ _— G . .
| B 20619+ S 206l 0] Gtr e 19

Now we split the function G into several parts in the following manner.
Consider a(7) a cut-off function equals 1 if |7] < 5 and equals 0 if |7| > 1,

and denote by h(7) the Heaviside function. For simplicity, let us write

Go(1,€) = h(xr)a(r F [¢)G(r,€), (1.5a)
Gy(7.€) = G(r,6) — (G+(1,€) + G_(7,9)), (1.5b)
D = D(l¢|, ££). (1.5¢)

Notice that G are supported in the regions {(7,¢) : £7 > 0, |7 F|¢]] < 1}
respectively. Using the decomposition of the forcing term G=0G + CA}+ +

G_, the inhomogeneous term in (1.4) can be written as

oitT _ pitlé] oitT _ p—itlé] R
[ e e DU€kO + G DUel, ~€)] G (. )ar

2| (T = 1€]) 2| (T + 1€])
_ it ( 5) . zt|§\ﬁ+ Gf
J ¢ G~ [ g
o~ D- [ _Cs dr, (1.6a)

21 J T+
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eiT_ it|&| R
/— Gy +G_)dr

T [c e
gDy et oy
= e 2|€| 7——|£| (G++a6(T)G,)dT+
wr (LG )DG_ oDy [(L-a()E
/e« Nelr -y T a1

ez’tr . it|&] N
/— Gy +G)dr

20¢](7 + [€])
. D_ ett(r+I€l) 1
_ —it[¢]
g — (@6(7)G+ + G_)dr+
ir (1= (7)) D_Gy —zt|§|D (1—dg(7))Gy
dr — d )
/ e+ ) 2l¢] g o (L6e)

where @6 (7) = @(F) and @ is the cut-off function defined previously. Recall

the power expansion

it(7T = 1
pit(TEIED _ ZH B £ |€)". (1.7)
k=1

Combining (1.4)-(1.7), we can give a formula for ¥, namely

=Y (0P QA k(&) + 3V (L OAL(©) + K(1.8),  (18)

k=0

where d4(7,&) are the delta functions supported on {7 = %[¢|} respec-

tively, 6®) mean derivatives of the delta function, and

D(r,€) ~  (1-as(r)DsG_  (1-G6)D_Gy

M= ot e e e ey
Beof) = D2 [y - [ QOB gy

Aen© = D20 [ i) an randalan (1o



6 Y.F. FANG

Consider the wave equation,
O¢p=F, (t,z) € R x R,
{ ¢(0) = do, ¢+(0) = ¢1.
Taking Fourier transform on (1.13) and solving the resulting ODE gives

(1.10)

5@5w:wwm@a@+§9ﬂﬁ%@>—[;ﬁﬂilﬂﬁ (s,€)ds. (1.11)

€l €l
~ it|¢] —it]g] __ itlg] _ o—itl€] .
(6.8) = 5 ——0(O) + g h(6) -
et _ zt|§| el _ —1t|£|
_ dr — | ———— 1.12
| st 00 - [ gy oo 012
For the homogeneous part, we rewrite it as
eitlEl 1 e—itle] L ettlél _ p—itfg] . 7nf\ﬁl *Ztlﬁl
= 1.13
where
s = |0 T idr. (1.15)
Now we split F' the same manner as we did to G. Let us write
Fi(7,€) := h(£7)a(r ¥ [¢)) F(7,£), (1.16a)
Fy(r,€) i= F(7,6) = (F1(7,6) + F_(7,€)), (1.16b)

For the inhomogeneous part, we obtain

el _ pitl€] et _ o—it|€l 4
F d
/Tmaua—7)+zmma+7ﬂ s (nL)dr

:/emim_ema Fy o zt|§|/ Ff dr,
P2 2] ) le] - 26l I+ (a7

S itlEl peit(r—lE) _ 1

ezT_eit|§\ 7 B \dr —
/?mma—ﬂ(+*“)7‘2M| G

(1 —ag)F_ el (1 —ag)F
/eZtT—(l as)F dr — (1= ) dr, (1.17b)

21¢[(l¢] =) 2[¢] €l =7

(Fy +dgF_)dr+
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/ oitT _ p—itl€] (ﬁ 5 \d e~ itl€| / ett(t+IE) _ 1 G PR \d
(e + ) 2/¢] e

wr (L=@e)Fy el (1 —Gg)Fy
/e 2ee + 0 2 / gy o (117

Combining (1.17a)-(1.17c), we can give a formula for qg, namely

oo

0(r,6) =3 (8. OBy () + 82 (nOB_4(9)) + L(r.6), (118)

k=0
where d4(7,&) are the delta functions supported on {7 = %[¢|} respec-

tively, 6(%) mean derivatives of the delta function, and

Fy  (1-a()F-  (1—ag(r)Fy

MO =% g 2ad-n  2ele+n -
Beol€) = g [0+ [ 2 (Tgffj“w Fa. (L1ob)
~ —_ k o~ ~

Bea®) = e [OF I B+ G0 FrJar (1190

Remark. We need to localize the solutions for Dirac equation and wave

equation due to the presence of the delta function.
2. Estimates.

To localize the solution in time, let b(t) be a cut-off function such that
b(t) equals 1 if [t| < %, and equals 0 if [¢| > 1, and by (t) = b(¢/T). For an

arbitrary function f(t,x), we have

[br s fllzz = bz fllL2 < [|br([ze[lf]L2- (2.1)
Lemma 2.1. If g € H™“, then we have

Lg). (2.2)

L2(R1xR1)

Proof. Without loss of generality, we prove the special case.

~

B 510, =0+

Lz). (2.3)

L2(R! xR?)
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~

To estimate by x [S %1/)] we apply formulae (1.8) and (1.9)s. First we

compute

| o

-~ -~3 ~3 ~3 o~
4 2 < 4 1 —
Jor (83 R]llce < I8*K s < ||5% =G|+
~s (1 —a6)D,G_ ~3 (1—a6)D_G,4 G
SZ( 6 i ‘ + S ‘ _C =T 2.4
H 21[(m — |€]) T H 2[](m + [€]) e HS o 24

For the term by [§§6(k);1\+ »], we can mollify S(r,¢) without loss of
generality such that 8k S(£[£],€) = 0if £ > 1. Thus we can compute

o7 * [S3851(E) 12241

N/ (/bT(T— NS, )T (A — |€|)d)\>2d7'
/(8)\k (T (= NS(8) ) >\:|g|> dr

g/ (Tk+13<k>(T(T - |g|))) dr < T?R+1||tkp| 2 < CT2 L,

»MCO

(2.5)

Then we calculate

|4+ 0llz2qae) <llvollzz + (/ (/ Gy + (17__?;(7))@—617)2%)%

§\|¢o\|L2+H§—i ,

and

||AJr k||L?(d§) = kl:, (/ (/(T - |€|)k—1[@+ +66@_](T, f)dT)ng)z

Therefore we have

o X G
Jor (836, A olllze <T* (Ilbollze + | =7

L2)’

o~ ~3 ~ 1 2k é
Jor 83600 Ay sl <7251 5

(2.8)
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The calculation for the term by x [§ i 5(_@11771@] is analogous. Combine the
above results we complete the proof. [

Consider two Dirac equations,

¥;(0) = vo;-

For the solutions of (2.9), we have the following key estimate whose proof

(2.9)

will be presented in the last section.

1
Lemma 2.2. (Null Form Estimate) Let o = 1 6°¢ > 0, and 1, Yo be
the solutions for (2.9). If 1Yo; € H™%, we have

H (b@2) |
Bogo

< C() (o s + H

).

<H¢02HH o+ H]\//T St

L2 Me S4

). (2.10)

For the wave equation (1.10), we have the following estimate.

Lemma 2.3. Let ¢ be the solution of (1.10). If ¢o € H'™>* and ¢, €
H™2% then

[br + [M=2(BS) ]|

< C(lgollm 2o + g1l + |

m ) (2.11)

Proof. Without loss of generality, we show the following special case:

~

~ Ao F
[Br + [(B$)*~6]ll 2 < O (00l a—n + Nl +]| 35

LQ). (2.12)

To estimate by * [(E§)1—°‘$} in the L?-norm, we invoke the formulae

(1.18) and (1.19). First we compute

[Br + [(BS)' L] |12 < (BS)' L1z < H

W
| .
L2 NEes« iy 13)

H(ES)l‘“(l— ) - ‘

‘<Es>1-a<1— d6)F ‘
2]l = 7)

20¢1(1€ +7)

L2
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For the term by * [(E\g)l_o‘é(k)éJr k|, we can mollify ES(r,€) without
loss of generality such that 8’“ S(£[£],€) = 0if £ > 1. Thus we compute

[z * [(BS) =68V} ary

= [| ez - BS99~ ehar] ar

2
‘dT

ok ~a
~ [ |z (e = 0@ 00|
~ / THIBE (T(r — |g|))‘2(|g| +1)22y
< T (€] + 1272 < OT2H (] + 1)2 2,

(2.14)
which implies
1
[or + [(BS)' =0 Bi ]| . < €T3 ( / (I + 10272 | By w()] )
(2.15)

To estimate the above integral, we first focus on the region where [£| > 1.
Due to the observation that on the supports of (1 — 56)1?_ and F\f, the
following inequality holds

E2820 = (I +1¢[+1) " (JIAI= €] +1)*" < (lgl+ 12 A= fel|*, (2.16)

we have the following bounds:

/1] |s|+Ff A||§| o ag

/] el
lel-Nz3 ||| - A\Me (€] + 1)20]jg] — A[* ™

<CHE0¢S@ (2.17)

and in the same vein
(1~ a0 ( Danlfae <o ] 218
/’/ J&+1) Ha o < HEaSa (2.18)
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Hence we get

b7 [(ES)' =64 Bs o] || p2 2 (e 1)

/\

< OT? <||¢o|IH1 o + @1l e + H

= ) (2.19)

and

[ [<E§)1_a5(k)§+ ‘] HL2(L2<|£|>1))

< CTk+2 // |7 TgTi_FI “(r, £)d>\d£>%

corng|F

2.20
Fadn (2.20)

The calculation for the term by x [(E\S'\)l_o‘é(_k)é_,k} is analogous.
For the region |¢| < 1, we consider by [(E\S’\)l_a(éf)lz_,k +5(_k)§_,k)}.
This is clear from the derivation of the solution representation which

indicates that the solution is actually not singular along the cones.
by * [(ES) (6% By s + 6™ B_ )] (7,€)
~ THH(€] 4 1) [8RD(T(r — [€)) By a(€) + Fb(T (7 + 1€)) B i (€)]
= T (€] + 1) T [tF0(T(r — [€])) — 5b(T(r + [€1)] By (€) +
TE (€] + 1) 7R (T(r + |€])) [By w(€) + B 4(6)]- (2.21)

Under the restriction of || < 1, we have

(T (r — |€])) — ERb(T (7 + |€])) ~ TE+B(T(r — (1—20)[¢]) €], (2.23)

o o - F
Bo®) + Boo() ~ 0+ [ gz ah (2:24)
and
~ ~ 1 he2 o~ o~
Be(€) + Boul) ~ =y [ (A= (1= 200D Py +3F) v
(2.25)
Combine the above results we complete the proof. O

We will also need some technical lemmas.
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1 1
Lemma 2.4. (Hardy-Littlewood-Polya) Let r = 2—— ——. Then we have
p q

[ A e < sl (2.26)

1XR1‘8

Lemma 2.5. Let f(t,z) and g(t,x) be any functions such that f €

~ 8

LY(L*(R)) and S°§ € L*(L*(R)). Assume that 6 > 0, ¢ = 5 as
1 1
—25—6, and 2 < r < 0o. Then we have
,

gT * f

TEIN < Ol fll ez, 9.27

|Z5 .. < e flzaasy (2:27)

lgllzr(z2y < CINS"Gl 2 r2). (2.28)

Proof. The proofs for (2.27) and (2.28) are analogous. Therefore we will
only prove the case of (2.28).

Taking the inverse Fourier transform in the time variable over the iden-

tity
~ 1 550
gives
_ eFilt=s)lel S
g(tai)Z/me (579)(s,€) ds. (2.30)

Then we use duality and Hardy-Littlewood-Polya inequality to compute

(o w>\ =1 ) [ s S e o assin.g

I1F-1(S79) ()] 22 |1 2(E)] 1.2
it — 5P dsdt

<CIF S PNz 18l 22y = CI57Gll 2 lloll o 12)-

(2.31)

This completes the proof of (2.28). O
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3. Local Existence.
Now we are ready to prove the local existence for the (DKG) equations.

Proof of Theorem 0.1. Consider the DKG problem

D = b, (t,z) € R x R? (3.1a)
O¢ = bripy; (3.1b)
¢(071’) = w0($)7 ¢(O’$) = ¢O('r)7 (bt(o’x) = (bl(fl?); (3'10)

Iteration scheme induces a map 7 defined by
T (", ¢%) = (pF+, o). (3.2a)
We want to show that 7 is a contraction under the norm
N (. ¢) = [MS3|| o + | M*(ES)' 9 .. (3.2b)
For convenience, we call

J(0) = l|gollr-2e + |¢1 ]l 20 + ([0l 7o + 1. (3.3)

First we apply (2.11), (2.10), and (2.27) to compute

|3T-(B8) T3 . < ¢

)
2 )
L% ([0.7], L2)>

1| bt |2
Ma

L2([0,T), L2)> (3.4)
To bound the term above, we first compute

|37=200®)| , ~ 1Ga * (60) D2
<60l e G+ $(Olz2 < 6O rs2e 6Dl -, (35)
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where G () is an L-function with the following property:

Gal) ~ (1 +1]€), (3.6)

see [S], then we invoke (2.27) and (2.28) to obtain

[pr3i=260|| , < Cllgllzsqomy,m o) ll¥llzsqomy, e
< C|SEM26] 1S9
< O||Me83 Mg, |5 M9

~3 -~

< C|| MBS 9| o || M50 .
(3.7)

Next we want to bound the term involved with 9. The estimate (2.2)

implies that

e brov
1 < —a —_— . .
o7, <t + | Z5],). 6o
Hence, using (3.4), (3.7), and (3.9), we have
N(T(,9)) < C(J(0) + TN (1,9)). (3.10)
Choosing sufficiently large L, for suitable T', we have
N, ¢) < L= N(T(s,¢)) < L, (3.11)
provided that
C(J(0)+T=L* < L. (3.12)

Now we consider the difference 7 (1), ¢) — 7 (¢, ¢’). Base on the obser-

vations

o~ = L)W+ ) 4 G TI)W—),  (3.130)
b= 99 = S (6= )+ )+ 50+ )W - ), (313D)
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Employing (2.11), (2.10), and (3.13), we first calculate

[M~(ES)'F(T¢ - T¢)|,.

Fr(y —¢) (@ + "))

<c (|

22 + |

]/\ZO‘EO‘S\C“ MaEaSa
For(p— &)W+ F(br (o + ’
br(ov + ')

(LD.+H = =)
<OT* (| M~(ES) =% — /|| > + | M~ %¢’ /|| g2) L(I.D. + %)
<CTR L3 (|M~*(ES)=¢ — ¢/ 12 + | M54 — 9| 12)

Analogously, we get

IM—STF(Ty — T .

< CTHL (|- (ES) =6 = §lze + |54 =0

Combining (3.15)and (3.16), we have

f(bT(1/f+1/J )(¥ —¢'))

N(T@W = ¢—¢)) < CTSLN (¥ — ¢/, ¢ — ¢).

Therefore for suitable T, we obtain

N(TW -y, ¢-¢)) <

provided that

CT

ool

N —

L? <

N =4, ¢—¢),

l\DIb—*

™

)

15

(3.15)

¢/||L2). (3.16)
(3.17)

(3.18)

(3.19)

We can conclude that the map 7 is indeed a contraction with respect to

the norm A/, thus it has a unique fixed point.

We now prove the global existence.

]

Proof of Theorem 0.2. From the law of conservation of charge, we

have

sup [|¢(1)| L2 =
[0.7]

140l 2

(3.20)
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To bound ¢ we apply the following formula,
2(t,7) =

x+t s
do(x +1) + po(x —t) + / o1(y dy—i—//t+ sydyagm)

First we write ¢ = ¢, + ¢n, the homogeneous and inhomogeneous parts

of the solution, then we obtain

oL (@)l <[P 145
<lldoll 345 + lloll 115 < J(0), (3.22)

x+t—s
lon ()l < / /
r—t+s

Combine (3.22) and (3.23), we get

and

Pus,)|dyds < CT|ol3e. (3:23)

[(t)][L < C(T, J(0)). (3.24)

Take Fourier transform of the solution ¢(t), we have

3(t,€) = cost]€|go(e) + LS (61 / sin (0 = )50 (s, €)ds. (3.25)
G o9

Then we invoke (3.21), (2.10) (for a = 0), (2.27), and (3.24) to compute

t
HQZS(t)HH%H S”ﬁbOHH%H + H¢1HH_%+5 +/0 ”bT¢1/}(5)”H—%+5dS

<J(0) +T§|le¢¢I|L2

bTQMZ}
Si e
<J(0) + T |[brdip|17

T
<J(0) + T / 16(0) 13 16 (1) |2t
<C(T, J(0)), (3.26)

<J(0)+T%
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where p is some positive number. The calculation for ||¢t(t)||H_ 145 18
analogous. Thus the above bounds ensure us to proceed the construction

of solution beyond T'. O
4. Null Form Estimate.
In this section, we demonstrate the proof of the key estimate.

Lemma 2.2. ( Null Form Estimate) Let « = 3 —€, € > 0, and 1, 1y be
the solutions for the Dirac equations (2.9). If the initial data o; € H™7,
7 =1,2, then we have

H bTw ¢2

g ||, < CO (ol a+H

) .

(||¢02||H o + H Tag!

MS4

L2>' (4.1)

The proof for the estimate is based on the duality argument and it will
be given in a number of steps. Without loss of generality, we assume that

11 = 19, and prove: if ¢ is a solution of the Dirac equation (1.2), then

/\

|zt

=l )2. (4.2)

< () (1ol ar- ”HM -

Recall that the notations:

E(rg)=Irl+1el+1,  8(re):=|Irl - lél| +1,  (43a)
W(r.6) =7~ |¢] D(r.§) =17 +~'¢. (4.3b)
D := D(¢], +¢), D_ := D(¢],~¢)- (4.3¢)
The formula for J, as in (1.8), for the Dirac equation (1.2) is given by

5.8 =Y (0094 n(©) + 60 . OA 1) + E(r9), (44)

k=0
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where d4(7,&) are the delta functions supported on {7 = %[¢|} respec-

tively, 6®) mean derivatives of the delta function, and

. D(r,€) ~ (1—ag(7))DsG_  (1—dg)D_Gy
K(1,8):== , (4.5
= ot e -y T el gy Y
i ey Do [ Gy +< a6()))G
Aol 1= g5 (1% / — ) (4.5b)
o~ D —_ k ~ ~
A= P2l [OF 1) 6 +aG:]an (450
Moreover we write 5
Ag (§) = 2|€|fi k(§), (4.6)
and split K= I/(\'l + }?2, where
~ (T Da. @ WD, G_ +byD_ G+
K= —>%~ Ko = )
1 (7' E) f7 2 ES (4 7)

and by, by are | bounded functions. The Fourier transform of the quadratic

expression, 1/}¢ w 111, can be written as the sum of the following terms.

Z (5£Fk)j:|:,k) * (5£é)121\:|:,l)7 (48&)
k.l
ST e ) « (00 Azy), (4.8b)
k,l

Z ((ng)jj:,k)* (IAQ + IA(Q) K1 + K2 *Z 5(k)Ai k), (4.8¢)
k k

Kl*kl -I—Kl*f?g—l-?Q*Kl-f-Kg*Kg. (48d)

Notice that

—_— —

Al,k(f) = A\L,k(—fﬁ Ik(f) = Al,k(—f)a (4.9a)
A a(6) = L0757 K(r.6) = Ki(—r,—€)°,  (4.9b)

578 = (W1 9400 + 8P (R OA1()) + K (7€), (4.10)
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1
Lemma 4.1. Let o < 1 The following estimate holds

H/b\T * ((52‘3)?17;6) * (5?21\;71) ‘

<Ck+1+1) (4.11)
Proof. Let us call
Zyn=0WAay, 5(’” (4.12)

!5\

Using duality, we demonstrate the case (—,+), while the case (+,—) is

being similar. We first compute the fractional term

D(gl, =" D(nl.m) _ { 0, if £ > 0, (413
[n] 70 +29',  if&n <0,
and observe that, for £&n < 0,
€]+ [nl| + 1€ +nl + 1 ~ max{[¢], [n]} + 1, (4.14a)
1€+ 91| = 1€+ 5l| + 1 ~ min{le], [n[} + 1. (4.14b)
Thus
) <bT7—,kZ+z 9) ‘
OD —————
| [ 7o P =0 PO 7 (1) Forg(le] + ol € + ) ded
<Cl[f-
o e 2 3
([ i+ 122G+ 122 |5Tbrg (e] + . + ) dean)
<C|f-x Sethtbrg]| e, (4.15)
Through some computations, we have
[+ b7, < Clk+ DT ]|, (4.16a)

172285+ br ||, < Ok + DTF 2 b] g1, (4.16b)
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provided that a < i With the aid of the above and the observation
B(r.e) <|r=A+ENE, S0 <|r-A+5()¢,  (416c)
we can estimate
| B 52 tF+lbrg]) 2
< (10| o+ [P+ b ) I1ES75] 1
<C(k + 1 + 1)TFH=22 | B2 5G| 1. (4.17)
This completes the proof. O

1
Lemma 4.2. Let a < 1 The following estimate holds

HBT * (5$)ji,k) * ((ﬁ)jl\i’l) ‘
EoSe

L2
< C(k+1+ )T 2 fr kil o |l S

e, (4.18)

Proof. Using duality, we demonstrate the case (+,+), while the case

(—,—) is being similar. We first compute the fractional term
D oD 0, if &n < 0,
_iy 29 F29H,  if&n >0,
and observe that, for £&n > 0,
| = €]+ [nl] + 1€ +nl + 1 ~ max{|¢], [n]} + 1, (4.19b)
[ = Il + Il =l + | + 1~ minflel, o} +1. (419¢)

Thus, in the same manner we have
‘ (brZ+xZ+1,9) ‘

— D _A0D ~ —_—
| [ 7Lt PR P, )Ty 1]+ nl € +

H-o"

SO fs kel =l f4
([ 2l + 122 55 Tong e+l  + )| den)

<Clf+klla=ollf+illm=o | E*St*+brg]| 2

<Ok + 14+ D)TH2) £l g—all frall o | E*S9G] L2, (4.20)

N[
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O
Lemma 4.3. Let 6 > 0. The following estimates hold
G
ol < C(ollo + =] ). (4210)
2
Gy
< Ck, HWHH (4.21b)

The proof for the Lemma 4.3 is straight forward so that we skip it.
Notice that, in the (4.21b), S ~ 1 on the support of G.

Lemma 4.4. With the notation above, the following estimate holds

2

ET *Kl * Rl
R

el
MeSa

(4.22)

Proof. For simplicity, we write G:=G ¢ and K := K;. We use dyadic

decomposition to handle this case. Assume that
oo
= Z Gt 4.k (4.23)
k=1

where é:i,k(ﬂ €) is supported in one of the following types of regions:

Y ={(r,8) 7> 0,428 <7 —|¢] < +2FT) (4.24a)
Yo = {(r,8&) 7 >0, -2 <1 —|¢] < 21 (4.24D)
Yo y={(r,6): T <0, 42" <7 4 |¢] < #2811}, (4.24c)
Yo = {(r,&) 7 <0, -2 <7 )¢| < 21 (4.24d)

The decomposition of G induces a decomposition for K , namely

[?j;i’k; = @ (4.25&)

%|®>
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To compute the convolution in (4.22),
KigpxKiy(-1,-¢)

= /Fi,i,k(—T —0,—¢ —n) K+ +(0,n) dodn

= / [/(\jl:,:l:,k(’r +0,§+ U)Wof?i,i,l(@ 77) dgdna
(4.25b)

we have 16 cases resulted from (4.24a-d) and (4.25b) as follows.

{(ro.&n):7+0>0,0>0,7+0 — [+ 5| ~£2", 0 — |n|~+2'}

(4.26a)

{(r,0,&,m): T+ 0<0,0<0,7 + 0+ |+ n|~+2" o + |n|~+2'}
(4.26D)

{(r,0,6,m):T+0<0,0>0, 7T+ 0+ [£ +T}|N:i:2k,a — ]n[w:l:2l}
(4.26¢)

{(r,0,6&,m): T+ 0>0,0<0,7 + 0 — |+ n|~+2" o + |n|~+2'}
(4.26d)

We label them as

Ek,l[(ia i)? (:I:7 i)]v (427)

and denote by ¥ ; without specifying which one precisely. We also use
K}, for abbreviation of I?i,i,k and Gy, for @i,i,k .

Let g be an arbitrary function. We first compute

[V (r +0) = (€ +n)]° [V ++'n]

=°[(r+0)o = (E+n)n] +~' [(T+0)n—o(E+n)].
(4.28)

Thus, we have
‘ <%k * }?l7/g\> ‘

_| [& P +o) = E+n) oot ytng
_‘/Gk(7+07£+77) TroE €t | oI Gi(o,n)

5(—, —f)dadndfdf‘

G G - 1
gCHM—ZHLzH i ||L2(/Ik,l(7',§)|g(—7‘, —5)\2d7d5> , (4.292)

M
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where I}, ;(7,€) is given by

e [ TEEE IR0 ED g

Dr,1 WQ(T+07£+77)W2(0-7 77)

and @ is given by the expression
Qr,0.6m) = [(r+0)o — (E+nm]” + [(r+ o —o(E+m)]", (4.29)
and Dy ;(7,€) is a slice of Xy ; for fixed (7,&), i.e.
Dy y(7,8) :={(o,n) : (1,0,&,1m) € Tp1}- (4.29d)
We distinguish the cases into two sets,
Eral(£, )i (&) and - Epl(£,); (F,4)], (4.30)

due to the fact that the computation for the 8 cases in each set is similar.

For simplicity, we will assume k£ > [, while the other case is similar.

Cases H. We have the following estimate

Ko p+K.. c 1 G, G

R e T e e R B I CREIEN
EaSa £z = 23 2=kl pra lizzll pre llr2

K_ p+K_. c 1 G_. G_.

H ook 2 ”l‘ <= H ok Ll (4.31D)
EaSe r2 = 23 2=kl pre llz2ll pro liz2

In these cases, we have (7 + o)o > 0. Throughout some algebraic

manipulation, the expression () can be written as

2Q =(t+o—[E+n)*(c+n)*+ (T+o+[E+n)* (0 — |n)*+
8( + o) [|€+nlln| — (£ +n)n]. (4.32)

Take the case of
Kok % K0,
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as an example and in which Dy; = {(n,0) : T+ 0o —[£+n| ~ 2%, 0 —|n| ~
2 (1,0,6,1) € Zga[(+, +); (+,+)]}. In this case 7+ 0 > 0 and o > 0. In
the no-plane, this is the region of the intersection of two forward cones.
One has the thickness of 2% and the translation of (—¢, —7), while the
other has thickness of 2!. It is mostly bounded, except for the extreme
case which is when one cone moves along the other cone such that the
intersection region is unbounded. Denote the set ﬁkl to be the projection
of the set Dy ; onto the n-axis. When the set Dy ; is bounded, two facts,
€| = |€ + 1| + |n| and |Dy| < C2*, are available and will be used in the
following estimates.

For the first part, we have
M2 (€ +n)M**(n) (T + 0 — €+ 1)) (0 + |n])?

It (7, €)= — — dodn
kJ( ) Dy,1 W2(7+0a€+77)W2(07 77)
]/\Z2a ]/w\Za
:/ (€+mn) : (n) _dody
Dy (THo+[E+n])2(0 —[nl)
1 2« 1 2c
<O [ lern vt )
2 Iy, (2% + 1€+ nl)
Consider the case when |€ 4+ n| > |n|, we get
C §+ + 1 2« + 1 2c¢
R < [ GErne v,
2 Iy, (2% + € +nl)
¢ (L+n)*> =
S_ dT/E @ 7_75
) e a e ER
C 1 20 Q2a

The extreme case is that when one of the cones moves along the other,
say down right, this will not cause any trouble. Here, the region Dy, ; is

unbounded. For the case |£ +n| < |n|, we get
C / (1€ +nl -+ D)™ (nl + 1)*
9k,l

I;,Z(Taf) SE (2k T |£+7]|)2

C [ (Atletn)® o
/9 @ 1 e+ g2 nE ()

IN

B2 5%, (4.33¢)

IN

2!
C 1
9l 9(1—2a)k
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Again the extreme case when one of the cones moves along the other cone,
say up right, will not cause trouble. Here, the region Dy, ; is unbounded.

For the second part, we obtain

M\za ]\’jza 20 2
7 Dy 1 W2(T+07£+77)W2(0-7 77)
]/\ZQa MQ&
:/ (E+n) : (n) dodn
Dy (TH0o—[§+n])2(0+ [n])
c / (1€ +nl +1)**(|n| + 1)**
< dn. (4.34a)
22k~ B (2l + |77‘)2
Consider the case when |€ 4+ n| > |n|, we get
C (1€ +nl+ D2 (nl +1)*
Il%l(7-7 6) < _ / dn
el N C VI
C / (Inl + 1% =,
< - —dnk*“
22kt Jp,, (284 n])?
C 1 20 Q2a
SQ_kmE S, (4.34b)
For the case € 4+ 1| < |n|, we get
¢ (1€ +nl + 1)%*(In| + 1)**
Rir€) <y | d
Nl T C S
1 2« N
Sgl ( +l‘§+lrlg dnEQa(T,f)
2 Je,, (2" +n))
C 1 n2a Q2a
SQ—kmE S . (434(3)

For the third part, we get
o) - | M2 (€ + )M (n)(7 + 9)o [|€ + nlln] — (€ +m)n]
’ Dy, W2(T+0,§+77)W2(Ua 77)
C / M2 (€ + )M () (1 + 0)a|€ + nlln]
Dy

dodn

< dod
=92+ (rto+lE+n)2@+mz

<L/ (1€ + 0l +1)**(In] + 1)**(7 4+ 0)al€ + nlln|
222 (T +0+|E+n])2(c +|n|)?

_C / (1€ + 0l + 1) (Jn] + 1)2¥|€ + 7]|n| .
S22 fg (28 + [+ n)) (2 + [n]) C (4350)

dodn
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Consider the case when |£ 4+ n| > |n|, we have

C (1€ 4+ nl 4+ 1)**(In] + 1)>**|€ + nl|n]
I;g’,l(T,f) §22k:+l /BM (2k + ‘€+n|)(2l + [n])

Ry TS S I 2
ST g, @F €+ 0@+ D

C / N
<oaerr [ (Il +1)* dnE>
22+l [g

< C 1
=9l 9(1-2a)k
The extreme case will not cause trouble since & + 7 and n are of the same

252 (4.35b)

sign except on a bounded region, i.e. Uﬁ +nln| — (£ + n)n} = (0 except on
a bounded region. For the case |£ + 1| < |n|, we get

¢ / (1€ +nl+ 1) (nl + 1)**|€ +nlln]

(1,8 <=5
it (7:6) 92k | 2k + 1€+ )2+ |n))
C / (1€ + 1l + 1)2¥|€ + n||n| dnEza
22 Jg o (28 €+ n]) (28 + [n])
<gr [, (€ nl+ 1) o

< C 1
=9l 9(1-2a)k
The extreme case will not cause trouble since & + 7 and n are of the same

B2 5%, (4.35¢)

sign except on a bounded region, i.e. [|€+n||n| — (£ +n)n] = 0 except on

a bounded region.

Cases E. We have the following estimate

~

K_ . p«K,. c 1 G_. G, .

H vih X 2 ’l‘ <= — H okl | 2]l g 36a)
EaSa £z = 23 2=kl pra llzzll pre L2

Ko p+K_. c 1 G, G_.

|Fram st < Sk | Zet ) a36b)
EegSe L2 = 23 2=kl pra ll2ll pra iz

In these cases, we have (7 + 0)o < 0. Throughout some algebraic

manipulation, the expression () can be written as
2Q =(t + o +[E+n)*(0 +[n)* + (1 + 0 — €+ nl)* (o — |n])*~
8(7 + o) [|¢ +nllnl + (€ +mn)n]. (4.37)
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Take the case of

A~

K_7+7k * K+7+7l7

as an example and in which Dy; = {(n,0) : T+ 0o+ [ +n| ~ 2%, 0 —|n| ~
ol (1,0,6,1m) € Yeil(—,+); (+,4)]}. In this case 7+ 0 < 0 and o > 0.
In no-plane, this is the region of the intersection of a truncated backward
cone with a forward cone. One has the thickness of 2¥ and the translation
of (=&, —7), while the other has thickness of 2!. It is bounded for all cases.
We still have the extreme case which is when one cone moves along the
other cone, though the region of intersection can be as large as possible,
nevertheless it is bounded.

Again for the first part, we can estimate

Dng e [ MEEEmMIE M o+ lEn) o+ ),
’ Dy, WQ(T +0,{+ 77)W2(Ua 77)

M2 (€ 4 1) M2 (1)
_ dod
/D,” (r+o—le+n)2(o—n2" """

_C [ (el 02 (] + 1>
S, o+

dodn. (4.38a)

To estimate the above integral, we separate the cases for |£ + n| > |n],
|€ + 71| < |n|, and the extreme case. Throughout some calculations, in

each case, we have

c 1 ~ o0 B0
Ikl(’r g) ~ 2l WEQ SQ . (438b)

For the second part, we derive

M2 (& + )M () (7 + 0 — |€ +1])*(0 — |n])?

22k

(7€) = > 7 Ao
! D1 W2(T + Ua€ + 77)W2(07 77)
A r2a A2
[ e,
DM (T+o+[§+n])2(o+nl)
2a
<& / §+77!+1) (Inl +1)* dodn
2%% by, (o + [n])?
gC_/ (€ +ml+ D) (4.392)
B,

2l + |77| 2+20¢
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To estimate the above integral, we separate the cases for [£ + 7| > |n],
|€ + 71| < |n|, and the extreme case. Throughout some calculations, in

each case, we have

¢ 1 HL2a Q2a
11371(7',5) < ?WEQ e (4.39b)

For the third part, we have

1720 1720
13 (r.6) ,:/ M (£+?7)J\£2 ()7 + olo[|€ + ullnl + (€ +n)n]
Dy 1 W (T+07€+n)W2(0—7n)
__cC / M2(& 4 n) M (n)|7 + o]0 ¢ + 1||n
“22 Jp,, (T Ho—E+n)*(o +nl)?
C

< SoRva / (€ +nl +1)**(In| + 1)** dodn. (4.40a)
Dy

dodn

dodn

To estimate the above integral, we separate the cases for | +n| > |n|,
|€ +n| < |n|, and the extreme case. Notice that for the extreme case, we
have |€ + n||n| + (£ + n)n = 0 except on a small part of the region of the

intersection. Throughout some calculations, in each case, we have

C 1 o B2
Ik' l(T 6) 2l WEQ SZ . (440b)

Now we return to the proof of (4.22). Combine (4.31), (4.36), we get

— ék @l ~ 2 %
(Rukig) | <ol = ||| =]),.( [ Bt olt-r, - Farac)
c 1 |G G .
Ty =l W o | N[V 2RCE 1
23 2(z=)k | jfa Me
C ék Gl a Qo
S (l_ )k—}-L = 1 —_ ||E S g||L2
Qa7 F T I M Sq MoSH (4.41)
Finally, we have
HK*K Z“Kk*Kl‘
EaSa "l EaSo L2
e A2
Sy W W T
k.l Q(Z_Q)HZ M«Si MeSa L a8l (4.42)
This completes the proof. [

The estimates for the remaining cases are given in the following Lemma.
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Lemma 4.5. For j = 1,2 and k = 0,1,2,---. The following estimates
hold
by (6941 4) « (R,) G
| - |, et b fepln.| =] .
EaSa L2 MaSz L2
(4.43a)
/b\TFj * (6:(|f)zzl\j: k) ’ k1 é\
—— ’ <C(k+1)T% 2 || == , (4.43b
|7, < T ekl = | (4430)
ku < cHé , (4.43¢)
EaS« L MoSaliLe
brx Ky# K; G |2
H%H < O“A—Al , (4.43d)
EaSa L2 MaSa L2

The proof of Lemma 4.5 is a repetition of the arguments presented in

Lemmas 4.1, 4.2, and 4.4, so that we omit it.
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